WorldWideScience

Sample records for attenuates lipopolysaccharide-induced acute

  1. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    Science.gov (United States)

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway.

  2. Isoforskolin pretreatment attenuates lipopolysaccharide-induced acute lung injury in animal models.

    Science.gov (United States)

    Yang, Weimin; Qiang, Dongjin; Zhang, Min; Ma, Limei; Zhang, Yonghui; Qing, Chen; Xu, Yunlong; Zhen, Chunlan; Liu, Jikai; Chen, Yan-Hua

    2011-06-01

    Isoforskolin was isolated from Coleus forskohlii native to Yunnan in China. We hypothesize that isoforskolin pretreatment attenuates acute lung injury induced by lipopolysaccharide (endotoxin). Three acute lung injury models were used: situ perfused rat lung, rat and mouse models of endotoxic shock. Additionally, lipopolysaccharide stimulated proinflammatory cytokine production was evaluated in human mononuclear leukocyte. In situ perfused rat lungs, pre-perfusion with isoforskolin (100, and 200 μM) and dexamethasone (65 μM, positive control) inhibited lipopolysaccharide (10 mg/L) induced increases in lung neutrophil adhesion rate, myeloperoxidase activity, lung weight Wet/Dry ratio, permeability-surface area product value, and tumor necrosis factor (TNF)-α levels. In rats, pretreatments with isoforskolin (5, 10, and 20 mg/kg, i.p.) and dexamethasone (5mg/kg, i.p.) markedly reduced lipopolysaccharide (6 mg/kg i.v.) induced increases of karyocyte, neutrophil counts and protein content in bronchoalveolar lavage fluid, and plasma myeloperoxidase activity. Lung histopathology showed that morphologic changes induced by lipopolysaccharide were less pronounced in the isoforskolin and dexamethasone pretreated rats. In mice, 5 mg/kg isoforskolin and dexamethasone caused 100% and 80% survival, respectively, after administration of lipopolysaccharide (62.5mg/kg, i.v., 40% survival if untreated). In human mononuclear leukocyte, isoforskolin (50, 100, and 200 μM) and dexamethasone (10 μM) pre-incubation lowered lipopolysaccharide (2 μg/mL) induced secretion of the cytokine TNF-α, and interleukins (IL)-1β, IL-6, and IL-8. In conclusion, pretreatment with isoforskolin attenuates lipopolysaccharide-induced acute lung injury in several models, and it is involved in down-regulation of inflammatory responses and proinflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8.

  3. Rabdosia japonica var. glaucocalyx Flavonoids Fraction Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Chun-jun Chu

    2014-01-01

    Full Text Available Rabdosia japonica var. glaucocalyx (Maxim. Hara, belonging to the Labiatae family, is widely used as an anti-inflammatory and antitumor drug for the treatment of different inflammations and cancers. Aim of the Study. To investigate therapeutic effects and possible mechanism of the flavonoids fraction of Rabdosia japonica var. glaucocalyx (Maxim. Hara (RJFs in acute lung injury (ALI mice induced by lipopolysaccharide (LPS. Materials and Methods. Mice were orally administrated with RJFs (6.4, 12.8, and 25.6 mg/kg per day for 7 days, consecutively, before LPS challenge. Lung specimens and the bronchoalveolar lavage fluid (BALF were isolated for histopathological examinations and biochemical analysis. The level of complement 3 (C3 in serum was quantified by a sandwich ELISA kit. Results. RJFs significantly attenuated LPS-induced ALI via reducing productions of the level of inflammatory mediators (TNF-α, IL-6, and IL-1β, and significantly reduced complement deposition with decreasing the level of C3 in serum, which was exhibited together with the lowered myeloperoxidase (MPO activity and nitric oxide (NO and protein concentration in BALF. Conclusions. RJFs significantly attenuate LPS-induced ALI via reducing productions of proinflammatory mediators, decreasing the level of complement, and reducing radicals.

  4. Sesamin Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Inhibition of TLR4 Signaling Pathways.

    Science.gov (United States)

    Qiang, Li; Yuan, Jiang; Shouyin, Jiang; Yulin, Li; Libing, Jiang; Jian-An, Wang

    2016-02-01

    Recent studies suggested that TLR4 signaling pathways played an important role in the development of LPS-induced acute lung injury (ALI). Sesamin, a sesame lignan exacted from sesame seeds, has been shown to exhibit significant anti-inflammatory activity. The purpose of this study was to investigate the anti-inflammatory effects of sesamin on LPS-induced ALI in mice. Mice ALI model was induced by intratracheal instillation of LPS. Sesamin was given 1 h after LPS challenge. Our results showed that sesamin inhibited LPS-induced lung pathological change, edema, and myeloperoxidase (MPO) activity. Sesamin suppressed LPS-induced inflammatory cytokines TNF-α, IL-6, and IL-1β production. Furthermore, sesamin inhibited LPS-induced TLR4 expression and NF-κB activation. In conclusion, the results of this study indicated that sesamin protected against LPS-induced ALI by inhibition of TLR4 signaling pathways.

  5. Propofol pretreatment attenuates lipopolysaccharide-induced acute lung injury in rats by activating the phosphoinositide-3-kinase/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.L. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Hu, G.C. [Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Zhu, S.S. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Li, J.F. [Department of Anesthesiology, Tengzhou Central People' s Hospital, Liaocheng, Shandong Province (China); Liu, G.J. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China)

    2014-10-14

    The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.

  6. Asiaticoside attenuates lipopolysaccharide-induced acute lung injury via down-regulation of NF-κB signaling pathway.

    Science.gov (United States)

    Qiu, Jiaming; Yu, Lijun; Zhang, Xingxing; Wu, Qianchao; Wang, Di; Wang, Xiuzhi; Xia, Cheng; Feng, Haihua

    2015-05-01

    Asiaticoside (AS), a triterpene glycoside isolated from Centella asiatica, has been shown to possess potent anti-inflammatory activity. However, the detailed molecular mechanisms of AS on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in mice are scanty. The purpose of this study was to evaluate the effect of AS on LPS-induced mouse ALI via down-regulation of NF-κB signaling pathway. We investigated the efficacy of AS on cytokine levels induced by LPS in bronchoalveolar lavage fluid (BALF) and RAW 264.7 cells. The production of cytokine (TNF-α and IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). The lung wet-to-dry weight ratios were measured in LPS-challenged mice, and lung histopathologic changes observed via paraffin section were assessed. To further study the mechanism of AS protective effects on ALI, the activation of NF-κB p65 subunit and the degradation of IκBα were tested by western blot assay. We found that AS treatment at 15, 30 or 45mg/kg dose-dependently attenuated LPS-induced pulmonary inflammation by reducing inflammatory infiltration, histopathological changes, descended cytokine production, and pulmonary edema initiated by LPS. Furthermore, our results suggested that AS suppressed inflammatory responses in LPS-induced ALI through inhibition of the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα, and might be a new preventive agent of ALI in the clinical setting.

  7. Ginkgo biloba extracts attenuate lipopolysaccharide-induced inflammatory responses in acute lung injury by inhibiting the COX-2 and NF-κB pathways.

    Science.gov (United States)

    Yao, Xin; Chen, Nan; Ma, Chun-Hua; Tao, Jing; Bao, Jian-An; Zong-Qi, Cheng; Chen, Zu-Tao; Miao, Li-Yan

    2015-01-01

    In the present study, we analyzed the role of Ginkgo biloba extract in lipopolysaccharide(LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS. G. biloba extract (12 and 24 mg·kg(-1)) and dexamethasone (2 mg·kg(-1)), as a positive control, were given by i.p. injection. The cells in the bronchoalveolar lavage fluid (BALF) were counted. The degree of animal lung edema was evaluated by measuring the wet/dry weight ratio. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, tumor necrosis factor-a, interleukin-1b, and interleukin-6, were assayed by enzyme-linked immunosorbent assay. Pathological changes of lung tissues were observed by H&E staining. The levels of NF-κB p65 and COX-2 expression were detected by Western blotting. Compared to the LPS group, the treatment with the G. biloba extract at 12 and 24 mg·kg(-1) markedly attenuated the inflammatory cell numbers in the BALF, decreased NF-κB p65 and COX-2 expression, and improved SOD activity, and inhibited MPO activity. The histological changes of the lungs were also significantly improved. The results indicated that G. biloba extract has a protective effect on LPS-induced acute lung injury in mice. The protective mechanism of G. biloba extract may be partly attributed to the inhibition of NF-κB p65 and COX-2 activation.

  8. Suppression of P2X7/NF-κB pathways by Schisandrin B contributes to attenuation of lipopolysaccharide-induced inflammatory responses in acute lung injury.

    Science.gov (United States)

    Cai, Zhiyong; Liu, Jindi; Bian, Hongliang; Cai, Jinlan; Zhu, Gendi

    2016-04-01

    The aim of the present study was to assess the effects and mechanisms of Schisandrin B (SchB) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg), and SchB (25, 50, and 75 mg/kg) was injected 1 h before LPS challenge by gavage. After 12 h, bronchoalveolar lavage fluid (BALF) samples and lung tissues were collected. Histological studies demonstrated that SchB attenuated LPS-induced interstitial edema, hemorrhage, and infiltration of neutrophils in the lung tissue. SchB pretreatment at doses of 25, 50, and 75 mg/kg was shown to reduce LPS-induced lung wet-to-dry weight ratio and lung myeloperoxidase activity. In addition, pretreatment with SchB lowered the number of inflammatory cells and pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in BALF. The mRNA and protein expression levels of nuclear factor kappa B (NF-κB) signaling-related molecules activated by P2X7 were investigated to determine the molecular mechanism of SchB. The findings presented here suggest that the protective mechanism of SchB may be attributed partly to the decreased production of pro-inflammatory cytokines through the inhibition of P2X7/NF-κB activation.

  9. Simvastatin attenuates lipopolysaccharide-induced airway mucus hypersecretion in rats

    Institute of Scientific and Technical Information of China (English)

    OU Xue-mei; WANG Bai-ding; WEN Fu-qiang; FENG Yu-lin; HUANG Xiang-yang; XIAO Jun

    2008-01-01

    Background Mucus hypersecretion in the respiratory tract and goblet cell metaplasia in the airway epithelium contribute to the morbidity and mortality associated with airway inflammatory diseases.This study aimed to examine the effect and mechanisms of simvastatin on airway mucus hypersecretion in rats treated with lipopolysaccharide (LPS).Methods Mucus hypersecretion in rat airways was induced by intra-tracheal instillation of LPS.Rats treated with or without LPS were administered intra-peritoneally simvastatin (5 and 20 mg/kg) for 4 days.Expression of Muc5ac,RhoA and mitogen-activated protein kinases (MAPK) p38 in lung were detected by real-time polymerase chain reaction (PCR),immunohistochemistry or Western blotting.Tumor necrosis factor (TNF)-a and IL-8 in bronchoalveolar lavage fluid (BALF)were assayed by an enzyme-linked lectin assay and enzyme linked immunosorbent assay (ELISA).Results Simvastatin attenuated LPS-induced goblet cell hyperplasia in bronchial epithelium and Muc5ac hypersecretion at both the gene and protein levels in lung (P<0.05).Moreover,simvastatin inhibited neutrophil accumulation and the increased concentration of TNF-α and IL-8 in BALF follows LPS stimulation (P<0.05).The higher dose of simvastatin was associated with a more significant reduction in Muc5ac mRNA expression,neutrophil accumulation and inflammatory cytokine release.Simultaneously,the increased expression of RhoA and p38 MAPK were observed in LPS-treated lung (P<0.05).Simvastatin inhibited the expression of RhoA and p38 phosphorylation in lung following LPS stimulation (P<0.05).However,the increased expression of p38 protein in LPS-traated lung was not affected by simvastatin administration.Conclusions Simvastatin attenuates airway mucus hypersecretion and pulmonary inflammatory damage induced by LPS.The inhibitory effect of simvastatin on airway mucus hypersecretion may be through,at least in part,the suppression of neutrophil accumulation and inflammatory cytokine

  10. Dexmedetomidine Attenuates Lipopolysaccharide Induced MCP-1 Expression in Primary Astrocyte

    Science.gov (United States)

    Liu, Huan; Faez Abdelgawad, Amro

    2017-01-01

    Background. Neuroinflammation which presents as a possible mechanism of delirium is associated with MCP-1, an important proinflammatory factor which is expressed on astrocytes. It is known that dexmedetomidine (DEX) possesses potent anti-inflammatory properties. This study aimed to investigate the potential effects of DEX on the production of MCP-1 in lipopolysaccharide-stimulated astrocytes. Materials and Methods. Astrocytes were treated with LPS (10 ng/ml, 50 ng/ml, 100 ng/ml, and 1000 ng/ml), DEX (500 ng/mL), LPS (100 ng/ml), and DEX (10, 100, and 500 ng/mL) for a duration of three hours; expression levels of MCP-1 were measured by real-time PCR. The double immunofluorescence staining protocol was utilized to determine the expression of α2-adrenoceptors (α2AR) and glial fibrillary acidic protein (GFAP) on astrocytes. Results. Expressions of MCP-1 mRNA in astrocytes were induced dose-dependently by LPS. Administration of DEX significantly inhibited the expression of MCP-1 mRNA (P < 0.001). Double immunofluorescence assay showed that α2AR colocalize with GFAP, which indicates the expression of α2-adrenoceptors in astrocytes. Conclusions. DEX is a potent suppressor of MCP-1 in astrocytes induced with lipopolysaccharide through α2A-adrenergic receptors, which potentially explains its beneficial effects in the treatment of delirium by attenuating neuroinflammation. PMID:28286770

  11. 中度低温减轻内毒素性急性肺损伤大鼠肺炎症反应%Moderate Hypothermia Attenuates Lung Inflammation in Lipopolysaccharide-Induced Acute Lung Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    吴长毅; 曾因明; 顾卫东; 丁浩中; 陈肖; 张焰

    2004-01-01

    Objective To investigate the role of moderate hypothermia in the lung inflammation of rat acute lung injury induced by lipopolysaccharide( LPS). Methods A rat model of acute lung injury (ALI) was established by intra-tracheal instillation of lipopolysaccharide (1.5 mg/kg, 0.5 ml) at 16 h after LPS (1.0 mg/kg) intraperitoneal administration. Thirty-four male Sprague Dawley rats were randomly divided into four groups: control group, receiving saline only;LPS group, receiving LPS; hypothermia group, treated with hypothermia without LPS; LPS + hypothermia group, treated with LPS and cooled to 32.5℃~ 33.0℃ as PaO2/FiO2 was below 300 mmHg. Hemodynamics and blood gases were recorded every hour throughout the study. Rats were killed 4 h after ALI, and lung lavage was performed to measure the tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) concentrations in bronchoalveolar lavage fluid (BALF) by using enzyme-linked immunosorbent assay (ELISA). Results PaO2/FiO2 was significantly decreased and PaCO2 was increased in the LPS group as compared to their baseline values( P 《 0.01 ). Treatment with hypothermia inhibited the increase in PaCO2 ( P 《 0.05) but had no effect on PaO2/FiO2 in the presence of LPS. The administration of LPS significantly increased the concentrations of TNF-α, IL-6 and IL-10 in BALE as compared to the control experiment( P 《0.05, P 《 0.01 ). Moderate hypothermia reduced the expressions of TNF-α and IL-6( P 《 0.01 ) but had no effect on the production of IL-10( P 》 0.05). Conclusion Moderate hypothermia significantly inhibits proinflammatory cytokine expressions in lipopolysaccharide-induced acute lung injury.

  12. Lipopolysaccharide-induced acute renal failure in conscious rats

    DEFF Research Database (Denmark)

    Jonassen, Thomas E N; Graebe, Martin; Promeneur, Dominique

    2002-01-01

    In conscious, chronically instrumented rats we examined 1) renal tubular functional changes involved in lipopolysaccharide (LPS)-induced acute renal failure; 2) the effects of LPS on the expression of selected renal tubular water and sodium transporters; and 3) effects of milrinone, a phosphodies......In conscious, chronically instrumented rats we examined 1) renal tubular functional changes involved in lipopolysaccharide (LPS)-induced acute renal failure; 2) the effects of LPS on the expression of selected renal tubular water and sodium transporters; and 3) effects of milrinone......). LPS-induced fall in GFR and proximal tubular outflow were sustained on day 2. Furthermore, LPS-treated rats showed a marked increase in fractional distal water excretion, despite significantly elevated levels of plasma vasopressin (AVP). Semiquantitative immunoblotting showed that LPS increased...... the expression of the Na(+),K(+),2Cl(-)-cotransporter (BSC1) in the thick ascending limb, whereas the expression of the AVP-regulated water channel aquaporin-2 in the collecting duct (CD) was unchanged. Pretreatment with milrinone or Ro-20-1724 enhanced LPS-induced increases in plasma tumor necrosis factor...

  13. Galangin dampens mice lipopolysaccharide-induced acute lung injury.

    Science.gov (United States)

    Shu, Yu-Sheng; Tao, Wei; Miao, Qian-Bing; Lu, Shi-Chun; Zhu, Ya-Bing

    2014-10-01

    Galangin, an active ingredient of Alpinia galangal, has been shown to possess anti-inflammatory and antioxidant activities. Inflammation and oxidative stress are known to play vital effect in the pathogenesis of acute lung injury (ALI). In this study, we determined whether galangin exerts lung protection in lipopolysaccharide (LPS)-induced ALI. Male BALB/c mice were randomized to receive galangin or vehicle intraperitoneal injection 3 h after LPS challenge. Samples were harvested 24 h post LPS administration. Galangin administration decreased biochemical parameters of oxidative stress and inflammation, and improved oxygenation and lung edema in a dose-dependent manner. These protective effects of galangin were associated with inhibition of nuclear factor (NF)-κB and upregulation of heme oxygenase (HO)-1. Galangin reduces LPS-induced ALI by inhibition of inflammation and oxidative stress.

  14. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr [Seoul National University Hospital, Biomedical Research Institute and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Abdelmegeed, Mohamed A. [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States); Song, Byoung-Joon, E-mail: bj.song@nih.gov [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States)

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  15. Piperine Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via Modulating NF-κB Signaling Pathways.

    Science.gov (United States)

    Lu, Ying; Liu, Jingyao; Li, Hongyan; Gu, Lina

    2016-02-01

    Piperine, one of the active components of black pepper, has been reported to have antioxidant and anti-inflammatory activities. However, the effects of piperine on lipolysaccharide (LPS)-induced acute lung injury (ALI) have not been reported. Thus, the protective effects of piperine against LPS-induced ALI were investigated in this study. LPS-induced lung injury was assessed by histological study, myeloperoxidase (MPO) activity, and inflammatory cytokine production. Our results demonstrated that piperine attenuated LPS-induced MPO activity, lung edema, and inflammatory cytokines TNF-α, IL-6, and IL-1β production. Histological studies showed that piperine obviously attenuated LPS-induced lung injury. In addition, piperine significantly inhibited LPS-induced NF-κB activation. In conclusion, our results demonstrated that piperine had a protective effect on LPS-induced ALI. The anti-inflammatory mechanism of piperine is through inhibition of NF-κB activation. Piperine may be a potential therapeutic agent for ALI.

  16. Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia.

    Science.gov (United States)

    Park, Euteum; Chun, Hong Sung

    2017-02-01

    Melatonin, a naturally occurring neurohormone in the pineal gland, has been shown to exert antioxidant and anti-inflammatory effects. This study examined the effects of melatonin on manganese (Mn) and/or lipopolysaccharide (LPS)-induced microglial activation. Melatonin (10 μM) inhibited Mn (100 μM) and/or LPS (0.5 μg/ml)-induced phagocytotic activity of activated BV2 microglia. It also inhibited the lipid peroxidation and intracellular reduced glutathione (GSH) depletion induced by Mn and/or LPS. Melatonin effectively suppressed the upregulation of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) at both mRNA and protein levels in Mn and/or LPS-stimulated BV2 microglia. In addition, melatonin pretreatment attenuated Mn and/or LPS-induced degradation of IκB-α, nuclear translocation of nuclear factor-κB (NF-κB) and its activation, and the expressions of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in BV2 microglial cells. These results suggest that melatonin can effectively modulate phagocytosis and expression of proinflammatory mediators, and can prevent neuroinflammatory disorders accompanied by microglial activation.

  17. MARESIN 1 PREVENTS LIPOPOLYSACCHARIDE-INDUCED NEUTROPHIL SURVIVAL AND ACCELERATES RESOLUTION OF ACUTE LUNG INJURY.

    Science.gov (United States)

    Gong, Jie; Liu, Hong; Wu, Jing; Qi, Hong; Wu, Zhou-Yang; Shu, Hua-Qing; Li, Hong-Bin; Chen, Lin; Wang, Ya-Xin; Li, Bo; Tang, Min; Ji, Yu-Dong; Yuan, Shi-Ying; Yao, Shang-Long; Shang, You

    2015-10-01

    Acute lung injury (ALI) is characterized by lung inflammation and diffuse infiltration of neutrophils. Neutrophil apoptosis is recognized as an important control point in the resolution of inflammation. Maresin 1 (MaR1) is a new docosahexaenoic acid-derived proresolving agent that promotes the resolution of inflammation. However, its function in neutrophil apoptosis is unknown. In this study, isolated human neutrophils were incubated with MaR1, the pan-caspase inhibitor z-VAD-fmk, and lipopolysaccharide (LPS) to determine the mechanism of neutrophil apoptosis. Acute lung injury was induced by intratracheal instillation of LPS. In addition, mice were treated with MaR1 intravenously at the peak of inflammation and administered z-VAD-fmk intraperitoneally. We found that culture of isolated human neutrophils with LPS dramatically delayed neutrophil apoptosis through the phosphorylation of AKT, ERK, and p38 to upregulate the expression of the antiapoptotic proteins Mcl-1 and Bcl-2, which was blocked by pretreatment with MaR1 in vitro. In mice, MaR1 accelerated the resolution of inflammation in LPS-induced ALI through attenuation of neutrophil accumulation, pathohistological changes, and pulmonary edema. Maresin 1 promoted resolution of inflammation by accelerating caspase-dependent neutrophil apoptosis. Moreover, MaR1 also reduced the LPS-induced production of proinflammatory cytokines and upregulated the production of the anti-inflammatory cytokine interleukin-10. In contrast, treatment with z-VAD-fmk inhibited the proapoptotic action of MaR1 and attenuated the protective effects of MaR1 in LPS-induced ALI. Taken together, MaR1 promotes the resolution of LPS-induced ALI by overcoming LPS-mediated suppression of neutrophil apoptosis.

  18. Mucoactive effects of naringin in lipopolysaccharide-induced acute lung injury mice and beagle dogs.

    Science.gov (United States)

    Chen, Yan; Wu, Hao; Nie, Yi-chu; Li, Pei-bo; Shen, Jian-gang; Su, Wei-wei

    2014-07-01

    Our previous study has demonstrated that naringin attenuates EGF-induced MUC5AC hypersecretion in A549 cells by suppressing the cooperative activities of MAPKs/AP-1 and IKKs/IκB/NF-κB signaling pathways. However, the volume of airway mucus is determined by two factors including the number of mucous cells and capacity of mucus secretion. The aim of the present study is to explore the mucoactive effects of naringin in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and beagle dogs. The results demonstrated that naringin of 12.4 mg/kg treatment significantly decreased LPS-induced enhancement of sputum volume and pulmonary inflammation, remarkably increased the subglottic sputum volume and solids content in sputum of lower trachea, while partially, but not fully, significantly increased the elasticity and viscosity of sputum in lower trachea of beagle dogs. Moreover, the MUC5AC content in BALF and goblet-cells in large airways of LPS-induced ALI mice were significantly attenuated by dexamethasone (5 mg/kg), ambroxol (25 mg/kg), and naringin (15, 60 mg/kg). However, the goblet-cells hyperplasia in small airways induced by LPS was only significantly inhibited by dexamethasone and naringin (60 mg/kg). In conclusion, naringin exhibits mucoactive effects through multiple targets which including reduction of goblet cells hyperplasia and mucus hypersecretion, as well as promotion of sputum excretion.

  19. Vitamin D3 pretreatment alleviates renal oxidative stress in lipopolysaccharide-induced acute kidney injury.

    Science.gov (United States)

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Xia, Mi-Zhen; Wang, Hua; Zhao, Hui; Xu, De-Xiang; Yu, De-Xin

    2015-08-01

    Increasing evidence demonstrates that reactive oxygen species plays important roles in sepsis-induced acute kidney injury. This study investigated the effects of VitD3 pretreatment on renal oxidative stress in sepsis-induced acute kidney injury. Mice were intraperitoneally injected with lipopolysaccharide (LPS, 2.0mg/kg) to establish an animal model of sepsis-induced acute kidney injury. In VitD3+LPS group, mice were orally pretreated with three doses of VitD3 (25 μg/kg) at 1, 24 and 48 h before LPS injection. As expected, oral pretreatment with three daily recommended doses of VitD3 markedly elevated serum 25(OH)D concentration and efficiently activated renal VDR signaling. Interestingly, LPS-induced renal GSH depletion and lipid peroxidation were markedly alleviated in VitD3-pretreated mice. LPS-induced serum and renal nitric oxide (NO) production was obviously suppressed by VitD3 pretreatment. In addition, LPS-induced renal protein nitration, as determined by 3-nitrotyrosine residue, was obviously attenuated by VitD3 pretreatment. Further analysis showed that LPS-induced up-regulation of renal inducible nitric oxide synthase (inos) was repressed in VitD3-pretreated mice. LPS-induced up-regulation of renal p47phox and gp91phox, two NADPH oxidase subunits, were normalized by VitD3 pretreatment. In addition, LPS-induced down-regulation of renal superoxide dismutase (sod) 1 and sod2, two antioxidant enzyme genes, was reversed in VitD3-pretreated mice. Finally, LPS-induced tubular epithelial cell apoptosis, as determined by TUNEL, was alleviated by VitD3 pretreatment. Taken together, these results suggest that VitD3 pretreatment alleviates LPS-induced renal oxidative stress through regulating oxidant and antioxidant enzyme genes.

  20. Inhaled hydrogen sulfide protects against lipopolysaccharide-induced acute lung injury in mice

    Directory of Open Access Journals (Sweden)

    Faller Simone

    2012-10-01

    Full Text Available Abstract Background Local pulmonary and systemic infections can lead to acute lung injury (ALI. The resulting lung damage can evoke lung failure and multiple organ dysfunction associated with increased mortality. Hydrogen sulfide (H2S appears to represent a new therapeutic approach to ALI. The gas has been shown to mediate potent anti-inflammatory and organ protective effects in vivo. This study was designed to define its potentially protective role in sepsis-induced lung injury. Methods C57BL/6 N mice received lipopolysaccharide (LPS intranasally in the absence or presence of 80 parts per million H2S. After 6 h, acute lung injury was determined by comparative histology. Bronchoalveolar lavage (BAL fluid was analyzed for total protein content and differential cell counting. BAL and serum were further analyzed for interleukin-1β, macrophage inflammatory protein-2, and/or myeloperoxidase glycoprotein levels by enzyme-linked immunosorbent assays. Differences between groups were analyzed by one way analysis of variance. Results Histological analysis revealed that LPS instillation led to increased alveolar wall thickening, cellular infiltration, and to an elevated ALI score. In the presence of H2S these changes were not observed despite LPS treatment. Moreover, neutrophil influx, and pro-inflammatory cytokine release were enhanced in BAL fluid of LPS-treated mice, but comparable to control levels in H2S treated mice. In addition, myeloperoxidase levels were increased in serum after LPS challenge and this was prevented by H2S inhalation. Conclusion Inhalation of hydrogen sulfide protects against LPS-induced acute lung injury by attenuating pro-inflammatory responses.

  1. Protective Effect of Genistein on Lipopolysaccharide-induced Acute Lung Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    LI Xingwang; XU Tao; LIAN Qingquan; ZENG Bangxiong; ZHANG Bing; XIE Yubo

    2005-01-01

    To investigate the protective effect of genistein on endotoxin-induced acute lung injury in rats, and explore the underlying mechanisms, 32 male Sprague-Dawley rats were randomly divided into 4 experimental groups: saline control, genistein alone, lipopolysaccaride alone, and genistein pretreatment. Each treatment group consisted of eight animals. Animals were observed for 6 h after LPS challenge, and the wet/dry (W/D) weight ratio of the lung and bronchoalveolar lavage fluid(BALF) protein content were used as a measure of lung injury. Neutrophil recruitment and activation were evaluated by BALF cellularity and myeloperoxidase (MPO) activity. RT-PCR analysis was performed in lung tissue to assess gene expression of ICAM-1. The histopathological changes were also observed using the HE staining of lung tissue. Our results showed that lung injury parameters, including the wet/dry weight ratio and protein content in BALF, were significantly higher in the LPS alone group than in the saline control group (P<0.01). In the LPS alone group, a larger number of neutrophils and greater MPO activity in cell-free BAL and lung homogenates were observed when compared with the saline control group (P<0.01). There was a significant increase in lung ICAM-1 mRNA in response to LPS challenge (P< 0. 01, group L versus group S).Genistein pretreatment significantly attenuated LPS-induced changes in these indices. LPS caused extensive lung damage, which was also lessened after genistein pretreatment. All above-mentioned parameters in the genistein alone group were not significantly different from those of the saline control group. It is concluded that genistein pretreatment attenuated LPS-induced lung injury in rats.This beneficial effect of genistein may involves, in part, an inhibition of neutrophilic recruitment and activity, possibly through an inhibition of lung ICAM-1 expression.

  2. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury.

    Science.gov (United States)

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Zhang, Zhi-Hui; Wang, Hua; Zhao, Hui; Yu, De-Xin; Xu, De-Xiang

    2015-12-22

    Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury.

  3. Protective Effect of Isorhamnetin on Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    Science.gov (United States)

    Yang, Bo; Li, Xiao-Ping; Ni, Yun-Feng; Du, Hong-Yin; Wang, Rong; Li, Ming-Jiang; Wang, Wen-Chen; Li, Ming-Ming; Wang, Xu-Hui; Li, Lei; Zhang, Wei-Dong; Jiang, Tao

    2016-02-01

    Isorhamnetin has been reported to have anti-inflammatory, anti-oxidative, and anti-proliferative effects. The aim of this study was to investigate the protective effect of isorhamnetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice by inhibiting the expression of cyclooxygenase-2 (COX-2). The effects of isorhamnetin on LPS-induced lung pathological damage, wet/dry ratios and the total protein level in bronchoalveolar lavage fluid (BALF), inflammatory cytokine release, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities, and malondialdehyde (MDA) level were examined. In addition, the COX-2 activation in lung tissues was detected by Western blot. Isorhamnetin pretreatment improved the mice survival rates. Moreover, isorhamnetin pretreatment significantly attenuated edema and the pathological changes in the lung and inhibited protein extravasation in BALF. Isorhamnetin also significantly decreased the levels of inflammatory cytokines in BALF. In addition, isorhamnetin markedly prevented LPS-induced oxidative stress. Furthermore, isorhamnetin pretreatment significantly suppressed LPS-induced activation of COX-2. Isorhamnetin has been demonstrated to protect mice from LPS-induced ALI by inhibiting the expression of COX-2.

  4. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats.

    Science.gov (United States)

    Wang, Wen; Liu, Zhi; Su, Jie; Chen, Wen-Sheng; Wang, Xiao-Wu; Bai, San-Xing; Zhang, Jin-Zhou; Yu, Shi-Qiang

    2016-08-01

    Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3'-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI.

  5. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity.

    Science.gov (United States)

    Chiu, Chun-Hung; Chang, Chun-Chao; Lin, Shiang-Ting; Chyau, Charng-Cherng; Peng, Robert Y

    2016-07-14

    Lipopolysaccharide (LPS)-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST), a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA) apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group) were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10) for seven days and then were LPS-challenged (i.p., 5 mg/kg). The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), creatinine (CRE), hepatic malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS), suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day). Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity.

  6. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Chun-Hung Chiu

    2016-07-01

    Full Text Available Lipopolysaccharide (LPS-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST, a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10 for seven days and then were LPS-challenged (i.p., 5 mg/kg. The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT, glutamic oxaloacetic transaminase (GOT, blood urea nitrogen (BUN, creatinine (CRE, hepatic malondialdehyde (MDA and glutathione peroxidase (GSH-Px, IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS, suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day. Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity.

  7. CCR5 deficiency increased susceptibility to lipopolysaccharide-induced acute renal injury.

    Science.gov (United States)

    Lee, Dong Hun; Park, Mi Hee; Hwang, Chul Ju; Hwang, Jae Yeon; Yoon, Hae Suk; Yoon, Do Young; Hong, Jin Tae

    2016-05-01

    C-C chemokine receptor 5 (CCR5) regulates leukocyte chemotaxis and activation, and its deficiency exacerbates development of nephritis. Therefore, we investigated the role of CCR5 during lipopolysaccharide (LPS)-induced acute kidney injury. CCR5-deficient (CCR5-/-) and wild-type (CCR5+/+) mice, both aged about 10 months, had acute renal injury induced by intraperitoneal injection of LPS (10 mg/kg). Compared with CCR5+/+ mice, CCR5-/- mice showed increased mortality and renal injury, including elevated creatinine and blood urea nitrogen levels, following LPS challenge. Compared to CCR5+/+ mice, CCR5-/- mice also exhibited greater increases in the serum concentrations of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β following LPS challenge. Furthermore, infiltration of macrophages and neutrophils, expression of intracellular adhesion molecule (ICAM)-1, and the number of apoptotic cells were more greatly increased by LPS treatment in CCR5-/- mice than in CCR5+/+ mice. The concentrations of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β were also significantly increased in the kidney of CCR5-/- mice after LPS challenge. Moreover, primary kidney cells from CCR5-/- mice showed greater increases in TNF-α production and p38 MAP kinase activation following treatment with LPS compared with that observed in the cells from CCR5+/+ mice. LPS-induced TNF-α production and apoptosis in the primary kidney cells from CCR5-/- mice were inhibited by treatment with p38 MAP kinase inhibitor. These results suggest that CCR5 deficiency increased the production of TNF-α following LPS treatment through increased activation of the p38 pathway in the kidney, resulting in renal apoptosis and leukocyte infiltration and led to exacerbation of LPS-induced acute kidney injury.

  8. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS.

    Science.gov (United States)

    Sepehr, Reyhaneh; Audi, Said H; Maleki, Sepideh; Staniszewski, Kevin; Eis, Annie L; Konduri, Girija G; Ranji, Mahsa

    2013-07-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  9. RGD-tagged helical rosette nanotubes aggravate acute lipopolysaccharide-induced lung inflammation

    Directory of Open Access Journals (Sweden)

    Suri SS

    2011-12-01

    Full Text Available Sarabjeet Singh Suri1, Steven Mills1, Gurpreet Kaur Aulakh1, Felaniaina Rakotondradany2, Hicham Fenniri2, Baljit Singh11Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon; 2National Institute for Nanotechnology and Department of Chemistry, Edmonton, CanadaAbstract: Rosette nanotubes (RNT are a novel class of self-assembled biocompatible nanotubes that offer a built-in strategy for engineering structure and function through covalent tagging of synthetic self-assembling modules (G∧C motif. In this report, the G∧C motif was tagged with peptide Arg-Gly-Asp-Ser-Lys (RGDSK-G∧C and amino acid Lys (K-G∧C which, upon co-assembly, generate RNTs featuring RGDSK and K on their surface in predefined molar ratios. These hybrid RNTs, referred to as Kx/RGDSKy-RNT, where x and y refer to the molar ratios of K-G∧C and RGDSK–G∧C, were designed to target neutrophil integrins. A mouse model was used to investigate the effects of intravenous Kx/RGDSKy-RNT on acute lipopolysaccharide (LPS-induced lung inflammation. Healthy male C57BL/6 mice were treated intranasally with Escherichia coli LPS 80 µg and/or intravenously with K90/RGDSK10-RNT. Here we provide the first evidence that intravenous administration of K90/RGDSK10-RNT aggravates the proinflammatory effect of LPS in the mouse. LPS and K90/RGDSK10-RNT treatment groups showed significantly increased infiltration of polymorphonuclear cells in bronchoalveolar lavage fluid at all time points compared with the saline control. The combined effect of LPS and K90/RGDSK10-RNT was more pronounced than LPS alone, as shown by a significant increase in the expression of interleukin-1ß, MCP-1, MIP-1, and KC-1 in the bronchoalveolar lavage fluid and myeloperoxidase activity in the lung tissues. We conclude that K90/RGDSK10-RNT promotes acute lung inflammation, and when used along with LPS, leads to exaggerated immune response in the lung.Keywords: RGD peptide, helical rosette

  10. XB130 deficiency enhances lipopolysaccharide-induced septic response and acute lung injury

    Science.gov (United States)

    Toba, Hiroaki; Tomankova, Tereza; Wang, Yingchun; Bai, Xiaohui; Cho, Hae-Ra; Guan, Zhehong; Adeyi, Oyedele A.; Tian, Feng; Keshavjee, Shaf; Liu, Mingyao

    2016-01-01

    XB130 is a novel oncoprotein that promotes cancer cell survival, proliferation and migration. Its physiological function in vivo is largely unknown. The objective of this study was to determine the role of XB130 in lipopolysaccharide (LPS)-induced septic responses and acute lung injury. LPS was intraperitoneally administrated to Xb130 knockout (KO) and wild type (WT) mice. There was a significant weight loss in KO mice at Day 2 and significantly higher disease scores during the 7 days of observation. The levels of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6 and interleukin-10 in the serum were significantly higher in KO mice at Day 2. In KO mice there were a significantly higher lung injury score, higher wet/dry lung weight ratio, more apoptotic cells and less proliferative cells in the lung. Macrophage infiltration was significantly elevated in the lung of KO mice. There was significantly increased number of p-GSK-3β positive cells in KO mice, which were mainly neutrophils and macrophages. XB130 is expressed in alveolar type I and type II cells in the lung. The expression in these cells was significantly reduced after LPS challenge. XB130 deficiency delayed the recovery from systemic septic responses, and the presence of XB130 in the alveolar epithelial cells may provide protective mechanisms by reducing cell death and promoting cell proliferation, and reducing pulmonary permeability. PMID:27029000

  11. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    G. Li

    2016-01-01

    Full Text Available Lipopolysaccharide (LPS-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI. The high mobility group box 1 (HMGB1 protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS, and LPS+GAL group (5 mg/kg GAL before LPS administration. Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D weight ratio, myeloperoxidase (MPO activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline, 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA. Moreover, GAL treatment significantly decreased the mortality rate (ANOVA. In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats.

  12. Inhibition of leukotriene B4 receptor 1 attenuates lipopolysaccharide-induced cardiac dysfunction: role of AMPK-regulated mitochondrial function

    Science.gov (United States)

    Sun, Meng; Wang, Rui; Han, Qinghua

    2017-01-01

    Leukotriene B4 (LTB4)-mediated leukocyte recruitment and inflammatory cytokine production make crucial contributions to chronic inflammation and sepsis; however, the role of LTB4 in lipopolysaccharide (LPS)-induced cardiac dysfunction remains unclear. Therefore, the present study addressed this issue using an LTB4 receptor 1 (BLT1) inhibitor. Administration of LPS to mice resulted in decreased cardiovascular function. Inhibition of LTB4/BLT1 with the BLT1 inhibitor U75302 significantly improved survival and attenuated the LPS-induced acute cardiac dysfunction. During LPS challenge, the phosphorylated AMPK/ACC signaling pathway was slightly activated, and this effect was enhanced by U75302. Additionally, pNF-κB, Bax and cleaved caspase-3 were upregulated by LPS, and Bcl-2, IκB-α, mitochondrial complex I, complex II, and OPA1 were downregulated; however, these effects were reversed by U75302. The results indicated that the BLT1 antagonist suppressed cardiac apoptosis, inflammation, and mitochondrial impairment. Furthermore, the protection provided by the BLT1 inhibitor against LPS-induced cardiac dysfunction was significantly reversed by the AMPK inhibitor Compound C. In conclusion, inhibiting the LTB4/BLT1 signaling pathway via AMPK activation is a potential treatment strategy for septic cardiac dysfunction because it efficiently attenuates cardiac apoptosis, which may occur via the inhibition of inflammation and mitochondrial dysfunction. PMID:28290498

  13. Indenes and tetralenes analogues attenuates lipopolysaccharide-induced inflammation: An in-vitro and in-vivo study.

    Science.gov (United States)

    Mohanty, Shilpa; Gautam, Yashveer; Maurya, Anil Kumar; Negi, Arvind S; Prakash, Om; Khan, Feroz; Bawankule, Dnyaneshwar Umrao

    2016-02-05

    In an effort to evaluate novel pharmacological activity of 1-chloro-2-formyl indene and tetralene analogues possessing potential antitubercular and antistaphylococcal agents, we explored its anti-inflammatory potential against lipopolysaccharide(LPS)-induced inflammation using in-vitro and in-vivo bioassay. Synthesized analogues significantly inhibited the production and expression of pro-inflammatory cytokines against LPS-induced inflammation in macrophages isolated from mice. Among all the analogues, TAF-5 (1-Chloro-2-formyl-1-tetralene) exhibited most potent anti-inflammatory activity without any cytotoxic effect. We have further evaluated the therapeutic efficacy and safety of TAF-5 in in-vivo system using LPS-induced sepsis, a systemic inflammation model and acute oral toxicity respectively in mice. Oral administration of TAF-5 inhibited the pro-inflammatory cytokines in serum, attenuated the organs injuries and improved host survival in dose dependent manner. Acute oral toxicity study showed TAF-5 is non-toxic at higher dose in mice. These results suggest the suitability of indene and tetralene analogues as new chemical entities for further investigation towards the management of inflammation related diseases.

  14. Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway.

    Science.gov (United States)

    Zhang, Tianzhu; Yan, Tianhua; Du, Juan; Wang, Shumin; Yang, Huilin

    2015-05-25

    Sepsis is a cluster of heterogeneous syndromes associated with progressive endotoxemic developments, ultimately leading to damage of multiple organs, including the heart. This study is to investigate the effects of apigenin on heart injury in lipopolysaccharide-induced endotoxemic rat model. Normal Wistar rats were randomly divided into four groups: control group, LPS group (15 mg/kg), LPS plus apigenin groups with different apigenin doses (50 mg/kg, 100 mg/kg). Serum levels of creatine kinase (CK), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) were measured after the rats were sacrificed. SphK1/S1P signaling pathway proteins, cleaved caspase-3, cleaved caspase-9, Bax and Bcl-2 in heart were measured by Western blot. In vitro, we evaluated the protective effect of apigenin on rat embryonic heart-derived myogenic cell line H9c2 induced by LPS. Apigenin decreased serum levels of CK-MB, LDH, TNF-α, IL-6, IL-1β. SphK1/S1P signaling pathway proteins, cleaved caspase-3, cleaved caspase-9, Bax in heart were found inhibited and Bcl-2 increased in the apigenin groups in vivo. In addition, apigenin inhibited intracellular calcium, the MAPK pathway and SphK1/S1P signaling pathway in vitro. Apigenin exerts pronounced cardioprotection in rats subjected to LPS likely through suppressing myocardial apoptosis and inflammation by inhibiting the SphK1/S1P signaling pathway.

  15. Epigallocatechin-3-gallate attenuates lipopolysaccharide-induced mastitis in rats via suppressing MAPK mediated inflammatory responses and oxidative stress.

    Science.gov (United States)

    Chen, Jinglou; Xu, Jun; Li, Jingjing; Du, Lifen; Chen, Tao; Liu, Ping; Peng, Sisi; Wang, Mingwei; Song, Hongping

    2015-05-01

    Green tea (Camellia sinensis) is an extremely popular beverage worldwide. Epigallocatechin-3-gallate (EGCG) is one of the major catechins isolated from green tea and contributes to its beneficial therapeutic functions including antioxidant, anti-inflammatory and anti-cancer effects. However, the effect of EGCG on mastitis is not yet known. This study was to investigate the protective potential of EGCG against mastitis in rats. The rat mastitis model was induced by injecting lipopolysaccharide (LPS) into the duct of mammary gland. The mammary gland was collected after the experimental period. The levels of mammary oxidative stress and inflammatory responses were assessed by measuring the local activities of antioxidant enzymes and the levels of inflammatory cytokines. The mammary expressions of mitogen-activated protein kinases (MAPKs), nuclear factor κB-p65 (NFκB-p65) and hypoxia-inducible factor-1α (HIF-1α) were evaluated by western blot analysis. It was found that EGCG obviously normalized LPS-induced low activities of antioxidant enzymes as well as decreased the high levels of inflammatory cytokines. Additionally, EGCG inhibited the mammary over-expression of MAPKs, NFκB-p65 and HIF-1α. These results indicated that EGCG was able to attenuate LPS-induced mastitis in rats by suppressing MAPK related oxidative stress and inflammatory responses.

  16. Berberine hydrochloride attenuates lipopolysaccharide-induced endometritis in mice by suppressing activation of NF-κB signal pathway.

    Science.gov (United States)

    Fu, Kaiqiang; Lv, Xiaopei; Li, Weishi; Wang, Yu; Li, Huatao; Tian, Wenru; Cao, Rongfeng

    2015-01-01

    Endometritis is a common disease in animal production and influences breeding all over the world. Berberine is one of the main alkaloids isolated from Rhizoma coptidis. Previous reports showed that berberine has anti-inflammatory potential. However, there have been a limited number of published reports on the anti-inflammatory effect of berberine hydrochloride on LPS-induced endometritis. The purpose of the present study was to investigate the effects of berberine hydrochloride on LPS-induced mouse endometritis. Berberine hydrochloride was administered intraperitoneally at 1h before and 12h after LPS induction. Then, a biopsy was performed, and uterine myeloperoxidase (MPO) and nitric oxide (NO) concentrations were determined. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels in the uterus homogenate were measured by ELISA. The extent of IκB-α and P65 phosphorylation was detected by Western blot. The results showed that berberine hydrochloride significantly attenuated neutrophil infiltration, suppressed myeloperoxidase activity and decreased NO, TNF-αand IL-1βproduction. Furthermore, berberine hydrochloride inhibited the phosphorylation of the NF-κB p65 subunit and the degradation of its inhibitor, IκBα. These findings suggest that berberine hydrochloride exerts potent anti-inflammatory effects on LPS-induced mouse endometritis and might be a potential therapeutic agent for endometritis.

  17. Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats.

    Science.gov (United States)

    Feng, Guang; Jiang, Ze-yu; Sun, Bo; Fu, Jie; Li, Tian-zuo

    2016-02-01

    Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment.

  18. Protection of Total Flavonoid Fraction from Nervilia fordii on Lipopolysaccharide-induced Acute Lung Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    HUANG Ming-qing; XIE You-liang; LAI Xiao-ping; LIN Ling; XU Yin-ji; LU Jin-jian; CHEN Xiu-ping

    2012-01-01

    Objective To investigate the effects of total flavonoid fraction(TFF)from Nervilia fordii on lipopolysaccharide(LPS)-induced acute lung injury(ALI)in rats,and to explore their protective mechanism.Methods LPS-induced ALI model was established by LPS(5 mg/kg)injection via left cervical vein.Blood samples were collected from the cervical artery of all rats at 5 and 6 h after LPS challenge for arterial blood gas test and cytokines measurements,and pulmonary microvascular permeability(PMP),lung wet/dry weight ratio(W/D),and pathological features were observed.Results Phytochemical study showed that the TFF contained 67.3% of flavonoids expressed in rutin and three flavone glycosides.The TFF pretreatment(6.24 and 12.48 mg/kg)attenuated the partial arterial pressure of oxygen decline in blood significantly,and decreased the PMP and lung W/D in ALI rats.In addition,the TFF(6.24 and 12.48 mg/kg)also ameliorated the LPS-induced lung damages including alveolar edema,neutrophils infiltration,alveolar hemorrhage,and thickening of the alveolar wall.Furthermore,the treatment with the TFF(6.24 and 12.48 mg/kg)also down-regulated the levels of pro-inflammatory cytokines,such as tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),and intercellular adhesion molecule-1(ICAM-1),and up-regulated the level of anti-inflammatory cytokine IL-10 in serum of ALI rats simultaneously.Conclusion These results suggest that the TFF could protect LPS-induced ALI in rats,which may be mediated,at least in part,by adjusting the production of inflammatory cytokines including TNF-α,IL-6,ICAM-1,and IL-10.

  19. Receptor Interacting Protein 3-Mediated Necroptosis Promotes Lipopolysaccharide-Induced Inflammation and Acute Respiratory Distress Syndrome in Mice.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS. Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3. However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP, mixed lineage kinase domain-like protein (MLKL, total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI staining. Levels of TNF-a, Interleukin (IL-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in

  20. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.;

    2015-01-01

    Background: In horses, insights into the innate immune processes in acute systemic inflammation are limited even though these processes may be highly important for future diagnostic and therapeutic advances in high-mortality disease conditions as the systemic inflammatory response syndrome (SIRS......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...... expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation....

  1. Cytokine and acute phase protein gene expression in liver biopsies from dairy cows with a lipopolysaccharide - induced mastitis

    DEFF Research Database (Denmark)

    Vels, J; Røntved, Christine M.; Bjerring, Martin

    2009-01-01

    - ), IL-1β, IL-6, and IL-10, and the acute phase proteins serum amyloid A isoform 3 (SAA3), haptoglobin (Hp), and 1-acid glycoprotein (AGP) were determined by real-time reverse transcription-PCR. Fourteen primiparous cows in mid lactation were challenged with 200 µg of LPS (n = 8) or NaCl solution (n = 6...

  2. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.;

    2015-01-01

    inflammation was induced in 6 adult horses by the intravenous injection of 1 mu g lipopolysaccharide (LPS) per kg btw. Sixteen blood samples were collected for each horse at predetermined intervals and analyzed by reverse transcription quantitative real-time PCR. Post-induction expression levels for each gene......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...... expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation....

  3. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation.

    Science.gov (United States)

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Chen, Xiuying; Zhu, Zhe; Qiu, Changwei; Li, Chengye; Deng, Ganzhen

    2016-06-01

    Despite developments in the knowledge and therapy of acute lung injury in recent decades, mortality remains high, and there is usually a lack of effective therapy. Plantamajoside, a major ingredient isolated from Plantago asiatica L. (Plantaginaceae), has been reported to have potent anti-inflammatory properties. However, the effect of plantamajoside on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice has not been investigated. The present study aimed to reveal the potential mechanism responsible for the anti-inflammatory effects of plantamajoside on LPS-induced acute lung injury in mice and in RAW264.7 cells. The results of histopathological changes as well as the lung wet-to-dry ratio and myeloperoxidase (MPO) activity showed that plantamajoside ameliorated the lung injury that was induced by LPS. qPCR and ELISA assays demonstrated that plantamajoside suppressed the production of IL-1β, IL-6 and TNF-α in a dose-dependent manner. TLR4 is an important sensor in LPS infection. Molecular studies showed that the expression of TLR4 was inhibited by plantamajoside administration. Further study was conducted on nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) using pathways using western blots. The results showed that plantamajoside inhibited the phosphorylation of IκBα, p65, p38, JNK and ERK. All results indicated that plantamajoside has protective effect on LPS-induced ALI in mice and in RAW264.7 cells. Thus, plantamajoside may be a potential therapy for the treatment of pulmonary inflammation.

  4. Effects of resolvin D1 on inflammatory responses and oxidative stress of lipopolysaccharide-induced acute lung injury in mice

    Institute of Scientific and Technical Information of China (English)

    Wang Lei; Yuan Ruixia; Yao Chengyue; Wu Qingping; Marie Christelle; Xie Wanli; Zhang Xingcai

    2014-01-01

    Background A variety of inflammatory mediators and effector cells participate together in acute lung injury,and lead to secondary injury that is due to an inflammatory cascade and secondary diffuse lung parenchyma injury.Inflammation is associated with an oxidative stress reaction,which is produced in the development of airway inflammation,and which has positive feedback on inflammation itself.Resolvin D1 can reduce the infiltration of neutrophils,regulate cytokine levels and reduce the inflammation reaction,and thereby promote the resolution of inflammation.The purpose of this study is to investigate the effects of resolvin D1 on an inflammatory response and oxidative stress during lipopolysaccharide (LPS)-induced acute lung injury.Methods LPS (3 mg/kg) was used to induce the acute lung injury model.Pretreatment resolvin D1 (100 ng/mouse) was given to mice 30 minutes before inducing acute lung injury.Mice were observed at 6 hours,12 hours,1 day,2 days,3 days,4 days and 7 days after LPS was administrated,then they were humanely sacrificed.We collected bronchoalveolar lavage fluid (BALF) and the lung tissues for further analysis.Paraffin section and HE staining of the lung tissues were made for histopathology observations.Parts of the lung tissues were evaluated for wet-to-dry (W/D) weight ratio.tumor necrosis factor (TNF)-α,inter leukin (IL)-1β,IL-10 and myeloperoxidase (MPO) were detected by enzyme-linked immunosorbent assay (ELISA).A lipid peroxidation malondialdehyde (MDA) assay kit was used to detect MDA.A total superoxide dismutase assay kit with WST-1 was used to analyze superoxide dismutase (SOD).We determined the apoptosis of neutrophils by Flow Cytometry.A real-time quantitative PCR Detecting System detected the expression of mRNA for heme oxygenase (HO)-1.Results Pretreatment with resolvin D1 reduced the pathological damage in the lung,decreased the recruitment of neutrophils and stimulated their apoptosis.It markedly decreased the expressions of TNF

  5. Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide induced acute lung injury via reducing inflammatory response.

    Science.gov (United States)

    Liu, Tian-Yin; Chen, Shi-Biao

    2016-12-01

    Sarcandra glabra (Chinese name, Zhongjiefeng) is an important herb widely used in traditional Chinese medicine. Lycopene has been shown to be a powerful antioxidant. This study aims to test the hypothesis that Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide (LPS) induced acute lung injury (ALI). Metabolomics approach combined with pathological inspection, serum biochemistry examination, enzyme-linked immunosorbent assay and western blotting were used to explore the protective effects of Sarcandra glabra and lycopene on LPS-induced ALI, and to elucidate the underlying mechanisms. Results showed that Sarcandra glabra and lycopene could significantly ameliorate LPS-induced histopathological injuries, improve the anti-oxidative activities of rats, decrease the levels of TNF-α and IL-6, suppress the activations of MAPK and transcription factor NF-κB and reverse the disturbed metabolism towards the normal status. Taken together, this integrated study revealed that Sarcandra glabra combined with lycopene had great potential in protecting rats from LPS-induced ALI, which would be helpful to guide the clinical medication.

  6. Immunomodulatory Effect of Chinese Herbal Medicine Formula Sheng-Fei-Yu-Chuan-Tang in Lipopolysaccharide-Induced Acute Lung Injury Mice

    OpenAIRE

    Chia-Hung Lin; Ching-Hua Yeh; Li-Jen Lin; Shulhn-Der Wang; Jen-Shu Wang; Shung-Te Kao

    2013-01-01

    Traditional Chinese medicine formula Sheng-Fei-Yu-Chuan-Tang (SFYCT), consisting of 13 medicinal plants, was used to treat patients with lung diseases. This study investigated the immunoregulatory effect of SFYCT on intratracheal lipopolysaccharides- (LPS-) challenged acute lung injury (ALI) mice. SFYCT attenuated pulmonary edema, macrophages, and neutrophils infiltration in the airways. SFYCT decreased inflammatory cytokines, including tumor necrosis factor- α (TNF α ), interleukin-1 β , and...

  7. Bigelovii A Protects against Lipopolysaccharide-Induced Acute Lung Injury by Blocking NF-κB and CCAAT/Enhancer-Binding Protein δ Pathways

    Directory of Open Access Journals (Sweden)

    Chunguang Yan

    2016-01-01

    Full Text Available Optimal methods are applied to acute lung injury (ALI and the acute respiratory distress syndrome (ARDS, but the mortality rate is still high. Accordingly, further studies dedicated to identify novel therapeutic approaches to ALI are urgently needed. Bigelovii A is a new natural product and may exhibit anti-inflammatory activity. Therefore, we sought to investigate its effect on lipopolysaccharide- (LPS- induced ALI and the underlying mechanisms. We found that LPS-induced ALI was significantly alleviated by Bigelovii A treatment, characterized by reduction of proinflammatory mediator production, neutrophil infiltration, and lung permeability. Furthermore, Bigelovii A also downregulated LPS-stimulated inflammatory mediator expressions in vitro. Moreover, both NF-κB and CCAAT/enhancer-binding protein δ (C/EBPδ activation were obviously attenuated by Bigelovii A treatment. Additionally, phosphorylation of both p38 MAPK and ERK1/2 (upstream signals of C/EBPδ activation in response to LPS challenge was also inhibited by Bigelovii A. Therefore, Bigelovii A could attenuate LPS-induced inflammation by suppression of NF-κB, inflammatory mediators, and p38 MAPK/ERK1/2—C/EBPδ, inflammatory mediators signaling pathways, which provide a novel theoretical basis for the possible application of Bigelovii A in clinic.

  8. Trans-10, cis-12 conjugated linoleic acid and the PPAR-γ agonist rosiglitazone attenuate lipopolysaccharide-induced TNF-α production by bovine immune cells.

    Science.gov (United States)

    Perdomo, M C; Santos, J E; Badinga, L

    2011-10-01

    Lipopolysaccharide (LPS) modulates innate immunity through alteration of cytokine production by immune cells. The objective of this study was to examine the effect of exogenous conjugated linoleic acid (CLA) and PPAR-γ agonist, rosiglitazone, on LPS-induced tumor necrosis factor α (TNF-α) production by cultured whole blood from prepubertal Holstein heifers (mean age, 5.5 mo). Compared with unstimulated cells, addition of LPS (10 μg/mL) to the culture medium increased (PTNF-α concentration in cultured whole blood in a dose- and time-dependent manner. The greatest TNF-α stimulation occurred after 12 h of exposure to 1 μg/mL LPS. Coincubation with trans-10, cis-12 CLA isomer (100 μM) or rosiglitazone (10 μM), a PPAR-γ agonist, decreased (PTNF-α production by 13% and 29%, respectively. Linoleic acid and cis-9, trans-11 CLA isomer had no detectable effects on LPS-induced TNF-α production in cultured bovine blood. The PPAR-γ agonist-induced TNF-α attenuation was reversed when blood was treated with both rosiglitazone and GW9662, a selective PPAR-γ antagonist. Addition of rosiglitazone to the culture medium tended to reduce nuclear factor-κ Bp65 concentration in nuclear and cytosolic extracts isolated from cultured peripheral blood mononuclear cells. Results show that LPS is a potent inducer of TNF-α production in bovine blood cells and that trans-10, cis-12 CLA and PPAR-γ agonists may attenuate the pro-inflammatory response induced by LPS in growing dairy heifers. Additional studies are needed to fully characterize the involvement of nuclear factor-κ B in LPS signaling in bovine blood cells.

  9. Isoorientin attenuates lipopolysaccharide-induced pro-inflammatory responses through down-regulation of ROS-related MAPK/NF-κB signaling pathway in BV-2 microglia.

    Science.gov (United States)

    Yuan, Li; Wu, Yuchen; Ren, Xiaomeng; Liu, Qian; Wang, Jing; Liu, Xuebo

    2014-01-01

    Isoorientin (ISO) is a flavonoid compound in the human diet, and has been known to possess various bioactivities. However, the effects of ISO on microglia inflammation have not been investigated. The current study investigates the neuroprotective effect of ISO in LPS-activated mouse microglial (BV-2) cells. ISO significantly increased the BV-2 cells viability, blocked the protein expression of inducible nitric oxide synthase and cyclooxygenase-2, and decreased the production of nitric oxide, pro-inflammatory cytokines including tumor necrosis factor-α and interleukin-1β. The activation of mitogen-activated protein kinases (MAPKs) was blocked by ISO, and NF-κB nuclear translocation was decreased by ISO both alone and together with NF-κB inhibitor (PDTC) and MAPKs inhibitors (U0126, SP 600125, and SB 203580). Furthermore, ISO strongly quenched intracellular reactive oxygen species (ROS) generation. ROS inhibitor (N-acetyl cysteine, NAC) significantly inhibited pro-inflammatory cytokines release and NF-κB and MAPKs activation, indicating that ISO attenuated neuroinflammation by inhibiting the ROS-related MAPK/NF-κB signaling pathway.

  10. Alpinetin attenuates inflammatory responses by interfering toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Chen, Haijin; Mo, Xiaodong; Yu, Jinlong; Huang, Zonghai

    2013-09-01

    Alpinetin, a novel plant flavonoid derived from Alpinia katsumadai Hayata, has been reported to exhibit anti-inflammatory properties. However, the effect of alpinetin on mastitis has not been investigated. The aim of this study was to investigate the protective effect of alpinetin against lipopolysaccharide (LPS)-induced mastitis and to clarify the possible mechanism. In the present study, primary mouse mammary epithelial cells and an LPS-induced mouse mastitis model were used to investigate the effect of alpinetin on mastitis and the possible mechanism. In vivo, we observed that alpinetin significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase; down-regulated the level of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6; inhibited the phosphorylation of IκB-α, NF-κB p65 and the expression of TLR4, caused by LPS. In vitro, we also observed that alpinetin inhibited the expression of TLR4 and the production of TNF-α, IL-1β and IL-6 in LPS-stimulated primary mouse mammary epithelial cells. However, alpinetin could not inhibit the production of IL-1β and IL-6 in TNF-α-stimulated primary mouse mammary epithelial cells. In conclusion, our results suggest that the anti-inflammatory effects of alpinetin against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Alpinetin may be a promising potential therapeutic reagent for mastitis treatment.

  11. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Fu, Yunhe; Gao, Ruifeng; Cao, Yongguo; Guo, Mengyao; Wei, Zhengkai; Zhou, Ershun; Li, Yimeng; Yao, Minjun; Yang, Zhengtao; Zhang, Naisheng

    2014-05-01

    Curcumin, the main constituent of the spice turmeric, has been reported to have potent anti-inflammatory properties. However, the effect of curcumin on lipopolysaccharide (LPS)-induced mice mastitis has not been investigated. The aim of this study was to investigate whether curcumin could ameliorate the inflammation response in LPS-induced mice mastitis and to clarify the possible mechanism. The mouse model of mastitis was induced by injection of LPS through the duct of the mammary gland. Curcumin was applied 1h before and 12h after LPS treatment. The results showed that curcumin attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting results showed that curcumin inhibited the phosphorylation of IκB-α and NF-κB p65 and the expression of TLR4. These results indicated that curcumin has protective effect on mice mastitis and the anti-inflammatory mechanism of curcumin on LPS-induced mastitis in mice may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Curcumin may be a potential therapeutic agent against mastitis.

  12. Astragaloside IV Alleviates Lipopolysaccharide-Induced Acute Kidney Injury Through Down-Regulating Cytokines, CCR5 and p-ERK, and Elevating Anti-Oxidative Ability

    Science.gov (United States)

    Zhou, Wei; Chen, Yi; Zhang, Xingyu

    2017-01-01

    Background Astragaloside IV (AS-IV) has been shown to prevent ischemia-induced acute kidney injury (AKI) in rat models of ischemia and reperfusion. However, the effects of AS-IV on AKI during sepsis and endotoxinemia is unclear. The current study aimed to investigate the effects and molecular mechanisms of AS-IV on lipopolysaccharide (LPS)-induced AKI. Material/Methods Adult male CD-1 mice were randomly assigned into 6 groups (n=8/group): control group: mice were intraperitoneally (i.p.) injected with normal saline; LPS group (10 mg/kg, i.p.); low-dose AS-IV (25 mg/kg; gavage for 7 days) + LPS (i.p., 1 hour after last gavage) group; medial-dose AS-IV (50 mg/kg) + LPS group; high-dose AS-IV (100 mg/kg) + LPS group; high-dose AS-IV alone (100 mg/kg; gavage for 7 days) group. Blood samples were collected at 24 hours after LPS injection, and plasma uric acid and BUN were measured with colorimetric detection kits. The concentration of plasma tumor necrosis factor (TNF)-α and interleukin 1β, renal p-extracellular signal-regulated kinases, and urinary albumin were evaluated by ELISA. The expression of CCR5 in renal tissue was evaluated by PCR and Western blotting. Concentrations of glutathione (GSH) and reactive oxygen species (ROS) in renal tissue were also measured. Results AS-IV decreased LPS-stimulated production of blood TNF-α and IL-6, LPS-induced the expression of CCR5, and activation of ERK in the kidneys in a rodent model of endotoxinemia. AS-IV attenuated LPS-caused decreased GSH and increased ROS. It also attenuated LPS-induced increases in plasma uric acid, BUN, and urinary albumin. Conclusions AS-IV protects against AKI during bacterial endotoxinemia by attenuating expression of cytokines, CCR5, and p-ERK, and elevating anti-oxidative ability. PMID:28328867

  13. Hydrogen-Rich Saline Attenuates Lipopolysaccharide-Induced Heart Dysfunction by Restoring Fatty Acid Oxidation in Rats by Mitigating C-Jun N-Terminal Kinase Activation.

    Science.gov (United States)

    Tao, Bingdong; Liu, Lidan; Wang, Ni; Tong, Dongyi; Wang, Wei; Zhang, Jin

    2015-12-01

    Sepsis is common in intensive care units (ICU) and is associated with high mortality. Cardiac dysfunction complicating sepsis is one of the most important causes of this mortality. This dysfunction is due to myocardial inflammation and reduced production of energy by the heart. A number of studies have shown that hydrogen-rich saline (HRS) has a beneficial effect on sepsis. Therefore, we tested whether HRS prevents cardiac dysfunction by increasing cardiac energy. Four groups of rats received intraperitoneal injections of one of the following solutions: normal saline (NS), HRS, lipopolysaccharide (LPS), and LPS plus HRS. Cardiac function was measured by echocardiography 8 h after the injections. Gene and protein expression related to fatty acid oxidation (FAO) were measured by quantitative polymerase chain reaction (PCR) and Western blot analysis. The injection of LPS compromised heart function through decreased fractional shortening (FS) and increased left ventricular diameter (LVD). The addition of HRS increased FS, palmitate triphosphate, and the ratio of phosphocreatinine (PCr) to adenosine triphosphate (ATP) as well as decreasing LVD. The LPS challenge reduced the expression of genes related to FAO, including perioxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), perioxisome proliferator-activated receptor alpha (PPARα), Estrogen-related receptor alpha (ERRα), and their downstream targets, in mRNA and protein level, which were attenuated by HRS. However, HRS had little effect on glucose metabolism. Furthermore, HRS inhibited c-Jun N-terminal kinase (JNK) activation in the rat heart. Inhibition of JNK by HRS showed beneficial effects on LPS-challenged rats, at least in part, by restoring cardiac FAO.

  14. Black tea extract prevents lipopolysaccharide-induced NF-κB signaling and attenuates dextran sulfate sodium-induced experimental colitis

    Directory of Open Access Journals (Sweden)

    Cho Sung-Bum

    2011-10-01

    Full Text Available Abstract Background Black tea has been shown to elicit anti-oxidant, anti-carcinogenic, anti-inflammatory and anti-mutagenic properties. In this study, we investigated the impact of black tea extract (BTE on lipopolysaccharide (LPS-induced NF-κB signaling in bone marrow derived-macrophages (BMM and determined the therapeutic efficacy of this extract on colon inflammation. Methods The effect of BTE on LPS-induced NF-κB signaling and pro-inflammatory gene expression was evaluated by RT-PCR, Western blotting, immunofluorescence and electrophoretic mobility shift assay (EMSA. The in vivo efficacy of BTE was assessed in mice with 3% dextran sulfate sodium (DSS-induced colitis. The severity of colitis was measured by weight loss, colon length and histologic scores. Results LPS-induced IL-12p40, IL-23p19, IL-6 and IL-1β mRNA expressions were inhibited by BTE. LPS-induced IκBα phosphorylation/degradation and nuclear translocation of NF-κB/p65 were blocked by BTE. BTE treatment blocked LPS-induced DNA-binding activity of NF-κB. BTE-fed, DSS-exposed mice showed the less weight loss, longer colon length and lower histologic score compared to control diet-fed, DSS-exposed mice. DSS-induced IκBα phosphorylation/degradation and phosphorylation of NF-κB/p65 were blocked by BTE. An increase of cleaved caspase-3 and poly (ADP-ribose polymerase (PARP in DSS-exposed mice was blocked by BTE. Conclusions These results indicate that BTE attenuates colon inflammation through the blockage of NF-κB signaling and apoptosis in DSS-induced experimental colitis model.

  15. Pre-treatment with bone marrow-derived mesenchymal stem cells inhibits systemic intravascular coagulation and attenuates organ dysfunction in lipopolysaccharide-induced disseminated intravascular coagulation rat model

    Institute of Scientific and Technical Information of China (English)

    WANG Biao; WU Shu-ming; WANG Tao; LIU Kai; ZHANG Gong; ZHANG Xi-quan; YU Jian-hua; LIU Chuan-zhen; FANG Chang-cun

    2012-01-01

    attenuate organ dysfunction and inhibit systemic intravascular coagulation effectively via the regulatory effect on immune ceils and proinflammatory cytokines in LPS-induced DIG rat model.

  16. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone attenuates lipopolysaccharide-induced inflammation by activating the unfolded protein response.

    Science.gov (United States)

    Zhang, Jiangguo; Gong, Fengyun; Li, Ling; Zhao, Manzhi; Song, Jianxin

    2014-03-01

    N-3-oxododecanoyl homoserine lactone (3-oxo-C12-HSL), a quorum-sensing signal molecule produced by Pseudomonas aeruginosa (P. aeruginosa), is involved in the expression of bacterial virulence factors and in the modulation of host immune responses by directly disrupting nuclear factor-κB (NF-κB) signaling and inducing cell apoptosis. The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress may suppress inflammatory responses in the later phase by blocking NF-κB activation. It was recently demonstrated that 3-oxo-C12-HSL may induce UPR in human aortic endothelial cells (HAECs). Therefore, 3-oxo-C12-HSL may also inhibit NF-κB activation and suppress inflammatory responses by activating UPR. However, the possible underlying mechanism has not been fully elucidated. Accordingly, we investigated the effects of 3-oxo-C12-HSL on cellular viability, UPR activation, lipopolysaccharide (LPS)-induced NF-κB activation and inflammatory response in the RAW264.7 mouse macrophage cell line. Treatment with 6.25 μM 3-oxo-C12-HSL was not found to affect the viability of RAW264.7 cells. However, pretreating RAW264.7 cells with 6.25 μM 3-oxo-C12-HSL effectively triggered UPR and increased the expression of UPR target genes, such as CCAAT/enhancer-binding protein β (C/EBP β) and CCAAT/enhancer-binding protein-homologous protein (CHOP). The expression of C/EBP β and CHOP was found to be inversely correlated with LPS-induced NF-κB activation. 3-Oxo-C12-HSL pretreatment was also shown to inhibit LPS-stimulated proinflammatory cytokine production. Hence, 3-oxo-C12-HSL may attenuate LPS-induced inflammation via UPR-mediated NF-κB inhibition without affecting cell viability. This may be another mechanism through which P. aeruginosa evades the host immune system and maintains a persistent infection.

  17. Pretreatment of Sialic Acid Efficiently Prevents Lipopolysaccharide-Induced Acute Renal Failure and Suppresses TLR4/gp91-Mediated Apoptotic Signaling

    Directory of Open Access Journals (Sweden)

    Shih-Ping Hsu

    2016-05-01

    Full Text Available Background/Aims: Lipopolysaccharides (LPS binding to Toll-like receptor 4 (TLR4 activate NADPH oxidase gp91 subunit-mediated inflammation and oxidative damage. Recognizing the high binding affinity of sialic acid (SA with LPS, we further explored the preventive potential of SA pretreatment on LPS-evoked acute renal failure (ARF. Methods: We determined the effect of intravenous SA 30 min before LPS-induced injury in urethane-anesthetized female Wistar rats by evaluating kidney reactive oxygen species (ROS responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. Results: LPS time-dependently reduced arterial blood pressure, renal microcirculation, and increased blood urea nitrogen and creatinine in the rats. LPS enhanced monocyte/macrophage infiltration and ROS production, and subsequently impaired kidneys with the enhancement of TLR4/NADPH oxidase gp91/Caspase 3/poly-(ADP-ribose-polymerase (PARP-mediated apoptosis in the kidneys. SA pretreatment effectively alleviated LPS-induced ARF. The levels of LPS-increased ED-1 infiltration and ROS production in the kidney were significantly depressed by SA pretreatment. Furthermore, SA pretreatment significantly depressed TLR4 activation, gp91 expression, and Caspase 3/PARP induced apoptosis in the kidneys. Conclusion: We suggest that pretreatment of SA significantly and preventively attenuated LPS-induced detrimental effects on systemic and renal hemodynamics, renal ROS production and renal function, as well as, LPS-activated TLR4/gp91/Caspase3 mediated apoptosis signaling.

  18. microRNA-1246 mediates lipopolysaccharide-induced pulmonary endothelial cell apoptosis and acute lung injury by targeting angiotensin-converting enzyme 2

    Science.gov (United States)

    Fang, Yue; Gao, Fengying; Hao, Jing; Liu, Zhenwei

    2017-01-01

    In this study, we aimed to identify potential microRNA (miRNA) regulators of angiotensin-converting enzyme 2 (ACE2) and to explore their roles in lipopolysaccharide (LPS)-induced acute lung injury (ALI). The expression of predicted miRNA regulators of ACE2 was examined in LPS-exposed pulmonary microvascular endothelial cells (PMVECs). Gain- and loss-of-function studies were performed to determine the functions of candidate miRNAs in LPS-induced PMVEC apoptosis and inflammatory response. The roles of the miRNAs in LPS-induced lung inflammation and permeability were investigated in a mouse model. Notably, LPS (1 μg/mL) significantly induced the expression of miR-1246 in PMVECs. ACE2 was validated as a target gene of miR-1246. Silencing of miR-1246 prevented LPS-induced inhibition of ACE2, which was accompanied by reduced apoptosis and production of IL-1β and TNF-α. In contrast, ectopic expression of miR-1246 triggered apoptosis in PMVECs and promoted IL-1β and TNF-α release. MiR-1246-mediated apoptosis of PMVECs was impaired by overexpression of ACE2. Depletion of miR-1246 attenuated lung inflammation, neutrophil infiltration, and vascular permeability and restored pulmonary expression of ACE2 in LPS-exposed mice. Taken together, miR-1246 meditates LPS-induced pulmonary endothelial cell apoptosis in vitro and ALI in mouse models, which are, at least partially, ascribed to repression of ACE2.

  19. Vagal nerve stimulation blocks interleukin 6-dependent synaptic hyperexcitability induced by lipopolysaccharide-induced acute stress in the rodent prefrontal cortex.

    Science.gov (United States)

    Garcia-Oscos, Francisco; Peña, David; Housini, Mohammad; Cheng, Derek; Lopez, Diego; Borland, Michael S; Salgado-Delgado, Roberto; Salgado, Humberto; D'Mello, Santosh; Kilgard, Michael P; Rose-John, Stefan; Atzori, Marco

    2015-01-01

    The ratio between synaptic inhibition and excitation (sI/E) is a critical factor in the pathophysiology of neuropsychiatric disease. We recently described a stress-induced interleukin-6 dependent mechanism leading to a decrease in sI/E in the rodent temporal cortex. The aim of the present study was to determine whether a similar mechanism takes place in the prefrontal cortex, and to elaborate strategies to prevent or attenuate it. We used aseptic inflammation (single acute injections of lipopolysaccharide, LPS, 10mg/kg) as stress model, and patch-clamp recording on a prefrontal cortical slice preparation from wild-type rat and mice, as well as from transgenic mice in which the inhibitor of IL-6 trans-signaling sgp130Fc was produced in a brain-specific fashion (sgp130Fc mice). The anti-inflammatory reflex was activated either by vagal nerve stimulation or peripheral administration of the nicotinic α7 receptor agonist PHA543613. We found that the IL-6-dependent reduction in prefrontal cortex synaptic inhibition was blocked in sgp130Fc mice, or - in wild-type animals - upon application sgp130Fc. Similar results were obtained by activating the "anti-inflammatory reflex" - a neural circuit regulating peripheral immune response - by stimulation of the vagal nerve or through peripheral administration of the α7 nicotinic receptor agonist PHA543613. Our results indicate that the prefrontal cortex is an important potential target of IL-6 mediated trans-signaling, and suggest a potential new avenue in the treatment of a large class of hyperexcitable neuropsychiatric conditions, including epilepsy, schizophrenic psychoses, anxiety disorders, autism spectrum disorders, and depression.

