WorldWideScience

Sample records for attenuates ischemic oxidative

  1. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke

    Science.gov (United States)

    Vani, Javad Rasouli; Mohammadi, Mohammad Taghi; Foroshani, Mahsa Sarami; Jafari, Mahvash

    2016-01-01

    Oxidative stress is the common underlying mechanism of damage in ischemic stroke. Therefore, we aimed to evaluate the possible protective effects of polyhydroxylated fullerene derivatives on brain infarction and oxidative/nitrosative stress in a rat model of ischemic stroke. The experiment was performed by four groups of rats (each; n=12); Sham, Control ischemia, and ischemic treatment groups (Pretreatment and Posttreatment). Brain ischemia was induced by 90 min middle cerebral artery occlusion (MCAO) followed by 24 hours reperfusion. Rats received fullerene nanoparticles at dose of 1 mg/kg 30 min before MCAO and immediately after beginning of reperfusion. Infarct volume, contents of malondialdehyde (MDA), glutathione (GSH) and nitrate as well as superoxide dismutase (SOD) activity were assessed 24 hours after termination of MCAO. Brain infarct volume was 310 ± 21 mm3 in control group. Administration of fullerene nanoparticles before and after MCAO significantly decreased the infarct volume by 53 % (145 ± 45 mm3) and 81 % (59 ± 13 mm3), respectively. Ischemia also enhanced MDA and nitrate contents of ischemic hemispheres by 45 % and 25 % , respectively. Fullerene nanoparticles considerably reduced the MDA and nitrate contents of ischemic hemispheres before MCAO by 58 % and 17 % , respectively, and after MCAO by 38 % and 21 % , respectively. Induction of MCAO significantly decreased GSH content (19 % ) and SOD activity (52 % ) of ischemic hemispheres, whereas fullerene nanoparticles increased the GSH content and SOD activity of ischemic hemispheres by 19 % and 52 % before MCAO, respectively, and 21 % and 55 % after MCAO, respectively. Our findings indicate that fullerene nanoparticles, as a potent scavenger of free radicals, protect the brain cells against ischemia/reperfusion injury and inhibit brain oxidative/nitrosative damage.

  2. Protective Effect of Ischemic Postconditioning against Ischemia Reperfusion-Induced Myocardium Oxidative Injury in IR Rats

    Directory of Open Access Journals (Sweden)

    Jiangwei Ma

    2012-03-01

    Full Text Available Brief episodes of myocardial ischemia-reperfusion (IR employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of ischemic postconditioning on an ischemic reperfusion (IR-induced myocardium oxidative injury in rat model. Results showed that ischemic postconditioning could improve arrhythmia cordis, reduce myocardium infarction and serum creatin kinase (CK, lactate dehydrogenase (LDH and aspartate transaminase (AST activities in IR rats. In addition, ischemic postconditioning could still decrease myocardium malondialdehyde (MDA level, and increased myocardium Na+-K+-ATPase, Ca2+-Mg2+-ATPase, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px and glutathione reductase (GR activities. It can be concluded that ischemic postconditioning possesses strong protective effects against ischemia reperfusion-induced myocardium oxidative injury in IR rats.

  3. Pre-ischemic exercise alleviates oxidative damage following ischemic stroke in rats

    OpenAIRE

    Feng, Rui; Zhang, Min; Wang, Xiao; Li, Wen-bin; REN, SHI-QING; Feng ZHANG

    2014-01-01

    Physical exercise has been proved to be neuroprotective in clinical trials and animal experiments. However, the exact mechanism underlying this neuroprotective effect remains unclear. The aim of the present study was to explore whether pre-ischemic treadmill training could act as a form of ischemic preconditioning in a rat following ischemic stroke by reducing oxidative damage. Fifty-four rats were randomly divided into three groups (n=18 per group): Sham surgery, middle cerebral artery occlu...

  4. Myocardial ischemic post-conditioning attenuates ischemia reperfusion injury via PTEN/Akt signal pathway

    OpenAIRE

    LI, CHUN-MEI; Shen, Shu-Wen; Tao WANG; Zhang, Xing-Hua

    2015-01-01

    Objectives: To investigate whether myocardial ischemic post-conditioning attenuates ischemia reperfusion injury via PTEN/Akt signal pathway. Design: Forty-five male Sprague-Dawley rats were randomly divided into three groups: Sham, Ischemia reperfusion (I/R) and Ischemic post-conditioning (IPost) group. After the experiment finished, myocardial infarction area was examined. Serum creatine phosphokinase and lactate dehydrogenase activity were detected at baseline and the end of reperfusion. Th...

  5. Pre-ischemic exercise alleviates oxidative damage following ischemic stroke in rats.

    Science.gov (United States)

    Feng, Rui; Zhang, Min; Wang, Xiao; Li, Wen-Bin; Ren, Shi-Qing; Zhang, Feng

    2014-10-01

    Physical exercise has been proved to be neuroprotective in clinical trials and animal experiments. However, the exact mechanism underlying this neuroprotective effect remains unclear. The aim of the present study was to explore whether pre-ischemic treadmill training could act as a form of ischemic preconditioning in a rat following ischemic stroke by reducing oxidative damage. Fifty-four rats were randomly divided into three groups (n=18 per group): Sham surgery, middle cerebral artery occlusion (MCAO) without exercise and MCAO with exercise. Subsequent to treadmill training, ischemic stroke was induced by occluding the MCA for 1.5 h, followed by reperfusion. Six rats in each group were evaluated for neurological deficits and then sacrificed by decapitation to calculate the infarct volume. The remaining rats in each group were sacrificed to detect the level of superoxide dismutase (SOD) activity (n=6) and malondialdehyde (MDA) concentration (n=6). The results indicated that pre-ischemic exercise training reduced brain infarct volume and neurological deficits, increased SOD activity and decreased the concentration of MDA following ischemic stroke. In conclusion, treadmill exercise training prior to MCAO/reperfusion increased the antioxidant ability and decreased the oxidative damage in the brain subsequent to ischemic stroke. PMID:25187848

  6. Possible involvement of caveolin in attenuation of cardioprotective effect of ischemic preconditioning in diabetic rat heart

    Directory of Open Access Journals (Sweden)

    Singh Manjeet

    2011-07-01

    Full Text Available Abstract Background Nitric oxide (NO has been noted to produce ischemic preconditioning (IPC-mediated cardioprotection. Caveolin is a negative regulator of NO, which inhibits endothelial nitric oxide synthase (eNOS by making caveolin-eNOS complex. The expression of caveolin is increased during diabetes mellitus (DM. The present study was designed to investigate the involvement of caveolin in attenuation of the cardioprotective effect of IPC during DM in rat. Methods Experimental DM was induced by single dose of streptozotocin (50 mg/Kg, i.p, and animals were used for experiments four weeks later. Isolated heart was mounted on Langendorff's apparatus, and was subjected to 30 min of global ischemia and 120 min of reperfusion. IPC was given by four cycles of 5 min of ischemia and 5 min of reperfusion with Kreb's-Henseleit solution (K-H. Extent of injury was measured in terms of infarct size by triphenyltetrazolium chloride (TTC staining, and release of lactate dehydrogenase (LDH and creatin kinase-MB (CK-MB in coronary effluent. The cardiac release of NO was noted by measuring the level of nitrite in coronary effluent. Results IPC- induced cardioprotection and release of NO was significantly decreased in diabetic rat heart. Pre-treatment of diabetic rat with daidzein (DDZ a caveolin inhibitor (0.2 mg/Kg/s.c, for one week, significantly increased the release of NO and restored the attenuated cardioprotective effect of IPC. Also perfusion of sodium nitrite (10 μM/L, a precursor of NO, significantly restored the lost effect of IPC, similar to daidzein in diabetic rat. Administration of 5-hydroxy deaconate (5-HD, a mito KATP channel blocker, significantly abolished the observed IPC-induced cardioprotection in normal rat or daidzein and sodium nitrite perfused diabetic rat heart alone or in combination. Conclusions Thus, it is suggested that attenuation of the cardioprotection in diabetic heart may be due to decrease the IPC mediated release of NO in

  7. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  8. Ischemic Postconditioning Protects Neuronal Death Caused by Cerebral Ischemia and Reperfusion via Attenuating Protein Aggregation

    Directory of Open Access Journals (Sweden)

    Jianmin Liang, Jihang Yao, Guangming Wang, Ying Wang, Boyu Wang, Pengfei Ge

    2012-01-01

    Full Text Available Objective: To investigate the effect of ischemic postconditioning on protein aggregation caused by transient ischemia and reperfusion and to clarify its underlying mechanism.Methods: Two-vessel-occluded transient global ischemia rat model was used. The rats in ischemic postconditioning group were subjected to three cycles of 30-s/30-s reperfusion/clamping after 15min of ischemia. Neuronal death in the CA1 region was observed by hematoxylin-eosin staining, and number of live neurons was assessed by cell counting under a light microscope. Succinyl-LLVY-AMC was used as substrate to assay proteasome activity in vitro. Protein carbonyl content was spectrophotometrically measured to analyze protein oxidization. Immunochemistry and laser scanning confocal microscopy were used to observe the distribution of ubiquitin in the CA1 neurons. Western blotting was used to analyze the quantitative alterations of protein aggregates, proteasome, hsp70 and hsp40 in cellular fractions under different ischemic conditions.Results: Histological examination showed that the percentage of live neurons in the CA1 region was elevated from 5.21%±1.21% to 55.32%±5.34% after administration of ischemic postconditioning (P=0.0087. Western blotting analysis showed that the protein aggregates in the ischemia group was 32.12±4.87, 41.86±4.71 and 34.51±5.18 times higher than that in the sham group at reperfusion 12h, 24h and 48h, respectively. However, protein aggregates were alleviated significantly by ischemic postconditioning to 2.84±0.97, 13.72±2.13 and 14.37±2.42 times at each indicated time point (P=0.000032, 0.0000051 and 0.0000082. Laser scanning confocal images showed ubiquitin labeled protein aggregates could not be discerned in the ischemic postconditioning group. Further study showed that ischemic postconditioning suppressed the production of carbonyl derivatives, elevated proteasome activity that was damaged by ischemia and reperfusion, increased the expression

  9. Edaravone protects PC12 cells from ischemic-like injury via attenuating the damage to mitochondria

    Institute of Scientific and Technical Information of China (English)

    SONG Ying; LI Meng; LI Ji-cheng; WEI Er-qing

    2006-01-01

    Background: Edaravone had been validated to effectively protect against ischemic injuries. In this study, we investigated the protective effect of edaravone by observing the effects on anti-apoptosis, regulation of Bcl-2/Bax protein expression and recovering from damage to mitochondria after OGD (oxygen-glucose deprivation)-reperfusion. Methods: Viability of PC 12cells which were injured at different time of OGD injury, was quantified by measuring MTT (2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) staining. In addition, PC 12 cells' viability was also quantified after their preincubation in different concentration of edaravone for 30 min followed by (OGD). Furthermore, apoptotic population of PC12 cells that reinsulted from OGD-reperfusion with or without preincubation with edaravone was determined by flow cytometer analysis,electron microscope and Hoechst/PI staining. Finally, change of Bcl-2/Bax protein expression was detected by Westem blot.Results: (1) The viability of PC 12 cells decreased with time (1~12 h) after OGD. We regarded the model of OGD 2 h, then replacing DMEM (Dulbecco's Modified Eagle's Medium) for another 24 h as an OGD-reperfusion in this research. Furthermore,most PC12 cells were in the state of apoptosis after OGD-reperfusion. (2) The viability of PC12 cells preincubated with edaravone at high concentrations (1,0.1, 0.01 μmol/L) increased significantly with edaravone protecting PC 12 cells from apoptosis after OGD-reperfusion injury. (3) Furthermore, edaravone attenuates the damage of OGD-reperfusion on mitochondria and regulated Bcl-2/Bax protein imbalance expression after OGD-reperfusion. Conclusion: Neuroprotective effects of edaravone on ischemic or other brain injuries may be partly mediated through inhibition of Bcl-2/Bax apoptotic pathways by recovering from the damage of mitochondria.

  10. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang [Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Zhang, Ting [Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Wang, Jixian [Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Zhang, Zhijun [Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Zhai, Yu [Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Yang, Guo-Yuan, E-mail: gyyang0626@gmail.com [Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Sun, Xiaojiang, E-mail: sunxj19@gmail.com [Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China)

    2014-02-07

    Highlights: • Rapamycin enhances mitophagy via increasing p62 translocation to the mitochondria. • Rapamycin attenuates brain ischemic damage and improves mitochondrial function. • The protection of rapamycin to mitochondrial is linked to enhanced mitophagy. - Abstract: Rapamycin has been demonstrated to exhibit neuroprotective functions via the activation of autophagy in a cerebral ischemia model. However, the involvement of mitophagy in this process and its contribution to the protection of mitochondrial function remains unknown. The present study explored the characteristics of mitophagy after cerebral ischemia and the effect of rapamycin on mitochondrial function. Male Sprague–Dawley rats underwent transient middle cerebral artery occlusion (tMCAO). Neurological deficits scores; infarct volumes; mitophagy morphology; and the levels of malondialdehyde (MDA), adenosine triphosphate (ATP) and mitochondrial membrane potentials (Δψm) were examined. The expression of LC3, Beclin-1 and p62 in the mitochondrial fraction combined with transmission electronic microscopy were used to explore mitophagic activity after ischemia. We also blocked autophagosome formation using 3-methyladenine (3-MA) to check the linkage between the mitochondrial protective effect of rapamycin and enhanced mitophagy. We observed that rapamycin significantly enhanced mitophagy, as evidenced by the increase in LC3-II and Beclin-1 expression in the mitochondria and p62 translocation to the mitochondria. Rapamycin reduced infarct volume, improved neurological outcomes and inhibited mitochondrial dysfunction compared with the control animals (p < 0.05). However, these protective effects were reversed by 3-methyladenine treatment after rapamycin. The present study indicates that rapamycin treatment attenuates mitochondrial dysfunction following cerebral ischemia, which is linked to enhanced mitophagy.

  11. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke

    International Nuclear Information System (INIS)

    Highlights: • Rapamycin enhances mitophagy via increasing p62 translocation to the mitochondria. • Rapamycin attenuates brain ischemic damage and improves mitochondrial function. • The protection of rapamycin to mitochondrial is linked to enhanced mitophagy. - Abstract: Rapamycin has been demonstrated to exhibit neuroprotective functions via the activation of autophagy in a cerebral ischemia model. However, the involvement of mitophagy in this process and its contribution to the protection of mitochondrial function remains unknown. The present study explored the characteristics of mitophagy after cerebral ischemia and the effect of rapamycin on mitochondrial function. Male Sprague–Dawley rats underwent transient middle cerebral artery occlusion (tMCAO). Neurological deficits scores; infarct volumes; mitophagy morphology; and the levels of malondialdehyde (MDA), adenosine triphosphate (ATP) and mitochondrial membrane potentials (Δψm) were examined. The expression of LC3, Beclin-1 and p62 in the mitochondrial fraction combined with transmission electronic microscopy were used to explore mitophagic activity after ischemia. We also blocked autophagosome formation using 3-methyladenine (3-MA) to check the linkage between the mitochondrial protective effect of rapamycin and enhanced mitophagy. We observed that rapamycin significantly enhanced mitophagy, as evidenced by the increase in LC3-II and Beclin-1 expression in the mitochondria and p62 translocation to the mitochondria. Rapamycin reduced infarct volume, improved neurological outcomes and inhibited mitochondrial dysfunction compared with the control animals (p < 0.05). However, these protective effects were reversed by 3-methyladenine treatment after rapamycin. The present study indicates that rapamycin treatment attenuates mitochondrial dysfunction following cerebral ischemia, which is linked to enhanced mitophagy

  12. The relation between oxidative stress parameters, ischemic stroke,and hemorrhagic stroke

    OpenAIRE

    İçme, Ferhat; EREL, ÖZCAN; AVCİ, AKKAN; SATAR, SALİM; Gülen, Müge; Acehan, Selen

    2015-01-01

    Background/aim: The aims of this study were to investigate the significance of oxidative stress parameters in the pathogenesis of ischemic stroke and hemorrhagic stroke and to investigate their effects on stroke severity using the National Institutes of Health Stroke Scale (NIHSS). Materials and methods: A total of 92 patients, including 74 with ischemic stroke and 18 with hemorrhagic stroke, and 75 volunteers were enrolled in the study. Total oxidant status (TOS), total antioxidant status (...