  20. Inhibition of c-Jun N-terminal Kinase Signaling Pathway Alleviates Lipopolysaccharide-induced Acute Respiratory Distress Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Jian-Bo Lai

    2016-01-01

    Conclusions: Inhibiting JNK alleviated LPS-induced acute lung inflammation and had no effects on pulmonary edema and fibrosis. JNK inhibitor might be a potential therapeutic medication in ARDS, in the context of reducing lung inflammatory.

  1. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway.

    Science.gov (United States)

    Wang, Jing; Liu, Yu-Tao; Xiao, Lu; Zhu, Lingpeng; Wang, Qiujuan; Yan, Tianhua

    2014-12-01

    This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of apigenin lipopolysaccharide (LPS)-induced inflammatory in acute lung injury. In this study, the anti-inflammatory effects of apigenin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible mechanisms involved in this protection were investigated. Pretreatment with apigenin prior to the administration of intratracheal LPS significantly induced a decrease in lung wet weight/dry weight ratio in total leukocyte number and neutrophil percent in the bronchoalveolar lavage fluid (BALF) and in IL-6 and IL-1β, the tumor neurosis factor-α (TNF-α) in the BALF. These results showed that anti-inflammatory effects of apigenin against the LPS-induced ALI may be due to its ability of primary inhibition of cyclooxygenase-2 (COX-2) gene expression and nuclear factor kB (NF-kB) gene expression of lung. The results presented here suggest that the protective mechanism of apigenin may be attributed partly to decreased production of proinflammatory cytokines through the inhibition of COX-2 and NF-kB activation. The results support that use of apigenin is beneficial in the treatment of ALI.

  2. Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status.

    Science.gov (United States)

    Huang, Xianfeng; Liu, Yuanyuan; Lu, Yingxun; Ma, Chunhua

    2015-05-01

    Acute lung injury (ALI) represents a clinical syndrome that results from complex responses of the lung to a multitude of direct and indirect insults. This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of eugenol (EUL) on lipopolysaccharide (LPS)-induced inflammatory reaction in ALI. ALI was induced in mice by intratracheal instillation of LPS (0.5 mg/kg), and EUL (5, and 10 mg/kg) was injected intraperitoneally 1h prior to LPS administration. After 6h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The findings suggest that the protective mechanism of EUL may be attributed partly to decreased production of proinflammatory cytokines through the regulating inflammation and redox status. The results support that use of EUL is beneficial in the treatment of ALI.

  3. Protective effect of erdosteine against hypochlorous acid-induced acute lung injury and lipopolysaccharide-induced neutrophilic lung inflammation in mice.

    Science.gov (United States)

    Hayashi, K; Hosoe, H; Kaise, T; Ohmori, K

    2000-11-01

    The effect of erdosteine, a mucoactive drug, on hypochlorous acid (HOCl)-induced lung injury, and the lipopolysaccharide (LPS)-induced increase in tumour necrosis factor-alpha (TNF-alpha) production and neutrophil recruitment into the airway, was investigated. Male BALB/c mice were orally administered erdosteine (3-100 mgkg(-1)), ambroxol hydrochloride (ambroxol) (3-30 mgkg(-1)), S-carboxymethyl-L-cysteine (S-CMC) (100-600 mgkg(-1)) or prednisolone (10 mgkg(-1)), 1 h before intratracheal injection of HOCl or LPS. In the HOCl-injected mice, erdosteine markedly suppressed increases in the ratios of lung wet weight to bodyweight and lung dry weight to bodyweight, whereas the other mucoactive drugs ambroxol and S-CMC had little effect. Erdosteine also inhibited the LPS-induced neutrophil influx, although it did not affect the increased level of TNF-alpha in the bronchoalveolar lavage fluid. The results suggest that attenuation of reactive oxygen species and neutrophil recruitment is involved in the clinical efficacy of erdosteine in the treatment of chronic bronchitis.

  4. Veronicastrum axillare Alleviates Lipopolysaccharide-Induced Acute Lung Injury via Suppression of Proinflammatory Mediators and Downregulation of the NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Quanxin Ma

    2016-01-01

    Full Text Available Veronicastrum axillare is a traditional medical plant in China which is widely used in folk medicine due to its versatile biological activities, especially for its anti-inflammatory effects. However, the detailed mechanism underlying this action is not clear. Here, we studied the protective effects of V. axillare against acute lung injury (ALI, and we further explored the pharmacological mechanisms of this action. We found that pretreatment with V. axillare suppressed the release of proinflammatory cytokines in the serum of ALI mice. Histological analysis of lung tissue demonstrated that V. axillare inhibited LPS-induced lung injury, improved lung morphology, and reduced the activation of nuclear factor-κB (NF-κB in the lungs. Furthermore, the anti-inflammatory actions of V. axillare were investigated in vitro. We observed that V. axillare suppressed the mRNA expression of interleukin-1β (IL-1β, IL-6, monocyte chemotactic protein-1 (MCP-1, cyclooxygenase-2 (COX-2, and tumor necrosis factor-α (TNF-α in RAW264.7 cells challenged with LPS. Furthermore, pretreatment of V. axillare in vitro reduced the phosphorylation of p65 and IκB-α which is activated by LPS. In conclusion, our data firstly demonstrated that the anti-inflammatory effects of V. axillare against ALI were achieved through downregulation of the NF-κB signaling pathway, thereby reducing the production of inflammatory mediators.

  5. Ginger and Zingerone Ameliorate Lipopolysaccharide-Induced Acute Systemic Inflammation in Mice, Assessed by Nuclear Factor-κB Bioluminescent Imaging.

    Science.gov (United States)

    Hsiang, Chien-Yun; Cheng, Hui-Man; Lo, Hsin-Yi; Li, Chia-Cheng; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun

    2015-07-08

    Ginger is a commonly used spice in cooking. In this study, we comprehensively evaluated the anti-inflammatory activities of ginger and its component zingerone in lipopolysaccharide (LPS)-induced acute systemic inflammation in mice via nuclear factor-κB (NF-κB) bioluminescent imaging. Ginger and zingerone significantly suppressed LPS-induced NF-κB activities in cells in a dose-dependent manner, and the maximal inhibition (84.5% ± 3.5% and 96.2% ± 0.6%) was observed at 100 μg/mL ginger and zingerone, respectively. Moreover, dietary ginger and zingerone significantly reduced LPS-induced proinflammatory cytokine production in sera by 62.9% ± 18.2% and 81.3% ± 6.2%, respectively, and NF-κB bioluminescent signals in whole body by 26.9% ± 14.3% and 38.5% ± 6.2%, respectively. In addition, ginger and zingerone suppressed LPS-induced NF-κB-driven luminescent intensities in most organs, and the maximal inhibition by ginger and zingerone was observed in small intestine. Immunohistochemical staining further showed that ginger and zingerone decreased interleukin-1β (IL-1β)-, CD11b-, and p65-positive areas in jejunum. In conclusion, our findings suggested that ginger and zingerone were likely to be broad-spectrum anti-inflammatory agents in most organs that suppressed the activation of NF-κB, the production of IL-1β, and the infiltration of inflammatory cells in mice.

  6. Foeniculum vulgare Mill. Protects against Lipopolysaccharide-induced Acute Lung Injury in Mice through ERK-dependent NF-κB Activation.

    Science.gov (United States)

    Lee, Hui Su; Kang, Purum; Kim, Ka Young; Seol, Geun Hee

    2015-03-01

    Foeniculum vulgare Mill. (fennel) is used to flavor food, in cosmetics, as an antioxidant, and to treat microbial, diabetic and common inflammation. No study to date, however, has assessed the anti-inflammatory effects of fennel in experimental models of inflammation. The aims of this study were to investigate the anti-inflammatory effects of fennel in model of lipopolysaccharide (LPS)-induced acute lung injury. Mice were randomly assigned to seven groups (n=7~10). In five groups, the mice were intraperitoneally injected with 1% Tween 80-saline (vehicle), fennel (125, 250, 500µl/kg), or dexamethasone (1 mg/kg), followed 1 h later by intratracheal instillation of LPS (1.5 mg/kg). In two groups, the mice were intraperitoneally injected with vehicle or fennel (250µl/kg), followed 1 h later by intratracheal instillation of sterile saline. Mice were sacrificed 4 h later, and bronchoalveolar lavage fluid (BALF) and lung tissues were obtained. Fennel significantly and dose-dependently reduced LDH activity and immune cell numbers in LPS treated mice. In addition fennel effectively suppressed the LPS-induced increases in the production of the inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha, with 500µl/kg fennel showing maximal reduction. Fennel also significantly and dose-dependently reduced the activity of the proinflammatory mediator matrix metalloproteinase 9 and the immune modulator nitric oxide (NO). Assessments of the involvement of the MAPK signaling pathway showed that fennel significantly decreased the LPS-induced phosphorylation of ERK. Fennel effectively blocked the inflammatory processes induced by LPS, by regulating pro-inflammatory cytokine production, transcription factors, and NO.

  7. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Wang; Chunhua, Ma, E-mail: machunhuabest@126.com; Shumin, Wang, E-mail: wangshuminch@126.com

    2015-06-01

    The purpose of the present study was to investigate the protective role of acteoside (AC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). BalB/c mice intraperitoneally received AC (30, and 60 mg/kg) or dexamethasone (2 mg/kg) 2 h prior to or after intratracheal instillation of LPS. Treatment with AC significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and ameliorated LPS-induced lung histopathological changes. In addition, AC increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content, total cell and neutrophil infiltrations, and levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that AC inhibited the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, inhibitor of nuclear factor kappa-B kinase-α (IKK-α) and inhibitor of nuclear factor kappa-B kinase-β (IKKβ) in LPS-induced inflammation in A549 cells. Our data suggested that LPS evoked the inflammatory response in lung epithelial cells A549. The experimental results indicated that the protective mechanism of AC might be attributed partly to the inhibition of proinflammatory cytokine production and NF-κB activation. - Highlights: • Acteoside inhibited inflammation in LPS-induced lung injury in mice. • Acteoside inhibited inflammation in lung epithelial cells A549. • Acteoside inhibited NF-kB activation in LPS-induced mice and lung epithelial cells A549.

  8. Propofol exerts anti-inflammatory effects in rats with lipopolysaccharide-induced acute lung injury by inhibition of CD14 and TLR4 expression

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ling; Wu, Xiu-Ying; Zhang, Li-Hong; Chen, Wei-Min [Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang (China); Uchiyama, Akinori; Mashimo, Takashi; Fujino, Yuji [Department of Anesthesiology and Intensive Care Medicine, Osaka University Medical School, Osaka (Japan)

    2013-03-15

    We investigated the effect of propofol (Prop) administration (10 mg kg{sup -1} h{sup -1}, intravenously) on lipopolysaccharide (LPS)-induced acute lung injury and its effect on cluster of differentiation (CD) 14 and Toll-like receptor (TLR) 4 expression in lung tissue of anesthetized, ventilated rats. Twenty-four male Wistar rats were randomly divided into three groups of 8 rats each: control, LPS, and LPS+Prop. Lung injury was assayed via blood gas analysis and lung histology, and tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels were determined in bronchoalveolar lavage fluid using ELISA. Real-time polymerase chain reaction was used to detect CD14 and TLR4 mRNA levels, and CD14 and TLR4 protein expression was determined by Western blot. The pathological scores were 1.2 ± 0.9, 3.3 ± 1.1, and 1.9 ± 1.0 for the control, LPS, and LPS+Prop groups, respectively, with statistically significant differences between control and LPS groups (P < 0.05) and between LPS and LPS+Prop groups (P < 0.05). The administration of LPS resulted in a significant increase in TNF-α and IL-1β levels, 7- and 3.5-fold, respectively (P < 0.05), while treatment with propofol partially blunted the secretion of both cytokines (P < 0.05). CD14 and TLR4 mRNA levels were increased in the LPS group (1.48 ± 0.05 and 1.26 ± 0.03, respectively) compared to the control group (1.00 ± 0.20 and 1.00 ± 0.02, respectively; P < 0.05), while propofol treatment blunted this effect (1.16 ± 0.05 and 1.12 ± 0.05, respectively; P < 0.05). Both CD14 and TLR4 protein levels were elevated in the LPS group compared to the control group (P < 0.05), while propofol treatment partially decreased the expression of CD14 and TLR4 protein versus LPS alone (P < 0.05). Our study indicates that propofol prevents lung injury, most likely by inhibition of CD14 and TLR4 expression.

  9. Protectin D1 promotes resolution of inflammation in a murine model of lipopolysaccharide-induced acute lung injury via enhancing neutrophil apoptosis

    Institute of Scientific and Technical Information of China (English)

    Li Xingwang; Li Chunlai; Liang Wandong; Bi Yuntian; Chen Maohua; Dong Sheng

    2014-01-01

    Background Protectin D1 (PD1),derived from docosahexaenoic acid,has been shown to control and resolve inflammation in some experimental models of inflammatory disorders.We investigated the protective roles of protectin D1 in pulmonary inflammation and lung injury induced by lipopolysaccharide (LPS).Methods Mice were randomly assigned to six groups (n=6 per group):sham-vehicle group,sham-PD1 group,shamzVAD-fmk group,LPS-vehicle group,LPS-PD1 group,and LPS-PD1-zVAD-fmk group.Mice were injected intratracheally with 3 mg/kg LPS or saline,followed 24 hours later by intravenous injection of 200 μg/mouse PD1 or vehicle.At the same time,some mice were also injected intraperitoneally with the pan-caspase inhibitor zVAD-fmk.Seventy-two hours after LPS challenge,samples of pulmonary tissue and bronchoalveolar lavage fluid were collected.Optical microscopy was used to examine pathological changes in lungs.Cellularity and protein concentration in bronchoalveolar lavage fluid were analyzed.Lung wet/dry ratios and myeloperoxidase activity were measured.Apoptosis of neutrophils in bronchoalveolar lavage fluid (BALF) was also evaluated by flow cytometry.Results Intratracheal instillation of LPS increased neutrophil counts,protein concentration in bronchoalveolar lavage fluid and myeloperoxidase activity,it induced lung histological injury and edema,and also suppressed apoptosis of neutrophils in BALF.Posttreatment with PD1 inhibited LPS-evoked changes in BALF neutrophil counts and protein concentration and lung myeloperoxidase activity,with the outcome of decreased pulmonary edema and histological injury.In addition,PD1 promoted apoptosis of neutrophils in BALF.The beneficial effects of PD1 were blocked by zVAD-fmk.Conclusion Posttreatment with PD1 enhances resolution of lung inflammation during LPS-induced acute lung injury by enhancing apoptosis in emigrated neutrophils,which is,at least in part,caspase-dependent.

  10. Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yu-Liang Zhao; Ling Zhang; Ying-Ying Yang; Yi Tang; Jiao-Jiao Zhou; Yu-Ying Feng; Tian-Lei Cui

    2016-01-01

    Background:Resolvin D1 (RvD1) is a newly found anti-inflammatory bioactive compound derived from polyunsaturated fatty acids.The current study aimed to explore the protective effect of RvD1 on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and its possible mechanism.Methods:Both in vivo and in vitro studies were conducted.Male BALB/c mice were randomly divided into control group (saline),LPS group (LPS 5 mg/kg),RvD1 group (RvD1 5 μg/kg + LPS 5 mg/kg),and blockage group (Boc-MLP 5 μ g/kg + RvD1 5μg/kg + LPS 5 mg/kg).Boc-MLP is a RvD1 receptor blocker.The mice were intraperitoneally injected with these drugs and recorded for general condition for 48 h,while the blood and kidneys were harvested at 2,6,12,24,and 48 h time points,respectively (n =6 in each group at each time point).Human proximal tubule epithelial cells (HK-2) were randomly divided into control group (medium only),LPS group (LPS 5 μg/ml),RvD1 group (RvD1 10 ng/ml + LPS 5 μg/ml),and blockage group (Boc-MLP 10 ng/ml + RvD1 10 ng/ml + LPS 5 μg/ml).The cells were harvested for RNA at 2,4,6,12,and 24 h time points,respectively (n =6 in each group at each time point).Blood creatinine was tested by using an Abbott i-STAT portable blood gas analyzer.Tumor necrosis factor-α (TNF-α) level was detected by ELISA.Kidney pathology was observed under hematoxylin and eosin (HE) staining and transmission electron microscope (TEM).We hired immune-histological staining,Western blotting,and fluorescence quantitative polymerase chain reaction to detect the expression ofRvD l receptor ALX,nuclear factor-kappa B (NF-κB) signaling pathway as well as caspase-3.Kidney apoptosis was evaluated by TUNEL staining.Results:RvD1 receptor ALX was detected on renal tubular epithelials.Kaplan-Meier analysis indicated that RvD1 improved 48 h animal survival (80%) compared with LPS group (40%) and RvD1 blockage group (60%),while RvD1 also ameliorated kidney pathological injury in HE staining and TEM scan.After LPS

  11. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  12. Supplementation of parenteral nutrition with fish oil attenuates acute lung injury in a rat model

    Science.gov (United States)

    Kohama, Keisuke; Nakao, Atsunori; Terashima, Mariko; Aoyama-Ishikawa, Michiko; Shimizu, Takayuki; Harada, Daisuke; Nakayama, Mitsuo; Yamashita, Hayato; Fujiwara, Mayu; Kotani, Joji

    2014-01-01

    Fish oil rich in n-3 polyunsaturated fatty acids has diverse immunomodulatory properties and attenuates acute lung injury when administered in enternal nutrition. However, enteral nutrition is not always feasible. Therefore, we investigated the ability of parenteral nutrition supplemented with fish oil to ameliorate acute lung injury. Rats were infused with parenteral nutrition solutions (without lipids, with soybean oil, or with soybean oil and fish oil) for three days. Lipopolysaccharide (15 mg/kg) was then administered intratracheally to induce acute lung injury, characterized by impaired lung function, polymorphonuclear leukocyte recruitment, parenchymal tissue damage, and upregulation of mRNAs for inflammatory mediators. Administration of parenteral nutrition supplemented with fish oil prior to lung insult improved gas exchange and inhibited neutrophil recruitment and upregulation of mRNAs for inflammatory mediators. Parenteral nutrition supplemented with fish oil also prolonged survival. To investigate the underlying mechanisms, leukotriene B4 and leukotriene B5 secretion was measured in neutrophils from the peritoneal cavity. The neutrophils from rats treated with fish oil-rich parenteral nutrition released significantly more leukotriene B5, an anti-inflammatory eicosanoid, than neutrophils isolated from rats given standard parenteral nutrition. Parenteral nutrition with fish oil significantly reduced lipopolysaccharide-induced lung injury in rats in part by promoting the synthesis of anti-inflammatory eicosanoids. PMID:24688221

  13. Pyrroloquinoline quinone (PQQ inhibits lipopolysaccharide induced inflammation in part via downregulated NF-κB and p38/JNK activation in microglial and attenuates microglia activation in lipopolysaccharide treatment mice.

    Directory of Open Access Journals (Sweden)

    Chongfei Yang

    Full Text Available Therapeutic strategies designed to inhibit the activation of microglia may lead to significant advancement in the treatment of most neurodegenerative diseases. Pyrroloquinoline quinone (PQQ is a naturally occurring redox cofactor that acts as an essential nutrient, antioxidant, and has been reported to exert potent immunosuppressive effects. In the present study, the anti-inflammatory effects of PQQ was investigated in LPS treated primary microglia cells. Our observations showed that pretreatment with PQQ significantly inhibited the production of NO and PGE2 and suppressed the expression of pro-inflammatory mediators such as iNOS, COX-2, TNF-a, IL-1b, IL-6, MCP-1 and MIP-1a in LPS treated primary microglia cells. The nuclear translocation of NF-κB and the phosphorylation level of p65, p38 and JNK MAP kinase pathways were also inhibited by PQQ in LPS stimulated primary microglia cells. Further a systemic LPS treatment acute inflammation murine brain model was used to study the suppressive effects of PQQ against neuroinflammation in vivo. Mice treated with PQQ demonstrated marked attenuation of neuroinflammation based on Western blotting and immunohistochemistry analysis of Iba1-against antibody in the brain tissue. Indicated that PQQ protected primary cortical neurons against microglia-mediated neurotoxicity. These results collectively suggested that PQQ might be a promising therapeutic agent for alleviating the progress of neurodegenerative diseases associated with microglia activation.

  14. Influence of feeding status on neuronal activity in the hypothalamus during lipopolysaccharide-induced anorexia in rats.

    Science.gov (United States)

    Gautron, L; Mingam, R; Moranis, A; Combe, C; Layé, S

    2005-01-01

    Fasting attenuates disease-associated anorexia, but the mechanisms underlying this effect are not well understood. In the present study, we investigated the extent to which a 48 h fast alters hypothalamic neuronal activity in response to the anorectic effects of lipopolysaccharide in rats. Male rats were fed ad libitum or fasted, and were injected with i.p. saline or lipopolysaccharide (250 microg/kg). Immunohistochemistry for Fos protein was used to visualize neuronal activity in response to lipopolysaccharide within selected hypothalamic feeding regulatory nuclei. Additionally, food intake, body weight, plasma interleukin-1 and leptin levels, and the expression of mRNA for appetite-related neuropeptides (neuropeptide Y, proopiomelanocortin and cocaine-amphetamine-regulated transcript) were measured in a time-related manner. Our data show that the pattern of lipopolysaccharide-induced Fos expression was similar in most hypothalamic nuclei whatever the feeding status. However, we observed that fasting significantly reduced lipopolysaccharide-induced Fos expression in the paraventricular nucleus, in association with an attenuated lipopolysaccharide-induced anorexia and body weight loss. Moreover, lipopolysaccharide reduced fasting-induced Fos expression in the perifornical area of the lateral hypothalamus. Lipopolysaccharide-induced circulating levels of interleukin-1 were similar across feeding status. Finally, fasting, but not lipopolysaccharide, affected circulating level of leptin and appetite-related neuropeptides expression in the arcuate nucleus. Together, our data show that fasting modulates lipopolysaccharide-induced anorexia and body weight loss in association with neural changes in specific hypothalamic nuclei.

  15. Short communication: Camel milk ameliorates inflammatory responses and oxidative stress and downregulates mitogen-activated protein kinase signaling pathways in lipopolysaccharide-induced acute respiratory distress syndrome in rats.

    Science.gov (United States)

    Zhu, Wei-Wei; Kong, Gui-Qing; Ma, Ming-Ming; Li, Yan; Huang, Xiao; Wang, Li-Peng; Peng, Zhen-Yi; Zhang, Xiao-Hua; Liu, Xiang-Yong; Wang, Xiao-Zhi

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a complex syndrome disorder with high mortality rate. Camel milk (CM) contains antiinflammatory and antioxidant properties and protects against numerous diseases. This study aimed to demonstrate the function of CM in lipopolysaccharide (LPS)-induced ARDS in rats. Camel milk reduced the lung wet:dry weight ratio and significantly reduced LPS-induced increases in neutrophil infiltration, interstitial and intra-alveolar edema, thickness of the alveolar wall, and lung injury scores of lung tissues. It also had antiinflammatory and antioxidant effects on LPS-induced ARDS. After LPS stimulation, the levels of proinflammatory cytokines (tumor necrosis factor-α, IL-10, and IL-1β) in serum and oxidative stress markers (malondialdehyde, myeloperoxidase, and total antioxidant capacity) in lung tissue were notably attenuated by CM. Camel milk also downregulated mitogen-activated protein kinase signaling pathways. Given these results, CM is a potential complementary food for ARDS treatment.

  16. A Standardized Traditional Chinese Medicine Preparation Named Yejuhua Capsule Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Downregulating Toll-Like Receptor 4/Nuclear Factor-κB

    Directory of Open Access Journals (Sweden)

    Chu-Wen Li

    2015-01-01

    Full Text Available A standardized traditional Chinese medicine preparation named Yejuhua capsule (YJH has been clinically used in treatments of various acute respiratory system diseases with high efficacy and low toxicity. In this study, we were aiming to evaluate potential effects and to elucidate underlying mechanisms of YJH against lipopolysaccharide- (LPS- induced acute lung injury (ALI in mice. Moreover, the chemical analysis and chromatographic fingerprint study were performed for quality evaluation and control of this drug. ALI was induced by intratracheal instillation of LPS (5 mg/kg into the lung in mice and dexamethasone (5 mg/kg, p.o. was used as a positive control drug. Results demonstrated that pretreatments with YJH (85, 170, and 340 mg/kg, p.o. effectively abated LPS-induced histopathologic changes, attenuated the vascular permeability enhancement and edema, inhibited inflammatory cells migrations and protein leakages, suppressed the ability of myeloperoxidase, declined proinflammatory cytokines productions, and downregulated activations of nuclear factor-κB (NF-κB and expressions of toll-like receptor 4 (TLR4. This study demonstrated that YJH exerted potential protective effects against LPS-induced ALI in mice and supported that YJH was a potential therapeutic drug for ALI in clinic. And its mechanisms were at least partially associated with downregulations of TLR4/NF-κB pathways.

  17. Protective effect of Xuebijing injection on D-galactosamine- and lipopolysaccharide-induced acute liver injury in rats through the regulation of p38 MAPK, MMP-9 and HO-1 expression by increasing TIPE2 expression

    Science.gov (United States)

    Liu, Ming-Wei; Liu, Rong; Wu, Hai-Yin; Zhang, Wei; Xia, Jing; Dong, Min-Na; Yu, Wen; Wang, Qiang; Xie, Feng-Mei; Wang, Rui; Huang, Yun-Qiao; Qian, Chuan-Yun

    2016-01-01

    Xuebijing injection (XBJ) has long been used to treat infectious diseases in China. The therapeutic effect of XBJ is probably associated with anti-inflammatory effects. However, the precise mechanisms responsible for the effects of XBJ remain unknown. The present study was conducted in order to evaluate the protective effects of XBJ in a rat model of D-galactosamine (D-Gal)- and lipopolysaccharide (LPS)-induced acute liver injury. In the present study, the rats were injected with D-Gal and LPS intraperitoneally to induce acute liver injury. Two hours prior to D-Gal and LPS administration, the treatment group was administered XBJ by intravenous infusion. The effects of XBJ on D-Gal- and LPS-induced expression of tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2), nuclear factor-κB (NF-κB), matrix metalloproteinase-9 (MMP-9) and heme oxygenase-1 (HO-1) as well as mitogen-activated protein kinase (MAPK) signaling was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis, immunofluorescence, as well as by analysing the serum levels of pro-inflammatory cytokines and the transaminases, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD) levels in the rat liver tissues were also measured. For histological analysis, hematoxylin and eosin (H&E)-stained liver samples were evaluated. The results showed that XBJ upregulated TIPE2 and HO-1 expression, reduced the expression of NF-κB65 and MMP-9, inhibited the LPS-induced gene expression of c-jun N-terminal kinase (JNK) and p38 MAPK, decreased the generation of pro-inflammatory cytokines [interleukin (IL)-6, IL-13 and TNF-α], inhibited ALT and AST activity, and ameliorated D-Gal- and LPS-induced liver injury. The histological results also demonstrated that XBJ attenuated D-Gal- and LPS-induced liver inflammation. It was found that XBJ may prevent LPS-induced pro

  18. Protective effect of Xuebijing injection on D-galactosamine- and lipopolysaccharide-induced acute liver injury in rats through the regulation of p38 MAPK, MMP-9 and HO-1 expression by increasing TIPE2 expression.

    Science.gov (United States)

    Liu, Ming-Wei; Liu, Rong; Wu, Hai-Yin; Zhang, Wei; Xia, Jing; Dong, Min-Na; Yu, Wen; Wang, Qiang; Xie, Feng-Mei; Wang, Rui; Huang, Yun-Qiao; Qian, Chuan-Yun

    2016-11-01

    Xuebijing injection (XBJ) has long been used to treat infectious diseases in China. The therapeutic effect of XBJ is probably associated with anti-inflammatory effects. However, the precise mechanisms responsible for the effects of XBJ remain unknown. The present study was conducted in order to evaluate the protective effects of XBJ in a rat model of D-galactosamine (D-Gal)- and lipopolysaccharide (LPS)‑induced acute liver injury. In the present study, the rats were injected with D-Gal and LPS intraperitoneally to induce acute liver injury. Two hours prior to D-Gal and LPS administration, the treatment group was administered XBJ by intravenous infusion. The effects of XBJ on D-Gal- and LPS-induced expression of tumor necrosis factor (TNF)‑alpha‑induced protein 8-like 2 (TIPE2), nuclear factor-κB (NF-κB), matrix metalloproteinase-9 (MMP-9) and heme oxygenase-1 (HO-1) as well as mitogen-activated protein kinase (MAPK) signaling was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis, immunofluorescence, as well as by analysing the serum levels of pro-inflammatory cytokines and the transaminases, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD) levels in the rat liver tissues were also measured. For histological analysis, hematoxylin and eosin (H&E)-stained liver samples were evaluated. The results showed that XBJ upregulated TIPE2 and HO-1 expression, reduced the expression of NF-κB65 and MMP-9, inhibited the LPS-induced gene expression of c-jun N-terminal kinase (JNK) and p38 MAPK, decreased the generation of pro-inflammatory cytokines [interleukin (IL)-6, IL-13 and TNF-α], inhibited ALT and AST activity, and ameliorated D-Gal- and LPS-induced liver injury. The histological results also demonstrated that XBJ attenuated D-Gal- and LPS-induced liver inflammation. It was found that XBJ may

  19. N-Docosahexaenoyl Dopamine, an Endocannabinoid-like Conjugate of Dopamine and the n-3 Fatty Acid Docosahexaenoic Acid, Attenuates Lipopolysaccharide-Induced Activation of Microglia and Macrophages via COX-2.

    Science.gov (United States)

    Wang, Ya; Plastina, Pierluigi; Vincken, Jean-Paul; Jansen, Renate; Balvers, Michiel; Ten Klooster, Jean Paul; Gruppen, Harry; Witkamp, Renger; Meijerink, Jocelijn

    2017-03-15

    Several studies indicate that the n-3 long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA) contributes to an attenuated inflammatory status in the development of neurodegenerative disorders, such as Alzheimer's and Parkinson's disease. To explain these effects, different mechanisms are being proposed, including those involving endocannabinoids and related signaling molecules. Many of these compounds belong to the fatty acid amides, conjugates of fatty acids with biogenic amines. Conjugates of DHA with ethanolamine or serotonin have previously been shown to possess anti-inflammatory and potentially neuroprotective properties. Here, we synthesized another amine conjugate of DHA, N-docosahexaenoyl dopamine (DHDA), and tested its immune-modulatory properties in both RAW 264.7 macrophages and BV-2 microglial cells. N-Docosahexaenoyl dopamine significantly suppressed the production of nitric oxide (NO), the cytokine interleukin-6 (IL-6), and the chemokines macrophage-inflammatory protein-3α (CCL20) and monocyte chemoattractant protein-1 (MCP-1), whereas its parent compounds, dopamine and DHA, were ineffective. Further exploration of potential effects of DHDA on key inflammatory mediators revealed that cyclooxygenase-2 (COX-2) mRNA level and production of prostaglandin E2 (PGE2) were concentration-dependently inhibited in macrophages. In activated BV-2 cells, PGE2 production was also reduced, without changes in COX-2 mRNA levels. In addition, DHDA did not affect NF-kB activity in a reporter cell line. Finally, the immune-modulatory activities of DHDA were compared with those of N-arachidonoyl dopamine (NADA) and similar potencies were found in both cell types. Taken together, our data suggest that DHDA, a potentially endogenous endocannabinoid, may be an additional member of the group of immune-modulating n-3 fatty acid-derived lipid mediators.

  20. The protective effect of fasudil in the lipopolysaccharide-induced acute lung injury in rats%法舒地尔对脂多糖诱导大鼠急性肺损伤的保护作用

    Institute of Scientific and Technical Information of China (English)

    江泽宇; 傅婕; 封光; 焦皓; 刘功俭

    2015-01-01

    was significantly decreased [(4.35±0.13) vs (4.89±0.37)](P<0.05).Conclusions Fasudil could attenuate the injury induced by LPS in ALI,the mechanism may be due to the effect of inhibiting the excessive expression of Inflammation and reducing the damage of cell junction.%目的 探讨法舒地尔对脂多糖(lipoplysaccharide,LPS)致急性肺损伤(acute lung injury,ALI)大鼠的保护作用及其可能机制. 方法 将42只雄性SD大鼠按随机数字表法分为4组:对照组(C组,6只)、LPS组(L组,24只)、法舒地尔组(F组,6只)、法舒地尔+LPS组(FL组,6只).LPS组按照不同的时间点又分为1、3、6、12h4个亚组.L组和FL组尾静脉注射LPS 5 mg/kg制作内毒素性肺损伤模型,FL组尾静脉注射LPS前1h尾静脉注射法舒地尔(10 mg/kg),C组尾静脉注射等量生理盐水,F组尾静脉注射等量法舒地尔.注射LPS3h后处死大鼠取材.苏木精伊红(hematoxylin-eosin,HE)染色法检查肺组织病理变化,称重法检测肺组织的湿/干重比(wet/dry,W/D),Western blot法检测Rho激酶(Rho associated kinase,ROCK)、紧密连接(tight junction,TJ)蛋白中闭锁蛋白(Occlndin)和闭锁小带蛋白1(zonula occludens 1,ZO-1)的表达,酶联免疫吸附实验(enzymelinked immunoserbent assay,ELISA)法检测肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素(interleukin,IL)-6的表达. 结果 与C组比较,注射LPS后1、3、6、12h肺组织中ROCK蛋白的表达明显增加,并于3h达到最大值,ZO-1和Occludin蛋白的表达明显降低,LPS诱导的ALI大鼠肺组织结构破坏明显,可见肺泡内出血较多,肺泡委陷,伴有大量炎性细胞浸润,间质明显水肿,肺泡灌洗液(bronchoalveolar lavage fluid,BALF)中TNF电、IL-6释放增加(P<0.01).法舒地尔可以部分逆转上述病理改变(P<0.05),且法舒地尔可以增加ALI大鼠肺组织内Occludin、ZO-1蛋白的表达(P<0.05);FL组肺组织W/D明显低于L组[(4.35±0.13)比(4.89±0.37)](P<0.05). 结论 在LPS

  1. Effects of remifentanil on lipopolysaccharide-induced acute lung injury in rabbits%瑞芬太尼对兔内毒素性急性肺损伤的影响

    Institute of Scientific and Technical Information of China (English)

    杜成; 景亮; 刘晓甦

    2009-01-01

    Objective To investigate the effects of remifentanil on lipopolysaccharide ( LPS)-induced acute lung injury (ALI) in rabbits.Methods Thirty healthy male New Zealand white rabbits weighing 2.5-3.5 kg were randomly divided into 5 groups ( n = 6 each) : group Ⅰ control (group C) ;group Ⅱ ALI;group Ⅲ, Ⅳ, Ⅴ low, median and high dose RF + LPS (group LR, MR, HR) . The animals were anesthetized with intravenous 3% pentobarbital sodium 30 mg/kg, tracheostomized and mechanically ventilated. The carotid artery and jugular vein were cannulated for MAP and HR monitoring, blood sampling, and fluid and drug administration. LPS 0.5 mg/kg in 10 ml of normal saline (NS) was infused over 30 min in group Ⅱ-Ⅴ. Remifentanil 0.2, 0.4 or 0.8 μg·kg~(-1)·min~(-1) was infused starting from 15 min before LPS administration until the death of the animals. MAP, HR, peak airway pressure (P_(peak) ), PaO_2 and plasma intercellular adhesion molecule 1 (ICAM-1) concentration were measured immediately before LPS infusion (T_0, baseline) and at 1, 2.5 and 5.5 h after the end of LPS infusion. The animals were killed and the lungs were immediately removed for microscopic examination and determination of W/D lung weight ratio. Results MAP, HR and PaO_2 were significantly decreased while W/D ratio and P_(peak) were significantly increased after iv LPS infusion as compared with control group. LPS significantly increased plasma ICAM-1 concentration and damaged the structure of lung tissue. Remifentanil infusion significantly attenuated the LPS-induced changes in a dose-dependent manner. Conclusion RF has protective effect against LPS-induced ALI and inhibition of ICAM-1 expression is involved in the mechanism.%目的 探讨瑞芬太尼对兔内毒素性急性肺损伤(Au)的影响.方法 健康成年雄性新西兰大白兔30只,体重2.5~3.5 kg,随机分为5组(n=6):对照组(C组)、ALI组、低剂量瑞芬太尼组(LR组)、中剂量瑞芬太尼组(MR组)和高

  2. The Protective Effects of the Supercritical-Carbon Dioxide Fluid Extract of Chrysanthemum indicum against Lipopolysaccharide-Induced Acute Lung Injury in Mice via Modulating Toll-Like Receptor 4 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiao-Li Wu

    2014-01-01

    Full Text Available The supercritical-carbon dioxide fluid extract of Chrysanthemum indicum Linné. (CFE has been demonstrated to be effective in suppressing inflammation. The aim of this study is to investigate the preventive action and underlying mechanisms of CFE on acute lung injury (ALI induced by lipopolysaccharide (LPS in mice. ALI was induced by intratracheal instillation of LPS into lung, and dexamethasone was used as a positive control. Results revealed that pretreatment with CFE abated LPS-induced lung histopathologic changes, reduced the wet/dry ratio and proinflammatory cytokines productions (TNF-α, IL-1β, and IL-6, inhibited inflammatory cells migrations and protein leakages, suppressed the levels of MPO and MDA, and upregulated the abilities of antioxidative enzymes (SOD, CAT, and GPx. Furthermore, the pretreatment with CFE downregulated the activations of NF-κB and the expressions of TLR4/MyD88. These results suggested that CFE exerted potential protective effects against LPS-induced ALI in mice and was a potential therapeutic drug for ALI. Its mechanisms were at least partially associated with the modulations of TLR4 signaling pathways.

  3. 鬼针草总黄酮对大鼠内毒素性急性肺损伤的影响%Effect of Total Flavones of Bidens bipinnata on Lipopolysaccharide-induced Acute Lung Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    赵喜兰; 刘秋鹤

    2012-01-01

    Objective: To investigate anti-inflammatory and antioxidant function of total flavones of Bidens bipinnata L (TFB) on lipoplysaccharide (LPS) -induced acute lung injury ( ALI) and the mechanism. Method: One hundred and twenty SD rats were randomly divided into six groups; control group ( physiological saline, ip) , model group, dexamethasone group (5 mg -kg-1, ip) , TFB treatment group (100, 150, 200 mg -kg'-1 , ip) , twenty rats in each group. The rat ALI model was induced by LPS, 5 mg -kg-1 , ip. Six hours after modeling, all rats were sacrificed, protein content, white blood cell in bronchoalveolar lavage fluid (BALF) , expression of NF-kB p65 , and level of tumor necrosis factor ( TNF-a) , interleukin-6 ( IL-6 ) , interleukin-10 (IL-10) superoxide dismutase (SOD), malondialdehyde (MDA) and the activity of myeloperoxidase (MPO) in lung were measured. Result: Compared with control group, content of WBC and the protein in BALF was higher (P < 0.05-P < 0. 01) , compared with model group, NF-kB p65 expression level was (38.46 ±4.56)%, (31. 39 ±4. 18)% (in TFB high and medium dose group, respectively) , the content of MDA was (1.73 ± 0.19), (1.46 ±0. 15) nmol-ing-1, and the content of TNF-a was (259. 33 ±37.48), (211.46 ±32. 69) μg-L-1,and the content of IL-6 was (287.46 ± 100. 18) , (223. 55 ±93. 49) ng-L-1, and the activitiy of MPO was (2. 69 ±0. 57) , (2. 43 ±0. 38) U -g-1, respectevly. NF-kB p65 expression level and the content of MDA, TNF-α, IL-6 and the activities of MPO in lung were significantly lower ( P < 0. 05-P < 0. 01) . On the other hand, the level of IL-10 was ( 16. 73 ± 3. 87) , (17.28+3.58) μg-L-1, the content of SOD was (69. 46 ± 9. 84) , (73. 24 ±8. 39) U -mg-1, the content of IL-10 and SOD was increased significantly (P < 0. 05-P < 0. 01). Conclusion; TFB can reduce pulmonary vascular permeability of LPS induced acute lung injury, reduce the inflammatory exudation and oxidative stress damage.%目的:观察鬼针草总黄酮对大

  4. 胍丁胺对脂多糖诱导急性肝损伤的保护作用%Protective effects of agmatine on lipopolysaccharide-induced acute hepatic injury in mice

    Institute of Scientific and Technical Information of China (English)

    李炫飞; 范霞; 郑志华; 杨雪; 刘政; 龚建平; 梁华平

    2013-01-01

    Objective To observe the effect of agrnatine (AGM) on lipopolysaccharide (LPS)-induced acute hepatic injury in mice,and to explore its related mechanism.Methods Sixty C57BL/6 mice were randomly divided into control group (n =20,with intra-peritoneal injection of phosphate buffer saline 10 mg/kg),model group (n =20,with intra-peritoneal injection of LPS 10 mg/kg),and AGM group (n=20,with intra-peritoneal injection of LPS 10 mg/kg and AGM 200 mg/kg).Ten mice in each group were sacrificed at 6 hours and 24 hours,respectively,after modeling,blood samples were collected for the determination of tumor necrosis factor-α (TNF-α) and interleukin (IL-1β and IL-6) by enzyme linked immunosorbent assay (ELISA) at 6 hours after modeling,and for determination of alanine aminotransferase (ALT),aspartate transaminase (AST) and total bilirubin (TBil) by automatic biochemistry analyzer at 24 hours after modeling.Hepatic homogenate was also collected for determining the endonuclear nuclear factor-rκB (NF-κB) p65 by Western blotting at 6 hours after modeling,and for observation of pathological changes at 24 hours after modeling.Results At 6 hours after modeling,the mice in model group became lethargic and quiet,and their food and water assumption was reduced,but AGM was found to be able to greatly improve the general status of animals in AGM group.AGM was found to lower the contents of serum TNF-α (μg/L:296.3 ± 42.5 vs.627.2 ± 81.3,t=7.327,P=0.002),IL-1β (μg/L:109.1 ± 12.3 vs.264.2 ± 18.8,t=11.958,P=0.001),IL-6 (mg/L:11.4 ± 1.9 vs.23.6 ± 2.5,t=6.729,P=0.003),ALT (U/L:107.9 ± 8.5 vs.189.9 ± 13.6,t=8.856,P=0.001),AST (U/L:347.4 ± 24.9 vs.716.8 ± 60.4,t=9.793,P=0.001) and TBil (μmol/L:8.3 ± 0.9 vs.10.6 ± 0.5,t=3.869,P=0.018) in mice with acute hepatic injury induced by LPS.AGM also depressed TNF-α (ng/g:287.4 ± 32.5 vs.461.5 ± 31.4,t=6.673,P=0.003),IL-1β (pg/g:146.7 ± 13.5 vs.351.6 ±28.7,t=11.190,P=0.001) and intranuclear NF-κB p65 level (NF-κBp65/TBP:0.515

  5. Protective effects of trichostatin a on lipopolysaccharide-induced acute lung injury in mice%曲古菌素A对脂多糖致急性肺损伤小鼠的保护作用观察

    Institute of Scientific and Technical Information of China (English)

    雷鸣; 倪云峰; 李小飞; 张志培; 刘涛; 程庆书

    2012-01-01

    目的 探讨曲古菌素A(TSA)对脂多糖(LPS)所致急性肺损伤小鼠的保护作用及其机制.方法 健康雄性BALB/c小鼠60只,随机分为空白对照组、TSA组(灌胃给予TSA1mg/kg)、LPS组(气管内给予LPS1mg/kg)及TSA+LPS组(气管内给予LPS前1h灌胃给予TSA),每组15只.分别于处理后1、3、6、12、24h获取各组小鼠支气管肺泡灌洗液(BALF),采用ELISA法检测其中TNF-α和IL-1 β的浓度,并取肺组织测定肺干湿重比,HE染色后行病理组织学观察,ELISA法检测组织匀浆中髓过氧化物酶(MPO)活性及一氧化氮(NO)浓度.结果 与空白对照组及TSA组比较,LPS组小鼠肺组织可见明显的炎性细胞浸润等急性肺损伤病理学征象,肺组织湿干重比、MPO活性、NO浓度及BALF中TNF-α、IL-1 β浓度均明显升高(P<0.05).与LPS组比较,TSA+LPS组上述改变均明显受抑,肺组织损伤减轻,组间比较差异有统计学意义(P<0.05).结论 TSA对LPS诱导的急性肺损伤有保护作用,可能与其抑制了炎性细胞因子的生成有关.%Objective To evaluate the protective effect of trichostatin A (TSA) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice, and to explore its mechanism. Methods A total of 60 healthy male BALB/c mice were randomly divided into 4 groups (n=15, each group) as follows: control group, TSA group (TSA lmg/kg by intragastric administration), LPS group (LPS 1 mg/kg through trachea), and TSA+LPS group (LPS through trachea lh after TSA by intragastric administration). The animals in each group were sacrificed at different time points (l, 3, 6, 12, and 24h) after the treatment, and bronchoalveolar lavage fluid (BALF) was obtained from all animals. ELISA method was adopted to detect the concentrations of TNF- α and IL-1 β . Dry/wet ratio of lung tissue was measured. The histopathological observation of lung tissue was made after HE staining. ELISA was used to measure the activity of myeloperoxidase (MPO) and the

  6. Protective effect of mangiferin against lipopolysaccharide-induced depressive and anxiety-like behaviour in mice.

    Science.gov (United States)

    Jangra, Ashok; Lukhi, Manish M; Sulakhiya, Kunjbihari; Baruah, Chandana C; Lahkar, Mangala

    2014-10-05

    Numerous studies have demonstrated that inflammation, oxidative stress and altered level of neurotrophins are involved in the pathogenesis of depressive illness. Mangiferin, a C-glucosylxanthone is abundant in the stem and bark of Mangifera indica L. The compound has been shown to possess antioxidant, anti-inflammatory and immunomodulatory activities. The present study was performed to investigate the effect of mangiferin pretreatment on lipopolysaccharide-induced increased proinflammatory cytokines, oxidative stress and neurobehavioural abnormalities. Mice were challenged with lipopolysaccharide (0.83 mg/kg, i.p.) after 14 days of mangiferin (20 and 40 mg/kg, p.o.) pretreatment. Mangiferin pretreatment significantly ameliorated the anxiety-like behaviour as evident from the results of an elevated plus maze, light-dark box and open field test. Mangiferin pretreatment also improved the anhedonic behaviour as revealed by sucrose preference test and increased social interaction time. It also prevented the lipopolysaccharide-evoked depressive-like effect by reducing the immobility time in forced swim and tail suspension test. Lipopolysaccharide-induced elevated oxidative stress was decreased with mangiferin pretreatment due to its potential to increase reduced glutathione concentration, Superoxide dismutase and catalase activity and decrease lipid peroxidation and nitrite level in the hippocampus as well as in the prefrontal cortex. Mangiferin pretreatment also attenuated neuroinflammation by reducing the interleukin-1 beta (IL-1β) level in hippocampus and prefrontal cortex. In conclusion, our results demonstrated that mangiferin possessed antidepressant and anti-anxiety properties due to its ability to attenuate IL-1β level and oxidative stress evoked by intraperitoneal administration of lipopolysaccharide. Mangiferin may be a potential therapeutic agent for the treatment of depressive and anxiety illness.

  7. Sirtuin-activating compounds (STACs) alleviate D-galactosamine/lipopolysaccharide-induced hepatotoxicity in rats: involvement of sirtuin 1 and heme oxygenase 1.

    Science.gov (United States)

    Kemelo, M K; Kutinová Canová, N; Horinek, A; Farghali, H

    2017-02-28

    Sirtuin activating compounds (STACs) attenuate various type of liver insults through mechanisms which are not fully understood. In the present study, we investigated the ameliorative potential of quercetin (natural polyphenol) and SRT1720 (synthetic SIRT1 activator) against D-galactosamine/lipopolysaccharide-induced hepatotoxicity (an experimental model of acute liver failure). Moreover, we compared and contrasted the roles of stress responsive enzymes, sirtuin 1 (SIRT1) and heme oxygenase 1 (HO-1) in hepatoprotection/ hepatotoxicity. Liver injury was induced in male Wistar rats by intraperitoneal injection of D-galactosamine (400 mg/kg) and lipopolysaccharide (10 microg/kg). Some animals were pretreated with quercetin (50 mg/kg i.p.) or SRT1720 (5 mg/kg i.p.). Twenty-four hours later, the effects of these treatments were evaluated by biochemical studies and Western blot. D-GalN/LPS treatment upregulated HO-1 expression, downregulated SIRT1 expression, decreased AST: ALT ratio and markedly increased bilirubin, catalase and conjugated diene levels. Pretreatment of D-GalN/LPS rats with either quercetin or SRT1720 returned SIRT1 expression, HO-1 expression and all the aforementioned markers towards normal. Collectively, these findings suggest that elevated HO-1 and low SIRT1 expressions are involved in the pathogenesis of D-GalN/LPS-induced hepatotoxicity. Drugs that downregulate HO-1 and/or upregulate SIRT1 seem to have antihepatotoxic effects and need further exploration.

  8. Methylprednisolone stiffens aortas in lipopolysaccharide-induced chronic inflammation in rats.

    Directory of Open Access Journals (Sweden)

    Ya-Hui Ko

    Full Text Available INTRODUCTION: Glucocorticoids are commonly used as therapeutic agents in many acute and chronic inflammatory and auto-immune diseases. The current study investigated the effects of methylprednisolone (a synthetic glucocorticoid on aortic distensibility and vascular resistance in lipopolysaccharide-induced chronic inflammation in male Wistar rats. METHODS: Chronic inflammation was induced by implanting a subcutaneous slow-release ALZET osmotic pump (1 mg kg(-1 day(-1 lipopolysaccharide for either 2 or 4 weeks. Arterial wave transit time (τ was derived to describe the elastic properties of aortas using the impulse response function of the filtered aortic input impedance spectra. RESULTS: Long-term lipopolysaccharide challenge enhanced the expression of advanced glycation end products (AGEs in the aortas. Lipopolysaccharide also upregulated the inducible form of nitric oxide synthase to produce high levels of nitric oxide (NO, which resulted in vasodilation, as evidenced by the fall in total peripheral resistance (Rp . However, lipopolysaccharide challenge did not influence the elastic properties of aortas, as shown by the unaltered τ. The NO-mediated vascular relaxation may counterbalance the AGEs-induced arterial stiffening so that the aortic distensibility remained unaltered. Treating lipopolysaccharide-challenged rats with methylprednisolone prevented peripheral vasodilation because of its ability to increase Rp . However, methylprednisolone produced an increase in aorta stiffness, as manifested by the significant decline in τ. The diminished aortic distensibility by methylprednisolone paralleled a significant reduction in NO plasma levels, in the absence of any significant changes in AGEs content. CONCLUSION: Methylprednisolone stiffens aortas and elastic arteries in lipopolysaccharide-induced chronic inflammation in rats, for NO activity may be dominant as a counteraction of AGEs.

  9. BRP, a polysaccharide fraction isolated from Boschniakia rossica, protects against galactosamine and lipopolysaccharide induced hepatic failure in mice.

    Science.gov (United States)

    Quan, Jishu; Jin, Meihua; Xu, Huixian; Qiu, Delai; Yin, Xuezhe

    2014-05-01

    The aim of this study was to investigate the hepatoprotective effect of BRP, a polysaccharide fraction isolated from Boschniakia rossica, against galactosamine and lipopolysaccharide induced fulminant hepatic failure. Mice were injected with a single dose of galactosamine/lipopolysaccharide with or without pretreatment of BRP. Results showed marked reduction of hepatic necrosis, serum marker enzymes and levels of tumor necrosis factor-α and interleukin-6 in BRP pretreated mice when compared with galactosamine/lipopolysaccharide-challenged mice. Mice pretreated with BRP decreased the activation of caspases-3 and caspase-8, and showed a reduced level of DNA fragmentation of liver cells. BRP also reduced hepatic lipid peroxidation, increased potential of hepatic antioxidative defense system, and reduced hepatic nitric oxide level which was elevated by galactosamine/lipopolysaccharide injection. Immunoblot analysis showed down-regulation of inducible nitric oxide synthase and cyclooxygenase-2 proteins of liver tissues in BRP pretreated group when compared with galactosamine/lipopolysaccharide-challenged group. Furthermore, treatment with galactosamine/lipopolysaccharide markedly increased toll-like receptor 4, nuclear level of nuclear factor-κB, and phosphorylation of both extracellular signal-regulated kinase and c-Jun N-terminal kinase in liver tissues. However, these increases were attenuated by pretreatment with BRP. The results suggest that BRP alleviates galactosamine/lipopolysaccharide-induced liver injury by enhancing antioxidative defense system, suppressing inflammatory responses and reducing apoptotic signaling.

  10. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats.

    Science.gov (United States)

    Zhao, Jinbing; Chen, Zhi; Xi, Guohua; Keep, Richard F; Hua, Ya

    2014-10-01

    Acute post-traumatic ventricular dilation and hydrocephalus are relatively frequent consequences of traumatic brain injury (TBI). Several recent studies have indicated that high iron levels in brain may relate to hydrocephalus development after intracranial hemorrhage. However, the role of iron in the development of post-traumatic hydrocephalus is still unclear. This study was to determine whether or not iron has a role in hydrocephalus development after TBI. TBI was induced by lateral fluid-percussion in male Sprague-Dawley rats. Some rats had intraventricular injection of iron. Acute hydrocephalus was measured by magnetic resonance T2-weighted imaging and brain hemorrhage was determined by T2* gradient-echo sequence imaging and brain hemoglobin levels. The effect of deferoxamine on TBI-induced hydrocephalus was examined. TBI resulted in acute hydrocephalus at 24 h (lateral ventricle volume: 24.1 ± 3.0 vs. 9.9 ± 0.2 mm(3) in sham group). Intraventricular injection of iron also caused hydrocephalus (25.7 ± 3.4 vs. 9.0 ± 0.6 mm(3) in saline group). Deferoxamine treatment attenuated TBI-induced hydrocephalus and heme oxygenase-1 upregulation. In conclusion, iron may contribute to acute hydrocephalus after TBI.

  11. Circulating leptin mediates lipopolysaccharide-induced anorexia and fever in rats.

    Science.gov (United States)

    Sachot, Christelle; Poole, Stephen; Luheshi, Giamal N

    2004-11-15

    Anorexia and fever are important features of the host's response to inflammation that can be triggered by the bacterial endotoxin lipopolysaccharide (LPS) and the appetite suppressant leptin. Previous studies have demonstrated that LPS induces leptin synthesis and secretion in the periphery, and that the action of leptin on appetite suppression and fever are dependent on brain interleukin (IL)-1beta. However, the role of leptin as a neuroimmune mediator of LPS-induced inflammation has not been fully elucidated. To address this issue, we neutralized circulating leptin using a leptin antiserum (LAS) and determined how this neutralization affected LPS-induced anorexia, fever and hypothalamic IL-1beta. Adult male rats were separated into four treatment groups, namely LPS + normal sheep serum (NSS), LPS + LAS, saline + LAS and saline + NSS. Intraperitoneal injection of LPS (100 microg kg(-1)) induced a significant reduction in food intake and body weight, which were significantly reversed in the presence of LAS (1 ml kg(-1)), 8 and 24 h after treatment. In addition, LPS-induced fever was significantly attenuated by LAS over the duration of the fever response (8 h). Lipopolysaccharide induced an increase of circulating IL-6, another potential circulating pyrogen, which was not affected by neutralization of leptin at 2 h. Interleukin-1beta mRNA at 1 and 8 h, and IL-1 receptor antagonist (ra) at 2 h were significantly upregulated in the hypothalamus of LPS-treated animals. The induction of these cytokines was attenuated in the presence of LAS. These results are the first to demonstrate that leptin is a circulating mediator of LPS-induced anorexia and fever, probably through a hypothalamic IL-1beta-dependent mechanism.

  12. Desferrioxamine attenuates minor lung injury following surgical acute liver failure.

    Science.gov (United States)

    Kostopanagiotou, G G; Kalimeris, K A; Arkadopoulos, N P; Pafiti, A; Panagopoulos, D; Smyrniotis, V; Vlahakos, D; Routsi, C; Lekka, M E; Nakos, G

    2009-06-01

    Acute liver failure (ALF) can be complicated by lung dysfunction. The aim of this study was to test the hypothesis that inhibition of oxidative stress through iron chelation with desferrioxamine (DFX) attenuates pulmonary injury caused by ALF. 14 adult female domestic pigs were subjected to surgical devascularisation of the liver and were randomised to a study group (DFX group, n = 7), which received post-operative intravenous infusion of DFX (14.5 mg x kg(-1) x h(-1) for the first 6 h post-operatively and 2.4 mg x kg(-1) x h(-1) until completion of 24 h), and a control group (n = 7). Post-operative lung damage was evaluated by histological and bronchoalveolar lavage fluid (BALF) analysis. DFX resulted in reduced BALF protein levels and tissue phospholipase (PL)A(2) activity. Plasma malondialdehyde and BALF nitrate and nitrite concentrations were lower, while catalase activity in the lung was higher after DFX treatment. PLA(2), platelet-activating factor acetylhydrolase and total cell counts in BALF did not differ between groups. Histological examination revealed reduced alveolar collapse, pneumonocyte necrosis and total lung injury in the DFX-treated animals. DFX reduced systemic and pulmonary oxidative stress during ALF. The limited activity of PLA(2) and the attenuation of pneumonocyte necrosis could represent beneficial mechanisms by which DFX improves alveolar-capillary membrane permeability and prevents alveolar space collapse.

  13. Glutamine Attenuates Acute Lung Injury Caused by Acid Aspiration

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Lai

    2014-08-01

    Full Text Available Inadequate ventilator settings may cause overwhelming inflammatory responses associated with ventilator-induced lung injury (VILI in patients with acute respiratory distress syndrome (ARDS. Here, we examined potential benefits of glutamine (GLN on a two-hit model for VILI after acid aspiration-induced lung injury in rats. Rats were intratracheally challenged with hydrochloric acid as a first hit to induce lung inflammation, then randomly received intravenous GLN or lactated Ringer’s solution (vehicle control thirty min before different ventilator strategies. Rats were then randomized to receive mechanical ventilation as a second hit with a high tidal volume (TV of 15 mL/kg and zero positive end-expiratory pressure (PEEP or a low TV of 6 mL/kg with PEEP of 5 cm H2O. We evaluated lung oxygenation, inflammation, mechanics, and histology. After ventilator use for 4 h, high TV resulted in greater lung injury physiologic and biologic indices. Compared with vehicle treated rats, GLN administration attenuated lung injury, with improved oxygenation and static compliance, and decreased respiratory elastance, lung edema, extended lung destruction (lung injury scores and lung histology, neutrophil recruitment in the lung, and cytokine production. Thus, GLN administration improved the physiologic and biologic profiles of this experimental model of VILI based on the two-hit theory.

  14. Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Junya Kawai

    2014-01-01

    Full Text Available Pleurotus eryngii (P. eryngii is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI. Intranasal instillation of lipopolysaccharide (LPS (10 μg/site/mouse induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3–1 g/kg, p.o. (HTPE 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection.

  15. Emodin ameliorates lipopolysaccharides-induced corneal inflammation in rats

    Institute of Scientific and Technical Information of China (English)

    Guo-Ling; Chen; Jing-Jing; Zhang; Xin; Kao; Lu-Wan; Wei; Zhi-Yu; Liu

    2015-01-01

    · AIM: To investigate the effect of emodin on pseudomonas aeruginosa lipopolysaccharides(LPS)-induced corneal inflammation in rats.· METHODS: Corneal infection was induced by pseudomonas aeruginosa LPS in Wistar rats. The inflammation induced by LPS were examined by slit lamp microscope and cytological checkup of aqueous humor.Corneal tissue structure was observed by hematoxylin and eosin(HE) staining. The activation of nuclear factor kappa B(NF-κB) was determined by Western blot.Messenger ribonucleic acid(m RNA) of tumor necrosis factor-α(TNF-α) and intercellular adhesion molecule-1(ICAM-1) in LPS-challenged rat corneas were measured with reverse transcription-polymerase chain reaction(RT-PCR).· RESULTS: Typical manifestations of acute corneal inflammation were observed in LPS-induce rat model,and the corneal inflammatory response and structure were improved in rats pretreated with emodin. Treatment with emodin could improve corneal structure, reduce corneal injure by reducing corneal inflammatory response. Emodin could inhibit the decreasing lever of inhibitor of kappa B alpha(IкBα) express, and the m RNA expression of TNF-α and ICAM-1 in corneal tissues was also inhibited by emodin. The differences were statistically significant between groups treated with emodin and those without treatment(P <0.01).·CONCLUSION: Emodin could ameliorate LPS-induced corneal inflammation, which might via inhibiting the activation of NF-κB.

  16. Alpha-lipoic acid protects mitochondrial enzymes and attenuates lipopolysaccharide-induced hypothermia in mice

    Science.gov (United States)

    Abstract: Hypothermia is a key symptom of sepsis and the mechanism(s) leading to hypothermia during sepsis is largely unknown. To investigate a potential mechanism and find an effective treatment for hypothermia in sepsis, we induced hypothermia in mice by lipopolysaccharide (LP...

  17. Dietary L-arginine supplementation attenuates lipopolysaccharide-induced inflammatory response in broiler chickens

    Science.gov (United States)

    Two experiments were conducted to investigate the effect of dietary L-arginine (Arg) supplementation on inflammatory response and innate immunity of broilers. Experiment 1 was designed as a 2 × 3 factorial arrangement (n = 8 cages/treatment; 6 birds/cage) with 3 dietary Arg concentrations (1.05, 1.4...

  18. Moderate Exercise Attenuates Lipopolysaccharide-Induced Inflammation and Associated Maternal and Fetal Morbidities in Pregnant Rats.

    Directory of Open Access Journals (Sweden)

    Karina T Kasawara

    Full Text Available Fetal growth restriction (FGR and coagulopathies are often associated with aberrant maternal inflammation. Moderate-intensity exercise during pregnancy has been shown to increase utero-placental blood flow and to enhance fetal nutrition as well as fetal and placental growth. Furthermore, exercise is known to reduce inflammation. To evaluate the effect of moderate-intensity exercise on inflammation associated with the development of maternal coagulopathies and FGR, Wistar rats were subjected to an exercise regime before and during pregnancy. To model inflammation-induced FGR, pregnant rats were administered daily intraperitoneal injections of E. coli lipopolysaccharide (LPS on gestational days (GD 13.5-16.5 and sacrificed at GD 17.5. Control rats were injected with saline. Maternal hemostasis was assessed by thromboelastography. Moderate-intensity exercise prevented LPS-mediated increases in white blood cell counts measured on GD 17.5 and improved maternal hemostasis profiles. Importantly, our data reveal that exercise prevented LPS-induced FGR. Moderate-intensity exercise initiated before and maintained during pregnancy may decrease the severity of maternal and perinatal complications associated with abnormal maternal inflammation.

  19. Bacterial lipopolysaccharide induces apoptosis in the trout ovary

    Directory of Open Access Journals (Sweden)

    Krasnov Aleksei

    2006-08-01

    appear to impair ovarian steroid production, oocyte final maturation or follicular contraction under the present experimental conditions. Interestingly, LPS administration in vivo induced apoptosis in follicular cells, an observation that correlated with changes in the expression of genes involved in apoptosis, as evidenced by microarray analysis. Conclusion These results indicate that female trout are particularly resistant to an acute administration of LPS in terms of ovarian hormone responsiveness. However, LPS caused a marked increase in apoptosis in follicular cells, suggesting that the trout ovary could be sensitive to the pro-apoptotic effects of LPS-induced inflammatory cytokines.

  20. Effects of propofol on activation of NF-κB in polymorphonuclear neutrophils in rats with lipopolysaccharide-induced acute lung injury%异丙酚对内毒素性急性肺损伤大鼠中性粒细胞NF-κB活化的影响

    Institute of Scientific and Technical Information of China (English)

    李莎; 张焰; 彭生

    2010-01-01

    Objective To investigate the effects of propofol on activation of NF-κB in polymorphonuclear neutrophils (PMNs) in rats with LPS-induced acute lung injury (ALI). Methods Sixty healthy SD rats of both sexes, aged 3 months, weighing 250-350 g, were randomly divided into 5 groups (n = 12 each):control group (group C), ALI group and 3 different dose of propofol groups (group P1, P2, P3). The animals were anesthetized with intraperitaneal 3% pentobarbital sodium 40 mg/kg. LPS 5 mg/kg was injected via femoral vein in group ALI.Propofol 5, 10 and 15 mg· kg- 1· h- 1 was infused intravenously over 2 h immeliately after injection of LPS 5 ng/kg through femoral vein in group P1, P2 and P3 respectivey. In group C normal saline 10 ml was injected via femoral vein instead. All rats were killed by exsanguination at the end of infusion of propofol. The right lung was removed for microscopic examination. The morphologic changes were scored 0-3 (0 = normal, 3 = severe morphologic changes). Blood samples were collected from carotid artery for determination of the expression of total NF-κB and activated NF-κB in PMNs by Western blot. Results Compared with group C, morphologic change scores and activated NF-κB expression in PMNs were significantly increased in group ALI, P1 and P2, and morphologic change scores increased in group P3. Morphologic change scores in group P1 and P2 and activated NF-κB expression in PMNs in group P1, P2 and P3 were significantly decreased compared with those in group ALl. Morphologic change scores and activated NF-κB expression in PMNs were decreased gradually in group P1, P2 and P3 . There was no significant difference in total NF-κB expression in PMNs among all groups. Conclusion Propofol can attenuate ALI induced by LPS through inhibition of the activation of NF-κB in PMNs in rats.%目的 探讨异丙酚对内毒素性急性肺损伤(ALI)大鼠中性粒细胞NF-κB活化的影响.方法 健康清洁级SD大鼠60只,3月龄,体重250~350 g

  1. IFN-τ Alleviates Lipopolysaccharide-Induced Inflammation by Suppressing NF-κB and MAPKs Pathway Activation in Mice.

    Science.gov (United States)

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Chen, Xiuying; Rui, Guangze; Qiu, Changwei; Guo, Mengyao; Deng, Ganzhen

    2016-06-01

    IFN-τ, which is a type I interferon with low cytotoxicity, is defined as a pregnancy recognition signal in ruminants. Type I interferons have been used as anti-inflammatory agents, but their side effects limit their clinical application. The present study aimed to determine the anti-inflammatory effects of IFN-τ in a lipopolysaccharide-stimulated acute lung injury (ALI) model and in RAW264.7 cells and to confirm the mechanism of action involved. The methods used included histopathology, measuring the lung wet/dry ratio, determining the myeloperoxidase activity, ELISA, qPCR, and western blot. The results revealed that IFN-τ greatly ameliorated the infiltration of inflammatory cells and the expression of TNF-α, IL-1β, and IL-6. Further analysis revealed that IFN-τ down-regulated the expression of TLR-2 and TLR-4 mRNA and the activity of the NF-κB and MAPK pathways both in a lipopolysaccharide-induced ALI model and in RAW264.7 cells. The results demonstrated that IFN-τ suppressed the levels of pro-inflammatory cytokines by inhibiting the phosphorylation of the NF-κB and MAPK pathways. Thus, IFN-τ may be an optimal target for the treatment of inflammatory diseases.

  2. A Prospective, Randomized Investigation of Plasma First Resuscitation for Traumatic Hemorrhage and Attenuation of Acute Coagulopathy of Trauma

    Science.gov (United States)

    2016-05-01

    Attenuation of Acute Coagulopathy of Trauma . PRINCIPAL INVESTIGATOR: Ernest E. Moore, MD CONTRACTING ORGANIZATION: University of Colorado Denver...Randomized Investigation of “Plasma First Resuscitation” for Traumatic Hemorrhage and Attenuation of Acute Coagulopathy of Trauma . 5b. GRANT NUMBER...NOTES 14. ABSTRACT The COMBAT (Control of Major Bleeding After Trauma ) study is a randomized clinical trial evaluating the early administration of

  3. Effect of cholinesterase inhibitor galanthamine on circulating tumor necrosis factor alpha in rats with lipopolysaccharide induced peritonitis

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-hai; MA Yue-feng; WU Jun-song; GAN Jian-xin; XU Shao-wen; JIANG Guan-yu

    2010-01-01

    Background The nervous system, through the vagus nerve and its neurotransmitter acetylcholine, can down-regulate the systemic inflammation in vivo, and recently, a role of brain cholinergic mechanisms in activating this cholinergic anti-inflammatory pathway has been indicated. Galanthamine is a cholinesterase inhibitor and one of the centrally acting cholinergic agents available in clinic. This study aimed to evaluate the effect of galanthamine on circulating tumor necrosis factor alpha (TNF-α) in rats with lipopolysaccharide-induced peritonitis and the possible role of the vagus nerve in the action of galanthamine.Methods Rat models of lipopolysaccharide-induced peritonitis and bilateral cervical vagotomy were produced. In the experiment 1, the rats were randomly divided into control group, peritonitis group, and peritonitis groups treated with three dosages of galanthamine. In the experiment 2, the rats were randomly divided into sham group, sham plus peritonitis group, sham plus peritonitis group treated with galanthamine, vagotomy plus peritonitis group, and vagotomy plus peritonitis group treated with galanthamine. The levels of plasma TNF-α were determined in every group. Results The level of circulating TNF-α was significantly increased in rats after intraperitoneal injection of endotoxin. Galanthamine treatment decreased the level of circulating TNF-α in rats with lipopolysaccharide-induced peritonitis, and there was significant difference compared with rats with lipopolysaccharide-induced peritonitis without treatment. The 3 mg/kg dosage of galanthamine had the most significant inhibition on circulating TNF-α level at all the three tested doses. Galanthamine obviously decreased the TNF-α level in rats with lipopolysaccharide-induced peritonitis with sham operation, but could not decrease the TNF-α level in rats with lipopolysaccharide-induced peritonitis with vagotomy. Conclusion Cholinesterase inhibitor galanthamine has an inhibitory effect on TNF

  4. Crocin attenuates lipopolysacchride-induced acute lung injury in mice

    Science.gov (United States)

    Wang, Jian; Kuai, Jianke; Luo, Zhonghua; Wang, Wuping; Wang, Lei; Ke, Changkang; Li, Xiaofei; Ni, Yunfeng

    2015-01-01

    Crocin, a representative of carotenoid compounds, exerts a spectrum of activities including radical scavenger, anti-microbial and anti-inflammatory properties. To investigate the protective effect of crocin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg). The mice received intragastric injection of crocin (50 mg/kg) 1 h before LPS administration. Pulmonary histological changes were evaluated by hematoxylineosin stain and lung wet/dry weight ratios were observed. Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and nitric oxide (NO), and myeloperoxidase (MPO) activity were measured by enzymelinked immunosorbent assay. Expression of inducible nitric oxide synthase (iNOS) in lung tissues was determined by Western blot analysis. Crocin pretreatment significantly alleviated the severity of lung injury and inhibited the production of TNF-α and IL-1β in mice with ALI. After LPS administration, the lung wet/dry weight ratios, as an index of lung edema, and MPO activity were also markedly reduced by crocin pretreatment. Crocin pretreatment also reduced the concentrations of NO in lung tissues. Furthermore, the expression of iNOS was significantly suppressed by crocin pretreatment. Croncin potently protected against LPS-induced ALI and the protective effects of crocin may attribute partly to the suppression of iNOS expression. PMID:26191176

  5. Monoacylglycerol lipase (MAGL inhibition attenuates acute lung injury in mice.

    Directory of Open Access Journals (Sweden)

    Carolina Costola-de-Souza

    Full Text Available Endocannabinoid signaling is terminated by enzymatic hydrolysis, a process that, for 2-Arachidonoylglycerol (2-AG, is mediated by monoacylglycerol lipase (MAGL. The piperidine carbamate, 4-nitrophenyl- 4-(dibenzo[d] [1,3]dioxol-5-yl (hydroxy methyl piperidine- 1-carboxylate (JZL184, is a drug that inhibits MAGL and presents high potency and selectivity. Thus, JZL184 increases the levels of 2-AG, an endocannabinoid that acts on the CB1 and CB2 cannabinoid receptors. Here, we investigated the effects of MAGL inhibition, with a single dose (16 mg/kg, intraperitoneally (i.p. of JZL184, in a murine model of lipopolysaccharide (LPS -induced acute lung injury (ALI 6, 24 and 48 hours after the inflammatory insult. Treatment with JZL184 decreased the leukocyte migration into the lungs as well as the vascular permeability measured through the bronchoalveolar lavage fluid (BAL and histological analysis. JZL184 also reduced the cytokine and chemokine levels in the BAL and adhesion molecule expression in the blood and BAL. The CB1 and CB2 receptors were considered involved in the anti-inflammatory effects of JZL184 because the AM281 selective CB1 receptor antagonist (1-(2,4-dichlorophenyl-5-(4-iodophenyl-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide and the AM630 selective CB2 receptor antagonist ([6-iodo-2-methyl-1-[2-(4-morpholinylethyl]-1H-indol-3-yl](4-methoxyphenyl-methanone blocked the anti-inflammatory effects previously described for JZL184. It was concluded that MAGL inhibition, and consequently the increase in 2-AG levels, produced anti-inflammatory effects in a murine model of LPS-induced ALI, a finding that was considered a consequence of the activation of the CB1 and CB2 receptors.