  13. Attenuation of endoplasmic reticulum stress and mitochondrial injury in kidney with ischemic postconditioning application and trimetazidine treatment

    Directory of Open Access Journals (Sweden)

    Mahfoudh-Boussaid Asma

    2012-08-01

    Full Text Available Abstract Background Endoplasmic reticulum (ER and mitochondria have been implicated in the pathology of renal ischemia/reperfusion (I/R. In the present study, we investigated whether the use of ischemic postconditioning (IPostC and trimetazidine (TMZ separately or combined could reduce ER stress and mitochondria damage after renal ischemia. Methods Kidneys of Wistar rats were subjected to 60-min of warm ischemia followed by 120-min of reperfusion (I/R group, n = 6, or to 6 cycles of ischemia/reperfusion (10-s each cycle just after 60-min of warm ischemia (IPostC group, n = 6, or to i.p. injection of TMZ (3 mg/kg 30-min before ischemia (TMZ group, n = 6, or to the combination of both treatments (IPostC+TMZ group, n = 6. The results of these experimental groups were compared to those of a sham-operated group in which rat renal pedicles were only dissected. Sodium reabsorption rate, creatinine clearance lactate deshydrogenase (LDH activity in plasma, and concentration of malonedialdehyde (MDA in tissue were determined. In addition, Western blot analysis was performed to identify the amounts of cytochrome c, c-JunNH2-terminal kinase (JNK, voltage-dependent anion channel (VDAC, glycogen synthase kinase 3-beta (GSK3-β, and ER stress parameters. Results IPostC or/and TMZ significantly decreased cytolysis, oxidative stress and improved renal function in comparison to I/R group. IPostC but not TMZ significantly attenuated ER stress parameters versus I/R group. Indeed, it down-regulated the glucose-regulated protein 78 (GRP78, the activating transcription factor 4 (ATF4, the RNA activated protein kinase (PKR-like ER kinas (PERK, the X box binding protein-1 (XBP-1 and the caspase12 protein levels. TMZ treatment significantly augmented GSK3-β phosphorylation and reduced levels of cytochrome c and VDAC phosphorylation in comparison to IPostC application. The combination of both treatments gave a synergetic effect. It significantly

  14. Role of gastric oxidative stress and nitric oxide in formation of hemorrhagic erosion in rats with ischemic brain

    Institute of Scientific and Technical Information of China (English)

    Chen-Road Hung

    2006-01-01

    AIM: To investigate the role of gastric oxidative stress and nitric oxide (NO) in the formation of gastric hemorrhagic erosion and their protection by drugs in rats with ischemic brain.METHODS: Male Wistar rats were deprived of food for 24 h. Under chloral hydrate (300 mg/kg) anesthesia,bilateral carotid artery ligation was performed. The pylorus and carotid esophagus of the rats were also ligated. The stomachs were then irrigated for 3 h with either normal saline or simulated gastric juice containing 100 mmol/L HCl plus 17.4 mmol/L pepsin and 54 mmol/L NaCl. Rats were killed and stomachs were dissected.Gastric mucosa and gastric contents were harvested. The rat brain was dissected for the examination of ischemia by triphenyltetrazolium chloride staining method.Changes in gastric ulcerogenic parameters, such as decreased mucosal glutathione level as well as enhanced gastric acid back-diffusion, mucosal lipid peroxide generation, histamine concentration, luminal hemoglobin content and mucosal erosion in gastric samples, were measured.RESULTS: Bilateral carotid artery ligation produced severe brain ischemia (BI) in rats. An exacerbation of various ulcerogenic parameters and mucosal hemorrhagic erosions were observed in these rats. The exacerbated ulcerogenic parameters were significantly (P< 0.05) attenuated by antioxidants, such as exogenous glutathione and allopurinol. These gastric parameters were also improved by intraperitoneal aminoguanidine (100 mg/kg) but were aggravated by NG-nitro-L-arginine-methyl ester (L-NAME: 25 mg/kg). Intraperitoneal L-arginine (0-500 mg/kg) dose-dependently attenuated BI-induced aggravation of ulcerogenic parameters and hemorrhagic erosions that were reversed by L-NAME.CONCLUSION: BI could produce hemorrhagic erosions through gastric oxidative stress and activation of arginine-nitric oxide pathway.

  15. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats.

    Science.gov (United States)

    Escobales, Nelson; Nuñez, Rebeca E; Jang, Sehwan; Parodi-Rullan, Rebecca; Ayala-Peña, Sylvette; Sacher, Joshua R; Skoda, Erin M; Wipf, Peter; Frontera, Walter; Javadov, Sabzali

    2014-12-01

    Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20 min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca(2+)-induced swelling, an indicator of permeability transition pore opening, was reduced in the mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as the total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury. PMID:25451170

  16. Atorvastatin attenuates oxidative stress in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Cai Zhiyou; Yan Yong; Wang Yonglong

    2008-01-01

    Objective: To investigate serum level of SOD, MDA, ox-LDL, AchE and Ach in AD, to study atorvastatin influence on serum level of SOD, MDA, ox-LDL, AchE and Acb in AD and its neuroprotection mechanisms. Methods Subjects were divided into: normal blood lipid level group with Alzheimer's disease (A), higher blood lipid level group with Alzheimer's disease (AH), normal blood lipid level Alzheimer's disease group with atorvastatin treeatment (AT),higher blood lipid level Alzheimer's disease group with atorvastatin treeatment(AHT). Ox-LDL was measured by enzyme linked immunosorbent assay; SOD, MDA, ox-LDL, AchE, Ach and blood lipid level in AD was measured by biochemistry. Results: The serum level of MDA, AchE in AH group after atorvastatin treatment is lower ;The serum level of SOD, Ach in AH group is more increased than that of in A group; The serum level of ox-LDL in AH, A groups is lower than that of in A group; The dementia degree is lower after atorvastatin treatment. Conclusion: Atorvastatin can decrease serum level of MDA, AchE and ox-LDL, and increase that of SOD, Acb, and attenuate dementia symptom in AD, especially, with hyperlipemia. The hypothesis of atorvastatin neuroprotection is concluded that atorvastatin may restrain free radical reaction and retard oxidation in AD.

  17. Electroacupuncture acutely improves cerebral blood flow and attenuates moderate ischemic injury via an endothelial mechanism in mice.

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    Full Text Available Electroacupuncture (EA is a novel therapy based on traditional acupuncture combined with modern eletrotherapy that is currently being investigated as a treatment for acute ischemic stroke. Here, we studied whether acute EA stimulation improves tissue and functional outcome following experimentally induced cerebral ischemia in mice. We hypothesized that endothelial nitric oxide synthase (eNOS-mediated perfusion augmentation was related to the beneficial effects of EA by interventions in acute ischemic injury. EA stimulation at Baihui (GV20 and Dazhui (GV14 increased cerebral perfusion in the cerebral cortex, which was suppressed in eNOS KO, but there was no mean arterial blood pressure (MABP response. The increased perfusion elicited by EA were completely abolished by a muscarinic acetylcholine receptor (mAChR blocker (atropine, but not a β-adrenergic receptor blocker (propranolol, an α-adrenergic receptor blocker (phentolamine, or a nicotinic acetylcholine receptor (nAChR blocker (mecamylamine. In addition, EA increased acetylcholine (ACh release and mAChR M3 expression in the cerebral cortex. Acute EA stimulation after occlusion significantly reduced infarct volume by 34.5% when compared to a control group of mice at 24 h after 60 min-middle cerebral artery occlusion (MCAO (moderate ischemic injury, but not 90-min MCAO (severe ischemic injury. Furthermore, the impact of EA on moderate ischemic injury was totally abolished in eNOS KO. Consistent with a smaller infarct size, acute EA stimulation led to prominent improvement of neurological function and vestibule-motor function. Our results suggest that acute EA stimulation after moderate focal cerebral ischemia, but not severe ischemia improves tissue and functional recovery and ACh/eNOS-mediated perfusion augmentation might be related to these beneficial effects of EA by interventions in acute ischemic injury.

  18. A multidrug cocktail approach attenuates ischemic-type biliary lesions in liver transplantation from non-heart-beating donors.

    Science.gov (United States)

    Deng, Yilei; Zhao, Longshuan; Lu, Xu

    2016-06-01

    Ischemic-type biliary lesions (ITBL) are the most troublesome biliary complication after liver transplantation (LT) from non-heart-beating donors (NHBD) and frequently result in death or re-transplantation. In transplantation process, warm ischemia (WI) in the donor, cold ischemia and reperfusion injury in the recipient altogether inducing ischemia-reperfusion injury (IRI) is strongly associated with ITBL. This is a cascading injury process, involving in a complex series of inter-connecting events causing variety of cells activation and damage associated with the massive release of inflammatory cytokines and generation of reactive oxygen species (ROS). These damaged cells such as sinusoidal endothelial cells (SECs), Kupffer cells (KCs), hepatocytes and biliary epithelial cells (BECs), coupled with immunological injury and bile salt toxicity altogether contribute to ITBL in NHBD LT. Developed therapeutic strategies to attenuate IRI are essential to improve outcome after LT. Among them, single pharmaceutical interventions blocking a specific pathway of IRI in rodent models play an absolutely dominant role, and show a beneficial effect in some given controlled experiments. But this will likely prove ineffective in complex clinical setting in which more risk parameters are involved. Therefore, we intend to design a multidrug cocktail approach to block different pathways on more than one stage (WI, cold ischemia and reperfusion) of the process of IRI-induced ITBL simultaneously. This multidrug cocktail will include six drugs containing streptokinase, epoprostenol, thiazolidinediones (TZDs), N-Acetylcysteine (NAC), hemin and tauroursodeoxycholic acid (TUDC). These drugs show protective effects by targeting the different key events of IRI, such as anti-inflammatory, anti-fibrosis, anti-oxidation, anti-apoptosis and reduced bile salt toxicity. Ideally, the compounds, dosage, and method of application of drugs included in cocktail should not be definitive. We can consider

  19. Cinnamon Polyphenols Attenuate Neuronal Death and Glial Swelling in Ischemic Injury

    Science.gov (United States)

    Brain edema is a major complication associated with ischemic stroke and is characterized by a volumetric enlargement of the brain. Astrocyte swelling is a major component of brain edema. We investigated the protective effects of polyphenols isolated from green tea and cinnamon in C6 glial cultures s...

  20. Long Course Hyperbaric Oxygen Stimulates Neurogenesis and Attenuates Inflammation after Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Ying-Sheng Lee

    2013-01-01

    Full Text Available Several studies have provided evidence with regard to the neuroprotection benefits of hyperbaric oxygen (HBO therapy in cases of stroke, and HBO also promotes bone marrow stem cells (BMSCs proliferation and mobilization. This study investigates the influence of HBO therapy on the migration of BMSCs, neurogenesis, gliosis, and inflammation after stroke. Rats that sustained transient middle cerebral artery occlusion (MCAO were treated with HBO three weeks or two days. The results were examined using a behavior test (modified neurological severity score, mNSS and immunostaining to evaluate the effects of HBO therapy on migration of BMSCs, neurogenesis, and gliosis, and expression of neurotrophic factors was also evaluated. There was a lower mNSS score in the three-week HBO group when compared with the two-day HBO group. Mobilization of BMSCs to an ischemic area was more improved in long course HBO treatments, suggesting the duration of therapy is crucial for promoting the homing of BMSCs to ischemic brain by HBO therapies. HBO also can stimulate expression of trophic factors and improve neurogenesis and gliosis. These effects may help in neuronal repair after ischemic stroke, and increasing the course of HBO therapy might enhance therapeutic effects on ischemic stroke.

  1. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Remodeling.

    Science.gov (United States)

    Yuan, Shuai; Kevil, Christopher G

    2016-02-01

    Blockage or restriction of blood flow through conduit arteries results in tissue ischemia downstream of the disturbed area. Local tissues can adapt to this challenge by stimulating vascular remodeling through angiogenesis and arteriogenesis thereby restoring blood perfusion and removal of wastes. Multiple molecular mechanisms of vascular remodeling during ischemia have been identified and extensively studied. However, therapeutic benefits from these findings and insights are limited due to the complexity of various signaling networks and a lack of understanding central metabolic regulators governing these responses. The gasotransmitters NO and H2 S have emerged as master regulators that influence multiple molecular targets necessary for ischemic vascular remodeling. In this review, we discuss how NO and H2 S are individually regulated under ischemia, what their roles are in angiogenesis and arteriogenesis, and how their interaction controls ischemic vascular remodeling. PMID:26381654

  2. Ischemic preconditioning attenuates remote pulmonary inflammatory infiltration of diabetic rats with an intestinal and hepatic ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Farid José Thomaz Neto

    2013-03-01

    Full Text Available PURPOSE: To assess ischemic preconditioning (IPC effects in pulmonary lesion in intestinal and hepatic ischemia-reperfusion (IR injury models using diabetic rats. METHODS: Diabetes (DM was induced in 28 male Wistar rats by alloxan (42 mg/kg, IV. After 28 days, severe DM rats were submitted to intestinal or hepatic IR injury with or without IPC. Intestinal IR (30 min of mesenteric artery occlusion and 30 min of reperfusion; n=6 and IPC groups (10 min ischemia, 10 min reperfusion, followed by intestinal IR; n=6, and Hepatic IR (30 min of hepatic pedicle occlusion and 30 min of reperfusion; n=5 and IPC groups (10 min ischemia, 10 min reperfusion, followed by hepatic IR; n=5, were compared to DM rats group (n=6. Plasmatic lactate, glycemia were measured before and after IR injury. Histomorphology of lung was performed counting inflammatory cells. Data was expressed in mean± SE. P<0.05. RESULTS: Glycemia and lactate were similar among groups. IPC did not interfere in these parameters. On histological evaluation, IR increased inflammatory cells infiltration in pulmonary parenchyma compared to control in both IR injury models. IPC attenuated inflammatory infiltration in lungs. CONCLUSION: Ischemic preconditioning protects against remote ischemia-reperfusion injury in lung on intestinal or hepatic ischemia-reperfusion model with acute diabetes.

  3. Polymorphism of Nitric Oxide Synthase 1 Affects the Clinical Phenotypes of Ischemic Stroke in Korean Population

    Science.gov (United States)

    Yoo, Seung Don; Yun, Dong Hwan; Kim, Hee-Sang; Kim, Su Kang; Kim, Dong Hwan; Chon, Jinmann; Je, Goun; Kim, Yoon-Seong; Chung, Joo-Ho; Chung, Seung Joon; Yeo, Jin Ah

    2016-01-01

    Objective To investigate whether four single nucleotide polymorphisms (SNPs) rs2293054 [Ile734Ile], rs1047735 [His902His], rs2293044 [Val1353Val], rs2682826 (3'UTR) of nitric oxide synthase 1 (NOS1) are associated with the development and clinical phenotypes of ischemic stroke. Methods We enrolled 120 ischemic stroke patients and 314 control subjects. Ischemic stroke patients were divided into subgroups according to the scores of the National Institutes of Health Stroke Survey (NIHSS, <6 and ≥6) and Modified Barthel Index (MBI, <60 and ≥60). SNPStats, SNPAnalyzer, and HelixTree programs were used to calculate odds ratios (ORs), 95% confidence intervals (CIs), and p-values. Multiple logistic regression models were performed to analyze genetic data. Results No SNPs of the NOS1 gene were found to be associated with ischemic stroke. However, in an analysis of clinical phenotypes, we found that rs2293054 was associated with the NIHSS scores of ischemic stroke patients in codominant (p=0.019), dominant (p=0.007), overdominant (p=0.033), and log-additive (p=0.0048) models. Also, rs2682826 revealed a significant association in the recessive model (p=0.034). In allele frequency analysis, we also found that the T alleles of rs2293054 were associated with lower NIHSS scores (p=0.007). Respectively, rs2293054 had a significant association in the MBI scores of ischemic stroke in codominant (p=0.038), dominant (p=0.031), overdominant (p=0.045), and log-additive (p=0.04) models. Conclusion These results suggest that NOS1 may be related to the clinical phenotypes of ischemic stroke in Korean population. PMID:26949676

  4. Does nitric oxide generation contribute to the mechanism of remote ischemic preconditioning?

    Science.gov (United States)

    Petrishchev, N N.; Vlasov, T D.; Sipovsky, V G.; Kurapeev, D I.; Galagudza, M M.