  6. Dehydroandrographolide succinate inhibits oxidative stress in mice with lipopolysaccharide-induced acute lung injury by inactivating iNOS%脱氢穿心莲内酯琥珀酸半酯通过抑制iNOS减轻LPS诱导的急性肺损伤导致的氧化应激

    Institute of Scientific and Technical Information of China (English)

    朱涛; 管弦; 张维; 王导新

    2012-01-01

    目的 探讨脱氢穿心莲内酯琥珀酸半酯(DAS)通过抑制iNOS减轻LPS诱导的急性肺损伤导致的氧化应激.方法 30只雄性BALB/C小鼠平均分为对照组(Control组)、治疗组(LPS+DAS组)和模型组(LPS组).使用ELISA对肺泡灌洗液(BALF)中IL-1β、IL-6和TNF-α水平进行测定.测量BALF中丙二醛(MDA)和超氧化物歧化酶(SOD)水平.对肺组织进行湿/干比(wet to dry ratio,W/D)测定.HE染色用于肺组织病理变化观察和肺组织损伤评分测量.RT-PCR被用于iNOS mRNA的测定.使用Western blot测定iNOS和β-肌动蛋白(β-actin)蛋白的表达.结果 LPS干预后小鼠BALF中IL-1β、IL-6、TNF-α和MDA水平明显上升而SOD水平显著下降,W/D比值和肺组织损伤评分明显升高,iNOS mRNA和蛋白的表达明显增加.LPS+DAS组小鼠BALF中IL-1β、IL-6、TNF-α和MDA水平、W/D比值、肺组织损伤评分、iNOS mRNA和蛋白的表达较LPS组小鼠明显下降;同时BALF中SOD水平较LPS组小鼠明显增加.结论 DAS可能是通过抑制iNOS表达减轻LPS诱导的急性肺损伤导致的氧化应激.%Objective To investigate the effect of dethydroandrographolide succinate (DAS) on oxidative stress and induced nitric oxide synthase (iNOS) expression in a mouse model of lipopolysaccharide (LPS)-induced acute lung injury. Methods Thirty male BALB/C mice were randomly divided into control group, LPS+DAS group and LPS group (n=10). The levels of interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), malondialdehyde (MDA) and superoxide dismutase (SOD) in the bronchoalveolar lavage fluid (BALF) were measured. The wet-to-dry ratio (W/D) of the lung tissue was determined to evaluate lung edema. HE staining was used to observe the pathological changes and lung injury scores. The expressions of iNOS mRNA and protein in the lungs were analyzed using RT-PCR and Western blotting, respectively. Results IL-1β, IL-6, TNF-α and MDA levels in the BALF, W/D, lung injury scores, and iNOS m

  7. 间充质干细胞对脂多糖诱导急性肺损伤大鼠亲环素A表达的影响%Effect of mesenchymal stem cells on expression of cyclophilin A in lipopolysaccharide-induced acute lung injury rat

    Institute of Scientific and Technical Information of China (English)

    吴海青; 李涛平; 徐健; 黄丽

    2012-01-01

    目的 观察亲环素A (CyPA)在脂多糖诱导急性肺损伤大鼠肺组织的表达变化及间充质干细胞对CyPA表达的影响.方法 90只SD大鼠随机分为5组,即:正常对照组、模型组、干细胞对照组和高、低剂量干细胞治疗组,每组18只.模型组经尾静脉注射脂多糖(LPS) 5mg/kg;干细胞对照组经尾静脉注射骨髓间充质干细胞2×106/ml,0.5 ml;正常对照组经尾静脉注射等量生理盐水;高、低剂量干细胞治疗组分别经尾静脉同时注射LPS 5mg/kg和骨髓间充质干细胞2×106/ml、1×106/ml,0.5 ml.分别于造模后6、24和72 h处死动物收取标本,测定右下肺组织髓过氧化物酶(MPO)、肿瘤坏死因子α(TNF-α)、白细胞介素13(IL-13)及肺组织细胞核内的CyPA表达.结果 模型组、两种剂量干细胞治疗组MPO、TNF-α、IL-1β及CyPA表达三个时间点均较正常对照组显著升高(P<0.05);高剂量干细胞治疗组CyPA蛋白和mRNA表达均较模型组明显降低(P<0.05).结论 CyPA参与了内毒素诱导急性肺损伤大鼠的发病过程,骨髓间充质干细胞可能通过降低CyPA的活性对急性肺损伤发挥治疗作用.%Objective To observe the expression of cyclophilin A( CyPA) in lung tissues of lipopolysaccharide( LPS) induced acute lung injury rat and the influence of mesenchymal stem cells( MSC) on the activity of CyPA. Methods Ninety SD rats were randomly divided into 5 groups(18 in each group) : model group: 5mg/kg LPS were given through tail vein injection;stem cells control group: bone marrow MSC( BMSC)2 X lO'/ml 0. 5 ml were given through tail vein injection; normal control group; equivalent normal saline were given through tail vein injection; stem cells treatment groups: 5 mg/kg LPS + BMSC 2 × 106/ml, 1 × l06/ml 0. 5 ml were given through tail vein injection. The lung tissues of rats which is put to death were collected at 6, 24 and 72 hours after molding. Determine the content of tumor necrosis factor (TNF

  8. ω-3多不饱和脂肪酸对内毒素致大鼠急性肺损伤的影响%Effect of omega-3 polyunsaturated fatty acid on lipopolysaccharide-induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    赵艳; 柳欣欣; 郭丹; 王磊; 陈平

    2013-01-01

    Objective To evaluate the effect of dietary ω-3 polyunsaturated fatty acid (PUFA) supplementation on lipopolysaccharide (LPS)-induced acute lung injury in rats.Methods Totally 58 male SD rats were divided into control group (n =10),model group (n =12),ω-3 PUFA high-dose group (n =12),ω-3PUFA medium-dose group (n =12),and ω-3 PUFA low-dose group (n =12).Seven days before model establishment,rats in the three ω-3 PUFA groups were orally given ω-3 PUFA at 1,0.5,and 0.25 g/kg body weight once per day,respectively,for seven consecutive days.Twenty-four hours after the last administration,all rats except those in the control group were given intravenous injection of LPS (6 mg/kg) at caudal vein to establish the model of acute lung injury.Body temperature was measured at 0,6,and 24 hour.Blood samples were collected from the eye venous plexus for routine blood tests and blood biochemical tests 24 hours after modeling.After the rats were sacrificed,the left lung was harvested for measuring the wet weight and dry weight and calculating the wet/dry weight ratio (W/D).The right lung was harvested for pathological observation under light microscope and calculation of semi-quantitative pathological index (PI).Results Twenty-four hours after modeling,deaths were noted in all groups except the control group.After injection of LPS,rats curled with little movements.At 6 hour,the body temperature was significantly higher in the model group than in the control group [(37.4 ±0.27)℃ vs.(35.9 ±0.05) ℃,P =0.00] ; it was (36.2 ±0.38)℃,(36.3 ±0.30)℃,and (36.3 ± 0.32) ℃ in the ω-3 PUFA high-,medium-,and low-dose groups,which were significantly lower than that in the model group (all P =0.01).The amounts of white blood cells,neutrophils,and lymphocytes increased in the model group,but showing no significant difference compared with the other groups.The serum glutamic oxalacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels were significantly higher in

  9. Effects of sevoflurane pretreatment on expression of interleukin-17 in rats with lipopolysaccharide-induced acute lung injury%七氟醚预先给药对大鼠内毒素性急性肺损伤时白细胞介素17表达的影响

    Institute of Scientific and Technical Information of China (English)

    魏晓永; 王涛; 李黎; 吴艳玲; 魏磊; 姜丽华

    2014-01-01

    目的 评价七氟醚预先给药对内毒素性急性肺损伤大鼠白细胞介素17(IL-17)表达的影响.方法 健康成年雄性SD大鼠32只,体重220 ~ 260 g,2月龄,采用随机数字表法,将其分为4组(n=8):对照组(C组)、七氟醚组(S组)、内毒素组(L组)和七氟醚+内毒素组(SL组).L组和SL组采用气管内滴注脂多糖(LPS)5 mg/kg的方法制备内毒素性急性肺损伤模型,其它2组给予等容量生理盐水,S组与SL组分别吸入2.4%七氟醚30 min时给予生理盐水或LPS.给予LPS后12 h处死大鼠,进行左侧支气管肺泡灌洗,进行支气管肺泡灌洗液(BALF)白细胞(WBC)和中性粒细胞(PMN)的计数.取右侧肺组织,光镜下观察病理学结果,并测定IL-17 mRNA及其蛋白表达.结果 与C组比较,L组和SL组BALF中WBC和PMN计数升高,肺组织IL-17 mRNA及蛋白表达上调(P<0.01);与L组比较,SL组BALF中WBC和PMN计数降低,肺组织IL-17 mRNA及其蛋白表达下调(P<0.05或0.01);SL组肺组织损伤明显轻于L组.结论 七氟醚预先给药可减轻大鼠内毒索性急性肺损伤时炎性反应,其机制与下调肺组织IL-17表达有关.%Objective To evaluate the effects of sevoflurane pretreatment on the expression of interleukin-17 (IL-17) in rats with lipopolysaccharide (LPS)-induced acute lung injury.Methods Thirty-two adult male Sprague-Dawley rats,weighing 220-260 g,aged 2 months,were randomly divided into 4 groups (n =8 each):control group (group C),sevoflurane group (group S),LPS group (group L) and sevoflurane + LPS group (group SL).ALI was induced by slow intra-tracheal instillation of LPS 5 mg/kg in L and SL groups,while the equal volume of normal saline was administered in the same way in the other two groups.The rats inhaled 2.4 % sevoflurane for 30 min,and then normal saline and LPS were given in S and SL groups,respectively.The rats were sacrificed at 12 h after administration of LPS.The left main bronchus was lavaged and broncho-alveolar lavage fluid

  10. Ceftriaxone attenuates locomotor activity induced by acute and repeated cocaine exposure in mice.

    Science.gov (United States)

    Tallarida, Christopher S; Corley, Gladys; Kovalevich, Jane; Yen, William; Langford, Dianne; Rawls, Scott M

    2013-11-27

    Ceftriaxone (CTX) decreases locomotor activation produced by initial cocaine exposure and attenuates development of behavioral sensitization produced by repeated cocaine exposure. An important question that has not yet been answered is whether or not CTX reduces behavioral sensitization to cocaine in cases in which the antibiotic is administered only during the period of cocaine absence that follows repeated cocaine exposure and precedes reintroduction to cocaine. We investigated this question using C57BL/6 mice. Mice pretreated with cocaine (15mg/kg×14 days) and then challenged with cocaine (15mg/kg) after 30 days of cocaine absence displayed sensitization of locomotor activity. For combination experiments, CTX injected during the 30 days of cocaine absence attenuated behavioral sensitization produced by cocaine challenge. In the case in which CTX was injected together with cocaine for 14 days, development of behavioral sensitization to cocaine challenge was also reduced. CTX attenuated the increase in locomotor activity produced by acute cocaine exposure; however, its efficacy was dependent on the dose of cocaine as inhibition was detected against 30mg/kg, but not 15mg/kg, of cocaine. These results from mice indicate that CTX attenuates locomotor activity produced by acute and repeated cocaine exposure and counters cocaine's locomotor activating properties in a paradigm in which the antibiotic is injected during the period of forced cocaine absence that follows repeated cocaine exposure.

  11. Protective effect of fasudil on lipopolysaccharide-induced acute kidney injury in rats and the mechanism%法舒地尔对内毒素引起的急性肾损伤大鼠影响及其机制

    Institute of Scientific and Technical Information of China (English)

    瞿星光; 李建国

    2015-01-01

    水平高于对照组及LPS+ FAS组(P<0.05).结论 Fasudil可以改善内毒素所致的急性肾损伤后肾功能和病理损伤,降低血液内及肾脏中炎性因子(TNF-α、IL-6)水平,减轻炎性反应;并且Fasudil通过直接抑制ROCK-1活性,并下调GRP78、CHOP等蛋白,抵抗内质网应激(ERS)所致的损伤,两者相辅相成共同作用影响肾脏功能.%Objective To investigate the protective effectof fasudil (FAS) on sepsis-acute kidney injury (AKI) in ratand the related mechanisms.MethodThe sepsis-AKI wainduced by intravenouadministration of 6 mg/kg lipopolysaccharide (LPS).FAwaintravenously injected athe dose of 30 mg/kg fo3 daybefore LPinjection.Renal function parameter[serun creatinine (Scr), blood urenitrogen (BUN), creatinine clearance (CrC1)], inflammatory cytokine[tumonecrosifactor-α (TNF-α) and interleukin-6 (IL-6)], kidney histology, renal cellapoptosis, and the expression of regulatory proteinwere determined.ResultAcompared with control group, the levelof Sc[(54.23 ± 3.31) μnol/L], and BUN [(21.32 ±5.68) mmol/L] in LPgroup were significantly increased (P< 0.05), and the concentrationof Sc[(40.26 ±4.59) μmol/L], BUN [(12.08 ±4.33) mmol/L], in LP+ FAgroup were significantly differenfrom those in LPgroup.While fothe CrCl, there were markedly increased in LP+ FA(1.23-±0.31) compared with LPgroup (0.84 ±0.34).Acompared with control group, LPcould significantly increase the concentrationof TNF-α (49.60 ±8.37) pg/mg and IL-6 (465.32 ± 30.71) pg/mg in plasmand TNF-α (2.45 ± 0.11) ng/L and IL-6 (1.38 ± 0.82) ng/L in plasma, while FAcould decrease the concentrationof TNF-α (49.60 ± 8.37) pg/mg, IL-6 (465.32 ± 30.71) pg/mg in the kidney tissue homogenate and TNF-α (2.45 ± 0.11) ng/L, IL-6 (1.38 ± 0.82) ng/L in kidney tissue homogenate, while fasudil could decrease the concentrationof 'TNF-α (28.34 ±5.32), IL-6 (259.33 ±39.10) in plasmand TNF-α (1.21 ±0.96), IL-6 (0.62 ±0.03) in kidney tissue homogenate.FAwashown to notably ameliorate LPS

  12. Acute paraquat exposure impairs colonic motility by selectively attenuating nitrergic signalling in the mouse.

    Science.gov (United States)

    Diss, Lucy; Dyball, Sarah; Ghela, Tina; Golding, Jonathan; Morris, Rachel; Robinson, Stephen; Tucker, Rosemary; Walter, Talia; Young, Paul; Allen, Marcus; Fidalgo, Sara; Gard, Paul; Mabley, Jon; Patel, Bhavik; Chatterjee, Prabal; Yeoman, Mark

    2016-02-01

    Paraquat, a common herbicide, is responsible for large numbers of deaths worldwide through both deliberate and accidental ingestion. Previous studies have eluded that the bioavailability of paraquat increases substantially with increasing dose and that these changes may in part be due to the effects that these high concentrations have on the gastrointestinal tract (GI tract). To date, the actions of acute, high concentrations (20mM for 60 min) of paraquat on the GI tract, particularly the colon which is a major site of paraquat absorption, are unknown. This study examined the effects of acute paraquat administration on colonic motility in the C57BL/6 mouse. Acute paraquat exposure decreased colonic motility and the amplitude of colonic migrating motor complexes (CMMCs), which are major motor patterns involved in faecal pellet propulsion. In isolated segments of distal colon, paraquat increased resting tension and markedly attenuated electrical field stimulation-evoked relaxations. Pharmacological dissection of paraquat's mechanism of action on both the CMMCs and field stimulated tissue using the nitric oxide synthase inhibitor NG-nitro-L-arginine and direct measurement of NO release from the myenteric plexus, demonstrated that paraquat selectively attenuates nitrergic signalling pathways. These changes did not appear to be due to alterations in colonic oxidative stress, inflammation or complex 1 activity, but were most likely caused by paraquat's ability to act as a redox couple. In summary, these data demonstrate that acute paraquat exposure attenuates colonic transit. These changes may facilitate the absorption of paraquat into the circulation and so facilitate its toxicity.

  13. Heme oxygenase-1 induction in the brain during lipopolysaccharide-induced acute inflammation

    OpenAIRE

    Maeda, Shigeru

    2008-01-01

    Shigeru Maeda1, Ichiro Nakatsuka1, Yukiko Hayashi1, Hitoshi Higuchi1, Masahiko Shimada2, Takuya Miyawaki11Department of Dental Anesthesiology, Okayama University Hospital, Okayama, Japan; 2Orofacial Pain Management, Department of Oral Restitution, Graduate School, Tokyo Medical and Dental University, Tokyo, JapanAbstract: Delirium occurs in 23% of sepsis patients, in which pro-inflammatory cytokines and nitric oxide are suggested to be involved. However, in animal experiments, even a subsepti...

  14. Ethanol extracts of Scutellaria baicalensis protect against lipopolysaccharide-induced acute liver injury in mice

    OpenAIRE

    Hai Nguyen Thanh; Hue Pham Thi Minh; Tuan Anh Le; Huong Duong Thi Ly; Tung Nguyen Huu; Loi Vu Duc; Thu Dang Kim; Tung Bui Thanh

    2015-01-01

    Objective: To investigated the protective potential of ethanol extracts of Scutellaria baicalensis (S. baicalensis) against lipopolysaccharide (LPS)-induced liver injury. Methods: Dried roots of S. baicalensis were extracted with ethanol and concentrated to yield a dry residue. Mice were administered 200 mg/kg of the ethanol extracts orally once daily for one week. Animals were subsequently administered a single dose of LPS (5 mg/kg of body weight, intraperitoneal injection). Both protein ...

  15. Ethanol extracts of Scutellaria baicalensis protect against lipopolysaccharide-induced acute liver injury in mice

    Institute of Scientific and Technical Information of China (English)

    Hai Nguyen Thanh; Hue Pham Thi Minh; Tuan Anh Le; Huong Duong Thi Ly; Tung Nguyen Huu; Loi Vu Duc; Thu Dang Kim; Tung Bui Thanh

    2015-01-01

    To investigated the protective potential of ethanol extracts of Scutellaria baicalensis (S. baicalensis ) against lipopolysaccharide (LPS)-induced liver injury. Methods: Dried roots of S. baicalensis were extracted with ethanol and concentrated to yield a dry residue. Mice were administered 200 mg/kg of the ethanol extracts orally once daily for one week. Animals were subsequently administered a single dose of LPS (5 mg/kg of body weight, intraperitoneal injection). Both protein and mRNA levels of cytokines, such as tumor necrosis factor alpha, interleukin-1β, and interleukin-6 in liver tissues were evaluated by ELISA assay and quantitative PCR. Cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-κB protein levels in liver tissues were analyzed by western blotting. Results: Liver injury induced by LPS significantly increased necrosis factor alpha, interleukin-1β, interleukin-6, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-κB in liver tissues. Treatment with ethanol extracts of S. baicalensis prevented all of these observed changes associated with LPS-induced injury in liver mice. Conclusions: Our study showed that S. baicalensis is potentially protective against LPS-induced liver injury in mice.

  16. Ethanol extracts of Scutellaria baicalensis protect against lipopolysaccharide-induced acute liver injury in mice

    Institute of Scientific and Technical Information of China (English)

    Hai; Nguyen; Thanh; Hue; Pham; Thi; Minh; Tuan; Anh; Le; Huong; Duong; Thi; Ly; Tung; Nguyen; Huu; Loi; Vu; Duc; Thu; Dang; Kim; Tung; Bui; Thanh

    2015-01-01

    Objective: To investigated the protective potential of ethanol extracts of Scutellaria baicalensis(S. baicalensis) against lipopolysaccharide(LPS)-induced liver injury. Methods: Dried roots of S. baicalensis were extracted with ethanol and concentrated to yield a dry residue. Mice were administered 200 mg/kg of the ethanol extracts orally once daily for one week. Animals were subsequently administered a single dose of LPS(5 mg/kg of body weight, intraperitoneal injection). Both protein and m RNA levels of cytokines, such as tumor necrosis factor alpha, interleukin-1β, and interleukin-6 in liver tissues were evaluated by ELISA assay and quantitative PCR. C yclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-κB protein levels in liver tissues were analyzed by western blotting. Results: Liver injury induced by LPS signifi cantly increased necrosis factor alpha, interleukin-1β, interleukin-6, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-κB in liver tissues. Treatment with ethanol extracts of S. baicalensis prevented all of these observed changes associated with LPS-induced injury in liver mice.Conclusions: Our study showed that S. baicalensis is potentially protective against LPS-induced liver injury in mice.

  17. Amniotic fluid stem cells from EGFP transgenic mice attenuate hyperoxia-induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Shih-Tao Wen

    Full Text Available High concentrations of oxygen aggravate the severity of lung injury in patients requiring mechanical ventilation. Although mesenchymal stem cells have been shown to effectively attenuate various injured tissues, there is limited information regarding a role for amniotic fluid stem cells (AFSCs in treating acute lung injury. We hypothesized that intravenous delivery of AFSCs would attenuate lung injury in an experimental model of hyperoxia-induced lung injury. AFSCs were isolated from EGFP transgenic mice. The in vitro differentiation, surface markers, and migration of the AFSCs were assessed by specific staining, flow cytometry, and a co-culture system, respectively. The in vivo therapeutic potential of AFSCs was evaluated in a model of acute hyperoxia-induced lung injury in mice. The administration of AFSCs significantly reduced the hyperoxia-induced pulmonary inflammation, as reflected by significant reductions in lung wet/dry ratio, neutrophil counts, and the level of apoptosis, as well as reducing the levels of inflammatory cytokine (IL-1β, IL-6, and TNF-α and early-stage fibrosis in lung tissues. Moreover, EGFP-expressing AFSCs were detected and engrafted into a peripheral lung epithelial cell lineage by fluorescence microscopy and DAPI stain. Intravenous administration of AFSCs may offer a new therapeutic strategy for acute lung injury (ALI, for which efficient treatments are currently unavailable.

  18. 17β-Estradiol administration attenuates seawater aspiration-induced acute lung injury in rats.

    Science.gov (United States)

    Fan, Qixin; Zhao, Pengtao; Li, Jiahuan; Xie, Xiaoyan; Xu, Min; Zhang, Yong; Mu, Deguang; Li, Wangping; Sun, Ruilin; Liu, Wei; Nan, Yandong; Zhang, Bo; Jin, Faguang; Li, Zhichao

    2011-12-01

    There is very little evidence on the value of administering estrogen in cases of seawater drowning which can induce acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Therefore, this study aimed to investigate whether 17β-estradiol (E2) treatment can attenuate seawater aspiration-induced ALI in rats. In the experiment, ALI was induced by endotracheal instillation of seawater (4mL/kg) and the rats were then given intraperitoneal injection of E2 (5mg/kg) 20min after seawater instillation. Finally, the changes of arterial blood gases which contained hydrogen ion concentration (pH), arterial oxygen tension (PaO(2)) and arterial carbon dioxide tension (PaCO(2)) were measured and the measurement of extravascular lung water (EVLW) was observed. The pulmonary histological changes were evaluated by hematoxylin-eosin stain. The expression of aquaporins (AQPs) 1, AQP5, and estrogen receptor-β (ERβ) was measured by western blotting and immunohistochemical methods. The results showed that compared with normal saline water, seawater aspiration induced more serious ALI in rats which was markedly alleviated by E2 treatment. Meanwhile, the ERβ in lung tissues was activated after E2 administration. The seawater aspiration group also presented with severe pulmonary edema which was paralleled with over expressed AQP1 and AQP5. However, the up-regulation of AQP1 and AQP5 was suppressed by the administration of E2, resulting in an attenuation of lung edema. In conclusion, E2 treatment could effectively attenuate seawater aspiration-induced acute lung injury in rats by the down-regulation of AQP1 and AQP5.

  19. Acute Ethanol Gavage Attenuates Hemorrhage/Resuscitation-Induced Hepatic Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    B. Relja

    2012-01-01

    Full Text Available Acute ethanol intoxication increases the production of reactive oxygen species (ROS. Hemorrhagic shock with subsequent resuscitation (H/R also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.. Then, rats were hemorrhaged to a mean arterial blood pressure of 30±2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.. Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE and nitrosative (3-nitrotyrosine, 3-NT stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.

  20. Nicotine suppresses lipopolysaccharide-induced release of interleukin-6 in mixed glia and microglia-enriched cultures

    Institute of Scientific and Technical Information of China (English)

    Zhihua Li; Qingzan Zhao; Hua Zhang; Xiuhua Ren; Mingfu Zhou; Weidong Zang

    2011-01-01

    Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD) through the over-activation of microglia.Epidemiological studies show that smoking is associated with a lower incidence of PD.This study hypothesized that the neuroprotective effect of nicotine is mediated by modulating the activation of microglia via cytokine release.This study found that nicotine pretreatment suppressed the lipopolysaccharide-induced inflammatory reaction in the nervous system, especially microglia activation and interleukin-6 production.The inhibitory effects of 100 pmol/L nicotine were stronger compared with 1 and 10 pmol/L nicotine.These findings indicate that nicotine significantly decreases the production of proinflammatory interleukin-6 in mixed glia or microglia-enriched cultures, and plays an inhibitory effect on the lipopolysaccharide-induced inflammatory reaction.

  1. Burkholderia mallei CLH001 Attenuated Vaccine Strain Is Immunogenic and Protects against Acute Respiratory Glanders.

    Science.gov (United States)

    Hatcher, Christopher L; Mott, Tiffany M; Muruato, Laura A; Sbrana, Elena; Torres, Alfredo G

    2016-08-01

    Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain.

  2. Hypothermia induced by adenosine 5'-monophosphate attenuates early stage injury in an acute gouty arthritis rat model.

    Science.gov (United States)

    Miao, Zhimin; Guo, Weiting; Lu, Shulai; Lv, Wenshan; Li, Changgui; Wang, Yangang; Zhao, Shihua; Yan, Shengli; Tao, Zhenyin; Wang, Yunlong

    2013-08-01

    To investigate whether the hypothermia induced by Adenosine 5'-Monophosphate (5'-AMP) could attenuate early stage injury in a rat acute gouty arthritis model. Ankle joint injection with monosodium urate monohydrate crystals (MSU crystals) in hypothermia rat model which was induced by 5'-AMP and then observe whether hypothermia induced by 5'-AMP could be effectively inhibit the inflammation on acute gouty arthritis in rats. AMP-induced hypothermia has protective effects on our acute gouty arthritis, which was demonstrated by the following criteria: (1) a significant reduction in the ankle swelling (p gouty arthritis model.

  3. Saturated hydrogen saline attenuates endotoxin-induced acute liver dysfunction in rats.

    Science.gov (United States)

    Xu, X-F; Zhang, J

    2013-01-01

    To determine the effect of saturated hydrogen saline on lipopolysaccharide (LPS)-induced acute liver dysfunction, rats were divided into control, LPS, and LPS plus saturated hydrogen saline (LPS+H(2)) groups. Treatment with saturated hydrogen saline prolonged the median survival time and reduced liver dysfunction. Moreover, saturated hydrogen saline significantly reduced pathological alterations in liver tissues, the number of ballooned hepatocytes, serum tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 levels, and myeloperoxidase (MPO) and malondialdehyde (MDA) levels in liver tissues (Phydrogen saline treatment. Saturated hydrogen saline also decreased phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated Jun kinase (p-JNK), nuclear factor-kappa B (NF-kappaB), and second mitochondria-derived activator of caspase (Smac) levels, and increased p38 activation (Phydrogen saline may attenuate LPS-induced acute liver dysfunction in rats, possibly by reducing inflammation and cell apoptosis. Mitogen-activated protein kinase (MAPK), NF-kappaB, and Smac may contribute to saturated hydrogen saline-mediated liver protection.

  4. Intrathecal PLC(β3) oligodeoxynucleotides antisense potentiates acute morphine efficacy and attenuates chronic morphine tolerance.

    Science.gov (United States)

    Quanhong, Zhou; Ying, Xue; Moxi, Chen; Tao, Xu; Jing, Wang; Xin, Zhang; Li, Wang; Derong, Cui; Xiaoli, Zhang; Wei, Jiang

    2012-09-07

    Morphine is a mainstay for chronic pain treatment, but its efficacy has been hampered by physical tolerance. The underlying mechanism for chronic morphine induced tolerance is complicated and not well understood. PLC(β3) is regarded as an important factor in the morphine tolerance signal pathway. In this study, we determined intrathecal (i.t.) administration of an antisense oligodeoxynucleotide (ODN) of PLC(β3) could quicken the on-set antinociceptive efficacy of acute morphine treatment and prolong the maximum effect up to 4h. The antisense could also attenuate the development of morphine-induced tolerance and left shift the ED50 after 7 day of coadministration with morphine. These results probably were contributed by the PLC(β3) antisense ODN as they successfully knocked down protein expression levels and reduced activity of PLC(β3) in spinal cord in rats. The mismatch group had no such effects. The results confirmed the important involvement of PLC(β3) in both acute morphine efficacy and chronic morphine tolerance at spinal level in rats. This study may provide an idea for producing a novel adjuvant for morphine treatment.

  5. Effect of selective inhibition of cyclooxygenase-2 on lipopolysaccharide-induced hyperalgesia.

    Science.gov (United States)

    Satyanarayana, Padi S V; Jain, Naveen K; Singh, Sukhjeet; Kulkarni, Shrinivas K

    2004-01-01

    Lipopolysaccharide (LPS) is known to increase the expression and release of various pro-inflammatory mediators, including cyclooxygenase-2 (COX-2) and produce hyperalgesia. It is also well known that prostaglandins (PGs), synthesised both in the periphery and centrally by COX isoforms, play a key role in sensitisation of nociceptors and nociceptive processing. To investigate the role of COX-2 in LPS-induced hyperalgesia, parecoxib, a selective COX-2-inhibiting pro-drug, was injected intravenously 30 min before assessing hyperalgesia induced by intraperitoneal or subcutaneous administration of LPS (50 microg/mouse or 25 microg/paw of rat, respectively). Acetic acid-induced writhing and tail immersion assay in mice and paw withdrawal response to thermal and mechanical stimuli in rats were used to assess the effect of inhibition of COX-2 on LPSinduced hyperalgesia. Animals showed significant hyperalgesic behavior 8 h after LPS injection. Parecoxib (up to 20 mg/kg, i.v.) had no effect in the two acute nociceptive assays but showed marked antinociceptive activity in writhing and tail immersion assay in LPS-pretreated mice. Similarly, parecoxib reversed the hyperalgesia in the LPS-injected paw but not in the contralateral paw of rats. Pre-treatment with dexamethasone, an inhibitor of COX-2 expression before LPS injection significantly affected the development of hyperalgesia in both mice and rats. These findings suggest that inducible COX-2 derived PGs are involved in central nociceptive processing, which resulted in hyperalgesic behavior following LPS administration and inhibition of COX-2 or its expression attenuated LPS-induced hyperalgesia.

  6. Hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced severe acute pancreatitis by inhibiting ROS and NF-κB pathway.

    Science.gov (United States)

    Shi, Qiao; Liao, Kang-Shu; Zhao, Kai-Liang; Wang, Wei-Xing; Zuo, Teng; Deng, Wen-Hong; Chen, Chen; Yu, Jia; Guo, Wen-Yi; He, Xiao-Bo; Abliz, Ablikim; Wang, Peng; Zhao, Liang

    2015-01-01

    Hydrogen (H2), a new antioxidant, was reported to reduce (•)OH and ONOO(-) selectively and inhibit certain proinflammatory mediators to product, without disturbing metabolic redox reactions or ROS involved in cell signaling. We herein aim to explore its protective effects on acute renal injury in sodium taurocholate-induced acute pancreatitis and its possible mechanisms. Rats were injected with hydrogen-rich saline (HRS group) or normal saline (SO and SAP group) through tail intravenously (6 mL/kg) and compensated subcutaneously (20 mL/kg) after successful modeling. Results showed that hydrogen-rich saline attenuated the following: (1) serum Cr and BUN, (2) pancreatic and renal pathological injuries, (3) renal MDA, (4) renal MPO, (5) serum IL-1β, IL-6, and renal TNF-α, HMGB1, and (6) tyrosine nitration, IκB degradation, and NF-κB activation in renal tissues. In addition, it increased the level of IL-10 and SOD activity in renal tissues. These results proved that hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced acute pancreatitis, presumably because of its detoxification activity against excessive ROS, and inhibits the activation of NF-κB by affecting IκB nitration and degradation. Our findings highlight the potential value of hydrogen-rich saline as a new therapeutic method on acute renal injury in severe acute pancreatitis clinically.

  7. Structure-activity relationship study of dibenzocyclooctadiene lignans isolated from Schisandra chinensis on lipopolysaccharide-induced microglia activation.

    Science.gov (United States)

    Hu, Di; Han, Na; Yao, Xuechun; Liu, Zhihui; Wang, Yu; Yang, Jingyu; Yin, Jun

    2014-06-01

    To explore the relationship of the dibenzocyclooctadiene lignans from Schisandra chinensis to their anti-inflammatory activities, series of dibenzocyclooctadiene lignans were isolated and assessed by testing their inhibitory effects on nitric oxide production in lipopolysaccharide-induced BV2 mouse microglia. It was found, for the first time, that dibenzocyclooctadiene lignans which have S-biphenyl and methylenedioxy groups strongly inhibited LPS-induced microglia activation. The methoxy group on the cyclooctadiene introduced more effectiveness, but the presence of an acetyl group on the cyclooctadiene or hydroxyl group on C-7 decreased the inhibitory activity.

  8. Acute tryptophan depletion attenuates brain-heart coupling following external feedback

    Directory of Open Access Journals (Sweden)

    Erik M Mueller

    2012-04-01

    Full Text Available External and internal performance feedback triggers neural and visceral modulations such as reactions in the medial prefrontal cortex and insulae or changes of heart period (HP. The functional coupling of neural and cardiac responses following feedback (cortico-cardiac connectivity is not well understood. While linear time-lagged within-subjects correlations of single-trial EEG and HP (cardio-electroencephalographic covariance-tracing, CECT indicate a robust negative coupling of EEG magnitude 300 ms after presentation of an external feedback stimulus with subsequent alterations of heart period (the so-called N300H phenomenon, the neurotransmitter systems underlying feedback-evoked cortico-cardiac connectivity are largely unknown. Because it has been shown that acute tryptophan depletion (ATD, attenuating brain serotonin (5-HT, decreases cardiac but not neural correlates of feedback processing, we hypothesized that 5-HT may be involved in feedback-evoked cortico-cardiac connectivity. In a placebo-controlled double-blind crossover design, twelve healthy participants received a tryptophan-free amino-acid drink at one session and a balanced amino-acid control-drink on another and twice performed a time-estimation task with feedback presented after each trial. N300H magnitude and plasma tryptophan levels were assessed. Results indicated a robust N300H after the control drink, which was significantly attenuated following ATD. Moreover, plasma tryptophan levels during the control session were correlated with N300H amplitude such that individuals with lower tryptophan levels showed reduced N300H. Together, these findings indicate that 5-HT is important for feedback-induced covariation of cortical and cardiac activity. Because individual differences in anxiety have previously been linked to 5-HT, cortico-cardiac coupling and feedback processing, the present findings may be particularly relevant for futures studies linking 5-HT to anxiety.

  9. Inhibition of extracellular HMGB1 attenuates hyperoxia-induced inflammatory acute lung injury

    Directory of Open Access Journals (Sweden)

    Maria Entezari

    2014-01-01

    Full Text Available Prolonged exposure to hyperoxia results in acute lung injury (ALI, accompanied by a significant elevation in the levels of proinflammatory cytokines and leukocyte infiltration in the lungs. However, the mechanisms underlying hyperoxia-induced proinflammatory ALI remain to be elucidated. In this study, we investigated the role of the proinflammatory cytokine high mobility group box protein 1 (HMGB1 in hyperoxic inflammatory lung injury, using an adult mouse model. The exposure of C57BL/6 mice to ≥99% O2 (hyperoxia significantly increased the accumulation of HMGB1 in the bronchoalveolar lavage fluids (BALF prior to the onset of severe inflammatory lung injury. In the airways of hyperoxic mice, HMGB1 was hyperacetylated and existed in various redox forms. Intratracheal administration of recombinant HMGB1 (rHMGB1 caused a significant increase in leukocyte infiltration into the lungs compared to animal treated with a non-specific peptide. Neutralizing anti-HMGB1 antibodies, administrated before hyperoxia significantly attenuated pulmonary edema and inflammatory responses, as indicated by decreased total protein content, wet/dry weight ratio, and numbers of leukocytes in the airways. This protection was also observed when HMGB1 inhibitors were administered after the onset of the hyperoxic exposure. The aliphatic antioxidant, ethyl pyruvate (EP, inhibited HMGB1 secretion from hyperoxic macrophages and attenuated hyperoxic lung injury. Overall, our data suggest that HMGB1 plays a critical role in mediating hyperoxic ALI through the recruitment of leukocytes into the lungs. If these results can be translated to humans, they suggest that HMGB1 inhibitors provide treatment regimens for oxidative inflammatory lung injury in patients receiving hyperoxia through mechanical ventilation.

  10. Nebulization of the acidified sodium nitrite formulation attenuates acute hypoxic pulmonary vasoconstriction

    Directory of Open Access Journals (Sweden)

    Surber Mark W

    2010-06-01

    Full Text Available Abstract Background Generalized hypoxic pulmonary vasoconstriction (HPV occurring during exposure to hypoxia is a detrimental process resulting in an increase in lung vascular resistance. Nebulization of sodium nitrite has been shown to inhibit HPV. The aim of this project was to investigate and compare the effects of nebulization of nitrite and different formulations of acidified sodium nitrite on acute HPV. Methods Ex vivo isolated rabbit lungs perfused with erythrocytes in Krebs-Henseleit buffer (adjusted to 10% hematocrit and in vivo anesthetized catheterized rabbits were challenged with periods of hypoxic ventilation alternating with periods of normoxic ventilation. After baseline hypoxic challenges, vehicle, sodium nitrite or acidified sodium nitrite was delivered via nebulization. In the ex vivo model, pulmonary arterial pressure and nitric oxide concentrations in exhaled gas were monitored. Nitrite and nitrite/nitrate were measured in samples of perfusion buffer. Pulmonary arterial pressure, systemic arterial pressure, cardiac output and blood gases were monitored in the in vivo model. Results In the ex vivo model, nitrite nebulization attenuated HPV and increased nitric oxide concentrations in exhaled gas and nitrite concentrations in the perfusate. The acidified forms of sodium nitrite induced higher levels of nitric oxide in exhaled gas and had longer vasodilating effects compared to nitrite alone. All nitrite formulations increased concentrations of circulating nitrite to the same degree. In the in vivo model, inhaled nitrite inhibited HPV, while pulmonary arterial pressure, cardiac output and blood gases were not affected. All nitrite formulations had similar potency to inhibit HPV. The tested concentration of appeared tolerable. Conclusion Nitrite alone and in acidified forms effectively and similarly attenuates HPV. However, acidified nitrite formulations induce a more pronounced increase in nitric oxide exhalation.

  11. Chlorogenic acid attenuates lipopolysaccharide-induced mice mastitis by suppressing TLR4-mediated NF-κB signaling pathway.

    Science.gov (United States)

    Ruifeng, Gao; Yunhe, Fu; Zhengkai, Wei; Ershun, Zhou; Yimeng, Li; Minjun, Yao; Xiaojing, Song; Zhengtao, Yang; Naisheng, Zhang

    2014-04-15

    Chlorogenic acid (CGA), one of the most abundant polyphenols in the diet, has been reported to have potent anti-inflammatory properties. However, the effect of CGA on lipopolysaccharide (LPS)-induced mice mastitis has not been investigated. The purpose of the present study was to elucidate whether CGA could ameliorate the inflammation response in LPS-induced mice mastitis and to clarify the possible mechanism. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. CGA was administered intraperitoneally with the dose of 12.5, 25, and 50mg/kg respectively 1h before and 12h after induction of LPS. In this study, the effect of CGA on LPS-induced mice mastitis was assessed through histopathological examination, ELISA assay, and western blot analysis. The results showed that CGA significantly reduced TNF-α, IL-1β, and IL-6 production compared with LPS group. Besides, western blot analysis showed that CGA could inhibit the expression of TLR4 and the phosphorylation of NF-κB and IκB induced by LPS. These results suggested that anti-inflammatory effects of CGA against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathway. Therefore, CGA may be a potent therapeutic reagent for the prevention of the immunopathology encountered during Escherichia coli elicited mastitis.

  12. Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced cyclooxygenase-2 expression in mouse brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Yang Chuen-Mao

    2010-11-01

    Full Text Available Abstract Background Prostaglandin E2 (PGE2, an arachidonic acid metabolite converted by cyclooxygenase-2 (COX-2, plays important roles in the regulation of endothelial functions in response to bacterial infection. The enzymatic activity of COX-2 can be down-regulated by heme oxygenase-1 (HO-1 induction. However, the mechanisms underlying HO-1 modulating COX-2 protein expression are not known. Objective The aim of the present study was to investigate whether the up-regulation of HO-1 regulates COX-2 expression induced by lipopolysaccharide (LPS, an endotoxin produced by Gram negative bacteria, in mouse brain endothelial cells (bEnd.3 Methods Cultured bEnd.3 cells were used to investigate LPS-induced COX-2 expression and PGE2 production. Cobalt protoporphyrin IX (CoPP, an HO-1 inducer, infection with a recombinant adenovirus carried with HO-1 gene (Adv-HO-1, or zinc protoporphyrin (ZnPP, an HO-1 inhibitor was used to stimulate HO-1 induction or inhibit HO-1 activity. The expressions of COX-2 and HO-1 were evaluated by western blotting. PGE2 levels were detected by an enzyme-linked immunoassay. Hemoglobin (a chelator of carbon monoxide, CO, one of metabolites of HO-1 and CO-RM2 (a CO releasing molecule were used to investigate the mechanisms of HO-1 regulating COX-2 expression. Results We found that LPS-induced COX-2 expression and PGE2 production were mediated through NF-κB (p65 via activation of Toll-like receptor 4 (TLR4. LPS-induced COX-2 expression was inhibited by HO-1 induction by pretreatment with CoPP or infection with Adv-HO-1. This inhibitory effect of HO-1 was reversed by pretreatment with either ZnPP or hemoglobin. Pretreatment with CO-RM2 also inhibited TLR4/MyD88 complex formation, NF-κB (p65 activation, COX-2 expression, and PGE2 production induced by LPS. Conclusions We show here a novel inhibition of HO-1 on LPS-induced COX-2/PGE2 production in bEnd.3. Our results reinforce the emerging role of cerebral endothelium-derived HO-1 as a protector against cerebral vascular inflammation triggered by bacterial infection.

  13. α1-ANTITRYPSIN ATTENUATES ENDOTOXIN-INDUCED ACUTE LUNG INJURY IN RABBITS

    Institute of Scientific and Technical Information of China (English)

    揭志军; 蔡映云; 杨文兰; 金美玲; 朱威; 祝慈芳

    2003-01-01

    Objective To investigate whether pretreatment with α1-AT can attenuate acute lung injury (ALI) in rabbits induced with endotoxin. Methods Thirty-two New Zealand rabbits were randomly assigned to four groups(n=8):1.Infusion of endotoxin(Lipopolysaccharide,LPS 500μg/kg)without α1-AT (group LPS).2.Infusion α1-AT 120mg/kg at 15min before challenge with LPS(group LAV).3.Infusion of α1-AT 120mg/kg(group AAT).4 Infusion of saline 4ml/kg as control (group NS).Arterial blood gases,peripheral leukocyte counts and airway pressure were recorded every 1h.Physiologic intrapulmonary shunting (Qs/Qt) was measured every 4h.After 8h the bloods were collected for measurement of plasma concentration and activity of α1-AT.Then bronchoalveolar lavage fluid (BALF)was collected for measurement of concentrations of total protein (TP),interleukin-8(IL-8),tumor necrosis factor(TNF-α),the activities of elastase-like and α1-AT,total phospholipids(TPL) and disaturated phosphatidylcholine (DSPC).In addition,the wet-to-dry lung weight ratio(W/D) was measured. Results After infusion of endotoxin,it was observed that PaO2,peripheral luekocyte counts,total respiratory compliance progressively decreased and Ppeak and Qs/Qt increased comparing with the baseline values.In contrast to group NS,the increased plasma concentration but reduced activity of α1-AT was found in group LPS.In the BALF,the activity of α1-AT,TPL,DSPC/TPL were lower,but the concentrations of albumin,IL-8,TNF-α,and the activity of NE were higher.The ratio of W/D also increased.The pretreatment of α1-AT attenuated the deterioration of oxygenation,the reduction of compliance and the deterioration of other physiological,biochemical parameters mentioned above. Conclusion Pretreatment with α1-AT could attenuate endotoxin-induced lung injury in rabbits.Those beneficial effects of α1-AT might be due in part to the inhibitory effect on neutrophil elastase.

  14. Ceftriaxone attenuates acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens of the rat

    Science.gov (United States)

    Rasmussen, B A; Tallarida, C S; Scholl, J L; Forster, G L; Unterwald, E M; Rawls, S M

    2015-01-01

    Background and Purpose Ceftriaxone is a β‐lactam antibiotic and glutamate transporter activator that reduces the reinforcing effects of psychostimulants. Ceftriaxone also reduces locomotor activation following acute psychostimulant exposure, suggesting that alterations in dopamine transmission in the nucleus accumbens contribute to its mechanism of action. In the present studies we tested the hypothesis that pretreatment with ceftriaxone disrupts acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens. Experimental Approach Adult male Sprague–Dawley rats were pretreated with saline or ceftriaxone (200 mg kg−1, i.p. × 10 days) and then challenged with cocaine (15 mg kg−1, i.p.). Motor activity, dopamine efflux (via in vivo microdialysis) and protein levels of tyrosine hydroxylase (TH), the dopamine transporter and organic cation transporter as well as α‐synuclein, Akt and GSK3β were analysed in the nucleus accumbens. Key Results Ceftriaxone‐pretreated rats challenged with cocaine displayed reduced locomotor activity and accumbal dopamine efflux compared with saline‐pretreated controls challenged with cocaine. The reduction in cocaine‐evoked dopamine levels was not counteracted by excitatory amino acid transporter 2 blockade in the nucleus accumbens. Pretreatment with ceftriaxone increased Akt/GSK3β signalling in the nucleus accumbens and reduced levels of dopamine transporter, TH and phosphorylated α‐synuclein, indicating that ceftriaxone affects numerous proteins involved in dopaminergic transmission. Conclusions and Implications These results are the first evidence that ceftriaxone affects cocaine‐evoked dopaminergic transmission, in addition to its well‐described effects on glutamate, and suggest that its ability to attenuate cocaine‐induced behaviours, such as psychomotor activity, is due in part to reduced dopaminergic neurotransmission in the nucleus accumbens. PMID:26375494

  15. Intravenous transplantation of mesenchymal stem cells attenuates oleic acid induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    XU Yu-lin; LIU Ying-long; WANG Qiang; LI Gang; L(U) Xiao-dong; KONG Bo

    2012-01-01

    Background Acute lung injury (ALI) and end-stage acute respiratory distress syndrome (ARDS) were among the most common causes of death in intensive care units.The activation of an inflammatory response and the damage of pulmonary epithelium and endotheliumwerethe hallmark of ALI/ARDS.Recent studies had demonstrated the importance of mesenchymal stem cells (MSCs) in maintaining the normal pulmonary endothelial and epithelial function as well as participating in modulating the inflammatory response and they are involved in epithelial and endothelial repair after injury.Here,our study demonstrates MSCs therapeutic potential in a rat model of ALI/ARDS.Methods Bone marrow derived MSCs were obtained from Sprague-Dawley (SD) rats and their differential potential was verified.ALl was induced in rats byoleic acid (OA),and MSCs were transplanted intravenously.The lung injury and the concentration of cytokines in plasma and lung tissue extracts were assessed at 8 hours,24 hours and 48 hours after OA-injection.Results The histological appearance and water content in rat lung tissue were significantly improved at different time points in rats treated with MSCs.The concentration of tumor necrosis factor-α and intercellular adhesion molecular-1 in rats plasma and lung tissue extracts were significantly inhibited after intravenous transplantation of MSCs,whereas interleukin-10 was significantly higher after MSCs transplantation at 8 hours,24 hours and 48 hours after OA-challenge.Conclusions Intravenous transplantation of MSCs could maintain the integrity of the pulmonary alveolar-capillary barrier and modulate the inflammatory response to attenuate the experimental ALI/ARDS.Transplantation of MSCs could be a novel cell-based therapeutic strategy for prevention and treatment of ALI/ARDS.

  16. Oral exposure to Phytomonas serpens attenuates thrombocytopenia and leukopenia during acute infection with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Rosiane V da Silva

    Full Text Available Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS, which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T. cruzi but has no TS activity, reduces parasite burden and prevents thrombocytopenia and leukopenia. Immunization also reduces platelet loss after intraperitoneal injection of TS. In addition, passive transfer of immune sera raised in mice against P. serpens prevented platelet clearance. Thus, oral exposure to P. serpens attenuates the progression of thrombocytopenia induced by TS from T. cruzi. These findings are not only important for the understanding of the pathogenesis of T. cruzi infection but also for developing novel approaches of intervention in Chagas disease.

  17. Blockade of high mobility group box-1 protein attenuates experimental severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Hidehiro Sawa; Takashi Ueda; Yoshifumi Takeyama; Takeo Yasuda; Makoto Shinzeki; Takahiro Nakajima; Yoshikazu Kuroda

    2006-01-01

    AIM: To examine the effects of anti-high mobility group box 1 (HMGB1) neutralizing antibody in experimental severe acute pancreatitis (SAP).METHODS: SAP was induced by creating closed duodenal loop in C3H/HeN mice. SAP was induced immediately after intraperitoneal injection of anti-HMGB1 neutralizing antibody (200 μg). Severity of pancreatitis, organ injury (liver, kidney and lung), and bacterial translocation to pancreas was examined 12 h after induction of SAP.RESULTS: Anti-HMGB1 neutralizing antibody significantly improved the elevation of the serum amylase level and the histological alterations of pancreas and lung in SAP.Anti-HMGB1 antibody also significantly ameliorated the elevations of serum alanine aminotransferase and creatinine in SAP. However, anti-HMGB1 antibody worsened the bacterial translocation to pancreas.CONCLUSION: Blockade of HMGB1 attenuated the development of SAP and associated organ dysfunction,suggesting that HMGB1 may act as a key mediator for inflammatory response and organ injury in SAP.

  18. Salmon Thrombin as a Treatment to Attenuate Acute Pain and Promote Tissue Healing by Modulating Local Inflammation

    Science.gov (United States)

    2012-12-01

    trauma and in association with the absence of pain . Early cleavage of PAR1 by thrombin may provide its anti- nociceptive properties. We were very...1-1002 TITLE: Salmon Thrombin as a Treatment to Attenuate Acute Pain and Promote Tissue Healing by Modulating Local Inflammation... Pain and 5a. CONTRACT NUMBER Promote Tissue Healing by Modulating Local Inflammation 5b. GRANT NUMBER W81XWH-10-1-1002 5c. PROGRAM ELEMENT

  19. Intensive insulin treatment attenuates burn-initiated acute lung injury in rats: role of the protective endothelium.

    Science.gov (United States)

    Zhang, Wan-Fu; Zhu, Xiong-Xiang; Hu, Da-Hai; Xu, Cheng-Feng; Wang, Yun-Chuan; Lv, Gen-Fa

    2011-01-01

    Nonmetabolic effects of intensive insulin therapy in critically ill patients have been reported, but the underlying mechanisms are unclear. This study was designed to test the hypothesis that intensive insulin treatment would attenuate burn-induced acute lung injury by protecting the pulmonary microvascular endothelium. The rat model of burn injury was achieved by exposure to 92°C water for 18 seconds. The rats were randomly allocated into the sham, burn/normal saline (NS), and burn/intensive insulin treatment groups. Blood glucose level was maintained between 5 and 7 mmol/L in rats in the burn/intensive insulin treatment group. Pulmonary injury was assessed by hematoxylin and eosin staining, scanning electron microscopy, bronchoalveolar lavage fluid protein concentrations, the lung wet:dry weight ratio, and lung myeloperoxidase activity. Pulmonary microvascular endothelial cells were examined by transmission electron microscopy. Western blotting was used to determine the protein expression of caspase-3. Intensive insulin treatment markedly attenuated the acute lung injury, revealed by improvements in histological features and significant decreases in bronchoalveolar lavage fluid protein concentrations, pulmonary wet:dry weight ratio, and myeloperoxidase activity at 12 hours after injury (P insulin treatment group when compared with the burn/NS group. Overall, intensive insulin treatment efficiently attenuated pulmonary microvascular endothelial cell dysfunction, decreased cell apoptosis, and inhibited acute lung injury after a burn. These findings may be useful in preventing organ failure after burn injury.

  20. Calpain inhibitor attenuated optic nerve damage in acute optic neuritis in rats

    Science.gov (United States)

    Das, Arabinda; Guyton, M. Kelly; Smith, Amena; Wallace, Gerald; McDowell, Misty L.; Matzelle, Denise D.; Ray, Swapan K.; Banik, Naren L.

    2012-01-01

    Optic neuritis (ON), which is an acute inflammatory autoimmune demyelinating disease of the central nervous system (CNS), often occurs in multiple sclerosis (MS). ON is an early diagnostic sign in most MS patients caused by damage to the optic nerve leading to visual dysfunction. Various features of both MS and ON can be studied following induction of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in Lewis rats. Inflammation and cell death in the optic nerve, with subsequent damage to the retinal ganglion cells in the retina, are thought to correlate with visual dysfunction. Thus, characterizing the pathophysiological changes that lead to visual dysfunction in EAE animals may help develop novel targets for therapeutic intervention. We treated EAE animals with and without the calpain inhibitor calpeptin (CP). Our studies demonstrated that the Ca2+-activated neutral protease calpain was upregulated in the optic nerve following induction of EAE at the onset of clinical signs (OCS) of the disease and these changes were attenuated following treatment with CP. These reductions correlated with decreases in inflammation (cytokines, iNOS, COX-2, NF-κB), and microgliosis (i.e. activated microglia). We observed that calpain inhibition reduced astrogliosis (reactive astroglia) and expression of aquaporin 4 (AQP4). The balance of Th1/Th2 cytokine production and also expression of the Th1-related CCR5 and CXCR3 chemokine receptors influence many pathological processes and play both causative and protective roles in neuron damage. Our data indicated that CP suppressed cytokine imbalances. Also, Bax:Bcl-2 ratio, production of tBid, PARP-1, expression and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated after treatment with CP. Our results demonstrated that CP decreased demyelination [loss of myelin basic protein (MBP)] and axonal damage [increase in dephosphorylated neurofilament protein (de-NFP), and also

  1. Breviscapine attenuates acute pancreatitis by inhibiting expression of PKCα and NF-κB in pancreas

    Institute of Scientific and Technical Information of China (English)

    Hong Zhang; Cui-Zhu Cai; Xiao-Qin Zhang; Tao Li; Xiao-Yun Jia; Bao-Lan Li; Liang Song; Xiao-Jun Ma

    2011-01-01

    AIM: To study the effect of breviscapine (Bre) on activity of protein kinase Cα (PKCα) and nuclear factor (NF)-κB in pancreas, and the mechanism of Bre attenuating acute pancreatitis (AP).METHODS: One hundred and eight rats were randomly divided into acute necrotizing pancreatitis (ANP) group, Bre group (ANP + Bre group) and sham operation (SO) group, 36 rats in each group.ANP model was induced by a retrograde injection of 4% sodium deoxycholate into the bilio-pancreatic duct.Fifteen minutes after the ANP model was induced, the rats in Bre group were intraperitoneally injected with Bre (0.4 mg/100 g body weight or 0.1 mL/100 g body weight).Survival time and mortality of rats were calculated.Serum amylase and malondialdehyde levels were measured, volume of ascites was recorded and morphology of pancreas and lung was evaluated at 1, 5 and 10 h, after the ANP model was induced, respectively.Expressions of PKCα and subunit p65 of NF-κB in pancreas were detected by immunohistochemistry and Western blotting.RESULTS: The life span of rats was longer and the mortality was lower in Bre group than in ANP group 13.51 ± 5.46 vs 25.36 ± 8.11 (P < 0.05).The amylase and MDA levels as well as the volume of ascites were lower and the pathological changes in pancreas and lung were less in Bre group than ANP group (P < 0.05), indicating that the pancreatitis is less severe in Bre group than ANP group.The activation of PKCα and NF-κB p65 in pancreas was induced rapidly and reached their peak at 1 h or 5 h after ANP, but their activity in Bre group was significantly inhibited.CONCLUSION: Bre exerts its therapeutic effect on AP by inhibiting the activation of PKCα and NF-κB p65 in pancreas.

  2. Shikonin Attenuates Concanavalin A-Induced Acute Liver Injury in Mice via Inhibition of the JNK Pathway

    Directory of Open Access Journals (Sweden)

    Tong Liu

    2016-01-01

    Full Text Available Objective. Shikonin possesses anti-inflammatory effects. However, its function in concanavalin A-induced acute liver injury remains uncertain. The aim of the present study was to investigate the functions of shikonin and its mechanism of protection on ConA-induced acute liver injury. Materials and Methods. Balb/C mice were exposed to ConA (20 mg/kg via tail vein injection to establish acute liver injury; shikonin (7.5 mg/kg and 12.5 mg/kg was intraperitoneally administered 2 h before the ConA injection. The serum liver enzyme levels and the inflammatory cytokine levels were determined at 3, 6, and 24 h after ConA injection. Results. After the injection of ConA, inflammatory cytokines IL-1β, TNF-α, and IFN-γ were significantly increased. Shikonin significantly ameliorated liver injury and histopathological changes and suppressed the release of inflammatory cytokines. The expressions of Bcl-2 and Bax were markedly affected by shikonin pretreatment. LC3, Beclin-1, and p-JNK expression levels were decreased in the shikonin-pretreated groups compared with the ConA-treated groups. Shikonin attenuated ConA-induced liver injury by reducing apoptosis and autophagy through the inhibition of the JNK pathway. Conclusion. Our results indicated that shikonin pretreatment attenuates ConA-induced acute liver injury by inhibiting apoptosis and autophagy through the suppression of the JNK pathway.

  3. Pifithrin-μ Attenuates Acute Sickness Response to Lipopolysaccharide in C57BL/6J Mice.

    Science.gov (United States)

    Zhang, Rongping; Wang, Jili; Hu, Yanling; Lu, Xu; Jiang, Bo; Zhang, Wei; Huang, Chao

    2016-01-01

    Sickness behavior is a coordinated set of behavioral changes that happen as a response to acute infectious pathogens. Its well-known benefit is to reorganize the organism's priorities to cope with infection, but the uncontrolled development of sickness behavior may trigger negative feelings or chronic depressive events. This study aims at investigating the potential effect of pifithrin-μ, an inhibitor of heat shock protein 70 substrate binding activity, on lipopolysaccharide (LPS)-induced sickness response. C57BL/6J mice were submitted to the forced swimming test (FST), tail suspension test (TST), open field test (OFT) and light-dark box test. Food intake and body weight were also evaluated. The serum corticosterone level was measured using an ELISA kit. Treatment of mice with LPS (0.33 mg/kg, i.p.) markedly increased the floating and immobility time in the FST and TST, respectively, and depressed locomotor activity in the OFT. LPS administration prolonged the latency to first transition and reduced the total number of transitions in the light-dark box test. In addition, LPS induced anorexia and increased serum corticosterone levels. Pretreatment with pifithrin-μ (1 or 5 mg/kg) attenuated behavioral changes induced by LPS in the FST, TST, OFT and light-dark box test. Pifithrin-μ also prevented the formation of anorexia as well as the increase in serum corticosterone levels in LPS-treated mice. Our previous studies showed that pifithrin-μ prevents the production of pro-inflammatory factors in both microglia and macrophages. These findings presented here extend the role of pifithrin-μ beyond an anti-inflammatory molecule to a modulator of sickness behavior.

  4. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid.

    Science.gov (United States)

    Fisher, Bernard J; Kraskauskas, Donatas; Martin, Erika J; Farkas, Daniela; Wegelin, Jacob A; Brophy, Donald; Ward, Kevin R; Voelkel, Norbert F; Fowler, Alpha A; Natarajan, Ramesh

    2012-07-01

    Bacterial infections of the lungs and abdomen are among the most common causes of sepsis. Abdominal peritonitis often results in acute lung injury (ALI). Recent reports demonstrate a potential benefit of parenteral vitamin C [ascorbic acid (AscA)] in the pathogenesis of sepsis. Therefore we examined the mechanisms of vitamin C supplementation in the setting of abdominal peritonitis-mediated ALI. We hypothesized that vitamin C supplementation would protect lungs by restoring alveolar epithelial barrier integrity and preventing sepsis-associated coagulopathy. Male C57BL/6 mice were intraperitoneally injected with a fecal stem solution to induce abdominal peritonitis (FIP) 30 min prior to receiving either AscA (200 mg/kg) or dehydroascorbic acid (200 mg/kg). Variables examined included survival, extent of ALI, pulmonary inflammatory markers (myeloperoxidase, chemokines), bronchoalveolar epithelial permeability, alveolar fluid clearance, epithelial ion channel, and pump expression (aquaporin 5, cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and Na(+)-K(+)-ATPase), tight junction protein expression (claudins, occludins, zona occludens), cytoskeletal rearrangements (F-actin polymerization), and coagulation parameters (thromboelastography, pro- and anticoagulants, fibrinolysis mediators) of septic blood. FIP-mediated ALI was characterized by compromised lung epithelial permeability, reduced alveolar fluid clearance, pulmonary inflammation and neutrophil sequestration, coagulation abnormalities, and increased mortality. Parenteral vitamin C infusion protected mice from the deleterious consequences of sepsis by multiple mechanisms, including attenuation of the proinflammatory response, enhancement of epithelial barrier function, increasing alveolar fluid clearance, and prevention of sepsis-associated coagulation abnormalities. Parenteral vitamin C may potentially have a role in the management of sepsis and ALI associated with sepsis.

  5. CAFFEINE ATTENUATES ACUTE GROWTH HORMONE RESPONSE TO A SINGLE BOUT OF RESISTANCE EXERCISE

    Directory of Open Access Journals (Sweden)

    Bo-Hun Wu

    2010-06-01

    Full Text Available The purpose of this study was to investigate the effects of caffeine consume on substrate metabolism and acute hormonal responses to a single bout of resistance exercise (RE. Ten resistance-trained men participated in this study. All subjects performed one repetition maximum (1RM test and then performed two protocols: caffeine (CAF, 6 mg·kg-1 and control (CON in counter balanced order. Subjects performed RE (8 exercises, 3 sets of 10 repetitions at 75% of 1RM after caffeine or placebo ingestion one hour prior to RE. Blood samples collected prior to treatment ingestion (pre-60, immediately prior to RE (pre-exe, and 0, 15, 30 min post to RE (P0, P15, P30 for analysis of insulin, testosterone, cortisol, growth hormone, glucose, free fatty acid and lactic acid. Each experiment was separated by seven days. In this study, statistical analysis of a two-way analysis of variance (treatment by time with repeated measures was applied. After ingesting caffeine, the concentrations of free fatty acid (pre- exe, P0, P15, P30 in CAF were significantly higher than CON (p < 0.05. Additionally, the responses of GH (P0, P15, P30 in CAF were significantly lower than CON (p < 0.05, whereas the concentrations of insulin, testosterone and cortisol were not different between CAF and CON (p < 0.05 after RE. The results of this study indicated that caffeine ingestion prior to RE might attenuate the response of GH. This effect might be caused by the elevation in blood FFA concentration at the beginning of RE

  6. Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice.

    Science.gov (United States)

    Zhao, Mei; Chen, Yuan-Hua; Chen, Xue; Dong, Xu-Ting; Zhou, Jun; Wang, Hua; Wu, Shu-Xian; Zhang, Cheng; Xu, De-Xiang

    2014-01-13

    Folic acid is a water-soluble B-complex vitamin. Increasing evidence demonstrates that physiological supply of folic acid during pregnancy prevents folic acid deficiency-related neural tube defects (NTDs). Previous studies showed that maternal lipopolysaccharide (LPS) exposure caused NTDs in rodents. The aim of this study was to investigate the effects of high-dose folic acid supplementation during pregnancy on LPS-induced NTDs. Pregnant mice were intraperitoneally injected with LPS (20 μg/kg/d) from gestational day (GD) 8 to GD12. As expected, a five-day LPS injection resulted in 19.96% of fetuses with NTDs. Interestingly, supplementation with folic acid (3mg/kg/d) during pregnancy significantly alleviated LPS-induced NTDs. Additionally, folic acid significantly attenuated LPS-induced fetal growth restriction and skeletal malformations. Additional experiment showed that folic acid attenuated LPS-induced glutathione (GSH) depletion in maternal liver and placentas. Moreover, folic acid significantly attenuated LPS-induced expression of placental MyD88. Additionally, folic acid inhibited LPS-induced c-Jun NH2-terminal kinase (JNK) phosphorylation and nuclear factor kappa B (NF-κB) activation in placentas. Correspondingly, folic acid significantly attenuated LPS-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in placentas, maternal serum and amniotic fluid. In conclusion, supplementation with high-dose folic acid during pregnancy protects against LPS-induced NTDs through its anti-inflammatory and anti-oxidative effects.

  7. Dietary L-arginine supplementation modulates lipopolysaccharide-induced systemic inflammatory response in broiler chickens

    Science.gov (United States)

    This study was conducted to evaluate whether dietary supplementation with L-arginine (Arg) could attenuate lipopolysaccharide (LPS)-induced systemic inflammatory response through LPS/TLR-4 signaling pathway in broilers. The experiment was designed as a 2 × 3 factorial arrangement (n = 8 cages/treatm...

  8. Ciclosporin does not attenuate intracranial hypertension in rats with acute hyperammonaemia

    DEFF Research Database (Denmark)

    Larsen, Rikke Hebo; Kjær, Mette S; Eefsen, Martin;

    2013-01-01

    To investigate the neuroprotective potential of ciclosporin during acute liver failure. We evaluated the effect of intrathecally administered ciclosporin on intracranial pressure, brain water content and aquaporin-4 expression in a rat model with acute hyperammonaemia....

  9. Wortmannin, PI3K/Akt signaling pathway inhibitor, attenuates thyroid injury associated with severe acute pancreatitis in rats.

    Science.gov (United States)

    Abliz, Ablikim; Deng, Wenhong; Sun, Rongze; Guo, Wenyi; Zhao, Liang; Wang, Weixing

    2015-01-01

    Increasing evidences suggest that PI3K/AKT pathway plays an important role in the pathogenesis of inflammatory diseases such as acute pancreatitis. However, the exact effect of PI3K/AKT on thyroid injury associated with acute pancreatitis has not been investigated. This study aimed to investigate the protective effects of wortmannin, PI3K/AKT inhibitor, on thyroid injury in a rat model of severe acute pancreatitis (SAP). Sixty male SD rats were randomly divided into four groups: sham operating group (SO), SAP group, wortmannin treatment (WOR) group and drug control (WOR-CON) group. Serum amylase (AMY), lipase (LIP) and thyroid hormone levels were evaluated. The morphological change of thyroid tissue was analyzed under the light and transmission electron microscopy. AKT, P38MAPK and NF-κB expression in the thyroid tissue was evaluated by immunohistochemical staining. Oxidative stress and inflammatory cytokines were detected. Results showed that wortmannin attenuated the following: (1) serum AMY, LIP and thyroid hormone (2) pancreatic and thyroid pathological injuries (3) thyroid MDA, (4) thyroid ultrastructural change, (5) serum TNF-α, IL-6 and IL-1β (6) AKT, MAPKP38 and NF-κB expression in thyroid tissues. These results suggested that wortmannin attenuates thyroid injury in SAP rats, presumably because of its role on prevent ROS generation and inhibits the activation of P38MAPK, NF-κB pathway. Our findings provide new therapeutic targets for thyroid injury associated with SAP.

  10. Attenuation of hypoxic pulmonary vasoconstriction in acute oleic acid lung injury--significance of vasodilator prostanoids.

    Science.gov (United States)

    Yamaguchi, K; Mori, M; Kawai, A; Asano, K; Takasugi, T; Umeda, A; Yokoyama, T

    1992-01-01

    To assess a significant role of hypoxic pulmonary vasoconstriction, HPV, on maintaining the gas exchange efficiency in acute lung injury, 24 mongrel dogs were treated with intravenously injecting 0.07 ml/kg of oleic acid. Hemodynamic and gas-exchange parameters were investigated at varied inspired O2 concentration, FIO2. To know a possible contribution of vasoactive prostanoids in regulating vascular reactivity under these circumstances, observations were repeated after infusion of indomethacin. The impairment of gas exchange in injured lungs was examined by measuring the fractional retention, R, of the gas in arterial blood. For this evaluation, a normal saline containing five foreign inert gases such as sulfur hexafluoride, SF6, ethane, cyclopropane, halothane and diethyl ether was infused at a constant rate through a peripheral vein. After a steady state was established, the expired gas was collected and the samples of both arterial and mixed venous blood were simultaneously taken for the inert-gas analysis. The concentrations of the indicator gases in the samples were measured in terms of a gas chromatograph equipped with an electron capture detector for SF6 and a flame ionization detector for the other four gases. Although pulmonary vascular resistance, PVR, after injecting oleic acid at FIO2 0.60 was significantly smaller than that obtained at FIO2 0.21, cardiac output, QT as well as extravascular lung water were not different between the two conditions. R value for the indicator gas was consistently lower at FIO2 0.60 irrespective of the gas species. As increasing FIO2, R estimate concerning SF6, RSF6, rational index of the fractional blood flow perfusing shunt area, decreased significantly. Administration of indomethacin caused the rise in PVR without an appreciable change in either QT or extravascular lung water but a considerable diminution in R value for the inert gas. RSF6 after infusion of indomethacin decreased from 0.35 to 0.27, accompanied by a

  11. Protective effect of daidzin against D-galactosamine and lipopolysaccharide-induced hepatic failure in mice.

    Science.gov (United States)

    Kim, Sung-Hwa; Heo, Jeong-Haing; Kim, Yeong Shik; Kang, Sam Sik; Choi, Jae Sue; Lee, Sun-Mee

    2009-05-01

    This study examined the effects of daidzin, a major isoflavone from Puerariae Radix, on D-galactosamine (D-GalN) and lipopolysaccharide (LPS)-induced liver failure. Mice were given an intraperitoneal injection of daidzin (25, 50, 100 and 200 mg/kg) 1 h before receiving an injection of D-GalN (700 mg/kg)/LPS (10 microg/kg). Daidzin markedly reduced the elevated serum aminotransferase activity and the levels of lipid peroxidation and tumor necrosis factor-alpha. The glutathione content was lower in the D-GalN/LPS group, which was attenuated by daidzin. The daidzin pretreatment attenuated the swollen mitochondria observed in the d-GalN/LPS group. Daidzin attenuated the apoptosis of hepatocytes, which was confirmed using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling method and a caspase-3 assay. Overall, these results suggest that the liver protection of daidzin is due to reduced oxidative stress and its antiapoptotic activity.

  12. Pioglitazone attenuates the severity of sodium taurocholate-induced severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Ping Xu; Xiao-Jiang Zhou; Ling-Quan Chen; Jiang Chen; Yong Xie; Long-Hua Lv; Xiao-Hua Hou

    2007-01-01

    AIM: To determine the effect of pioglitazone, a specific peroxisome proliferator-activated receptor-γ (PPARγ)ligand, on development of severe acute pancreatitis (SAP) and expression of nuclear factor-kappa B (NF-κB)and intercellular adhesion molecule-1 (ICAM-1) in the pancreas.METHODS: Male Sprague-Dawley (SD) rats (160-200 g)were randomly allocated into three groups (n = 18in each group): severe acute pancreatitis group,pioglitazone group, sham group. SAP was induced by retrograde infusion of 1 mL/kg body weight 5% sodium taurocholate (STC) into the biliopancreatic duct of male SD rats. Pioglitazone was injected intraperitoneally two hours piror to STC infusion. Blood and ascites were obtained for detecting amylase and ascitic capacity. Pancreatic wet/dry weight ratio, expression of NF-κB and ICAM-1 in pancreatic tissues were detected by immunohistochemical staining. Pancreatic tissue samples were stained with hematoxylin and eosin (HE)for routine optic microscopy.RESULTS: Sham group displayed normal pancreatic structure. SAP group showed diffuse hemorrhage,necrosis and severe edema in focal areas of pancreas.There was obvious adipo-saponification in abdominal cavity. Characteristics such as pancreatic hemorrhage,necrosis, severe edema and adipo-saponification were found in pioglitazone group, but the levels of those injuries were lower in pioglitazone group than those in SAP group. The wet/dry pancreatic weight ratio,ascetic capacity, serum and ascitic activities of anylase in the SAP group were significantly higher than those in the sham group and pioglitazone group respectively (6969.50 ± 1368.99 vs 2104.67 ± 377.16, 3.99 ± 1.22 vs 2.48 ± 0.74, P < 0.01 or P < 0.05). According to Kusske criteria, the pancreatic histologic score showed that interstitial edema, inflammatory infiltration,parenchyma necrosis and parenchyma hommorrhage in SAP group significantly differed from those in the sham group and pioglitazone group (7.17 ± 1.83 vs 0.50 ±0.55, 7

  13. Thyroid Hormone Receptor alpha Modulates Lipopolysaccharide-Induced Changes in Peripheral Thyroid Hormone Metabolism

    NARCIS (Netherlands)

    J. Kwakkel; O. Chassande; H.C. van Beeren; E. Fliers; W.M. Wiersinga; A. Boelen

    2010-01-01

    Acute inflammation is characterized by low serum T-3 and T-4 levels accompanied by changes in liver type 1 deiodinase (D1), liver D3, muscle D2, and muscle D3 expression. It is unknown at present whether thyroid hormone receptor alpha (TR alpha) plays a role in altered peripheral thyroid hormone met

  14. Interleukin-13 Inhibits Lipopolysaccharide-Induced BPIFA1 Expression in Nasal Epithelial Cells.

    Science.gov (United States)

    Tsou, Yung-An; Lin, Chia-Der; Chen, Hui-Chen; Hsu, Hui-Ying; Wu, Lii-Tzu; Chiang-Ni, Chuan; Chen, Chih-Jung; Wu, Tsu-Fang; Kao, Min-Chuan; Chen, Yu-An; Peng, Ming-Te; Tsai, Ming-Hsui; Chen, Chuan-Mu; Lai, Chih-Ho

    2015-01-01

    Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is expressed in human nasopharyngeal and respiratory epithelium and has demonstrated antimicrobial activity. SPLUNC1 is now referred to as bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1). Reduced BPIFA1 expression is associated with bacterial colonization in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). Interleukin 13 (IL-13), predominately secreted by T helper 2 (TH2) cells, has been found to contribute to airway allergies and suppress BPIFA1 expression in nasal epithelial cells. However, the molecular mechanism of IL-13 perturbation of bacterial infection and BPIFA1 expression in host airways remains unclear. In this study, we found that lipopolysaccharide (LPS)-induced BPIFA1 expression in nasal epithelial cells was mediated through the JNK/c-Jun signaling pathway and AP-1 activation. We further demonstrated that IL-13 downregulated the LPS-induced activation of phosphorylated JNK and c-Jun, followed by attenuation of BPIFA1 expression. Moreover, the immunohistochemical analysis showed that IL-13 prominently suppressed BPIFA1 expression in eosinophilic CRSwNP patients with bacterial infection. Taken together, these results suggest that IL-13 plays a critical role in attenuation of bacteria-induced BPIFA1 expression that may result in eosinophilic CRSwNP.

  15. Carnosic acid attenuates acute ethanol-induced liver injury via a SIRT1/p66Shc-mediated mitochondrial pathway.

    Science.gov (United States)

    Tian, Xinyao; Hu, Yan; Li, Mingzhu; Xia, Kun; Yin, Jiye; Chen, Juan; Liu, Zhaoqian

    2016-04-01

    Ethanol-induced liver injury is associated with oxidative stress and hepatocyte apoptosis. We previously demonstrated that SIRT1/p66Shc pathway activation attenuates hepatocyte apoptosis in liver ischemia/reperfusion. The current study aimed to investigate whether carnosic acid (CA), a natural antioxidant, can inhibit acute ethanol-induced apoptosis of hepatocytes and to determine the effect of SIRT1/p66Shc on this process. Our results showed that CA pretreatment significantly reduced ethanol-induced histologic damage, serum aminotransferase activity, and oxidative stress in rats. Importantly, CA pretreatment increased SIRT1 expression following ethanol exposure. Furthermore, p66Shc expression was negatively correlated with SIRT1 expression. Consistent with the results demonstrating p66Shc inhibition, CA pretreatment inhibited the release of cytochrome C and apoptosis-inducing factor (AIF) from mitochondria. After exposing L02 cells to ethanol, the increased SIRT1 expression induced by CA was abrogated by pharmacologic SIRT1 inhibition or the use of siRNA against SIRT1. Additionally, SIRT1 inhibition significantly abrogated the suppression of p66Shc expression and mitochondrial translocation induced by CA. Accordingly, CA-induced decreases in the release of cytochrome C and AIF and in mitochondrial apoptosis were nearly abolished by SIRT1 knockdown. These data indicated that CA-activated SIRT1 is protective against ethanol treatment. In summary, CA attenuates acute ethanol-induced liver injury via a SIRT1/p66Shc-mediated mitochondrial pathway.