    2001-03-01

    The protective effect of local or remote ischemic preconditioning (IPC) on subsequent 40-min ischemic and 120-min reperfusion myocardial damage was investigated. Preconditioned rats underwent one cycle of myocardial ischemia/reperfusion consisting of 5-min ischemia produced as a left coronary artery (LCA) occlusion and 5 min of reperfusion. Remote IPC was produced as 15 min of small intestinal ischemia with 15 min of reperfusion as well as 30 min of limb ischemia with 15 min of reperfusion. A marked protective action was afforded by both IPC protocols with a more significant effect of local (classic) ischemic preconditioning. Since the protective effect of remote IPC was not abolished by nitric oxide (NO) synthase inhibition with Nomega-nitro-L-arginine (L-NNA) it is concluded that NO generation may not be involved in the mechanism of remote IPC. PMID:11228397

  5. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    Science.gov (United States)

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women. PMID:27318135

  6. Ischemic conditioning by short periods of reperfusion attenuates renal ischemia/reperfusion induced apoptosis and autophagy in the rat

    Directory of Open Access Journals (Sweden)

    Chien Chiang-Ting

    2009-02-01

    Full Text Available Abstract Prolonged ischemia amplified iscehemia/reperfusion (IR induced renal apoptosis and autophagy. We hypothesize that ischemic conditioning (IC by a briefly intermittent reperfusion during a prolonged ischemic phase may ameliorate IR induced renal dysfunction. We evaluated the antioxidant/oxidant mechanism, autophagy and apoptosis in the uninephrectomized Wistar rats subjected to sham control, 4 stages of 15-min IC (I15 × 4, 2 stages of 30-min IC (I30 × 2, and total 60-min ischema (I60 in the kidney followed by 4 or 24 hours of reperfusion. By use of ATP assay, monitoring O2-. amounts, autophagy and apoptosis analysis of rat kidneys, I60 followed by 4 hours of reperfusion decreased renal ATP and enhanced reactive oxygen species (ROS level and proapoptotic and autophagic mechanisms, including enhanced Bax/Bcl-2 ratio, cytochrome C release, active caspase 3, poly-(ADP-ribose-polymerase (PARP degradation fragments, microtubule-associated protein light chain 3 (LC3 and Beclin-1 expression and subsequently tubular apoptosis and autophagy associated with elevated blood urea nitrogen and creatinine level. I30 × 2, not I15 × 4 decreased ROS production and cytochrome C release, increased Manganese superoxide dismutase (MnSOD, Copper-Zn superoxide dismutase (CuZnSOD and catalase expression and provided a more efficient protection than I60 against IR induced tubular apoptosis and autophagy and blood urea nitrogen and creatinine level. We conclude that 60-min renal ischemia enhanced renal tubular oxidative stress, proapoptosis and autophagy in the rat kidneys. Two stages of 30-min ischemia with 3-min reperfusion significantly preserved renal ATP content, increased antioxidant defense mechanisms and decreased ischemia/reperfusion enhanced renal tubular oxidative stress, cytosolic cytochrome C release, proapoptosis and autophagy in rat kidneys.

  7. Effect of dietary palm olein oil on oxidative stress associated with ischemic-reperfusion injury in isolated rat heart

    OpenAIRE

    Narang, Deepak; Sood, Subeena; Thomas, Mathew Kadali; Dinda, Amit Kumar; Maulik, Subir Kumar

    2004-01-01

    Background Palm olein oil (PO), obtained from refining of palm oil is rich in monounsaturated fatty acid and antioxidant vitamins and is widely used as oil in diet in many parts of the world including India. Palm oil has been reported to have beneficial effects in oxidative stress associated with hypertension and arterial thrombosis. Oxidative stress plays a major role in the etiopathology of myocardial ischemic-reperfusion injury (IRI) which is a common sequel of ischemic heart disease. Anti...

  8. Hydrosulfide attenuates acute myocardial ischemic injury through the glycogen synthase kinase-3β/β-catenin signaling pathway.

    Science.gov (United States)

    Ge, Ning; Liu, Chao; Li, Guofeng; Xie, Lijun; Zhang, Qinzeng; Li, Liping; Hao, Na; Zhang, Jianxin

    2016-05-01

    The endogenous signaling gasotransmitter, hydrosulfide (H2S), has been shown to exert cardioprotective effects against acute myocardial infarction (AMI) due to ischemic injury. However, the mechanisms responsible for these effects are not yet fully understood. In this study, we investigated whether sodium hydrogen sulfide (NaHS), an H2S donor, attenuates acute myocardial ischemic injury through glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling. For this purpose, we utilized an in vivo rat model of AMI by occluding the left anterior descending coronary artery. NaHS (0.39, 0.78 or 1.56 mg/kg, intraperitoneally), the GSK-3β inhibitor, SB216763 (0.6 mg/kg, intravenously), or 1% dimethylsulfoxide (2 ml/kg, intravenously) were administered to the rats. The results demonstrated that the administration of medium- and high-dose NaHS and SB216763 significantly improved rat cardiac function, as evidenced by an increase in the mean arterial pressure, left ventricular developed pressure, contraction and relaxation rates, as well as a decrease in left ventricular end-diastolic pressure. In addition, the administration of NaHS and SB216763 attenuated myocardial injury as reflected by a decrease in apoptotic cell death and in the serum lactate dehydrogenase concentrations, and prevented myocardial structural changes. The administration of NaHS and SB216763 increased the concentrations of phosphorylated (p-)GSK-3β, the p-GSK-3β/t-GSK-3β ratio and downstream protein β-catenin. Moreover, western blot and immunohistochemical analyses of apoptotic signaling pathway proteins further established the cardioprotective potential of NaHS, as reflected by the upregulation of Bcl-2 expression, the downregulation of Bax expression, and a decrease in the number of TUNEL-positive stained cells. These findings suggest that hydrosulfide exerts cardioprotective effects against AMI-induced apoptosis through the GSK-3β/β-catenin signaling pathway. PMID:27035393

  9. RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats

    Institute of Scientific and Technical Information of China (English)

    Yong-qiu ZHENG; Jian-xun LIU; Xin-zhi LI; Li XU; Yong-gang XU

    2009-01-01

    Aim:To test the role of the Beclin 1-dependent autophagy pathway in brain damage during cerebral ischemia.Methods:Focal cerebral ischemia was established in rats using a middle cerebral artery occlusion (MCAO) model.A lentiviral vectorassociated RNA interference (RNAi) system was stereotaxically injected into the ipsilateral lateral ventricle to reduce Beclinl expression.We measured the ipsilateral infarct volume,autophagosome formation,neurogenesis and apoptosis,all of which could be modulated by Beclinl RNAi.Results:On the 14th day after MCAO,Beclin1 downregulation by RNAi increased the population of neural progenitor cells (BrdU+-DCX+),newborn immature cells (BrdU+-Tuj-1+) and mature neurons (BrdU+-MAP-2+),and reduced the apoptosis of immature neurons (caspase3+-DCX+ and caspase-3+-Tuj-1+) surrounding the ischemic core of the ipsilateral hemisphere.Furthermore,RNAi-mediated downregulation of Beclin1 decreased infarct volume and inhibited histological injury and neurological deficits.Conclusion:RNAi-mediated downregulation of Beclinl improves outcomes after transient MCAO.

  10. Roles of Chinese herbal medicines in ischemic heart diseases (IHD) by regulating oxidative stress.

    Science.gov (United States)

    Wang, Dawei; Wang, Jin; Liu, Yuntao; Zhao, Zhen; Liu, Qing

    2016-10-01

    Ischemic heart disease (IHD) basing on atherosclerosis (AS) is known as a top killer for decades. Oxidative stress, representing excessive oxidation and insufficient elimination, has been proved to be a critical molecular mechanism of IHD and accompanying myocardium dysfunction. Therefore, anti-oxidation therapy may be efficient. Chinese herbal medicine, including extractive compounds, decoctions, patent drugs, and injections, has shown its enormous potential in prevention and treatment of IHD as an effective antioxidant in experimental studies. The aim of this review is to highlight recent studies of Chinese herbal medicine in regulating oxidative stress in IHD. These studies represent recent progress of IHD treatment and indicate the possible pathways and target spots of Chinese herbal medicine. PMID:27390948

  11. Tadalafil enhances the neuroprotective effects of ischemic postconditioning in mice, probably in a nitric oxide associated manner.

    Science.gov (United States)

    Gulati, Puja; Singh, Nirmal

    2014-05-01

    This study investigates the modulatory effect of tadalafil, a selective phosphodiesterase (PDE-5) inhibitor, on the neuroprotective effects of ischemic postconditioning (iPoCo) in mice. Bilateral carotid artery occlusion (BCAO) for 12 min followed by reperfusion for 24 h was employed to produce ischemia and reperfusion induced cerebral injury. Cerebral infarct size was measured using TTC staining. Memory was assessed using the Morris water maze test. Degree of motor incoordination was evaluated using inclined beam-walking, rota-rod, and lateral push tests. Brain nitrite/nitrate, acetylcholinesterase activity, TBARS, and glutathione levels were also estimated. BCAO followed by reperfusion produced a significant increase in cerebral infarct size, brain nitrite/nitrate and TBARS levels, and acetylcholinesterase activity along with a reduction in glutathione. Marked impairment of memory and motor coordination was also noted. iPoCo consisting of 3 episodes of 10 s carotid artery occlusion and reperfusion instituted immediately after BCAO significantly decreased infarct size, memory impairment, motor incoordination, and altered biochemistry. Pretreatment with tadalafil mimicked the neuroprotective effects of iPoCo. The tadalafil-induced neuroprotective effects were significantly attenuated by l-NAME, a nonselective NOS inhibitor. We concluded that tadalafil mimics the neuroprotective effects of iPoCo, probably through a nitric oxide dependent pathway, and PDE-5 could be a target of interest with respect to the neuroprotective mechanism of iPoCo. PMID:24784472

  12. AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress.

    Science.gov (United States)

    Ma, Yuedong; Huang, Huiling; Jiang, Jingzhou; Wu, Lingling; Lin, Chunxi; Tang, Anli; Dai, Gang; He, Jiangui; Chen, Yili

    2016-06-10

    AVE 0991, the nonpeptide angiotensin-(1-7) (Ang-(1-7)) analog, is recognized as having beneficial cardiovascular effects. However, the mechanisms have not been fully elucidated. This study was designed to investigate the effects of AVE 0991 on cardiac hypertrophy and the mechanisms involved. Mice were underwent aortic banding to induce cardiac hypertrophy followed by the administration of AVE 0991 (20 mg kg·day (-1)) for 4 weeks. It was shown that AVE 0991 reduced left ventricular hypertrophy and improved heart function, characterized by decreases in left ventricular weight and left ventricular end-diastolic diameter, and increases in ejection fraction. Moreover, AVE 0991 significantly down-regulated mean myocyte diameter and attenuate the gene expression of the hypertrophic markers. Furthermore, AVE 0991 inhibited the expression of NOX 2 and NOX 4, meaning that AVE 0991 reduced oxidative stress of cardiac hypertrophy mice. Our data showed that AVE 0991 treatment could attenuate cardiac hypertrophy and improve heart function, which may be due to reduce oxidative stress. PMID:26403967

  13. Oxidative stress in post-acute ischemic stroke patients after intensive neurorehabilitation.

    Science.gov (United States)

    Ciancarelli, Irene; De Amicis, Daniela; Di Massimo, Caterina; Carolei, Antonio; Ciancarelli, Maria Giuliana Tozzi

    2012-11-01

    We investigated in post-acute ischemic stroke patients the influence of intensive neurorehabilitation on oxidative stress balance during recovery of neurological deficits. For this purpose, fourteen patients were included in the study within 30 days of stroke onset. Outcome measures were the National Institutes of Health Stroke Scale (NIHSS), the modified Rankin Scale (mRS), the Barthel Index, and the Katz Index. Redox balance was assessed by measuring plasma peroxidative by-products, nitrite/nitrate metabolites (NOx), as an index of nitric oxide (NO), Cu/Zn Superoxide Dismutase (Cu/Zn SOD) activity, serum urate concentration, autoantibodies against ox-LDL (OLAB) serum level and plasma antioxidant capacity. Assessments were made before and after neurorehabilitation. Fifteen apparently healthy controls were investigated to compare redox markers. Intensive neurorehabilitation was associated with an improvement of all the outcome measures (P Changes observed before and after neurorehabilitation in NIHSS scores (Δ NIHSS scores) and in plasma NOx amount (Δ NOx) correlated positively (r=0.79; P concentrations were found between stroke patients and controls, before and after neurorehabilitation. Total plasma antioxidant capacity, lower in stroke patients than in controls before neurorehabilitation, was unchanged thereafter. Our data provide evidence of the effectiveness of neurorehabilitation on reducing redox unbalance in stroke patients and hints the role of NO as a messenger involved in post-ischemic neuronal plasticity influencing recovery of neurological deficits. PMID:22873723

  14. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic-Ischemic Brain Injury.

    Science.gov (United States)

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J

    2016-01-01

    Seizures are common following hypoxic-ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic-ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  15. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic–Ischemic Brain Injury

    Science.gov (United States)

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J.

    2016-01-01

    Seizures are common following hypoxic–ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic–ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  16. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Kapil Suchal

    2016-01-01

    Full Text Available Kaempferol (KMP, a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p. was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB, inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3, TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2. In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.

  17. Vascular changes after cardiopulmonary bypass and ischemic cardiac arrest: roles of nitric oxide synthase and cyclooxygenase

    Directory of Open Access Journals (Sweden)

    F.W. Sellke

    1999-11-01

    Full Text Available Cardiac surgery involving ischemic arrest and extracorporeal circulation is often associated with alterations in vascular reactivity and permeability due to changes in the expression and activity of isoforms of nitric oxide synthase and cyclooxygenase. These inflammatory changes may manifest as systemic hypotension, coronary spasm or contraction, myocardial failure, and dysfunction of the lungs, gut, brain and other organs. In addition, endothelial dysfunction may increase the occurrence of late cardiac events such as graft thrombosis and myocardial infarction. These vascular changes may lead to increased mortality and morbidity and markedly lengthen the time of hospitalization and cost of cardiac surgery. Developing a better understanding of the vascular changes operating through nitric oxide synthase and cyclooxygenase may improve the care and help decrease the cost of cardiovascular operations.

  18. Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice

    Directory of Open Access Journals (Sweden)

    Puja Gulati

    2014-01-01

    Full Text Available Introduction: Postconditioning (PoCo is an adaptive phenomenon whereby brief repetitive cycles of ischemia with intermittent reperfusion instituted immediately after prolonged ischemia at the onset of prolonged reperfusion elicit tissue protection. PoCo is noted to exert a protective effect in various organs like heart, liver, kidney and brain. Various triggers, mediators and end effectors are suggested to contribute to the protective effect of PoCo. However, the neuroprotective mechanism of PoCo is poorly understood. Objectives: The present study has been designed to investigate the role of nitric oxide pathway in the neuroprotective mechanism of ischemic postconditioning (iPoCo employing a mouse model of global cerebral ischemia and reperfusion-induced injury. Materials and Methods: Bilateral carotid artery occlusion (BCAO of 12 min followed by reperfusion for 24 h was employed to produce ischemia and reperfusion (I/R-induced cerebral injury in mice. Cerebral injury was assessed in the terms of cerebral infarct, memory impairment and motor in-coordination. Brain nitrite/nitrate; acetylcholinesterase activity, thiobarbituric acid reactive species (TBARS and glutathione level were also estimated. Results: BCAO followed by reperfusion produced a significant rise in cerebral infarct size, memory impairment and motor incoordination. Further a rise in acetylcholinesterase activity and TBARS level along with fall in brain nitrite/nitrate and glutathione levels was also noted. iPoCo consisting of three episodes of 10 s carotid artery occlusion and reperfusion (instituted immediately after BCAO significantly attenuated infarct size, memory impairment, motor incoordination as well as altered biochemicals. iPoCo-induced neuroprotective effects were significantly abolished by pretreatment of L-NAME, a nonselective NOS inhibitor. Conclusion: It may be concluded that the nitric oxide pathway probably plays a vital role in the neuroprotective mechanism of iPoCo.

  19. The Traditional Herbal Medicine, Dangkwisoo-San, Prevents Cerebral Ischemic Injury through Nitric Oxide-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    2011-01-01

    Full Text Available Dangkwisoo-San (DS is an herbal extract that is widely used in traditional Korean medicine to treat traumatic ecchymosis and pain by promoting blood circulation and relieving blood stasis. However, the effect of DS in cerebrovascular disease has not been examined experimentally. The protective effects of DS on focal ischemic brain were investigated in a mouse model. DS stimulated nitric oxide (NO production in human brain microvascular endothelial cells (HBMECs. DS (10–300 μg/mL produced a concentration-dependent relaxation in mouse aorta, which was significantly attenuated by the nitric oxide synthase (NOS inhibitor L-NAME, suggesting that DS causes vasodilation via a NO-dependent mechanism. DS increased resting cerebral blood flow (CBF, although it caused mild hypotension. To investigate the effect of DS on the acute cerebral injury, C57/BL6J mice received 90 min of middle cerebral artery occlusion followed by 22.5 h of reperfusion. DS administered 3 days before arterial occlusion significantly reduced cerebral infarct size by 53.7% compared with vehicle treatment. However, DS did not reduce brain infarction in mice treated with the relatively specific endothelial NOS (eNOS inhibitor, N5-(1-iminoethyl-L-ornithine, suggesting that the neuroprotective effect of DS is primarily endothelium-dependent. This correlated with increased phosphorylation of eNOS in the brains of DS-treated mice. DS acutely improves CBF in eNOS-dependent vasodilation and reduces infarct size in focal cerebral ischemia. These data provide causal evidence that DS is cerebroprotective via the eNOS-dependent production of NO, which ameliorates blood circulation.

  20. Value of fluid-attenuated inversion recovery sequences in early MRI of the brain in neonates with a perinatal hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    The aim of our study was to assess the usefulness of fluid-attenuated inversion recovery (FLAIR) sequences in comparison with conventional spin-echo and inversion MR imaging in neonates for evaluation of myelination and for detection of hypoxic-ischemic brain injury. We reviewed early MR scans of 18 neonates with suspected hypoxic-ischemic brain damage. Myelination could be evaluated with confidence using conventional MR imaging in all but 2 infants; however, the presence of myelin was very difficult to assess on FLAIR images. Overall, 53 lesions or groups of lesions were identified. The FLAIR technique was more sensitive in 11 of the lesions; especially (pre)cystic lesions could be identified much better and more cysts were found. Conventional MR imaging failed to identify 2 of the lesions and was more sensitive in 14 of the lesions; especially punctate hemorrhages and lesions in basal ganglia or thalami could be better determined. The FLAIR technique missed 3 of these lesions. In the remaining 28 lesions conventional MR and FLAIR images were equally diagnostic. The FLAIR technique and conventional MR imaging are complementary in detecting early sequelae of hypoxic-ischemic brain injury in neonates. The FLAIR technique is not suitable for assessing myelination of the neonatal brain; therefore, FLAIR cannot replace conventional MR imaging. (orig.)

  1. Value of fluid-attenuated inversion recovery sequences in early MRI of the brain in neonates with a perinatal hypoxic-ischemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Sie, L.T.L.; Knaap, M.S. van der [Vrije Univ. Hospital, Amsterdam (Netherlands). Dept. of Neurology; Barkhof, F.; Valk, J. [Amsterdam Univ. (Netherlands). Dept. of Diagnostic Radiology, Pathology and Gastroenterology; Lafeber, H.N. [Univ. Hospital ' Vrije Universiteit' , Amsterdam (Netherlands). Dept. of Neonatology

    2000-10-01

    The aim of our study was to assess the usefulness of fluid-attenuated inversion recovery (FLAIR) sequences in comparison with conventional spin-echo and inversion MR imaging in neonates for evaluation of myelination and for detection of hypoxic-ischemic brain injury. We reviewed early MR scans of 18 neonates with suspected hypoxic-ischemic brain damage. Myelination could be evaluated with confidence using conventional MR imaging in all but 2 infants; however, the presence of myelin was very difficult to assess on FLAIR images. Overall, 53 lesions or groups of lesions were identified. The FLAIR technique was more sensitive in 11 of the lesions; especially (pre)cystic lesions could be identified much better and more cysts were found. Conventional MR imaging failed to identify 2 of the lesions and was more sensitive in 14 of the lesions; especially punctate hemorrhages and lesions in basal ganglia or thalami could be better determined. The FLAIR technique missed 3 of these lesions. In the remaining 28 lesions conventional MR and FLAIR images were equally diagnostic. The FLAIR technique and conventional MR imaging are complementary in detecting early sequelae of hypoxic-ischemic brain injury in neonates. The FLAIR technique is not suitable for assessing myelination of the neonatal brain; therefore, FLAIR cannot replace conventional MR imaging. (orig.)

  2. Ranolazine attenuated heightened plasma norepinephrine and B-Type natriuretic peptide-45 in improving cardiac function in rats with chronic ischemic heart failure.

    Science.gov (United States)

    Feng, Guangqiu; Yang, Yu; Chen, Juan; Wu, Zhiyong; Zheng, Yin; Li, Wei; Dai, Wenxin; Guan, Pin; Zhong, Chunrong

    2016-01-01

    As a new anti-anginal agent, ranolazinehas been shown to play a cardioprotective role in regulating myocardial ischemic injury. Given that plasma norepinephrine (NE) and brain natriuretic peptide (BNP, also termed B-type natriuretic peptide-45 in rats) are considered neuron-hormones to indicate heart failure progression. This study aims to examine effects of ranolazine on plasma NE and BNP-45 of rats with chronic ischemic heart failure (CHF). CHF was induced by myocardial infarction following ligation of a left anterior descending artery in adult Sprague-Dawley rats. We hypothesized that ranolazine attenuates the elevated levels of NE and BNP-45 observed in CHF rats thereby leading to improvement of the left ventricular function. Results showed that levels of plasma NE and BNP-45 were increased in CHF rats 6-8 weeks after ligation of the coronary artery. Our data demonstrate for the first time that ranolazine significantly attenuated the augmented NE and BNP-45 induced by CHF (Pranolazine. In conclusion, CHF increases the expression of NE and BNP-45 in peripheral circulation and these changes are related to the left ventricular function. Ranolazine improves the left ventricular function likely by decreasing heightened NE and BNP-45 induced by CHF. Therefore, our data indicate the role played by ranolazine in improving cardiac function in rats with CHF. PMID:27158417

  3. The impact of detoxifying and repair gene polymorphisms on oxidative stress in ischemic stroke.

    Science.gov (United States)

    Orhan, Gürdal; Elkama, Aylin; Mungan, Semra Öztürk; Eruyar, Esra; Karahalil, Bensu

    2016-06-01

    Stroke is a multifactorial disease caused by the combination of certain risk factors and genetic factors. There are possible risk factors having important role in the pathogenesis of stroke. The most important environmental factors are cigarette smoking and oxidative stress which have different sources. GST (M1, T1, P1) have major roles in detoxification of the products of oxidative stress and they are polymorphic. DNA damages can also be repaired by repair enzymes such as OGG1 and XRCC1 which are highly polymorphic and have pivotal roles in repair systems. In the present study, we investigated that polymorphisms in genes involved in detoxification and DNA-repair pathways might modify the individual's risk for ischemic stroke. Furthermore, the products of oxidative stress and antioxidant capacity were measured and the impact of gene polymorphism on them was evaluated. Our data showed that OGG1 Ser326Cys and XRCC1 Arg399Gln gene polymorphisms had impacts on the development of stroke. PMID:26936466

  4. Effects of Ischemic Postconditioning on the Hemodynamic Parameters and Heart Nitric Oxide Levels of Hypothyroid Rats

    Directory of Open Access Journals (Sweden)

    Sajad Jeddi

    2015-02-01

    Full Text Available Background: Ischemic postconditioning (IPost is a method of protecting the heart against ischemia-reperfusion (IR injury. However, the effectiveness of IPost in cases of ischemic heart disease accompanied by co-morbidities such as hypothyroidism remains unclear. Objective: The aim of this study was to determine the effect of IPost on myocardial IR injury in hypothyroid male rats. Methods: Propylthiouracil in drinking water (500 mg/L was administered to male rats for 21 days to induce hypothyroidism. The hearts from control and hypothyroid rats were perfused in a Langendorff apparatus and exposed to 30 min of global ischemia, followed by 120 min of reperfusion. IPost was induced immediately following ischemia. Results: Hypothyroidism and IPost significantly improved the left ventricular developed pressure (LVDP and peak rates of positive and negative changes in left ventricular pressure (±dp/dt during reperfusion in control rats (p < 0.05. However, IPost had no add-on effect on the recovery of LVDP and ±dp/dt in hypothyroid rats. Furthermore, hypothyroidism significantly decreased the basal NO metabolite (NOx levels of the serum (72.5 ± 4.2 vs. 102.8 ± 3.7 μmol/L; p < 0.05 and heart (7.9 ± 1.6 vs. 18.8 ± 3.2 μmol/L; p < 0.05. Heart NOx concentration in the hypothyroid groups did not change after IR and IPost, whereas these were significantly (p < 0.05 higher and lower after IR and IPost, respectively, in the control groups. Conclusion: Hypothyroidism protects the heart from IR injury, which may be due to a decrease in basal nitric oxide (NO levels in the serum and heart and a decrease in NO after IR. IPost did not decrease the NO level and did not provide further cardioprotection in the hypothyroid group.

  5. Effects of Ischemic Postconditioning on the Hemodynamic Parameters and Heart Nitric Oxide Levels of Hypothyroid Rats

    Energy Technology Data Exchange (ETDEWEB)

    Jeddi, Sajad; Zaman, Jalal; Ghasemi, Asghar, E-mail: ghasemi@endocrine.ac.ir [Endocrine Physiology Research Center - Research Institute for Endocrine Sciences - Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Endocrine Research Center - Research Institute for Endocrine Sciences - Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Ischemic postconditioning (IPost) is a method of protecting the heart against ischemia-reperfusion (IR) injury. However, the effectiveness of IPost in cases of ischemic heart disease accompanied by co-morbidities such as hypothyroidism remains unclear. The aim of this study was to determine the effect of IPost on myocardial IR injury in hypothyroid male rats. Propylthiouracil in drinking water (500 mg/L) was administered to male rats for 21 days to induce hypothyroidism. The hearts from control and hypothyroid rats were perfused in a Langendorff apparatus and exposed to 30 min of global ischemia, followed by 120 min of reperfusion. IPost was induced immediately following ischemia. Hypothyroidism and IPost significantly improved the left ventricular developed pressure (LVDP) and peak rates of positive and negative changes in left ventricular pressure (±dp/dt) during reperfusion in control rats (p < 0.05). However, IPost had no add-on effect on the recovery of LVDP and ±dp/dt in hypothyroid rats. Furthermore, hypothyroidism significantly decreased the basal NO metabolite (NO{sub x}) levels of the serum (72.5 ± 4.2 vs. 102.8 ± 3.7 μmol/L; p < 0.05) and heart (7.9 ± 1.6 vs. 18.8 ± 3.2 μmol/L; p < 0.05). Heart NO{sub x} concentration in the hypothyroid groups did not change after IR and IPost, whereas these were significantly (p < 0.05) higher and lower after IR and IPost, respectively, in the control groups. Hypothyroidism protects the heart from IR injury, which may be due to a decrease in basal nitric oxide (NO) levels in the serum and heart and a decrease in NO after IR. IPost did not decrease the NO level and did not provide further cardioprotection in the hypothyroid group.

  6. Effects of Ischemic Postconditioning on the Hemodynamic Parameters and Heart Nitric Oxide Levels of Hypothyroid Rats

    International Nuclear Information System (INIS)

    Ischemic postconditioning (IPost) is a method of protecting the heart against ischemia-reperfusion (IR) injury. However, the effectiveness of IPost in cases of ischemic heart disease accompanied by co-morbidities such as hypothyroidism remains unclear. The aim of this study was to determine the effect of IPost on myocardial IR injury in hypothyroid male rats. Propylthiouracil in drinking water (500 mg/L) was administered to male rats for 21 days to induce hypothyroidism. The hearts from control and hypothyroid rats were perfused in a Langendorff apparatus and exposed to 30 min of global ischemia, followed by 120 min of reperfusion. IPost was induced immediately following ischemia. Hypothyroidism and IPost significantly improved the left ventricular developed pressure (LVDP) and peak rates of positive and negative changes in left ventricular pressure (±dp/dt) during reperfusion in control rats (p < 0.05). However, IPost had no add-on effect on the recovery of LVDP and ±dp/dt in hypothyroid rats. Furthermore, hypothyroidism significantly decreased the basal NO metabolite (NOx) levels of the serum (72.5 ± 4.2 vs. 102.8 ± 3.7 μmol/L; p < 0.05) and heart (7.9 ± 1.6 vs. 18.8 ± 3.2 μmol/L; p < 0.05). Heart NOx concentration in the hypothyroid groups did not change after IR and IPost, whereas these were significantly (p < 0.05) higher and lower after IR and IPost, respectively, in the control groups. Hypothyroidism protects the heart from IR injury, which may be due to a decrease in basal nitric oxide (NO) levels in the serum and heart and a decrease in NO after IR. IPost did not decrease the NO level and did not provide further cardioprotection in the hypothyroid group

  7. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Sun; Jang, Young Jin [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Hwang, Mun Kyung; Kang, Nam Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Ki Won [Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)], E-mail: kiwon@konkuk.ac.kr; Lee, Hyong Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)], E-mail: leehyjo@snu.ac.kr

    2009-02-10

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H{sub 2}O{sub 2}). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 {mu}g/ml) or CGA (1 and 5 {mu}M) attenuated H{sub 2}O{sub 2}-induced PC12 cell death. H{sub 2}O{sub 2}-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H{sub 2}O{sub 2}-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X{sub L} and caspase-3. The accumulation of intracellular ROS in H{sub 2}O{sub 2}-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H{sub 2}O{sub 2} in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H{sub 2}O{sub 2}-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs.

  8. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    International Nuclear Information System (INIS)

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H2O2). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 μg/ml) or CGA (1 and 5 μM) attenuated H2O2-induced PC12 cell death. H2O2-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H2O2-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-XL and caspase-3. The accumulation of intracellular ROS in H2O2-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H2O2 in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H2O2-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs

  9. Association between Oxidative Stress and Outcome in Different Subtypes of Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Nai-Wen Tsai

    2014-01-01

    Full Text Available Objectives. This study investigated serum thiobarbituric acid-reactive substances (TBARS and free thiol levels in different subtypes of acute ischemic stroke (AIS and evaluated their association with clinical outcomes. Methods. This prospective study evaluated 100 AIS patients, including 75 with small-vessel and 25 with large-vessel diseases. Serum oxidative stress (TBARS and antioxidant (thiol were determined within 48 hours and days 7 and 30 after stroke. For comparison, 80 age- and sex-matched participants were evaluated as controls. Results. Serum TBARS was significantly higher and free thiol was lower in stroke patients than in the controls on days 1 and 7 after AIS. The level of free thiol was significantly lower in the large-vessel disease than in the small-vessel disease on day 7 after stroke. Using the stepwise logistic regression model for potential variables, only stroke subtype, NIHSS score, and serum TBARS level were independently associated with three-month outcome. Higher TBARS and lower thiol levels in the acute phase of stroke were associated with poor outcome. Conclusions. Patients with large-vessel disease have higher oxidative stress but lower antioxidant defense compared to those with small-vessel disease after AIS. Serum TBARS level at the acute phase of stroke is a potential predictor for three-month outcome.

  10. Ischemic preconditioning attenuates remote pulmonary inflammatory infiltration of diabetic rats with an intestinal and hepatic ischemia-reperfusion injury

    OpenAIRE

    Farid José Thomaz Neto; Marcia Kiyomi Koike; Marcos de Souza Abrahão; Francisco Carillo Neto; Renan Kenji Hanada Pereira; José Lúcio Martins Machado; Edna Frasson de Souza Montero

    2013-01-01

    PURPOSE: To assess ischemic preconditioning (IPC) effects in pulmonary lesion in intestinal and hepatic ischemia-reperfusion (IR) injury models using diabetic rats. METHODS: Diabetes (DM) was induced in 28 male Wistar rats by alloxan (42 mg/kg, IV). After 28 days, severe DM rats were submitted to intestinal or hepatic IR injury with or without IPC. Intestinal IR (30 min of mesenteric artery occlusion and 30 min of reperfusion; n=6) and IPC groups (10 min ischemia, 10 min reperfusion, followed...

  11. Attenuation of endoplasmic reticulum stress and mitochondrial injury in kidney with ischemic postconditioning application and trimetazidine treatment.

    OpenAIRE

    Mahfoudh-Boussaid Asma; Zaouali Mohamed; Hauet Thierry; Hadj-Ayed Kaouther; Miled Abdel-Hédi; Ghoul-Mazgar Sonia; Saidane-Mosbahi Dalila; Rosello-Catafau Joan; Abdennebi Hassen

    2012-01-01

    Abstract Background Endoplasmic reticulum (ER) and mitochondria have been implicated in the pathology of renal ischemia/reperfusion (I/R). In the present study, we investigated whether the use of ischemic postconditioning (IPostC) and trimetazidine (TMZ) separately or combined could reduce ER stress and mitochondria damage after renal ischemia. Methods Kidneys of Wistar rats were subjected to 60-min of warm ischemia followed by 120-min of reperfusion (I/R group, n = 6), or to 6 cycles of isch...

  12. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor {kappa}B p65 activation

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xia [Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012 (China); Center for New Drugs Evaluation, Shandong University, Jinan 250012 (China); Qu, Xian-Jun [Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012 (China); Yang, Ying [School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355 (China); Sheng, Xie-Huang; Cheng, Fang; Jiang, E-Nang; Wang, Jian-hua; Bu, Wen [Center for New Drugs Evaluation, Shandong University, Jinan 250012 (China); Liu, Zhao-Ping, E-mail: liuzhaoping@sdu.edu.cn [Center for New Drugs Evaluation, Shandong University, Jinan 250012 (China)

    2010-12-17

    Research highlights: {yields} Permanent NF-{kappa}B p65 activation contributes to the infarction after ischemia-reperfusion injury in rats. {yields} Baicalin can markedly inhibit the nuclear NF-{kappa}B p65 expression and m RNA levels after ischemia-reperfusion injury in rats. {yields} Baicalin decreased the cerebral infarction area via inhibiting the activation of nuclear NF-{kappa}B p65. -- Abstract: Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at doses of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-{kappa}B p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 {+-} 0.7 to 1.2 {+-} 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-{kappa}B p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-{kappa}B p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-{kappa}B p65.

  13. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    Science.gov (United States)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  14. Effects of Ischemic Postconditioning on the Hemodynamic Parameters and Heart Nitric Oxide Levels of Hypothyroid Rats

    OpenAIRE

    Sajad Jeddi; Jalal Zaman; Asghar Ghasemi

    2015-01-01

    Background: Ischemic postconditioning (IPost) is a method of protecting the heart against ischemia-reperfusion (IR) injury. However, the effectiveness of IPost in cases of ischemic heart disease accompanied by co-morbidities such as hypothyroidism remains unclear. Objective: The aim of this study was to determine the effect of IPost on myocardial IR injury in hypothyroid male rats. Methods: Propylthiouracil in drinking water (500 mg/L) was administered to male rats for 21 days to induce hypot...