  16. Protective effect of linarin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure.

    Science.gov (United States)

    Kim, Seok-Joo; Cho, Hong-Ik; Kim, So-Jin; Park, Jin-Hyun; Kim, Joon-Sung; Kim, Young Ho; Lee, Sang Kook; Kwak, Jong-Hwan; Lee, Sun-Mee

    2014-09-01

    Linarin was isolated from Chrysanthemum indicum L. Fulminant hepatic failure is a serious clinical syndrome that results in massive inflammation and hepatocyte death. Apoptosis is an important cellular pathological process in d-galactosamine (GalN)/lipopolysaccharide (LPS)-induced liver injury, and regulation of liver apoptosis might be an effective therapeutic method for fulminant hepatic failure. This study examined the cytoprotective mechanisms of linarin against GalN/LPS-induced hepatic failure. Mice were given an oral administration of linarin (12.5, 25 and 50mg/kg) 1h before receiving GalN (800 mg/kg)/LPS (40 μg/kg). Linarin treatment reversed the lethality induced by GalN/LPS. After 6h of GalN/LPS injection, the serum levels of alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor (TNF)-α, interleukin-6 and interferon-γ were significantly elevated. GalN/LPS increased toll-like receptor 4 and interleukin-1 receptor-associated kinase protein expression. These increases were attenuated by linarin. Linarin attenuated the increased expression of Fas-associated death domain and caspase-8 induced by GalN/LPS, reduced the cytosolic release of cytochrome c and caspase-3 cleavage induced by GalN/LPS, and reduced the pro-apoptotic Bim phosphorylation induced by GalN/LPS. However, linarin increased the level of anti-apoptotic Bcl-xL and phosphorylation of STAT3. Our results suggest that linarin alleviates GalN/LPS-induced liver injury by suppressing TNF-α-mediated apoptotic pathways.

  17. Eugenol suppressed the expression of lipopolysaccharide-induced proinflammatory mediators in human macrophages.

    Science.gov (United States)

    Lee, Ya-Yun; Hung, Shan-Ling; Pai, Sheng-Fang; Lee, Yuan-Ho; Yang, Shue-Fen

    2007-06-01

    Eugenol is commonly used as an analgesic agent during acute pulpitis and is a major component of root canal sealers. Despite the frequent applications of eugenol in the practice of dentistry, little is known about the role of eugenol under the status of inflammation. This study was aimed to investigate the influence of eugenol on human macrophages (U937) under the stimulation of lipopolysaccharide (LPS). Eugenol was shown to block the release of the bone resorbing mediators, including interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and prostaglandin E2 from LPS-stimulated macrophages. In contrast, eugenol alone did not alter the expression levels of these proinflammatory mediators in macrophages. Consistent with downregulation of bone-resorbing mediators, eugenol suppressed the messenger RNA expression of LPS-induced IL-1beta, TNF-alpha, and cyclooxygenase-2 in macrophages. The results suggest a potential anti-inflammatory effect of eugenol in the acute inflamed pulps and apical periodontitis.

  18. Protective effect of sodium cromoglycate on lipopolysaccharide-induced bronchial obstruction in asthmatics.

    Science.gov (United States)

    Michel, O; Ginanni, R; Sergysels, R

    1995-11-01

    Lipopolysaccharides (LPS, the major part of endotoxins) are bacterial proinflammatory substances which can induce in asthmatic patients after inhalation a bronchial obstruction with an increase in both histamine bronchial hyperresponsiveness and blood inflammatory markers. The aim of the present study was to evaluate whether an acute inhalation of sodium cromoglycate, an anti-inflammatory and membrane-stabilizating agent, can block the LPS-induced lung function response. Using a double-blind placebo-controlled crossover method, 7 asthmatic subjects were submitted, at 4 days' interval, to a bronchial challenge test with either solvent solution or LPS (20 micrograms) preceded by inhalation of sodium cromoglycate (10 mg) or placebo. Compared to the solvent reaction, LPS induced a significant bronchial obstruction [measured by both the forced expiratory volume in 1 s (FEV1) and the airway resistances] beginning at the 60th minute and lasting more than 300 min (p sodium cromoglycate significantly inhibited the LPS-induced bronchial obstruction. The total lung capacity did not change significantly after LPS inhalation. Thus, this study showed that in asthmatics the LPS-induced FEV1 response is blocked by acute treatment with sodium cromoglycate. Sodium cromoglycate could be an active treatment in asthmatics exposed to house dust containing endotoxin.

  19. Clinical implications of sulcal enhancement on postcontrast fluid attenuated inversion recovery images in patients with acute stroke symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyuk Joon; Kim, Eun Hee; Lee, Kyung Mi; Kim, Jae Hyoung; Bae, Yun Jung; Choi, Byoung Se; Jung, Cheol Kyu [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-08-15

    Hyperintense acute reperfusion marker (HARM) without diffusion abnormalities is occasionally found in patients with an acute stroke. This study was to determine the prevalence and clinical implications of HARM without diffusion abnormalities. There was a retrospective review of magnetic resonance images 578 patients with acute strokes and identified those who did not have acute infarction lesions, as mapped by diffusion-weighted imaging (DWI). These patients were classified into an imaging-negative stroke and HARM without diffusion abnormalities groups, based on the DWI findings and postcontrast fluid attenuated inversion recovery images. The National Institutes of Health Stroke Scale (NIHSS) scores at admission, 1 day, and 7 days after the event, as well as clinical data and risk factors, were compared between the imaging-negative stroke and HARM without diffusion abnormalities groups. Seventy-seven acute stroke patients without any DWI abnormalities were found. There were 63 patients with an imaging-negative stroke (accounting for 10.9% of 578) and 13 patients with HARM without diffusion abnormalities (accounting for 2.4% of 578). The NIHSS scores at admission were higher in HARM without diffusion abnormalities group than in the imaging-negative stroke group (median, 4.5 vs. 1.0; p < 0.001), but the scores at 7 days after the event were not significantly different between the two groups (median, 0 vs. 0; p = 1). The patients with HARM without diffusion abnormalities were significantly older, compared with patients with an imaging-negative stroke (mean, 73.1 years vs. 55.9 years; p < 0.001). Patients with HARM without diffusion abnormalities are older and have similarly favorable short-term neurological outcomes, compared with the patients with imaging-negative stroke.

  20. Obesity Is Associated with Neutrophil Dysfunction and Attenuation of Murine Acute Lung Injury

    OpenAIRE

    Kordonowy, Lauren L.; Burg, Elianne; Lenox, Christopher C.; Gauthier, Lauren M.; Petty, Joseph M.; Antkowiak, Maryellen; Palvinskaya, Tatsiana; Ubags, Niki; Rincón, Mercedes; Dixon, Anne E.; Vernooy, Juanita H. J.; Fessler, Michael B.; Poynter, Matthew E.; Suratt, Benjamin T.

    2012-01-01

    Although obesity is implicated in numerous health complications leading to increased mortality, the relationship between obesity and outcomes for critically ill patients appears paradoxical. Recent studies have reported better outcomes and lower levels of inflammatory cytokines in obese patients with acute lung injury (ALI)/acute respiratory distress syndrome, suggesting that obesity may ameliorate the effects of this disease. We investigated the effects of obesity in leptin-resistant db/db o...

  1. Modulation by gamithromycin and ketoprofen of in vitro and in vivo porcine lipopolysaccharide-induced inflammation.

    Science.gov (United States)

    Wyns, Heidi; Meyer, Evelyne; Plessers, Elke; Watteyn, Anneleen; van Bergen, Thomas; Schauvliege, Stijn; De Baere, Siegrid; Devreese, Mathias; De Backer, Patrick; Croubels, Siska

    2015-12-15

    The immunomodulatory properties of gamithromycin (GAM), ketoprofen (KETO) and their combination (GAM-KETO) were investigated after both in vitro and in vivo lipopolysaccharide (LPS)-induced inflammation. The influence of these drugs was measured on the production of prostaglandin E2 (PGE2) and the pro-inflammatory cytokines tumour necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in both LPS-stimulated porcine peripheral blood mononuclear cells (PBMCs) and LPS-challenged pigs. Additionally, effects on the production of acute phase proteins (APPs), including pig major acute phase protein (pig-MAP) and C-reactive protein (CRP), as well as on the development of fever, pulmonary symptoms and sickness behaviour were investigated. Dexamethasone was included as a positive control in the in vitro research. Following an 18h-incubation period with 1.25μg/mL LPS, the levels of TNF-α, IL-1β and IL-6 (p<0.05) measured in the PBMC supernatants were significantly increased. Incubation with a high concentration of both GAM and KETO significantly reduced the in vitro levels of all three cytokines. Maximal plasma concentrations of TNF-α and IL-6 were observed at 1h and 2.5h following LPS challenge in pigs, respectively. Neither GAM, nor KETO nor the combination GAM-KETO was able to inhibit the in vivo LPS-induced cytokine production. Furthermore, none of the drugs influenced the subsequent APPs production. In contrast, administration of KETO significantly reduced PGE2 production both in vitro and in vivo (p<0.05 and p<0.001, respectively) and prevented the development of fever and severe symptoms, including dyspnoea, anorexia, vomiting and lateral decubitus.

  2. Orally administered melatonin prevents lipopolysaccharide-induced neural tube defects in mice.

    Directory of Open Access Journals (Sweden)

    Lin Fu

    Full Text Available Lipopolysaccharide (LPS has been associated with adverse pregnant outcomes, including fetal demise, intra-uterine growth restriction (IUGR, neural tube defects (NTDs and preterm delivery in rodent animals. Previous studies demonstrated that melatonin protected against LPS-induced fetal demise, IUGR and preterm delivery. The aim of the present study was to investigate the effects of melatonin on LPS-induced NTDs. All pregnant mice except controls were intraperitoneally injected with LPS (25 µg/kg daily from gestational day (GD8 to GD12. Some pregnant mice were orally administered with melatonin (MT, 50 mg/kg before each LPS injection. A five-day LPS injection resulted in 27.5% of fetuses with anencephaly, exencephaly or encephalomeningocele. Additional experiment showed that maternal LPS exposure significantly down-regulated placental proton-coupled folate transporter (pcft and disturbed folate transport from maternal circulation through the placentas into the fetus. Interestingly, melatonin significantly attenuated LPS-induced down-regulation of placental pcft. Moreover, melatonin markedly improved the transport of folate from maternal circulation through the placentas into the fetus. Correspondingly, orally administered melatonin reduced the incidence of LPS-induced anencephaly, exencephaly or encephalomeningocele. Taken together, these results suggest that orally administered melatonin prevents LPS-induced NTDs through alleviating LPS-induced disturbance of folate transport from maternal circulation through the placenta into the fetus.

  3. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Shao, Guoxi; Tian, Yinggang; Wang, Haiyu; Liu, Fangning; Xie, Guanghong

    2015-12-01

    Melatonin, a secretory product of the pineal gland, has been reported to have antioxidant and anti-inflammatory effects. However, the protective effects of melatonin on lipopolysaccharide (LPS)-induced mastitis have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of melatonin on LPS-induced mastitis both in vivo and in vitro. In vivo, our results showed that melatonin attenuated LPS-induced mammary histopathologic changes and myeloperoxidase (MPO) activity. Melatonin also inhibited LPS-induced inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) production in mammary tissues. In vitro, melatonin was found to inhibit LPS-induced TNF-α and IL-6 production in mouse mammary epithelial cells. Melatonin also suppressed LPS-induced Toll-like receptor 4 (TLR4) expression and nuclear factor-kappaB (NF-κB) activation in a dose-dependent manner. In addition, melatonin was found to up-regulate the expression of PPAR-γ. Inhibition of PPAR-γ by GW9662 reduced the anti-inflammatory effects of melatonin. In conclusion, we found that melatonin, for the first time, had protective effects on LPS-induced mastitis in mice. The anti-inflammatory mechanism of melatonin was through activating PPAR-γ which subsequently inhibited LPS-induced inflammatory responses.

  4. Interleukin-10 inhibits lipopolysaccharide induced miR-155 precursor stability and maturation.

    Directory of Open Access Journals (Sweden)

    Sylvia T Cheung

    Full Text Available The anti-inflammatory cytokine interleukin-10 (IL-10 is essential for attenuating the inflammatory response, which includes reducing the expression of pro-inflammatory microRNA-155 (miR-155 in lipopolysaccharide (LPS activated macrophages. miR-155 enhances the expression of pro-inflammatory cytokines such as TNFα and suppresses expression of anti-inflammatory molecules such as SOCS1. Therefore, we examined the mechanism by which IL-10 inhibits miR-155. We found that IL-10 treatment did not affect the transcription of the miR-155 host gene nor the nuclear export of pre-miR-155, but rather destabilized both pri-miR-155 and pre-miR-155 transcripts, as well as interfered with the final maturation of miR-155. This inhibitory effect of IL-10 on miR-155 expression involved the contribution of both the STAT3 transcription factor and the phosphoinositol phosphatase SHIP1. This is the first report showing evidence that IL-10 regulates miRNA expression post-transcriptionally.

  5. Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis

    Science.gov (United States)

    Liu, Liang; Zhang, Qin; Cai, Yulong; Sun, Dayu; He, Xie; Wang, Lian; Yu, Dan; Li, Xin; Xiong, Xiaoyi; Xu, Haiwei; Yang, Qingwu; Fan, Xiaotang

    2016-01-01

    Radial glial-like cells (RGLs) in the adult dentate gyrus (DG) function as progenitor cells for adult hippocampal neurogenesis, a process involved in the stress-related pathophysiology and treatment efficiency of depression. Resveratrol (RSV) has been demonstrated to be a potent activator of neurogenesis. The present study investigated whether chronic RSV treatment has antidepressant potential in relation to hippocampal neurogenesis. Mice received two weeks of RSV (20 mg/kg) or dimethylsulfoxide (DMSO) treatment, followed by lipopolysaccharide (LPS; 1 mg/kg) or saline injections for 5 days. We found that RSV treatment abrogated the increased immobility in the forced swimming test and tail suspension test induced by LPS. Immunohistochemical staining revealed that RSV treatment reversed the increase in microglial activation and the inhibition in DG neurogenesis. RSV treatment also attenuated LPS-induced defects in the expanding of RGLs through promoting symmetric division. In addition, RSV ameliorated LPS-induced NF-κB activation in the hippocampus coincides with the up-regulation levels of Sirt1 and Hes1. Taken together, these data indicated that RSV-induced Sirt1 activation counteracts LPS-induced depression-like behaviors via a neurogenic mechanism. A new model to understand the role of RSV in treating depression may result from these findings. PMID:27517628

  6. Mangiferin regulates interleukin-6 and cystathionine-b-synthase in lipopolysaccharide-induced brain injury.

    Science.gov (United States)

    Fu, Yan-Yan; Zhang, Fang; Zhang, Lei; Liu, Hong-Zhi; Zhao, Zi-Ming; Wen, Xiang-Ru; Wu, Jian; Qi, Da-Shi; Sun, Ying; Du, Yang; Dong, Hong-Yan; Liu, Yong-Hai; Song, Yuan-Jian

    2014-07-01

    Mangiferin has been extensively applied in different fields due to its anti-inflammatory properties. However, the precise mechanism used by mangiferin on lipopolysaccharide (LPS)-induced inflammation has not been elucidated. Here, we discuss the potential mechanism of mangiferin during a LPS-induced brain injury. Brain injury was induced in ICR mice via intraperitoneal LPS injection (5 mg/kg). Open- and closed-field tests were used to detect the behaviors of mice, while immunoblotting was performed to measure the expression of interleukin-6 (IL-6) and cystathionine-b-synthase (CBS) in the hippocampus after mangiferin was orally administered (p.o.). Mangiferin relieved LPS-induced sickness 6 and 24 h after LPS injection; in addition, this compound suppressed LPS-induced IL-6 production after 24 h of LPS induction as well as the downregulation of LPS-induced CBS expression after 6 and 24 h of LPS treatment in the hippocampus. Therefore, mangiferin attenuated sickness behavior by regulating the expression of IL-6 and CBS.

  7. CIDE-3 interacts with lipopolysaccharide-induced tumor necrosis factor, and overexpression increases apoptosis in hepatocellular carcinoma.

    Science.gov (United States)

    Min, Jie; Zhang, Wei; Gu, Yu; Hong, Liu; Yao, Li; Li, Fanfan; Zhao, Daqing; Feng, Yingming; Zhang, Helong; Li, Qing

    2011-12-01

    Cell death-inducing DFF45-like effector-3 (CIDE-3) is a novel member of an apoptosis-inducing protein family, but its function is unknown. CIDE-3 shows a different distribution pattern in hepatocellular carcinoma (HCC) tissues and normal adjacent tissues. Therefore, this work tested the hypothesis that CIDE-3 induces apoptosis in HCC cells, inhibiting oncogenesis and tumor development. We used immunohistochemistry to evaluate the expression of CIDE-3 in 82 HCC samples and 51 adjacent liver tissues. Overexpression of CIDE-3 induced apoptosis, as detected by flow cytometry, in the HCC cell line SMMC-7721, which had undetectable levels of CIDE-3 in the absence of CIDE-3 overexpression. A yeast two-hybrid system was employed to screen for proteins that interact with CIDE-3. The expression of CIDE-3 was decreased in HCC tissue, compared to adjacent normal tissues, and CIDE-3 expression and HCC differentiation were positively correlated. CIDE-3 expression levels were lower in poorly differentiated HCC tissue than in well-differentiated HCC tissue. Overexpressed CIDE-3 inhibited proliferation and induced apoptosis in HCC cells. We found that lipopolysaccharide-induced tumor necrosis factor (LITAF) interacted with CIDE-3 in hepatic cells. This is the first demonstrated interaction between CIDE-3 and LITAF, and the first report that CIDE-3 induces apoptosis in hepatocellular carcinoma.

  8. Effects of tylosin, tilmicosin and tulathromycin on inflammatory mediators in bronchoalveolar lavage fluid of lipopolysaccharide-induced lung injury.

    Science.gov (United States)

    Er, Ayse; Yazar, Enver

    2012-12-01

    The aim of this study was to determine the anti-inflammatory effects of macrolides through kinetic parameters in bronchoalveolar lavage fluid (BALF) of lipopolysaccharide-induced lung injury. Rats were divided into four groups: lipopolysaccharide (LPS), LPS + tylosin, LPS + tilmicosin and LPS + tulathromycin. BALF samples were collected at sampling times. TNF, IL-1β, IL-6, IL-10 and 13,14-dihydro-15-keto-prostaglandin F2α (PGM) and C-reactive protein (CRP) were analysed. Area under the curve (AUC) and maximum plasma concentration (Cmax) values of inflammatory mediators were determined by a pharmacokinetic computer programme. When inflammatory mediator concentrations were compared between the LPS group and other groups for each sampling time, the three macrolides had no pronounced depressor effect on cytokine levels, but they depressed PGM and CRP levels. In addition, tylosin and tilmicosin decreased the AUC0-24 level of TNF, while tilmicosin decreased the AUC0-24 level of IL-10. Tylosin and tulathromycin decreased the AUC0-24 of PGM, and all three macrolides decreased the AUC0-24 of CRP. Especially tylosin and tulathromycin may have more expressed anti-inflammatory effects than tilmicosin, via depressing the production of inflammatory mediators in the lung. The AUC may be used for determining the effects of drugs on inflammation. In this study, the antiinflammatory effects of these antibiotics were evaluated with kinetic parameters as a new and different approach.

  9. Harpagoside suppresses lipopolysaccharide-induced iNOS and COX-2 expression through inhibition of NF-kappa B activation.

    Science.gov (United States)

    Huang, Tom Hsun-Wei; Tran, Van H; Duke, Rujee K; Tan, Sharon; Chrubasik, Sigrun; Roufogalis, Basil D; Duke, Colin C

    2006-03-08

    Preparations of Harpagophytum procumbens, known as devil's claw, are used as an adjunctive therapy for the treatment of pain and osteoarthritis. Pharmacological evaluations have proven the effectiveness of this herbal drug as an anti-inflammatory and analgesic agent. The present study has investigated the mechanism of action of harpagoside, one of the major components of Harpagophytum procumbens, using human HepG2 hepatocarcinoma and RAW 264.7 macrophage cell lines. Harpagoside inhibited lipopolysaccharide-induced mRNA levels and protein expression of cyclooxygenase-2 and inducible nitric oxide in HepG2 cells. These inhibitions appeared to correlate with the suppression of NF-kappaB activation by harpagoside, as pre-treating cells with harpagoside blocked the translocation of NF-kappaB into the nuclear compartments and degradation of the inhibitory subunit IkappaB-alpha. Furthermore, harpagoside dose-dependently inhibited LPS-stimulated NF-kappaB promoter activity in a gene reporter assay in RAW 264.7 cells, indicating that harpagoside interfered with the activation of gene transcription. These results suggest that the inhibition of the expression of cyclooxygenase-2 and inducible nitric oxide by harpagoside involves suppression of NF-kappaB activation, thereby inhibiting downstream inflammation and subsequent pain events.

  10. Salvianolic Acids Attenuate Rat Hippocampal Injury after Acute CO Poisoning by Improving Blood Flow Properties

    Directory of Open Access Journals (Sweden)

    Li Guan

    2015-01-01

    Full Text Available Carbon monoxide (CO poisoning causes the major injury and death due to poisoning worldwide. The most severe damage via CO poisoning is brain injury and mortality. Delayed encephalopathy after acute CO poisoning (DEACMP occurs in forty percent of the survivors of acute CO exposure. But the pathological cause for DEACMP is not well understood. And the corresponding therapy is not well developed. In order to investigate the effects of salvianolic acid (SA on brain injury caused by CO exposure from the view point of hemorheology, we employed a rat model and studied the dynamic of blood changes in the hemorheological and coagulative properties over acute CO exposure. Compared with the groups of CO and 20% mannitol + CO treatments, the severe hippocampal injury caused by acute CO exposure was prevented by SA treatment. These protective effects were associated with the retaining level of hematocrit (Hct, plasma viscosity, fibrinogen, whole blood viscosities and malondialdehyde (MDA levels in red blood cells (RBCs. These results indicated that SA treatment could significantly improve the deformation of erythrocytes and prevent the damage caused by CO poisoning. Meanwhile, hemorheological indexes are good indicators for monitoring the pathological dynamic after acute CO poisoning.

  11. Modulation of Pseudomonas aeruginosa lipopolysaccharide-induced lung inflammation by chronic iron overload in rat.

    Science.gov (United States)

    Lê, Bá Vuong; Khorsi-Cauet, Hafida; Bach, Véronique; Gay-Quéheillard, Jérôme

    2012-03-01

    Iron constitutes a critical nutrient source for bacterial growth, so iron overload is a risk factor for bacterial infections. This study aimed at investigating the role of iron overload in modulating bacterial endotoxin-induced lung inflammation. Weaning male Wistar rats were intraperitoneally injected with saline or iron sucrose [15 mg kg(-1) body weight (bw), 3 times per week, 4 weeks]. They were then intratracheally injected with Pseudomonas aeruginosa lipopolysaccharide (LPS) (5 μg kg(-1) bw) or saline. Inflammatory indices were evaluated 4 or 18 h post-LPS/saline injection. At 4 h, LPS-treated groups revealed significant increases in the majority of inflammatory parameters (LPS-binding protein (LBP), immune cell recruitment, inflammatory cytokine synthesis, myeloperoxidase activity, and alteration of alveolar-capillary permeability), as compared with control groups. At 18 h, these parameters reduced strongly with the exception for LBP content and interleukin (IL)-10. In parallel, iron acted as a modulator of immune cell recruitment; LBP, tumor necrosis factor-α, cytokine-induced neutrophil chemoattractant 3, and IL-10 synthesis; and alveolar-capillary permeability. Therefore, P. aeruginosa LPS may only act as an acute lung inflammatory molecule, and iron overload may modulate lung inflammation by enhancing different inflammatory parameters. Thus, therapy for iron overload may be a novel and efficacious approach for the prevention and treatment of bacterial lung inflammations.

  12. Prevention of lipopolysaccharide-induced injury by 3,5-dieaffeoylquinic acid in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Ruo-peng ZHA; Wei XU; Wen-yi WANG; Li DONG; Yi-ping WANG

    2007-01-01

    Aim: To investigate the effect of 3,5-dicaffeoylquinic acid (3,5-diCQA) on lipopolysaccharide (LPS)-induced injury in human dermal microvascular endothe-lial cells (HMEC-1). Methods: The anti-oxidant effect was detected using the malondialdehyde (MDA) assay in a rat liver microsome model of lipid peroxidation.Cell viability was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. Cell lipid peroxide injury was measured by lactate dehydrogenase (LDH) release. Apoptotic cells were detected by flow cytometry, and confirmed by DNA fragmentation analysis. Caspase-3 activity was measured using a specific assay kit. The level of intracellular reactive oxygen species (ROS) was determined by flow cytometry with a 2,7-dichlorodihydro-fluorescein diacetate fluorescence probe. Results: The exposure of microsomes to ascorbate-Fe2+ resulted in lipoperoxidation according to an increase in the level of MDA. MDA formation decreased in a dose-dependent manner on treatment with 5, 10, or 50 μmol/L 3,5-diCQA. Treatment with LPS for 16 h resulted in a 60% decrease in cell viability and an increase in LDH release from 47.6% to 61.5%. DNA laddering was observed by agarose gel electrophoresis. The level of apoptotic cells peaked at 27% after treatment with LPS for 12 h. Following treat-ment with LPS for 12 h, intracellular ROS and caspase-3 activity increased. Pre-treatment with 3,5-diCQA at 5, 10, or 50 μmol/L for 1 h attenuated LPS-mediated endothelial cell injury. The anti-apoptotic action of 3,5-diCQA was partially dependent on its capacity for anti-oxidation and the suppression of caspase-3 activity. Conclusion: 3,5-diCQA displays anti-oxidative and anti-apoptotic activ-ity in HMEC-1 due to scavenging of intracellular ROS induced by LPS, and the suppression of caspase-3 activity.

  13. Lipopolysaccharide induces a downregulation of adiponectin receptors in-vitro and in-vivo

    Directory of Open Access Journals (Sweden)

    Alison Hall

    2015-11-01

    Full Text Available Background. Adipose tissue contributes to the inflammatory response through production of cytokines, recruitment of macrophages and modulation of the adiponectin system. Previous studies have identified a down-regulation of adiponectin in pathologies characterised by acute (sepsis and endotoxaemia and chronic inflammation (obesity and type-II diabetes mellitus. In this study, we investigated the hypothesis that LPS would reduce adiponectin receptor expression in a murine model of endotoxaemia and in adipoocyte and myocyte cell cultures.Methods. 25 mg/kg LPS was injected intra-peritoneally into C57BL/6J mice, equivalent volumes of normal saline were used in control animals. Mice were killed at 4 or 24 h post injection and tissues harvested. Murine adipocytes (3T3-L1 and myocytes (C2C12 were grown in standard culture, treated with LPS (0.1 µg/ml–10 µg/ml and harvested at 4 and 24 h. RNA was extracted and qPCR was conducted according to standard protocols and relative expression was calculated.Results. After LPS treatment there was a significant reduction after 4 h in gene expression of adipo R1 in muscle and peri-renal fat and of adipo R2 in liver, peri-renal fat and abdominal wall subcutaneous fat. After 24 h, significant reductions were limited to muscle. Cell culture extracts showed varied changes with reduction in adiponectin and adipo R2 gene expression only in adipocytes.Conclusions. LPS reduced adiponectin receptor gene expression in several tissues including adipocytes. This reflects a down-regulation of this anti-inflammatory and insulin-sensitising pathway in response to LPS. The trend towards base line after 24 h in tissue depots may reflect counter-regulatory mechanisms. Adiponectin receptor regulation differs in the tissues investigated.

  14. Mas receptor deficiency exacerbates lipopolysaccharide-induced cerebral and systemic inflammation in mice.

    Science.gov (United States)

    Oliveira-Lima, Onésia C; Pinto, Mauro C X; Duchene, Johan; Qadri, Fatimunnisa; Souza, Laura L; Alenina, Natalia; Bader, Michael; Santos, Robson A S; Carvalho-Tavares, Juliana

    2015-12-01

    Beyond the classical actions of the renin-angiotensin system on the regulation of cardiovascular homeostasis, several studies have shown its involvement in acute and chronic inflammation. The G protein-coupled receptor Mas is a functional binding site for the angiotensin-(1-7); however, its role in the immune system has not been fully elucidated. In this study, we evaluated the effect of genetic deletion of Mas receptor in lipopolysaccharide (LPS)-induced systemic and cerebral inflammation in mice. Inflammatory response was triggered in Mas deficient (Mas(-/-)) and C57BL/6 wild-type (WT) mice (8-12 weeks-old) by intraperitoneal injection of LPS (5 mg/kg). Mas(-/-) mice presented more intense hypothermia compared to WT mice 24 h after LPS injection. Systemically, the bone marrow of Mas(-/-) mice contained a lower number of neutrophils and monocytes 3 h and 24 h after LPS injection, respectively. The plasma levels of inflammatory mediators KC, MCP-1 and IL-10 were higher in Mas(-/-) mice 24 h after LPS injection in comparison to WT. In the brain, Mas(-/-) animals had a significant increase in the number of adherent leukocytes to the brain microvasculature compared to WT mice, as well as, increased number of monocytes and neutrophils recruited to the pia-mater. The elevated number of adherent leukocytes on brain microvasculature in Mas(-/-) mice was associated with increased expression of CD11b - the alpha-subunit of the Mac-1 integrin - in bone marrow neutrophils 3h after LPS injection, and with increased brain levels of chemoattractants KC, MIP-2 and MCP-1, 24 h later. In conclusion, we demonstrated that Mas receptor deficiency results in exacerbated inflammation in LPS-challenged mice, which suggest a potential role for the Mas receptor as a regulator of systemic and brain inflammatory response induced by LPS.

  15. Hydrosulfide attenuates acute myocardial ischemic injury through the glycogen synthase kinase-3β/β-catenin signaling pathway.

    Science.gov (United States)

    Ge, Ning; Liu, Chao; Li, Guofeng; Xie, Lijun; Zhang, Qinzeng; Li, Liping; Hao, Na; Zhang, Jianxin

    2016-05-01

    The endogenous signaling gasotransmitter, hydrosulfide (H2S), has been shown to exert cardioprotective effects against acute myocardial infarction (AMI) due to ischemic injury. However, the mechanisms responsible for these effects are not yet fully understood. In this study, we investigated whether sodium hydrogen sulfide (NaHS), an H2S donor, attenuates acute myocardial ischemic injury through glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling. For this purpose, we utilized an in vivo rat model of AMI by occluding the left anterior descending coronary artery. NaHS (0.39, 0.78 or 1.56 mg/kg, intraperitoneally), the GSK-3β inhibitor, SB216763 (0.6 mg/kg, intravenously), or 1% dimethylsulfoxide (2 ml/kg, intravenously) were administered to the rats. The results demonstrated that the administration of medium- and high-dose NaHS and SB216763 significantly improved rat cardiac function, as evidenced by an increase in the mean arterial pressure, left ventricular developed pressure, contraction and relaxation rates, as well as a decrease in left ventricular end-diastolic pressure. In addition, the administration of NaHS and SB216763 attenuated myocardial injury as reflected by a decrease in apoptotic cell death and in the serum lactate dehydrogenase concentrations, and prevented myocardial structural changes. The administration of NaHS and SB216763 increased the concentrations of phosphorylated (p-)GSK-3β, the p-GSK-3β/t-GSK-3β ratio and downstream protein β-catenin. Moreover, western blot and immunohistochemical analyses of apoptotic signaling pathway proteins further established the cardioprotective potential of NaHS, as reflected by the upregulation of Bcl-2 expression, the downregulation of Bax expression, and a decrease in the number of TUNEL-positive stained cells. These findings suggest that hydrosulfide exerts cardioprotective effects against AMI-induced apoptosis through the GSK-3β/β-catenin signaling pathway.

  16. D-galactosamine/lipopolysaccharide-induced hepatotoxicity downregulates sirtuin 1 in rat liver: role of sirtuin 1 modulation in hepatoprotection.

    Science.gov (United States)

    Kemelo, M K; Wojnarová, L; Kutinová Canová, N; Farghali, H

    2014-01-01

    D-Galactosamine/Lipopolysaccharide (D-GalN/LPS) is a well known model of hepatotoxicity that closely resembles acute liver failure (ALF) seen clinically. The role of sirtuin 1 in this model has not yet been documented. However, there have been a number of studies about the cytoprotective effects of resveratrol, a SIRT1 activator, in the liver. This study was aimed at elucidating the roles of SIRT1 protein expression or catalytic activity in D-GalN/LPS model of hepatotoxicity. ALF was induced in male Wistar rats by intraperitoneal injection of D-GalN and LPS. Some groups of animals were pretreated with resveratrol and/or EX-527 (SIRT1 inhibitor). The effects of these treatments were evaluated by biochemical and Western blot studies. D-GalN/LPS treatment was able to induce hepatotoxicity and significantly increase all markers of liver damage and lipid peroxidation. A dramatic decrease of SIRT1 levels in response to D-GalN/LPS treatment was also documented. Resveratrol pretreatment attenuated D-GalN/LPS-induced hepatotoxicity. EX-527 blocked the cytoprotective effects of resveratrol. However, both resveratrol and EX-527 pretreatments did not exhibit any significant effect on SIRT1 protein expression. Collectively, these results suggest that downregulation of SIRT1 expression is involved in the cytotoxic effects of D-GalN/LPS model and SIRT1 activity contributes to the cytoprotective effects of resveratrol in the liver.

  17. PROTECTION OF CARBON MONOXIDE INHALATION ON LIPOPOLYSACCHARIDE-INDUCED MULTIPLE ORGAN INJURY IN RATS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To observe the protection of carbon monoxide (CO) inlalation on lipopolysaccharide (LPS) -induced rat multiple organ injury.Methods Sprague-Dawley rats with multiple organ injury induced by 5 mg/kg LPS intravenous injection were exposed to room air or2. 5 × 10-4 (V/V) CO for3 hours The lung and intestine tissues of rats were harvested to measure the expression of heme oxygenase-1 ( HO-1 ) with reverse transcription-polymerase chain reaction, the levels of pulmonary tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and intestinal platelet activator factor (PAF), intercellular adhesion molecule-1 ( ICAM-1 ) with enzyme-linked immunosorbent assay, the content of maleic dialdehyde (MDA) and the activity of myeloperoxidase (MPO) with chemical method, the cell apoptosis rate with flow cytometry, and the pathological changes with light microscope.Results CO inhalation obviously up-regulatedthe expression of HO-1 inlung (5.43±0.92) and intestine (6.29±1.56) in LPS + CO group compared with (3.08±0.82) and (3.97±1.16) in LPS group (both P<0.05). The levels of TNF-α, IL-6 in lung and PAF, ICAM-1 in intestine of LPS +CO group were 0. 91 ±0. 25,0. 64 ±0. 05, 1.19 ±0. 52, and 1.83 ± 0. 35 pg/mg, respectively, significantly lower than the corresponding values in LPS group ( 1.48 ±0. 23, 1.16 ± 0. 26, 1.84 ± 0. 73, and 3.48 ± 0. 36 pg/mg, all P < 0. 05). The levels of MDA, MPO, and cell apoptosis rate in lung and intestine of LPS ± CO group were 1.02 ± 0. 23 nmol/mg, 1.74 ± 0. 17 nmol/mg, 7. 18 ± 1.62U/mg, 6. 30 ± 0. 97 U/mg, 1.60% ± 0. 34 %, and 30. 56% ± 6. 33 %, respectively, significantly lower than the corresponding values in LPS group ( 1.27 ± 0. 33 nmol/mg, 2. 75 ± 0. 39 nmol/mg, 8. 16 ± 1.49 U/mg, 7.72 ± 1.07U/mg, 3. 18 % ± 0. 51%, and 41.52% ± 3. 36%, all P < 0. 05 ). In addition, injury of lung and intestine induced by LPS was attenuated at presence of CO inhalation.Conclusion CO inhalation protects rat lung and intestine

  18. Berberine attenuates adverse left ventricular remodeling and cardiac dysfunction after acute myocardial infarction in rats: role of autophagy.

    Science.gov (United States)

    Zhang, Yao-Jun; Yang, Shao-Hua; Li, Ming-Hui; Iqbal, Javaid; Bourantas, Christos V; Mi, Qiong-Yu; Yu, Yi-Hui; Li, Jing-Jing; Zhao, Shu-Li; Tian, Nai-Liang; Chen, Shao-Liang

    2014-12-01

    The present study aimed to test the hypothesis that berberine, a plant-derived anti-oxidant, attenuates adverse left ventricular remodelling and improves cardiac function in a rat model of myocardial infarction (MI). Furthermore, the potential mechanisms that mediated the cardioprotective actions of berberine, in particular the effect on autophagy, were also investigated. Acute MI was induced by ligating the left anterior descending coronary artery of Sprague-Dawley rats. Cardiac function was assessed by transthoracic echocardiography. The protein activity/levels of autophagy related to signalling pathways (e.g. LC-3B, Beclin-1) were measured in myocardial tissue by immunohistochemical staining and western blot. Four weeks after MI, berberine significantly prevented cardiac dysfunction and adverse cardiac remodelling. MI rats treated with low dose berberine (10 mg/kg per day) showed higher left ventricular ejection fraction and fractional shortening than those treated with high-dose berberine (50 mg/kg per day). Both doses reduced interstitial fibrosis and post-MI adverse cardiac remodelling. The cardioprotective action of berberine was associated with increased LC-3B II and Beclin-1 expressions. Furthermore, cardioprotection with berberine was potentially related to p38 MAPK inhibition and phospho-Akt activation. The present in vivo study showed that berberine is effective in promoting autophagy, and subsequently attenuating left ventricular remodelling and cardiac dysfunction after MI. The potential underlying mechanism is augmentation of autophagy through inhibition of p38 MAPK and activation of phospho-Akt signalling pathways.

  19. A simple melatonin treatment protocol attenuates the response to acute stress in the sole Solea senegalensis

    DEFF Research Database (Denmark)

    Gesto, Manuel; Álvarez-Otero, Rosa; Conde-Sieira, Marta

    2016-01-01

    Several compounds have been tested in fish in order to attenuate the effects of different stressors, most often following previous observations in mammals. The hormone melatonin (MEL) and the amino acid L-tryptophan have been tested for this purpose with different degree of success. In Senegalese...... sole (Solea senegalensis) we have previously observed that during prolonged exposure to relatively mild stressors, the presence of MEL in the water helped to reduce the stress response. Here, we aimed to investigate the potential anti-stress effects of a short melatonin exposure that could be easily...

  20. Problems with diagnosis by fluid-attenuated inversion recovery magnetic resonance imaging in patients with acute aneurysmal subarachnoid hemorrhage.

    Science.gov (United States)

    Shimoda, Masami; Hoshikawa, Kaori; Shiramizu, Hideki; Oda, Shinri; Matsumae, Mitsunori

    2010-01-01

    The diagnostic efficacy of fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging and computed tomography (CT) for acute subarachnoid hemorrhage (SAH) were compared and the problems with diagnosis were investigated in 81 patients with aneurysmal SAH within 24 hours after onset who underwent FLAIR imaging and CT on admission. The number of hematomas in the cisterns and ventricles were evaluated by clot scores. In addition, the frequency of undetected hematomas was calculated for the cisterns and ventricles. Clot scores were significantly higher for FLAIR imaging than for CT in the lateral sylvian, quadrigeminal, and convexity cisterns. On the other hand, clot scores were significantly higher for CT than for FLAIR imaging in the interhemispheric and medial sylvian cisterns. The overall frequency of undetected SAH was 2% for FLAIR imaging and 14% for CT. With the exception of the interhemispheric and medial sylvian cisterns, the frequency of undetected SAH was higher for CT than for FLAIR imaging. In this study, FLAIR imaging was more sensitive than CT for the detection of acute SAH within 24 hours after onset. However, the diagnostic efficacy of FLAIR imaging was reduced in comparatively tight cisterns.

  1. Aquaporin-4 deficiency attenuates acute lesions but aggravates delayed lesions and microgliosis after cryoinjury to mouse brain

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhen Shi; Chun-Zhen Zhao; Bing Zhao; Xiao-Liang Zheng; San-Hua Fang; Yun-Bi Lu; Wei-Ping Zhang; Zhong Chen; Er-Qing Wei

    2012-01-01

    Objective To determine whether aquaporin-4 (AQP4) regulates acute lesions,delayed lesions,and the associated microglial activation after cryoinjury to the brain.Methods Brain cryoinjury was applied to AQP4 knockout (KO)and wild-type mice.At 24 h and on days 7 and 14 after cryoinjury,lesion volume,neuronal loss,and densities of microglia and astrocytes were determined,and their changes were compared between AQP4 KO and wild-type mice.Results Lesion volume and neuronal loss in AQP4 KO mice were milder at 24 h following cryoinjury,but worsened on days 7 and 14,compared to those in wild-type mice.Besides,microglial density increased more,and astrocyte proliferation and glial scar formation were attenuated on days 7 and 14 in AQP4 KO mice.Conclusion AQP4 deficiency ameliorates acute lesions,but worsens delayed lesions,perhaps due to the microgliosis in the late phase.

  2. The Acute Phase of Trypanosoma cruzi Infection Is Attenuated in 5-Lipoxygenase-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Adriana M. C. Canavaci

    2014-01-01

    Full Text Available In the present work we examine the contribution of 5-lipoxygenase- (5-LO- derived lipid mediators to immune responses during the acute phase of Trypanosoma cruzi infection in 5-LO gene knockout (5-LO−/− mice and wild-type (WT mice. Compared with WT mice, the 5-LO−/− mice developed less parasitemia/tissue parasitism, less inflammatory cell infiltrates, and a lower mortality. This resistance of 5-LO−/− mice correlated with several differences in the immune response to infection, including reduced PGE2 synthesis; sustained capacity of splenocytes to produce high levels of interleukin (IL-12 early in the infection; enhanced splenocyte production of IL-1β, IL-6, and IFN-γ; rapid T-cell polarization to secrete high quantities of IFN-γ and low quantities of IL-10; and greater numbers of CD8+CD44highCD62Llow memory effector T cells at the end of the acute phase of infection. The high mortality in WT mice was associated with increased production of LTB4/LTC4, T cell bias to produce IFN-γ, high levels of serum nitrite, and marked protein extravasation into the peritoneal cavity, although survival was improved by treatment with a cys-LT receptor 1 antagonist. These data also provide evidence that 5-LO-derived mediators negatively affect host survival during the acute phase of T. cruzi infection.

  3. Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation

    Directory of Open Access Journals (Sweden)

    Li Gao

    2016-12-01

    Full Text Available Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress and programmed cell death of renal tubular epithelial cells. All of which lead to higher mortality rates in patients. In this study we examined the protective effect of protocatechuic aldehyde (PA in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza. Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA largely blocked cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients with cisplatin treatment.

  4. [Sodium butyrate inhibits HMGB1 expression and release and attenuates concanavalin A-induced acute liver injury in mice].

    Science.gov (United States)

    Gong, Quan; Chen, Mao-Jian; Wang, Chao; Nie, Hao; Zhang, Yan-Xiang; Shu, Ke-Gang; Li, Gang

    2014-10-25

    The purpose of the present study is to explore the protective effects of sodium butyrate (SB) pretreatment on concanavalin A (Con A)-induced acute liver injury in mice. The model animals were first administered intraperitoneally with SB. Half an hour later, acute liver injury mouse model was established by caudal vein injection with Con A (15 mg/kg). Then, levels of serous alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using standard clinical method by an automated chemistry analyzer, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were measured by ELISA, and pathological changes in hepatic tissue were observed by using HE staining and light microscopy. The expression and release of high-mobility group box 1 (HMGB1) were assessed by using reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry and ELISA. The results showed that the pretreatment of SB significantly protected Con A-treated mice from liver injury as evidenced by the decrease of serum ALT, AST (P < 0.01) and reduction of hepatic tissues necrosis. SB also decreased levels of serous TNF-α and IFN-γ (P < 0.01). Furthermore, the expression and release of HMGB1 were markedly inhibited by SB pretreatment (P < 0.05 or P < 0.01). These results suggest that the attenuating effect of SB on Con A-induced acute liver injury may be due to its role of reducing the TNF-α and IFN-γ production, and inhibiting HMGB1 expression and release.

  5. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  6. cis-Urocanic acid attenuates acute dextran sodium sulphate-induced intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Eric Albert

    Full Text Available On exposure to sunlight, urocanic acid (UCA in the skin is converted from trans to the cis form and distributed systemically where it confers systemic immunosuppression. The aim of this study was to determine if administration of cis-UCA would be effective in attenuating colitis and the possible role of IL-10. Colitis was induced in 129/SvEv mice by administering 5% dextran sodium sulfate (DSS for 7 days in drinking water. During this period mice received daily subcutaneously injections of cis-UCA or vehicle. To examine a role for IL-10, 129/SvEv IL-10(-/- mice were injected for 24 days with cis-UCA or vehicle. Clinical disease was assessed by measurement of body weight, stool consistency, and presence of blood. At sacrifice, colonic tissue was collected for histology and measurement of myeloperoxidase and cytokines. Splenocytes were analyzed for CD4+CD25+FoxP3+ T-regulatory cells via flow cytometry. Murine bone-marrow derived antigen-presenting cells were treated with lipopolysaccharide (LPS ± UCA and cytokine secretion measured. Our results demonstrated that cis-UCA at a dose of 50 µg was effective in ameliorating DSS-induced colitis as evidenced by reduced weight loss and attenuated changes in colon weight/length. This protection was associated with reduced colonic expression of CXCL1, an increased expression of IL-17A and a significant preservation of splenic CD4+CD25+FoxP3+ T-regulatory cells. cis-UCA decreased LPS induced CXCL1, but not TNFα secretion, from antigen-presenting cells in vitro. UCA reduced colonic levels of IFNγ in IL-10(-/- mice but did not attenuate colitis. In conclusion, this study demonstrates that cis-urocanic acid is effective in reducing the severity of colitis in a chemically-induced mouse model, indicating that pathways induced by ultraviolet radiation to the skin can influence distal sites of inflammation. This provides further evidence for a possible role for sunlight exposure in modulating inflammatory

  7. Dietary unsaponifiable fraction from extra virgin olive oil supplementation attenuates acute ulcerative colitis in mice.

    Science.gov (United States)

    Sánchez-Fidalgo, S; Cárdeno, A; Sánchez-Hidalgo, M; Aparicio-Soto, M; Villegas, I; Rosillo, M A; de la Lastra, C Alarcón

    2013-02-14

    Extra virgin olive oil (EVOO) has demonstrated immunomodulatory and antiinflammatory properties in murine experimental ulcerative colitis (UC). In addition to its high monounsaturated fatty acid content, evidences have accumulated on the favorable properties of minor, although highly bioactive, components present in the unsaponifiable fraction (UF). The present study was designed to evaluate the effects of dietary EVOO's UF supplementation on acute UC. C57BL/6 mice were fed from weaning with sunflower oil (SD), EVOO diet and UF-enriched SD at 5% oil (SD+UF). After 30 days, mice were exposed to 3% dextran sulfate sodium (DSS) for 5 days developing acute colitis. After 4 days of DSS removal, animals were sacrificed and colons were histological and biochemically processed. Disease activity index and microscopic damage score were significantly improved in EVOO and SD+UF dietary groups versus SD group. In addition, both dietary treatments significantly induced decreases in MCP-1 and TNF-α levels, iNOS and COX-2 overexpression and p38 MAPKs activation in colon mucosa. Moreover, an upregulation of IκB expression was also observed after feeding the animals with both diets. However, no statistically differences between data from mice fed with EVOO or UF+SD diets were observed. Dietary enrichment with EVOO's UF reduces the damage in acute colitis model, alleviating the oxidative events and returning proinflammatory proteins expression to basal levels probably through p38 MAPK and NFκB signalling pathways. EVOO's UF diet might provide a basis for developing a new strategy in dietary supplementation for the prevention of UC.

  8. The pericarp extract of Prunus persica attenuates chemotherapy-induced acute nephrotoxicity and hepatotoxicity in mice.

    Science.gov (United States)

    Lee, Chang Ki; Park, Kwang-Kyun; Hwang, Jae-Kwan; Lee, Sang Kook; Chung, Won-Yoon

    2008-06-01

    The fruit of Prunus persica L. (peach) is one of the common fruits. Its seed is well known as a traditional medicine (Persicae Semen) in Japan, China, and other Asian countries. However, the biological activities of P. persica fruit except its seed are poorly understood. This study was aimed at evaluating the protective effect of the pericarp extract of P. persica (PPE) against cisplatin-induced acute toxicity in mice. PPE (500 mg/kg, p.o.) showed a significant protection against the acute nephrotoxicity and hepatotoxicity induced by a single administration of cisplatin (45 mg/kg, i.p.) over a 16-hour period in mice. Its protective effect was evaluated by serum and tissue biochemical parameters. The pretreatment with PPE for 7 days prevented the cisplatin-induced decrease in the kidney and liver weights as a percentage of the total body weight. PPE significantly inhibited both the cisplatin-induced elevation in serum blood urea nitrogen and creatinine levels caused by kidney damage and the cisplatin-induced increase in serum alanine aminotransferase and aspartate aminotransferase levels by the liver damage. In addition, the administration of PPE caused recovery of the cisplatin-mediated changes in levels of serum nitric oxide and tissue lipid peroxidation, and reduced glutathione content returned to control levels. These results suggest that PPE protects against cisplatin-induced nephrotoxicity and hepatotoxicity by reducing cisplatin-induced oxidative stress in mice.

  9. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis.

    Science.gov (United States)

    Zhang, Wei; Xu, Li; Cho, Si-Young; Min, Kyung-Jin; Oda, Tatsuya; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-04-05

    This study investigates the in vivo functions of ginseng berry extract (GB) as a therapy for dextran sodium sulfate (DSS)-induced colitis. C57BL/6 mice were given drinking water containing DSS (3%) for eight days to induce acute colitis. At the same time, the mice received an oral dose of GB (50 mg/kg) once daily. The GB-treated mice were less susceptible to the development of acute colitis than were control mice treated with saline, as determined by weight loss, disease activity, and colon histology. The administration of GB to DSS-treated mice also reduced the numbers and inhibited the activation of colon-infiltrating T cells, neutrophils, intestinal CD103(-)CD11c⁺ dendritic cells (cDCs), and macrophages. In addition, GB treatment promoted the migration of CD103⁺CD11c⁺ cDCs and expansion of Foxp3⁺ regulatory T cells in the colons of DSS-treated mice. Similarly, in the DSS-induced chronic colitis model, GB treatment improved the macroscopic and histological appearance of the colon wall when compared to untreated control mice, as indicated by longer colon length and lower histological scores. This is the first report to show that oral administration of GB suppresses immune activation and protects against experimentally induced colitis.

  10. Yin-Chen-Hao Tang Attenuates Severe Acute Pancreatitis in Rat: An Experimental Verification of In silico Network Target Prediction

    Science.gov (United States)

    Xiang, Hong; Wang, Guijun; Qu, Jialin; Xia, Shilin; Tao, Xufeng; Qi, Bing; Zhang, Qingkai; Shang, Dong

    2016-01-01

    Yin-Chen-Hao Tang (YCHT) is a classical Chinese medicine compound that has a long history of clinical use in China for the treatment of inflammatory diseases. However, the efficacy and mechanisms of YCHT for the treatment of severe acute pancreatitis (SAP) are not known. The current study investigated the pharmacological properties of YCHT against SAP and its underlying mechanisms. A computational prediction of potential targets of YCHT was initially established based on a network pharmacology simulation. The model suggested that YCHT attenuated SAP progress by apoptosis inducement, anti-inflammation, anti-oxidation and blood lipid regulation. These effects were validated in SAP rats. YCHT administration produced the following results: (1) significantly inhibited the secretion of pancreatic enzymes and protected pancreatic tissue; (2) obviously increased the number of in situ terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells and induced apoptosis; (3) markedly inhibited neutrophil infiltration to the impaired pancreas and reduced the inflammatory reaction; (4) notably enhanced the activities of antioxidant enzymes and decreased the nitric oxide synthase levels; (5) significantly reduced the levels of triglycerides, total cholesterol and low-density lipoprotein and increased high-density lipoprotein; and (6) significantly up-regulated peroxisome proliferator-activated receptor-γ (PPARγ) and down-regulated nuclear factor-kappa B (NF-κB). In summary, these results demonstrated that YCHT attenuated SAP progress by inducing apoptosis, repressing inflammation, alleviating oxidative stress and regulating lipid metabolism partially via regulation of the NF-κB/PPARγ signal pathway. PMID:27790147

  11. Steroidogenic acute regulatory protein (StAR) overexpression attenuates HFD-induced hepatic steatosis and insulin resistance.

    Science.gov (United States)

    Qiu, Yanyan; Sui, Xianxian; Zhan, Yongkun; Xu, Chen; Li, Xiaobo; Ning, Yanxia; Zhi, Xiuling; Yin, Lianhua

    2017-04-01

    Non-alcoholic fatty liver disease (NAFLD) covers a wide spectrum of liver pathology. Intracellular lipid accumulation is the first step in the development and progression of NAFLD. Steroidogenic acute regulatory protein (StAR) plays an important role in the synthesis of bile acid and intracellular lipid homeostasis and cholesterol metabolism. We hypothesize that StAR is involved in non-alcoholic fatty liver disease (NAFLD) pathogenesis. The hypothesis was identified using free fatty acid (FFA)-overloaded NAFLD in vitro model and high-fat diet (HFD)-induced NAFLD mouse model transfected by recombinant adenovirus encoding StAR (StAR). StAR expression was also examined in pathology samples of patients with fatty liver by immunohistochemical staining. We found that the expression level of StAR was reduced in the livers obtained from fatty liver patients and NAFLD mice. Additionally, StAR overexpression decreased the levels of hepatic lipids and maintained the hepatic glucose homeostasis due to the activation of farnesoid x receptor (FXR). StAR overexpression attenuated the impairment of insulin signaling in fatty liver. This protective role of StAR was owing to a reduction of intracellular diacylglycerol levels and the phosphorylation of PKCε. Furthermore, FXR inactivation reversed the observed beneficial effects of StAR. The present study revealed that StAR overexpression can reduce hepatic lipid accumulation, regulate glucose metabolism and attenuate insulin resistance through a mechanism involving the activation of FXR. Our study suggests that StAR may be a potential therapeutic target for NAFLD.

  12. Human mesenchymal stem cells attenuate early damage in a ventilated pig model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Yuben Moodley

    2016-07-01

    Full Text Available Acute lung injury/acute respiratory distress syndrome (ALI/ARDS is a major cause of global morbidity and mortality. Mesenchymal stem cells (MSC have shown promise in treating inflammatory lung conditions. We hypothesised that human MSC (hMSC can improve ALI/ARDS through their anti-inflammatory actions. We subjected pigs (n = 6 to intravenous oleic acid (OA injury, ventilation and hMSC infusion, while the controls (n = 5 had intravenous OA, ventilation and an infusion vehicle control. hMSC were infused 1 h after the administration of OA. The animals were monitored for additional 4 h. Nuclear translocation of nuclear factor-light chain enhancer of activated B cells (NF-κB, a transcription factor that mediates several inflammatory pathways was reduced in hMSC treated pigs compared to controls (p = 0.04. There was no significant difference in lung injury, assessed by histological scoring in hMSC treated pigs versus controls (p = 0.063. There was no difference in neutrophil counts between hMSC-treated pigs and controls. Within 4 h, there was no difference in the levels of IL-10 and IL-8 pre- and post-treatment with hMSC. In addition, there was no difference in hemodynamics, lung mechanics or arterial blood gases between hMSC treated animals and controls. Subsequent studies are required to determine if the observed decrease in inflammatory transcription factors will translate into improvement in inflammation and in physiological parameters over the long term.

  13. Acute antibody-directed myostatin inhibition attenuates disuse muscle atrophy and weakness in mice.

    Science.gov (United States)

    Murphy, Kate T; Cobani, Vera; Ryall, James G; Ibebunjo, Chikwendu; Lynch, Gordon S

    2011-04-01

    Counteracting the atrophy of skeletal muscle associated with disuse has significant implications for minimizing the wasting and weakness in plaster casting, joint immobilization, and other forms of limb unloading, with relevance to orthopedics, sports medicine, and plastic and reconstructive surgery. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the loss of muscle mass and functional capacity in mice during 14 or 21 days of unilateral hindlimb casting. Twelve-week-old C57BL/10 mice were subjected to unilateral hindlimb plaster casting or served as controls. Mice received subcutaneous injections of saline or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg; n = 6-9) on days 0 and 7 and were tested for muscle function on day 14, or were treated on days 0, 7, and 14 and tested for muscle function on day 21. Hindlimb casting reduced muscle mass, fiber size, and function of isolated soleus and extensor digitorum longus (EDL) muscles (P casting, when wasting and weakness had plateaued (P casting with reductions in muscle size and strength being most apparent during the first 14 days of disuse. These findings highlight the therapeutic potential of antibody-directed myostatin inhibition for disuse atrophy especially within the first 2 wk of disuse.

  14. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle.

    LENUS (Irish Health Repository)

    Dillon, J P

    2012-02-03

    Activated protein C (APC) is an endogenous anti-coagulant with anti-inflammatory properties. The purpose of the present study was to evaluate the effects of activated protein C in the setting of skeletal muscle ischaemia reperfusion injury (IRI). IRI was induced in rats by applying rubber bands above the levels of the greater trochanters bilaterally for a period of 2h followed by 12h reperfusion. Treatment groups received either equal volumes of normal saline or activated protein C prior to tourniquet release. Following 12h reperfusion, muscle function was assessed electrophysiologically by electrical field stimulation. The animals were then sacrificed and skeletal muscle harvested for evaluation. Activated protein C significantly attenuated skeletal muscle reperfusion injury as shown by reduced myeloperoxidase content, wet to dry ratio and electrical properties of skeletal muscle. Further in vitro work was carried out on neutrophils isolated from healthy volunteers to determine the direct effect of APC on neutrophil function. The effects of APC on TNF-alpha stimulated neutrophils were examined by measuring CD18 expression as well as reactive oxygen species generation. The in vitro work demonstrated a reduction in CD18 expression and reactive oxygen species generation. We conclude that activated protein C may have a protective role in the setting of skeletal muscle ischaemia reperfusion injury and that this is in part mediated by a direct inhibitory effect on neutrophil activation.

  15. The effects of Nigella sativa hydro-alcoholic extract and thymoquinone on lipopolysaccharide - induced depression like behavior in rats

    Directory of Open Access Journals (Sweden)

    Mahmoud Hosseini

    2012-01-01

    Full Text Available Background: Neuroimmune factors have been proposed as contributors to the pathogenesis of depression. Beside other therapeutic effects including neuroprotective, antioxidant, anticonvulsant and analgesic effects, Nigella sativa and its main ingredient, thymoquinone (TQ, have been shown to have anti-inflammatory effects. In the present study, the effects of Nigella sativa hydro-alcoholic extract and thymoquinone was investigated on lipopolysaccharide- induced depression like behavior in rats. Materials and Methods: 50 male Wistar rats were divided into 5 groups: Group 1 (control group received saline instead of NS extract, thymoquinone or lipopolysaccharide. The animals in group 2 (lipopolysaccharide (LPS were treated by saline instead of NS extract and were injected LPS (100μg/kg, ip 2 hours before conducting each forced swimming test. Groups 3 (LPS + NS 200 and 4 (LPS + NS 400 were treated by 200 and 400 mg/kg of NS (ip, respectively, from the day before starting the experiments and before each forced swimming test. These animals were also injected LPS 2hours before conducting each swimming test. The animals in group 5 received TQ instead of NS extract. Forced swimming test was performed 3 times for all groups (in alternative days, and immobility time was recorded. Finally, the animals were placed in an open- field apparatus, and the crossing number on peripheral and central areas was observed. Results: The immobility time in the LPS group was higher than that in the control group in all 3 times (P<0.001. The animals in LPS + NS 200, LPS + NS 400 and LPS + TQ had lower immobility times in comparison with LPS groups (P<0.01, and P<0.01. In the open- field test, the crossing number of peripheral in the LPS group was higher than that of the control one (P<0.01 while the animals of LPS + NS 200, LPS + NS 400 and LPS + TQ groups had lower crossing number of peripheral compared with the LPS group (P <0.05, and P<0.001. Furthermore, in the LPS group

  16. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial.

    Science.gov (United States)

    Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H

    2016-10-01

    Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health.

  17. Pomegranate seed extract attenuates chemotherapy-induced acute nephrotoxicity and hepatotoxicity in rats.

    Science.gov (United States)

    Cayır, Kerim; Karadeniz, Ali; Simşek, Nejdet; Yıldırım, Serap; Karakuş, Emre; Kara, Adem; Akkoyun, Hürrem Turan; Sengül, Emin

    2011-10-01

    Cisplatin (CDDP), one of the most active cytotoxic agents against cancer, has adverse side effects, such as nephrotoxicity and hepatotoxicity. The present study was designed to investigate the potential protective effect of pomegranate seed extract (PSE) against oxidative stress caused by CDDP injury of the kidneys and liver by measuring tissue biochemical and antioxidant variables and immunohistochemically testing caspase-3-positive cells. Twenty-four Sprague-Dawley rats were divided into 4 groups: control; CDDP: injected intraperitoneally with CDDP (7 mg/kg body weight, single dose); PSE: treated for 15 consecutive days by gavage with PSE (300 mg/kg per day); and PSE+CDDP: treated by gavage with PSE 15 days after a single injection of CDDP. The degree of protection against CDDP injury afforded by PSE was evaluated by determining the levels of malondialdehyde as a measure of lipid peroxidation. The levels of glutathione and activities of glutathione peroxidase, glutathione S-transferase, and superoxide dismutase were estimated from liver and kidney homogenates; the liver and kidney were also histologically examined. PSE elicited a significant protective effect toward liver and kidney by decreasing the level of lipid peroxidation; elevating the levels of glutathione S-transferase; and increasing the activities of glutathione peroxidase, glutathione S-transferase, and superoxide dismutase. These biochemical observations were supported by immunohistochemical findings and suggested that PSE significantly attenuated nephrotoxicity and hepatotoxicity by the way of its antioxidant, radical-scavenging, and antiapoptotic effects. This PSE extract could be used as a dietary supplement in patients receiving chemotherapy medications.

  18. Dimethylfumarate attenuates restenosis after acute vascular injury by cell-specific and Nrf2-dependent mechanisms

    Directory of Open Access Journals (Sweden)

    Chang Joo Oh

    2014-01-01

    Full Text Available Excessive proliferation of vascular smooth muscle cells (VSMCs and incomplete re-endothelialization is a major clinical problem limiting the long-term efficacy of percutaneous coronary angioplasty. We tested if dimethylfumarate (DMF, an anti-psoriasis drug, could inhibit abnormal vascular remodeling via NF−E2-related factor 2 (Nrf2-NAD(PH quinone oxidoreductase 1 (NQO1 activity. DMF significantly attenuated neointimal hyperplasia induced by balloon injury in rat carotid arteries via suppression of the G1 to S phase transition resulting from induction of p21 protein in VSMCs. Initially, DMF increased p21 protein stability through an enhancement in Nrf2 activity without an increase in p21 mRNA. Later on, DMF stimulated p21 mRNA expression through a process dependent on p53 activity. However, heme oxygenase-1 (HO-1 or NQO1 activity, well-known target genes induced by Nrf2, were dispensable for the DMF induction of p21 protein and the effect on the VSMC proliferation. Likewise, DMF protected endothelial cells from TNF-α-induced apoptosis and the dysfunction characterized by decreased eNOS expression. With knock-down of Nrf2 or NQO1, DMF failed to prevent TNF-α-induced cell apoptosis and decreased eNOS expression. Also, CD31 expression, an endothelial specific marker, was restored in vivo by DMF. In conclusion, DMF prevented abnormal proliferation in VSMCs by G1 cell cycle arrest via p21 upregulation driven by Nrf2 and p53 activity, and had a beneficial effect on TNF-α-induced apoptosis and dysfunction in endothelial cells through Nrf2–NQO1 activity suggesting that DMF might be a therapeutic drug for patients with vascular disease.

  19. Açai berry extract attenuates glycerol-induced acute renal failure in rats.

    Science.gov (United States)

    Unis, Amina

    2015-03-01

    Acute renal failure (ARF) is one of the most common problems encountered in hospitalized critically ill patients. In recent years great effort has been focused on the introduction of herbal medicine as a novel therapeutic agent for prevention of ARF. Hence, the current study was designed to investigate the effect of Açai berry extract (ABE) on glycerol-induced ARF in rats. Results of the present study showed that rat groups that received oral ABE in a dose of 100 and 200 mg/kg/day for 7 days before or 7 days after induction of ARF by a single intramuscular glycerol injection reported a significant improvement in kidney functions tests [decrease in serum urea, serum creatinine, and blood urea nitrogen (BUN)] when compared to the ARF model groups. Moreover, there was significant amelioration in renal oxidative stress markers [renal catalase (CAT), renal reduced glutathione (GSH)] and renal histopathological changes in the ABE-treated groups when compared to ARF model groups. The most significant improvement was reported in the groups where ABE was administered in a dose 200 mg/kg/day. These results indicate that ABE has a potential role in ameliorating renal damage involved in ARF.

  20. Combination of tadalafil and diltiazem attenuates renal ischemia reperfusion-induced acute renal failure in rats.

    Science.gov (United States)

    El-Sisi, Alaa E; Sokar, Samia S; Abu-Risha, Sally E; Ibrahim, Hanaa A

    2016-12-01

    Life threatening conditions characterized by renal ischemia/reperfusion (RIR) such as kidney transplantation, partial nephrectomy, renal artery angioplasty, cardiopulmonary bypass and aortic bypass surgery, continue to be among the most frequent causes of acute renal failure. The current study investigated the possible protective effects of tadalafil alone and in combination with diltiazem in experimentally-induced renal ischemia/reperfusion injury in rats. Possible underlying mechanisms were also investigated such as oxidative stress and inflammation. Rats were divided into sham-operated and I/R-operated groups. Anesthetized rats (urethane 1.3g/kg) were subjected to bilateral ischemia for 30min by occlusion of renal pedicles, then reperfused for 6h. Rats in the vehicle I/R group showed a significant (p˂0.05) increase in kidney malondialdehyde (MDA) content; myeloperoxidase (MPO) activity; TNF-α and IL-1β contents. In addition significant (p˂0.05) increase in intercellular adhesion molecule-1(ICAM-1) content, BUN and creatinine levels, along with significant decrease in kidney superoxide dismutase (SOD) activity. In addition, marked diffuse histopathological damage and severe cytoplasmic staining of caspase-3 were detected. Pretreatment with combination of tadalafil (5mg/kg bdwt) and diltiazem (5mg/kg bdwt) resulted in reversal of the increased biochemical parameters investigated. Also, histopathological examination revealed partial return to normal cellular architecture. In conclusion, pretreatment with tadalafil and diltiazem combination protected against RIR injury.

  1. SIRT1/3 Activation by Resveratrol Attenuates Acute Kidney Injury in a Septic Rat Model

    Science.gov (United States)

    Xu, Siqi; Wei, Siwei; Dai, Xingui

    2016-01-01

    Sepsis often results in damage to multiple organ systems, possibly due to severe mitochondrial dysfunction. Two members of the sirtuin family, SIRT1 and SIRT3, have been implicated in the reversal of mitochondrial damage. The aim of this study was to determine the role of SIRT1/3 in acute kidney injury (AKI) following sepsis in a septic rat model. After drug pretreatment and cecal ligation and puncture (CLP) model reproduction in the rats, we performed survival time evaluation and kidney tissue extraction and renal tubular epithelial cell (RTEC) isolation. We observed reduced SIRT1/3 activity, elevated acetylated SOD2 (ac-SOD2) levels and oxidative stress, and damaged mitochondria in RTECs following sepsis. Treatment with resveratrol (RSV), a chemical SIRT1 activator, effectively restored SIRT1/3 activity, reduced acetylated SOD2 levels, ameliorated oxidative stress and mitochondrial function of RTECs, and prolonged survival time. However, the beneficial effects of RSV were greatly abrogated by Ex527, a selective inhibitor of SIRT1. These results suggest a therapeutic role for SIRT1 in the reversal of AKI in septic rat, which may rely on SIRT3-mediated deacetylation of SOD2. SIRT1/3 activation could therefore be a promising therapeutic strategy to treat sepsis-associated AKI. PMID:28003866

  2. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  3. Hemin Attenuates Cisplatin-Induced Acute Renal Injury in Male Rats

    Directory of Open Access Journals (Sweden)

    Mohamed A. Al-Kahtani

    2014-01-01

    Full Text Available Background. The aim of this study is to investigate the protective effects of hemin (the heme oxygenase-1 [OH-1] inducer against nephrotoxic effects induced by cisplatin [cis-diamminedichloroplatinum II (CP] in male rats. Methods. The evaluation was performed through monitoring renal redox parameters: lipid peroxidation (LPO, glutathione peroxidase (GPx, superoxide dismutase (SOD, glutathione reductase (GR, and reduced glutathione (GSH. The work also examined renal function tests (urea and creatinine, tissue proinflammatory mediator like nitric oxide (NO, and kidney cytopathology. Results. A single intraperitoneal dose of CP (10 mg/kg b.w. caused significant elevation of blood urea, serum creatinine, and renal LPO and NO, along with significant decline of the activities of GPx and GR, but renal SOD activity and GSH level were statistically insignificant as compared to control group. Subcutaneous injection of hemin (40 µmol/kg b.w. partially ameliorated CP-induced renal damage, based on suppression of blood urea, serum creatinine, the renal MDA and NO levels, and increased antioxidant capacity in CP-treated rats. The results of histopathological and ultrastructural investigations supported the renoprotective effect of hemin against CP-induced acute toxicity. Conclusion. The induction of HO-1 by hemin is a promising approach in the treatment of CP-induced nephrotoxicity. However, further preclinical studies are warranted to test effectiveness of CP/hemin on the outcome of tumor chemotherapy.

  4. Calpain Inhibition Attenuates Apoptosis of Retinal Ganglion Cells in Acute Optic Neuritis

    Science.gov (United States)

    Smith, Amena W.; Das, Arabinda; Guyton, M. Kelly; Ray, Swapan K.; Rohrer, Baerbel

    2011-01-01

    Purpose. Optic neuritis (ON), inflammation of the optic nerve, is strongly associated with the pathogenesis of multiple sclerosis (MS) and is initiated by the attack of autoreactive T cells against self-myelin antigens, resulting in demyelination, degeneration of retinal ganglion cells (RGCs), and cumulative visual impairment. Methods. Experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats on day 0, and animals received daily intraperitoneal injections of calpain inhibitor (calpeptin) or vehicle from day 1 until killed. Retinal cell death was analyzed by DNA fragmentation, and surviving ganglion cells were quantified after double labeling of retinal tissue with TUNEL and Brn3a. The expression of apoptotic and inflammatory proteins was determined by Western blotting. Results. It was demonstrated that calpain inhibition downregulates expression of proapoptotic proteins and the proinflammatory molecule nuclear factor-kappa B (NF-κB) in the retina of Lewis rats with acute EAE. Immunofluorescent labeling revealed that apoptotic cells in the RGC layer of vehicle-treated EAE animals were Brn3a positive, and a moderate dose of calpeptin dramatically reduced the frequency of apoptotic RGCs. Conclusions. These results suggest that calpain inhibition might be a useful supplement to immunomodulatory therapies such as corticosteroids in ON, due to its neuroprotective effect on RGCs. PMID:21613375

  5. Infusion of Bone Marrow Mesenchymal Stem Cells Attenuates Experimental Severe Acute Pancreatitis in Rats

    Science.gov (United States)

    Huang, Dandan; Gao, Jun; Gong, Yanfang; Wu, Hongyu; Xu, Aifang

    2016-01-01

    Background & Aims. Severe acute pancreatitis (SAP) remains a high-mortality disease. Bone marrow (BM) mesenchymal stem cells (MSCs) have been demonstrated to have plasticity of transdifferentiation and to have immunomodulatory functions. In the present study, we assessed the roles of MSCs in SAP and the therapeutic effects of MSC on SAP after transplantation. Methods. A pancreatitis rat model was induced by the injection of taurocholic acid (TCA) into the pancreatic duct. After isolation and characterization of MSC from BM, MSC transplantation was conducted 24 hrs after SAP induction by tail vein injection. The survival rate was observed and MSCs were traced after transplantation. The expression of TNF-α and IL-1β mRNA in the transplantation group was also analyzed. Results. The survival rate of the transplantation group was significantly higher compared to the control group (p pancreas and BM 3 days after transplantation. The expression of TNF-α and IL-1β mRNA in the transplantation group was significantly lower than in the control group in both the pancreas and the lungs (p < 0.05). Conclusions. MSC transplantation could improve the prognosis of SAP rats. Engrafted MSCs have the capacity of homing, migration, and planting during the treatment of SAP. PMID:27721836

  6. Methylene blue attenuates acute liver injury induced by paraquat in rats.

    Science.gov (United States)

    Chen, Jun-Liang; Dai, Li; Zhang, Peng; Chen, Wei; Cai, Gao-Shan; Qi, Xiao-Wei; Hu, Ming-Zhu; Du, Bin; Pang, Qing-Feng

    2015-09-01

    Paraquat (PQ) poisoning often leads to severe oxidative liver injury. Recent studies have reported that methylene blue (MB) can prevent oxidative stress-induced diseases. This study tested the hypothesis that MB treatment reduced acute liver injury induced by PQ in rats. Adult male Sprague-Dawley (SD) rats were randomly divided into four groups: (1) normal group, (2) MB group (2mg/kg i.p.), (3) PQ group (35 mg/kg i.p.) and (4) PQ+MB group (MB 2mg/kg i.p. administrated 2h after PQ). We evaluated the changes of liver histopathology, serum liver enzymatic activities, oxidative stress, heme oxygenase-1 expression, and mitochondrial permeability transition. The rats were injected with PQ produced liver injury, evidenced by histological changes and elevated serum alkaline phosphatase and alanine transaminase levels; PQ also led to oxidative stress, an increase of malondialdehyde content and mitochondrial permeability transition pore opening. Pathological damage and all of the above mentioned markers were reversed in the animals treated with MB than in those who received PQ alone. Meanwhile, MB significantly increased the contents of superoxide dismutase, adenosine triphosphate and the expression of heme oxygenase-1. In conclusion, MB had a protective effect against PQ-induced hepatic damage in rats. The mechanisms of the protection seem to be the inhibition of mitochondrial permeability transition opening and the increase of heme oxygenase-1 expression.

  7. Leptin attenuates lipopolysaccharide or oleic acid-induced acute lung injury in mice.

    Science.gov (United States)

    Dong, Hai-Ying; Xu, Min; Ji, Zhen-Yu; Wang, Yan-Xia; Dong, Ming-Qing; Liu, Man-Ling; Xu, Dun-Quan; Zhao, Peng-Tao; Liu, Yi; Luo, Ying; Niu, Wen; Zhang, Bo; Ye, Jing; Li, Zhi-Chao

    2013-12-01

    Leptin is reported to be involved in acute lung injury (ALI). However, the role and underlying mechanisms of leptin in ALI remain unclear. The aim of this study was to determine whether leptin deficiency promoted the development of ALI. LPS or oleic acid (OA) were administered to wild-type and leptin deficient (ob/ob) mice to induce ALI. Leptin level, survival rate, and lung injury were examined. Results showed that leptin levels were predominantly increased in the lung, but also in the heart, liver, kidney, and adipose tissue after LPS adminiatration. Compared with wild-type mice, LPS- or OA-induced lung injury was worse and the survival rate was lower in ob/ob mice. Moreover, leptin deficiency promoted the release of proinflammatory cytokines. Exogenous administration of leptin reduced lethality in ob/ob mice and ameliorated lung injury partly through inhibiting the activation of NF-κB, p38, and ERK pathways. These results indicated that leptin deficiency contributed to the development of lung injury by enhancing inflammatory response, and a high level of leptin improved survival and protected against ALI.