  15. Simvastatin Attenuates Contrast-Induced Nephropathy through Modulation of Oxidative Stress, Proinflammatory Myeloperoxidase, and Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ketab E. Al-Otaibi

    2012-01-01

    Full Text Available Contrast media- (CM- induced nephropathy is a serious complication of radiodiagnostic procedures. Available data suggests that the development of prophylaxis strategies is limited by poor understanding of pathophysiology of CM-induced nephropathy. Present study was designed to determine the role of oxidative stress, myeloperoxidase, and nitric oxide in the pathogenesis of iohexol model of nephropathy and its modification with simvastatin (SSTN. Adult Sprague Dawley rats were divided into seven groups. After 24 h of water deprivation, all the rats except in control and SSTN-only groups were injected (10 ml/kg with 25% glycerol. After 30 min, SSTN (15, 30, and 60 mg/kg was administered orally, daily for 4 days. Twenty-four hours after the glycerol injection, iohexol was infused (8 ml/kg through femoral vein over a period of 2 min. All the animals were sacrificed on day 5 and blood and kidneys were collected for biochemical and histological studies. The results showed that SSTN dose dependently attenuated CM-induced rise of creatinine, urea, and structural abnormalities suggesting its nephroprotective effect. A significant increase in oxidative stress (increased lipid hydroperoxides and reduced glutathione levels and myeloperoxidase (MPO and decreased nitric oxide in CM group were reversed by SSTN. These findings support the use of SSTN to combat CM-induced nephrotoxicity.

  16. Is oxidative stress primarily involved in reperfusion injury of the ischemic heart

    Energy Technology Data Exchange (ETDEWEB)

    Nohl, H.; Stolze, K.; Napetschnig, S.; Ishikawa, T. (Institute of Pharmacology and Toxicology, Vet. Med. Univ., Vienna (Austria))

    1991-01-01

    Reperfusion injury of ischemic organs is suggested to result from metabolic derangements initiating an imbalanced formation of free oxygen radicals. Most investigators in this field have used the spin-trap 5,5'-dimethyl-N-pyrroline-N-oxide (DMPO) to stabilize these short-lived radicals and make them visible by means of the electron spin resonance (ESR) technique. ESR signals obtained from intravascular DMPO were reported to indicate the formation of free OH. radicals and, in some cases, also carbon-centered radicals. We were unable to confirm these findings. Carbon-centered radicals were not obtained irrespectively of conditions studied, while oxygen-centered DMPO-adducts could only be detected in minor amounts. Instead, we observed an ascorbyl-related ESR signal. The addition of ethylenediaminetetraacetic acid (EDTA), which was used by many investigators in this field, was found to greatly influence ESR-spectra of the reperfusion fluid. The ascorbyl radical concentration was clearly reduced and the DMPO-OH. adduct became more prominent. The addition of iron further stimulated this change eliciting a Fenton-type reaction responsible for DMPO-OH.-related ESR spectra in the perfusate after ischemia. Accordingly, we observed the release of iron and ascorbic acid into the perfusate as a consequence of ischemia. We could demonstrate that iron in the presence of ascorbate and EDTA causes both types of radicals detected in the perfusate. DMPO-OH. generation in the presence of EDTA was found to result from free OH. radicals that were not generated in the absence of EDTA.

  17. Danhong injection attenuates cardiac injury induced by ischemic and reperfused neuronal cells through regulating arginine vasopressin expression and secretion.

    Science.gov (United States)

    Yang, Mingzhu; Orgah, John; Zhu, Jie; Fan, Guanwei; Han, Jihong; Wang, Xiaoying; Zhang, Boli; Zhu, Yan

    2016-07-01

    Ischemic stroke is associated with cardiac myocyte vulnerability through some unknown mechanisms. Arginine vasopressin (AVP) may exert considerable function in the relationship of brain damage and heart failure. Danhong injection (DHI) can protect both stroke and heart failure patients with good efficacy in clinics. The aim of this study is to investigate the mechanism of DHI in heart and brain co-protection effects to determine whether AVP plays key role in this course. In the present study, we found that both the supernatant from oxygen-glucose deprivation (OGD) and reperfused primary rat neuronal cells (PRNCs) and AVP treatment caused significant reduction in cell viability and mitochondrial activity in primary rat cardiac myocytes (RCMs). Besides, DHI had the same protective effects with conivaptan, a dual vasopressin V1A and V2 receptor antagonist, in reducing the RCM damage induced by overdose AVP. DHI significantly decreased the injury of both PRNCs and RCMs. Meanwhile, the AVP level was elevated dramatically in OGD and reperfusion PRNCs, and DHI was able to decrease the AVP expression in the injured PRNCs. Therefore, our present results suggested that OGD and reperfusion PRNCs might induce myocyte injury by elevating the AVP expression in PRNCs. The ability of DHI to reinstate AVP level may be one of the mechanisms of its brain and heart co-protection effects. PMID:27107944

  18. Inducible nitric-oxide synthase attenuates vasopressin-dependent Ca2+ signaling in rat hepatocytes

    OpenAIRE

    Patel, S.; Gaspers, L. D.; Boucherie, S.; Memin, E.; Stellato, K. A.; Guillon, G; Combettes, L; Thomas, A P

    2002-01-01

    Increases in both Ca2+ and nitric oxide levels are vital for a variety of cellular processes; however, the interaction between these two crucial messengers is not fully understood. Here, we demonstrate that expression of inducible nitric-oxide synthase in hepatocytes, in response to inflammatory mediators, dramatically attenuates Ca2+ signaling by the inositol 1,4,5-trisphosphate-forming hormone, vasopressin. The inhibitory effects of induction were reversed by nitric oxide inhibitors and mim...

  19. Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1α in ischemic kidney: the role of nitric oxide

    Directory of Open Access Journals (Sweden)

    Mahfoudh-Boussaid Asma

    2012-01-01

    Full Text Available Abstract Background Although recent studies indicate that renal ischemic preconditioning (IPC protects the kidney from ischemia-reperfusion (I/R injury, the precise protective mechanism remains unclear. In the current study, we investigated whether early IPC could upregulate hypoxia inducible transcription factor-1α (HIF-1α expression and could reduce endoplasmic reticulum (ER stress after renal I/R and whether pharmacological inhibition of nitric oxide (NO production would abolish these protective effects. Methods Kidneys of Wistar rats were subjected to 60 min of warm ischemia followed by 120 min of reperfusion (I/R group, or to 2 preceding cycles of 5 min ischemia and 5 min reperfusion (IPC group, or to intravenously injection of NG-nitro-L-arginine methylester (L-NAME, 5 mg/kg 5 min before IPC (L-NAME+IPC group. The results of these experimental groups were compared to those of a sham-operated group. Sodium reabsorption rate, creatinine clearance, plasma lactate dehydrogenase (LDH activity, tissues concentrations of malonedialdehyde (MDA, HIF-1α and nitrite/nitrate were determined. In addition, Western blot analyses were performed to identify the amounts of Akt, endothelial nitric oxide synthase (eNOS and ER stress parameters. Results IPC decreased cytolysis, lipid peroxidation and improved renal function. Parallely, IPC enhanced Akt phosphorylation, eNOS, nitrite/nitrate and HIF-1α levels as compared to I/R group. Moreover, our results showed that IPC increased the relative amounts of glucose-regulated protein 78 (GRP78 and decreased those of RNA activated protein kinase (PKR-like ER kinase (PERK, activating transcription factor 4 (ATF4 and TNF-receptor-associated factor 2 (TRAF2 as judged to I/R group. However, pre treatment with L-NAME abolished these beneficial effects of IPC against renal I/R insults. Conclusion These findings suggest that early IPC protects kidney against renal I/R injury via reducing oxidative and ER stresses

  20. Arsenic Attenuation By Oxidized Aquifer Sediments in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Stollenwerk, K.G.; Breit, G.N.; Welch, A.H.; Yount, J.C.; Whitney, J.W.; Foster, A.L.; Uddin, M.N.; Majumder, R.K.; Ahmed, N.; /Geological Survey, Denver /Geological

    2007-07-13

    Recognition of arsenic (As) contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As. Pumping-induced infiltration of high-As groundwater could eventually cause As concentrations in these aquifers to increase. This study investigates the adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. A shallow, chemically-reducing aquifer at this site extends to a depth of 50 m and has maximum As concentrations in groundwater of 900 {micro}g/L. At depths greater than 50 m, geochemical conditions are more oxidizing and groundwater has < 5 {micro}g/L As. There is no thick layer of clay at this site to inhibit vertical transport of groundwater. Arsenite [As(III)] is the dominant oxidation state in contaminated groundwater; however, data from laboratory batch experiments show that As(III) is oxidized to arsenate [As(V)] by manganese (Mn) minerals that are present in the oxidized sediment. Thus, the long-term viability of the deeper aquifers as a source of water supply is likely to depend on As(V) adsorption. The adsorption capacity of these sediments is a function of the oxidation state of As and the concentration of other solutes that compete for adsorption sites. Arsenite that was not oxidized did adsorb, but to a much lesser extent than As(V). Phosphate (P) caused a substantial decrease in As(V) adsorption. Increasing pH and concentrations of silica (Si) had lesser effects on As(V) adsorption. The effect of bicarbonate (HCO{sub 3}) on As(V) adsorption was negligible. Equilibrium constants for adsorption of As(V), As(III), P, Si, HCO3, and H were determined from the experimental data and a quantitative model developed. Oxidation of As(III) was modeled with a first-order rate constant. This model was used to successfully simulate As(V) adsorption in the presence of multiple competing solutes. Results

  1. Arsenic attenuation by oxidized aquifer sediments in Bangladesh

    Science.gov (United States)

    Stollenwerk, K.G.; Breit, G.N.; Welch, A.H.; Yount, J.C.; Whitney, J.W.; Foster, A.L.; Uddin, M.N.; Majumder, R.K.; Ahmed, N.

    2007-01-01

    Recognition of arsenic (As) contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As. Pumping-induced infiltration of high-As groundwater could eventually cause As concentrations in these aquifers to increase. This study investigates the adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. A shallow, chemically-reducing aquifer at this site extends to a depth of 50??m and has maximum As concentrations in groundwater of 900????g/L. At depths greater than 50??m, geochemical conditions are more oxidizing and groundwater has < 5????g/L As. There is no thick layer of clay at this site to inhibit vertical transport of groundwater. Arsenite [As(III)] is the dominant oxidation state in contaminated groundwater; however, data from laboratory batch experiments show that As(III) is oxidized to arsenate [As(V)] by manganese (Mn) minerals that are present in the oxidized sediment. Thus, the long-term viability of the deeper aquifers as a source of water supply is likely to depend on As(V) adsorption. The adsorption capacity of these sediments is a function of the oxidation state of As and the concentration of other solutes that compete for adsorption sites. Arsenite that was not oxidized did adsorb, but to a much lesser extent than As(V). Phosphate (P) caused a substantial decrease in As(V) adsorption. Increasing pH and concentrations of silica (Si) had lesser effects on As(V) adsorption. The effect of bicarbonate (HCO3) on As(V) adsorption was negligible. Equilibrium constants for adsorption of As(V), As(III), P, Si, HCO3, and H were determined from the experimental data and a quantitative model developed. Oxidation of As(III) was modeled with a first-order rate constant. This model was used to successfully simulate As(V) adsorption in the presence of multiple competing solutes. Results from these

  2. A procyanidin type A trimer from cinnamon extract attenuates glial cell swelling and the reduction in glutamate uptake following ischemic injury in vitro

    Science.gov (United States)

    Dietary polyphenols exert neuroprotective effects in ischemic injury. The protective effects of a procyanidin type A trimer (trimer 1) isolated from a water soluble cinnamon extract (CE) were investigated on key features of ischemic injury including cell swelling, increased free radical production, ...

  3. Cocoa intake attenuates oxidative stress associated with rat adjuvant arthritis

    OpenAIRE

    Ramos Romero, Sara; Pérez-Cano, Francisco J.; Ramiro Puig, Emma; Franch i Masferrer, Àngels; Castell, Margarida

    2012-01-01

    Cocoa contains flavonoids with antioxidant properties. The aim of this study was to ascertain the effect of cocoa intake on oxidative stress associated with a model of chronic inflammation such as adjuvant arthritis. Female Wistar rats were fed with a 5 or 10% cocoa enriched diet or were given p.o. a quercetin suspension every other day for 10 days. Arthritis was induced by a heat killed Mycobacterium butyricum suspension. Reactive oxygen species (ROS) produced by macrophages, and splenic sup...

  4. Limb ischemic preconditioning protects endothelium from oxidative stress by enhancing nrf2 translocation and upregulating expression of antioxidases.

    Directory of Open Access Journals (Sweden)

    Min Chen

    Full Text Available Remote ischemic preconditioning is often performed by limb ischemic preconditioning (LIPC, which has been demonstrated to be beneficial to various cells, including endothelial cells. The mechanisms underlying the protection have not been well clarified. The present study was designed to observe the effects of sera derived from rats after LIPC on human umbilical vein endothelial cells (HUVECs injured by hydrogen peroxide (H2O2 -induced oxidative stress and explore the involvement of redox state in the protection. Incubation with 1 mM H2O2 for 2 h induced a significant reduction in HUVECs' viability with increased production of malondialdehyde (MDA and reactive oxygen species (ROS. Preincubation with early preconditioning serum (EPS or delayed preconditioning serum (DPS derived from rats subjected to LIPC alleviated these changes. Both EPS and DPS increased the nuclear translocation of transcription factor nuclear factor E2-related factor 2 (Nrf2 and the expression of antioxidases. The protective effects of EPS and DPS were blocked neither by MEK/ERK inhibitors U0126 nor by PI3K/Akt inhibitors LY294002. In conclusion, the present study provides the evidence that LIPC protects the HUVECs from H2O2-induced injury by, at least partially, enhancement of Nrf2 translocation and upregulation of antioxidases via signaling pathways independent of MEK/ERK and PI3K/Akt.

  5. Attenuation of Oxidative Stress of Erythrocytes by Plant-Derived Flavonoids, Orientin and Luteolin

    Directory of Open Access Journals (Sweden)

    Fang An

    2016-01-01

    Full Text Available Erythrocytes are easy to be injured by oxidative stress in their lifespan. Although there are several chemicals such as vitamin C (VC that would be able to reduce oxidative stress, natural herbal products still remain an interesting research area. The current study investigated the effects of two plant-derived flavonoids, orientin and luteolin, on erythrocytes and their possible mechanisms. This experiment was divided into nine groups, which were normal group, model group, VC control group, and treated groups with different doses of orientin and luteolin (10, 20, and 40 μg/mL, respectively. Hemolysis rate was determined by spectrophotometry. Antioxidative enzyme and products were evaluated by different methods. Erythrocyte cell surface and cellular structure were observed with scanning or transmission electron microscope, respectively. Oxidative stress induced significant increase in hemolysis rate of erythrocytes. Orientin or luteolin ameliorated hemolysis of erythrocytes in oxidative stress in a dose-dependent manner. Both orientin and luteolin reduced oxidative products and increased antioxidative enzyme activities. Moreover, orientin and luteolin attenuated oxidative stress induced damage of erythrocyte cell surface morphology and cellular structure. In conclusion, orientin and luteolin could protect human erythrocytes from oxidative damage by attenuating oxidative stress, protecting antioxidative enzyme activities, and preserving integrity of erythrocyte structure.