  8. Intravenous injection of Xuebijing attenuates acute kidney injury in rats with paraquat intoxication

    Science.gov (United States)

    Xu, Jia-jun; Zhen, Jian-tao; Tang, Li; Lin, Qing-ming

    2017-01-01

    BACKGROUND: The study aimed to investigate the therapeutic benefits of intravenous Xuebijing on acute kidney injury (AKI) in rats with paraquat intoxication. METHODS: Male Sprague-Dawley rats were randomly divided equally into three groups: sham group (n=8), paraquat group (n=8) and Xuebijing-treated group (n=8) using a random number table. The rats were intraperitoneally injected with 50 mg/kg of paraquat. One hour after paraquat administration, the rats were treated intravenously with Xuebijing (8 mL/kg). At 12 hours after paraquat administration, serum was collected to evaluate kidney function, then the rats were sacrificed and kidney samples were immediately harvested. AKI scores were evaluated by renal histopathology and pro-inflammatory cytokines mRNA levels in kidney were assayed using real-time RT-PCR. RESULTS: Serum urea nitrogen, creatinine and AKI scores were significantly higher in the paraquat group, compared with the sham group (Pparaquat group (Pparaquat group (Pparaquat poisoning by suppressing inflammatory response. PMID:28123623

  9. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    Directory of Open Access Journals (Sweden)

    Ye Han

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer and analyzed by high performance liquid chromatography (HPLC and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days drastically prevented the elevated activities of aspartate transaminase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP and triglyceride (TG in serum and the levels of malondialdehyde (MDA, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β in liver tissue (p < 0.05. Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT, superoxide dismutase (SOD, glutathione peroxidase (GSH-Px were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05. Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  10. Ischemic post-conditioning attenuates acute lung injury induced by intestinal ischemia-reperfusion in mice: role of Nrf2.

    Science.gov (United States)

    Meng, Qing-Tao; Cao, Chen; Wu, Yang; Liu, Hui-Min; Li, Wei; Sun, Qian; Chen, Rong; Xiao, Yong-Guang; Tang, Ling-Hua; Jiang, Ying; Leng, Yan; Lei, Shao-Qing; Lee, Chris C; Barry, Devin M; Chen, Xiangdong; Xia, Zhong-Yuan

    2016-10-01

    Intestinal ischemic post-conditioning (IPo) protects against lung injury induced by intestinal ischemia-reperfusion (IIR) partly through promotion of expression and function of heme oxygenase-1 (HO-1). NF-E2-related factor-2 (Nrf2) is a key transcription factor that interacts with HO-1 and regulates antioxidant defense. However, the role of Nrf2 in IPo protection of IIR-induced pulmonary injury is not completely understood. Here we show that IPo significantly attenuated IIR-induced lung injury and suppressed oxidative stress and systemic inflammatory responses. IPo also increased the expression of both Nrf2 and HO-1. Consistently, the beneficial effects of IPo were abolished by ATRA and Brusatol, potent inhibitors of Nrf2. Moreover, the Nrf2 agonist t-BHQ showed similar activity as IPo. Taken together, our data suggest that Nrf2 activity, along with HO-1, plays an important role in the protective effects of IPo against IIR-induced acute lung injury.

  11. Acute pancreatitis-induced enzyme release and necrosis are attenuated by IL-1 antagonism through an indirect mechanism.

    Science.gov (United States)

    Fink, G; Yang, J; Carter, G; Norman, J

    1997-01-01

    Interleukin-1 beta (IL-1) is a proinflammatory cytokine which is produced within the pancreas during acute pancreatitis reaching levels which are toxic to many cell types. Since antagonism of this cytokine provides dramatic survival benefits during lethal pancreatitis, we hypothesized that IL-1 had direct secretagogue and cytolytic effects within the pancreas. The effect of IL-1 on pancreatic exocrine function and tissue viability was assessed in vivo by blockade of IL-1 with varying doses of IL-1 receptor antagonist (IL-1ra) prior to the induction of either moderate (caerulein-induced) or severe (choline deficient diet-induced) necrotizing pancreatitis. Subsequent in vitro studies were conducted to determine the direct effect of IL-1 on dispersed rat acini prepared through collagenase digestion. Amylase release was measured after a 30-min incubation with varying doses of recombinant IL-1 beta. Viability was determined in the presence of IL-1 via trypan blue exclusion at multiple time points. Blockade of the IL-1 receptor decreased pancreatic amylase release and tissue necrosis in both models of pancreatitis in a dose-dependent fashion (1.0 mg/kg, P = NS; 10 mg/kg, P amylase release and tissue necrosis are significantly attenuated during experimental pancreatitis by IL-1 antagonism. These changes do not appear to be due to the direct action of IL-1 on pancreatic acini and are likely due to more complex interactions between acini and cytokine-producing leukocytes.

  12. Intrathecal morphine attenuates acute opioid tolerance secondary to remifentanil infusions during spinal surgery in adolescents

    Directory of Open Access Journals (Sweden)

    Tripi PA

    2015-09-01

    Full Text Available Paul A Tripi,1 Matthew E Kuestner,1 Connie S Poe-Kochert,2 Kasia Rubin,1 Jochen P Son-Hing,2 George H Thompson,2 Joseph D Tobias3 1Division of Pediatric Anesthesiology, 2Division of Pediatric Orthopaedic Surgery, Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, 3Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, Columbus, OH, USA Introduction: The unique pharmacokinetic properties of remifentanil with a context-sensitive half-life unaffected by length of infusion contribute to its frequent use during anesthetic management during posterior spinal fusion in children and adolescents. However, its intraoperative administration can lead to increased postoperative analgesic requirements, which is postulated to be the result of acute opioid tolerance with enhancement of spinal N-methyl-D-aspartate receptor function. Although strategies to prevent or reduce tolerance have included the coadministration of longer acting opioids or ketamine, the majority of these studies have demonstrated little to no benefit. The current study retrospectively evaluates the efficacy of intrathecal morphine (ITM in preventing hyperalgesia following a remifentanil infusion.Methods: We retrospectively analyzed 54 patients undergoing posterior spinal fusion with segmental spinal instrumentation, to evaluate the effects of ITM on hyperalgesia from remifentanil. Patients were divided into two groups based on whether they did or did not receive remifentanil during the surgery: no remifentanil (control group (n=27 and remifentanil (study group (n=27. Data included demographics, remifentanil dose and duration, Wong–Baker visual analog scale postoperative pain scores, and postoperative intravenous morphine consumption in the first 48 postoperative hours.Results: The demographics of the two study groups were similar. There were no differences in the Wong–Baker visual analog

  13. Sulfur dioxide attenuates LPS-induced acute lung injury via enhancing polymorphonuclear neutrophil apoptosis

    Institute of Scientific and Technical Information of China (English)

    Hui-jie MA; Xin-li HUANG; Yan LIU; Ya-min FAN

    2012-01-01

    Aim:We speculated that the enhanced apoptosis of polymorphonuclear neutrophil (PMN) might be responsible for the inhibition of PMN infiltration in the lung.This study was designed to investigate the effects of sulfur dioxide (SO2) on PMN apoptosis in vivo and in vitro,which may mediate the protective action of SO2 on pulmonary diseases.Methods:Acute lung injury (ALI) was induced by intratracheally instillation of lipopolysaccharide (LPS,100 μg/100 g.in 200 μL saline) in adult male SD rats.SO2 solution (25 μmol/kg) was administered intraperitoneally 30 min before LPS treatment.The rats were killed 6 h after LPS treatment.Lung tissues were collected for histopathologic study and SO2 concentration assay.Bronchoalveolar lavage fluid (BALF) was collected for the measurement of PMN apoptosis.For in vitro experiments,rat peripheral blood PMNs were cultured and treated with LPS (30 mg/L) and S02 (10,20 and 30 μmol/L) for 6 h,and apoptosis-related protein expression was detected by Western blotting,and apoptosis rate was measured with flow cytometry.Results:LPS treatment significantly reduced the SO2 concentrations in the lung tissue and peripheral blood,as compared with the control group.Pretreatment with SO2 prevented LPS-induced reduction of the SO2 concentration in the lung tissue and peripheral blood.LPS treatment significantly reduced PMN apoptosis both in vivo and in vitro,which could be prevented by the pretreatment with SO2.The protein levels of caspase-3 and Bax was significantly increased,but Bcl-2 was decreased by the pretreatment with SO2,as compared with LPS administration alone.Conclusion:SO2 plays an important role as the modulator of PMN apoptosis during LPS-induced ALl,which might be one of the mechanisms underlying the protective action of SO2 on pulmonary diseases.

  14. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China); Li, Jianguo, E-mail: 2010lijianguo@sina.cn [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  15. Blocking Cyclic Adenosine Diphosphate Ribose-mediated Calcium Overload Attenuates Sepsis-induced Acute Lung Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    Qian-yi Peng; Yu Zou; Li-Na Zhang; Mei-Lin Ai; Wei Liu; Yu-Hang Ai

    2016-01-01

    Background:Acute lung injury (ALI) is a common complication of sepsis that is associated with high mortality.Intracellular Ca2+ overload plays an important role in the pathophysiology of sepsis-induced ALI,and cyclic adenosine diphosphate ribose (cADPR) is an important regulator of intracellular Ca2+ mobilization.The cluster of differentiation 38 (CD38)/cADPR pathway has been found to play roles in multiple inflammatory processes but its role in sepsis-induced ALI is still unknown.This study aimed to investigate whether the CD38/cADPR signaling pathway is activated in sepsis-induced ALI and whether blocking cADPR-mediated calcium overload attenuates ALI.Methods:Septic rat models were established by cecal ligation and puncture (CLP).Rats were divided into the sham group,the CLP group,and the CLP+ 8-bromo-cyclic adenosine diphosphate ribose (8-Br-cADPR) group.Nicotinamide adenine dinucleotide (NAD+),cADPR,CD38,and intracellular Ca2+ levels in the lung tissues were measured at 6,12,24,and 48 h after CLP surgery.Lung histologic injury,tumor necrosis factor (TNF)-α,malondialdehyde (MDA) levels,and superoxide dismutase (SOD) activities were measured.Results:NAD+,cADPR,CD38,and intracellular Ca2+ levels in the lungs of septic rats increased significantly at 24 h after CLP surgery.Treatment with 8-Br-cADPR,a specific inhibitor of cADPR,significantly reduced intracellular Ca2+ levels (P =0.007),attenuated lung histological injury (P =0.023),reduced TNF-α and MDA levels (P < 0.001 and P =0.002,respectively) and recovered SOD activity (P =0.031) in the lungs of septic rats.Conclusions:The CD38/cADPR pathway is activated in the lungs of septic rats,and blocking cADPR-mediated calcium overload with 8-Br-cADPR protects against sepsis-induced ALI.

  16. Galunisertib (LY2157299), a transforming growth factor-β receptor I kinase inhibitor, attenuates acute pancreatitis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [Department of General Surgery, the Affiliated Hospital of Qingdao University, Qingdao (China); Department of General Surgery, People' s Hospital of Chengyang, Qingdao (China); Yu, M. [Department of Clinical Laboratory, the Women and Children' s Hospital of Qingdao, Qingdao (China); Chen, Y. [Department of Traditional Chinese Medicine, the Affiliated Hospital of Qingdao University, Qingdao (China); Zhang, J. [Department of General Surgery, the Affiliated Hospital of Qingdao University, Qingdao (China)

    2016-08-08

    Galunisertib (LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGF-βRI), is the only known TGF-β pathway inhibitor. In the present study, we investigated the effect of galunisertib on taurocholate (TAC)-induced acute pancreatitis (AP) in rats, and the role of TGF-β and NF-κB signaling pathways. AP was induced by infusion of TAC into the pancreatic duct of Sprague-Dawley male rats (n=30). The rats (220±50 g) were administered galunisertib intragastrically [75 mg·kg{sup -1}·day{sup -1} for 2 days (0 and 24 h)]. Serum IL-1β, IL-6, TNF-α, amylase (AMY), lipase (LIP), and myeloperoxidase (MPO) levels were measured by ELISA. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); NF-κBp65 and TGF-β1 proteins, as well as TGF-βRI and p-Smad2/3 proteins, were detected by western blot assay. Cell apoptosis was detected by TUNEL assay. H&E staining was used to evaluate the histopathological alterations of the pancreas. Galunisertib treatment attenuated the severity of AP and decreased the pancreatic histological score. In addition, number of apoptotic cells were significantly increased in the galunisertib-treated group (16.38±2.26) than in the AP group (8.14±1.27) and sham-operated group (1.82±0.73; P<0.05 and P<0.01, respectively). Galunisertib decreased the expression levels of TGF-βRI and p-Smad2/3 and inhibited NF-κB activation and p65 translocation compared with the sham-operated group. Furthermore, serum IL-1β, IL-6, TNF-α, AMY and LIP levels and tissue MPO activity were significantly decreased in the galunisertib-treated group. Our data demonstrate that galunisertib attenuates the severity of TAC-induced experimental AP in rats by inducing apoptosis in the pancreas, inhibiting the activation of TGF-β signals and NF-κB as well as the secretion of pro-inflammatory cytokines.

  17. Different attenuated phenotypes of GM2 gangliosidosis variant B in Japanese patients with HEXA mutations at codon 499, and five novel mutations responsible for infantile acute form.

    Science.gov (United States)

    Tanaka, Akemi; Hoang, Lan Thi Ngcok; Nishi, Yasuaki; Maniwa, Satoshi; Oka, Makio; Yamano, Tsunekazu

    2003-01-01

    Eight mutations of the alpha subunit of beta-hexosaminidase A gene ( HEXA) were identified in eight patients with GM2 gangliosidosis variant B. They were five missense mutations, two splice-site mutations, and one two-base deletion. Five of them, R252L (CGT-->CTT), N295S (AAT-->AAC), W420C (TGG-->TGT), IVS 13, +2A-->C, and del 265-266AC (exon 2), were novel mutations responsible for infantile acute form of GM2 gangliosidosis. Two missense mutations, R499H and R499C, were found in one allele of two patients with attenuated phenotypes. The patient with R499C showed a late infantile form, and the other patient with R499H showed a juvenile form. These two mutations have been reported previously in the patients of other ethnic groups, and they have been known to cause attenuated phenotypes. The milder phenotypes of GM2 gangliosidosis variant B, different from the infantile acute form, have not been reported so far in Japan, and this is the first report of Japanese patients with attenuated phenotypes and their molecular analysis.

  18. Neovestitol, an isoflavonoid isolated from Brazilian red propolis, reduces acute and chronic inflammation: involvement of nitric oxide and IL-6

    OpenAIRE

    Marcelo Franchin; Colón, David F.; da Cunha, Marcos G; Castanheira, Fernanda V. S.; André L. L. Saraiva; Bruno Bueno-Silva; Alencar,Severino M.; Cunha, Thiago M; Rosalen, Pedro L.

    2016-01-01

    Isoflavonoids have been largely studied due to their distinct biological activities identified thus far. Herein, we evaluated the activity of neovestitol, an isoflavonoid isolated from Brazilian red propolis, in acute and chronic inflammation. As for acute inflammation, we found that neovestitol reduced neutrophil migration, leukocyte rolling and adhesion, as well as expression of ICAM-1 in the mesenteric microcirculation during lipopolysaccharide-induced acute peritonitis. No changes were ob...

  19. Methyl 9-Oxo-(10E,12E)-octadecadienoate Isolated from Fomes fomentarius Attenuates Lipopolysaccharide-Induced Inflammatory Response by Blocking Phosphorylation of STAT3 in Murine Macrophages.

    Science.gov (United States)

    Choe, Ji-Hyun; Yi, Young-Joo; Lee, Myeong-Seok; Seo, Dong-Won; Yun, Bong-Sik; Lee, Sang-Myeong

    2015-09-01

    Fomes fomentarius is a fungus of the Polyporaceae family and is used in traditional oriental therapies. Although the anti-inflammatory activities of this species have been previously reported, the identity of the bioactive compounds responsible for this activity remains unknown. Here, we investigated whether methyl 9-oxo-(10E,12E)-octadecadienoate (FF-8) purified from F. fomentarius exerts anti-inflammatory activity in murine macrophages stimulated with lipopolysaccharide (LPS). FF-8 suppressed secretion of nitric oxide (NO) and prostaglandin E2 through downregulation of inducible NO synthase and cyclooxygenase-2 expression induced by LPS. In addition, pretreatment of cells with FF-8 led to a reduction in levels of secreted inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 in macrophages stimulated with LPS. Conversely, FF-8 did not affect nuclear factor κB, p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase pathways. Instead, FF-8 specifically interfered with signal transducer and activator of transcription 3 (STAT3) phosphorylation induced by LPS. Collectively, this study demonstrated that FF-8 purified from F. fomentarius suppresses inflammatory responses in macrophages stimulated with LPS by inhibiting STAT3 activation. Further studies will be required to elucidate the anti-inflammatory effect of FF-8 in vivo.

  20. Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis.

    Science.gov (United States)

    Zhang, Yun-Fang; Zou, Xun-Liang; Wu, Jun; Yu, Xue-Qing; Yang, Xiao

    2015-12-01

    We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague-Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis.

  1. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase.

    Science.gov (United States)

    Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao

    2015-07-01

    Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein.

  2. Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells.

    Science.gov (United States)

    Park, Sun Young; Seetharaman, Rajasekar; Ko, Min Jung; Kim, Do Yeon; Kim, Tae Hoon; Yoon, Moo Kyoung; Kwak, Jung Ho; Lee, Sang Joon; Bae, Yoe Sik; Choi, Young Whan

    2014-04-01

    In the present study, an essential fatty acid, ethyl linoleate (ELA), was isolated from the cloves of Allium sativum, and its structure was elucidated by NMR and GC-MS analyses. In vitro systems were used to evaluate the anti-inflammatory activity of ELA. Our results indicate that ELA down-regulates inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and thereby reduces nitric oxide (NO) and prostaglandin E2 production in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Immunofluorescent microscopy and western blot analyses revealed that these effects were mediated by impaired translocation of nuclear factor (NF)-κB and inhibition of phosphorylation of mitogen activated protein kinases. Furthermore, ELA exerted its anti-inflammatory activity by inducing heme oxygenase-1 (HO-1) expression, as determined by HO-1 small interfering (Si) RNA system. Si RNA-mediated knock-down of HO-1 abrogated the inhibitory effects of ELA on the production of NO, TNF-α, IL-1β, and IL-6 in LPS-induced macrophages. These findings indicate the potential therapeutic use of ELA as an anti-inflammatory agent.

  3. Inhibition of secretory phospholipase A2 activity attenuates acute cardiogenic pulmonary edema induced by isoproterenol infusion in mice after myocardial infarction.

    Science.gov (United States)

    Kawabata, Kenichi; Fujioka, Daisuke; Kobayashi, Tsuyoshi; Saito, Yukio; Obata, Jun-Ei; Nakamura, Takamitsu; Yano, Toshiaki; Watanabe, Kazuhiro; Watanabe, Yosuke; Mishina, Hideto; Kugiyama, Kiyotaka

    2010-10-01

    Several types of secretory phospholipase A2 (sPLA2) are expressed in lung tissue, yielding various eicosanoids that might cause pulmonary edema. This study examined whether inhibition of sPLA2 activity attenuates acute cardiogenic pulmonary edema in mice. Acute cardiogenic pulmonary edema was induced in C57BL/6J male mice by an increase in heart rate with continuous intravenous infusion of isoproterenol (ISP) (10 mg/kg/h) at 2 weeks after the creation of myocardial infarction by left coronary artery ligation. Just before ISP infusion, a single intraperitoneal injection of 100 mg/kg LY374388, a prodrug of LY329722 that inhibits sPLA2 activity, or vehicle was administered. The ISP infusion after myocardial infarction induced interstitial and alveolar edema on lung histology. Furthermore, it increased the lung-to-body weight ratio, pulmonary vascular permeability evaluated by the Evans blue extravasation method, lung activity of sPLA2, and lung content of thromboxane A2 and leukotriene B4. These changes were significantly attenuated by LY374388 treatment. In Kaplan-Meier analysis, the survival rate during the ISP infusion after myocardial infarction was significantly higher in LY374388- than in vehicle-treated mice. Similar results were obtained with another inhibitor of sPLA2 activity, para-bromophenacyl bromide. In conclusion, inhibition of sPLA2 activity suppressed acute cardiogenic pulmonary edema.

  4. Atrial natriuretic peptide attenuates inflammatory responses on oleic acid-induced acute lung injury model in rats

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; ZHANG Yan-bo; LIU Dong-hai; LI Xiao-feng; LIU Ai-jun; FAN Xiang-ming; QIAO Chen-hui

    2013-01-01

    Background An inflammatory response leading to organ dysfunction and failure continues to be a major problem after injury in many clinical conditions such as sepsis,severe burns,and trauma.It is increasingly recognized that atrial natriuretic peptide (ANP) possesses a broad range of biological activities,including effects on endothelial function and inflammation.A recent study has revealed that ANP exerts anti-inflammatory effects.In this study we tested the effects of human ANP (hANP) on lung injury in a model of oleic acid (OA)-induced acute lung injury (ALl) in rats.Methods Rats were randomly assigned to three groups (n=6 in each group).Rats in the control group received a 0.9% solution of NaCl (1 ml.kg1.h-1) by continuous intravenous infusion,after 30 minutes a 0.9% solution of NaCl (1 ml/kg) was injected intravenously,and then the 0.9% NaCl infusion was restarted.Rats in the ALl group received a 0.9% NaCl solution (1 ml·kg-1·h-1) intravenous infusion,after 30 minutes OA was injected intravenously (0.1 ml/kg),and then the 0.9% NaCl infusion was restarted.Rats in the hANP-treated ALI group received a hANP (0.1μg·kg-1·min-1) infusion,after 30 minutes OA was injected intravenously (0.1 ml/kg),and then the hANP infusion was restarted.The anti-inflammation effects of hANP were evaluated by histological examination and determination of serum cytokine levels.Results Serum intedeukin (IL)-1β,IL-6,IL-10 and tumor necrosis factor (TNF) α were increased in the ALI group at six hours.The levels of all factors were significantly lower in the hANP treated rats (P <0.005).Similarly,levels of IL-1β,IL-6,IL-10 and TNF-α were higher in the lung tissue in the ALI group at six hours.hANP treatment significantly reduced the levels of these factors in the lungs (P <0.005).Histological examination revealed marked reduction in interstitial congestion,edema,and inflammation.Conclusion hANP can attenuate inflammation in an OA-induced lung injury in rat model.

  5. Protective effects of lupeol against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice.

    Science.gov (United States)

    Kim, So-Jin; Cho, Hong-Ik; Kim, Seok-Joo; Kim, Joon-Sung; Kwak, Jong-Hwan; Lee, Dong-Ung; Lee, Sang Kook; Lee, Sun-Mee

    2014-11-26

    This study examined the hepatoprotective effects of lupeol (1, a major active triterpenoid isolated from Adenophora triphylla var. japonica) against d-galactosamine (GalN) and lipopolysaccharide (LPS)-induced fulminant hepatic failure. Mice were orally administered 1 (25, 50, and 100 mg/kg; dissolved in olive oil) 1 h before GalN (800 mg/kg)/LPS (40 μg/kg) treatment. Treatment with GalN/LPS resulted in increased levels of serum alanine aminotransferase, tumor necrosis factor (TNF)-α, and interleukin (IL)-6, as well as increased mortality, all of which were attenuated by treatment with 1. In addition, levels of toll-like receptor (TLR)4, myeloid differentiation primary response gene 88, TIR-domain-containing adapter-inducing interferon-β (TRIF), IL-1 receptor-associated kinase (IRAK)-1, and TNF receptor associated factor 6 protein expression were increased by GalN/LPS. These increases, except TRIF, were attenuated by 1. Interestingly, 1 augmented GalN/LPS-mediated increases in the protein expression of IRAK-M, a negative regulator of TLR signaling. Following GalN/LPS treatment, nuclear translocation of nuclear factor-κB and the levels of TNF-α and IL-6 mRNA expression increased, which were attenuated by 1. Together, the present findings suggest that lupeol (1) ameliorates GalN/LPS-induced liver injury, which may be due to inhibition of IRAK-mediated TLR inflammatory signaling.

  6. Reversible inactivation of rostral nucleus raphe pallidus attenuates acute autonomic responses but not their habituation to repeated audiogenic stress in rats.

    Science.gov (United States)

    Nyhuis, Tara J; Masini, Cher V; Taufer, Kirsten L; Day, Heidi E W; Campeau, Serge

    2016-01-01

    The medullary nucleus raphe pallidus (RPa) mediates several autonomic responses evoked by acute stress exposure, including tachycardia and hyperthermia. The present study assessed whether the RPa contributes to the decline/habituation of these responses observed during repeated audiogenic stress. Adult male rats were implanted with cannulae aimed at the RPa, and abdominal E-mitters that wirelessly acquire heart rate and core body temperature. After surgical recovery, animals were injected with muscimol or vehicle (aCSF) in the RPa region, followed by 30 min of 95-dBA loud noise or no noise control exposures on 3 consecutive days at 24-h intervals. Forty-eight hours after the third exposure, animals were exposed to an additional, but injection-free, loud noise or no noise test to assess habituation of hyperthermia and tachycardia. Three days later, rats were restrained for 30-min to evaluate their ability to display normal acute autonomic responses following the repeated muscimol injection regimen. The results indicated that the inhibition of cellular activity induced by the GABAA-receptor agonist muscimol centered in the RPa region reliably attenuated acute audiogenic stress-evoked tachycardia and hyperthermia, compared with vehicle-injected rats. Animals in the stress groups exhibited similar attenuated tachycardia and hyperthermia during the injection-free fourth audiogenic stress exposure, and displayed similar and robust increases in these responses to the subsequent restraint test. These results suggest that cellular activity in neurons of the RPa region is necessary for the expression of acute audiogenic stress-induced tachycardia and hyperthermia, but may not be necessary for the acquisition of habituated tachycardic responses to repeated stress.

  7. Acute anxiogenic-like effects of selective serotonin reuptake inhibitors are attenuated by the benzodiazepine diazepam in BALB/c mice.

    Science.gov (United States)

    Birkett, Melissa A; Shinday, Nina M; Kessler, Eileen J; Meyer, Jerrold S; Ritchie, Sarah; Rowlett, James K

    2011-06-01

    Selective serotonin re-uptake inhibitors (SSRIs), which are used commonly to treat anxiety disorders, have characteristic anxiogenic effects following acute administration. Treatment with anxiolytic benzodiazepines (BZs) may reduce these effects, although little is known about potential drug interactions. Our study evaluated acute anxiogenic-like effects of SSRIs, alone and combined with a BZ. Adult male BALB/c mice received fluoxetine (3.0-30.0mg/kg, i.p.) or citalopram (3.0-30.0mg/kg, i.p.) alone or in combination with diazepam (0.3-10.0mg/kg, i.p.), after which they were evaluated with the light/dark and open-field tests for anxiogenesis/anxiolysis. In addition, release of the stress hormone corticosterone was assessed following combined SSRI/BZ administration. In the light/dark and open-field tests, acute SSRIs produced a behavioral profile consistent with anxiogenesis, while diazepam produced an anxiolytic-like profile. Pre-treatment with diazepam (0.3-10mg/kg) reversed the effects of an anxiogenic-like dose of an SSRI (18mg/kg fluoxetine, 30mg/kg citalopram) in both light/dark and open-field tests. Diazepam, fluoxetine or citalopram, and their combination all significantly increased plasma corticosterone levels to the same degree. These findings suggest that a BZ-type drug can attenuate acute anxiogenic-like effects of an SSRI via a mechanism independent of corticosterone regulation.

  8. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice.

    Science.gov (United States)

    Tominari, Tsukasa; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki

    2015-01-01

    Epigallocatechin gallate (EGCG), a major polyphenol in green tea, possesses antioxidant properties and regulates various cell functions. Here, we examined the function of EGCG in inflammatory bone resorption. In calvarial organ cultures, lipopolysaccharide (LPS)-induced bone resorption was clearly suppressed by EGCG. In osteoblasts, EGCG suppressed the LPS-induced expression of COX-2 and mPGES-1 mRNAs, as well as prostaglandin E2 production, and also suppressed RANKL expression, which is essential for osteoclast differentiation. LPS-induced bone resorption of mandibular alveolar bones was attenuated by EGCG in vitro, and the loss of mouse alveolar bone mass was inhibited by the catechin in vivo.

  9. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells.

    Science.gov (United States)

    Yoshioka, Yasuhiro; Sugino, Yuta; Tozawa, Azusa; Yamamuro, Akiko; Kasai, Atsushi; Ishimaru, Yuki; Maeda, Sadaaki

    2016-02-01

    Dopamine (DA) has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (-)-(6aR,12bR)-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208-243) and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ), accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.

  10. Hydrogen-Rich Saline Attenuates Acute Renal Injury in Sodium Taurocholate-Induced Severe Acute Pancreatitis by Inhibiting ROS and NF-κB Pathway

    OpenAIRE

    Qiao Shi; Kang-Shu Liao; Kai-Liang Zhao; Wei-Xing Wang; Teng Zuo; Wen-Hong Deng; Chen Chen; Jia Yu; Wen-Yi Guo; Xiao-Bo He; Ablikim Abliz; Peng Wang; Liang Zhao

    2015-01-01

    Hydrogen (H2), a new antioxidant, was reported to reduce •OH and ONOO− selectively and inhibit certain proinflammatory mediators to product, without disturbing metabolic redox reactions or ROS involved in cell signaling. We herein aim to explore its protective effects on acute renal injury in sodium taurocholate-induced acute pancreatitis and its possible mechanisms. Rats were injected with hydrogen-rich saline (HRS group) or normal saline (SO and SAP group) through tail intravenously (6 mL/k...

  11. The caspase-1 inhibitor AC-YVAD-CMK attenuates acute gastric injury in mice: involvement of silencing NLRP3 inflammasome activities.

    Science.gov (United States)

    Zhang, Fang; Wang, Liang; Wang, Jun-jie; Luo, Peng-fei; Wang, Xing-tong; Xia, Zhao-fan

    2016-04-07

    This study evaluated the protective effects of inhibiting caspase-1 activity or gastric acid secretion on acute gastric injury in mice. AC-YVAD-CMK, omeprazole, or vehicle were administered to mice before cold-restraint stress- or ethanol-induced gastric injury. Survival rates and histological evidence of gastric injury of mice pretreated with AC-YVAD-CMK or omeprazole, and exposed to cold-restraint stress, improved significantly relative to the vehicle group. The increased levels of tumour necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-18 following cold-stress injury were decreased by AC-YVAD-CMK, but not omeprazole, pretreatment. The increased expression of CD68 in gastric tissues was inhibited significantly by AC-YVAD-CMK pretreatment. Inhibiting caspase-1 activity in the NLRP3 inflammasome decreased gastric cell apoptosis, and the expression of Bax and cleaved caspase-3. AC-YVAD-CMK pretreatment significantly inhibited cold-restraint stress-induced increases in the expression of phosphorylated IκB-alpha and P38. General anatomy and histological results showed the protective effect of AC-YVAD-CMK on ethanol-induced acute gastric injury. Overall, our results showed that the caspase-1 inhibitor AC-YVAD-CMK protected against acute gastric injury in mice by affecting the NLRP3 inflammasome and attenuating inflammatory processes and apoptosis. This was similar to the mechanism associated with NF-κB and P38 mitogen-activated protein kinase signalling pathways.

  12. Regulation of signal transducer and activator of transcription 3 and apoptotic pathways by betaine attenuates isoproterenol-induced acute myocardial injury in rats.

    Science.gov (United States)

    Zheng, P; Liu, J; Mai, S; Yuan, Y; Wang, Y; Dai, G

    2015-05-01

    The present study was designed to investigate the cardioprotective effects of betaine on acute myocardial ischemia induced experimentally in rats focusing on regulation of signal transducer and activator of transcription 3 (STAT3) and apoptotic pathways as the potential mechanism underlying the drug effect. Male Sprague Dawley rats were treated with betaine (100, 200, and 400 mg/kg) orally for 40 days. Acute myocardial ischemic injury was induced in rats by subcutaneous injection of isoproterenol (85 mg/kg), for two consecutive days. Serum cardiac marker enzyme, histopathological variables and expression of protein levels were analyzed. Oral administration of betaine (200 and 400 mg/kg) significantly reduced the level of cardiac marker enzyme in the serum and prevented left ventricular remodeling. Western blot analysis showed that isoproterenol-induced phosphorylation of STAT3 was maintained or further enhanced by betaine treatment in myocardium. Furthermore, betaine (200 and 400 mg/kg) treatment increased the ventricular expression of Bcl-2 and reduced the level of Bax, therefore causing a significant increase in the ratio of Bcl-2/Bax. The protective role of betaine on myocardial damage was further confirmed by histopathological examination. In summary, our results showed that betaine pretreatment attenuated isoproterenol-induced acute myocardial ischemia via the regulation of STAT3 and apoptotic pathways.

  13. Electroacupuncture acutely improves cerebral blood flow and attenuates moderate ischemic injury via an endothelial mechanism in mice.

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    Full Text Available Electroacupuncture (EA is a novel therapy based on traditional acupuncture combined with modern eletrotherapy that is currently being investigated as a treatment for acute ischemic stroke. Here, we studied whether acute EA stimulation improves tissue and functional outcome following experimentally induced cerebral ischemia in mice. We hypothesized that endothelial nitric oxide synthase (eNOS-mediated perfusion augmentation was related to the beneficial effects of EA by interventions in acute ischemic injury. EA stimulation at Baihui (GV20 and Dazhui (GV14 increased cerebral perfusion in the cerebral cortex, which was suppressed in eNOS KO, but there was no mean arterial blood pressure (MABP response. The increased perfusion elicited by EA were completely abolished by a muscarinic acetylcholine receptor (mAChR blocker (atropine, but not a β-adrenergic receptor blocker (propranolol, an α-adrenergic receptor blocker (phentolamine, or a nicotinic acetylcholine receptor (nAChR blocker (mecamylamine. In addition, EA increased acetylcholine (ACh release and mAChR M3 expression in the cerebral cortex. Acute EA stimulation after occlusion significantly reduced infarct volume by 34.5% when compared to a control group of mice at 24 h after 60 min-middle cerebral artery occlusion (MCAO (moderate ischemic injury, but not 90-min MCAO (severe ischemic injury. Furthermore, the impact of EA on moderate ischemic injury was totally abolished in eNOS KO. Consistent with a smaller infarct size, acute EA stimulation led to prominent improvement of neurological function and vestibule-motor function. Our results suggest that acute EA stimulation after moderate focal cerebral ischemia, but not severe ischemia improves tissue and functional recovery and ACh/eNOS-mediated perfusion augmentation might be related to these beneficial effects of EA by interventions in acute ischemic injury.

  14. Ethyl acetate extracts of alfalfa (Medicago sativa L. sprouts inhibit lipopolysaccharide-induced inflammation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chen Miaw-Ling

    2009-07-01

    Full Text Available Abstract This study aimed to investigate if food components that exert anti-inflammatory effects may be used for inflammatory disorders by examining alfalfa sprout ethyl acetate extract (ASEA. The cytokine profile and life span of BALB/c mice with acute inflammation after intra-peritoneal (ip injection of 15 mg/kg BW lipopolysaccharide (LPS were determined. The results showed that the life span of LPS-induced inflammatory mice were negatively correlated with serum levels of TNF-α, IL-6, and IL-1β at 9 hr after LPS-injection, which indicated that suppressing these cytokines in the late phase of inflammation may be beneficial for survival. The in vitro experiment then showed that ASEA significantly reduced IL-6 and IL-1β production and the NF-κB trans-activation activity of mitogen-stimulated RAW264.7 cells. To further evaluate the anti-inflammatory effects of ASEA in vivo, BALB/c mice were tube-fed with 25 mg ASEA/kg BW/day in 50 μl sunflower oil, while the control and PDTC (pyrrolidine dithiocarbamate, an anti-inflammatory agent groups were tube-fed with 50 μl sunflower oil/day only. After one week of tube-feeding, the PDTC group was injected with 50 mg/kg BW PDTC and one hour later, all of the mice were injected with 15 mg/kg BW LPS. The results showed that the ASEA and PDTC groups had significantly lower serum TNF-α, IL-6, and IL-1β levels at 9 hr after LPS challenge, and significantly higher survival rates than the control group. This study suggests that ASEA supplementation can suppress the production of pro-inflammatory cytokines and alleviate acute inflammatory hazards.

  15. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2

    Directory of Open Access Journals (Sweden)

    Miwa Masaya

    2011-11-01

    Full Text Available Abstract Background Betaine (glycine betaine or trimethylglycine plays important roles as an osmolyte and a methyl donor in animals. While betaine is reported to suppress expression of proinflammatory molecules and reduce oxidative stress in aged rat kidney, the effects of betaine on the central nervous system are not well known. In this study, we investigated the effects of betaine on lipopolysaccharide (LPS-induced memory impairment and on mRNA expression levels of proinflammatory molecules, glial markers, and GABA transporter 2 (GAT2, a betaine/GABA transporter. Methods Mice were continuously treated with betaine for 13 days starting 1 day before they were injected with LPS, or received subacute or acute administration of betaine shortly before or after LPS injection. Then, their memory function was evaluated using Y-maze and novel object recognition tests 7 and 10-12 days after LPS injection (30 μg/mouse, i.c.v., respectively. In addition, mRNA expression levels in hippocampus were measured by real-time RT-PCR at different time points. Results Repeated administration of betaine (0.163 mmol/kg, s.c. prevented LPS-induced memory impairment. GAT2 mRNA levels were significantly increased in hippocampus 24 hr after LPS injection, and administration of betaine blocked this increase. However, betaine did not affect LPS-induced increases in levels of mRNA related to inflammatory responses. Both subacute administration (1 hr before, and 1 and 24 hr after LPS injection and acute administration (1 hr after LPS injection of betaine also prevented LPS-induced memory impairment in the Y-maze test. Conclusions These data suggest that betaine has protective effects against LPS-induced memory impairment and that prevention of LPS-induced changes in GAT2 mRNA expression is crucial to this ameliorating effect.

  16. Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells.

    Science.gov (United States)

    Metzger, Brandon T; Barnes, David M; Reed, Jess D

    2008-05-28

    Carrots ( Daucus carota L.) contain phytochemicals including carotenoids, phenolics, polyacetylenes, isocoumarins, and sesquiterpenes. Purple carrots also contain anthocyanins. The anti-inflammatory activity of extracts and phytochemicals from purple carrots was investigated by determining attenuation of the response to lipopolysaccharide (LPS). A bioactive chromatographic fraction (Sephadex LH-20) reduced LPS inflammatory response. There was a dose-dependent reduction in nitric oxide production and mRNA of pro-inflammatory cytokines (IL-6, IL-1beta, TNF-alpha) and iNOS in macrophage cells. Protein secretions of IL-6 and TNF-alpha were reduced 77 and 66% in porcine aortic endothelial cells treated with 6.6 and 13.3 microg/mL of the LH-20 fraction, respectively. Preparative liquid chromatography resulted in a bioactive subfraction enriched in the polyacetylene compounds falcarindiol, falcarindiol 3-acetate, and falcarinol. The polyacetylenes were isolated and reduced nitric oxide production in macrophage cells by as much as 65% without cytotoxicity. These results suggest that polyacetylenes, not anthocyanins, in purple carrots are responsible for anti-inflammatory bioactivity.

  17. The novel role of platelet-activating factor in protecting mice against lipopolysaccharide-induced endotoxic shock.

    Directory of Open Access Journals (Sweden)

    Young-Il Jeong

    Full Text Available BACKGROUND: Platelet-activating factor (PAF has been long believed to be associated with many pathophysiological processes during septic shock. Here we present novel activities for PAF in protecting mice against LPS-mediated endotoxic shock. PRINCIPAL FINDINGS: In vivo PAF treatment immediately after LPS challenge markedly improved the survival rate against mortality from endotoxic shock. Administration of PAF prominently attenuated LPS-induced organ injury, including profound hypotension, excessive polymorphonuclear neutrophil infiltration, and severe multiple organ failure. In addition, PAF treatment protects against LPS-induced lymphocytes apoptosis. These protective effects of PAF was correlated with significantly decreases in the production of the inflammatory mediators such as TNF-alpha, IL-1beta, IL-12, and IFN-gamma, while increasing production of the anti-inflammatory cytokine IL-10 in vivo and in vitro. CONCLUSIONS: Taken together, these results suggest that PAF may protect mice against endotoxic shock via a complex mechanism involving modulation of inflammatory and anti-inflammatory mediators.

  18. Depression-like behaviors and heme oxygenase-1 are regulated by Lycopene in lipopolysaccharide-induced neuroinflammation.

    Science.gov (United States)

    Zhang, Fang; Fu, Yanyan; Zhou, Xiaoyan; Pan, Wei; Shi, Yue; Wang, Mei; Zhang, Xunbao; Qi, Dashi; Li, Lei; Ma, Kai; Tang, Renxian; Zheng, Kuiyang; Song, Yuanjian

    2016-09-15

    Previous studies have demonstrated that lycopene possesses anti-inflammatory properties in the central nervous system. However, the potential role and the molecular mechanisms of lycopene in lipopolysaccharide (LPS)-challenge inflammation and depression-like behaviors has not been clearly investigated. The present study aimed to assess the effects and the potential mechanisms of lycopene on LPS-induced depression-like behaviors. Lycopene was orally administered (60mg/kg) every day for seven days followed by intraperitoneal LPS injection (1mg/kg). The Forced swim test and tail suspension test were used to detect changes in the depression-like behaviors. ELISA was used to measure the expression of interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α) in the plasma. Immunoblotting was performed to measure the expression of interleukin-1β (IL-1β) and heme oxygenase-1 (HO-1) in the hippocampus. The results showed that pretreatment with lycopene could ameliorate depression-like behaviors. Moreover, lycopene relieved neuronal cell injury in hippocampal CA1 regions. Furthermore, lycopene decreased LPS-induced expression of IL-1β and HO-1 in the hippocampus together with decreasing level of IL-6 and TNF-α in the plasma. Taken together, these results suggest that lycopene can attenuate LPS-induced inflammation and depression-like behaviors, which may be involved in regulating HO-1 in the hippocampus.

  19. In vivo solid-phase microextraction liquid chromatography-tandem mass spectrometry for monitoring blood eicosanoids time profile after lipopolysaccharide-induced inflammation in Sprague-Dawley rats.

    Science.gov (United States)

    Bessonneau, Vincent; Zhan, Yanwei; De Lannoy, Inés A M; Saldivia, Victor; Pawliszyn, Janusz

    2015-12-11

    A fast and non-lethal in vivo solid-phase microextraction (SPME) sampling method for rat blood coupled to liquid chromatography and tandem mass spectrometry (LC-MS/MS) was developed for monitoring rapid changes in concentrations of eicosanoids - lipid mediators involved in the development of inflammatory conditions - using diffusion-based calibration. Sampling rates of target eicosanoids were pre-determined under laboratory conditions with a precision of ≤10%, and directly used for quantification of analyte concentrations in blood after lipopolysaccharide-induced inflammation in Sprague-Dawley rats. Results showed significant changes in unbound plasma concentrations of arachidonic acid (AA) and 12-hydroxyeicosatetraenoic acid (12-HETE) in response to the treatment. Next, performance of the proposed method was compared with protein precipitation (PP) of plasma, a conventional sample preparation technique. Finally, percentages of plasma protein binding (PPB) of specific eicosanoids were determined. PPB of target eicosanoids was in agreement with literature values, ranging from 99.3 to 99.9% for 12-HETE and DHA, respectively. We envision that the proposed method is a particularly suitable alternative to lethal sampling and current methods based on sample depletion in animal studies for accurate monitoring of rapid changes in blood concentrations of small molecules.

  20. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, J. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China); Xiao, F. [Department of Osteology, Pu Ai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Z.Z.; Wang, Y.P.; Chen, K.; Wang, Y.L. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China)

    2013-12-02

    β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M{sub 3} receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.

  1. Toll-like receptor 4 regulates lipopolysaccharide-induced inflammation and lactation insufficiency in a mouse model of mastitis.

    Science.gov (United States)

    Glynn, Danielle J; Hutchinson, Mark R; Ingman, Wendy V

    2014-05-01

    Lactation mastitis is a debilitating inflammatory breast disease in postpartum women. Disease severity is associated with markers of inflammation rather than bacterial load, suggesting that immune-signaling pathways activated in the host are important in the disease pathology. The role of the innate pattern recognition receptor toll-like receptor 4 (TLR4) in progression and resolution of mastitislike disease was investigated in a mouse model. Lipopolysaccharide in Matrigel (10 μg/10 μl) was administered into the teat canal of lactating Tlr4 null mutant and wild-type mice to induce a localized area of inflammation. Mastitis induction resulted in a marked influx of RB6-positive neutrophils and F4/80-positive macrophages, which was higher in Tlr4(-/-) mice compared to wild-type mice. Tlr4 null mutation resulted in an altered immune-signaling fingerprint following induction of mastitis, with attenuated serum cytokines, including CXCL1, CCL2, interleukin 1 beta, and tumor necrosis factor alpha compared to wild-type mice. In both genotypes, the localized area of inflammation had resolved after 7 days, and milk protein was evident. However, the mammary glands of wild-type mice exhibited reduced capacity for milk production, with decreased percent area populated with glandular epithelium and decreased abundance of nuclear phosphorylated signal transducer and activator of transcription 5 compared to Tlr4 null mice. This study demonstrates that inflammatory pathways activated in the host are critically important in mastitis disease progression and suggests that lactation insufficiency associated with mastitis may be a consequence of TLR4-mediated inflammation, rather than the bacterial infection itself.

  2. Cyclic AMP-guanine exchange factor activation inhibits JNK-dependent lipopolysaccharide-induced apoptosis in rat hepatocytes

    Directory of Open Access Journals (Sweden)

    Kathleen Ponzetti

    2010-01-01

    Full Text Available Kathleen Ponzetti1, Melissa King1, Anna Gates1, M Sawkat Anwer2, Cynthia RL Webster11Department of Clinical Science, Tufts Cummings School of Veterinary Medicine, Grafton MA, USA; 2Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, Grafton MA, USAAbstract: Lipopolysaccharide (LPS is known to damage hepatocytes by cytokines released from activated Kupffer cells, but the ancillary role of LPS as a direct hepatotoxin is less well characterized. The aim of this study was to determine the direct effect of LPS on hepatocyte viability and the underlying signaling mechanism. Rat hepatocyte cultures treated overnight with LPS (500 ng/mL induced apoptosis as monitored morphologically (Hoechst 33258 and biochemically (cleavage of caspase 3 and 9 and the appearance of cytochrome C in the cytoplasm. LPS-induced apoptosis was additive to that induced by glycochenodeoxycholate or Fas ligand, was associated with activation of c-Jun N-terminal kinase B (JNK and p38 mitogenactivated protein kinases (MAPK, and inhibition of protein kinase (AKT. Inhibition of JNK by SP600125, but not of p38 MAPK by SB203580 attenuated LPS-induced apoptosis, indicating JNK dependency. CPT-2-Me-cAMP, an activator of cAMP-GEF, decreased apoptosis due to LPS alone or in combination with glycochenodeoxycholate or Fas ligand. CPT-2-Me-cAMP also prevented LPS-induced activation of JNK and inhibition of AKT. Taken together, these results suggest that LPS can induce hepatocyte apoptosis directly in vitro in a JNK-dependent manner and activation of cAMP-GEF protects against the LPS-induced apoptosis most likely by reversing the effect of LPS on JNK and AKT.Keywords: apoptosis, cAMP-GEF, AKT, exchange protein activated by cAMP (EPAC, lipopolysaccharide, JNK

  3. Inhibition of the mitochondrial permeability transition by cyclosporin A prevents pyrazole plus lipopolysaccharide-induced liver injury in mice.

    Science.gov (United States)

    Zhuge, Jian; Cederbaum, Arthur I

    2009-02-01

    Previous results showed that pyrazole potentiates lipopolysaccharide (LPS)-induced liver injury in mice. Mechanisms involved the overexpression of cytochrome P450 2E1 (CYP2E1), oxidative stress, and activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). The current study was carried out to test the hypothesis that the mitochondria permeability transition (MPT) plays a role in this pyrazole plus LPS toxicity. Mice were injected intraperitoneally with pyrazole for 2 days, followed by a challenge with LPS with or without treatment with cyclosporin A (CsA), an inhibitor of the MPT. Serum alanine aminotransferase and aspartate aminotransferase were increased by pyrazole plus LPS treatment, and CsA treatment could attenuate these increases. CsA also prevented pyrazole plus LPS-induced hepatocyte necrosis. Formation of 4-hydroxynonenal protein adducts and 3-nitrotyrosine protein adducts in liver tissue was increased by the pyrazole plus LPS treatment, and CsA treatment blunted these increases. Swelling, cytochrome c release from mitochondria to the cytosol, and lipid peroxidation were increased in mitochondria isolated from the pyrazole plus LPS-treated mice, and CsA treatment prevented these changes. CsA did not prevent the increased levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha), pp38 MAPK, and p-JNK2. In conclusion, although CsA does not prevent elevations in upstream mediators of the pyrazole plus LPS toxicity (iNOS, TNF-alpha, CYP2E1, MAPK), it does protect mice from the pyrazole plus LPS-induced liver toxicity by preventing the MPT and release of cytochrome c and decreasing mitochondrial oxidative stress. These results indicate that mitochondria are the critical targets of pyrazole plus LPS in mediating liver injury.

  4. Supplementation of Lactobacillus acidophilus fermentation product can attenuate the acute phase response following a lipopolysaccharide challenge in pigs.

    Science.gov (United States)

    This study was designed to determine if feeding a Lactobacillus acidophilus fermentation product to weaned pigs would reduce stress and acute phase responses (APR) following a lipopolysaccharide (LPS) challenge. Pigs (n=30; 6.4±0.1 kilograms body weight) were housed individually in pens with ad libi...

  5. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    Directory of Open Access Journals (Sweden)

    Tian-Shun Lai

    2015-01-01

    Full Text Available Background: Subsequent neutrophil (polymorphonuclear neutrophil [PMN]-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI, and mesenchymal stem cell (MSC can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown. This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI. Methods: Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg. MSCs were given before or after ventilation. The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation, and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation. Results: Mechanical ventilation (MV caused significant lung injury reflected by increasing in PMN pulmonary sequestration, inflammatory chemokines (tumor necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein 2 in the bronchoalveolar lavage fluid, and injury score of the lung tissue. These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity, production of radical oxygen series. MSC intervention especially pretreatment attenuated subsequent lung injury, systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation. Conclusions: MV causes profound lung injury and PMN-predominate inflammatory responses. The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation.

  6. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    Institute of Scientific and Technical Information of China (English)

    Tian-Shun Lai; Zhi-Hong Wang; Shao-Xi Cai

    2015-01-01

    Background:Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI),and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury,reduce lung impairs,and enhance the repair of VILI.However,whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown.This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI.Methods:Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg).MSCs were given before or after ventilation.The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation,and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation.Results:Mechanical ventilation (MV) caused significant lung injury reflected by increasing in PMN pulmonary sequestration,inflammatory chemokines (tumor necrosis factor-alpha,interleukin-6 and macrophage inflammatory protein 2) in the bronchoalveolar lavage fluid,and injury score of the lung tissue.These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity,production of radical oxygen series.MSC intervention especially pretreatment attenuated subsequent lung injury,systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation.Conclusions:MV causes profound lung injury and PMN-predominate inflammatory responses.The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation.

  7. Regulation of Sirt1/Nrf2/TNF-α signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity

    Science.gov (United States)

    Yang, Daqian; Tan, Xiao; Lv, Zhanjun; Liu, Biying; Baiyun, Ruiqi; Lu, Jingjing; Zhang, Zhigang

    2016-01-01

    Inorganic mercury, though a key component of pediatric vaccines, is an environmental toxicant threatening human health via accumulating oxidative stress in part. Luteolin has been of great interest because of its antiinflammatory, anticarcinogenic and antioxidative effects. Here we hypothesized that luteolin would attenuate hepatotoxicity induced by acute inorganic mercury exposure. Kunming mice were treated with luteolin (100 mg/kg) 24 h after administration of 4 mg/kg mercuric chloride (HgCl2). The results showed that luteolin ameliorated HgCl2 induced anemia and hepatotoxicity, regulating radical oxygen species (ROS) production and hepatocyte viability in vitro and oxidative stress and apoptosis in vivo. Furthermore, luteolin reversed the changes in levels of inflammation- and apoptosis-related proteins involving NF-κB, TNF-α, Sirt1, mTOR, Bax, p53, and Bcl-2, and inhibited p38 MAPK activation. Luteolin enhanced antioxidant defense system based on Keap1, Nrf2, HO-1, NQO1, and KLF9. Moreover, luteolin did not affect miRNA-146a expression. Collectively, our findings, for the first time, elucidate a precise mechanism for attenuation of HgCl2-induced liver dysfunction by dietary luteolin via regulating Sirt1/Nrf2/TNF-α signaling pathway, and provide a foundation for further study of luteolin as a novel therapeutic agent against inorganic mercury poisoning. PMID:27853236

  8. Ablation of C/EBP homologous protein increases the acute phase mortality and doesn't attenuate cardiac remodeling in mice with myocardial infarction.

    Science.gov (United States)

    Luo, Guangjin; Li, Qingman; Zhang, Xiajun; Shen, Liang; Xie, Jiahe; Zhang, Jingwen; Kitakaze, Masafumi; Huang, Xiaobo; Liao, Yulin

    2015-08-14

    Endoplasmic reticulum stress is a proapoptotic and profibrotic stimulus. Ablation of C/EBP homologous protein (CHOP) is reported to reverse cardiac dysfunction by attenuating cardiac endoplasmic reticulum stress in mice with pressure overload or ischemia/reperfusion, but it is unclear whether loss of CHOP also inhibits cardiac remodeling induced by permanent-infarction. In mice with permanent ligation of left coronary artery, we found that ablation of CHOP increased the acute phase mortality. For the mice survived to 4 weeks, left ventricular anterior (LV) wall thickness was larger in CHOP knockout mice than in the wildtype littermates, while no difference was noted on posterior wall thickness, LV dimensions, LV fractional shortening and ejection fraction. Similarly, invasive assessment of LV hemodynamics, morphological analysis of heart and lung weight indexes, myocardial fibrosis and TUNEL-assessed apoptosis showed no significant differences between CHOP knockout mice and their wildtype ones, while in mice with ischemia for 45 min and reperfusion for 1 week, myocardial fibrosis and apoptosis in the infarct area were significantly attenuated in CHOP knockout mice. These findings indicate that ablation of CHOP doesn't ameliorate cardiac remodeling induced by permanent-myocardial infarction, which implicates that early reperfusion is a prerequisite for ischemic myocardium to benefit from CHOP inhibition.

  9. Krill Oil-In-Water Emulsion Protects against Lipopolysaccharide-Induced Proinflammatory Activation of Macrophages In Vitro

    Directory of Open Access Journals (Sweden)

    Gabriel A. Bonaterra

    2017-03-01

    Full Text Available Background: Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO-in-water emulsion in human macrophages in vitro. Materials and Methods: Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4 in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. Results: KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL and 75% (at 25 µg/mL, whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL also inhibited (30%, 40%, or 75%, respectively the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. Conclusion: KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.

  10. Effect of Radix Paeoniae Rubra on the expression of HO-1 and iNOS in rats with endotoxin-induced acute lung injury

    Institute of Scientific and Technical Information of China (English)

    ZHAN Li-ying; XIA Zhong-yuan; CHEN Chang; WANG Xiao-yuan

    2006-01-01

    Objective: To investigate the effect of Radix Paeoniae Rubra (RPR) on the expression of heme oxygenase ( HO-1 ) and induced nitric oxide synthase (iNOS) in endotoxininduced acute lung injury in rats and its protective mechanism.Methods: Forty Wistar rats were divided randomly into 5 groups with 8 rats in each group: saline control group ( NS group ), lipopolysaccharide group ( LPS group), RPR-treatment group, RPR-prevention group and Herin group. The effect of RPR on protein content, the ratio of neutrophiles in bronchoalveolar lavage fluid,malondialdehyde (MDA) content in the lung and the activity of serum NO were observed. Arterial blood was drawn for blood-gas analysis. The expression of HO-1 and iNOS in lung tissues was detected by immunohistochemitry and morphometry computer image analysis. The histological changes of the lung were observed under light microscope.Results: Compared with that in NS group, the expression of HO-1 and iNOS was markedly increased in LPS group (P < 0.01). In RPR-treatment, RPR-prevention, and Hemin groups, the expression of iNOS was significantly lower, while the expression of HO-1 was higher than that in LPS group (P <0.05). The protein content,the ratio of neutrophiles in bronchoalveolar lavage fluid,the content of MDA and the activity of serum NO in LPS group were significantly higher than those in NS group (P < 0.01 ). There was a significant decrease in the level of arterial bicarbonate and partial pressure of oxygen in the LPS group (P<0.01); these parameters of lung injury however, were significantly lower in RPR-treatment, RPR-prevention, and Hemin groups than LPS group (P <0.05or P < 0.01). The pathologic changes of lung tissues were substantially attenuated in RPR-treatment, RPR-prevention, and Hemin groups than LPS group.Conclusions : The high expression of HO-1 reflects an important protective function of the body during lipopolysaccharide-induced acute lung injury. The protective effect of RPR on

  11. Effects of acute and chronic attenuation of postprandial hyperglycemia on postglucose-load endothelial function in insulin resistant individuals: is stimulation of first phase insulin secretion beneficial for the endothelial function?

    DEFF Research Database (Denmark)

    Major-Pedersen, A; Ihlemann, N; Hermann, T S;

    2008-01-01

    The aim of the study is to determine if attenuation of postprandial hyperglycemia, by acutely and chronically enhancing postprandial insulin secretion in insulin-resistant individuals, improves the endothelial dysfunction. We assessed postoral glucose-load endothelial function in 56 insulin....... We found no relationship between postprandial hyperglycemia and post-OGL FMD....

  12. Liang-Ge-San, a classic traditional Chinese medicine formula, protects against lipopolysaccharide-induced inflammation through cholinergic anti-inflammatory pathway.

    Science.gov (United States)

    Liu, Jun-Shan; Wei, Xi-Duan; Lu, Zi-Bin; Xie, Pei; Zhou, Hong-Ling; Chen, Yu-Yao; Ma, Jia-Mei; Yu, Lin-Zhong

    2016-04-19

    Liang-Ge-San (LGS) is a classic formula in traditional Chinese medicine, which is widely used to treat acute lung injury (ALI), pharyngitis and amygdalitis in clinic. However, the underlying mechanisms remain poorly defined. In this study, we discovered that LGS exerted potent anti-inflammatory effects in lipopolysaccharide (LPS)-induced inflammation. We found that LGS significantly depressed the production of IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophage cells. The degradation and phosphorylation of IκBα and the nuclear translocation of NF-κB p65 were also inhibited. Moreover, LGS activated α7 nicotinic cholinergic receptor (α7nAchR). The blockage of α7nAchR by selective inhibitor methyllycaconitine (MLA) or α7nAchR siRNA attenuated the inhibitory effects of LGS on IκBα, NF-κB p65, IL-6 and TNF-α. Critically, LGS significantly inhibited inflammation in LPS-induced ALI rats through the activation of NF-κB signaling pathway. However, these protective effects could be counteracted by the treatment of MLA. Taken together, we first demonstrated anti-inflammatory effects of LGS both in vitro and in vivo through cholinergic anti-inflammatory pathway. The study provides a rationale for the clinical application of LGS as an anti-inflammatory agent and supports the critical role of cholinergic anti-inflammatory pathway in inflammation.

  13. Adult Lysophosphatidic Acid Receptor 1-Deficient Rats with Hyperoxia-Induced Neonatal Chronic Lung Disease Are Protected against Lipopolysaccharide-Induced Acute Lung Injury

    Science.gov (United States)

    Chen, Xueyu; Walther, Frans J.; Laghmani, El H.; Hoogeboom, Annemarie M.; Hogen-Esch, Anne C. B.; van Ark, Ingrid; Folkerts, Gert; Wagenaar, Gerry T. M.

    2017-01-01

    Aim: Survivors of neonatal chronic lung disease or bronchopulmonary dysplasia (BPD) suffer from compromised lung function and are at high risk for developing lung injury by multiple insults later in life. Because neonatal lysophosphatidic acid receptor-1 (LPAR1)-deficient rats are protected against hyperoxia-induced lung injury, we hypothesize that LPAR1-deficiency may protect adult survivors of BPD from a second hit response against lipopolysaccharides (LPS)-induced lung injury. Methods: Directly after birth, Wistar control and LPAR1-deficient rat pups were exposed to hyperoxia (90%) for 8 days followed by recovery in room air. After 7 weeks, male rats received either LPS (2 mg kg−1) or 0.9% NaCl by intraperitoneal injection. Alveolar development and lung inflammation were investigated by morphometric analysis, IL-6 production, and mRNA expression of cytokines, chemokines, coagulation factors, and an indicator of oxidative stress. Results: LPAR1-deficient and control rats developed hyperoxia-induced neonatal emphysema, which persisted into adulthood, as demonstrated by alveolar enlargement and decreased vessel density. LPAR1-deficiency protected against LPS-induced lung injury. Adult controls with BPD exhibited an exacerbated response toward LPS with an increased expression of pro-inflammatory mRNAs, whereas LPAR1-deficient rats with BPD were less sensitive to this “second hit” with a decreased pulmonary influx of macrophages and neutrophils, interleukin-6 (IL-6) production, and mRNA expression of IL-6, monocyte chemoattractant protein-1, cytokine-induced neutrophil chemoattractant 1, plasminogen activator inhibitor-1, and tissue factor. Conclusion: LPAR1-deficient rats have increased hyperoxia-induced BPD survival rates and, despite the presence of neonatal emphysema, are less sensitive to an aggravated “second hit” than Wistar controls with BPD. Intervening in LPA-LPAR1-dependent signaling may not only have therapeutic potential for neonatal chronic lung disease, but may also protect adult survivors of BPD from sequelae later in life. PMID:28382003

  14. Changes in the expression of interleukin-1beta and lipopolysaccharide-induced TNF factor in the oviduct of laying hens in response to artificial insemination.

    Science.gov (United States)

    Das, Shubash Chandra; Isobe, Naoki; Yoshimura, Yukinori

    2009-03-01

    The aim of this study was to determine the physiological significance of interleukin-1beta (IL1B) and lipopolysaccharide-induced TNF factor (LITAF) in the fate of sperm in the oviduct of laying hens after artificial insemination (AI). Laying hens were inseminated with fresh semen, PBS or seminal plasma and tissues from different oviductal segments were collected to observe the general histology, changes in the mRNA expression of IL1B and LITAF and the localization of positive cells expressing immunoreactive IL1B (irIL1B). Semi-quantitative RT-PCR was used to observe the changes in mRNA expression of these molecules in the infundibulum, uterus, utero-vaginal junction (UVJ), and vagina after insemination. Intact sperm in the lumen and between the primary or secondary folds of the vagina were found until 6 h after insemination but were degraded at 12 h. The mRNA expression of IL1B and LITAF was significantly increased in the vagina until 6 h after AI but remained unchanged in the other oviductal segments. In the tissue of the vagina and UVJ, irIL1B was localized in the mucosal stroma. The number of irIL1B-positive cells was increased in the vagina but almost unchanged in UVJ after insemination with semen. Significant changes were not observed in the mRNA expression and irIL1B-positive cells in the vagina after PBS or seminal plasma insemination. The increase of IL1B and LITAF in the vagina may lead to sperm degradation and elimination by cilia of surface epithelium, whereas their lower levels in UVJ may permit sperm to survive in sperm storage tubules.

  15. Renal liver-type fatty acid binding protein (L-FABP) attenuates acute kidney injury in aristolochic acid nephrotoxicity.

    Science.gov (United States)

    Matsui, Katsuomi; Kamijo-Ikemorif, Atsuko; Sugaya, Takeshi; Yasuda, Takashi; Kimura, Kenjiro

    2011-03-01

    Injection of aristolochic acid (AA) in mice causes AA-induced nephrotoxicity, in which oxidative stress contributes to development of tubulointerstitial damage (TID). Liver-type fatty acid binding protein (L-FABP) is expressed in human proximal tubules and has an endogenous antioxidative function. The renoprotection of renal L-FABP was examined in a model of AA-induced nephrotoxicity. Established human L-FABP (hL-FABP) transgenic (Tg) mice and wild-type (WT) mice were treated with AA for up to 5 days. Mice were sacrificed on days 1, 3, and 5 after the start of AA injection. Although mouse L-FABP was not expressed in proximal tubules of WT mice, hL-FABP was expressed in proximal tubules of Tg mice. The expression of renal hL-FABP was significantly increased in Tg mice administered AA (Tg-AA), compared with the control (saline-treated Tg mice). In WT-AA mice, there was high urinary excretion of N(ε)-(hexanoyl)-lysine, the production of heme oxygenase-1 and receptor for advanced glycation end products increased, and TID was provoked. In contrast, renal hL-FABP in Tg-AA mice suppressed production of N(ε)-(hexanoyl)lysine, heme oxygenase-1, and receptor for advanced glycation end products. Renal dysfunction was significantly milder in Tg-AA mice than in WT-AA mice. The degree of TID was significantly attenuated in Tg-AA mice, compared with WT-AA. In conclusion, renal hL-FABP reduced the oxidative stress in AA-induced nephrotoxicity and attenuated TID.

  16. BIRC6 (APOLLON is down-regulated in acute myeloid leukemia and its knockdown attenuates neutrophil differentiation

    Directory of Open Access Journals (Sweden)

    Schläfli Anna M

    2012-09-01

    Full Text Available Abstract Background Inhibitors of apoptosis (IAPs were intensively investigated in the context of cancer where they promote tumor growth and chemoresistence. Overexpression of the IAP BIRC6 is associated with unfavorable clinical features and negatively impacts relapse-free survival in childhood acute myeloid leukemia (AML. Currently, BIRC6 levels in adult primary AML have not been compared to the expression in normal myeloid cells. Thus, we compared for the first time BIRC6 levels in adult primary AML patient samples to normal myeloid cells and studied its regulation and function during neutrophil differentiation. Findings We found significantly lower BIRC6 levels in particular AML subtypes as compared to granulocytes from healthy donors. The lowest BIRC6 expression was found in CD34+ progenitor cells. Moreover, BIRC6 expression significantly increased during neutrophil differentiation of AML cell lines and knocking down BIRC6 in NB4 acute promyelocytic leukemia (APL cells significantly impaired neutrophil differentiation, but not cell viability. Conclusion Together, we found an association of low BIRC6 levels with an immature myeloid phenotype and describe a function for BIRC6 in neutrophil differentiation of APL cells.

  17. PA-X-associated early alleviation of the acute lung injury contributes to the attenuation of a highly pathogenic H5N1 avian influenza virus in mice.

    Science.gov (United States)

    Hu, Jiao; Mo, Yiqun; Gao, Zhao; Wang, Xiaoquan; Gu, Min; Liang, Yanyan; Cheng, Xin; Hu, Shunlin; Liu, Wenbo; Liu, Huimou; Chen, Sujuan; Liu, Xiaowen; Peng, Daxing; Liu, Xiufan

    2016-08-01

    PA-X is a novel discovered accessory protein encoded by the PA mRNA. Our previous study demonstrated that PA-X decreases the virulence of a highly pathogenic H5N1 strain A/Chicken/Jiangsu/k0402/2010 in mice. However, the underlying mechanism of virulence attenuation associated with PA-X is still unknown. In this study, we compared two PA-X-deficient mutant viruses and the parental virus in terms of induction of pathology and manipulation of host response in the mouse lung, stimulation of cell death and PA nuclear accumulation. We first found that down-regulated PA-X expression markedly aggravated the acute lung injury of the infected mice early on day 1 post-infection (p.i.). We then determined that loss of PA-X expression induced higher levels of cytokines, chemokines and complement-derived peptides (C3a and C5a) in the lung, especially at early time point's p.i. In addition, in vitro assays showed that the PA-X-deficient viruses enhanced cell death and increased expression of reactive oxygen species (ROS) in mammalian cells. Moreover, we also found that PA nuclear accumulation of the PA-X-null viruses accelerated in MDCK cells. These results demonstrate that PA-X decreases the level of complement components, ROS, cell death and inflammatory response, which may together contribute to the alleviated lung injury and the attenuation of the virulence of H5N1 virus in mice.

  18. Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers.

    Science.gov (United States)

    Sparkman, Nathan L; Buchanan, Jessica B; Heyen, Jonathan R R; Chen, Jing; Beverly, James L; Johnson, Rodney W

    2006-10-18

    Proinflammatory cytokines inhibit learning and memory but the significance of interleukin-6 (IL-6) in acute cognitive deficits induced by the peripheral innate immune system is not known. To examine the functional role of IL-6 in hippocampus-mediated cognitive impairments associated with peripheral infections, C57BL6/J (IL-6(+/+)) and IL-6 knock-out (IL-6(-/-)) mice were trained in a matching-to-place version of the water maze. After an acquisition phase, IL-6(+/+) mice injected intraperitoneally with lipopolysaccharide (LPS) exhibited deficits in working memory. However, IL-6(-/-) mice were refractory to the LPS-induced impairment in working memory. To determine the mechanism by which IL-6 deficiency conferred protection from disruption in working memory, plasma IL-1beta and tumor necrosis factor alpha (TNFalpha), c-Fos immunoreactivity in the nucleus of the solitary tract (NTS), and steady-state levels of IL-1beta and TNFalpha mRNA in neuronal layers of the hippocampus were determined in IL-6(+/+) and IL-6(-/-) mice after injection of LPS. Plasma IL-1beta and TNFalpha and c-Fos immunoreactivity in the NTS were increased similarly in IL-6(+/+) and IL-6(-/-) mice after LPS, indicating high circulating levels of IL-1beta and TNFalpha and activation of vagal afferent pathways were not sufficient to disrupt working memory in the absence of IL-6. However, the LPS-induced upregulation of IL-1beta and TNFalpha mRNA that was evident in hippocampal tissue of IL-6(+/+) mice was greatly attenuated or entirely absent in IL-6(-/-) mice. Collectively, these data suggest that humoral and neural immune-to-brain communication pathways are intact in IL-6-deficient mice but that, in the absence of IL-6, the central cytokine compartment is hyporesponsive.

  19. Taraxerol, a pentacyclic triterpene from Abroma augusta leaf, attenuates acute inflammation via inhibition of NF-κB signaling.

    Science.gov (United States)

    Khanra, Ritu; Dewanjee, Saikat; Dua, Tarun K; Bhattacharjee, Niloy

    2017-04-01

    Abroma augusta L. (Malvaceae) leaf is traditionally used to treat inflammatory disorders. In our laboratory, we have scientifically validated the anti-inflammatory effect of A. augusta leaf extract. In this study, it has been aimed to evaluate in vivo anti-inflammatory effect of taraxerol isolated from the methanol extract of A. augusta leaf. It was further intended to find out the probable mechanism of anti-inflammatory effect of taraxerol. The anti-inflammatory effect of taraxerol (5 and 10mg/kg, i.p.) was measured employing carrageenan-induced paw edema model of acute inflammation. The carrageenan injection resulted significant edema formation in the right paw when compared with un-injected left paw. However, taraxerol (10mg/kg) treatment could significantly (pinflammation via inhibition of NF-κB signaling.

  20. Fisetin attenuates cerulein-induced acute pancreatitis through down regulation of JNK and NF-κB signaling pathways.

    Science.gov (United States)

    Jo, Il-Joo; Bae, Gi-Sang; Choi, Sun Bok; Kim, Dong-Goo; Shin, Joon-Yeon; Seo, Seung-Hee; Choi, Mee-Ok; Kim, Tae-Hyeon; Song, Ho-Joon; Park, Sung-Joo

    2014-08-15

    Acute pancreatitis (AP) is a complicated disease which is largely undiscovered. Fisetin, a natural flavonoid from fruits and vegetables, has been shown to have anti-inflammatory, antioxidant, and anti-cancer activities in various disease models. However, the effects of fisetin on AP have not been determined. Pre- and post- treatment of mice with fisetin reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (pancreatic weight to body weight ratio, amylase, lipase, and myeloperoxidase activity) and production of inflammatory cytokines. In pancreatic acinar cells, fisetin also inhibited cell death and production of inflammatory cytokines. In addition, fisetin inhibited activation of c-Jun NH2-terminal kinase (JNK) and nuclear factor (NF)-κB in vivo and in vitro. In conclusion, these results suggest that fisetin exhibits anti-inflammatory effect on AP and could be a beneficial agent in the treatment of AP and its pulmonary complications.

  1. Short-term individual housing induced social deficits in female Mongolian gerbils: attenuation by chronic but not acute imipramine.

    Science.gov (United States)

    Pickles, A R; Hagan, J J; Jones, D N C; Hendrie, C A

    2012-04-01

    Mongolian gerbils are highly sensitive to manipulations of their social environments. Housing females individually for short periods (in the order of 7-21 days) has been shown to produce robust and reliable impairments of their subsequent social behaviour. These effects are typified by a marked reduction in the social investigation of an unfamiliar male in a neutral arena and/or a marked increases in levels of freezing whilst and only whilst they are being socially investigated (Immobile in contact). These responses demonstrate housing induced impaired motivation to socially interact. These effects have also been shown to be sensitive to treatment with chronic (but not acute) administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine. It was therefore of interest to know if similar effects would be produced by treatment with the tricyclic antidepressant Imipramine. This mixed NA/5-HT reuptake inhibitor first developed in the 1950's is a commonly used standard in animal models of depression and remains in clinical use today. Female gerbils were individually housed for 7 days or maintained in single-sex groups of 4 for the same period. All animals were then randomly allocated to be administered with either 0, 10 or 20 mg/kg imipramine. Acute administration did not reverse the social impairments produced by the individual housing but did produce non-specific stimulant effects on locomotion in both housing conditions. These social impairments were however reduced after a further 14 days chronic treatment with 10 or 20 mg/kg imipramine and stimulant effects were no longer seen. Following chronic administration in group-housed animals locomotor stimulation was replaced with sedation, which resulted in a reduction in social behaviour. That is, opposite to the effect seen in Individual housed animals. It is therefore concluded that chronic treatment with imipramine serves to increase social behaviour but only in those animals with a pre-existing social

  2. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    Science.gov (United States)

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability.

  3. Aromatase inhibition attenuates desflurane-induced preconditioning against acute myocardial infarction in male mouse heart in vivo.

    Directory of Open Access Journals (Sweden)

    Virginija Jazbutyte

    Full Text Available The volatile anesthetic desflurane (DES effectively reduces cardiac infarct size following experimental ischemia/reperfusion injury in the mouse heart. We hypothesized that endogenous estrogens play a role as mediators of desflurane-induced preconditioning against myocardial infarction. In this study, we tested the hypothesis that desflurane effects local estrogen synthesis by modulating enzyme aromatase expression and activity in the mouse heart. Aromatase metabolizes testosterone to 17β- estradiol (E2 and thereby significantly contributes to local estrogen synthesis. We tested aromatase effects in acute myocardial infarction model in male mice. The animals were randomized and subjected to four groups which were pre-treated with the selective aromatase inhibitor anastrozole (A group and DES alone (DES group or in combination (A+DES group for 15 minutes prior to surgical intervention whereas the control group received 0.9% NaCl (CON group. All animals were subjected to 45 minutes ischemia following 180 minutes reperfusion. Anastrozole blocked DES induced preconditioning and increased infarct size compared to DES alone (37.94 ± 15.5% vs. 17.1 ± 3.62% without affecting area at risk and systemic hemodynamic parameters following ischemia/reperfusion. Protein localization studies revealed that aromatase was abundant in the murine cardiovascular system with the highest expression levels in endothelial and smooth muscle cells. Desflurane application at pharmacological concentrations efficiently upregulated aromatase expression in vivo and in vitro. We conclude that desflurane efficiently regulates aromatase expression and activity which might lead to increased local estrogen synthesis and thus preserve cellular integrity and reduce cardiac damage in an acute myocardial infarction model.

  4. Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis.

    Science.gov (United States)

    He, Xuexiu; Wei, Zhengkai; Wang, Jingjing; Kou, Jinhua; Liu, Weijian; Fu, Yunhe; Yang, Zhengtao

    2016-06-20

    Alpinetin, a composition of Alpinia katsumadai Hayata, has been reported to have a number of biological properties, such as antibacterial, antitumor and other important therapeutic activities. However, the effect of alpinetin on inflammatory bowel disease (IBD) has not yet been reported. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of alpinetin on dextran sulfate sodium (DSS)-induced colitis in mice. In vivo, DSS-induced mice colitis model was established by giving mice drinking water containing 5% (w/v) DSS for 7 days. Alpinetin (25, 50 and 100 mg/kg) were administered once a day by intraperitoneal injection 3 days before DSS treatment. In vitro, phorbol myristate acetate (PMA)-differentiated monocytic THP-1 macrophages were treated with alpinetin and stimulated by lipopolysaccharide (LPS). The results showed that alpinetin significantly attenuated diarrhea, colonic shortening, histological injury, myeloperoxidase (MPO) activity and the expressions of tumor necrosis factor (TNF-α) and interleukin (IL-1β) production in mice. In vitro, alpinetin markedly inhibited LPS-induced TNF-α and IL-1β production, as well as Toll-like receptor 4 (TLR4) mediated nuclear transcription factor-kappaB (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, this study demonstrated that alpinetin had protective effects on DSS-induced colitis and may be a promising therapeutic reagent for colitis treatment.

  5. Evaluation of Prehospital Blood Products to Attenuate Acute Coagulopathy of Trauma in a Model of Severe Injury and Shock in Anesthetized Pigs.

    Science.gov (United States)

    Watts, Sarah; Nordmann, Giles; Brohi, Karim; Midwinter, Mark; Woolley, Tom; Gwyther, Robert; Wilson, Callie; Poon, Henrietta; Kirkman, Emrys

    2015-08-01

    Acute trauma coagulopathy (ATC) is seen in 30% to 40% of severely injured casualties. Early use of blood products attenuates ATC, but the timing for optimal effect is unknown. Emergent clinical practice has started prehospital deployment of blood products (combined packed red blood cells and fresh frozen plasma [PRBCs:FFP], and alternatively PRBCs alone), but this is associated with significant logistical burden and some clinical risk. It is therefore imperative to establish whether prehospital use of blood products is likely to confer benefit. This study compared the potential impact of prehospital resuscitation with (PRBCs:FFP 1:1 ratio) versus PRBCs alone versus 0.9% saline (standard of care) in a model of severe injury. Twenty-four terminally anesthetised Large White pigs received controlled soft tissue injury and controlled hemorrhage (35% blood volume) followed by a 30-min shock phase. The animals were allocated randomly to one of three treatment groups during a 60-min prehospital evacuation phase: hypotensive resuscitation (target systolic arterial pressure 80 mmHg) using either 0.9% saline (group 1, n = 9), PRBCs:FFP (group 2, n = 9), or PRBCs alone (group 3, n = 6). Following this phase, an in-hospital phase involving resuscitation to a normotensive target (110 mmHg systolic arterial blood pressure) using PRBCs:FFP was performed in all groups. There was no mortality in any group. A coagulopathy developed in group 1 (significant increase in clot initiation and dynamics shown by TEG [thromboelastography] R and K times) that persisted for 60 to 90 min into the in-hospital phase. The coagulopathy was significantly attenuated in groups 2 and 3 (P = 0.025 R time and P = 0.035 K time), which were not significantly different from each other. Finally, the volumes of resuscitation fluid required was significantly greater in group 1 compared with groups 2 and 3 (P = 0.0067) (2.8 ± 0.3 vs. 1.9 ± 0.2 and 1.8 ± 0.3 L, respectively). This difference was principally

  6. Selective TNF-α targeting with infliximab attenuates impaired oxygen metabolism and contractile function induced by an acute exposure to air particulate matter.

    Science.gov (United States)

    Marchini, Timoteo; D'Annunzio, Verónica; Paz, Mariela L; Cáceres, Lourdes; Garcés, Mariana; Perez, Virginia; Tasat, Deborah; Vanasco, Virginia; Magnani, Natalia; Gonzalez Maglio, Daniel; Gelpi, Ricardo J; Alvarez, Silvia; Evelson, Pablo

    2015-11-15

    Inflammation plays a central role in the onset and progression of cardiovascular diseases associated with the exposure to air pollution particulate matter (PM). The aim of this work was to analyze the cardioprotective effect of selective TNF-α targeting with a blocking anti-TNF-α antibody (infliximab) in an in vivo mice model of acute exposure to residual oil fly ash (ROFA). Female Swiss mice received an intraperitoneal injection of infliximab (10 mg/kg body wt) or saline solution, and were intranasally instilled with a ROFA suspension (1 mg/kg body wt). Control animals were instilled with saline solution and handled in parallel. After 3 h, heart O2 consumption was assessed by high-resolution respirometry in left ventricle tissue cubes and isolated mitochondria, and ventricular contractile reserve and lusitropic reserve were evaluated according to the Langendorff technique. ROFA instillation induced a significant decrease in tissue O2 consumption and active mitochondrial respiration by 32 and 31%, respectively, compared with the control group. While ventricular contractile state and isovolumic relaxation were not altered in ROFA-exposed mice, impaired contractile reserve and lusitropic reserve were observed in this group. Infliximab pretreatment significantly attenuated the decrease in heart O2 consumption and prevented the decrease in ventricular contractile and lusitropic reserve in ROFA-exposed mice. Moreover, infliximab-pretreated ROFA-exposed mice showed conserved left ventricular developed pressure and cardiac O2 consumption in response to a β-adrenergic stimulus with isoproterenol. These results provides direct evidence linking systemic inflammation and altered cardiac function following an acute exposure to PM and contribute to the understanding of PM-associated cardiovascular morbidity and mortality.

  7. Perfluorocarbon attenuates inflammatory cytokines, oxidative stress and histopathologic changes in paraquat-induced acute lung injury in rats.

    Science.gov (United States)

    Khalighi, Zahra; Rahmani, Asghar; Cheraghi, Javad; Ahmadi, Mohammad Reza Hafezi; Soleimannejad, Koroush; Asadollahi, Ruhangiz; Asadollahi, Khairollah

    2016-03-01

    The effects of perfluorocarbon (PFC) on paraquat (PQ) induced acute lung injury (ALI) was evaluated among rats. Twenty four Wistar rats were divided into 4 groups: control group injected by saline physiologic 0.9%, PFC group injected by Perfluorocarbon, PQ group injected by PQ and PQ+PFC group injected by PFC one hour after receiving paraquat. Bronchoalveular fluid content, inflammatory cytokines, oxidative and histopathologic changes were measured after 72 h. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and transforming growth factor-β1(TGF-β1) in the PQ group were increased compared to either control or PFC groups, but their levels decreased in PQ+PFC group significantly (p<0.05). Also, histopathologic evaluation revealed an increase in malondialdehyde (MDA) and hydroxyproline (HP) in the PQ group but a decrease in PQ+PFC group significantly (p<0.01). PFC emulsion by its anti-inflammatory, anti-oxidative and anti-fibrotic properties can reduce the inflammatory and fibrotic alterations, pulmonary oedema, and pulmonary histopathologic changes created by PQ.

  8. Blockage of P2X7 attenuates acute lung injury in mice by inhibiting NLRP3 inflammasome.

    Science.gov (United States)

    Wang, Shuang; Zhao, Jijun; Wang, Hongyue; Liang, Yingjie; Yang, Niansheng; Huang, Yuefang

    2015-07-01

    NLRP3 inflammasome is engaged in the inflammatory response during acute lung injury (ALI). Purinergic receptor P2X7 has been reported to be upstream of NLRP3 activation. However, the therapeutic implication of P2X7 in ALI remains to be explored. The present study used lipopolysaccharide (LPS)-induced mouse model to investigate the therapeutic potential of P2X7 blockage in ALI. Our results showed that P2X7/NLRP3 inflammasome pathway was significantly upregulated in the lungs of ALI mice as compared with control mice. P2X7 antagonist A438079 suppressed NLRP3/ASC/caspase 1 activation, production of IL-1β, IL-17A and IFN-γ and neutrophil infiltration but not the production of IL-10, resulting in a significant amelioration of lung injury. Moreover, blockage of P2X7 significantly inhibited NLRP3 inflammasome activation and IL-1β production in bone marrow derived macrophages. Similar results were obtained using another P2X7 inhibitor brilliant blue G (BBG) in vivo. Thus, pharmacological blockage of P2X7/NLRP3 pathway can be considered as a potential therapeutic strategy in patients with ALI.

  9. Sesame oil improves functional recovery by attenuating nerve oxidative stress in a mouse model of acute peripheral nerve injury: role of Nrf-2.

    Science.gov (United States)

    Hsu, Che-Chia; Huang, Hui-Cheng; Wu, Po-Ting; Tai, Ta-Wei; Jou, I-Ming

    2016-12-01

    Peripheral nervous injury (PNI) is a common form of trauma in modern society, especially in sport players. Despite the advance of therapy for PNI, the recovery of function can never reach the preinjury level after treatments. Recently, inhibiting neural oxidative stress shows a beneficial effect in improving functional recovery after PNI. In addition, sesame oil has been reported to possess the excellent antioxidative properties. However, whether sesame oil can improve the functional recovery after PNI by its antioxidative effect has never been investigated. Thirty mice were randomly divided into five groups of six: group I mice received sham operation; group II mice received sciatic nerve crush; and groups III-V mice daily ingested 0.5, 1 and 2 ml/kg of sesame oil for 6 days, respectively, after sciatic nerve crush. Oxidative stress, GAP43 and nuclear Nrf2 levels as well as spinal somatosensory evoked potentials were assessed on day 6, while paw withdrawal latency and sciatic function index were assessed on days 0, 3, and 6. Sesame oil significantly decreased lipid peroxidation and increased nuclear factor erythroid 2-related factor 2 and GAP43 expression in sciatic nerve. Furthermore, sesame oil improved electrophysiological and functional assessments in mice with sciatic nerve crush. In conclusion, sesame oil may improve nerve functional recovery by attenuating nerve oxidative stress in mouse acute peripheral nerve injury. Further, application of natural product sesame oil may be an alternative approach for improving nerve functional recovery in the clinical setting.

  10. Evaluation of Possible Prognostic Factors of Fulminant Acute Disseminated Encephalomyelitis (ADEM) on Magnetic Resonance Imaging with Fluid-Attenuated Inversion Recovery (FLAIR) and Diffusion-Weighted Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Donmez, F.Y.; Aslan, H.; Coskun, M. (Dept. of Radiology, Faculty of Medicine, Baskent Univ., Ankara (Turkey))

    2009-04-15

    Background: Acute disseminated encephalomyelitis (ADEM) may be a rapidly progressive disease with different clinical outcomes. Purpose: To investigate the radiological findings of fulminant ADEM on diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) images, and to correlate these findings with clinical outcome. Material and Methods: Initial and follow-up magnetic resonance imaging (MRI) scans in eight patients were retrospectively evaluated for distribution of lesions on FLAIR images and presence of hemorrhage or contrast enhancement. DWI of the patients was evaluated as to cytotoxic versus vasogenic edema. The clinical records were analyzed, and MRI results and clinical outcome were correlated. Results: Four of the eight patients died, three had full recovery, and one had residual cortical blindness. The distribution of the hyperintense lesions on FLAIR sequence was as follows: frontal (37.5%), parietal (50%), temporal (37.5%), occipital (62.5%), basal ganglia (50%), pons (37.5%), mesencephalon (37.5%), and cerebellum (50%). Three of the patients who died had brainstem involvement. Two patients had a cytotoxic edema, one of whom died, and the other developed cortical blindness. Six patients had vasogenic edema: three of these patients had a rapid progression to coma and died; three of them recovered. Conclusion: DWI is not always helpful for evaluating the evolution or predicting the outcome of ADEM. However, extension of the lesions, particularly brainstem involvement, may have an influence on the prognosis.

  11. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.

    Science.gov (United States)

    Zhang, C; Zhang, G; Rong, W; Wang, A; Wu, C; Huo, X

    2015-04-16

    Injury potential, which refers to a direct current voltage between intact and injured nerve ends, is mainly caused by injury-induced Ca2+ influx. Our previous studies revealed that injury potential increased with the onset and severity of spinal cord injury (SCI), and an application of applied electric field stimulation (EFS) with the cathode distal to the lesion could delay and attenuate injury potential formation. As Ca2+ influx is also considered as a major trigger for secondary injury after SCI, we hypothesize that EFS would protect an injured spinal cord from secondary injury and consequently improve functional and pathological outcomes. In this study, rats were divided into three groups: (1) sham group, laminectomy only; (2) control group, subjected to SCI only; and (3) EFS group, received EFS immediately post-injury with the injury potential modulated to 0±0.5 mV by EFS. Functional recovery of the hind limbs was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results revealed that EFS-treated rats exhibited significantly better locomotor function recovery. Luxol fast blue staining was performed to assess the spared myelin area. Immunofluorescence was used to observe the number of myelinated nerve fibers. Ultrastructural analysis was performed to evaluate the size of myelinated nerve fibers. Findings showed that the EFS group rats exhibited significantly less myelin loss and had larger and more myelinated nerve fibers than the control group rats in dorsal corticospinal tract (dCST) 8 weeks after SCI. Furthermore, we found that EFS inhibited the activation of calpain and caspase-3, as well as the expression of Bax, as detected by Western blot analysis. Moreover, EFS decreased cellular apoptosis, as measured by TUNEL, within 4 weeks post-injury. Results suggest that early EFS could significantly reduce spinal cord degeneration and improve functional and historical recovery. Furthermore, these neuroprotective effects may be related to

  12. Effects of sulfasalazine on lipid peroxidation and histologic liver damage in a rat model of obstructive jaundice and obstructive jaundice with lipopolysaccharide-induced sepsis

    OpenAIRE

    Dirlik, Musa; Karahan, Aydin; Canbaz, Hakan; Caglikulekci, Mehmet; Polat, Ayşe; Tamer, Lulufer; Aydin,Suha

    2009-01-01

    Background: Sulfasalazine, an inhibitor of cyclooxygenase, 5-lipoxygenase, and nuclear factor κB (NF-κB), has been found to alleviate oxidative damage, proinflammatory cytokine production, bile-duct proliferation, neutrophil infiltration, and fibrosis. Therefore, it may have a potential effect in attenuating lipid peroxidation and histologic liver damage in patients with biliary obstruction and biliary obstruction with sepsis.

  13. HSF-1 is involved in attenuating the release of inflammatory cytokines induced by LPS through regulating autophagy.

    Science.gov (United States)

    Tong, Zhongyi; Jiang, Bimei; Zhang, Lingli; Liu, Yanjuan; Gao, Min; Jiang, Yu; Li, Yuanbin; Lu, Qinglan; Yao, Yongming; Xiao, Xianzhong

    2014-05-01

    Autophagy plays a protective role in endotoxemic mice. Heat shock factor 1 (HSF-1) also plays a crucial protective role in endotoxemic mice by decreasing inflammatory cytokines. The purpose of this study was to determine whether HSF-1 is involved in attenuating the release of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated mice and peritoneal macrophages (PMs) through regulating autophagy activity. Autophagosome formation in HSF-1(+/+) and HSF-1(-/-) mice and PMs stimulated by LPS was examined by Western blotting and immunofluorescence. Lipopolysaccharide-induced autophagy and inflammatory cytokines were examined in HSF-1(+/+) and HSF-1(-/-) PMs treated with 3-methyladenine (3-MA) or rapamycin. Results showed that LPS-induced autophagy was elevated transiently at 12 h but declined at 24 h in the livers and lungs of mice. Higher levels of inflammatory cytokines and lower autophagy activity were detected in HSF-1(-/-) mice and PMs compared with HSF-1(+/+) mice and PMs. Interestingly, LPS-induced release of inflammatory cytokines did not further increase in HSF-1(-/-) PMs treated with 3-MA but aggravated in HSF-1(+/+) PMs. Lipopolysaccharide-induced autophagy did not decrease in HSF-1(-/-) PMs treated with 3-MA but decreased in HSF-1 PMs(+/+). Taken together, our results suggested that HSF-1 attenuated the release of inflammatory cytokines induced by LPS by regulating autophagy activity.

  14. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 beta by mononuclear cells through a caspase 1-mediated process.

    NARCIS (Netherlands)

    Giamarellos, E.J.; Mouktaroudi, M.; Bodar, E.J.; Ven, J. van de; Kullberg, B.J.; Netea, M.G.; Meer, J.W.M. van der

    2009-01-01

    OBJECTIVE: Recent studies suggest that crystals of monosodium urate (MSU), deposited in joints of patients with acute gouty arthritis, activate the NACHT domain, leucine-rich repeat and pyrin domain-containing protein (NALP)3 inflammasome. In the present study we have investigated whether production

  15. Protective Effect of Yinhua Miyanling Tablet on Lipopolysaccharide-Induced Inflammation through Suppression of NLRP3/Caspase-1 Inflammasome in Human Peripheral Blood Mononuclear Cells

    Science.gov (United States)

    Sai, Jingying; Zheng, Jingtong; Liu, Chuangui; Lu, Yanjiao; Wang, Guoqiang; Wang, Ting; Guan, Xuewa; Chen, Fang; Fang, Keyong; Zhang, Chao; Lu, Junying; Zhang, Xiaotian; Zhu, Hailin

    2016-01-01

    Yinhua Miyanling Tablet (YMT), the Chinese formula, has long been administrated in clinical practice for the treatment of acute pyelonephritis and acute urocystitis. In the current study, we aimed to investigate the anti-inflammatory effect of YMT in vitro and to evaluate the association between anti-inflammation and innate immune response. Human peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll density gradient centrifugation and then were stimulated by Lipopolysaccharide (LPS). The differential gene expression of inflammation-related genes after drug administration was assessed using PCR array, and the protein levels of differential genes were measured by ELISA and Western blot. The result showed that YMT significantly inhibited the expression of NLRP3, Caspase-1, and the downstream cytokine IL-1β and suppressed the production of inflammatory mediators TNF-α, IL-6, IL-10, and MCP-1 in a dose-dependent manner compared to the LPS group (P diseases.

  16. Effect of manassantin B, a lignan isolated from Saururus chinensis, on lipopolysaccharide-induced interleukin-1β in RAW 264.7 cells

    OpenAIRE

    Park, Hwan Chul; Bae, Hong-Beom; Jeong, Cheol-Won; Lee, Seong Heon; Jeung, Hye Jin; Kwak, Sang-Hyun

    2012-01-01

    Background Elevated systemic levels of pro-inflammatory cytokines cause hypotension during septic shock and induce capillary leakage in acute lung injury. Manassantin B has anti-inflammatory and anti-plasmoidal properties. This study examined the effects of manassantin B on lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages. Methods RAW 264.7 macrophage cells were incubated without or with (1, 3 and 10 µM) manassantin B and without or with (100 ng/ml) LPS. Manassanti...

  17. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-κB signalling in macrophages.

    Science.gov (United States)

    Liu, Xin-Hua; Pan, Li-Long; Jia, Yao-Ling; Wu, Dan; Xiong, Qing-Hui; Wang, Yang; Zhu, Yi-Zhun

    2013-05-15

    A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from Danshensu, exerted cytoprotective effects by anti-oxidative and anti-apoptotic activities in vitro. Herein, we reported the protective effects of DSC on lipopolysaccharide (LPS)-induced inflammatory responses in murine RAW264.7 macrophages and the underlying mechanisms. We showed that DSC concentration-dependently attenuated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression with less cytotoxicity. Signal transduction studies indicated that DSC significantly inhibited LPS-induced phosphorylation of Akt, but not c-Jun N-terminal kinase 1/2, p38, or extracellular signal-regulated kinase 1/2. Meanwhile, LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) p65 was decreased by DSC. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly suppressed LPS-induced NF-κB p65 nuclear translocation, iNOS expression, and NO production, which was also mimicked by pretreatment with DSC. These results suggested that DSC attenuated LPS-induced inflammatory response in macrophages, at least in part, through suppression of PI3K/Akt signaling and NF-κB activation.

  18. Gomisin A inhibits lipopolysaccharide-induced inflammatory responses in N9 microglia via blocking the NF-κB/MAPKs pathway.

    Science.gov (United States)

    Wang, Xiaoxiao; Hu, Di; Zhang, Lijia; Lian, Guoning; Zhao, Siqi; Wang, Chunming; Yin, Jun; Wu, Chunfu; Yang, Jingyu

    2014-01-01

    Gomisin A, one of the major dibenzocyclooctadiene lignans isolated from Schisandra chinensis Baill., has proved to possess a variety of pharmacological effects. The aim of the present study was to investigate the anti-inflammatory and neuroprotective effects of gomisin A as well as its potential molecular mechanisms. It was found that gomisin A not only inhibited the production of NO and PGE2 in a concentration-dependent manner but also suppressed the expressions of iNOS and COX-2 in LPS-stimulated N9 microglia without observable cytotoxicity. Gomisin A was also able to attenuate the mRNA expression and the production of pro-inflammatory factors TNF-α, IL-1β and IL-6. Moreover, LPS induced reactive oxygen species (ROS) production, NADPH oxidase activation, and gp91phox expression, which were markedly inhibited by gomisin A in microglia. Furthermore, the data showed that gomisin A significantly down-regulated the TLR4 protein expression, and inhibited nuclear transcription factor (NF)-κB and mitogen-activated protein kinases (MAPKs) signaling pathways. Additionally, gomisin A alleviated the cell death of SH-SY5Y neuroblastoma, rat primary cortical and hippocampal neurons induced by the conditioned-media from activated microglia. In summary, gomisin A may exert neuroprotective effects by attenuating the microglia-mediated neuroinflammatory response via inhibiting the TLR4-mediated NF-κB and MAPKs signaling pathways.

  19. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    Science.gov (United States)

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  20. Folic acid protects against lipopolysaccharide-induced preterm delivery and intrauterine growth restriction through its anti-inflammatory effect in mice.

    Directory of Open Access Journals (Sweden)

    Mei Zhao

    Full Text Available Increasing evidence demonstrates that maternal folic acid (FA supplementation during pregnancy reduces the risk of neural tube defects, but whether FA prevents preterm delivery and intrauterine growth restriction (IUGR remains obscure. Previous studies showed that maternal lipopolysaccharide (LPS exposure induces preterm delivery, fetal death and IUGR in rodent animals. The aim of this study was to investigate the effects of FA on LPS-induced preterm delivery, fetal death and IUGR in mice. Some pregnant mice were orally administered with FA (0.6, 3 or 15 mg/kg 1 h before LPS injection. As expected, a high dose of LPS (300 μg/kg, i.p. on gestational day 15 (GD15 caused 100% of dams to deliver before GD18 and 89.3% of fetuses dead. A low dose of LPS (75 μg/kg, i.p. daily from GD15 to GD17 resulted in IUGR. Interestingly, pretreatment with FA prevented LPS-induced preterm delivery and fetal death. In addition, FA significantly attenuated LPS-induced IUGR. Further experiments showed that FA inhibited LPS-induced activation of nuclear factor kappa B (NF-κB in mouse placentas. Moreover, FA suppressed LPS-induced NF-κB activation in human trophoblast cell line JEG-3. Correspondingly, FA significantly attenuated LPS-induced upregulation of cyclooxygenase (COX-2 in mouse placentas. In addition, FA significantly reduced the levels of interleukin (IL-6 and keratinocyte-derived cytokine (KC in amniotic fluid of LPS-treated mice. Collectively, maternal FA supplementation during pregnancy protects against LPS-induced preterm delivery, fetal death and IUGR through its anti-inflammatory effects.

  1. Astragalin suppresses inflammatory responses via down-regulation of NF-κB signaling pathway in lipopolysaccharide-induced mastitis in a murine model.

    Science.gov (United States)

    Li, Fengyang; Liang, Dejie; Yang, Zhengtao; Wang, Tiancheng; Wang, Wei; Song, Xiaojing; Guo, Mengyao; Zhou, Ershun; Li, Depeng; Cao, Yongguo; Zhang, Naisheng

    2013-10-01

    Mastitis is a prevalent and economic disease around the world and defined as infection and inflammation of the mammary gland. Astragalin, a bioactive component isolated from persimmon or Rosa agrestis, has been reported to have anti-inflammatory properties. To investigate the potential therapeutic effect of astragalin in mastitis, a murine model of mastitis was induced by administration of LPS in mammary gland. Astragalin was applied 1h before and 12h after LPS treatment. The results showed that astragalin attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO) and the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting results showed that astragalin efficiently blunt decreased nuclear factor-kappaB (NF-κB) activation by inhibiting the degradation and phosphorylation of IκBα and the nuclear translocation of p65. These results suggested that astragalin exerts anti-inflammatory properties in LPS-mediated mastitis, possibly through inhibiting inhibition of the NF-κB signaling pathway, which mediates the expression of pro-inflammatory cytokines. Astragalin may be a potential therapeutic agent against mastitis.

  2. Zuonin B Inhibits Lipopolysaccharide-Induced Inflammation via Downregulation of the ERK1/2 and JNK Pathways in RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Mee-Young Lee

    2012-01-01

    Full Text Available We investigated whether Zuonin B exerts immunological effects on RAW264.7 cells. Zuonin B, isolated from flower buds of Daphne genkwa, suppressed the levels of nitric oxide and prostaglandin E2, as well as proinflammatory cytokines, such as tumor necrosis factor-α and interleukin-(IL- 6, in lipopolysaccharide-stimulated macrophages. Moreover, the compound inhibited cyclooxygenase-2 and inducible nitric oxide synthase expression. Zuonin B attenuated NF-kappaB (NF-κB activation via suppressing proteolysis of inhibitor kappa B-alpha (IκB-α and p65 nuclear translocation as well as phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase. Additionally, IL-4 and IL-13 production in ConA-induced splenocytes was inhibited by Zuonin B. In conclusion, the anti-inflammatory effects of Zuonin B are attributable to the suppression of proinflammatory cytokines and mediators via blockage of NF-κB and AP-1 activation. Based on these findings, we propose that Zuonin B is potentially an effective functional chemical candidate for the prevention of inflammatory diseases.

  3. Emodin ameliorated lipopolysaccharide-induced fulminant hepatic failure by blockade of TLR4/MD2 complex expression in D-galactosamine-sensitized mice.

    Science.gov (United States)

    Yin, Xinru; Gong, Xia; Jiang, Rong; Kuang, Ge; Wang, Bin; Zhang, Li; Xu, Ge; Wan, Jingyuan

    2014-11-01

    Emodin has been reported to possess anti-inflammatory and anti-oxidant activities. The aim of this study was to explore the effect and mechanism of emodin on lipopolysaccharide (LPS)-induced fulminant hepatic failure (FHF) in D-galactosamine (D-GalN)-sensitized mice. Our results showed that pretreatment with emodin inhibited the elevation of plasma aminotransferases, alleviated the hepatic histopathological abnormalities and improved the survival rate of LPS/D-GalN-primed mice. Moreover, emodin markedly attenuated the increased serum and hepatic tumor necrosis factor-α (TNF-α) production, and activated hepatic p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signal pathways in LPS/D-GalN-challenged mice. Furthermore, using an in vitro experiment, we found that emodin dose-dependently suppressed TNF-α production, dampened AP-1 and NF-κB activation, and blocked toll-like receptor (TLR) 4/myeloid differentiation factor (MD) 2 complex expression in LPS-elicited RAW264.7 mouse macrophage cells. Taken together, these data suggested that emodin could effectively prevent LPS-induced FHF, which might be mediated by inhibition of TNF-α production, deactivation of MAPKs and NF-κB, and blockade of TLR4/MD2 complex expression.

  4. 2-Phenylnaphthalene Derivatives Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Mediators by Downregulating of MAPK/NF-κB Pathways in RAW 264.7 Macrophage Cells

    Science.gov (United States)

    Chang, Chi-Fen; Liao, Kang-Chun; Chen, Chung-Hwan

    2017-01-01

    The anti-inflammatory pharmacological effect of eight 2-phenylnaphthalenes (PNAP-1−PNAP-8) on lipopolysaccharide (LPS)-induced RAW 264.7 (a mouse cell line) was investigated. Among them, 6,7-dihydroxy-2-(4′-hydroxyphenyl)naphthalene (PNAP-6) and 2-(4′-aminophenyl)-6,7-dimethoxynaphthalene (PNAP-8) exhibited the best anti-inflammatory activity in this study. PNAP-6 and PNAP-8 not only significantly decreased the expression of inducible nitric oxide synthase and cyclooxygenase-II, but also inhibited the production of nitric oxide, interleukin-6, and tumor necrosis factor-α in LPS stimulated cells. Moreover, PNAP-6 and PNAP-8 inhibited nuclear factor (NF)-κB activation by decreasing the degradation of IκB and nuclear translocation of NF-κB subunit (p65). In addition, PNAP-6 and PNAP-8 also attenuated the phosphorylation of ERK, p38, and JNK. These results suggest that PNAP-6 and PNAP-8 exert anti-inflammatory activities by down regulating NF-κB activation and the mitogen-activated protein kinase signaling pathway in LPS-stimulated Raw 264.7 cells. This is the first study demonstrating that PNAPs can inhibit LPS-induced pro-inflammatory mediators in macrophages cells. PMID:28060845

  5. Interleukin-1 Receptor Antagonist Reduces Neonatal Lipopolysaccharide-Induced Long-Lasting Neurobehavioral Deficits and Dopaminergic Neuronal Injury in Adult Rats

    Directory of Open Access Journals (Sweden)

    Yi Pang

    2015-04-01

    Full Text Available Our previous study showed that a single lipopolysaccharide (LPS treatment to neonatal rats could induce a long-lasting neuroinflammatory response and dopaminergic system injury late in life. This is evidenced by a sustained activation of microglia and elevated interleukin-1β (IL-1β levels, as well as reduced tyrosine hydroxylase (TH expression in the substantia nigra (SN of P70 rat brain. The object of the current study was to test whether co-administration of IL-1 receptor antagonist (IL-1ra protects against LPS-induced neurological dysfunction later in life. LPS (1 mg/kg with or without IL-1ra (0.1 mg/kg, or sterile saline was injected intracerebrally into postnatal day 5 (P5 Sprague-Dawley male rat pups. Motor behavioral tests were carried out from P7 to P70 with subsequent examination of brain injury. Our results showed that neonatal administration of IL-1ra significantly attenuated LPS-induced motor behavioral deficits, loss of TH immunoreactive neurons, as well as microglia activation in the SN of P70 rats. These data suggest that IL-1β may play a pivotal role in mediating a chronic neuroinflammation status by a single LPS exposure in early postnatal life, and blockading IL-1β might be a novel approach to protect the dopaminergic system against perinatal infection/inflammation exposure.

  6. Interleukin-1 receptor antagonist reduces neonatal lipopolysaccharide-induced long-lasting neurobehavioral deficits and dopaminergic neuronal injury in adult rats.

    Science.gov (United States)

    Pang, Yi; Tien, Lu-Tai; Zhu, Hobart; Shen, Juying; Wright, Camilla F; Jones, Tembra K; Mamoon, Samir A; Bhatt, Abhay J; Cai, Zhengwei; Fan, Lir-Wan

    2015-04-17

    Our previous study showed that a single lipopolysaccharide (LPS) treatment to neonatal rats could induce a long-lasting neuroinflammatory response and dopaminergic system injury late in life. This is evidenced by a sustained activation of microglia and elevated interleukin-1β (IL-1β) levels, as well as reduced tyrosine hydroxylase (TH) expression in the substantia nigra (SN) of P70 rat brain. The object of the current study was to test whether co-administration of IL-1 receptor antagonist (IL-1ra) protects against LPS-induced neurological dysfunction later in life. LPS (1 mg/kg) with or without IL-1ra (0.1 mg/kg), or sterile saline was injected intracerebrally into postnatal day 5 (P5) Sprague-Dawley male rat pups. Motor behavioral tests were carried out from P7 to P70 with subsequent examination of brain injury. Our results showed that neonatal administration of IL-1ra significantly attenuated LPS-induced motor behavioral deficits, loss of TH immunoreactive neurons, as well as microglia activation in the SN of P70 rats. These data suggest that IL-1β may play a pivotal role in mediating a chronic neuroinflammation status by a single LPS exposure in early postnatal life, and blockading IL-1β might be a novel approach to protect the dopaminergic system against perinatal infection/inflammation exposure.

  7. TGF-β-induced CD4+Foxp3+ T cells attenuate acute graft-versus-host disease via suppressing expansion and killing of effector CD8+ cells

    OpenAIRE

    Gu, Jian; Lu, Ling; Chen, Maogen; Xu, Lili; Lan, Qin; Li, Qiang; Liu, Zhongmin; Chen, Guihua; Wang, Ping; Wang, Xuehao; Brand, David; Olsen, Nancy; Zheng, Song Guo

    2014-01-01

    TGF-β-induced CD4+Foxp3+ T cells (iTregs) have been identified as important prevention and treatment strategies for cell therapy in autoimmune diseases and other disorders. However, the potential use of iTregs as a treatment modality for acute graft-verse-host disease (GVHD) has not been realized because iTregs may be unstable and less suppressive in this disease. Here we restudied the ability of iTregs to prevent and treat acute GVHD in two different mouse models. Our results showed that so ...

  8. Inhibitory effects of β-chamigrenal, isolated from the fruits of Schisandra chinensis, on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in RAW 264.7 macrophages [corrected].

    Science.gov (United States)

    Shin, Ji-Sun; Ryu, Suran; Cho, Young-Wuk; Kim, Hyun Ji; Jang, Dae Sik; Lee, Kyung-Tae

    2014-06-01

    Much is known about the bioactive properties of lignans from the fruits of Schisandra chinensis. However, very little work has been done to determine the properties of sesquiterpenes in the fruits of S. chinensis. The aim of the present study was to investigate the anti-inflammatory potential of new sesquiterpenes (β-chamigrenal, β-chamigrenic acid, α-ylangenol, and α-ylangenyl acetate) isolated from the fruits of S. chinensis and to explore their effect on macrophages stimulated with lipopolysaccharide. Of these four sesquiterpenes, β-chamigrenal most significantly suppressed lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in RAW 264.7 macrophages (47.21 ± 4.54 % and 51.61 ± 3.95 % at 50 µM, respectively). Molecularly, the inhibitory activity of β-chamigrenal on nitric oxide production was mediated by suppressing inducible nitric oxide synthase activity but not its expression. In the prostaglandin E2 synthesis pathway, β-chamigrenal prevented the upregulation of inducible microsomal prostaglandin E synthase-1 expression after stimulation with lipopolysaccharide. Conversely, β-chamigrenal had no effect on the expression and enzyme activity of cyclooxygenase-2. In addition, the expression of early growth response factor-1, a key transcription factor of microsomal prostaglandin E synthase-1 expression, was inhibited by β-chamigrenal. These results may suggest a possible anti-inflammatory activity of β-chamigrenal which has to be proven in in vivo experiments.

  9. A20 Overexpression Inhibits Lipopolysaccharide-Induced NF-κB Activation, TRAF6 and CD40 Expression in Rat Peritoneal Mesothelial Cells

    Directory of Open Access Journals (Sweden)

    Xun-Liang Zou

    2014-04-01

    Full Text Available Zinc finger protein A20 is a key negative regulator of inflammation. However, whether A20 may affect inflammation during peritoneal dialysis (PD-associated peritonitis is still unclear. This study was aimed to investigate the effect of A20 overexpression on lipopolysaccharide (LPS-induced inflammatory response in rat peritoneal mesothelial cells (RPMCs. Isolated and cultured RPMCs in vitro. Plasmid pGEM-T easy-A20 was transfected into RPMCs by Lipofectamine™2000. The protein expression of A20, phospho-IκBα, IκBα, TNF receptor-associated factor (TRAF 6 and CD40 were analyzed by Western blot. The mRNA expression of TRAF6, CD40, interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α were determined by real time-PCR. NF-κB p65 DNA binding activity, IL-6 and TNF-α levels in cells culture supernatant were determined by ELISA. Our results revealed that RPMCs overexpression of A20 lead to significant decrease of LPS-induced IκBα phosphorylation and NF-κB DNA binding activity (all p < 0.01. In addition, A20 also attenuated the expression of TRAF6, CD40, IL-6 and TNF-α as well as levels of IL-6 and TNF-α in cells culture supernatant (all p < 0.05. However, A20 only partly inhibited CD40 expression. Our study indicated that A20 overexpression may depress the inflammatory response induced by LPS in cultured RPMCs through negatively regulated the relevant function of adaptors in LPS signaling pathway.

  10. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2016-03-01

    Full Text Available For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA, was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae. MOA modulates cytokine expression in lipopolysaccharide (LPS-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO, prostaglandin E2 (PGE2, tumor necrosis factor-α (TNF-α, interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2, thus blocking nuclear translocation of activation protein (AP-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs and one of their downstream transcription factors, activator protein-1 (AP-1. Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases.

  11. Lipopolysaccharide-Induced Profiles of Cytokine, Chemokine, and Growth Factors Produced by Human Decidual Cells Are Altered by Lactobacillus rhamnosus GR-1 Supernatant.

    Science.gov (United States)

    Li, Wei; Yang, Siwen; Kim, Sung O; Reid, Gregor; Challis, John R G; Bocking, Alan D

    2014-07-01

    The aim of this study was to assess the effects of bacterial lipopolysaccharide (LPS) and Lactobacillus rhamnosus GR-1 supernatant (GR-1SN) on secretion profiles of cytokines, chemokines, and growth factors from primary cultures of human decidual cells. Lipopolysaccharide significantly increased the output of proinflammatory cytokines (interleukin [IL]-1B, IL-2, IL-6, IL-12p70, IL-15, IL-17A, interferon gamma [IFN-γ], and tumor necrosis factor [TNF]); anti-inflammatory cytokines (IL-1RN, IL-4, IL-9, and IL-10); chemokines (IL-8, eotaxin, IFN-inducible protein 10 [IP-10], monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein-1α [MIP-1α], macrophage inflammatory protein-1β [MIP-1β], and regulated on activation normal T cell expressed and secreted [RANTES]); and growth factors (granulocyte colony-stimulating factor [CSF] 3, CSF-2, and vascular endothelial growth factor A [VEGFA]). Lactobacillus rhamnosus GR-1SN alone significantly increased CSF-3, MIP-1α MIP-1β, and RANTES but decreased IL-15 and IP-10 output. The GR-1SN also significantly or partially reduced LPS-induced proinflammatory cytokines TNF, IFN-γ, IL-1β, IL-2 IL-6, IL-12p70, IL-15, IL-17, and IP-10; partially reduced LPS-induced anti-inflammatory cytokines IL-1RN, IL-4 and IL-10, and LPS-induced VEGFA output but did not affect CSF-3, MIP-1α, MIP-1β, MCP-1, IL-8, and IL-9. Our results demonstrate that GR-1SN attenuates the inflammatory responses to LPS by human decidual cells, suggesting its potential role in ameliorating intrauterine infection.

  12. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression by 4-[(2'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera.

    Science.gov (United States)

    Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P; Pezzuto, John M

    2011-01-01

    Moringa oleifera Lamarck is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential antiinflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC(50) = 0.96 ± 0.23 μM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC(50) = 2.86 ± 0.39 μM) and benzyl isothiocyanate (IC(50) = 2.08 ± 0.28 μM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal-regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB and subsequent binding to NF-κB cis-acting element was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating antiinflammatory or cancer chemopreventive activity.

  13. Differences in the effects of four TRPV1 channel antagonists on lipopolysaccharide-induced cytokine production and COX-2 expression in murine macrophages.

    Science.gov (United States)

    Ninomiya, Yuki; Tanuma, Sei-Ichi; Tsukimoto, Mitsutoshi

    2017-03-11

    Sepsis is a systemic inflammatory response syndrome triggered by lipopolysaccharide (LPS), an outer membrane component of gram-negative bacteria, and cytokine production via LPS-induced macrophage activation is deeply involved in its pathogenesis. Effective therapy of sepsis has not yet been established. However, it was reported that transient receptor potential vanilloid 1 (TRPV1) channel antagonist capsazepine (CPZ; a capsaicin analogue) attenuates sepsis in a murine model [Ang et al., PLoS ONE 6(9) (2011) e24535; J. Immunol. 187 (2011) 4778-4787]. Here, we profiled the effects of four TRPV1 channel antagonists, AMG9810, SB366791, BCTC and CPZ, on the release of IL-6, IL-1β and IL-18, and on expression of cyclooxygenase 2 (COX-2) in LPS-activated macrophages. Treatment of murine macrophage J774.1 cells or BALB/c mouse-derived intraperitoneal immune cells with LPS induced pro-inflammatory cytokines production and COX-2 expression. Pretreatment with AMG9810 or CPZ significantly suppressed the release of IL-6, IL-1β and IL-18, and COX-2 expression, whereas SB366791 and BCTC were less effective. These results support a role of TRPV1 channel in macrophage activation, but also indicate that only a subset of TRPV1 channel antagonists may be effective in suppressing inflammatory responses. These results suggest that at least some TRPV1 channel antagonists, such as AMG9810 and CPZ, may be candidate anti-inflammatory agents for treatment of sepsis.

  14. A Human Anti-Toll Like Receptor 4 Fab Fragment Inhibits Lipopolysaccharide-Induced Pro-Inflammatory Cytokines Production in Macrophages.

    Science.gov (United States)

    Wang, Maorong; Zheng, Wenkai; Zhu, Xuhui; Xu, Jing; Cai, Binggang; Zhang, Yiqing; Zheng, Feng; Zhou, Linfu; Yang, Zhiguo; Zhang, Xin; Wang, Changjun; Nie, Shinan; Zhu, Jin

    2016-01-01

    The results of clinical and experimental studies suggest that endotoxin/toll-like receptor 4 (TLR4)-mediated proinflammatory and profibrotic signaling activation is critical in the development of hepatic fibrosis. However, studies examining the role of specific TLR4 inhibitor are still lacking. The present study was aimed to prepare a human anti-TLR4 Fab fragment, named hTLR4-Fab01, and to explore its immune activity. We screened the positive clone of anti-human TLR4 phagemid from a human phage-display antibody library using recombinant TLR4 protein, which was used as template cDNA for the amplification of variable regions of the heavy (VH) chain and light chain (VL), then coupled with highly conserved regions of the heavy chain domain 1 (CH1) and the light chain (CL), respectively. Thus, the prokaryotic expression vector pETDuet-1 of hTLR4-Fab01 was constructed and transformed into Escherichia coli (E. coli) BL21. The characteristic of hTLR4-Fab01 was examined by SDS-PAGE, Western blotting, ELISA, affinity and kinetics assay. Further, our data demonstrate that hTLR4-Fab01 could specifically bind to TLR4, and its treatment obviously attenuated the proinflammatory effect, characterized by less LPS-induced TNF-α, IL-1, IL-6 and IL-8 production in human macrophages. In conclusion, we have successfully prepared the hTLR4-Fab01 with efficient activity for blocking LPS-induced proinflammatory cytokines production, suggesting that the hTLR4-Fab01 may be a potential candidate for the treatment of hepatic fibrosis.

  15. Salvianolic Acid B Ameliorates Lipopolysaccharide-Induced Albumin Leakage from Rat Mesenteric Venules through Src-Regulated Transcelluar Pathway and Paracellular Pathway.

    Science.gov (United States)

    Pan, Chun-Shui; Liu, Ying-Hua; Liu, Yu-Ying; Zhang, Yu; He, Ke; Yang, Xiao-Yuan; Hu, Bai-He; Chang, Xin; Wang, Ming-Xia; Wei, Xiao-Hong; Fan, Jing-Yu; Wu, Xin-Min; Han, Jing-Yan

    2015-01-01

    Lipopolysaccharide (LPS) causes microvascular barrier disruption, leading to albumin leakage from microvessels resulting in a range of disastrous sequels. Salvianolic acid B (SalB) is a major water-soluble component derived from Salvia miltiorrhiza. Previous studies showed its potential to attenuate microvascular barrier dysfunction, but the underlying mechanism is not fully understood. The present study was intended to investigate the impact of SalB on endothelial cell barrier in vivo in rat mesenteric venules as well as in vitro in human umbilical vein endothelial cells (HUVECs), aiming at disclosing the mechanism thereof, particularly the role of Src in its action. Male Wistar rats were challenged by infusion of LPS (2 mg/kg/h) through left femoral vein for 90 min. SalB (5 mg/kg/h) was administrated either simultaneously with LPS or 30 min after LPS infusion through the left jugular vein. Vesicles in venular walls were observed by electron microscopy. HUVECs were incubated with LPS with or without SalB. The expression of Zonula occluden-1 (ZO-1), VE-cadherin, caveolin-1 and Src in HUVECs was assessed by Western blot and confocal microscopy, binding of SalB to Src was measured using Surface Plasmon Resonance and BioLayer Interferometry. Treatment with SalB inhibited albumin leakage from rat mesenteric venules and inhibited the increase of vesicle number in venular endothelial cells induced by LPS. In addition, SalB inhibited the degradation of ZO-1, the phosphorylation and redistribution of VE-cadherin, the expression and phosphorylation of caveolin-1, and phosphoirylation of Src in HUVECs exposed to LPS. Furthermore, SalB was found able to bind to Src. This study demonstrates that protection of SalB against microvascular barrier disruption is a process involving both para- and trans-endothelial cell pathway, and highly suggests Src as the key enzyme for SalB to work.

  16. Salvianolic Acid B Ameliorates Lipopolysaccharide-Induced Albumin Leakage from Rat Mesenteric Venules through Src-Regulated Transcelluar Pathway and Paracellular Pathway.

    Directory of Open Access Journals (Sweden)

    Chun-Shui Pan

    Full Text Available Lipopolysaccharide (LPS causes microvascular barrier disruption, leading to albumin leakage from microvessels resulting in a range of disastrous sequels. Salvianolic acid B (SalB is a major water-soluble component derived from Salvia miltiorrhiza. Previous studies showed its potential to attenuate microvascular barrier dysfunction, but the underlying mechanism is not fully understood. The present study was intended to investigate the impact of SalB on endothelial cell barrier in vivo in rat mesenteric venules as well as in vitro in human umbilical vein endothelial cells (HUVECs, aiming at disclosing the mechanism thereof, particularly the role of Src in its action. Male Wistar rats were challenged by infusion of LPS (2 mg/kg/h through left femoral vein for 90 min. SalB (5 mg/kg/h was administrated either simultaneously with LPS or 30 min after LPS infusion through the left jugular vein. Vesicles in venular walls were observed by electron microscopy. HUVECs were incubated with LPS with or without SalB. The expression of Zonula occluden-1 (ZO-1, VE-cadherin, caveolin-1 and Src in HUVECs was assessed by Western blot and confocal microscopy, binding of SalB to Src was measured using Surface Plasmon Resonance and BioLayer Interferometry. Treatment with SalB inhibited albumin leakage from rat mesenteric venules and inhibited the increase of vesicle number in venular endothelial cells induced by LPS. In addition, SalB inhibited the degradation of ZO-1, the phosphorylation and redistribution of VE-cadherin, the expression and phosphorylation of caveolin-1, and phosphoirylation of Src in HUVECs exposed to LPS. Furthermore, SalB was found able to bind to Src. This study demonstrates that protection of SalB against microvascular barrier disruption is a process involving both para- and trans-endothelial cell pathway, and highly suggests Src as the key enzyme for SalB to work.

  17. Anti-Metalloproteinase-9 Activities of Selected Indonesian Zingiberaceae Rhizome Extracts in Lipopolysaccharide-Induced Human Vascular Endothelial Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Yanti

    2011-01-01

    Full Text Available Problem statement: Atherosclerosis is associated with chronic inflammation triggered by bacterial infection that activates the breakdown of extracellular matrix protein by matrix Metalloproteinases (MMPs. Zingiberaceae, a group of tropical food crops grown in Indonesia and other Southeast Asia regions, has been traditionally used for food coloring, seasoning, culinary and medicinal purposes. However, its efficacy as natural vascular protection has not been explored. Approach: The research was aimed to investigate the effects of 10 Indonesian Zingiberaceae rhizome extracts on inhibition of MMP-9 expression in human vascular endothelial cells treated with Lipopolysaccharide (LPS in vitro by conducting gelatin zymogram, Western blotting and RT-PCR assays. Results: LPS (2 μg mL−1 significantly elevated the expression of MMP-9 secretion, protein and mRNA in the vascular endothelial cells. Selected Zingiberaceae exctracts (5 μg mL−1, i.e., Curcuma xanthorrhiza, C. aeruginosa, C. mangga, C. longa, Kaempferia galanga, Alpinia galanga and Zingiberaceae officinale, effectively attenuated the expression of MMP-9 secretion, protein and mRNA in LPS-induced vascular endothelial cells. Furthermore, MMP-9 expression was specifically blocked by MAPK inhibitors, i.e., PD98059 (ERK1/2 inhibitor, SB203580 (p38 inhibitor, SP600125 (JNK inhibitor and PI3K inhibitor (LY294002, indicating that MAPK and PI3K signaling pathways are involved in regulation of MMP-9 gene expression in LPS-induced vascular endothelial cells. Conclusion: These results suggest that selected Indonesian Zingiberaceae rhizomes with potent MMP- 9 inhibitory activity may scientifically offer the promising therapeutic target in vascular diseases, particularly atherosclerosis.

  18. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    Full Text Available Aged garlic extract (AGE is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl-L-arginine (FruArg. The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  19. Lipopolysaccharide Induces Alveolar Macrophage Necrosis via CD14 and the P2X7 Receptor Leading to Interleukin-1α Release.

    Science.gov (United States)

    Dagvadorj, Jargalsaikhan; Shimada, Kenichi; Chen, Shuang; Jones, Heather D; Tumurkhuu, Gantsetseg; Zhang, Wenxuan; Wawrowsky, Kolja A; Crother, Timothy R; Arditi, Moshe

    2015-04-21

    Acute lung injury (ALI) remains a serious health issue with little improvement in our understanding of the pathophysiology and therapeutic approaches. We investigated the mechanism that lipopolysaccharide (LPS) induces early neutrophil recruitment to lungs and increases pulmonary vascular permeability during ALI. Intratracheal LPS induced release of pro-interleukin-1α (IL-1α) from necrotic alveolar macrophages (AM), which activated endothelial cells (EC) to induce vascular leakage via loss of vascular endothelial (VE)-cadherin. LPS triggered the AM purinergic receptor P2X7(R) to induce Ca(2+) influx and ATP depletion, which led to necrosis. P2X7R deficiency significantly reduced necrotic death of AM and release of pro-IL-1α into the lung. CD14 was required for LPS binding to P2X7R, as CD14 neutralization significantly diminished LPS induced necrotic death of AM and pro-IL-1α release. These results demonstrate a key role for pro-IL-1α from necrotic alveolar macrophages in LPS-mediated ALI, as a critical initiator of increased vascular permeability and early neutrophil infiltration.

  20. Methyl Gallate Inhibits Osteoclast Formation and Function by Suppressing Akt and Btk-PLCγ2-Ca2+ Signaling and Prevents Lipopolysaccharide-Induced Bone Loss

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Lee, Chang Hoon; Yoon, Kwon-Ha; Lee, Myeung Su

    2017-01-01

    In the field of bone research, various natural derivatives have emerged as candidates for osteoporosis treatment by targeting abnormally elevated osteoclastic activity. Methyl gallate, a plant-derived phenolic compound, is known to have numerous pharmacological effects against inflammation, oxidation, and cancer. Our purpose was to explore the relation between methyl gallate and bone metabolism. Herein, we performed screening using methyl gallate by tartrate resistant acid phosphatase (TRAP) staining and revealed intracellular mechanisms responsible for methyl gallate-mediated regulation of osteoclastogenesis by Western blotting and quantitative reverse transcription polymerase chain reaction (RT-PCR). Furthermore, we assessed the effects of methyl gallate on the characteristics of mature osteoclasts. We found that methyl gallate significantly suppressed osteoclast formation through Akt and Btk-PLCγ2-Ca2+ signaling. The blockade of these pathways was confirmed through transduction of cells with a CA-Akt retrovirus and evaluation of Ca2+ influx intensity (staining with Fluo-3/AM). Indeed, methyl gallate downregulated the formation of actin ring-positive osteoclasts and resorption pit areas. In agreement with in vitro results, we found that administration of methyl gallate restored osteoporotic phenotype stimulated by acute systemic injection of lipopolysaccharide in vivo according to micro-computed tomography and histological analysis. Our data strongly indicate that methyl gallate may be useful for the development of a plant-based antiosteoporotic agent. PMID:28272351

  1. Perfluorocarbon inhibits lipopolysaccharide-induced macrophage inflammatory protein-2 expression and activation of ATF-2 and c-Jun in A549 pulmonary epithelial cells.

    Science.gov (United States)

    Hu, Y; Li, C S; Li, Y Q; Liang, Y; Cao, L; Chen, L A

    2016-04-30

    The signaling pathway that mediates the anti-inflammatory effects of perfluorocarbon (PFC) in alveolar epithelial cells treated with lipopolysaccharide (LPS) remains unclear. To evaluate the role of macrophage-inflammatory protein-2 (MIP-2), four A549 treatment groups were utilized: (1) untreated control, (2) 10 μg/mL of LPS, (3) 10 μg/mL of LPS+30% PFC and (4) 30% PFC. MIP-2 mRNA expression was determined by qPCR and ELISA. Mitogen-activated protein kinase (MAPK) activation was determined by Western blot analysis, and MIP-2 expression was determined by qPCR following treatment with MAPK inhibitors. PFC suppressed LPS-induced MIP-2 mRNA levels (P≤0.035) and MIP-2 secretion (P≤0.046). LPS induced ATF-2 and c-Jun phosphorylation, which was suppressed by PFC. Finally, inhibitors of ERK, JNK, and p38 suppressed LPS-induced MIP-2 mRNA expression. Thus, PFC inhibits LPS-induced MIP-2 expression and ATF-2 and c-Jun phosphorylation. To fully explore the therapeutic potential of PFC for acute lung injury (ALI), in vivo analyses are required to confirm these effects.

  2. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peng [Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Xue, Peng; Dong, Jian [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Peng, Hui [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences (China); Clewell, Rebecca [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Wang, Aiping [Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Wang, Yue [Institute for Medical Device Standardization Administration, National Institutes for Food and Drug Control, Beijing (China); Peng, Shuangqing [Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences (China); Qu, Weidong [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Zhang, Qiang; Andersen, Melvin E. [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States)

    2013-11-01

    Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), regulate IL6 transcription. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for the Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of many proteins, including Nrf2 and IκB kinase β (IKKβ). Here, we found that stable knockdown of Keap1 (Keap1-KD) in RAW 264.7 (RAW) mouse macrophages and human monocyte THP-1 cells significantly increased expression of Il6, and Nrf2-target genes, under basal and lipopolysaccharide (LPS, 0.001–0.1 μg/ml)-challenged conditions. However, Nrf2 activation alone, by tert-butylhydroquinone treatment of RAW cells, did not increase expression of Il6. Compared to cells transduced with scrambled non-target negative control shRNA, Keap1-KD RAW cells showed enhanced protein levels of IKKβ and increased expression and phosphorylation of NF-κB p65 under non-stressed and LPS-treated conditions. Because the expression of Il6 in Keap1-KD RAW cells was significantly attenuated by silencing of Ikkβ, but not Nrf2, it appears that stabilized IKKβ is responsible for the enhanced transactivation of Il6 in Keap1-KD cells. This study demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of Il6 via NF-κB activation. Given the importance of IL6 in the inflammatory response, the Keap1–IKKβ–NF-κB pathway may be a novel target for treatment and prevention of inflammation and associated disorders. - Highlights: • Knockdown of Keap1 increases expression of Il6 in macrophages. • Silencing of Keap1 results in protein accumulation of IKKβ and NF-κB p65. • Induction of Il6 resulting from Keap1 silencing is attributed to NF-κB activation.

  3. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids

    Directory of Open Access Journals (Sweden)

    Belvisi Maria G

    2007-07-01

    Full Text Available Abstract Background At present, nothing is known of the role of miRNAs in the immune response in vivo despite the fact that inflammation is thought to underlie multiple acute and chronic diseases. In these circumstances, patients are commonly treated with corticosteroids such as dexamethasone. Results To address this question, we have examined the differential expression of 104 miRNAs using real-time PCR during the innate immune response in mouse lung following exposure to aerosilised lipopolysaccharide (LPS. Following challenge, we observed rapid and transient increase in both the mean (4.3-fold and individual levels of miRNA expression (46 miRNAs which peaked at 3 hrs. Crucially, this increase was correlated with a reduction in the expression of tumour necrosis factor (TNF-α, keratinocyte-derived chemokine (KC and macrophage inflammatory protein (MIP-2, suggesting a potential role for miRNAs in the regulation of inflammatory cytokine production. Examination of the individual miRNA expression profiles showed time dependent increases in miR-21, -25, -27b, -100, 140, -142-3p, -181c, 187, -194, -214, -223 and -224. Corticosteroid studies showed that pre-treatment with dexamethasone at concentrations that inhibited TNF-α production, had no effect either alone or upon the LPS-induced miRNA expression profile. Conclusion We have shown that the LPS-induced innate immune response is associated with widespread, rapid and transient increases in miRNA expression in the mouse lung and we speculate that these changes might be involved in the regulation of the inflammatory response. In contrast, the lack of effect of dexamethasone in either control or challenged animals implies that the actions of glucocorticoids per se are not mediated through changes in miRNAs expression and that LPS-induced increases in miRNA expression are not mediated via classical inflammatory transcription factors.

  4. Beta-adrenoceptor Activation by Norepinephrine Enhances Lipopolysaccharide-induced Matrix Metalloproteinase-9 Expression Through the ERK/JNK-c-Fos Pathway in Human THP-1 Cells

    Science.gov (United States)

    Yin, Xiang; Zhou, Linli; Han, Fei; Han, Jie; Zhang, Yuanyuan; Sun, Zewei; Zhao, Wenting; Wang, Zhen

    2017-01-01

    Aim: Atherosclerosis is a chronic inflammatory disease, which leads to thrombosis and acute coronary syndrome. Matrix metalloproteinase-9 (MMP-9) is involved in the stability of the extracellular matrix (ECM) and atherosclerosis plaque. Until now, it is established that lipopolysaccharide (LPS) and norepinephrine (NE) are associated with the pathological process of atherosclerosis. However, the combined effect of LPS and NE on MMP-9 is unclear. We investigated the combined effect of LPS and NE on MMP-9 expression in human monocytes and the mechanism involved in the process. Methods: THP-1 cells were cultured and treated with LPS and/or NE. MMP-9 and TIMP-1 gene and protein expression were detected by real time PCR and ELISA, respectively. MMP-9 activity was detected by gelatin zymography. Adrenoceptor antagonists and MAPKs inhibitors were used to clarify the mechanism. Pathway-related proteins were detected by Western blot. Results: We found that NE enhances LPS-induced MMP-9 and TIMP-1 expression as well as MMP-9 activity in THP-1 cells. This effect is reversed by the beta (β)-adrenoceptor antagonist propranolol, extracellular signal-regulated kinases (ERK) inhibitor U0126, and c-Jun N-terminal kinase (JNK) inhibitor SP600125. NE enhances LPS-induced ERK/JNK phosphorylation. NE up-regulates LPS-induced c-Fos expression, which is counteracted by propranolol, U0126, and SP600125. Furthermore, c-Fos silence reverses the effect of NE on MMP-9 activity. Conclusions: Our results suggest that NE enhances LPS-induced MMP-9 expression through β-adrenergic receptor and downstream ERK/JNK-c-Fos pathway. This study may help us to understand the combined effect and mechanism of NE/LPS on MMP-9 expression. PMID:27237101

  5. Brilliant blue G attenuates lipopolysaccharidemediated microglial activation and inflammation

    Institute of Scientific and Technical Information of China (English)

    Kui Lu; Jue Wang; Bin Hu; Xiaolei Shi; Junyi Zhou; Yamei Tang; Ying Peng

    2013-01-01

    Previous studies have confirmed that oxidized adenosine triphosphate, a P2X7 receptor antagonist, attenuates lipopolysaccharide-mediated microglial activation and inflammatory expression following neuronal damage in rat brain. NaCl and temperature may affect the potency of oxidized adenosine triphosphate. Brilliant blue G is a derivative of a widely used food additive and has little toxicity. This study explored the effects of brilliant blue G, a selective P2X7 receptor antagonist, on microglial activation and inflammation. Results demonstrated that brilliant blue G inhibited the release of cyclooxygenase-2 and interleukin-6 in BV2 cells. Immunofluorescence displayed that brilliant blue G could suppress lipopolysaccharide-induced microglial activation. This study used RNA interference to block P2X7 receptor expression and found that small interfering RNA also suppressed the release of cyclooxygenase-2 and interleukin-6 in BV2 cells. These results suggested that downregulation of the P2X7 receptor by brilliant blue G was involved in the inhibition of microglial activation and inflammation.

  6. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming - The role of renal H2S-producing enzymes.

    Science.gov (United States)

    Dugbartey, George J; Talaei, Fatemeh; Houwertjes, Martin C; Goris, Maaike; Epema, Anne H; Bouma, Hjalmar R; Henning, Robert H

    2015-12-15

    Hypothermia and rewarming produces organ injury through the production of reactive oxygen species. We previously found that dopamine prevents hypothermia and rewarming-induced apoptosis in cultured cells through increased expression of the H2S-producing enzyme cystathionine β-Synthase (CBS). Here, we investigate whether dopamine protects the kidney in deep body cooling and explore the role of H2S-producing enzymes in an in vivo rat model of deep hypothermia and rewarming. In anesthetized Wistar rats, body temperature was decreased to 15°C for 3h, followed by rewarming for 1h. Rats (n≥5 per group) were treated throughout the procedure with vehicle or dopamine infusion, and in the presence or absence of a non-specific inhibitor of H2S-producing enzymes, amino-oxyacetic acid (AOAA). Kidney damage and renal expression of three H2S-producing enzymes (CBS, CSE and 3-MST) was quantified and serum H2S level measured. Hypothermia and rewarming induced renal damage, evidenced by increased serum creatinine, renal reactive oxygen species production, KIM-1 expression and influx of immune cells, which was accompanied by substantially lowered renal expression of CBS, CSE, and 3-MST and lowered serum H2S levels. Infusion of dopamine fully attenuated renal damage and maintained expression of H2S-producing enzymes, while normalizing serum H2S. AOAA further decreased the expression of H2S-producing enzymes and serum H2S level, and aggravated renal damage. Hence, dopamine preserves renal integrity during deep hypothermia and rewarming likely by maintaining the expression of renal H2S-producing enzymes and serum H2S.

  7. Quercetin and vitamin E attenuate Bonny Light crude oil-induced alterations in testicular apoptosis, stress proteins and steroidogenic acute regulatory protein in Wistar rats.

    Science.gov (United States)

    Ebokaiwe, Azubuike P; Mathur, Premendu P; Farombi, Ebenezer O

    2016-10-01

    Studies have shown the reproductive effects of Bonny Light crude oil (BLCO) via the mechanism of oxidative stress and testicular apoptosis. We investigated the protective role of quercetin and vitamin E on BLCO-induced testicular apoptosis. Experimental rats were divided into four groups of four each. Animals were orally administered 2 ml/kg corn oil (control: group 1), BLCO-800 mg/kg body weight + 10 mg/kg quercetin (group 2), BLCO-800 mg/kg body weight + 50 mg/kg vitamin E (group 3) and BLCO-800 mg/kg body weight only (group 4) for 7 d. Protein levels of caspase 3, FasL, NF-kB, steroidogenic acute regulatory protein and stress response proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunofluorescence staining was used to quantify the expression of caspase 3, FasL and NF-kB. Apoptosis was quantified by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Administration of BLCO resulted in a significant increase in the levels of stress response proteins and apoptosis-related proteins by 50% and above after 7 d following BLCO exposure and a concomitant increase in expression of caspase 3, FasL and NF-kB expression by immunofluorescence staining. Apoptosis showed a significant increase in TUNEL positive cells. Co-administration with quercetin or vitamin E reversed BLCO-induced apoptosis and levels of stress protein, relative to control. These findings suggest that quercetin and vitamin E may confer protection against BLCO-induced testicular oxidative stress-related apoptosis.

  8. An anti-interleukin-2 receptor drug attenuates T- helper 1 lymphocytes-mediated inflammation in an acute model of endotoxin-induced uveitis.

    Directory of Open Access Journals (Sweden)

    Salvador Mérida

    Full Text Available The aim of the present study was to evaluate the anti-inflammatory efficacy of Daclizumab, an anti-interleukin-2 receptor drug, in an experimental uveitis model upon a subcutaneous injection of lipopolysaccharide into Lewis rats, a valuable model for ocular acute inflammatory processes. The integrity of the blood-aqueous barrier was assessed 24 h after endotoxin-induced uveitis by evaluating two parameters: cell count and protein concentration in aqueous humors. The histopathology of all the ocular structures (cornea, lens, sclera, choroid, retina, uvea, and anterior and posterior chambers was also considered. Enzyme-linked immunosorbent assays of the aqueous humor samples were performed to quantify the levels of the different chemokine and cytokine proteins. Similarly, a biochemical analysis of oxidative stress-related markers was also assessed. The inflammation observed in the anterior chamber of the eyes when Daclizumab was administered with endotoxin was largely prevented since the aqueous humor protein concentration substantially lowered concomitantly with a significant reduction in the uveal and vitreous histopathological grading. Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon-γ, also significantly reduced with related anti-oxidant systems recovery. Daclizumab treatment in endotoxin-induced uveitis reduced Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon gamma, by about 60-70% and presented a preventive role in endotoxin-induced oxidative stress. This antioxidant protective effect of Daclizumab may be related to several of the observed Daclizumab effects in our study, including IL-6 cytokine regulatory properties and a substantial concomitant drop in INFγ. Concurrently, Daclizumab treatment triggered a significant reduction in both the uveal histopathological grading and protein concentration in aqueous humors, but not in cellular infiltration.

  9. High expression of heme oxygenase-1 in target organs may attenuate acute graft-versus-host disease through regulation of immune balance of TH17/Treg.

    Science.gov (United States)

    Yu, Meisheng; Wang, Jishi; Fang, Qin; Liu, Ping; Chen, Shuya; Zhe, Nana; Lin, Xiaojing; Zhang, Yaming; Zhao, Jiangyuan; Zhou, Zhen

    2016-07-01

    The high incidence of acute graft-versus-host disease (aGVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Grades III and IV aGVHD are the leading causes of death in allo-HSCT recipients. Heme oxygenase-1(HO-1) has anti-inflammatory and immune-regulatory functions. In this study, we evaluated the none GVHD and grade I-IV patients samples which were collected at the first re-examination after successful allo-HSCT, we found that expressions of HO-1 mRNA in the bone marrow and peripheral blood mononuclear cells of allo-HSCT recipients who had subsequent non-GVHD and grade I aGVHD were significantly higher than those in patients with Grade III-IV aGVHD. We then demonstrated that enhanced expression of HO-1 in target organs by infusing HO-1-gene-modified Mesenchymal stem cells (MSCs) alleviated the clinical and histopathological severity of aGVHD in experimental mice. Flow cytometry revealed a higher expression of Treg cells and a lower expression of TH17 cells in splenic and lymph node tissues of mice with enhanced HO-1 expression, as compared to that in the aGVHD mice. This was further substantiated by lower expression levels of ROR-Υt and IL-17A mRNA, and higher levels of Foxp3 mRNA in the splenic tissue of mice with enhanced HO-1 expression. Our results indicate that high expression of HO-1 may reduce the severity of aGVHD by regulation of the TH17/Treg balance.

  10. Smad3 inactivation and MiR-29b upregulation mediate the effect of carvedilol on attenuating the acute myocardium infarction-induced myocardial fibrosis in rat.

    Science.gov (United States)

    Zhu, Jie-Ning; Chen, Ren; Fu, Yong-Heng; Lin, Qiu-Xiong; Huang, Shuai; Guo, Lin-Lin; Zhang, Meng-Zhen; Deng, Chun-Yu; Zou, Xiao; Zhong, Shi-Long; Yang, Min; Zhuang, Jian; Yu, Xi-Yong; Shan, Zhi-Xin

    2013-01-01

    Carvedilol, a nonselective β-adrenoreceptor antagonist, protects against myocardial injury induced by acute myocardium infarction (AMI). The mechanisms underlying the anti-fibrotic effects of carvedilol are unknown. Recent studies have revealed the critical role of microRNAs (miRNAs) in a variety of cardiovascular diseases. This study investigated whether miR-29b is involved in the cardioprotective effect of carvedilol against AMI-induced myocardial fibrosis. Male SD rats were randomized into several groups: the sham surgery control, left anterior descending (LAD) surgery-AMI model, AMI plus low-dose carvedilol treatment (1 mg/kg per day, CAR-L), AMI plus medium-dose carvedilol treatment (5 mg/kg per day, CAR-M) and AMI plus high-dose carvedilol treatment (10 mg/kg per day, CAR-H). Cardiac remodeling and impaired heart function were observed 4 weeks after LAD surgery treatment; the observed cardiac remodeling, decreased ejection fraction, and fractional shortening were rescued in the CAR-M and CAR-H groups. The upregulated expression of Col1a1, Col3a1, and α-SMA mRNA was significantly reduced in the CAR-M and CAR-H groups. Moreover, the downregulated miR-29b was elevated in the CAR-M and CAR-H groups. The in vitro study showed that Col1a1, Col3a1, and α-SMA were downregulated and miR-29b was upregulated by carvedilol in a dose-dependent manner in rat cardiac fibroblasts. Inhibition of ROS-induced Smad3 activation by carvedilol resulted in downregulation of Col1a1, Col3a1, and α-SMA and upregulation of miR-29b derived from the miR-29b-2 precursor. Enforced expression of miR-29b significantly suppressed Col1a1, Col3a1, and α-SMA expression. Taken together, we found that smad3 inactivation and miR-29b upregulation contributed to the cardioprotective activity of carvedilol against AMI-induced myocardial fibrosis.

  11. Recombinant osteopontin attenuates hyperoxia-induced acute lung injury through inhibiting nuclear factor kappa B and matrix metalloproteinases 2 and 9

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiangfeng; Liu Fen; Zhu Guangfa; Wang Zengzhi

    2014-01-01

    Background Exposure of adult mice to more than 95% O2 produces a lethal injury by 72 hours.Nuclear factor kappa B (NF-κB) is a transcriptional factor that plays a key role in the modulation of cytokine networks during hyperoxia-induced acute lung injury (ALl).Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages.Studies have reported that exogenous OPN can maintain the integrity of the cerebral microvascular basement membrane and reduce brain damage through inhibiting NF-κB activities in the brain after subarachnoid hemorrhage.However,it is not clear whether OPN can reduce lung injury during ALl by inhibiting transcriptional signal pathways of NF-κB and consequent inhibition of infiammatory cytokines.Thus we examined the effects and mechanisms of recombinant OPN (r-OPN) on ALl.Methods Ninety-six mice were randomly divided into phosphate buffered saline (PBS) and r-OPN groups.Mice were put in an oxygen chamber (>95% O2) and assessed for lung injury at 24,48,and 72 hours.Expressions of NF-κB,matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9),and tissue inhibitors of MMP-2 and MMP-9 (TIMP-1,TIMP-2) mRNA in lungs were examined with RT-PCR.Expression and distribution of NF-κB protein in lungs were measured with immunohistochemistry.Results Exposure to hyperoxia for 72 hours induced more severe lung injury in the PBS group compared with the r-OPN group.Expression of NF-κB mRNA in the PBS group exposed to hyperoxia for 48 and 72 hours was significantly higher than the r-OPN group (P <0.05).With 72-hour exposure,expression of TIMP-1 mRNA in the r-OPN group was significantly higher than that of the PBS group (P <0.05).Expression of TIMP-2 mRNA in the r-OPN group at 48 and 72 hours was significantly higher than those in the PBS group (P <0.05).After 72-hour exposure,expression of NF-κB protein in airway epithelium in the PBS group was significantly higher than that in the r-OPN group (P <0.05).Conclusion r-OPN can

  12. 胡黄连苷Ⅱ在脂多糖诱导大鼠葡萄膜炎模型中抗炎作用%Anti-inflammation effects of picroside-Ⅱ on lipopolysaccharide-induced uveitis in rats

    Institute of Scientific and Technical Information of China (English)

    曲景灏; 张绍丹; 孙曹毓; 张晓宇; 何静娜; 李若溪

    2015-01-01

    目的 评价胡黄连苷Ⅱ在脂多糖诱导的大鼠葡萄膜炎模型中是否具有抗炎作用.方法 对2013年4月到2014年4月采用36只体重200~250 g成年雄性SPF级SD大鼠用编号随机数表法,随机分成4组,每组9只.其中两组分别给予10 mg/kg、20 mg/kg胡黄连苷Ⅱ鼠尾静脉注射两次;另外两组鼠尾静脉注射生理盐水.其中两个给药组及一个生理盐水组第二次鼠尾静脉给药或注射生理盐水后半小时单侧足底注射脂多糖(lipopolysaccharides,LPS),LPS足底注射后24 h对各组大鼠行裂隙灯前节照相,观察炎症变化并且评分,用SPSS 13.0进行统计学分析.用30 gauge针行前房穿刺收集15~20μl房水,进行房水细胞计数及房水蛋白浓度测定,用SPSS 13.0分析比较各组大鼠房水细胞计数、蛋白浓度之间的差别.最后取出大鼠眼球,去核,留眼前节,OCT包埋冰冻切片,HE染色,观察组织结构及有无炎症细胞浸润.结果 通过裂隙灯前节照相可以看出,与正常对照组相比,LPS组大鼠出现明显KP,房水闪辉,虹膜血管扩张迂曲,瞳孔缩小,瞳孔膜闭等葡萄膜炎体征,而Picroside-Ⅱ20mg +LPS组和Picroside-Ⅱ10 mg+LPS组上述体征明显减轻,炎症反应不明显.细胞计数结果发现Picroside-Ⅱ10 mg+LPS组房水细胞少于LPS组,差异有统计学意义(P<0.05),Picroside-Ⅱ20 mg+LPS组房水细胞与LPS组相比明显减少,差异有统计学意义(P<0.01).蛋白浓度测定结果显示Picroside-Ⅱ10 mg+LPS组蛋白浓度低于LPS组,差异有统计学意义(P<0.05),Picroside-Ⅱ20 mg+LPS组房水细胞与LPS组相比浓度明显降低,差异有统计学意义(P<0.01).结论 胡黄连苷Ⅱ在脂多糖诱导的大鼠葡萄膜炎模型中具有抗炎作用.%Objective To evaluate anti-inflammation effects of picroside Ⅱ on lipopolysaccharide-induced uveitis in rats.Methods Thirty-six adult male SD rats were divided into 4 groups,including three groups with LPS injected into

  13. Lipopolysaccharide induces parkin expression and mitophagy in murine peritoneal macrophages%脂多糖诱导小鼠腹腔巨噬细胞parkin 表达及线粒体自噬形成

    Institute of Scientific and Technical Information of China (English)

    程艳伟; 靳梦醒; 闫海; 黄大可; 黄保军; 张林杰

    2014-01-01

    Objective: To investigate whether lipopolysaccharide induced parkin expression and mitophagy in macrophages.Methods:The murine peritoneal primary macrophages were aseptically isolated from Kunming mice and cultured in complete medium.The mitochondrial membrane potential of macrophages was detected by flow cytometry,after the cells were stimulated with 200 ng/ml LPS and labeled mitochondria with JC-1.The parkin mRNA level of macrophages was detected by RT-PCR, protein levels of parkin and autophagic related protein LC3 Ⅱ and LC3 Ⅰ were determined by Western blot.The distribution and co-localization of parkin with LC3 and mitochondria in macrophages were respectively observed by laser scanning confocal microscope, before and after the cells were treated with LPS.Results: Flow cytometry results after JC-1 staining showed that mitochondrial membrane potential in macrophages was declined after stimulation with 200 ng/ml LPS, and continuously decreased with prolonged treatment time.The mRNA levels of parkin were increased slightly within 6 h after LPS stimulation,but parkin proteins were increased significantly within 6 h after LPS stimulation.The results of parkin distribution showed that parkin was evenly distributed in the cytoplasm at normal status, but became the obvious punctate distribution after LPS stimulation in macrophages.Western blot results showed LC3 Ⅱ/LC3 Ⅰ levels were increased after LPS stimulation, indicating the appearance of macrophage autophagy.Confocal microscopy showed that there were co-localization of parkin,LC3 and mitochondrial in macrophages after LPS stimulation.Conclusion:Parkin expression is increased significantly and mediated mitochondrial autophagy in macrophages after LPS stimulation, which is involved in the clearance of damaged mitochondria,thereby playing a role in regulating macrophage inflammatory response.%目的:探讨巨噬细胞在脂多糖( LPS)处理后parkin表达及对线粒体自噬的影响。方法:无

  14. Photonic Crystal Fiber Attenuator

    Institute of Scientific and Technical Information of China (English)

    Joo; Beom; Eom; Hokyung; Kim; Jinchae; Kim; Un-Chul; Paek; Byeong; Ha; Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  15. Tracer attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  16. 抑制解偶联蛋白-2基因表达减轻急性脂肪肝细胞损伤%Inhibiting the expression of uncoupling protein-2 attenuates acute damage to fatty liver cells

    Institute of Scientific and Technical Information of China (English)

    程锐; 王春友; 刘涛; 王宏博; 王帅; 万赤丹

    2008-01-01

    Objective To investigate the effects of down-regulating uncoupling protein-2 (UCP-2) expression on acute damage to fatty liver cells and explore a new target for the donor liverwith steatosis. Methods Primary fatty liver cells were isolated from C57BL/6J-ob/ob transgenic miceby two-step collagenase perfusion method. RNAi lentivirus vector targeting mouse UCP-2 gene wasused to knock down the UCP-2 gene in the steatosis hepatocytes (the experimental group). Emptylentivirus vector was transfected into the steatosis hepatocytes cells as the control group. Under thefluorescence microscopy, the transfection efficiency was tested. Real time PCR was used to determinethe effect of RNAi. After the transfected cells were treated with TNF-α for 24 h, apoptosis wasanalyzed by flow cytometry using PI staining. Activation of caspase3 was detected by Western blot.Resalts The expression of UCP-2 gene was inhibited effectively, and the knockdown rate of UCP-2gene was 75%. The apoptosis rate in the experimental group was (4.97±0.25)%, significantlylower than in the control group [(21.13±1.28)%, p<0.05 ]. Activation 'of caspase3 in theexperimental group was also weaker than in the control group. Conclusion Inhibiting the expression ofUCP-2 can attenuate the injury of fatty liver cells.%目的 探讨下调解偶联蛋白-2(UCP-2)基因的表达对脂肪肝细胞损伤的影响,为存在脂肪变性的供肝提供治疗靶点.方法 采用二步胶原酶灌注法分离C57BL/6 J-ob/ob转基因肥胖小鼠的原代脂肪肝细胞,用靶向小鼠UCP-2基因的RNA干扰慢病毒载体感染所获得的脂肪肝细胞,实现对UCP-2基}q的特异性敲减(实验组),另以空载体感染的脂肪肝细胞为对照.荧光显微镜镜检确定感染效率,实时聚合酶链反应鉴定敲减效果.以肿瘤坏死因子-α(TNF-α)作用于感染后的肝细胞,24 h后以碘化丙啶染色,流式细胞仪检测细胞凋亡情况;Western印迹法检测凋亡蛋白酶-3(Caspase-3)

  17. Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury

    Science.gov (United States)

    Togbe, Dieudonnée; Schnyder-Candrian, Silvia; Schnyder, Bruno; Doz, Emilie; Noulin, Nicolas; Janot, Laure; Secher, Thomas; Gasse, Pamela; Lima, Carla; Coelho, Fernando Rodrigues; Vasseur, Virginie; Erard, François; Ryffel, Bernhard; Couillin, Isabelle; Moser, Rene

    2007-01-01

    Recent studies on endotoxin/lipopolysaccharide (LPS)-induced acute inflammatory response in the lung are reviewed. The acute airway inflammatory response to inhaled endotoxin is mediated through Toll-like receptor 4 (TLR4) and CD14 signalling as mice deficient for TLR4 or CD14 are unresponsive to endotoxin. Acute bronchoconstriction, tumour necrosis factor (TNF), interleukin (IL)-12 and keratinocyte-derived chemokine (KC) production, protein leak and neutrophil recruitment in the lung are abrogated in mice deficient for the adaptor molecules myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adaptor protein (TIRAP), but independent of TIR-domain-containing adaptor-inducing interferon-beta (TRIF). In particular, LPS-induced TNF is required for bronchoconstriction, but dispensable for inflammatory cell recruitment. Lipopolysaccharide induces activation of the p38 mitogen-activated protein kinase (MAPK). Inhibition of pulmonary MAPK activity abrogates LPS-induced TNF production, bronchoconstriction, neutrophil recruitment into the lungs and broncho-alveolar space. In conclusion, TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin are dependent on TLR4/CD14/MD2 expression using the adapter proteins TIRAP and MyD88, while TRIF, IL-1R1 or IL-18R signalling pathways are dispensable. Further downstream in this axis of signalling, TNF blockade reduces only acute bronchoconstriction, while MAPK inhibition abrogates completely endotoxin-induced inflammation. PMID:18039275

  18. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  19. Schisandrin B exerts anti-neuroinflammatory activity by inhibiting the Toll-like receptor 4-dependent MyD88/IKK/NF-κB signaling pathway in lipopolysaccharide-induced microglia.