  6. Ginkgo Biloba Extract Attenuates Oxidative Stress and Apoptosis in Mouse Cochlear Neural Stem Cells.

    Science.gov (United States)

    Wang, Congpin; Wang, Bin

    2016-05-01

    In the organ or Corti, oxidative stress could result in damage to the hearing, and neural stem cells (NSCs) hold great therapeutic potential in treating hearing loss. Ginkgo biloba extract (GBE) has been widely shown to exhibit anti-oxidative and anti-apoptotic effects in treatments of neural damage and disorder. Using hydrogen peroxide to induced oxidative stress as a model, we investigated the anti-oxidative role of GBE in isolated mouse cochlear NSCs. GBE treatment was found to significantly promote viability of NSCs, by markedly attenuating hydrogen peroxide induced oxidative stress. In addition, this anti-oxidative function of GBE was also able to prevent mitochondrial depolarization and subsequent apoptosis. Moreover, the anti-apoptotic role of GBE was mediated by antagonizing the intrinsic mitochondrial apoptotic pathway, where GBE could reverse the changes in key intrinsic apoptosis pathway factors including Bcl-2, Bax, and Caspase-3. Our data provided the first report on the beneficial role of GBE in protecting cochlear NSCs, by attenuating oxidative stress triggered intrinsic apoptosis, therefore supporting the potential therapeutic value of GBE in preventing oxidative stress-related hearing loss. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26799058

  7. Nordihydroguaiaretic Acid Attenuates the Oxidative Stress-Induced Decrease of CD33 Expression in Human Monocytes

    Directory of Open Access Journals (Sweden)

    Silvia Guzmán-Beltrán

    2013-01-01

    Full Text Available Nordihydroguaiaretic acid (NDGA is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs. Oxidative stress was induced by iodoacetate (IAA or hydrogen peroxide (H2O2 and was evaluated using reactive oxygen species (ROS production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H2O2 in human MNs. It was also shown that NDGA (20 μM attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H2O2. These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  8. Curcumin Attenuates Methotrexate-Induced Hepatic Oxidative Damage in Rats

    International Nuclear Information System (INIS)

    In the present study, we have addressed the ability of curcumin to suppress MTX-induced liver damage. Hepatotoxicity was induced by injection of a single dose of MTX (20 mg/kg I.P.). MTX challenge induced liver damage that was well characterized histopathologically and biochemically. MTX increased relative liver/body weight ratio. Histologically, MTX produced fatty changes in hepatocytes and sinusoidal lining cells, mild necrosis and inflammation. Biochemically, the test battery entailed elevated activities of serum ALT and AST. Liver activities of superoxide dismutase (SOD), catalase (CAT) and level of reduced glutathione (GSH), were notably reduced, while lipid peroxidation, expressed as malondialdhyde (MDA) level was significantly increased. Administration of curcumin (100mg/kg, I.P.) once daily for 5 consecutive days after MTX challenge mitigated the injurious effects of MTX and ameliorated all the altered biochemical parameters. These results showed that administration of curcumin decreases MTX-induced liver damage probably via regulation of oxidant/anti-oxidant balance. In conclusion, the present study indicates that curcumin may be of therapeutic benefit against MTX-cytotoxicity.

  9. High Oxidative Capacity Due to Chronic Exercise Training Attenuates Lipid-Induced Insulin Resistance

    OpenAIRE

    Phielix, Esther; Meex, Ruth; Ouwens, D Margriet; Sparks, Lauren; Hoeks, Joris; Schaart, Gert; Moonen-Kornips, Esther; Hesselink, Matthijs K. C.; Schrauwen, Patrick

    2012-01-01

    Fat accumulation in skeletal muscle combined with low mitochondrial oxidative capacity is associated with insulin resistance (IR). Endurance-trained athletes, characterized by a high oxidative capacity, have elevated intramyocellular lipids, yet are highly insulin sensitive. We tested the hypothesis that a high oxidative capacity could attenuate lipid-induced IR. Nine endurance-trained (age = 23.4 ± 0.9 years; BMI = 21.2 ± 0.6 kg/m2) and 10 untrained subjects (age = 21.9 ± 0.9 years; BMI = 22...

  10. Near infrared electrochromic variable optical attenuator based on ruthenium complex and polycrystalline tungsten oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jidong; WU Xianguo; YU Hongan; YAN Donghang; WANG Zhiyuan

    2005-01-01

    A near infrared (NIR) electrochromic attenuator based on a dinuclear ruthenium complex and polycrystalline tungsten oxide was fabricated and characterized. The results show that the use of the NIR-absorbing ruthenium complex as a counter electrode material can improve the device performance. By replacing the visible electrochromic ferrocene with the NIR-absorbing ruthenium complex, the optical attenuation at 1550 nm was enhanced from 19.1 to 30.0 dB and color efficiency also increased from 29.2 to 121.2 cm2/C.

  11. Ischemic Stroke

    Science.gov (United States)

    A stroke is a medical emergency. There are two types - ischemic and hemorrhagic. Ischemic stroke is the most common type. It is usually ... are at risk for having a more serious stroke. Symptoms of stroke are Sudden numbness or weakness ...

  12. Ischemic Stroke

    Science.gov (United States)

    ... can help you. Learn more What Is Stroke? Hemorrhagic Stroke Ischemic Stroke What is TIA? Stroke Facts Recognizing ... Stroke Survey Faces of Stroke What is stroke? Hemorrhagic stroke Ischemic stroke What is TIA? Stroke facts I ...

  13. Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis.

    Science.gov (United States)

    Sun, Jing; Ling, Zongxin; Wang, Fangyan; Chen, Wenqian; Li, Haixiao; Jin, Jiangtao; Zhang, Huiqing; Pang, Mengqi; Yu, Junjie; Liu, Jiaming

    2016-02-01

    Probiotics participate actively in the neuropsychiatric disorders. However, their roles on ischemic stroke remain unclear. This study aims to determine whether Clostridium butyricum (C. butyricum) could attenuate cerebral ischemia/reperfusion (I/R) injury and its possible mechanisms. Male ICR mice were intragastrically pretreated with C. butyricum for 2 successive weeks, and then subjected to cerebral I/R injury induced by the bilateral common carotid artery occlusion (BCCAO) for 20min. After 24h of the reperfusion, neurological deficit scores were evaluated. Histopathological changes of the hippocampus neurons were observed using Hematoxylin and eosin (H&E) and TUNEL staining. Malondialdehyde (MDA) contents and superoxide dismutase (SOD) activities in the brain were detected. The expression of Caspase-3, Bax and Bcl-2 were investigated by Western blot and immunohistochemistry analysis. The butyrate contents in the brain were determined. Our results showed that cerebral I/R injury led to neurological deficit, increased levels of Caspase-3 and Bax and decreased Bcl-2/Bax ratio. C. butyricum significantly improved neurological deficit, relieved histopathologic change, decreased MDA contents and increased SOD activities in the I/R injury mice. After C. butyricum pretreatment, the expression of Caspase-3 and Bax were significantly decreased, the Bcl-2/Bax ratio was significantly increased, and butyrate contents in the brain were significantly increased. These findings suggested that C. butyricum is able to exert neuroprotective effects against I/R injury mice through anti-oxidant and anti-apoptotic mechanisms, and reversing decrease of butyrate contents in the brain might be involved in its neuroprotection. PMID:26733300

  14. Sex-dependent mitochondrial respiratory impairment and oxidative stress in a rat model of neonatal hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Demarest, Tyler G; Schuh, Rosemary A; Waddell, Jaylyn; McKenna, Mary C; Fiskum, Gary

    2016-06-01

    Increased male susceptibility to long-term cognitive deficits is well described in clinical and experimental studies of neonatal hypoxic-ischemic encephalopathy. While cell death signaling pathways are known to be sexually dimorphic, a sex-dependent pathophysiological mechanism preceding the majority of secondary cell death has yet to be described. Mitochondrial dysfunction contributes to cell death following cerebral hypoxic-ischemia (HI). Several lines of evidence suggest that there are sex differences in the mitochondrial metabolism of adult mammals. Therefore, this study tested the hypothesis that brain mitochondrial respiratory impairment and associated oxidative stress is more severe in males than females following HI. Maximal brain mitochondrial respiration during oxidative phosphorylation was two-fold more impaired in males following HI. The endogenous antioxidant glutathione was 30% higher in the brain of sham females compared to males. Females also exhibited increased glutathione peroxidase (GPx) activity following HI injury. Conversely, males displayed a reduction in mitochondrial GPx4 protein levels and mitochondrial GPx activity. Moreover, a 3-4-fold increase in oxidative protein carbonylation was observed in the cortex, perirhinal cortex, and hippocampus of injured males, but not females. These data provide the first evidence for sex-dependent mitochondrial respiratory dysfunction and oxidative damage, which may contribute to the relative male susceptibility to adverse long-term outcomes following HI. Lower basal GSH levels, lower post-hypoxic mitochondrial glutathione peroxidase (mtGPx) activity, and mitochondrial glutathione peroxidase 4 (mtGPx4) protein levels may contribute to the susceptibility of the male brain to oxidative damage and mitochondrial dysfunction following neonatal hypoxic-ischemia (HI). Treatment of male pups with acetyl-L-carnitine (ALCAR) protects against the loss of mtGPx activity, mtGPx4 protein, and increases in protein

  15. Inducible nitric-oxide synthase attenuates vasopressin-dependent Ca2+ signaling in rat hepatocytes.

    Science.gov (United States)

    Patel, Sandip; Gaspers, Lawrence D; Boucherie, Sylviane; Memin, Elisabeth; Stellato, Kerri Anne; Guillon, Gilles; Combettes, Laurent; Thomas, Andrew P

    2002-09-13

    Increases in both Ca(2+) and nitric oxide levels are vital for a variety of cellular processes; however, the interaction between these two crucial messengers is not fully understood. Here, we demonstrate that expression of inducible nitric-oxide synthase in hepatocytes, in response to inflammatory mediators, dramatically attenuates Ca(2+) signaling by the inositol 1,4,5-trisphosphate-forming hormone, vasopressin. The inhibitory effects of induction were reversed by nitric oxide inhibitors and mimicked by prolonged cyclic GMP elevation. Induction was without effect on Ca(2+) signals in response to AlF(4)(-) or inositol 1,4,5-trisphosphate, indicating that phospholipase C activation and release of Ca(2+) from inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores were not targets for nitric oxide inhibition. Vasopressin receptor levels, however, were dramatically reduced in induced cultures. Our data provide a possible mechanism for hepatocyte dysfunction during chronic inflammation. PMID:12097323

  16. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze, E-mail: mfkhan@utmb.edu

    2013-11-15

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  17. Chitosan oligosaccharides attenuates oxidative-stress related retinal degeneration in rats.

    Directory of Open Access Journals (Sweden)

    I-Mo Fang

    Full Text Available This study investigated the therapeutic potential and mechanisms of chitosan oligosaccharides (COS for oxidative stress-induced retinal diseases. Retinal oxidative damage was induced in Sprague-Dawley rats by intravitreal injection of paraquat (PQ. Low-dose (5 mg/kg or high-dose (10 mg/kg COS or PBS was intragastrically given for 14 days after PQ injection. Electroretinograms were performed to determine the functionality of the retinas. The surviving neurons in the retinal ganglion cell layer and retinal apoptosis were determined by counting Neu N-positive cells in whole-mounted retinas and TUNEL staining, respectively. The generation of reactive oxygen species (ROS was determined by lucigenin- and luminol-enhanced chemiluminescence. Retinal oxidative damages were assessed by staining with nitrotyrosine, acrolein, and 8-hydroxy-2'-deoxyguanosine (8-OHdG. Immunohistochemical studies were used to demonstrate the expression of nuclear factor-kappa B (NF-κB p65 in retinas. An in vitro study using RGC-5 cells was performed to verify the results. We demonstrated COS significantly enhanced the recovery of retinal function, preserved inner retinal thickness, and decreased retinal neurons loss in a dose-dependent manner. COS administration demonstrated anti-oxidative effects by reducing luminol- and lucigenin-dependent chemiluminenscense levels and activating superoxide dismutase and catalase, leading to decreased retinal apoptosis. COS markedly reduced retinal NF-κB p65. An in vitro study demonstrated COS increased IκB expression, attenuated the increase of p65 and thus decreased NF-κB/DNA binding activity in PQ-stimulated RGC-5 cells. In conclusion, COS attenuates oxidative stress-induced retinal damages, probably by decreasing free radicals, maintaining the activities of anti-oxidative enzymes, and inhibiting the activation of NF-κB.

  18. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China)

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  19. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    International Nuclear Information System (INIS)

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  20. Reduction of Oxidative Stress Attenuates Lipoapoptosis Exacerbated by Hypoxia in Human Hepatocytes

    Directory of Open Access Journals (Sweden)

    Sang Youn Hwang

    2015-02-01

    Full Text Available Chronic intermittent hypoxia, a characteristic of obstructive sleep apnea (OSA, is associated with the progression of simple hepatic steatosis to necroinflammatory hepatitis. We determined whether inhibition of a hypoxia-induced signaling pathway could attenuate hypoxia-exacerbated lipoapoptosis in human hepatocytes. The human hepatocellular carcinoma cell line (HepG2 was used in this study. Palmitic acid (PA-treated groups were used for two environmental conditions: Hypoxia (1% O2 and normoxia (20% O2. Following the treatment, the cell viability was determined by the 3,4-(5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium salt (MTS assay, and the mechanism of lipoapoptosis was evaluated by Western blotting. Hypoxia exacerbated the suppression of hepatocyte growth induced by palmitic acid via activation of mitochondrial apoptotic pathways as a result of endoplasmic reticulum (ER and oxidative stresses. Ammonium pyrrolidine dithiocarbamate, a scavenger of reactive oxygen species, attenuated the hypoxia-exacerbated lipoapoptosis in hepatocytes, whereas glycerol, which reduces ER stress, did not. This may have been because inhibition of oxidative stress decreases the expression of pro-apoptotic proteins, such as caspase 9 and cytochrome c. These results suggested that modulation of apoptotic signaling pathways activated by oxidative stress can aid in identifying novel therapeutic strategies for the treatment of nonalcoholic steatohepatitis (NASH with OSA. Further in vivo studies are necessary to understand the pathophysiologic mechanism of NASH with OSA and to prove the therapeutic effect of the modulation of the signaling pathways.

  1. Curcumin protects mitochondria from oxidative damage and attenuates apoptosis in cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Yuan-gui ZHU; Xiao-chun CHEN; Zhi-zhe CHEN; Yu-qi ZENG; Guang-bin SHI; Yan-hua SU; Xu PENG

    2004-01-01

    AIM: To investigate the effect of curcumin on tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in rat cortical neurons and to explore the possible mechanism. METHODS: Primary cultured rat cortical neurons were performed in vitro and cell viability was measured by MTT assay. DNA fragmentation was used to evaluate cell apoptosis. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (△ψm) was determined by flow cytometric assay. Cellular glutathione (GSH) content was measured by spectrophotometer. Bcl-2family proteins, cytochrome c, cleaved caspase-3, and poly (ADP-ribose) polymerase (PARP) were detected by Western blot. RESULTS: Exposure of tBHP 100μmol/L to neurons for 60 min resulted in Aψm loss and cytochrome c release from mitochondria and subsequent activation of caspase-3 and PARP cleavation, and cell apoptosis.After removal of tBHP and then further treatment with curcumin (2.5-20μmol/L) for 18 h, curcumin abrogated △ψm loss and cytochrome c release, blocked activation of caspase 3, and altered the expression of Bcl-2 family.Further curcumin treatment also prevented cellular GSH and decreased intracellular ROS generation markedly.Curcumin eventually attenuated tBHP-induced apoptosis in cortical neurons. CONCLUSION: Curcumin may attenuate oxidative damages in cortical neurons by reducing intracellular production of ROS and protecting mitochondria from oxidative damage.

  2. Melatonin attenuates hypertension-induced renal injury partially through inhibiting oxidative stress in rats.

    Science.gov (United States)

    Qiao, Yu-Feng; Guo, Wen-Juan; Li, Lu; Shao, Shan; Qiao, Xi; Shao, Jin-Jin; Zhang, Qiong; Li, Rong-Shan; Wang, Li-Hua

    2016-01-01

    The aim of the present study was to investigate the protective effects of melatonin (MLT) on hypertension-induced renal injury and identify its mechanism of action. Twenty-four healthy male Wistar rats were divided into a sham control group (n=8), which was subjected to sham operation and received vehicle treatment (physiological saline intraperitoneally at 0.1 ml/100 g), a vehicle group (n=8), which was subjected to occlusion of the left renal artery and vehicle treatment, and the MLT group (n=8), which was subjected to occlusion of the left renal artery and treated with MLT (10 mg/kg/day). Pathological features of the renal tissues were determined using hematoxylin and eosin staining and Masson staining. Urine protein, serum creatinine (Scr), superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. Immunohistochemical analysis was performed to determine the expression of heme oxygenase‑1 (HO‑1), intercellular adhesion molecule‑1 (ICAM‑1), inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS). Furthermore, reverse transcription polymerase chain reaction was conducted to determine the mRNA expression of HO‑1, ICAM‑1, eNOS and iNOS. A marked decrease in blood pressure was noticed in the MLT group at week 4 compared with that of the vehicle group (Ptreatment attenuated the infiltration of inflammatory cells and oedema/atrophy of renal tubules. MLT attenuated hypertension-induced increases in urine protein excretion, serum creatinine and MDA as well as decreases in SOD activity in renal tissues. Furthermore, MLT attenuated hypertension-induced increases in iNOS and ICAM‑1 as well as decreases in eNOS and HO‑1 expression at the mRNA and protein level. In conclusion, the results of the present study indicated that MLT had protective roles in hypertension‑induced renal injury. Its mechanism of action is, at least in part, associated with the inhibition of oxidative stress. PMID:26531807

  3. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hajizadeh

    2014-03-01

    Full Text Available Background: It has been proposed that oxidative stress may contribute to the development of testicular abnormalities in diabetes. Morus alba leaf extract (MAE has hypoglycemic and antioxidant properties. We, therefore, explored the impact of the administration of MAE on steroidogenesis in diabetic rats. Methods: To address this hypothesis, we measured the serum level of glucose, insulin, and free testosterone (Ts as well as oxidative stress parameters (including glutathione peroxidase, glutathione reductase, total antioxidant capacity, and malondialdehyde in the testis of control, untreated and MAE-treated (1 g/day/kg diabetic rats. In order to determine the likely mechanism of MAE action on Ts levels, we analyzed the quantitative mRNA expression level of the two key steroidogenic proteins, namely steroid acute regulatory protein (StAR and P450 cholesterol side-chain cleavage enzyme (P450scc, by real-time PCR. Results: The MAE-treated diabetic rats had significantly decreased glucose levels and on the other hand increased insulin and free Ts levels than the untreated diabetic rats. In addition, the administration of MAE to the diabetic rats restored the oxidative stress parameters toward control. Induction of diabetes decreased testicular StAR mRNA expression by 66% and MAE treatment enhanced mRNA expression to the same level of the control group. However, the expression of P540scc was not significantly decreased in the diabetic group as compared to the control group. Conclusion: Our findings indicated that MAE significantly increased Ts production in the diabetic rats, probably through the induction of StAR mRNA expression levels. Administration of MAE to experimental models of diabetes can effectively attenuate oxidative stress-mediated testosterone depletion. Please cite this article as: Hajizadeh MR, Eftekhar E, Zal F, Jaffarian A, Mostafavi-Pour Z. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in

  4. Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Eleni Dokoutsidou

    2009-05-01

    Full Text Available Stroke is currently the third leading cause of death, ranking after heart disease and cancer and causes 10% of deaths, worldwide.Aim: The aim of the present study was to review the literature about the types of stroke and the risk factors for ischemic stroke.The methodoly that was followed included bibliography review from the both the research and the review literature of Greek and international data base which referred to ischemic stroke.Results: Stroke, according to its’ underlying etiology, can be classified into two major categories, ischemic and hemorrhagic. 20% of stroke are of hemorrhagic type, whereas 80% are of ischemic type. Although, ischemic stroke is the most common type, its’ etiology differs. Ischemic stroke is categorized in thrombotic, embolic, lacunar, unknown etiology, transient and due to systematic low blood pressure. In the literature is cited that risk factors for stroke are classified in non-modifiable and modifiable. Non-modifiable risk factors are age, gender, ethnicity and heredity. The most important modifiable risk factors for stroke are high blood pressure and atrial fibrillation. Other modifiable risk factors include high blood cholesterol levels, diabetes mellitus, cigarette smoking (active and passive, carotid artery stenosis, heavy alcohol consumption, drug abuse, lack of physical activity, obesity and unhealthy diet.Conclusions: As it is supported by published evidence, ischemic stroke is of higher incidence compared to hemorrhagic stroke. Risk factor modification remains as the principal aspect of care for ischemic stroke prevention.

  5. Expression of inducible nitric oxide synthase is increased in patients with heart failure due to ischemic disease

    Directory of Open Access Journals (Sweden)

    Ferreiro C.R.

    2004-01-01

    Full Text Available The objective of the present study was to determine the relationship between nitric oxide synthases (NOS and heart failure in cardiac tissue from patients with and without cardiac decompensation. Right atrial tissue was excised from patients with coronary artery disease (CAD and left ventricular ejection fraction (LVEF 60% (N = 10 during cardiac surgery. NOS activity was measured by the conversion of L-[H³]-arginine to L-[H³]-citrulline. Gene expression was quantified by the competitive reverse transcription-polymerase chain reaction. Both endothelial NOS (eNOS activity and expression were significantly reduced in failing hearts compared to non-failing hearts: 0.36 ± 0.18 vs 1.51 ± 0.31 pmol mg-1 min-1 (P < 0.0001 and 0.37 ± 0.08 vs 0.78 ± 0.09 relative cDNA absorbance at 320 nm (P < 0.0001, respectively. In contrast, inducible NOS (iNOS activity and expression were significantly higher in failing hearts than in non-failing hearts: 4.00 ± 0.90 vs 1.54 ± 0.65 pmol mg-1 min-1 (P < 0.0001 and 2.19 ± 0.27 vs 1.43 ± 0.13 cDNA absorbance at 320 nm (P < 0.0001, respectively. We conclude that heart failure down-regulates both eNOS activity and expression in cardiac tissue from patients with LVEF <35%. In contrast, iNOS activity and expression are increased in failing hearts and may represent an alternative mechanism for nitric oxide production in heart failure due to ischemic disease.

  6. Oxidative Stress Attenuates Lipid Synthesis and Increases Mitochondrial Fatty Acid Oxidation in Hepatoma Cells Infected with Hepatitis C Virus.

    Science.gov (United States)

    Douglas, Donna N; Pu, Christopher Hao; Lewis, Jamie T; Bhat, Rakesh; Anwar-Mohamed, Anwar; Logan, Michael; Lund, Garry; Addison, William R; Lehner, Richard; Kneteman, Norman M

    2016-01-22

    Cytopathic effects are currently believed to contribute to hepatitis C virus (HCV)-induced liver injury and are readily observed in Huh7.5 cells infected with the JFH-1 HCV strain, manifesting as apoptosis highly correlated with growth arrest. Reactive oxygen species, which are induced by HCV infection, have recently emerged as activators of AMP-activated protein kinase. The net effect is ATP conservation via on/off switching of metabolic pathways that produce/consume ATP. Depending on the scenario, this can have either pro-survival or pro-apoptotic effects. We demonstrate reactive oxygen species-mediated activation of AMP-activated kinase in Huh7.5 cells during HCV (JFH-1)-induced growth arrest. Metabolic labeling experiments provided direct evidence that lipid synthesis is attenuated, and β-oxidation is enhanced in these cells. A striking increase in nuclear peroxisome proliferator-activated receptor α, which plays a dominant role in the expression of β-oxidation genes after ligand-induced activation, was also observed, and we provide evidence that peroxisome proliferator-activated receptor α is constitutively activated in these cells. The combination of attenuated lipid synthesis and enhanced β-oxidation is not conducive to lipid accumulation, yet cellular lipids still accumulated during this stage of infection. Notably, the serum in the culture media was the only available source for polyunsaturated fatty acids, which were elevated (2-fold) in the infected cells, implicating altered lipid import/export pathways in these cells. This study also provided the first in vivo evidence for enhanced β-oxidation during HCV infection because HCV-infected SCID/Alb-uPA mice accumulated higher plasma ketones while fasting than did control mice. Overall, this study highlights the reprogramming of hepatocellular lipid metabolism and bioenergetics during HCV infection, which are predicted to impact both the HCV life cycle and pathogenesis. PMID:26627833

  7. EFFECT OF CYTOPROTECTION ON THE OXIDATIVE PROCESSES AND ENDOTHELIAL FUNCTION IN ELDERLY PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    A. V. Shabalin

    2006-01-01

    Full Text Available Aim. To investigate the effects of cytoprotection with mildronate (Grindex, Latvia on oxidative processes and endothelial function in elderly patients with ischemic heart disease (IHD. Material and methods. 117 elderly (upwards 60 y.o. patients with IHD were included into controlled study. They were also suffering from heart failure II-III functional class (according to NYHA classification and from arterial hypertension (AH. All patients were randomized into 2 groups: 1 67 patients (75,4±0,5 y. o. were treated with mildronate 500 mg/day simultaneously with basic therapy during 12 weeks (the main group and 2 50 patients (74,0±0,6 y. o. were treated only with basic therapy during 12 weeks (the compare group. Total cholesterol (CH, triglycerides (TG, low density lipoprotein cholesterol (LDL, high density lipoprotein CH (HDL, LDL antioxidant potential (concentration of α-tocopherol and retinol in LDL, initial level of lipid peroxidation (LPO products in LDL, LDL resistance to oxidation and blood level of NO metabolites were determined before and after 4 and 12 weeks of the therapy. Results. Mildronate did not have any effect on the blood lipid profile in elderly patients with IHD. The initial level of LPO products in LDL was decreased by 33% and LDL resistance to oxidation was increased by 26% in the main group after 12 weeks of therapy in comparison with the same parameters before the study and in comparison with control group of patients (p<0,05. The blood level of NO metabolites was 1,4 fold higher in the main group of patients after 12 weeks of therapy in comparison with the same parameters before therapy and in comparison with control group of patients (p<0,05. More prominent growth of LDL resistance to oxidation after 12 week therapy with mildronate was revealed in men than in women, in patients with angina II class than in patients with angina III class, in patients with heart failure II class than in patients with heart failure III class

  8. Moringa oleifera Attenuates Oxidative Stress in STZ-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Sushma G

    2013-01-01

    Full Text Available Hyperglycemia in diabetes has been associated with increased formation of reactive oxygen species (ROS. Imbalance between formation and detoxification of ROS in biological systems exerts oxidative stress. Oxidative stress damages tissue compounds like DNA, protein and lipid. Moringa oleifera is a rich dietary source of natural antioxidants. The aim of this study is to evaluate the effect of leaves, stems and pods extracts of M. oleifera on lipid peroxidation, protein oxidation and antioxidant power in plasma as well as in liver in streptozotocin (STZ induced diabetic rats. At the end of the treatment period, the levels of plasma glucose, HbA1C and Thiobarbituric acid reactive substances (TBARS increased and free radical absorption power (FRAP decreased in diabetic rats compared to normal rats. Administration of Moringa leaves extract (MLE, Moringa stems extract (MSE and Moringa pods extract (MPE for 4 weeks caused significant decrease in plasma glucose, HbA1C, plasma and liver TBARS, and an increase in levels of FRAP (both plasma and liver in diabetic treated rats compared to untreated-diabetic rats. Phytochemical screening of the extracts revealed the presence of flavonoids, tannins, saponins, phenolic compounds and reducing sugar. Flavonoid and phenolics rich extracts MLE and MPE showed better attenuation of oxidative stress in diabetic rats. The trend was MLE>MPE>MSE. The present study confirms potential efficacy of M. oleifera in suppressing oxidative stress induced by hyperglycemia in rats.

  9. Hesperidin Attenuates Ultraviolet B-Induced Apoptosis by Mitigating Oxidative Stress in Human Keratinocytes

    Science.gov (United States)

    Hewage, Susara Ruwan Kumara Madduma; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Han, Xia; Oh, Min Chang; Jung, Uhee; Kim, In Gyu; Hyun, Jin Won

    2016-01-01

    Human skin cells undergo pathophysiological processes via generation of reactive oxygen species (ROS) upon excessive exposure to ultraviolet B (UVB) radiation. This study investigated the ability of hesperidin (C28H34O15) to prevent apoptosis due to oxidative stress generated through UVB-induced ROS. Hesperidin significantly scavenged ROS generated by UVB radiation, attenuated the oxidation of cellular macromolecules, established mitochondrial membrane polarization, and prevented the release of cytochrome c into the cytosol. Hesperidin downregulated expression of caspase-9, caspase-3, and Bcl-2-associated X protein, and upregulated expression of B-cell lymphoma 2. Hesperidin absorbed wavelengths of light within the UVB range. In summary, hesperidin shielded human keratinocytes from UVB radiation-induced damage and apoptosis via its antioxidant and UVB absorption properties. PMID:26797112

  10. Fluvastatin attenuates diabetes-induced cardiac sympathetic neuropathy in association with a decrease in oxidative stress

    International Nuclear Information System (INIS)

    Increased oxidative stress might contribute to diabetic (DM) neuropathy, so the effects of long-term treatment with fluvastatin (FL) on myocardial oxidative stress and cardiac sympathetic neural function were investigated in diabetic rats. FL (10 mg·kg-1·day-1, DM-FL) or vehicle (DM-VE) was orally administered for 2 weeks to streptozotocin-induced DM rats. Cardiac oxidative stress was determined by myocardial 8-iso-prostaglandin F2α (PGF2α) and nicotinamide adenine dinucleotide (NADPH) oxidase subunit p22phox mRNA expression. Sympathetic neural function was quantified by autoradiography using 131I- and 125I-metaiodobenzylguanidine (MIBG). FL did not affect plasma glucose levels but remarkably decreased PGF2α levels compared with DM-VE rats (13.8±9.2 vs 175.0±93.9 ng/g tissue), although PGF2α levels were below the detection limit in non-DM rats. FL significantly reduced myocardial p22phox mRNA expression. Cardiac 131I-MIBG uptake was lower in DM-VE rats than in non-DM rats, but the decrease was attenuated in DM-FL rats (1.31±0.08, 1.88±0.22, and 1.58±0.18%kg dose/g, respectively, P<0.01). Cardiac MIBG clearance was not affected by the induction of DM or by FL, indicating that the reduced MIBG uptake in DM rats might result from impaired neural function. FL ameliorates cardiac sympathetic neural dysfunction in DM rats in association with attenuation of increased myocardial oxidative stress. (author)

  11. Curcumin Mediated Attenuation of Carbofuran Induced Oxidative Stress in Rat Brain

    Science.gov (United States)

    Jaiswal, Sunil Kumar; Sharma, Ashish; Gupta, Vivek Kumar; Singh, Rakesh Kumar; Sharma, Bechan

    2016-01-01

    The indiscriminate use of carbofuran to improve crop productivity causes adverse effects in nontargets including mammalian systems. The objective of this study was to evaluate carbofuran induced oxidative stress in rat brain stem and its attenuation by curcumin, a herbal product. Out of 6 groups of rats, 2 groups received two different doses of carbofuran, that is, 15 and 30% of LD50, respectively, for 30 days. Out of these, 2 groups receiving same doses of carbofuran were pretreated with curcumin (100 mg/kg body weight). The levels of antioxidants, TBARS, GSH, SOD, catalase, and GST were determined in rat brain stem. The 2 remaining groups served as placebo and curcumin treated, respectively. The data suggested that carbofuran at different doses caused significant alterations in the levels of TBARS and GSH in dose dependent manner. The TBARS and GSH contents were elevated. The activities of SOD, catalase, and GST were significantly inhibited at both doses of carbofuran. The ratio of P/A was also found to be sharply increased. The pretreatment of curcumin exhibited significant protection from carbofuran induced toxicity. The results suggested that carbofuran at sublethal doses was able to induce oxidative stress in rat brain which could be attenuated by curcumin. PMID:27213055

  12. Curcumin Mediated Attenuation of Carbofuran Induced Oxidative Stress in Rat Brain.

    Science.gov (United States)

    Jaiswal, Sunil Kumar; Sharma, Ashish; Gupta, Vivek Kumar; Singh, Rakesh Kumar; Sharma, Bechan

    2016-01-01

    The indiscriminate use of carbofuran to improve crop productivity causes adverse effects in nontargets including mammalian systems. The objective of this study was to evaluate carbofuran induced oxidative stress in rat brain stem and its attenuation by curcumin, a herbal product. Out of 6 groups of rats, 2 groups received two different doses of carbofuran, that is, 15 and 30% of LD50, respectively, for 30 days. Out of these, 2 groups receiving same doses of carbofuran were pretreated with curcumin (100 mg/kg body weight). The levels of antioxidants, TBARS, GSH, SOD, catalase, and GST were determined in rat brain stem. The 2 remaining groups served as placebo and curcumin treated, respectively. The data suggested that carbofuran at different doses caused significant alterations in the levels of TBARS and GSH in dose dependent manner. The TBARS and GSH contents were elevated. The activities of SOD, catalase, and GST were significantly inhibited at both doses of carbofuran. The ratio of P/A was also found to be sharply increased. The pretreatment of curcumin exhibited significant protection from carbofuran induced toxicity. The results suggested that carbofuran at sublethal doses was able to induce oxidative stress in rat brain which could be attenuated by curcumin. PMID:27213055

  13. Curcumin Mediated Attenuation of Carbofuran Induced Oxidative Stress in Rat Brain

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Jaiswal

    2016-01-01

    Full Text Available The indiscriminate use of carbofuran to improve crop productivity causes adverse effects in nontargets including mammalian systems. The objective of this study was to evaluate carbofuran induced oxidative stress in rat brain stem and its attenuation by curcumin, a herbal product. Out of 6 groups of rats, 2 groups received two different doses of carbofuran, that is, 15 and 30% of LD50, respectively, for 30 days. Out of these, 2 groups receiving same doses of carbofuran were pretreated with curcumin (100 mg/kg body weight. The levels of antioxidants, TBARS, GSH, SOD, catalase, and GST were determined in rat brain stem. The 2 remaining groups served as placebo and curcumin treated, respectively. The data suggested that carbofuran at different doses caused significant alterations in the levels of TBARS and GSH in dose dependent manner. The TBARS and GSH contents were elevated. The activities of SOD, catalase, and GST were significantly inhibited at both doses of carbofuran. The ratio of P/A was also found to be sharply increased. The pretreatment of curcumin exhibited significant protection from carbofuran induced toxicity. The results suggested that carbofuran at sublethal doses was able to induce oxidative stress in rat brain which could be attenuated by curcumin.