    Science.gov (United States)

    Zeng, Ke-Wu; Zhang, Tai; Fu, Hong; Liu, Geng-Xin; Wang, Xue-Mei

    2012-10-05

    Microglial-mediated neuroinflammation is now considered to be central to the pathogenesis of various neurodegenerative processes, including Alzheimer's disease and Parkinson's disease. Therefore, rational modulation of microglia function to obtain neuroprotective effects is important for the development of safe and effective anti-inflammatory and neuroprotective agents. Here, we investigated the anti-inflammatory and neuroprotective effects, and potential molecular mechanism of action of Schisandrin B (Sch B); which is isolated from the Schizandra fruit (Schisandra chinesnesis). Sch B exerted significant neuroprotective effects against microglial-mediated inflammatory injury in microglia-neuron co-cultures. In addition, Sch B significantly downregulated pro-inflammatory cytokines, including nitrite oxide (NO), tumor necrosis factor (TNF)-α, prostaglandin E(2) (PGE(2)), interleukin (IL)-1β and IL-6. Additionally, Sch B inhibited the interaction of Toll-like receptor 4 with the Toll adapter proteins MyD88, IRAK-1 and TRAF-6 resulting in an inhibition of the IKK/nuclear transcription factor (NF)-κB inflammatory signaling pathway. Furthermore, Sch B inhibited the production of reactive oxygen species (ROS) and NADPH oxidase activity in microglia. In summary, Sch B may exert neuroprotective activity by attenuating the microglial-mediated neuroinflammatory response by inhibiting the TLR4-dependent MyD88/IKK/NF-κB signaling pathway.

  20. n-Propyl gallate suppresses lipopolysaccharide-induced inducible nitric oxide synthase activation through protein kinase Cδ-mediated up-regulation of heme oxygenase-1 in RAW264.7 macrophages.

    Science.gov (United States)

    Jeon, Wookwang; Park, Seong Ji; Kim, Byung-Chul

    2017-04-15

    n-Propyl gallate is a synthetic phenolic antioxidant with potential anti-inflammatory effects. However, the underlying mechanism remains largely unknown. In the present study, we showed that n-propyl gallate increases the expression and activity of the heme oxygenase-1 (HO-1), a stress-inducible protein with potent anti-inflammatory activity, in RAW264.7 macrophages. The inhibition of the HO-1 activity by treatment with zinc (II) protoporphyrin IX (ZnPP) or by knockdown of the HO-1 expression with small interference RNA significantly reversed the inhibitory effect of n-Propyl gallate on activations of nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS). An additional mechanism study using inhibitors of signaling kinases revealed the involvement of protein kinase Cδ (PKCδ) in the expression of HO-1 induced by n-Propyl gallate. Consistent with these results, n-Propyl gallate increased the intracellular levels of phosphorylated PKCδ in concentration- and time-dependent manners. The inhibitory effects of n-Propyl gallate on LPS-induced iNOS expression and nitric oxide production were also significantly attenuated by pretreatment with the PKCδ inhibitor, rottlerin, or by transfection with PKCδ (K376R), a kinase-inactive form of PKCδ. Taken together, these findings provide the first evidence that n-Propyl gallate exerts its anti-inflammatory effect through PKCδ-mediated up-regulation of HO-1 in macrophages.

  1. Anti-Inflammatory Effect of Methylpenicinoline from a Marine Isolate of Penicillium sp. (SF-5995: Inhibition of NF-κB and MAPK Pathways in Lipopolysaccharide-Induced RAW264.7 Macrophages and BV2 Microglia

    Directory of Open Access Journals (Sweden)

    Dong-Cheol Kim

    2014-11-01

    Full Text Available In the course of a search for anti-inflammatory metabolites from marine-derived fungi, methylpenicinoline (1 was isolated from a marine isolate of Penicillin sp. Compound 1 inhibited lipopolysaccharide (LPS-stimulated nitric oxide (NO production by suppressing the expression of inducible NO synthase (iNOS in RAW264.7 macrophages and BV2 microglia. It also attenuated prostaglandin E2 (PGE2 production by suppressing cyclooxygenase-2 (COX-2 expression in a concentration-dependent manner (from 10 μM to 80 μM without affecting cell viability. In addition, compound 1 reduced the production of the pro-inflammatory cytokine interleukin-1β (IL-1β. In a further study designed to elucidate the mechanism of its anti-inflammatory effects, compound 1 was shown to block nuclear factor-kappa B (NF-κB activation in LPS-induced RAW264.7 macrophages and BV2 microglia by inhibiting the phosphorylation of inhibitor kappa B-α (IκB-α, thereby suppressing the nuclear translocation of NF-κB dimers, namely p50 and p65, that are known to be crucial molecules associated with iNOS and COX-2 expression. In addition, compound 1 inhibited the activation of mitogen-activated protein kinase (MAPK pathways. Taken together, the results suggest that compound 1 might be a valuable therapeutic agent for the treatment of anti-inflammatory and anti-neuroinflammatory diseases.

  2. Potential use of fucose-appended dendrimer/α-cyclodextrin conjugates as NF-κB decoy carriers for the treatment of lipopolysaccharide-induced fulminant hepatitis in mice.

    Science.gov (United States)

    Akao, Chiho; Tanaka, Takahiro; Onodera, Risako; Ohyama, Ayumu; Sato, Nana; Motoyama, Keiichi; Higashi, Taishi; Arima, Hidetoshi

    2014-11-10

    The purpose of the present study is to treat lipopolysaccharide (LPS)-induced fulminant hepatitis by NF-κB decoy complex with fucose-appended dendrimer (generation 2; G2) conjugate with α-cyclodextrin (Fuc-S-α-CDE (G2)). Fuc-S-α-CDE (G2, average degree of substitution of fucose (DSF2))/NF-κB decoy complex significantly suppressed nitric oxide and tumor necrosis factor-α (TNF-α) production from LPS-stimulated NR8383 cells, a rat alveolar macrophage cell line, by adequate physicochemical properties and fucose receptor-mediated cellular uptake. Intravenous injection of Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex extended the survival of LPS-induced fulminant hepatitis model mice. In addition, Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex administered intravenously highly accumulated in the liver, compared to naked NF-κB decoy alone. Furthermore, the liver accumulation of Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex was inhibited by the pretreatment with GdCl3, a specific inhibitor of Kupffer cell uptake. Also, the serum aspartate aminotransferase, alanine aminotransferase and TNF-α levels in LPS-induced fulminant hepatitis model mice were significantly attenuated by the treatment with Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex, compared with naked NF-κB decoy alone. Taken together, these results suggest that Fuc-S-α-CDE (G2, DSF2) has the potential for a novel Kupffer cell-selective NF-κB decoy carrier for the treatment of LPS-induced fulminant hepatitis in mice.

  3. Unfractionated heparin suppresses lipopolysaccharide-induced monocyte chemoattractant protein-1 expression in human microvascular endothelial cells by blocking Krüppel-like factor 5 and nuclear factor-κB pathway.

    Science.gov (United States)

    Li, Xu; Li, Xin; Zheng, Zhen; Liu, Yina; Ma, Xiaochun

    2014-10-01

    Unfractionated heparin (UFH) and low-molecular-weight heparins (LMWH), apart from anticoagulant activities, contain a variety of biological properties such as anti-inflammatory actions possibly affecting sepsis. Chemokines are vital for promoting the movement of circulating leukocytes to the site of infection and are involved in the pathogenesis of sepsis. The purpose of this study was to investigate the effects and potential mechanisms of UFH on lipopolysaccharide (LPS)-induced chemokine production in human pulmonary microvascular endothelial cells (HPMECs). HPMECs were pretreated with UFH (0.1 U/ml and 1 U/ml), 15 min prior to stimulation with LPS (10 μg/ml). Cells were cultured under various experimental conditions for 2 h and 6 h for analysis. UFH markedly decreased LPS-induced interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1) mRNA and protein expression in HPMECs. UFH also attenuated the secretion of these chemokines in culture supernatants. In addition, UFH blocked the chemotactic activities of LPS-stimulated HPMECs supernatants on monocytes migration as expected. UFH inhibited LPS-induced Krüppel-like factor 5 (KLF-5) mRNA and protein levels. Concurrently, UFH reduced nuclear factor (NF)-κB nuclear translocation. Importantly, transfection with siRNA targeting KLF-5 reduced NF-κB activation and chemokines expression. These results demonstrate that interfering with KLF-5 mediated NF-κB activation might contribute to the inhibitory effects of chemokines and monocytes migration by UFH in LPS-stimulated HPMECs.

  4. Endothelial pentraxin 3 contributes to murine ischemic acute kidney injury

    Science.gov (United States)

    Chen, Jianlin; Matzuk, Martin M.; Zhou, Xin J.; Lu, Christopher Y.

    2012-01-01

    Toll-like receptor 4 (TLR4), a receptor forDamage Associated Molecular Pattern Molecules and also the lipopolysaccharide receptor, is required for early endothelial activation leading to maximal inflammation and injury during murine ischemic acute kidney injury. DNA microarray analysis of ischemic kidneys from TLR4-sufficient and deficient mice showed that pentraxin 3 (PTX3) was upregulated only on the former while transgenic knockout of PTX3 ameliorated acute kidney injury. PTX3 was expressed predominantly on peritubular endothelia of the outer medulla of the kidney in control mice. Acute kidney injury increased PTX3 protein in the kidney and the plasma where it may be a biomarker of the injury. Stimulation by hydrogen peroxide, or the TLR4 ligands recombinant human High-Mobility Group protein B1 or lipopolysaccharide, induced PTX3 expression in the Mile Sven 1 endothelial cell line and in primary renal endothelial cells suggesting that endothelial PTX3 was induced by pathways involving TLR4 and reactive oxygen species. This increase was inhibited by conditional endothelial knockout of Myeloid differentiation primary response gene 88, a mediator of a TLR4 intracellular signaling pathway. Compared to wild type mice, PTX3 knockout mice had decreased endothelial expression of cell adhesion molecules at 4 hours of reperfusion possibly contributing to a decreased early maladaptive inflammation in the kidneys of knockout mice. At 24 hours of reperfusion, PTX3 knockout increased expression of endothelial adhesion molecules when regulatory and reparative leukocytes enter the kidney. Thus, endothelial PTX3 plays a pivotal role in the pathogenesis of ischemic acute kidney injury. PMID:22895517

  5. A case report of acute flaccid paralysis following the pre-inoculation with oral poliomyelitis attenuated live vaccine%提前接种脊髓灰质炎减毒活疫苗发生急性弛缓性麻痹1例报道

    Institute of Scientific and Technical Information of China (English)

    马敬仓; 杨传欣

    2014-01-01

    Objective To investigate whether the occurrence of acute flaccid paralysis was caused by the vaccination of oral poliomyelitis Attenuated Live Vaccine. Methods The investigation of the case,collecting case, s medical records,presenting the diagnostic opinion after summary and analysis. Results The case,with vaccination history of oral poliomyelitis vaccine 16 days later, had main symptoms of fever,limb weakness,etc.The case had inpatient treatment successively in a municipal hospital and a provincial hospital,and was diagnosed of acute flaccid paralysis and poliomyelitis.Polio virus and other enteroviruses were not detected in the case's specimens. The opinions of the municipal diagnosis experts group on adverse events following immunization for the diagnosis was that the patient did not meet the diagnostic conditions of vaccine associated paralytic poliomyelitis,but clinical polio compatible. Conclusion There was relationship between acute flaccid paralysis and the vaccinations of oral poliomyelitis attenuated live vaccine.%目的:调查某急性弛缓性麻痹病例是否因为口服脊髓灰质炎减毒活疫苗所引发。方法对患者开展个案调查,收集患者的病历资料,汇总分析后提出诊断意见。结果该患者有口服脊髓灰质炎减毒活疫苗的记录。在接种口服脊髓灰质炎减毒活疫苗后约16d开始发病,主要症状有发热、四肢无力等,先后在市级医院和省级医院住院治疗,主要诊断为急性弛缓性麻痹、脊髓灰质炎等;所采集的该患者大便标本判定为不合格标本,未检出脊髓灰质炎病毒、其他肠道病毒;市级预防接种异常反应调查诊断专家组意见为不符合确诊脊髓灰质炎疫苗相关患者的诊断条件,但临床表现符合脊髓灰质炎。结论该病例接种口服脊髓灰质炎减毒活疫苗与发生急性弛缓性麻痹有关。

  6. 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Lixin Liu

    2015-07-01

    (PPARγ. These results suggest that 14-3-3γ was able to attenuate the LPS-induced inflammatory responses and promote proliferation and lactation in LPS-induced DCMECs by inhibiting the activation of the NF-κB and MAPK signaling pathways and up-regulating mTOR signaling pathways to protect against LPS-induced injury.

  7. Planetary Ices Attenuation Properties

    Science.gov (United States)

    McCarthy, Christine; Castillo-Rogez, Julie C.

    In this chapter, we review the topic of energy dissipation in the context of icy satellites experiencing tidal forcing. We describe the physics of mechanical dissipation, also known as attenuation, in polycrystalline ice and discuss the history of laboratory methods used to measure and understand it. Because many factors - such as microstructure, composition and defect state - can influence rheological behavior, we review what is known about the mechanisms responsible for attenuation in ice and what can be inferred from the properties of rocks, metals and ceramics. Since attenuation measured in the laboratory must be carefully scaled to geologic time and to planetary conditions in order to provide realistic extrapolation, we discuss various mechanical models that have been used, with varying degrees of success, to describe attenuation as a function of forcing frequency and temperature. We review the literature in which these models have been used to describe dissipation in the moons of Jupiter and Saturn. Finally, we address gaps in our present knowledge of planetary ice attenuation and provide suggestions for future inquiry.

  8. Frequency Dependent Attenuation Revisited

    CERN Document Server

    Richard, Kowar; Xavier, Bonnefond

    2009-01-01

    The work is inspired by thermo-and photoacoustic imaging, where recent efforts are devoted to take into account attenuation and varying wave speed parameters. In this paper we study causal equations describing propagation of attenuated pressure waves. We review standard models like frequency power laws and and the thermo-viscous equation. The lack of causality of standard models in the parameter range relevant for photoacoustic imaging requires to derive novel equations. The main ingredients for deriving causal equations are the Kramers-Kronig relation and the mathematical concept of linear system theory. The theoretical results of this work are underpined by numerical experiments.

  9. Acute pancreatitis

    Science.gov (United States)

    ... its blood vessels. This problem is called acute pancreatitis. Acute pancreatitis affects men more often than women. Certain ... pancreatitis; Pancreas - inflammation Images Digestive system Endocrine glands Pancreatitis, acute - CT scan Pancreatitis - series References Forsmark CE. Pancreatitis. ...

  10. Cystitis - acute

    Science.gov (United States)

    Uncomplicated urinary tract infection; UTI - acute cystitis; Acute bladder infection; Acute bacterial cystitis ... cause. Menopause also increases the risk for a urinary tract infection. The following also increase your chances of having ...

  11. Apigenin regulates lipopolysaccharides-induced activation of inflammasome%芹菜素对脂多糖诱导的炎性体活化调节的实验观察

    Institute of Scientific and Technical Information of China (English)

    王玲艳; 邝捷; 李静

    2011-01-01

    目的 探讨芹菜素对脂多糖诱导的炎症中炎性体活化是否有调节作用,并初步研究其作用机制。方法 利用药物处理急性单核白血病细胞株THP-1,设置脂多糖处理组,脂多糖+25μmol/L芹菜素处理组,脂多糖+50 μmol/L芹菜素处理组及脂多糖+Z-VAD[半胱氨酸蛋白酶(caspase)抑制剂]处理组,以二甲基亚砜(DMSO)处理作为对照组。通过酶联免疫吸附试验(ELISA)检测上清中白细胞介素1β(IL-1β)的含量;通过Western印迹检测IL-1β及caspase-1的剪切;通过报告基因方法检测芹菜素对炎症转录因子核因子(NF)κB活性的影响。结果 四甲基偶氮唑盐(MTT)比色法表明芹菜素对细胞未见明显毒性。在THP-1细胞中,芹菜素对于脂多糖诱导的炎性体活化产物IL-1β的产生具有显著的抑制作用[上清中IL-1β浓度:对照组为(362±64) pg/ml,脂多糖组为(1549±320) pg/ml,脂多糖+25 μmol/L芹菜素组为(397±150) pg/ml,脂多糖+50 μmol/L芹菜素组为( 268±142) pg/ml,P<0.05]。芹菜素能够显著抑制IL-1β前体(pm-IL-1β)以及炎性体成分caspase-1前体(pro-caspase-1)的成熟过程,并且能够抑制脂多糖诱导的NF-κB的活化(NF-κB活性相对荧光值:对照组为0.6±0.1,脂多糖组为32.7±0.8,脂多糖+25μmol/L芹菜素组为12.9±1.8,脂多糖+ 50 μmol/L芹菜素组为10.0±3.2,P<0.05)。结论 芹菜素能够通过抑制caspase-1的成熟抑制脂多糖诱导的炎性体的活化。%Objective To evaluate whether or not apigenin regulates the activation of inflammasome and elucidate its underlying mechanism. Methods Cultured THP-1 (acute monocytic leukemia cell line) cells were treated with dimethyl sulfoxide (DMSO) alone (control group), lipopolysaccharides (LPS), LPS plus apigenin (25/50 μmol/L) or LPS plus Z-VAD (a caspase inhibitor). The supernatant was harvested and the content of secreted interleukin (IL)-1β3 was determined by enzyme

  12. Quercitrin from Toona sinensis (Juss. M.Roem. Attenuates Acetaminophen-Induced Acute Liver Toxicity in HepG2 Cells and Mice through Induction of Antioxidant Machinery and Inhibition of Inflammation

    Directory of Open Access Journals (Sweden)

    Van-Long Truong

    2016-07-01

    Full Text Available Quercitrin is found in many kinds of vegetables and fruits, and possesses various bioactive properties. The aim of the present study was to elucidate hepatoprotective mechanisms of quercitrin isolated from Toona sinensis (Juss. M.Roem. (syn. Cedrela sinensis Juss., using acetaminophen (APAP-treated HepG2 cell and animal models. In an in vitro study, quercitrin suppressed the production of reactive oxygen species and enhanced expression of nuclear factor E2-related factor 2 (Nrf2, activity of antioxidant response element (ARE-reporter gene, and protein levels of NADPH: quinone oxidoreductase 1 (NQO1, catalase (CAT, glutathione peroxidase (GPx, and superoxide dismutase 2 (SOD-2 in APAP-treated HepG2 cells. In an in vivo study, Balb/c mice were orally administered with 10 or 50 mg/kg of quercitrin for 7 days and followed by the injection with single dose of 300 mg/kg APAP. Quercitrin decreased APAP-caused elevation of alanine aminotransferase and aspartate aminotransferase levels, liver necrosis, the expression of pro-inflammatory factors including inducible nitric oxide synthase, cyclooxygenase 2 and inerleukin-1β, and phosphorylation of kinases including c-Jun N-terminal kinase and p38. Quercitrin restored protein levels of Nrf2, NQO1 and activities and expressions of CAT, GPx, SOD-2. The results suggested that quercitrin attenuates APAP-induced liver damage by the activation of defensive genes and the inhibition of pro-inflammatory genes via the suppressions of JNK and p38 signaling.

  13. Acute Bronchitis

    Science.gov (United States)

    ... Smoking also slows down the healing process. Acute bronchitis treatment Most cases of acute bronchitis can be treated at home.Drink fluids, but ... bronchial tree. Your doctor will decide if this treatment is right for you. Living with acute bronchitis Most cases of acute bronchitis go away on ...

  14. Acute chemical pneumonitis caused by nitric acid inhalation: case report

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Hyung Shim; Lee, In Jae; Ko, Eun Young; Lee, Jae Young; Kim, Hyun Beom; Hwang, Dae Hyun; Lee, Kwan Seop; Lee, Yul; Bae, Sang Hoon [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of)

    2003-06-01

    Chemical pneumonitis induced by nitric acid inhalation is a rare clinical condition. The previously reported radiologic findings of this disease include acute permeability pulmonary edema, delayed bronchiolitis obliterans, and bronchiectasis. In very few published rare radiologic reports has this disease manifested as acute alveolar injury; we report a case of acute chemical pneumonitis induced by nitric acid inhalation which at radiography manifested as bilateral perihilar consolidation and ground-glass attenuation, suggesting acute alveolar injury.

  15. Ultrasonic attenuation in pearlitic steel.

    Science.gov (United States)

    Du, Hualong; Turner, Joseph A

    2014-03-01

    Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes.

  16. LIPOPOLYSACCHARIDE INDUCES EXPOSURE OF FIBRINOGEN RECEPTORS ON HUMAN PLATELETS

    Institute of Scientific and Technical Information of China (English)

    于希春; 吴其夏

    1995-01-01

    The effect of lipopolysaccharide (LPS) on the exposure of platelet fibrinogen receptors was investigated.The results showed that:1)LPS increased the binding of fibrinogen-gold complexes to platelets and the labels were primarily limited to shape-changed platelets;2)LPS caused a dose-dependent rise in intracellular Ca2+ concentration in platelets;3)LPS induced the activation of platelet protein kinase C(PKC) and the phosphorylation of glycoprotein llla (GP llla) which was inhibited by H-7.All these results suggest that stimulation of platelets with LPS causes a conformational change in glycoprotein llb/Illa (GPllb/llla) through platelet shape change and/or phosphorylation of GPllla via PKC,which serves to expose the fibrinogen binding sites of GPllb/llla on human platelets.

  17. Interleukin-15 is required for maximal lipopolysaccharide-induced abortion.

    Science.gov (United States)

    Lee, Amanda J; Kandiah, Nalaayini; Karimi, Khalil; Clark, David A; Ashkar, Ali A

    2013-06-01

    The maternal immune response during pregnancy is critical for the survival of the fetus yet can be detrimental during infection and inflammation. Previously, IL-15 has been observed to mediate inflammation during LPS-induced sepsis. Therefore, we sought to determine whether IL-15 mediates the inflammatory process during LPS-induced abortion through the use of IL-15(-/-) and WT mice. Administration of 2.5 μg LPS i.p. on gd 7.5 drastically reduced fetal viability in WT mice, whereas it had a minimal effect on fetal survival in IL-15(-/-) mice. The uteroplacental sites of LPS-treated WT mice were characterized by vast structural degradation and inflammation compared with treated IL-15(-/-) and untreated controls. This suggests that IL-15 may mediate the inflammation responsible for LPS-induced resorption. As IL-15(-/-) mice are deficient in NK cells and resistant to LPS-induced abortion, these effects suggest that IL-15 may mediate abortion through their homeostatic and/or activation effects on NK cells. WT uteroplacental units exposed to LPS had an increase in the overall number and effector number of NK cells compared with their control counterparts. Furthermore, NK cell depletion before administration of LPS in WT mice partially restored fetal viability. Overall, this paper suggests that IL-15 mediates the inflammatory environment during LPS-induced fetal resorption, primarily through its effects on NK cells.

  18. Lipopolysaccharide induces IFN-γ production in human NK cells

    Directory of Open Access Journals (Sweden)

    Leonid M Kanevskiy

    2013-01-01

    Full Text Available NK cells have been shown to play a regulatory role in sepsis. According to the current view, NK cells become activated via macrophages or dendritic cells primed by lipopolysaccharide (LPS. Recently TLR4 gene expression was detected in human NK cells suggesting the possibility of a direct action of LPS on NK cells. In this study, effects of LPS on NK cell cytokine production and cytotoxicity were studied using highly purified human NK cells. LPS induced IFN-γ production in the presence of IL-2 in cell populations containing >98% CD56+ cells. Surprisingly, in the same experiments LPS decreased NK cell degranulation. No significant expression of markers related to blood dendritic cells, monocytes or T or B lymphocytes in the NK cell preparations was observed; the portions of HLA-DRbright, CD14+, CD3+ and CD20+ cells amounted to less than 0.1% within the cell populations. No more than 0.2% of NK cells were shown to be slightly positive for surface TLR4 in our experimental system, although intracellular staining revealed moderate amounts of TLR4 inside the NK cell population. These cells were negative for surface CD14, the receptor participating in LPS recognition by TLR4. Incubation of NK cells with IL-2 or/and LPS did not lead to an increase in TLR4 surface expression. TLR4–CD56+ NK cells isolated by cell sorting secreted IFN-γ in response to LPS. Antibody to TLR4 did not block the LPS-induced increase in IFN-γ production. We have also shown that Re-form of LPS lacking outer core oligosaccharide and O-antigen induces less cytokine production in NK cells than full length LPS. We speculate that the polysaccharide fragments of LPS molecule may take part in LPS-induced IFN-γ production by NK cells. Collectively our data suggest the existence of a mechanism of LPS direct action on NK cells distinct from established TLR4-mediated signaling.

  19. Lipopolysaccharide induced inflammation in the perivascular space in lungs

    Directory of Open Access Journals (Sweden)

    Pabst Reinhard

    2008-07-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS contained in tobacco smoke and a variety of environmental and occupational dusts is a toxic agent causing lung inflammation characterized by migration of neutrophils and monocytes into alveoli. Although migration of inflammatory cells into alveoli of LPS-treated rats is well characterized, the dynamics of their accumulation in the perivascular space (PVS leading to a perivascular inflammation (PVI of pulmonary arteries is not well described. Methods Therefore, we investigated migration of neutrophils and monocytes into PVS in lungs of male Sprague-Dawley rats treated intratracheally with E. coli LPS and euthanized after 1, 6, 12, 24 and 36 hours. Control rats were treated with endotoxin-free saline. H&E stained slides were made and immunohistochemistry was performed using a monocyte marker and the chemokine Monocyte-Chemoattractant-Protein-1 (MCP-1. Computer-assisted microscopy was performed to count infiltrating cells. Results Surprisingly, the periarterial infiltration was not a constant finding in each animal although LPS-induced alveolitis was present. A clear tendency was observed that neutrophils were appearing in the PVS first within 6 hours after LPS application and were decreasing at later time points. In contrast, mononuclear cell infiltration was observed after 24 hours. In addition, MCP-1 expression was present in perivascular capillaries, arteries and the epithelium. Conclusion PVI might be a certain lung reaction pattern in the defense to infectious attacks.

  20. Neovestitol, an isoflavonoid isolated from Brazilian red propolis, reduces acute and chronic inflammation: involvement of nitric oxide and IL-6

    Science.gov (United States)

    Franchin, Marcelo; Colón, David F.; da Cunha, Marcos G.; Castanheira, Fernanda V. S.; Saraiva, André L. L.; Bueno-Silva, Bruno; Alencar, Severino M.; Cunha, Thiago M.; Rosalen, Pedro L.

    2016-01-01

    Isoflavonoids have been largely studied due to their distinct biological activities identified thus far. Herein, we evaluated the activity of neovestitol, an isoflavonoid isolated from Brazilian red propolis, in acute and chronic inflammation. As for acute inflammation, we found that neovestitol reduced neutrophil migration, leukocyte rolling and adhesion, as well as expression of ICAM-1 in the mesenteric microcirculation during lipopolysaccharide-induced acute peritonitis. No changes were observed in the levels of TNF-α, CXCL1/KC and CXCL2/MIP-2 upon pretreatment with neovestitol. The administration of an inducible nitric oxide synthase (iNOS) inhibitor abolished the inhibitory effects of neovestitol in neutrophil migration and ICAM-1 expression. Nitrite levels increased upon treatment with neovestitol. No effects of neovestitol were observed on the chemotaxis of neutrophils in vitro. As for chronic inflammation, neovestitol also reduced the clinical score and joint damage in a collagen-induced arthritis model. There was no change in the frequency of IL-17-producing TCD4+ cells. In addition, pretreatment with neovestitol reduced the levels of IL-6. These results demonstrate a potential anti-inflammatory activity of neovestitol, which may be useful for therapeutic purposes and/or as a nutraceutical. PMID:27819273

  1. Acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Bo-Guang Fan

    2010-01-01

    Full Text Available Background : Acute pancreatitis continues to be a serious illness, and the patients with acute pancreatitis are at risk to develop different complications from ongoing pancreatic inflammation. Aims : The present review is to highlight the classification, treatment and prognosis of acute pancreatitis. Material & Methods : We reviewed the English-language literature (Medline addressing pancreatitis. Results : Acute pancreatitis is frequently caused by gallstone disease or excess alcohol ingestion. There are a number of important issues regarding clinical highlights in the classification, treatment and prognosis of acute pancreatitis, and treatment options for complications of acute pancreatitis including pancreatic pseudocysts. Conclusions : Multidisciplinary approach should be used for the management of the patient with acute pancreatitis.

  2. Acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Bo-Guang Fan

    2010-05-01

    Full Text Available Background: Acute pancreatitis continues to be a serious illness, and the patients with acute pancreatitis are at risk to develop different complications from ongoing pancreatic inflammation. Aims: The present review is to highlight the classification, treatment and prognosis of acute pancreatitis. Material & Methods: We reviewed the English-language literature (Medline addressing pancreatitis. Results: Acute pancreatitis is frequently caused by gallstone disease or excess alcohol ingestion. There are a number of important issues regarding clinical highlights in the classification, treatment and prognosis of acute pancreatitis, and treatment options for complications of acute pancreatitis including pancreatic pseudocysts. Conclusions: Multidisciplinary approach should be used for the management of the patient with acute pancreatitis.

  3. 温郁金二萜类化合物C抑制由脂多糖诱导胃癌细胞炎症因子的释放及机制研究%Inhibition and possible mechanism of curcuma wenyujin diterpenoid compound C on lipopolysaccharide-induced release of inflammatory factors in gastric cancer cell

    Institute of Scientific and Technical Information of China (English)

    金海峰; 吕宾; 赵敏; 盛桂琴

    2013-01-01

    目的:研究温郁金醚提物中新二萜类化合物C对由脂多糖(LPS)诱导胃上皮细胞炎症因子释放的影响及作用机制.方法:不同浓度的温郁金二萜类化合物C在不同的时间,体外作用于人胃癌SGC-7901细胞,用MTT法检测其对SGC-7901细胞的生长抑制率;用ELISA检测炎症因子IL-1 β、IL-2的分泌;RT-PCR检测两种炎症因子mRNA转录情况;Western Blot方法检测p38、JNK、ERK蛋白量的表达变化.结果:温郁金二萜类化合物C在l0μg/mL浓度以内、LPS在l0ng/mL以内对SGC-7901增殖无影响;二萜类化合物C能显著性抑制由LPS诱导的炎症因子IL-1 β释放(P<0.01),促进抑炎因子IL-2的释放(P<0.01);RT-PCR检测的结果与之相同;温郁金二萜类化合物C抑制MAPK通路中P38、JNK、ERK蛋白的表达.结论:温郁金二萜类化合物C能抑制由脂多糖诱导胃癌细胞炎症因子的释放,其作用机制可能与其抑制细胞内MAPK通路有关.%Objective:To study the effect and possible mechanism of curcuma wenyujin diterpenoid compound C on lipopolysaccharide-induced (LPS-induced) release of inflammatory factors in gastric cancer cells.Methods:Human gastric cancer SGC-7901 cells were affected by curcuma wenyujin diterpenoid compound C with different concentrations in vitro at different times.The growth inhibition ratio of human gastric cancer SGC-7901 cells was measured by MTT assay,secretion of inflammatory factors IL-1β and IL-2 was detected by ELISA,mRNA transcriptions of the two inflammatory factors were assessed by Western Blot.Results:Curcuma wenyujin diterpenoid compound C within 10tg/mL and LPS within 10ng/mL had no effect on the proliferation of SGC-7901.Diterpenoid compound C significantly inhibited LPS-induced release of inflammatory factor IL-1β (P<0.01) and increased the release of inflammatory depressive factor IL-2 (P<0.01).No significant difference was found in RT-PCR detection result.Curcuma wenyujin diterpenoid compound

  4. Acute cholecystitis: two-phase spiral CT finding

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eung Young; Yoon, Myung Hwan; Yang, Dal Mo; Chun Seok; Bae, Jun Gi; Kim, Hak Soo; Kim, Hyung Sik [Chungang Ghil Hospital, Incheon (Korea, Republic of)

    1998-07-01

    To describe the two-phase spiral CT findings of acute cholecystitis. Materials and Methods : CT scans of nine patients with surgically-proven acute cholecystitis were retrospectively reviewed for wall thickening, enhancement pattern of the wall, attenuation of the liver adjacent to the gallbladder, gallstones,gallbladder distension, gas collection within the gallbladder, pericholecystic fluid and infiltration of pericholecystic fat. Results : In all cases, wall thickening of the gallbladder was seen, though this was more distinct on delayed images, Using high-low-high attenuation, one layer was seen in five cases, nd three layers in four. On arterial images, eight cases showed transient focal increased attenuation of the liver adjacent to the gall bladder;four of these showed curvilinear attenuation and four showed subsegmental attenuation. One case showed curvilinear decreased attenuation between increased attenuation of the liver and the gallbladder, and during surgery, severe adhesion between the liver and gallbladder was confirmed. Additional CT findings were infiltration of pericholecystic fat (n=9), gallstones (n=7), gallbladder distension (n=6), pericholecystic fluid(n=3), and gas collection within the gallbladder (n=2). Conclusion : In patients with acute cholecystitis,two-phase spiral CT revealed wall thickening in one or three layers ; on delayed images this was more distinct. In many cases, arterial images showed transient focal increased attenuation of the liver adjacent to the gallbladder.

  5. Acute cholecystitis

    OpenAIRE

    Halpin, Valerie

    2014-01-01

    Acute cholecystitis causes unremitting right upper quadrant pain, anorexia, nausea, vomiting, and fever, and if untreated can lead to perforations, abscess formation, or fistulae. About 95% of people with acute cholecystitis have gallstones.It is thought that blockage of the cystic duct by a gallstone or local inflammation can lead to acute cholecystitis, but we don't know whether bacterial infection is also necessary.

  6. Expressions of MMP-2 and TIMP-2 in lipopolysaccharide-induced acute lung injury of neonatal rats%MMP-2和TIMP-2在脂多糖诱导的新生大鼠急性肺损伤中表达的变化

    Institute of Scientific and Technical Information of China (English)

    殷静; 杨莉

    2009-01-01

    目的 探讨基质金属蛋白酶-2(matrix metallo proteinase-2,MMP-2)及其组织抑制剂(tissue inhibitors of metallo proteinase-2,TIMP-2)在脂多糖(LPS)诱导的新生大鼠急性肺损伤中的作用.方法 选择30只新生7日龄SD大鼠,随机分为生理盐水对照组(n=6)和急性肺损伤组(n=24),后者进一步分为1、2、4及6h亚组,每组6只.以LPS 腹腔注射建立急性肺损伤模型,观察注射LPS后不同时间点大鼠肺组织的病理改变,用免疫组织化学法和逆转录-聚合酶链反应(RT-PCR)法检测大鼠肺组织中MMP-2和TIMP-2的蛋白及mRNA表达.结果 病理学检查证实新生大鼠急性肺损伤模型复制成功.与生理盐水对照组比较,急性肺损伤组注射LPS后MMP-2蛋白及mRNA均表达增加,4~6h达高峰,差异有统计学意义(均P0.05).结论 LPS致新生大鼠的急性肺损伤存在MMP-2和TIMP-2的表达失衡,进而可能通过破坏基底膜参与急性肺损伤的病理过程.

  7. Role of heme oxygenase-1 in dachengqitang ameliorating lipopolysaccharide-induced acute lung injury in mice%血红素加氧酶-1在大承气汤改善脂多糖致小鼠急性肺损伤中的作用

    Institute of Scientific and Technical Information of China (English)

    黄新莉; 王松梅; 范亚敏; 丁春华; 凌亦凌

    2012-01-01

    目的:观察血红素加氧酶(HO)-1在大承气汤(DD)改善脂多糖(LPS)所致小鼠急性肺损伤(ALI)中的作用.方法:将75只雄性昆明种小鼠随机分为对照组、LPS组(经气管内滴注LPS复制ALI模型)、DD+ LPS组、DD+LPS+ ZnPP(锌原卟啉,HO-1特异性阻断剂)组和DD组.各组小鼠鼠于给药后6h处死.测定肺系数;光镜观察肺组织形态学改变;检测支气管肺泡灌洗液(BALF)的中性粒细胞(PMN)数目和蛋白含量的变化;采用RT-PCR和Western blot方法检测肺组织中HO-1 mRNA和蛋白表达的变化.结果:气管内滴注LPS可引起小鼠肺组织明显的形态学改变;BALF中PMN数目和蛋白含量均增加.肺组织中HO-1 mRNA和蛋白表达均增加.预先给予DD再气管内滴注LPS,肺组织损伤减轻,BALF中PMN数目和蛋白含量均减少,而肺组织中HO-1 mRNA和蛋白表达与LPS组相比均增加.HO-1抑制剂ZnPP可抑制DD改善肺损伤的作用.结论:DD改善LPS所致小鼠ALI的作用与其可上调HO-1 mRNA和蛋白表达有关.%To explore the role of heme oxygenase(HO)-l experimental system in dachengqitang( DD) ameliorating All induced by lipopolysaccharide( LPS) in mice. Seventy-five male Kunming mice were randomly divided into control group (normal saline was instilled intratracheally (50 μL/per mouse), LPS group ( LPS was instilled intratracheally to replicate ALI model), DD + LPS group, DD+ LPS + ZnPP (ZnPP, HO-1 specific inhibitor) group and the DD group. Mice were killed at 6 h after administration. Lung indexes were tested; lung histomorphological changes were observed under microscope, and neutrophils (PMN) number and protein content of bronchoalveolar Wage fluid (BALF) were measured; HO-1 mRNA and protein expression in lung tissue were detected by RT-PCR and Western bloL The results showed thai intratracheal instillation of LPS in mice can cause significant morphological changes in lung tissue. Both PMN numbers and protein content in BALF were increased, meanwhile the expressions of HO-1 mRNA and protein in Lung tissue were increased. Pretreated with DD and then intratracheally instillated LPS coulde ameliorat lung tissue injury, reduced PMN BALF number and protein content, but increase HO-1 mRNA and protein expression in the lung tissue when compared with LPS. HO-1 inhibitor ZnPP coulde inhibite the ameliorative effect of DD. The results suggest that the ameliorative effect of DD on ALI induced by LPS in mice were related with upregulation HO-1 mRNA and protein.

  8. Azithromycin reduces inflammation in a rat model of acute conjunctivitis

    Science.gov (United States)

    Fernandez-Robredo, Patricia; Recalde, Sergio; Moreno-Orduña, Maite; García-García, Laura; Zarranz-Ventura, Javier; García-Layana, Alfredo

    2013-01-01

    Purpose Macrolide antibiotics are known to have various anti-inflammatory effects in addition to their antimicrobial activity, but the mechanisms are still unclear. The effect of azithromycin on inflammatory molecules in the lipopolysaccharide-induced rat conjunctivitis model was investigated. Methods Twenty-four Wistar rats were divided into two groups receiving topical ocular azithromycin (15 mg/g) or vehicle. In total, six doses (25 µl) were administered as one dose twice a day for three days before subconjunctival lipopolysaccharide injection (3 mg/ml). Before the rats were euthanized, mucus secretion, conjunctival and palpebral edema and redness were evaluated. Real-time polymerase chain reaction was used to determine gene expression for interleukin-6, cyclooxygenase-2, tumor necrosis factor-α, matrix metalloproteinase (MMP)-2, and MMP-9. Interleukin-6 was determined with enzyme-linked immunosorbent assay, nuclear factor-kappa B with western blot, and MMP-2 activity with gelatin zymogram. Four eyes per group were processed for histology and subsequent periodic acid-Schiff staining and CD68 for immunofluorescence. The Student t test or the Wilcoxon test for independent samples was applied (SPSS v.15.0). Results Azithromycin-treated animals showed a significant reduction in all clinical signs (p<0.05) compared to controls. Interleukin-6 (p<0.05), nuclear factor-kappa B protein expression (p<0.01), and MMP-2 activity (p<0.05) in conjunctival homogenates were significantly reduced compared with the control animals. MMP-2 gene expression showed a tendency to decrease in the azithromycin group (p=0.063). Mucus secretion by goblet cells and the macrophage count in conjunctival tissue were also decreased in the azithromycin group (p<0.05). Conclusions These results suggest that azithromycin administration ameliorates induced inflammation effects in a rat model of acute conjunctivitis. PMID:23378729

  9. Role of p38 mitogen activated protein kinase pathway in attenuation of LPS-induced acute lung injury by Radix Paeoniae Rubra in rats%p38MAPK/iNOS/HO-1信号通路在赤芍减轻大鼠内毒素性急性肺损伤中的作用

    Institute of Scientific and Technical Information of China (English)

    詹丽英; 夏中元; 夏芳; 刘先义

    2009-01-01

    Objective To investigate the role of p38 mitogen activated protein kinase(MAPK)iNOSI/HO-1 in attenuation of LPS-induced acute lung injury(ALI)by Radix Paeoniae Rubra (RPR) in rats.Methods Forty pathogen-free male Wistar rats weighing 200-250 g were randomly divided into 5 groups(n=8 each):group Ⅰ I control(C);groupⅡLPS;group Ⅲ RPR;group Ⅳ RPR precondtioning and group Ⅴ SB203580 (p38MAPK specific inhibitor).ALI Wag induced by slow intra-tracheal instillation of LPS 2.5 mg/kg in 1 ml of normal saline(NS)in groupⅡ-Ⅴ.BPR 30 mg/kg waft infused iv over 2h simultaneouslv with and at 2 h before intra.tracheal LPS instillation in group Ⅲ and Ⅳ respectively.In groupⅤ SB203580 5,μmol/kg Was infused iv over 2 h at 3 h before intra-tracheal LPS instillation.Arterial blood samples were taken at 6 h after intra-Iracheal LPS instillation for blood gas analysis and determination of serum NO concenwafion.The animals were sacrificed bv exsangulnation.The lunga were immediately removed for microscopic examination and determination of p38MAPK and HO-I and iNOS expression and MDA content in the lung tissue.The left lung was lavaged and broncho- alveolar lavage fluid(BALF)Wag collected for determination of neutrophil count and protein COilcentration.Results LPS intra-tracheal instillation significantly decreased PaO2,PaCO2 and HCO3- concentration and increased serum NO concentration, the number of neutrophils and protein concentration in BALF, and p38MAPK and iNOS and HO-I expression and MDA content in the lung tissue. RPR and RPB preconditioning and SB203580 significandy attenuated the LPS-induced changes in group Ⅲ ,ⅣandⅤ as compared with group Ⅱ . The LPS intratracheal instillation induced pathologic changes of the lung were also attenuated in group ⅢⅣ and Ⅴ.Conclusion RPB can attenuate LPS-indueed ALl through p38MAPK/iNOS/HO-1 signalling pathway.%目的 评价p38MAPK/iNOS/HO-1信号通路在赤芍减轻大鼠内毒素性急性肺损伤(AL1)

  10. Semiactive control for vibration attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Leitmann, G. [Univ. of California, Berkeley, CA (United States). Coll. of Engineering

    1994-12-31

    With the advent of materials, such as electrorheological fluids, whose material properties can be altered rapidly by means of external stimuli, employing such materials as actuators for the controlled attenuation of undesirable vibrations is now possible. Such control schemes are dubbed semiactive in that they attenuate vibrations whether applied actively or passively. The author investigates various such control schemes, allowing for both separate and joint control of the stiffness and damping characteristics of the material.

  11. Acute Kidney Failure

    Science.gov (United States)

    ... out of balance. Acute kidney failure — also called acute renal failure or acute kidney injury — develops rapidly over ... 2015. Palevsky PM. Definition of acute kidney injury (acute renal failure). http://www.uptodate.com/home. Accessed April ...

  12. Acute Pancreatitis and Pregnancy

    Science.gov (United States)

    ... Pancreatitis Acute Pancreatitis and Pregnancy Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is defined as ... pancreatitis in pregnancy. Reasons for Acute Pancreatitis and Pregnancy While acute pancreatitis is responsible for almost 1 ...

  13. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor.

    Science.gov (United States)

    Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João

    2012-03-05

    Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor.

  14. Photoacoustic Imaging Taking into Account Attenuation

    CERN Document Server

    Kowar, Richard

    2010-01-01

    First, we review existing attenuation models and discuss their causality properties, which we believe to be essential for algorithms for inversion with attenuated data. Then, we survey causality properties of common attenuation models. We also derive integro-differential equations which the attenuated waves are satisfying. In addition we discuss the ill--conditionness of the inverse problem for calculating the unattenuated wave from the attenuated one.

  15. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  16. X-Ray Attenuation Cell

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D.; Toor, A.

    2000-03-03

    To minimize the pulse-to-pulse variation, the LCLS FEL must operate at saturation, i.e. 10 orders of magnitude brighter spectral brilliance than 3rd-generation light sources. At this intensity, ultra-high vacuums and windowless transport are required. Many of the experiments, however, will need to be conducted at a much lower intensity thereby requiring a reliable means to reduce the x-ray intensity by many orders of magnitude without increasing the pulse-to-pulse variation. In this report we consider a possible solution for controlled attenuation of the LCLS x-ray radiation. We suggest using for this purpose a windowless gas-filled cell with the differential pumping. Although this scheme is easily realizable in principle, it has to be demonstrated that the attenuator can be made short enough to be practical and that the gas loads delivered to the vacuum line of sight (LOS) are acceptable. We are not going to present a final, optimized design. Instead, we will provide a preliminary analysis showing that the whole concept is robust and is worth further study. The spatial structure of the LCLS x-ray pulse at the location of the attenuator is shown in Fig. 1. The central high-intensity component, due to the FEL, has a FWHM of {approx}100 {micro}m. A second component, due to the undulator's broad band spontaneous radiation is seen as a much lower intensity ''halo'' with a FWHM of 1 mm. We discuss two versions of the attenuation cell. The first is directed towards a controlled attenuation of the FEL up to the 4 orders of magnitude in the intensity, with the spontaneous radiation halo being eliminated by collimators. In the second version, the spontaneous radiation is not sacrificed but the FEL component (as well as the first harmonic of the spontaneous radiation) gets attenuated by a more modest factor up to 100. We will make all the estimates assuming that the gas used in the attenuator is Xenon and that the energy of the FEL is 8.25 keV. At

  17. Live attenuated varicella vaccine in children with leukemia in remission.

    Science.gov (United States)

    Gershon, A A; Steinberg, S; Galasso, G; Borkowsky, W; Larussa, P; Ferrara, A; Gelb, L

    1984-09-01

    One-hundred-ninety-one children with acute leukemia in remission for at least one year were immunized with 1 or more doses of live attenuated varicella vaccine. All were susceptible to varicella prior to vaccination. The only significant side effect was mild to moderate rash, seen especially in children with maintenance chemotherapy temporarily suspended for one week before and one week after vaccination. Children with rash were at some risk (10%) to transmit vaccine virus to varicella susceptibles with whom they had close contact.

  18. Attenuation in silica-based optical fibers

    DEFF Research Database (Denmark)

    Wandel, Marie Emilie

    2006-01-01

    In this thesis on attenuation in silica based optical fibers results within three main topics are reported. Spectral attenuation measurements on transmission fibers are performed in the wide wavelength range 290 nm – 1700 nm. The measured spectral attenuation is analyzed with special emphasis...... on absorption peaks in order to investigate the cause of an unusual high attenuation in a series of transmission fibers. Strong indications point to Ni2+ in octahedral coordination as being the cause of the high attenuation. The attenuation of fibers having a high core refractive index is analyzed and the cause...... of the high attenuation measured in such fibers is described as being due to scattering of light on fluctuations of the core diameter. A novel semi-empirical model for predicting the attenuation of high index fibers is presented. The model is shown to be able to predict the attenuation of high index fibers...

  19. Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis

    Directory of Open Access Journals (Sweden)

    Brody Steven L

    2010-06-01

    Full Text Available Abstract Background Viral bronchiolitis is the leading cause of hospitalization in young infants. It is associated with the development of childhood asthma and contributes to morbidity and mortality in the elderly. Currently no therapies effectively attenuate inflammation during the acute viral infection, or prevent the risk of post-viral asthma. We hypothesized that early treatment of a paramyxoviral bronchiolitis with azithromycin would attenuate acute and chronic airway inflammation. Methods Mice were inoculated with parainfluenza type 1, Sendai Virus (SeV, and treated daily with PBS or azithromycin for 7 days post-inoculation. On day 8 and 21 we assessed airway inflammation in lung tissue, and quantified immune cells and inflammatory mediators in bronchoalveolar lavage (BAL. Results Compared to treatment with PBS, azithromycin significantly attenuated post-viral weight loss. During the peak of acute inflammation (day 8, azithromycin decreased total leukocyte accumulation in the lung tissue and BAL, with the largest fold-reduction in BAL neutrophils. This decreased inflammation was independent of changes in viral load. Azithromycin significantly attenuated the concentration of BAL inflammatory mediators and enhanced resolution of chronic airway inflammation evident by decreased BAL inflammatory mediators on day 21. Conclusions In this mouse model of paramyxoviral bronchiolitis, azithromycin attenuated acute and chronic airway inflammation. These findings demonstrate anti-inflammatory effects of azithromycin that are not related to anti-viral activity. Our findings support the rationale for future prospective randomized clinical trials that will evaluate the effects of macrolides on acute viral bronchiolitis and their long-term consequences.

  20. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc bias...

  1. Compact plasmonic variable optical attenuator

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Rosenzveig, Tiberiu; Hermannsson, Pétur Gordon

    2008-01-01

    We demonstrate plasmonic nanowire-based thermo-optic variable optical attenuators operating in the 1525-1625 nm wavelength range. The devices have a footprint as low as 1 mm, extinction ratio exceeding 40 dB, driving voltage below 3 V, and full modulation bandwidth of 1 kHz. The polarization...

  2. Piperine ameliorates the severity of cerulein-induced acute pancreatitis by inhibiting the activation of mitogen activated protein kinases.

    Science.gov (United States)

    Bae, Gi-Sang; Kim, Min-Sun; Jeong, Jinsu; Lee, Hye-Youn; Park, Kyoung-Chel; Koo, Bon Soon; Kim, Byung-Jin; Kim, Tae-Hyeon; Lee, Seung Ho; Hwang, Sung-Yeon; Shin, Yong Kook; Song, Ho-Joon; Park, Sung-Joo

    2011-07-01

    Piperine is a phenolic component of black pepper (Piper nigrum) and long pepper (Piper longum), fruits used in traditional Asian medicine. Our previous study showed that piperine inhibits lipopolysaccharide-induced inflammatory responses. In this study, we investigated whether piperine reduces the severity of cerulein-induced acute pancreatitis (AP). Administration of piperine reduced histologic damage and myeloperoxidase (MPO) activity in the pancreas and ameliorated many of the examined laboratory parameters, including the pancreatic weight (PW) to body weight (BW) ratio, as well as serum levels of amylase and lipase and trypsin activity. Furthermore, piperine pretreatment reduced the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 during cerulein-induced AP. In accordance with in vivo results, piperine reduced cell death, amylase and lipase activity, and cytokine production in isolated cerulein-treated pancreatic acinar cells. In addition, piperine inhibited the activation of mitogen-activated protein kinases (MAPKs). These findings suggest that the anti-inflammatory effect of piperine in cerulein-induced AP is mediated by inhibiting the activation of MAPKs. Thus, piperine may have a protective effect against AP.

  3. Stormwater Attenuation by Green Roofs

    Science.gov (United States)

    Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.

    2014-12-01

    Innovative municipal stormwater management technologies are urgently required in urban centers. Inadequate stormwater management can lead to excessive flooding, channel erosion, decreased stream baseflows, and degraded water quality. A major source of urban stormwater is unused roof space. Green roofs can be used as a stormwater management tool to reduce roof generated stormwater and generally improve the quality of runoff. With recent legislation in some North American cities, including Toronto, requiring the installation of green roofs on large buildings, research on the effectiveness of green roofs for stormwater management is important. This study aims to assess the hydrologic response of an extensive sedum green roof in London, Ontario, with emphasis on the response to large precipitation events that stress municipal stormwater infrastructure. A green roof rapidly reaches field capacity during large storm events and can show significantly different behavior before and after field capacity. At field capacity a green roof has no capillary storage left for retention of stormwater, but may still be an effective tool to attenuate peak runoff rates by transport through the green roof substrate. The attenuation of green roofs after field capacity is linked to gravity storage, where gravity storage is the water that is temporarily stored and can drain freely over time after field capacity has been established. Stormwater attenuation of a modular experimental green roof is determined from water balance calculations at 1-minute intervals. Data is used to evaluate green roof attenuation and the impact of field capacity on peak flow rates and gravity storage. In addition, a numerical model is used to simulate event based stormwater attenuation. This model is based off of the Richards equation and supporting theory of multiphase flow through porous media.

  4. 丙泊酚对脂多糖刺激人单核细胞丝裂原活化蛋白激酶信号通路的影响%The effects of propofol on the lipopolysaccharide induced activation of mitogen-activated protein kinase pathway in humanmononuc lear macrophage cells

    Institute of Scientific and Technical Information of China (English)

    薛琼; 屠伟峰; 陈茜; 唐靖; 古妙宁

    2012-01-01

    目的 研究丙泊酚对脂多糖(lipopolysaccharide,LPS)刺激人单核细胞(human mononuclear macrophage cell,THP-1)丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路的影响.方法 将体外培养的THP-1细胞按完全随机方法分为4组:对照组(C组):给予脂肪乳20 mg/L;LPS刺激组(L组):给予LPS10mg/L;丙泊酚处理组(P组):给予丙泊酚20 mg/L;丙泊酚处理合并LPS刺激组(P+L组):给予丙泊酚20mg/L及LPS10 mg/L.在刺激后0.5、1、2、6h4个时间点通过免疫蛋白印迹分析(Western blot)法检测磷酸化p38MAPK (p-p38MAPK),磷酸化细胞外信号调节激酶(P-extracellular-signal regulated protein kinase,p-ERK)1/2及磷酸化c-Jun氨基末端激酶(p-c-Jun amino-terminal kinase,p-JNK)1/2含量的变化.结果 给予LPS刺激THP-1细胞0.5 h时,L组p-p38MAPK、p-ERK1/2及p-JNK1/2的相对灰度值分别为14.67±0.82、1.34±0.05、4.49±0.51,与C组比较表达均显著增加(P<0.05).给予刺激1h时,L组p-p38MAPK、p-ERK1/2及p-JNK1/2的相对灰度值分别为11.78±0.75、0.58±0.05、3.31±0.55,与C组比较表达均显著增加(P<0.05);P+L组p-ERK1/2的相对灰度值为0.14±0.02,与L组比较磷酸化水平显著降低(P<0.05).给予刺激2h时,L组p-p38MAPK和p-JNK1/2的相对灰度值分别为15.60±0.96、8.33±0.70,与C组比较表达均显著增加(P<0.05);P+L组p-p38MAPK和p-JNK1/2的相对灰度值分别为4.52±0.23、1.80±0.70,与L组比较磷酸化水平显著降低(P<0.05).给予刺激6h时,L组p-p38MAPK及p-JNK1/2的相对灰度值分别为18.89±1.22、2.58±0.50,与C组比较表达均显著增加(P<0.05);P+L组p-p38MAPK的相对灰度值为3.91±0.30,与L组比较磷酸化水平显著降低(P<0.05).结论 丙泊酚抑制由LPS刺激THP-1细胞引起的p-p38MAPK、p-ERK1/2及p-JNK1/2表达增加,这可能是其抗炎的重要作用机制之一.%Objective To study the effects of propofol on the lipopolysaccharide induced activation of mitogen

  5. Ferrite attenuator modulation improves antenna performance

    Science.gov (United States)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  6. ENHANCEMENTS TO NATURAL ATTENUATION: SELECTED CASE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; W. H. Albright, W; E. S. Becvar, E; C. H. Benson, C; T. O. Early, T; E. Hood, E; P. M. Jardine, P; M. Lorah, M; E. Majche, E; D. Major, D; W. J. Waugh, W; G. Wein, G; O. R. West, O

    2007-05-15

    In 2003 the US Department of Energy (DOE) embarked on a project to explore an innovative approach to remediation of subsurface contaminant plumes that focused on introducing mechanisms for augmenting natural attenuation to achieve site closure. Termed enhanced attenuation (EA), this approach has drawn its inspiration from the concept of monitored natural attenuation (MNA).

  7. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

  8. Mechanisms of geometrical seismic attenuation

    Directory of Open Access Journals (Sweden)

    Igor B. Morozov

    2011-07-01

    Full Text Available In several recent reports, we have explained the frequency dependence of the apparent seismic quality-factor (Q observed in many studies according to the effects of geometrical attenuation, which was defined as the zero-frequency limit of the temporal attenuation coefficient. In particular, geometrical attenuation was found to be positive for most waves traveling within the lithosphere. Here, we present three theoretical models that illustrate the origin of this geometrical attenuation, and we investigate the causes of its preferential positive values. In addition, we discuss the physical basis and limitations of both the conventional and new attenuation models. For waves in media with slowly varying properties, geometrical attenuation is caused by variations in the wavefront curvature, which can be both positive (for defocusing and negative (for focusing. In media with velocity/density contrasts, incoherent reflectivity leads to geometrical-attenuation coefficients which are proportional to the mean squared reflectivity and are always positive. For «coherent» reflectivity, the geometrical attenuation is approximately zero, and the attenuation process can be described according to the concept of «scattering Q». However, the true meaning of this parameter is in describing the mean reflectivity within the medium, and not that of the traditional resonator quality factor known in mechanics. The general conclusion from these models is that non-zero and often positive levels of geometrical attenuation are common in realistic, heterogeneous media, both observationally and theoretically. When transformed into the conventional Q-factor form, this positive geometrical attenuation leads to Q values that quickly increase with frequency. These predictions show that the positive frequency-dependent Q observed in many datasets might represent artifacts of the transformations of the attenuation coefficients into Q.

  1. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients

    Science.gov (United States)

    Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao

    2017-01-01

    Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.

  2. Ultrasonic attenuation in cuprate superconductors

    Indian Academy of Sciences (India)

    T Gupta; D M Gaitonde

    2002-05-01

    We calculate the longitudinal ultrasonic attenuation rate (UAR) in clean d-wave superconductors in the Meissner and the mixed phases. In the Meissner phase we calculate the contribution of previously ignored processes involving the excitation of a pair of quasi-holes or quasi-particles. There is a contribution ∝ in the regime B ≪ F ≪ 0 and a contribution ∝ 1/ in the regime F ≪ B ≪ 0. We find that these contributions to the UAR are large and cannot be ignored. In the mixed phase, using a semi-classical description, we calculate the electronic quasi-particle contribution to the UAR which at very low , has a independent term proportional to $\\sqrt{H}$.

  3. DSM-5: ATTENUATED PSYCHOSIS SYNDROME?

    Directory of Open Access Journals (Sweden)

    Eduardo Fonseca-Pedrero

    2013-09-01

    Full Text Available Psychotic syndrome includes several devastating mental disorders characterized by a rupture of higher mental functions. The signs and symptoms of psychosis begin in adolescence or early adulthood and usually begin gradually and progress over time. Attenuated psychosis syndrome is a new DSM-5 diagnostic proposal which deals with identifying people at high-risk mental state (ARMS/UHR which may be a predictor of conversion to psychosis. The potential benefit would be that if psychotic disorder is treated more effectively in its early stages, it could produce a lasting beneficial effect that probably could not be achieved with later intervention. This syndrome has generated intense discussion in specialized scientific and professional forums, crisscrossing arguments in favor and against its inclusion. HRMS is preferentially evaluated in the adolescent or young adult population. HRMS evolution is associated with a higher rate of transition toward nonaffective psychosis, although it can evolve toward other mental disorders, remain stable or remit over time. Empirical evidence shows that early intervention seems to have a certain beneficial effect, although for now the results are still insufficient and contradictory. The lack of specificity of symptoms in predicting psychosis, presence of certain limitations (e.g., stigmatization, results found in early interventions and lack of empirical evidence, have led to include the attenuated psychosis syndrome in the DSM-5 Appendix III. The main benefits and limitations of including this supposed category, possible lessons learned from this type of study and future lines of action are discussed in the light of these findings.

  4. Pregabalin attenuates excitotoxicity in diabetes.

    Directory of Open Access Journals (Sweden)

    Chin-Wei Huang

    Full Text Available Diabetes can exacerbate seizures and worsen seizure-related brain damage. In the present study, we aimed to determine whether the standard antiepileptic drug pregabalin (PGB protects against pilocarpine-induced seizures and excitotoxicity in diabetes. Adult male Sprague-Dawley rats were divided into either a streptozotocin (STZ-induced diabetes group or a normal saline (NS group. Both groups were further divided into subgroups that were treated intravenously with either PGB (15 mg/kg or a vehicle; all groups were treated with subcutaneous pilocarpine (60 mg/kg to induce seizures. To evaluate spontaneous recurrent seizures (SRS, PGB-pretreated rats were fed rat chow containing oral PGB (450 mg for 28 consecutive days; vehicle-pretreated rats were fed regular chow. SRS frequency was monitored for 2 weeks from post-status epilepticus day 15. We evaluated both acute neuronal loss and chronic mossy fiber sprouting in the CA3 area. In addition, we performed patch clamp recordings to study evoked excitatory postsynaptic currents (eEPSCs in hippocampal CA1 neurons for both vehicle-treated rats with SRS. Finally, we used an RNA interference knockdown method for Kir6.2 in a hippocampal cell line to evaluate PGB's effects in the presence of high-dose ATP. We found that compared to vehicle-treated rats, PGB-treated rats showed less severe acute seizure activity, reduced acute neuronal loss, and chronic mossy fiber sprouting. In the vehicle-treated STZ rats, eEPSC amplitude was significantly lower after PGB administration, but glibenclamide reversed this effect. The RNA interference study confirmed that PGB could counteract the ATP-sensitive potassium channel (KATP-closing effect of high-dose ATP. By opening KATP, PGB protects against neuronal excitotoxicity, and is therefore a potential antiepileptogenic in diabetes. These findings might help develop a clinical algorithm for treating patients with epilepsy and comorbid metabolic disorders.

  5. Attenuation characteristics of a light attenuator combined by polarizers with different extinction ratios

    Institute of Scientific and Technical Information of China (English)

    Huang Chong; Deng Peng; Zhao Shuang; Chen Hai-Qing

    2011-01-01

    This paper deals with a systematical analysis and an algorithm of attenuation characteristics of a light attenuator combined by n pieces of polarizers(n-LACP)whose extinction ratios are different from each other.The attenuation ratio expression of a two-LACP is deduced. We find that the monotonic attenuation interval depends on the first polarizer and that the attenuation range depends on the second one.For the three-LACP,a method for obtaining a monotonic attenuation interval is proposed.Moreover,the attenuation ratio expression is demonstrated.Analysis and experiment show that when the initial status of the three-LACP is at the maximum output,if the second or third polarizer rotates alone,the minimum attenuation ratios can reach K2-1and K3-1,respectively,and if the first polarizer rotates,a minimum attenuation ratio of K2-1K3-1can be obtained(K1,K2 and K3 represent the extinction ratios of the three polarizers in turn).Furthermore,the attenuation ratio expression of n-LACP and the relevant attenuation characteristics are proposed.The minimum attenuation ratio of an n-LACP is(K2K3...Kn)-1.

  6. Acute Appendicitis

    DEFF Research Database (Denmark)

    Tind, Sofie; Qvist, Niels

    2017-01-01

    BACKGROUND: The classification of acute appendicitis (AA) into various grades is not consistent, partly because it is not clear whether the perioperative or the histological findings should be the foundation of the classification. When comparing results from the literature on the frequency...... patients were included. In 116 (89 %) of these cases, appendicitis was confirmed histological. There was low concordance between the perioperative and histological diagnoses, varying from 16 to 76 % depending on grade of AA. Only 44 % of the patients receiving antibiotics postoperatively had a positive...... peritoneal fluid cultivation. CONCLUSION: There was a low concordance in clinical and histopathological diagnoses of the different grades of appendicitis. Perioperative cultivation of the peritoneal fluid as a standard should be further examined. The potential could be a reduced postoperative antibiotic use...

  7. DISTURBANCE ATTENUATION FOR UNCERTAIN NONLINEAR CASCADED SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    BI Weiping; MU Xiaowu; SUN Yuqiang

    2004-01-01

    In present paper, the disturbance attenuation problem of uncertain nonlinear cascaded systems is studied. Based on the adding one power integrator technique and recursive design, a feedback controller that solves the disturbance attenuation problem is constructed for uncertain nonlinear cascaded systems with internal stability.

  8. Light attenuation on Chlorella vulgaris cells

    Science.gov (United States)

    Krol, Tadeusz; Lotocka, Maria

    1993-12-01

    The laboratory measurements of spectrum of light attenuation on phytoplankton particles i.e. monoculture of unicellural green algae Chlorella vulgaris are presented. The measurements were carried out for alive culture and the cultures subjected to chemical (NaOH) or physical (ultrasounds) modification. The distinct changes in the light attenuation spectrum were a result of modification of the internal cell structures.

  9. Attenuation coefficients for water quality trading.

    Science.gov (United States)

    Keller, Arturo A; Chen, Xiaoli; Fox, Jessica; Fulda, Matt; Dorsey, Rebecca; Seapy, Briana; Glenday, Julia; Bray, Erin

    2014-06-17

    Water quality trading has been proposed as a cost-effective approach for reducing nutrient loads through credit generation from agricultural or point source reductions sold to buyers facing costly options. We present a systematic approach to determine attenuation coefficients and their uncertainty. Using a process-based model, we determine attenuation with safety margins at many watersheds for total nitrogen (TN) and total phosphorus (TP) loads as they transport from point of load reduction to the credit buyer. TN and TP in-stream attenuation generally increases with decreasing mean river flow; smaller rivers in the modeled region of the Ohio River Basin had TN attenuation factors per km, including safety margins, of 0.19-1.6%, medium rivers of 0.14-1.2%, large rivers of 0.13-1.1%, and very large rivers of 0.04-0.42%. Attenuation in ditches transporting nutrients from farms to receiving rivers is 0.4%/km for TN, while for TP attenuation in ditches can be up to 2%/km. A 95 percentile safety margin of 30-40% for TN and 6-10% for TP, applied to the attenuation per km factors, was determined from the in-stream sensitivity of load reductions to watershed model parameters. For perspective, over 50 km a 1% per km factor would result in 50% attenuation = 2:1 trading ratio.

  10. Ultrasound fields in an attenuating medium

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gandhi,, D; O'Brien,, W.D., Jr.

    1993-01-01

    Ultrasound fields propagating in tissue will undergo changes in shape not only due to diffraction, but also due to the frequency dependent attenuation. Linear fields can be fairly well predicted for a non-attenuating medium like water by using the Tupholme-Stepanishen method for calculating...... the spatial impulse response, whereas the field cannot readily be found for an attenuating medium. In this paper we present a simulation program capable of calculating the field in a homogeneous attenuating medium. The program splits the aperture into rectangles and uses a far-field approximation for each...... of the rectangles and sums all contributions to arrive at the spatial impulse response for the aperture and field point. This approach makes it possible to model all transducer apertures, and the program can readily calculate the emitted, pulse-echo and continuous wave field. Attenuation is included by splitting...

  11. Acute Myopericarditis Mimicking Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Seval İzdeş

    2011-08-01

    Full Text Available Acute coronary syndromes among young adults are relatively low when compared with older population in the intensive care unit. Electrocardiographic abnormalities mimicking acute coronary syndromes may be caused by non-coronary syndromes and the differential diagnosis requires a detailed evaluation. We are reporting a case of myopericarditis presenting with acute ST elevation and elevated cardiac enzymes simulating acute coronary syndrome. In this case report, the literature is reviewed to discuss the approach to distinguish an acute coronary syndrome from myopericarditis. (Journal of the Turkish Society Intensive Care 2011; 9:68-70

  12. Attenuation of diacylglycerol second messengers

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, W.R.; Ganong, B.R.; Bell, R.M.

    1986-05-01

    Diacylglycerol(DAG) derived from phosphatidylinositol activates protein kinase C in agonist-stimulated cells. At least two pathways may contribute to the attenuation of the DAG signal: (1) phosphorylation to phosphatidic acid(PA) by DAG kinase(DGK), and (2) deacylation by DAG and monoacylglycerol lipases. A number of DAG analogs were tested as substrates and inhibitors of partially purified pig brain DGK. Two analogs were potent inhibitors in vitro, 1-monooleoylglycerol(MOG,K/sub I/ = 91 ..mu..M) and diotanoylethyleneglycol (diC/sub 8/EG, K/sub I/ = 58 ..mu..M). These compounds were tested in human platelets. DiC/sub 8/EG inhibited (70 - 100%) (/sup 32/P/sub i/) incorporation into PA in thrombin-stimulated platelets. Under these conditions the DAG signal was somewhat long-lived but was still metabolized, presumably by the lipase pathway. MOG treatment elevated DAG levels up to 4-fold in unstimulated platelets. The DAG formed was in a pool where it did not activate protein kinase C. Thrombin-stimulation of MOG-treated platelets resulted in DAG levels 10-fold higher than control platelets. This appears to be due to the inability of these platelets to metabolize agonist-linked DAG via the lipase pathway. The development of specific inhibitors of DAG kinase and DAG lipase, in conjunction with mass quantification of DAG levels as used here, will provide further insights into the regulation of DAG second messengers.

  13. Live attenuated intranasal influenza vaccine.

    Science.gov (United States)

    Esposito, Susanna; Montinaro, Valentina; Groppali, Elena; Tenconi, Rossana; Semino, Margherita; Principi, Nicola

    2012-01-01

    Annual vaccination is the most effective means of preventing and controlling influenza epidemics, and the traditional trivalent inactivated vaccine (TIV) is by far the most widely used. Unfortunately, it has a number of limitations, the most important of which is its poor immunogenicity in younger children and the elderly, the populations at greatest risk of severe influenza. Live attenuated influenza vaccine (LAIV) has characteristics that can overcome some of these limitations. It does not have to be injected because it is administered intranasally. It is very effective in children and adolescents, among whom it prevents significantly more cases of influenza than the traditional TIV. However, its efficacy in adults has not been adequately documented, which is why it has not been licensed for use by adults by the European health authorities. LAIV is safe and well tolerated by children aged > 2 y and adults, but some concerns arisen regarding its safety in younger children and subjects with previous asthma or with recurrent wheezing. Further studies are needed to solve these problems and to evaluate the possible role of LAIV in the annual vaccination of the general population.

  14. Acute otitis externa.

    Science.gov (United States)

    Hui, Charles Ps

    2013-02-01

    Acute otitis externa, also known as 'swimmer's ear', is a common disease of children, adolescents and adults. While chronic suppurative otitis media or acute otitis media with tympanostomy tubes or a perforation can cause acute otitis externa, both the infecting organisms and management protocol are different. This practice point focuses solely on managing acute otitis externa, without acute otitis media, tympanostomy tubes or a perforation being present.

  15. Acute otitis externa

    OpenAIRE

    2013-01-01

    Acute otitis externa, also known as ‘swimmer’s ear’, is a common disease of children, adolescents and adults. While chronic suppurative otitis media or acute otitis media with tympanostomy tubes or a perforation can cause acute otitis externa, both the infecting organisms and management protocol are different. This practice point focuses solely on managing acute otitis externa, without acute otitis media, tympanostomy tubes or a perforation being present.

  16. Assessment of acute cholangitis by MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eun, Hyo Won, E-mail: namsanae@gmail.com [Health Promotion Center, Asan Medical Center, University of Ulsan, 388-1 Poongnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Kim, Jung Hoon, E-mail: jhkim2008@gmail.com [Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehang-no, Chongno-gu, Seoul 110-744 (Korea, Republic of); Hong, Seong Sook, E-mail: hongses@hosp.sch.ac.kr [Department of Radiology, Soonchunhyang University Hospital, 657 Hannam-Dong, Youngsan-Ku, Seoul 140-743 (Korea, Republic of); Kim, Young Jae, E-mail: rtwodtwo@hosp.sch.ac.kr [Department of Radiology, Soonchunhyang University Hospital, 657 Hannam-Dong, Youngsan-Ku, Seoul 140-743 (Korea, Republic of)

    2012-10-15

    periductal transient attenuation difference was an independent predictor of acute cholangitis (Exp (B) = 6.389, p = 0.018). Conclusion: MRI accurately assesses the cause of biliary abnormality in patients with cholangitis. Using statistically common MR findings for acute cholangitis, MR imaging is very successful in predicting acute cholangitis.

  17. Graphene-based Electronically Tuneable Microstrip Attenuator

    Directory of Open Access Journals (Sweden)

    L. Pierantoni

    2014-06-01

    Full Text Available This paper presents the design of a graphene- based electronically tuneable microstrip attenuator operating at a frequency of 5 GHz. The use of graphene as a variable resistor is discussed and the modelling of its electromagnetic properties at microwave frequencies is fully addressed. The design of the graphene-based attenuator is described. The structure integrates a patch of graphene, whose characteristics can range from being a fairly good conductor to a highly lossy material, depending on the applied voltage. By applying the proper voltage through two high-impedance bias lines, the surface resistivity of graphene can be modified, thereby changing the insertion loss of the microstrip attenuator.

  18. Evaluation of an attenuated strain of Ehrlichia canis as a vaccine for canine monocytic ehrlichiosis.

    Science.gov (United States)

    Rudoler, Nir; Baneth, Gad; Eyal, Osnat; van Straten, Michael; Harrus, Shimon

    2012-12-17

    Canine monocytic ehrlichiosis is an important tick-borne disease worldwide. No commercial vaccine for the disease is currently available and tick control is the main preventive measure against the disease. The aim of this study was to evaluate the potential of a multi-passaged attenuated strain of Ehrlichia canis to serve as a vaccine for canine monocytic ehrlichiosis, and to assess the use of azithromycin in the treatment of acute ehrlichiosis. Twelve beagle dogs were divided into 3 groups of 4 dogs. Groups 1 and 2 were inoculated (vaccinated) with an attenuated strain of E. canis (#611A) twice or once, respectively. The third group consisted of naïve dogs which served as controls. All 3 groups were challenged with a wild virulent strain of E. canis by administering infected dog-blood intravenously. Transient thrombocytopenia was the only hematological abnormality observed following inoculation of dogs with the attenuated strain. Challenge with the virulent strain resulted in severe disease in all 4 control dogs while only 3 of 8 vaccinated dogs presented mild transient fever. Furthermore, the mean blood rickettsial load was significantly higher in the control group (27-92-folds higher during days 14-19 post challenge with the wild the strain) as compared to the vaccinated dogs. The use of azithromycin was assessed as a therapeutic agent for the acute disease. Four days treatment resulted in further deterioration of the clinical condition of the dogs. Molecular comparison of 4 genes known to express immunoreactive proteins and virulence factors (p30, gp19, VirB4 and VirB9) between the attenuated strain and the challenge wild strain revealed no genetic differences between the strains. The results of this study indicate that the attenuated E. canis strain may serve as an effective and secure future vaccine for canine ehrlichiosis.

  19. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    Science.gov (United States)

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping

    2015-05-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  20. Postconditioning attenuates no-reflow in STEMI patients.

    Science.gov (United States)

    Mewton, Nathan; Thibault, Hélène; Roubille, François; Lairez, Olivier; Rioufol, Gilles; Sportouch, Catherine; Sanchez, Ingrid; Bergerot, Cyrille; Cung, Thien Tri; Finet, Gérard; Angoulvant, Denis; Revel, Didier; Bonnefoy-Cudraz, Eric; Elbaz, Meyer; Piot, Christophe; Sahraoui, Inesse; Croisille, Pierre; Ovize, Michel

    2013-11-01

    After acute myocardial infarction, the presence of no-reflow (or microvascular obstruction: MVO) has been associated with adverse left ventricular (LV) remodeling and worse clinical outcome. This study examined the effects of mechanical ischemic postconditioning on early and late MVO size in acute ST-elevation myocardial infarction (STEMI) patients. Fifty patients undergoing primary coronary angioplasty for a first STEMI with TIMI grade flow 0-1 and no collaterals were randomized to ischemic postconditioning (PC) (n = 25) or control (n = 25) groups. Ischemic PC consisted in the application of four consecutive cycles of a 1-min balloon occlusion, each followed by a 1-min deflation at the onset of reperfusion. Early (3 min post-contrast) and late (10 min post-contrast) MVO size were assessed by contrast-enhanced cardiac-MRI within 96 h after reperfusion. PC was associated with smaller early and late MVO size (3.9 ± 4.8 in PC versus 7.8 ± 6.6% of LV in controls for early MVO, P = 0.02; and 1.8 ± 3.1 in PC versus 4.1 ± 3.9% of LV in controls for late MVO; P = 0.01). This significant reduction was persistent after adjustment for thrombus aspiration, which neither had any significant effect on infarct size, nor on early or late MVO (P = NS for all). Attenuation of MVO was associated to infarct size reduction. Mechanical postconditioning significantly reduces MVO in patients with acute STEMI treated with primary angioplasty.

  1. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G. [Radiotherapy Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy); Castiglione, F. [Department of Human Pathology and Oncology, University of Florence, Firenze (Italy); Vanzi, E.; Bottoncetti, A.; Pupi, A. [Nuclear Medicine Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy)

    2011-10-15

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation

  2. 乌司他丁对脂多糖诱发的单层人脐静脉内皮细胞高通透性的影响及其机制%Effect of ulinastatin on lipopolysaccharide-induced hyperpermeability in human umbilical vein endothelial cells monolayer and its mechanism

    Institute of Scientific and Technical Information of China (English)

    陈洁; 孙理; 张劲松

    2015-01-01

    Objective To study the effect of ulinastatin on lipopolysaccharide (LPS )-induced hyperpermeability in monolayer human umbilical vein endothelial cells (HUVECs) and its possible mechanism .Methods The cultured monolayer HUVECs were divided into four groups of A (blank control) ,B(treated with LPS 1μg/ml for 4 h) ,C(treated with ulinastatin 3000 U/ml for 1 h before LPS) and D [given vascular endothelial-cadherin monoclonal antibody (VE-cadherin mAb) 50 μg/ml for 6 h before ulinastatin and LPS] .The permeability of monolayer HUVECs barrier was detected by a transwell chamber system .The expression of VE-cadherin in HUVECs was detected by Western blot . Results Compared with group A ,the permeability of monolayer HUVECs barrier was increased and VE-cadherin expression was decreased in group B ( P<0 .01 ) .Compared with group B ,the permeability of monolayer HUVECs barrier was decreased and VE-cadherin expression was increased in group C(P<0 .01) .Compared with group C ,the permeability of monolayer HUVECs barrier was increased and VE-cadherin expression was decreased in group D(P<0 .01) .Conclusion Ulinastatin preconditioning may attenuate LPS-induced HUVECs monolayer hyperpermeability ,which may be related with an increase in the expression of VE-cadherin .%目的 探讨乌司他丁对脂多糖(LPS)诱发的单层人脐静脉内皮细胞(HUVECs)高通透性的影响及其可能机制.方法 体外培养的单层 HUVECs被分为对照组、LPS组(LPS 1μg/ml刺激4 h)、乌司他丁复合LPS组(乌司他丁3000 U/ml孵育1 h+LPS 1μg/ml刺激4 h)和血管内皮钙黏蛋白单克隆抗体(VE-cadherin mAb)组(VE-cadherin mAb 50μg/ml孵育6 h+乌司他丁3000 U/ml孵育1 h+LPS 1μg/ml刺激4 h).采用双腔系统Transwell法检测单层 HUVECs的通透性 , Western blot法检测HUVECs中VE-cadherin的表达水平.结果 与对照组相比,LPS组单层HUVECs渗透性增高 ,VE-cadherin表达降低(P<0 .01).与LPS组相比 ,乌司他丁

  3. The role of inflammatory stress in acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    沈成兴; 陈灏珠; 葛均波

    2004-01-01

    Objective To summarize current understanding of the roles of anti-inflammatory and proinflammatory mechanisms in the development of atherosclerosis and acute coronary syndrome and to postulate the novel concept of inflammation stress as the most important factor triggering acute coronary syndrome. Moreover, markers of inflammation stress and ways to block involved pathways are elucidated.Data sources A literature search (MEDLINE 1997 to 2002) was performed using the key words "inflammation and cardiovascular disease". Relevant book chapters were also reviewed.Study selection Well-controlled, prospective landmark studies and review articles on inflammation and acute coronary syndrome were selected.Data extraction Data and conclusions from the selected articles providing solid evidence to elucidate the mechanisms of inflammation and acute coronary syndrome were extracted and interpreted in the light of our own clinical and basic research.Data synthesis Inflammation is closely linked to atherosclerosis and acute coronary syndrome. Chronic and long-lasting inflammation stress, present both systemically or in the vascular walls, can trigger acute coronary syndrome.Conclusions Inflammation stress plays an important role in the process of acute coronary syndrome. Drugs which can modulate the balance of pro- and anti-inflammatory processes and attenuate inflammation stress, such as angiotensin-converting enzyme (ACE) inhibitors/angiotensin Ⅱ receptor blockers, statins, and cytokine antagonists may play active roles in the prevention and treatment of acute coronary syndrome when used in addition to conventional therapies (glycoprotein Ⅱb/Ⅲa receptor antagonists, mechanical intervention strategies, etc).

  4. Precision Model for Microwave Rotary Vane Attenuator

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom

    1979-01-01

    A model for a rotary vane attenuator is developed to describe the attenuator reflection and transmission coefficients in detail. All the parameters of the model can be measured in situ, i.e., without diassembling any part. The tranmission errors caused by internal reflections are calculated from ...... measurements of the much larger reflection parameters, hence commonly used nonprecision instruments can be used to determine the transmission errors with sufficient accuracy for the highest precision obtainable in standard laboratories....

  5. Wave attenuation charcteristics of tethered float system

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.

    and transmitted wave powers, transmission coefficients are computed. The results show that transmission coefficient does not vary with changes in wave height or water depth. When depth of submergence of float increases, wave attenuation decreases, showing... that the system performs well when it is just submerged. As float velocity decreases with increase in float size, transmission coefficient increases with increase in float size. The influence of wave period on wave attenuation is remarkable compared to other...

  6. ATTENUATION AND FLANKING TRANSMISSION IN LIGHTWEIGHT STRUCTURES

    DEFF Research Database (Denmark)

    Brunskog, Jonas; Lhomond, Alice; Ohlrich, Mogens

    2007-01-01

    In this paper the attenuation and flanking transmissions of impact noise in lightweight building structures is studied using a modal approach. The structural field is mainly analysed, putting the main attention to the parts being important in the modelling. The amount of attenuation produced...... by the periodically reinforcing beams used in lightweight building structures is analysed. The consequence of these factors in modelling flanking transmission is also discussed....

  7. Light attenuation in estuarine mangrove lakes

    Science.gov (United States)

    Frankovich, Thomas A.; Rudnick, David T.; Fourqurean, James W.

    2017-01-01

    Submerged aquatic vegetation (SAV) cover has declined in brackish lakes in the southern Everglades characterized by low water transparencies, emphasizing the need to evaluate the suitability of the aquatic medium for SAV growth and to identify the light attenuating components that contribute most to light attenuation. Underwater attenuation of downwards irradiance of photosynthetically active radiation (PAR) was determined over a three year period at 42 sites in shallow (lakes in two sub-estuaries in the coastal Everglades, Florida USA. Turbidity, chromophoric dissolved organic matter (CDOM), and phytoplankton chlorophyll a (chl a) were measured concurrently and their respective contributions to the light attenuation rate were estimated. Light transmission to the benthos relative to literature estimates of minimum requirements for SAV growth indicated that the underwater light environment was often unsuitable for SAV. Light attenuation rates (n = 417) corrected for solar elevation angles ranged from 0.16 m-1 to 9.83 m-1 with a mean of 1.73 m-1. High concentrations of CDOM with high specific light absorption contributed the most to light attenuation followed by turbidity and chl a. CDOM alone sufficiently reduces light transmission beyond the estimated limits for SAV growth, making it difficult for ecosystem managers to increase SAV abundance by management activities. Light limitation of SAV in these areas may be a persistent feature because of their proximity to CDOM source materials from the surrounding mangrove swamp. Increasing freshwater flow into these areas may dilute CDOM concentrations and improve the salinity and light climate for SAV communities.

  8. Ornithine transcarbamylase deficiency presenting with acute reversible cortical blindness.

    Science.gov (United States)

    Prasun, Pankaj; Altinok, Deniz; Misra, Vinod K

    2015-05-01

    Acute focal neurologic deficits are a rare but known presentation of ornithine transcarbamylase deficiency, particularly in females. We describe here a 6-year-old girl with newly diagnosed ornithine transcarbamylase deficiency who presents with an episode of acute cortical blindness lasting for 72 hours in the absence of hyperammonemia. Her symptoms were associated with a subcortical low-intensity lesion with overlying cortical hyperintensity on fluid-attenuated inversion recovery magnetic resonance imaging (MRI) of the occipital lobes. Acute reversible vision loss with these MRI findings is an unusual finding in patients with ornithine transcarbamylase deficiency. Our findings suggest a role for oxidative stress and aberrant glutamine metabolism in the acute clinical features of ornithine transcarbamylase deficiency even in the absence of hyperammonemia.

  9. Pentoxifylline Treatment in Acute Pancreatitis (AP)

    Science.gov (United States)

    2016-09-14

    Acute Pancreatitis (AP); Gallstone Pancreatitis; Alcoholic Pancreatitis; Post-ERCP/Post-procedural Pancreatitis; Trauma Acute Pancreatitis; Hypertriglyceridemia Acute Pancreatitis; Idiopathic (Unknown) Acute Pancreatitis; Medication Induced Acute Pancreatitis; Cancer Acute Pancreatitis; Miscellaneous (i.e. Acute on Chronic Pancreatitis)

  10. Association between myocardial calpain activation and apoptosis in lipopolysaccharide-induced septic mouse model%钙激活中性蛋白酶在脓毒症小鼠心肌半胱氨酸蛋白酶-3活化中的作用及其机制

    Institute of Scientific and Technical Information of China (English)

    李小平; 李浪; 陈瑞珍; 刘唐威; 伍伟锋; 申锷; 杨英珍; 陈灏珠

    2010-01-01

    caspase-3 activities, protein levels of calpain-1,calpain-2, calpastatin, Bcl-2 and Bid were detected by Western blot analysis and myocardial apoptosis was detected by TUNEL, myocardiac function was evaluated by Langendorff system. In in vitro model, adult rat cardiomyocytes were incubated with LPS (1μg/ml) or co-incubated with calpain inhibitor-Ⅲ (10μmol/L), calpain activity, caspase-3 activity, protein levels of Bcl-2 and Bid, and cardiomyocyte apoptosis were detected. Results In septic mice, myocardial calpain and caspase-3 activity were increased up to 2. 7-and 1.8-folds, respectively. Both calpain inhibitor-Ⅲ and PD150606 significantly attenuated the increase of caspase-3 activity. Myocardial protein levels of calpain-1, calpain-2, calpastatin, Bcl-2 and Bid were similar between control and septic mice, and no cleavage of both Bcl-2 and Bid was found in septic mice. Calpain inhibitor-Ⅲ significantly improved myocardial function in septic mice. In in vitro model, calpain and caspase-3 activities were increased after 4 h LPS treatment, co-treatment with calpain inhibitor-Ⅲ prevented caspase-3 activity increase, protein Bcl-2 and Bid were similar between normal cardiomyocytes and LPS-treated cardiomyocytes. Cardiomyocyte apoptosis was similar in in vivo and in vitro septic models. Conclusion Myocardial calpain activity is increased in LPS induced septic mice, subsequent caspase-3 activation may contribute to myocardial dysfunction in septic mice without aggravating myocardial apoptosis and Bcl-2 and Bid are not involved on calpain induced caspase-3 activation in our model.

  11. Effect of lipoxin A4 on lipopolysaccharide-induced endothelial hyperpermeability in human umbilical vein endothelial cell%脂氧素对脂多糖诱导的脐静脉内皮细胞通透性的影响

    Institute of Scientific and Technical Information of China (English)

    庞花艳; 黄艳君; 叶笃筠; 王振焕; 黄引平; 刘忠杰; 易攀; 龚建明; 郝华; 吴萍; 周洁; 蔡蕾

    2011-01-01

    Objective To explore whether lipoxin A4 (LXA4)could prevent lipopolysaccharide (LPS)-induced human umbilical vein endothelial cells (HUVEC) monolayer hyperpermeability and its possible mechanism. Methods Human umbilical cords were obtained from women with normal pregnancy immediately after delivery from Tongji Hospital Affiliated of Tongji Medical College. Primary HUVEC were isolated from umbilical veins and subcultured, then, HUVEC were divided into four groups:control group;LPS group (10 mg/L of LPS); LPS + LXA4 group(10 mg/L of LPS and 100 nmol/L of LXA4); LPS +LXA4 + BOC-2 group [10 μmol/L of BOC-2, an effective antagonist of formyl peptide receptor like 1 (FPRL-1)]. All expriments were performed after cells were treated for 24 hours. Endothelial permeability was measured by fluorescein isothiocyan-ate labelled bovine serum albumin (FITC-BSA) clearance across the monolayer; tumor necrosis factor α(TNF-o) mRNA and secretion were detected by reverse transcriplase (RT) -PCR and ELISA assay respectively, and nuclear factor κB(NF-κB) protein change was determined by western blot. Results (1) LPS induced a significant increase in the permeability [Pa value of LPS group was (183.1 ±1.7)%], while co-administrating with LXA4 obviously attenuated this LPS-induced hyperpermeability, Pa value of LPS + LXA4 group was (103.1 ±2.2)%, LPS + LXA4 + BOC-2 group was (162.2 ± 2.8)%, control group was 100%, the permeability of HUVEC monolayer was significantly increased by LPS which was (83.1 ± 1.7)% of control (P 0.05).(2)TNF-α mRNA表达水平:脂多糖浓度为0、0.1、1、10 mg/L时,对照组脐静脉内皮细胞中的TNF-α mRNA表达水平分别为1.11±0.11、1.27±0.03、1.60±0.06、1.82±0.04,其中,脂多糖浓度为1、10 mg/L时,分别与0浓度比较,差异均有统计学意义(P<0.05).(3)核因子κB蛋白及TNF-αmRNA表达水平:核因子κB蛋白及TNF-αmRNA表达水平,对照组分别为0.24±0.06及0.25±0.05,脂多糖组分别为0.53±0.06及0.81±0

  12. Histoplasmosis - acute (primary) pulmonary

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000098.htm Histoplasmosis - acute (primary) pulmonary To use the sharing features on this page, please enable JavaScript. Acute pulmonary histoplasmosis is a respiratory infection that is caused by ...

  13. Acute respiratory distress syndrome

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000103.htm Acute respiratory distress syndrome To use the sharing features on this page, please enable JavaScript. Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition that ...

  14. Acute kidney failure

    Science.gov (United States)

    Kidney failure; Renal failure; Renal failure - acute; ARF; Kidney injury - acute ... There are many possible causes of kidney damage. They include: ... cholesterol (cholesterol emboli) Decreased blood flow due to very ...

  15. Acute bee paralysis virus [

    Lifescience Database Archive (English)

    Full Text Available Acute bee paralysis virus [gbvrl]: 14 CDS's (15780 codons) fields: [triplet] [frequ...osomal protein / MAP kinase List of codon usage for each CDS (format) Homepage Acute bee paralysis virus ...

  16. Acute Mesenteric Ischemia

    Science.gov (United States)

    ... Side Effects Additional Content Medical News Acute Mesenteric Ischemia By Parswa Ansari, MD, Department of Surgery, Lenox ... Abscesses Abdominal Wall Hernias Inguinal Hernia Acute Mesenteric Ischemia Appendicitis Ileus Intestinal Obstruction Ischemic Colitis Perforation of ...

  17. Acute acalculous cholecystitis complicating chemotherapy for acute myeloblastic leukemia

    OpenAIRE

    Olfa Kassar; Feten Kallel; Manel Ghorbel; Hatem. Bellaaj; Zeineb Mnif; Moez Elloumi

    2015-01-01

    Acute acalculous cholecystitis is a rare complication in the treatment of acute myeloblastic leukemia. Diagnosis of acute acalculous cholecystitis remains difficult during neutropenic period. We present two acute myeloblastic leukemia patients that developed acute acalculous cholecystitis during chemotherapy-induced neutropenia. They suffered from fever, vomiting and acute pain in the epigastrium. Ultrasound demonstrated an acalculous gallbladder. Surgical management was required in one patie...

  18. Maximum likelihood estimation of the attenuated ultrasound pulse

    DEFF Research Database (Denmark)

    Rasmussen, Klaus Bolding

    1994-01-01

    The attenuated ultrasound pulse is divided into two parts: a stationary basic pulse and a nonstationary attenuation pulse. A standard ARMA model is used for the basic pulse, and a nonstandard ARMA model is derived for the attenuation pulse. The maximum likelihood estimator of the attenuated...

  19. The association between renal impairment and cardiac structure and function in patients with acute myocardial infarction

    DEFF Research Database (Denmark)

    Ersbøll, Mads; Valeur, Nana; Hassager, Christian

    2014-01-01

    BACKGROUND: Renal dysfunction in patients with acute myocardial infarction (MI) is an important predictor of short- and long-term outcome. Cardiac abnormalities dominated by left ventricular (LV) hypertrophy are common in patients with chronic renal dysfunction. However, limited data exists...... on the association between LV systolic- and diastolic function assessed by comprehensive echocardiography and renal dysfunction in contemporary unselected patients with acute MI. METHODS: We prospectively included 1054 patients with acute MI (mean age 63 years, 73% male) and performed echocardiographic assessment...... fraction or GLS attenuated its importance considerably. CONCLUSION: Renal dysfunction in patients with acute MI is independently associated with echocardiographic evidence of increased LV filling pressure. However, the prognostic importance of renal dysfunction is attenuated to a greater degree by LV...

  20. Acute mastoiditis in children

    DEFF Research Database (Denmark)

    Anthonsen, Kristian; Høstmark, Karianne; Hansen, Søren;

    2013-01-01

    Conservative treatment of acute otitis media may lead to more complications. This study evaluates changes in incidence, the clinical and microbiological findings, the complications and the outcome of acute mastoiditis in children in a country employing conservative guidelines in treating acute...... otitis media....

  1. Comparison of non-attenuation corrected and attenuation corrected myocardial perfusion SPE

    Directory of Open Access Journals (Sweden)

    Hasan Raza

    2016-09-01

    Conclusion: This study demonstrates that CT based attenuation corrected Tc-99mm sestamibi SPECT myocardial perfusion imaging significantly improved the specificity of the RCA territory compared with non-attenuation corrected Tc-99mm sestamibi SPECT myocardial perfusion imaging in both genders irrespective of BMI.

  2. Attenuation tomography in West Bohemia/Vogtland

    Science.gov (United States)

    Mousavi, Sima; Haberland, Christian; Bauer, Klaus; Hejrani, Babak; Korn, Michael

    2017-01-01

    We present a three-dimensional (3-D) P-wave attenuation (Qp) model for the geodynamically active swarm earthquake area of West Bohemia/Vogtland in the Czech/German border region. Path-averaged attenuation t* is calculated from amplitude spectra of time windows around the P-wave arrivals of local earthquakes. Average t/t* value or Qp for stations close to Nový Kostel are very low (focal zone (increases up to 500 within 80 km distance). The SIMUL2000 tomography scheme is used to invert the t* for P-wave attenuation perturbation. Analysis of resolution shows that our model is well-resolved in the vicinity of earthquake swarm hypocenters. The prominent features of the model are located around Nový Kostel focal zone and its northern vicinity. Beneath Nový Kostel a vertically stretched (down to depth of 11 km) and a highly attenuating body is observed. We believe that this is due to fracturing and high density of cracks inside the weak earthquake swarm zone in conjunction with presence of free gas/fluid. Further north of Nový Kostel two highly attenuating bodies are imaged which could represent fluid channels toward the surface. The eastern anomaly shows a good correlation with the fluid accumulation area which was suggested in 9HR seismic profile.

  3. Photoreceptor atrophy in acute zonal occult outer retinopathy

    DEFF Research Database (Denmark)

    Zibrandtsen, N.; Munch, I.C.; Klemp, K.;

    2008-01-01

    PURPOSE: To assess retinal morphology in acute zonal occult outer retinopathy (AZOOR) without ophthalmoscopically visible fundus changes. METHODS: Retrospective case series. Two consecutive patients with bilateral AZOOR with photopsia corresponding to areas of visual field loss and a normal fundus...... appearance were examined using optical coherence tomography (OCT), automated perimetry and electroretinography (ERG). RESULTS: Both patients demonstrated photoreceptor atrophy corresponding to partial or complete scotomata with reduced or extinct electroretinographic responses. Attenuation or complete loss...

  4. Endurance training attenuates the bioenergetics alterations of rat skeletal muscle mitochondria submitted to acute hypoxia:Role of ROS and UCP3%耐力训练抑制急性低氧时骨骼肌线粒体生物能学变化:ROS和UCP3的作用

    Institute of Scientific and Technical Information of China (English)

    薄海; 王义和; 李海英; 赵娟; 张红英; 佟长青

    2008-01-01

    The physiological significance of skeletal muscle mitochondrial uncoupling protein 3(UCP3)in hypoxia is elusive.In the current study,UCP3 mRNA and protein expressions were investigated along with mitochondrial respiratory function,reactive oxygen species(ROS)generation,as well as manganese superoxide dismutase(MnSOD)expression in rat skeletal muscle with or without endurance training after an acute and severe hypobaric hypoxia exposure for different time.Acute hypoxia induced a series of impairments in skeletal muscle mitochondrial bioenergetics.In untrained rats,UCP3 protein content increased by 60%above resting level at 4 h hypoxia,whereas MnSOD protein content and activity were unaltered.UCP3 upregulation increased mitochondrial uncoupling respiration thus reducing 02 generation,but inevitably decreased ATP production.Training decreased acute hypoxia-induced upregulation of UCP3 protein(67% vs 42%)in rat skeletal muscle.ROS production in trained rats also showed a dramatic decrease at 2 h,4 h and 6 h,respectively,compared with that in untrained rats.MnSOD protein contents and activities were significantly(50%and 34%)higher in trained than those in untrained rats.Training adaptation of MnSOD may enhance the mitochondrial tolerante to ROS production,and reduce UCP3 activation during severe hypoxia.thus maintaining the efficiency of oxidative phosphorylation.In trained rats,mitochondrial respiratory control(RCR)and P/O ratios were maintained relatively constant despite severe hypoxia.whereas in untrained rats RCR and P/O ratios were significantly decreased.These results indicate that(1)UCP3 mRNA and protein expression in rat skeletal muscle are upregulated during acute and severe hypobaric hypoxia,which may reduce the increased cross-membrane potential(△Ψ)and thus ROS production;(2)Endurance training can blunt hypoxia-induced UCP3 upregulation,and improve mitochondrial efficiency of oxidative phosphorylation due to increased removal of ROS.%骨

  5. Imaging of Acute Pancreatitis.

    Science.gov (United States)

    Thoeni, Ruedi F

    2015-11-01

    Acute pancreatitis is an acute inflammation of the pancreas. Several classification systems have been used in the past but were considered unsatisfactory. A revised Atlanta classification of acute pancreatitis was published that assessed the clinical course and severity of disease; divided acute pancreatitis into interstitial edematous pancreatitis and necrotizing pancreatitis; discerned an early phase (first week) from a late phase (after the first week); and focused on systemic inflammatory response syndrome and organ failure. This article focuses on the revised classification of acute pancreatitis, with emphasis on imaging features, particularly on newly-termed fluid collections and implications for the radiologist.

  6. Live attenuated vaccines for invasive Salmonella infections.

    Science.gov (United States)

    Tennant, Sharon M; Levine, Myron M

    2015-06-19

    Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed Salmonella Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: Salmonella Typhi, Salmonella Paratyphi A, Salmonella Paratyphi B (currently uncommon but may become dominant again), Salmonella Typhimurium, Salmonella Enteritidis and Salmonella Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines.

  7. Research on Nanosecond Pulse Corona Discharge Attenuation

    Institute of Scientific and Technical Information of China (English)

    HE Zheng-hao; XU Huai-li; BAI Jing; YU Fu-sheng; HU Feng; LI Jin

    2007-01-01

    A line-to-plate reactor was set-up in the experimental study on the application of nanosecond pulsed corona discharge plasma technology in environmental pollution control.Investigation on the attenuation and distortion of the amplitude of the pulse wave front and the discharge image as well as the waveform along the corona wire was conducted.The results show that the wave front decreases sharply during the corona discharge along the corona wire.The higher the amplitude of the applied pulse is,the more the amplitude of the wave front decreased.The wave attenuation responds in a lower corona discharge inversely.To get a higher efficiency of the line-to-plate reactor a sharp attenuation of the corona has to be considered in practical design.

  8. High-attenuation mucus plugs on MDCT in a child with cystic fibrosis: potential cause and differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Andrey; Brown, Shanaree [Indiana University Medical School, Indianapolis, IN (United States); Applegate, Kimberly E. [Riley Hospital for Children, Department of Radiology, Indiana University Medical Center, Indianapolis, IN (United States); Howenstine, Michelle [Riley Hospital for Children, Department of Pulmonology, Indiana University Medical Center, Indianapolis, IN (United States)

    2007-06-15

    High-attenuation mucus plugging is a rare finding in both adults and children. When it occurs, the field of differential diagnoses is typically quite small and includes acute hemorrhage, aspiration of radiodense material, and allergic bronchopulmonary aspergillosis (ABPA). The last of these three diagnoses is the most difficult to make, although ABPA is more commonly seen in children with cystic fibrosis (CF) or asthma. ABPA is radiographically characterized by recurrent mucus plugging, atelectasis, and central bronchiectasis. Thus far, high-attenuation mucus plugs have only been reported in adults. We report a rare case of a child with CF who had high-attenuation mucus plugs and atelectasis that raised the possibility of ABPA. We discuss the differential diagnoses of this finding and the role of multidetector CT in these children. (orig.)

  9. Phosphatidylserine and caffeine attenuate postexercise mood disturbance and perception of fatigue in humans.

    Science.gov (United States)

    Wells, Adam J; Hoffman, Jay R; Gonzalez, Adam M; Stout, Jeffrey R; Fragala, Maren S; Mangine, Gerald T; McCormack, William P; Jajtner, Adam R; Townsend, Jeremy R; Robinson, Edward H

    2013-06-01

    Phosphatidylserine (PS) may attenuate the adverse effects of physical fatigue. Therefore, we investigated the effects of a multi-ingredient supplement containing 400 mg/d PS and 100 mg/d caffeine (supplement [SUP]) for 2 weeks on measures of cognitive function (CF), reaction time (RT), and mood (MD) following an acute exercise stress. It is hypothesized that PS will maintain preexercise CF and RT scores, while attenuating postexercise fatigue. Participants completed 2 acute bouts of resistance exercise (T1 and T2) separated by 2-week ingestion of SUP or control (CON). Outcome measures were assessed pre- and postexercise. When collapsed across groups, a significant decrease in RT performance was seen in the 60-second reaction drill from pre- to postexercise at T1. All other RT tests were similar from pre- to postexercise at T1. Reaction time was not significantly changed by PS. When collapsed across groups, a significant increase in performance of the serial subtraction test was seen. A significant increase (8.9% and 7.1%) in the number of correct answers and a significant decrease (8.0% and 7.5%) in time to answer were seen from pre- to postworkout at T1 and T2, respectively. A significant increase in total MD score from pre- to postworkout was observed for CON but not for PS at T2. Phosphatidylserine significantly attenuated pre- to postexercise perception of fatigue compared to CON. Ingestion of SUP for 14 days appears to attenuate postexercise MD scores and perception of fatigue, but does not affect CF or RT, in recreationally trained individuals.

  10. Acute loss of consciousness.

    Science.gov (United States)

    Tristán, Bekinschtein; Gleichgerrcht, Ezequiel; Manes, Facundo

    2015-01-01

    Acute loss of consciousness poses a fascinating scenario for theoretical and clinical research. This chapter introduces a simple yet powerful framework to investigate altered states of consciousness. We then explore the different disorders of consciousness that result from acute brain injury, and techniques used in the acute phase to predict clinical outcome in different patient populations in light of models of acute loss of consciousness. We further delve into post-traumatic amnesia as a model for predicting cognitive sequels following acute loss of consciousness. We approach the study of acute loss of consciousness from a theoretical and clinical perspective to conclude that clinicians in acute care centers must incorporate new measurements and techniques besides the classic coma scales in order to assess their patients with loss of consciousness.

  11. Is there seismic attenuation in the mantle?

    Science.gov (United States)

    Ricard, Y.; Durand, S.; Montagner, J.-P.; Chambat, F.

    2014-02-01

    The small scale heterogeneity of the mantle is mostly due to the mixing of petrological heterogeneities by a smooth but chaotic convection and should consist in a laminated structure (marble cake) with a power spectrum S(k) varying as 1/k, where k is the wavenumber of the anomalies. This distribution of heterogeneities during convective stirring with negligible diffusion, called Batchelor regime is documented by fluid dynamic experiments and corresponds to what can be inferred from geochemistry and seismic tomography. This laminated structure imposes density, seismic velocity and potentially, anisotropic heterogeneities with similar 1/k spectra. A seismic wave of wavenumber k0 crossing such a medium is partly reflected by the heterogeneities and we show that the scattered energy is proportional to k0S(2k0). The reduction of energy for the propagating wave appears therefore equivalent to a quality factor 1/Q∝k0S(2k0). With the specific 1/k spectrum of the mantle, the resulting apparent attenuation should therefore be frequency independent. We show that the total contribution of 6-9% RMS density, velocity and anisotropy would explain the observed S and P attenuation of the mantle. Although these values are large, they are not unreasonable and we discuss how they depend on the range of frequencies over which the attenuation is explained. If such a level of heterogeneity were present, most of the attenuation of the Earth would be due to small scale scattering by laminations, not by intrinsic dissipation. Intrinsic dissipation must certainly exist but might correspond to a larger, yet unobserved Q. This provocative result would explain the very weak frequency dependence of the attenuation, and the fact that bulk attenuation seems negligible, two observations that have been difficult to explain for 50 years.

  12. Renal Protective Effects of 17β-Estradiol on Mice with Acute Aristolochic Acid Nephropathy.

    Science.gov (United States)

    Shi, Min; Ma, Liang; Zhou, Li; Fu, Ping

    2016-10-18

    Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by a Chinese herb containing aristolochic acid. Excessive death of renal tubular epithelial cells (RTECs) characterized the acute phase of AAN. Therapies for acute AAN were limited, such as steroids and angiotensin-receptor blockers (ARBs)/angiotensin-converting enzyme inhibitors (ACEIs). It was interesting that, in acute AAN, female patients showed relative slower progression to renal failure than males. In a previous study, female hormone 17β-estradiol (E2) was found to attenuate renal ischemia-reperfusion injury. Thus, the aim of this study was to investigate the potential protective role of E2 in acute AAN. Compared with male C57BL/6 mice of acute AAN, lower serum creatinine (SCr) and less renal injury, together with RTEC apoptosis in females, were found. Treatment with E2 in male AAN mice reduced SCr levels and attenuated renal tubular injury and RTEC apoptosis. In the mice kidney tissue and human renal proximal tubule cells (HK-2 cells), E2 both attenuated AA-induced cell apoptosis and downregulated the expression of phosphor-p53 (Ser15), p53, and cleaved-caspase-3. This study highlights that E2 exhibited protective effects on the renal injury of acute AAN in male mice by reducing RTEC apoptosis, which might be related to inhibiting the p53 signaling pathway.

  13. Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    Science.gov (United States)

    2013-01-22

    Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  14. Magnetic resonance imaging at 3.0 tesla detects more lesions in acute optic neuritis than at 1.5 tesla

    DEFF Research Database (Denmark)

    Nielsen, Kirsten; Rostrup, Egill; Frederiksen, Jette L.;

    2006-01-01

    OBJECTIVE:: We sought to assess whether magnetic resonance imaging (MRI) at 3.0 T detects more brain lesions in acute optic neuritis (ON) than MRI at 1.5 T. MATERIALS AND METHODS:: Twenty-eight patients with acute ON were scanned at both field-strengths using fast-fluid-attenuated inversion...

  15. Magnetic resonance imaging at 3.0 tesla detects more lesions in acute optic neuritis than at 1.5 tesla

    DEFF Research Database (Denmark)

    Nielsen, Kirsten; Rostrup, Egill; Frederiksen, Jette L;

    2006-01-01

    OBJECTIVE:: We sought to assess whether magnetic resonance imaging (MRI) at 3.0 T detects more brain lesions in acute optic neuritis (ON) than MRI at 1.5 T. MATERIALS AND METHODS:: Twenty-eight patients with acute ON were scanned at both field-strengths using fast-fluid-attenuated inversion recov...

  16. Effect of MK-801 on methamphetamine-induced dopaminergic neurotoxicity: long-term attenuation of methamphetamine-induced dopamine release

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun; Kim, Yu Ri; Hwang, Se Hwan [Sungkyunkwan Univ., School of Medicine, Seoul (Korea, Republic of)

    2001-08-01

    Repeated administration of methamphetamine (METH) produces high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. The effect of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, on METH-induced changes in DA transporter (DAT) and DA release evoked by an acute METH challenge was evaluated in rodent striatum using [{sup 3}H] WIN 38,428 ex vivo auto-radiography and in vivo microdialysis. Four injections of METH (10 mg/kg, i.p.), each given 2 h apart, produced 71% decrease in DAT levels in mouse striatum 3 d after administration. Pretreatment with MK-801 (2.5 g/kg, i.p.) 15 min before each of the four METH injections protected completely against striatal DAT depletions. Four injections of MK-801 alone did not significantly change striatal DAT levels. Striatal DA release evoked by an acute METH challenge (4mg/kg, i.p.) at 3 d after repeated administration of METH in rats was decreased but significant compared with controls, which was attenuated by repeated pretreatment with MK-801. Also, repeated injections of MK-801 alone attenuated acute METH-induced striatal DA release 3 d after administration. These results suggest that repeated administration of MK-801 may exert a preventive effect against METH-induced DA terminal injury through long-term attenuation of DA release induced by METH and other stimuli.

  17. Ultrasound transmission attenuation tomography using energy-scaled amplitude ratios

    Science.gov (United States)

    Chen, Ting; Shin, Junseob; Huang, Lianjie

    2016-04-01

    Ultrasound attenuation of breast tumors is related to their types and pathological states, and can be used to detect and characterize breast cancer. Particularly, ultrasound scattering attenuation can infer the margin properties of breast tumors. Ultrasound attenuation tomography quantitatively reconstructs the attenuation properties of the breast. Our synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays records both ultrasound reflection and transmission signals. We develop an ultrasound attenuation tomography method using ultrasound energy-scaled amplitude decays of ultrasound transmission signals and conduct ultrasound attenuation tomography using a known sound-speed model. We apply our ultrasound transmission attenuation tomography method to a breast phantom dataset, and compare the ultrasound attenuation tomography results with conventional beamforming ultrasound images obtained using reflection signals. We show that ultrasound transmission attenuation tomography complements beamforming images in identifying breast lesions.

  18. Acute pancreatitis in acute viral hepatitis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To elucidate the frequency and characteristics of pancreatic involvement in the course of acute (nonfulminant) viral hepatitis.METHODS: We prospectively assessed the pancreatic involvement in patients with acute viral hepatitis who presented with severe abdomimanl pain.RESULTS: We studied 124 patients with acute viral hepatitis, of whom 24 presented with severe abdominal pain. Seven patients (5.65%) were diagnosed to have acute pancreatitis. All were young males. Five patients had pancreatitis in the first week and two in the fourth week after the onset of jaundice. The pancreatitis was mild and all had uneventful recovery from both pancreatitis and hepatitis on conservative treatment.The etiology of pancreatitis was hepatitis E virus in 4,hepatitis A virus in 2, and hepatitis B virus in 1 patient.One patient had biliary sludge along with HEV infection.The abdominal pain of remaining seventeen patients was attributed to stretching of Glisson's capsule.CONCLUSION: Acute pancreatitis occurs in 5.65% of patients with acute viral hepatitis, it is mild and recovers with conservative management.

  19. Acute otitis media and acute bacterial sinusitis.

    Science.gov (United States)

    Wald, Ellen R

    2011-05-01

    Acute otitis media and acute bacterial sinusitis are 2 of the most common indications for antimicrobial agents in children. Together, they are responsible for billions of dollars of health care expenditures. The pathogenesis of the 2 conditions is identical. In the majority of children with each condition, a preceding viral upper respiratory tract infection predisposes to the development of the acute bacterial complication. It has been shown that viral upper respiratory tract infection predisposes to the development of acute otitis media in 37% of cases. Currently, precise microbiologic diagnosis of acute otitis media and acute bacterial sinusitis requires performance of tympanocentesis in the former and sinus aspiration in the latter. The identification of a virus from the nasopharynx in either case does not obviate the need for antimicrobial therapy. Furthermore, nasal and nasopharyngeal swabs are not useful in predicting the results of culture of the middle ear or paranasal sinus. However, it is possible that a combination of information regarding nasopharyngeal colonization with bacteria and infection with specific viruses may inform treatment decisions in the future.

  20. Acute chylous peritonitis due to acute pancreatitis.

    Science.gov (United States)

    Georgiou, Georgios K; Harissis, Haralampos; Mitsis, Michalis; Batsis, Haralampos; Fatouros, Michalis

    2012-04-28

    We report a case of acute chylous ascites formation presenting as peritonitis (acute chylous peritonitis) in a patient suffering from acute pancreatitis due to hypertriglyceridemia and alcohol abuse. The development of chylous ascites is usually a chronic process mostly involving malignancy, trauma or surgery, and symptoms arise as a result of progressive abdominal distention. However, when accumulation of "chyle" occurs rapidly, the patient may present with signs of peritonitis. Preoperative diagnosis is difficult since the clinical picture usually suggests hollow organ perforation, appendicitis or visceral ischemia. Less than 100 cases of acute chylous peritonitis have been reported. Pancreatitis is a rare cause of chyloperitoneum and in almost all of the cases chylous ascites is discovered some days (or even weeks) after the onset of symptoms of pancreatitis. This is the second case in the literature where the patient presented with acute chylous peritonitis due to acute pancreatitis, and the presence of chyle within the abdominal cavity was discovered simultaneously with the establishment of the diagnosis of pancreatitis. The patient underwent an exploratory laparotomy for suspected perforated duodenal ulcer, since, due to hypertriglyceridemia, serum amylase values appeared within the normal range. Moreover, abdominal computed tomography imaging was not diagnostic for pancreatitis. Following abdominal lavage and drainage, the patient was successfully treated with total parenteral nutrition and octreotide.

  1. Acute chylous peritonitis due to acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Georgios K Georgiou; Haralampos Harissis; Michalis Mitsis; Haralampos Batsis; Michalis Fatouros

    2012-01-01

    We report a case of acute chylous ascites formation presenting as peritonitis (acute chylous peritonitis) in a patient suffering from acute pancreatitis due to hypertriglyceridemia and alcohol abuse.The development of chylous ascites is usually a chronic process mostly involving malignancy,trauma or surgery,and symptoms arise as a result of progressive abdominal distention.However,when accumulation of "chyle" occurs rapidly,the patient may present with signs of peritonitis.Preoperative diagnosis is difficult since the clinical picture usually suggests hollow organ perforation,appendicitis or visceral ischemia.Less than 100 cases of acute chylous peritonitis have been reported.Pancreatitis is a rare cause of chyloperitoneum and in almost all of the cases chylous ascites is discovered some days (or even weeks) after the onset of symptoms of pancreatitis.This is the second case in the literature where the patient presented with acute chylous peritonitis due to acute pancreatitis,and the presence of chyle within the abdominal cavity was discovered simultaneously with the establishment of the diagnosis of pancreatitis.The patient underwent an exploratory laparotomy for suspected perforated duodenal ulcer,since,due to hypertriglyceridemia,serum amylase values appeared within the normal range.Moreover,abdominal computed tomography imaging was not diagnostic for pancreatitis.Following abdominal lavage and drainage,the patient was successfully treated with total parenteral nutrition and octreotide.

  2. Peroxisome proliferator-activated receptor-γ agonist pioglitazone attenuates cisplatin-induced acute kidney injury through inhibiting inflammation in mice%PPAR-γ激动剂吡格列酮通过抑制炎症反应减轻顺铂诱导的小鼠急性肾损伤

    Institute of Scientific and Technical Information of China (English)

    张炯; 徐钢; 李俊华; 肖芳; 兰小勤; 裴广畅; 李月强; 刘蔚; 高红宇; 韩敏

    2013-01-01

    目的 研究过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor,PPAR)-γ激动剂吡格列酮对顺铂(cisplatin,CDDP)诱导的小鼠急性肾损伤(acute kidney injury,AKI)的可能保护作用及其机制.方法 腹腔注射顺铂制备小鼠AKI模型.18只小鼠随机分为正常对照组(CT组),AKI模型组(C组)和吡格列酮治疗组(C+P组).C组和C+P组按25 mg/kg给予顺铂处理.C+P组在顺铂注射前3 d,连续三天给予吡格列酮灌胃.CT组给予生理盐水作为对照.顺铂或盐水处理72 h后处死小鼠,收集血清和肾脏标本.测定血清肌酐和尿素氮,PAS染色后显微镜下观察肾脏形态学变化,同时通过Western blot检测炎症指标诱生型一氧化氮合酶(inducible nitric oxide synthase,iNOS).结果 与CT组相比,CDDP诱导C组血清肌酐及尿素氮明显升高,病理检查可见肾小管上皮细胞肿胀坏死、蛋白管型形成及炎症细胞浸润明显增加,同时炎症指标iNOS表达上调.与C组相比,C+P组血清肌酐、尿素氮明显下降,肾小管上皮细胞肿胀坏死减轻,炎症细胞浸润减少,iNOS表达下调.结论 PPAR-γ激动剂吡格列酮可通过抑制iNOS削弱炎症反应从而减轻顺铂诱导的小鼠急性肾损伤.

  3. 中性粒细胞在外源性硫化氢抗内毒素致急性肺损伤中的作用%Role of polymorphonuclear neutrophil in exogenous hydrogen sulfide attenuating endotoxin-induced acute lung injury

    Institute of Scientific and Technical Information of China (English)

    黄新莉; 周晓红; 周君琳; 丁春华; 羡晓辉

    2009-01-01

    本文应用尾静脉注射脂多糖(lipopolysaccharide,LPS)致Sprague-Dawley大鼠急性肺损伤(acute lung injury,ALI)模型和体外培养人血多形核中性粒细胞(polymorphonuclear neutrophil,PMN),观察硫化氢(hydrogen sulfide,H2S)供体硫氢化钠(sodium hydrosulfide,NaHS)对LPS所致肺内PMN聚集、微血管通透性及PMN凋亡的影响.整体实验和体外实验分别设对照组、NariS组、LPS组和LPS+NaHS组,检测肺微血管通透性、肺内PMN聚集以及PMN凋亡情况.结果显示:(1)整体实验中,LPS组大鼠的支气管肺泡灌洗液(bronchoalveloar lavage fluid,BALF)中蛋白含量、PMN数量、肺组织中伊文思蓝(Evans blue)含量均明显高于假手术组(均P<0.05),而LPS+NaHS组上述指标均明显低于LPS组(P<0.05,P<0.01);(2)体外培养人血PMN,LPS组和NaHS组的PMN凋亡百分率明显高于对照组(P<0.01),LPS+NaHS组明显高于LPS组(P<0.01).以上结果提示,NaHS能够减少PMN在肺内的聚集,在一定程度上起到抗LPS所致的以肺微血管高通透性为特征的ALI的作用,促进PMN凋亡可能是NaHS减轻PMN在肺内聚集的机制之一.

  4. Oral erdosteine administration attenuates cisplatin-induced renal tubular damage in rats.

    Science.gov (United States)

    Yildirim, Zeki; Sogut, Sadik; Odaci, Ersan; Iraz, Mustafa; Ozyurt, Huseyin; Kotuk, Mahir; Akyol, Omer

    2003-02-01

    The effect of oral erdosteine on tissue malondialdehyde (MDA) and nitric oxide (NO) levels, and catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities are investigated in the cisplatin model of acute renal failure in rats. A single dose of cisplatin caused kidney damage manifested by kidney histology as well as increases in plasma creatinine and blood urea nitrogen (BUN) levels. Treatment with free radical scavenger erdosteine attenuated increases in plasma creatinine and BUN, and tissue MDA and NO levels, and provided a histologically-proven protection against cisplatin-induced acute renal failure. Erdosteine also reduced depletion in the tissue CAT, GSH-Px, and SOD activities. These results show that erdosteine may be a promising drug for protection against cisplatin-induced nephrotoxicity. However, further studies with different doses of erdosteine are warranted for clarifying the issue.

  5. Methotrexate-induced acute toxic leukoencephalopathy

    Directory of Open Access Journals (Sweden)

    Parag R Salkade

    2012-01-01

    Full Text Available Acute lymphoblastic leukemia (ALL is one of the most common malignancies of childhood, which is treated with high doses of methotrexate (MTX, as it crosses the blood-brain barrier and can be administered intravenously and via intrathecal route to eradicate leukemic cells from central nervous system (CNS. Additionally, high doses of MTX not only prevent CNS recurrence but also hematologic relapses. Although, standard treatment protocol for ALL includes multimodality therapy, MTX is usually associated with neurotoxicity and affects periventricular deep white matter region. Methotrexate-induced ′acute toxic leukoencephalopathy′ has varying clinical manifestations ranging from acute neurological deficit to seizures or encephalopathy. Diffusion weighted magnetic resonance imaging (DW-MRI is widely available and routinely used in clinical practice to identify acute stroke and also to distinguish acute stroke from non-stroke like conditions. We report a local teenage Chinese girl who developed 2 discrete episodes of left upper and lower limb weakness with left facial nerve paresis after receiving the 2 nd and 3 rd cycle of high dose of intravenous and intrathecal methotrexate, without having cranial irradiation. After each episode of her neurological deficit, the DW-MRI scan showed focal restricted diffusion in right centrum semiovale. Her left sided focal neurological deficit and facial nerve paresis almost completely subsided on both these occasions within 3 days of symptom onset. Follow-up DW-MRI, after her neurological recovery, revealed almost complete resolution of previously noted restricted diffusion in right centrum semiovale, while the lesion was not evident on concurrent T2W (T2-weighted and FLAIR (Fluid-Attenuated Inversion recovery sequences, nor showed any post contrast enhancement on post gadolinium enhanced T1W (T1-weighted sequences. No residual neurological deficit or intellectual impairment was identified on clinical follow up

  6. Methotrexate-induced acute toxic leukoencephalopathy.

    Science.gov (United States)

    Salkade, Parag R; Lim, Teh Aun

    2012-01-01

    Acute lymphoblastic leukemia (ALL) is one of the most common malignancies of childhood, which is treated with high doses of methotrexate (MTX), as it crosses the blood-brain barrier and can be administered intravenously and via intrathecal route to eradicate leukemic cells from central nervous system (CNS). Additionally, high doses of MTX not only prevent CNS recurrence but also hematologic relapses. Although, standard treatment protocol for ALL includes multimodality therapy, MTX is usually associated with neurotoxicity and affects periventricular deep white matter region. Methotrexate-induced 'acute toxic leukoencephalopathy' has varying clinical manifestations ranging from acute neurological deficit to seizures or encephalopathy. Diffusion weighted magnetic resonance imaging (DW-MRI) is widely available and routinely used in clinical practice to identify acute stroke and also to distinguish acute stroke from non-stroke like conditions. We report a local teenage Chinese girl who developed 2 discrete episodes of left upper and lower limb weakness with left facial nerve paresis after receiving the 2 nd and 3 rd cycle of high dose of intravenous and intrathecal methotrexate, without having cranial irradiation. After each episode of her neurological deficit, the DW-MRI scan showed focal restricted diffusion in right centrum semiovale. Her left sided focal neurological deficit and facial nerve paresis almost completely subsided on both these occasions within 3 days of symptom onset. Follow-up DW-MRI, after her neurological recovery, revealed almost complete resolution of previously noted restricted diffusion in right centrum semiovale, while the lesion was not evident on concurrent T2W (T2-weighted) and FLAIR (Fluid-Attenuated Inversion recovery) sequences, nor showed any post contrast enhancement on post gadolinium enhanced T1W (T1-weighted) sequences. No residual neurological deficit or intellectual impairment was identified on clinical follow up over a 2 year

  7. Touch Attenuates Infants' Physiological Reactivity to Stress

    Science.gov (United States)

    Feldman, Ruth; Singer, Magi; Zagoory, Orna

    2010-01-01

    Animal studies demonstrate that maternal touch and contact regulate infant stress, and handling during periods of maternal deprivation attenuates the stress response. To measure the effects of touch on infant stress reactivity during simulated maternal deprivation, 53 dyads were tested in two paradigms: still-face (SF) and still-face with maternal…

  8. Microwave attenuation with composite of copper microwires

    Energy Technology Data Exchange (ETDEWEB)

    Gorriti, A.G.; Marin, P. [Instituto de Magnetismo Aplicado, (UCM-ADIF-CSIC) and Departamento de Fisica de Materiales (UCM). P.O. Box 155, Las Rozas, Madrid 28230 (Spain); Cortina, D. [Micromag S.L., Las Rozas, Madrid 28230 (Spain); Hernando, A., E-mail: antonio.hernando@adif.e [Instituto de Magnetismo Aplicado, (UCM-ADIF-CSIC) and Departamento de Fisica de Materiales (UCM). P.O. Box 155, Las Rozas, Madrid 28230 (Spain); Micromag S.L., Las Rozas, Madrid 28230 (Spain)

    2010-05-15

    It is shown that copper microwires composite media attenuates microwave reflection of metallic surfaces. We show how the distance to the metallic surface, as well as the length and volume fraction of microwires, determine the frequency of maximum absorption and the return loss level. Furthermore, we were able to fit the experimental results with a theoretical model based on Maxwell-Garnett mixing formula.

  9. GPR measurements of attenuation in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, David, E-mail: djeisen@cnde.iastate.edu; Margetan, Frank J., E-mail: djeisen@cnde.iastate.edu; Pavel, Brittney, E-mail: djeisen@cnde.iastate.edu [Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, Ames, IA 50011-3042 (United States)

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  10. Pharm GKB: Leukemia, Nonlymphocytic, Acute [PharmGKB

    Lifescience Database Archive (English)

    Full Text Available Overview Alternate Names: Synonym ANLL; Acute Nonlymphoblastic Leukemia; Acute Nonl...ymphoblastic Leukemias; Acute Nonlymphocytic Leukemia; Acute Nonlymphocytic Leukemias; Leukemia, Acute Nonly...mphoblastic; Leukemia, Acute Nonlymphocytic; Leukemia, Nonlymphoblastic, Acute; Leukemias, Acute Nonlymphoblastic; Leukemias, Acute... Nonlymphocytic; Nonlymphoblastic Leukemia, Acute; Nonlymphoblastic Leukemias, Acut...e; Nonlymphocytic Leukemia, Acute; Nonlymphocytic Leukemias, Acute PharmGKB Accessi

  11. Pharm GKB: Leukemia, Myeloid, Acute [PharmGKB

    Lifescience Database Archive (English)

    Full Text Available Amino Acid Translations are all sourced from dbSNP 144 Overview Alternate Names: Synonym AML - Acute... myeloblastic leukaemia; Acute Myeloblastic Leukemia; Acute Myeloblastic Leukemias; Acute... Myelocytic Leukemia; Acute Myelocytic Leukemias; Acute Myelogenous Leukemia; Acute Myelogenous Leukemias; Acute... granulocytic leukaemia; Acute myeloblastic leukemia; Acute myeloid leukaemia; Acute myeloid leukaemia - category; Acute... myeloid leukaemia, disease; Acute myeloid leukemia; Acute myelo

  12. Sizes of mantle heteogeneities and seismic attenuation

    Science.gov (United States)

    Ricard, Y. R.; durand, S.; Chambat, F.; Montagner, J.

    2013-12-01

    The small scale heterogeneity of the mantle, being mostly due to the mixing of petrological heterogeneities by a smooth but chaotic convection should consist in a laminated structure (marble cake) with a power spectrum S(k) varying as 1/k, where k is the wavenumber of the anomalies. This distribution of heterogeneities during convective stirring with negligible diffusion, called Batchelor regime is documented by fluid dynamic experiments and corresponds to what can be inferred from geochemistry and seismic tomography. This laminated structure imposes density, seismic velocity and potentially, anisotropic heterogeneities with similar 1/k spectrums. We show that a seismic wave of wavenumber k_0 crossing such medium is partly reflected by the heterogeneities and the scattered energy has an energy found proportional to k_0 S(2k_0). The reduction of energy for the propagating wave appears therefore equivalent to a quality factor 1/Q proportional to k_0 S(2k_0). With the specific 1/k spectrum of the mantle, the resulting apparent attenuation should therefore be frequency independent. We show that the total contribution of 6-9% RMS density, velocity and anisotropy would explain the observed S and P attenuation of the mantle. Although these values are large there are not unreasonable and we discuss how they are likely overestimated. In this case, most of the attenuation of the Earth would be due to small scale scattering by laminations not by intrinsic dissipation. Intrinsic dissipation must certainly exists but might correspond to a larger, yet unobserved Q. This provocative result would explain the observed very weak frequency dependence of the attenuation, and the fact that bulk attenuation seems negligeable, two observations that have been difficult to explain for 50 years.

  13. Emotional contrast or compensation? How support reminders influence the pain of acute peer disapproval in preadolescents

    NARCIS (Netherlands)

    Thomaes, S.; Sedikides, C.; Reijntjes, A.; Brummelman, E.; Bushman, B.J.

    2015-01-01

    When children experience habitual peer difficulties, adults often remind them that many people care about them. How do such reminders of support impact children’s emotional responses to acute experiences of peer disapproval? Intuitively, support reminders would exert compensatory effects attenuating

  14. Effects of losartan and captopril on left ventricular systolic and diastolic function after acute myocardial infarction

    DEFF Research Database (Denmark)

    Møller, Jacob E; Dahlström, Ulf; Gøtzsche, Ole

    2004-01-01

    BACKGROUND: Angiotensin-converting enzyme inhibitors have been shown to attenuate adverse remodeling after acute myocardial infarction (AMI), and the same has been suggested for angiotensin II type 1 receptor antagonists in animal models. Therefore the aim of the study was to compare the effects...

  15. Live attenuated vaccines: Historical successes and current challenges

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Philip D., E-mail: Philip.Minor@nibsc.org

    2015-05-15

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues.

  16. Sulforaphane Attenuates Gentamicin-Induced Nephrotoxicity: Role of Mitochondrial Protection

    Science.gov (United States)

    Huerta-Yepez, Sara; Medina-Campos, Omar Noel; Zatarain-Barrón, Zyanya Lucía; Hernández-Pando, Rogelio; Torres, Ismael; Tapia, Edilia; Pedraza-Chaverri, José

    2013-01-01

    Sulforaphane (SFN), an isothiocyanate naturally occurring in Cruciferae, induces cytoprotection in several tissues. Its protective effect has been associated with its ability to induce cytoprotective enzymes through an Nrf2-dependent pathway. Gentamicin (GM) is a widely used antibiotic; nephrotoxicity is the main side effect of this compound. In this study, it was investigated if SFN is able to induce protection against GM-induced nephropathy both in renal epithelial LLC-PK1 cells in culture and in rats. SFN prevented GM-induced death and loss of mitochondrial membrane potential in LLC-PK1 cells. In addition, it attenuated GM-induced renal injury (proteinuria, increases in serum creatinine, in blood urea nitrogen, and in urinary excretion on N-acetyl-β-D-glucosaminidase, and decrease in creatinine clearance and in plasma glutathione peroxidase activity) and necrosis and apoptosis in rats. The apoptotic death was associated with enhanced active caspase-9. Caspase-8 was unchanged in all the studied groups. In addition, SFN was able to prevent GM-induced protein nitration and decrease in the activity of antioxidant enzymes catalase and glutathione peroxidase in renal cortex. In conclusion, the protective effect of SFN against GM-induced acute kidney injury could be associated with the preservation in mitochondrial function that would prevent the intrinsic apoptosis and nitrosative stress. PMID:23662110

  17. Sulforaphane Attenuates Gentamicin-Induced Nephrotoxicity: Role of Mitochondrial Protection

    Directory of Open Access Journals (Sweden)

    Mario Negrette-Guzmán

    2013-01-01

    Full Text Available Sulforaphane (SFN, an isothiocyanate naturally occurring in Cruciferae, induces cytoprotection in several tissues. Its protective effect has been associated with its ability to induce cytoprotective enzymes through an Nrf2-dependent pathway. Gentamicin (GM is a widely used antibiotic; nephrotoxicity is the main side effect of this compound. In this study, it was investigated if SFN is able to induce protection against GM-induced nephropathy both in renal epithelial LLC-PK1 cells in culture and in rats. SFN prevented GM-induced death and loss of mitochondrial membrane potential in LLC-PK1 cells. In addition, it attenuated GM-induced renal injury (proteinuria, increases in serum creatinine, in blood urea nitrogen, and in urinary excretion on N-acetyl-β-D-glucosaminidase, and decrease in creatinine clearance and in plasma glutathione peroxidase activity and necrosis and apoptosis in rats. The apoptotic death was associated with enhanced active caspase-9. Caspase-8 was unchanged in all the studied groups. In addition, SFN was able to prevent GM-induced protein nitration and decrease in the activity of antioxidant enzymes catalase and glutathione peroxidase in renal cortex. In conclusion, the protective effect of SFN against GM-induced acute kidney injury could be associated with the preservation in mitochondrial function that would prevent the intrinsic apoptosis and nitrosative stress.

  18. [Acute rheumatic fever].

    Science.gov (United States)

    Maier, Alexander; Kommer, Vera

    2016-03-01

    We report on a young women with acute rheumatic fever. Acute rheumatic fever has become a rare disease in Germany, especially in adults. This carries the risk that it can be missed in the differential diagnostic considerations of acute rheumatic disorders and febrile status. If rheumatic fever is not diagnosed and treated correctly, there is a considerable risk for rheumatic valvular heart disease. In this article diagnosis, differential diagnosis and therapy of rheumatic fever are discussed extensively.

  19. Acute Idiopathic Scrotal Edema

    Directory of Open Access Journals (Sweden)

    Micheál Breen

    2013-01-01

    Full Text Available We report a case of acute idiopathic scrotal edema (AISE in a 4-year-old boy who presented with acute scrotal pain and erythema. The clinical features, ultrasound appearance, and natural history of this rare diagnosis are reviewed. In this report, we highlight the importance of good ultrasound technique in differentiating the etiology of the acute scrotum and demonstrate the color Doppler “Fountain Sign” that is highly suggestive of AISE.

  20. Hyperintense acute reperfusion marker is associated with higher contrast agent dosage in acute ischaemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Ostwaldt, Ann-Christin; Schaefer, Tabea; Villringer, Kersten; Fiebach, Jochen B. [Charite Universitaetsmedizin Berlin, Academic Neuroradiology, Center for Stroke Research Berlin (CSB), Berlin (Germany); Rozanski, Michal; Ebinger, Martin [Charite Universitaetsmedizin Berlin, Academic Neuroradiology, Center for Stroke Research Berlin (CSB), Berlin (Germany); Charite Universitaetsmedizin, Department of Neurology, Berlin (Germany); Jungehuelsing, Gerhard J. [Stiftung des Buergerlichen Rechts, Juedisches Krankenhaus Berlin, Berlin (Germany)

    2015-11-15

    The hyperintense acute reperfusion marker (HARM) on fluid-attenuated inversion recovery (FLAIR) images is associated with blood-brain barrier (BBB) permeability changes. The aim of this study was to examine the influence of contrast agent dosage on HARM incidence in acute ischaemic stroke patients. We prospectively included 529 acute ischaemic stroke patients (204 females, median age 71 years). Patients underwent a first stroke-MRI within 24 hours from symptom onset and had a follow-up on day 2. The contrast agent Gadobutrol was administered to the patients for perfusion imaging or MR angiography. The total dosage was calculated as ml/kg body weight and ranged between 0.04 and 0.31 mmol/kg on the first examination. The incidence of HARM was evaluated on day 2 FLAIR images. HARM was detected in 97 patients (18.3 %). HARM incidence increased significantly with increasing dosages of Gadobutrol. Also, HARM positive patients were significantly older. HARM was not an independent predictor of worse clinical outcome, and we did not find an association with increase risk of haemorrhagic transformation. A higher dosage of Gadobutrol in acute stroke patients on initial MRI is associated with increased HARM incidence on follow-up. MRI studies on BBB should therefore standardize contrast agent dosages. (orig.)

  1. Effects of Pentoxifylline Attenuates Septic Acute Lung Injury Induced by Cecal Ligation and Puncture on the Phosphorylation of p38 Mitogen Activated Protein Kinase and IκBα%己酮可可碱弱化大鼠脓毒症急性肺损伤对p38MAPK/IκBα磷酸化的影响

    Institute of Scientific and Technical Information of China (English)

    崔修德; 封光; 张稳稳; 刘功俭

    2011-01-01

    目的 探讨己酮可可碱(pentoxirylline,PTX)对腹腔感染致脓毒症急性肺损伤发挥保护作用的上游信号机制.方法 采用盲肠结扎穿孔(cecal ligation and puncture,CLP)致脓毒症模型,将大鼠随机分为假手术组、脓毒症组、脓毒症+西黄著胶组、脓毒症+生理盐水组、脓毒症+SB203580组、脓毒症+PTX组.检测假手术组、脓毒症组各时间点(1,3,6,12,24 h)p38MAPK及IκBα的磷酸化,然后选择1,6,24 h组分别检测应用SB203580或PTX后p38MAPK及IκBα的表达,同时检测血浆TNF-α、IL-6的含量并观察24 h组肺组织病理改变.结果 与假手术组比较,脓毒症组在各个时间点p38MAPK及IκBα均有较强的表达,SB203580或PTX预处理后各组的p38MAPK及IκBα的磷酸化明显受到抑制,且与血浆TNF-α、IL-6的含量以及肺的病理切片变化一致.结论 PTX对脓毒症急性肺损伤的保护作用以及抑制促炎因子产生的作用可能是通过抑制p38MAPK的磷酸化从而抑制NF-κB的活化而产生的.%OBJECTIVE To investigate the upstream signal transduction mechanism ofpentoxifylline(PTX) on acute lung injury (ALI) in rats sepsis induced by intra-abdominal infection. METHODS SD rats were subjected to sepsis caused by cecal ligation and puncture(CLP), animals were randomly divided into sham operation group, sepsis group, sepsis+tragacanth group,sepsis+normal saline group, sepsis+SB203580 group, sepsis+PTX group. p38MAPK and IκBα phosphorylation were measured in 1, 3, 6, 12, 24 h respectively. And 1, 6, 24 h after pretreated with SB203580 or PTX, p38MAPK and IκBα phosphorylation,the concentration of plasma TNF-α, IL-6 were examined and the pulmonary histopathology after induced 24 h were determined.RESULTS Compared with sham operation group, p38MAPK and IκBα became phosphorylated and hence activated in sepsis group. Pretreated with both p38MAPK and IκBα were inhibited, consistent with the change of the concentration of plasma TNF-α, IL-6

  2. Antagonist of leukotriene B4 receptor 1 attenuates cisplatin induced acute kidney injury in mice and its associated mechanism%白三烯B4受体1拮抗剂对顺铂致小鼠急性肾损伤的保护作用及机制研究

    Institute of Scientific and Technical Information of China (English)

    邓博; 林玉丽; 马帅; 何睿; 丁峰

    2015-01-01

    目的 观察白三烯B4受体1(leukotriene B4 receptor 1,BLT1)拮抗剂U75302对顺铂导致的小鼠急性肾损伤(Acute Kidney Injury,AKI)的保护作用,并探讨可能的抗炎机制.方法8周龄健康雄性C57BL/6小鼠随机分组为:正常对照组、U75302对照组、顺铂处理组、顺铂+U75302处理组,每组6只.其中顺铂处理组及顺铂+U75302处理组于第0天给予顺铂20 mg/kg,U75302对照组及顺铂+U75302处理组于第0、2天两次给予U75302 5μg/只.顺铂给药后3d处死小鼠,检测各组小鼠血清BUN、Scr水平,PAS糖原染色法观察肾脏病理改变,流式细胞术检测肾脏中浸润的炎症细胞数量,比色法检测肾组织匀浆MPO活性,抽提各组小鼠肾组织总RNA,实时荧光定量PCR检测肾组织炎症因子TNF-α、IL-1β及趋化因子CXCL1、CXCL2基因表达水平.结果 顺铂给药后3d,顺铂处理组小鼠血清BUN、Scr水平高于正常对照组(均P< 0.01);并出现明显的肾脏病理损伤;肾脏中浸润的炎症细胞包括中性粒细胞、巨噬细胞、CD4+T淋巴细胞、CD8+T淋巴细胞,数量明显增多(均P<0.01);肾组织匀浆中MPO活性明显上升(P<0.01);肾组织炎症因子TNF-α、IL-1β,趋化因子CXCL1、CXCL2基因表达明显上调(均P< 0.01).与顺铂处理组相比,顺铂+U75302处理组血清BUN改变减少[(17.75±1.80) mmol/L比(42.6±6.66) mmol/L,P<0.05],肾脏病理损伤减轻,肾脏中浸润的中性粒细胞、巨噬细胞数目减少[(146±13)×103/g比(296±66)×103/g,P<0.05]、[(245±13)×103/g比(420±78)×103/g,P<0.05],肾组织匀浆中MPO活性上升不明显[(1.756±0.283) U/g比(3.308±0.577) U/g,P<0.05],肾组织炎症因子TNF-α、IL-1β,趋化因子CXCL1、CXCL2基因表达增加程度降低.结论 BLT1拮抗剂U75302对顺铂导致的小鼠AKI具有保护作用,其保护机制与减少肾脏炎症细胞浸润,抑制肾脏炎症反应有关.%Objective To investigate the effect of pretreatment with U75302,antagonist of

  3. Pharm GKB: Kidney Failure, Acute [PharmGKB

    Lifescience Database Archive (English)

    Full Text Available iew Alternate Names: Synonym ARF - Acute renal failure; Acute Kidney Failure; Acute Kidney Failures; Acute K...idney Insufficiencies; Acute Kidney Insufficiency; Acute Renal Failure; Acute Renal Failures; Acute... Renal Insufficiencies; Acute Renal Insufficiency; Acute renal failure syndrome, NOS; Failure, Acute... Kidney; Failure, Acute Renal; Failures, Acute Kidney; Failures, Acute Renal; Insufficiencies, Acute... Kidney; Insufficiencies, Acute Renal; Insufficiency, Acute Kidney; Insufficiency, Acute

  4. Reduced Tic Symptomatology in Tourette Syndrome After an Acute Bout of Exercise: An Observational Study.

    Science.gov (United States)

    Nixon, Elena; Glazebrook, Cris; Hollis, Chris; Jackson, Georgina M

    2014-03-01

    In light of descriptive accounts of attenuating effects of physical activity on tics, we used an experimental design to assess the impact of an acute bout of aerobic exercise on tic expression in young people (N = 18) with Tourette Syndrome (TS). We compared video-based tic frequency estimates obtained during an exercise session with tic rates obtained during pre-exercise (baseline) and post-exercise interview-based sessions. Results showed significantly reduced tic rates during the exercise session compared with baseline, suggesting that acute exercise has an attenuating effect on tics. Tic rates also remained reduced relative to baseline during the post-exercise session, likely reflecting a sustained effect of exercise on tic reduction. Parallel to the observed tic attenuation, exercise also had a beneficial impact on self-reported anxiety and mood levels. The present findings provide novel empirical evidence for the beneficial effect of exercise on TS symptomatology bearing important research and clinical implications.

  5. Mixed phenotype acute leukemia

    Institute of Scientific and Technical Information of China (English)

    Ye Zixing; Wang Shujie

    2014-01-01

    Objective To highlight the current understanding of mixed phenotype acute leukemia (MPAL).Data sources We collected the relevant articles in PubMed (from 1985 to present),using the terms "mixed phenotype acute leukemia","hybrid acute leukemia","biphenotypic acute leukemia",and "mixed lineage leukemia".We also collected the relevant studies in WanFang Data base (from 2000 to present),using the terms "mixed phenotype acute leukemia" and "hybrid acute leukemia".Study selection We included all relevant studies concerning mixed phenotype acute leukemia in English and Chinese version,with no limitation of research design.The duplicated articles are excluded.Results MPAL is a rare subgroup of acute leukemia which expresses the myeloid and lymphoid markers simultaneously.The clinical manifestations of MPAL are similar to other acute leukemias.The World Health Organization classification and the European Group for Immunological classification of Leukaemias 1998 cdteria are most widely used.MPAL does not have a standard therapy regimen.Its treatment depends mostly on the patient's unique immunophenotypic and cytogenetic features,and also the experience of individual physician.The lack of effective treatment contributes to an undesirable prognosis.Conclusion Our understanding about MPAL is still limited.The diagnostic criteria have not been unified.The treatment of MPAL remains to be investigated.The prognostic factor is largely unclear yet.A better diagnostic cdteria and targeted therapeutics will improve the therapy effect and a subsequently better prognosis.

  6. Acute leukaemia following renal transplantation.

    Science.gov (United States)

    Subar, M; Gucalp, R; Benstein, J; Williams, G; Wiernik, P H

    1996-03-01

    Four renal transplant patients on immunosuppressive therapy who presented with acute myeloid leukaemia are described. In two cases, azathioprine may have played an important role as a cofactor in leukaemogenesis. In a third case, the alkylating agent cyclophosphamide may have contributed. All patients were treated for leukaemia with full doses of cytotoxic chemotherapy and, in each case, a functioning renal allograft was preserved throughout the treatment despite attenuation of immunosuppressive therapy. Three patients achieved complete remission. Of the three, on