  14. Effect of crocin on nitric oxide synthase expression in post-ischemic isolated rat heart

    OpenAIRE

    Mahdi Esmaeilizadeh; Mahin Dianat; Mohammad Badavi; Alireza Samarbaf-zadeh; Bahareh Naghizadeh

    2015-01-01

    Objective: Oxidative stress damages cells and brings about the pathogenesis of ischemia/reperfusion injury. This study was carried out to investigate the preconditioning and cardio protective potential effects of crocin and vitamin E by the eNOS and iNOS express gene in ischemia/reperfusion in rats. Material & Methods: Male rats were divided into seven groups, namely: sham, control group and experimental groups treated with crocin(10, 20 and 40 mg/kg), vitamin E (100 mg/kg) and combination of...

  15. Sildenafil Attenuates Inflammation and Oxidative Stress in Pelvic Ganglia Neurons after Bilateral Cavernosal Nerve Damage

    Directory of Open Access Journals (Sweden)

    Leah A. Garcia

    2014-09-01

    Full Text Available Erectile dysfunction is a common complication for patients undergoing surgeries for prostate, bladder, and colorectal cancers, due to damage of the nerves associated with the major pelvic ganglia (MPG. Functional re-innervation of target organs depends on the capacity of the neurons to survive and switch towards a regenerative phenotype. PDE5 inhibitors (PDE5i have been successfully used in promoting the recovery of erectile function after cavernosal nerve damage (BCNR by up-regulating the expression of neurotrophic factors in MPG. However, little is known about the effects of PDE5i on markers of neuronal damage and oxidative stress after BCNR. This study aimed to investigate the changes in gene and protein expression profiles of inflammatory, anti-inflammatory cytokines and oxidative stress related-pathways in MPG neurons after BCNR and subsequent treatment with sildenafil. Our results showed that BCNR in Fisher-344 rats promoted up-regulation of cytokines (interleukin- 1 (IL-1 β, IL-6, IL-10, transforming growth factor β 1 (TGFβ1, and oxidative stress factors (Nicotinamide adenine dinucleotide phosphate (NADPH oxidase, Myeloperoxidase (MPO, inducible nitric oxide synthase (iNOS, TNF receptor superfamily member 5 (CD40 that were normalized by sildenafil treatment given in the drinking water. In summary, PDE5i can attenuate the production of damaging factors and can up-regulate the expression of beneficial factors in the MPG that may ameliorate neuropathic pain, promote neuroprotection, and favor nerve regeneration.

  16. Phenolic Rich Extract from Clinacanthus nutans Attenuates Hyperlipidemia-Associated Oxidative Stress in Rats

    Science.gov (United States)

    Sarega, Nadarajan; Imam, Mustapha Umar; Ooi, Der-Jiun; Chan, Kim Wei; Md Esa, Norhaizan; Zawawi, Norhasnida; Ismail, Maznah

    2016-01-01

    Clinacanthus nutans is used as traditional medicine in Asia but there are limited scientific studies to support its use. In this study, the stem and leaf of C. nutans were extracted using solvents of differing polarities, and their antioxidant capacities were determined using multiple antioxidant assays. The water and aqueous methanolic leaf extracts were further fractionated and their antioxidant capacities and phenolic compositions were tested. Furthermore, the efficacies of the water and aqueous methanolic leaf extracts were tested against hyperlipidemia-induced oxidative stress in rats. Serum and hepatic antioxidant and oxidative stress markers were tested after feeding the rats with high fat diet together with the extracts or simvastatin for 7 weeks. The results indicated that both leaf extracts attenuated oxidative stress through increasing serum antioxidant enzymes activity and upregulating the expression of hepatic antioxidant genes. Multiple phenolic compounds were detected in the extracts and fractions of C. nutans, although protocatechuic acid was one of the most abundant and may have contributed significantly towards the bioactivities of the extracts. However, synergistic effects of different phenolics may have contributed to the overall bioactivities. C. nutans can be a good source of functional ingredients for the management of oxidative stress-related diseases. PMID:26881026

  17. Phenolic Rich Extract from Clinacanthus nutans Attenuates Hyperlipidemia-Associated Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    Nadarajan Sarega

    2016-01-01

    Full Text Available Clinacanthus nutans is used as traditional medicine in Asia but there are limited scientific studies to support its use. In this study, the stem and leaf of C. nutans were extracted using solvents of differing polarities, and their antioxidant capacities were determined using multiple antioxidant assays. The water and aqueous methanolic leaf extracts were further fractionated and their antioxidant capacities and phenolic compositions were tested. Furthermore, the efficacies of the water and aqueous methanolic leaf extracts were tested against hyperlipidemia-induced oxidative stress in rats. Serum and hepatic antioxidant and oxidative stress markers were tested after feeding the rats with high fat diet together with the extracts or simvastatin for 7 weeks. The results indicated that both leaf extracts attenuated oxidative stress through increasing serum antioxidant enzymes activity and upregulating the expression of hepatic antioxidant genes. Multiple phenolic compounds were detected in the extracts and fractions of C. nutans, although protocatechuic acid was one of the most abundant and may have contributed significantly towards the bioactivities of the extracts. However, synergistic effects of different phenolics may have contributed to the overall bioactivities. C. nutans can be a good source of functional ingredients for the management of oxidative stress-related diseases.

  18. Phenolic Rich Extract from Clinacanthus nutans Attenuates Hyperlipidemia-Associated Oxidative Stress in Rats.

    Science.gov (United States)

    Sarega, Nadarajan; Imam, Mustapha Umar; Ooi, Der-Jiun; Chan, Kim Wei; Md Esa, Norhaizan; Zawawi, Norhasnida; Ismail, Maznah

    2016-01-01

    Clinacanthus nutans is used as traditional medicine in Asia but there are limited scientific studies to support its use. In this study, the stem and leaf of C. nutans were extracted using solvents of differing polarities, and their antioxidant capacities were determined using multiple antioxidant assays. The water and aqueous methanolic leaf extracts were further fractionated and their antioxidant capacities and phenolic compositions were tested. Furthermore, the efficacies of the water and aqueous methanolic leaf extracts were tested against hyperlipidemia-induced oxidative stress in rats. Serum and hepatic antioxidant and oxidative stress markers were tested after feeding the rats with high fat diet together with the extracts or simvastatin for 7 weeks. The results indicated that both leaf extracts attenuated oxidative stress through increasing serum antioxidant enzymes activity and upregulating the expression of hepatic antioxidant genes. Multiple phenolic compounds were detected in the extracts and fractions of C. nutans, although protocatechuic acid was one of the most abundant and may have contributed significantly towards the bioactivities of the extracts. However, synergistic effects of different phenolics may have contributed to the overall bioactivities. C. nutans can be a good source of functional ingredients for the management of oxidative stress-related diseases. PMID:26881026

  19. Omega-3 Polyunsaturated Fatty Acids Attenuate Radiation-induced Oxidative Stress and Organ Dysfunctions in Rats

    International Nuclear Information System (INIS)

    The Aim of the present study was to determine the possible protective effect of omega-3 polyunsaturated fatty acids (omega-3 PUFA) against radiation-induced oxidative stress associated with organ dysfunctions. Omega-3 PUFA was administered by oral gavages to male albino rats at a dose of 0.4 g/ kg body wt daily for 4 weeks before whole body γ-irradiation with 4Gy. Significant increase of serum lipid peroxidation end product as malondialdehyde (MDA) along with the reduction in blood glutathione (GSH) content, superoxide dismutase (SOD) and glutathione peroxidase (GPX) enzyme activities were recorded on 3rd and 8th days post-irradiation. Oxidative stress was associated with a significant increase in lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) enzyme activities, markers of heart damage, significant increases in uric acid, urea and creatinine levels, markers of kidney damage, significant increases of alkaline phosphatase (ALP) and transaminases (ALT and AST) activities, markers of liver damage. Moreover significant increases in total cholesterol and triglycerides levels were recorded. Omega-3 PUFA administration pre-irradiation significantly attenuated the radiation-induced oxidative stress and organ dysfunctions tested in this study. It could be concluded that oral supplementation of omega-3 PUFA before irradiation may afford protection against radiation-induced oxidative stress and might preserve the integrity of tissue functions of the organs under investigations.

  20. Ursodeoxycholic Acid Ameliorated Diabetic Nephropathy by Attenuating Hyperglycemia-Mediated Oxidative Stress.

    Science.gov (United States)

    Cao, Aili; Wang, Li; Chen, Xia; Guo, Hengjiang; Chu, Shuang; Zhang, Xuemei; Peng, Wen

    2016-08-01

    Oxidative stress has a great role in diabetes and diabetes induced organ damage. Endoplasmic reticulum (ER) stress is involved in the onset of diabetic nephropathy. We hypothesize that ER stress inhibition could protect against kidney injury through anti-oxidative effects. To test whether block ER stress could attenuate oxidative stress and improve diabetic nephropathy in vivo and in vitro, the effect of ursodeoxycholic acid (UDCA), an ER stress inhibitor, on spontaneous diabetic nephropathy db/db mice, ER stress inducer or high glucose-triggered podocytes were studied. Mice were assigned to 3 groups (n=6 per group): control group (treated with vehicle), db/db group (treated with vehicle), and UDCA group (db/db mice treated with 40 mg/kg/d UDCA). After 8 weeks treatment, mice were sacrificed. Blood and kidneys were collected for the assessment of albumin/creatinine ratio, blood urea nitrogen (BUN), serum creatinine (SCr), insulin, total cholesterol, triglyceride, low density lipoprotein cholesterol (LDL-C), oxidized LDL-C, high density lipoprotein cholesterol (HDL-C), non-esterified fatty acid (NEFA), superoxide dismutase (SOD), catalase (CAT), methane dicarboxylic aldehyde (MDA), the expressions of SOD isoforms and glutathione peroxidase 1, as well as histopathological examination. In addition, generation of reactive oxygen species (ROS) was detected by 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence. The results showed that UDCA alleviated renal ER stress-evoked cell death, oxidative stress, renal dysfunction, ROS production, upregulated the expression of Bcl-2 and suppressed Bax in vivo and in vitro. Hence, inhibition ER stress diminishes oxidative stress and exerts renoprotective effects. PMID:27193377

  1. By Improving Regional Cortical Blood Flow, Attenuating Mitochondrial Dysfunction and Sequential Apoptosis Galangin Acts as a Potential Neuroprotective Agent after Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2012-11-01

    Full Text Available Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS. These effects were consistent with improvements in the membrane potential level (Dym, membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose polymerase (PARP. All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.

  2. Intermittent selective clamping improves rat liver regeneration by attenuating oxidative and endoplasmic reticulum stress.

    Science.gov (United States)

    Ben Mosbah, I; Duval, H; Mbatchi, S-F; Ribault, C; Grandadam, S; Pajaud, J; Morel, F; Boudjema, K; Compagnon, P; Corlu, A

    2014-01-01

    Intermittent clamping of the portal trial is an effective method to avoid excessive blood loss during hepatic resection, but this procedure may cause ischemic damage to liver. Intermittent selective clamping of the lobes to be resected may represent a good alternative as it exposes the remnant liver only to the reperfusion stress. We compared the effect of intermittent total or selective clamping on hepatocellular injury and liver regeneration. Entire hepatic lobes or only lobes to be resected were subjected twice to 10 min of ischemia followed by 5 min of reperfusion before hepatectomy. We provided evidence that the effect of intermittent clamping can be damaging or beneficial depending to its mode of application. Although transaminase levels were similar in all groups, intermittent total clamping impaired liver regeneration and increased apoptosis. In contrast, intermittent selective clamping improved liver protein secretion and hepatocyte proliferation when compared with standard hepatectomy. This beneficial effect was linked to better adenosine-5'-triphosphate (ATP) recovery, nitric oxide production, antioxidant activities and endoplasmic reticulum adaptation leading to limit mitochondrial damage and apoptosis. Interestingly, transient and early chaperone inductions resulted in a controlled activation of the unfolded protein response concomitantly to endothelial nitric oxide synthase, extracellular signal-regulated kinase-1/2 (ERK1/2) and p38 MAPK activation that favors liver regeneration. Endoplasmic reticulum stress is a central target through which intermittent selective clamping exerts its cytoprotective effect and improves liver regeneration. This procedure could be applied as a powerful protective modality in the field of living donor liver transplantation and liver surgery. PMID:24603335

  3. Sensorineural hearing loss and ischemic injury: Development of animal models to assess vascular and oxidative effects.

    Science.gov (United States)

    Olivetto, E; Simoni, E; Guaran, V; Astolfi, L; Martini, A

    2015-09-01

    Hearing loss may be genetic, associated with aging or exposure to noise or ototoxic substances. Its aetiology can be attributed to vascular injury, trauma, tumours, infections or autoimmune response. All these factors could be related to alterations in cochlear microcirculation resulting in hypoxia, which in turn may damage cochlear hair cells and neurons, leading to deafness. Hypoxia could underlie the aetiology of deafness, but very few data about it are presently available. The aim of this work is to develop animal models of hypoxia and ischemia suitable for study of cochlear vascular damage, characterizing them by electrophysiology and gene/protein expression analyses. The effects of hypoxia in infarction were mimicked in rat by partial permanent occlusion of the left coronary artery, and those of ischemia in thrombosis by complete temporary carotid occlusion. In our models both hypoxia and ischemia caused a small but significant hearing loss, localized at the cochlear apex. A slight induction of the coagulation cascade and of oxidative stress pathways was detected as cell survival mechanism, and cell damages were found on the cuticular plate of outer hair cells only after carotid ischemia. Based on these data, the two developed models appear suitable for in vivo studies of cochlear vascular damage. PMID:25987500

  4. Ischemic Stroke

    OpenAIRE

    Eleni Dokoutsidou; Konstantina Antoniou

    2009-01-01

    Stroke is currently the third leading cause of death, ranking after heart disease and cancer and causes 10% of deaths, worldwide.Aim: The aim of the present study was to review the literature about the types of stroke and the risk factors for ischemic stroke.The methodoly that was followed included bibliography review from the both the research and the review literature of Greek and international data base which referred to ischemic stroke.Results: Stroke, according to its’ underlying etio...

  5. Propolis attenuates oxidative injury in brain and lung of nitric oxide synthase inhibited rats

    Directory of Open Access Journals (Sweden)

    Zeliha Selamoglu-Talas

    2015-10-01

    Full Text Available Background: The blocking of nitric oxide synthase (NOS activity may reason vasoconstriction with formation of reactive oxygen species. Propolis has biological and pharmacological properties, such as antioxidant. The aim of this study was to examine the antioxidant effects of propolis which natural product on biochemical parameters in brain and lung tissues of acute nitric oxide synthase inhibited rats by Nω-nitro-L-arginine methyl ester (L-NAME.Methods: Rats have been received L-NAME (40 mg/kg, intraperitoneally, NOS inhibitor for 15 days to produce hypertension and propolis (200mg/kg, by gavage the lastest 5 of 15 days.Results: There  were  the  increase  (P<0.001  in  the  malondialdehyde  levels  in  the  L-NAME treatment groups when compared to control rats, but the decrease (P<0.001 in the catalase activities in both brain and lung tissues. There were statistically changes (P<0.001 in these parameters of L-NAME+propolis treated rats as compared with L-NAME-treated group.Conclusion: The application of L-NAME to the Wistar rats resulted in well developed oxidative stress. Also, propolis may influence endothelial NO production. Identification of such compounds and characterisation of their cellular actions may increase our knowledge of the regulation of endothelial NO production and could provide valuable clues for the prevention or treatment of hypertensive diseases and oxidative stress.

  6. Measurement of attenuation coefficient, effective atomic number and electron density of oxides of lanthanides by using simplified ATM-method

    International Nuclear Information System (INIS)

    Highlights: • Measurement of linear attenuation coefficient by simplified ATM method for the oxides of Lanthanides. • Atomic parameters are calculated from linear attenuation coefficients. • Geometrical setup has been validated with metallic targets of uniform thickness. • Experimental results are in good agreement with theoretical results within error limits. - Abstract: The linear and mass attenuation coefficient of non-uniform thick samples of oxides of lanthanide (Pr6O11, Nd2O3, Gd2O3, Tb4O7, Ho2O3 and Er2O3) has been measured by gamma ray photons of energy 59.54 keV obtained from 100 mCi radioactive source of 241Am. Advanced Two Media (ATM) methods Gupta et al. (2013) is simplified by considering air as first medium and metallic foil as second medium. In the present measurements this consideration simplifies the mathematical complexities and laboratory work to find the attenuation coefficients of non-uniform thick samples. The values of attenuation coefficient were then used to calculate effective atomic numbers (Zeff), interaction cross-section (σ) and effective electron densities (Neff) of lanthanide oxides. The method is validated by measuring linear/mass attenuation coefficient and other parameters for Mo, Ag, Sn, W and Pb of uniform thickness. The measured results are compared with the theoretical values from WinXcom Gerward et al. (2001). It is found that measured values are in agreement within 2% of theoretical results. The measurement of linear attenuation coefficient, effective atomic numbers (Zeff), interaction cross-section and effective electron densities (Neff) enhances the understanding of material characteristics. Presently studied materials i.e. oxides of Lanthanide are widely used as glass colouring agent and in electronic sensing devices

  7. Measurement of attenuation coefficient, effective atomic number and electron density of oxides of lanthanides by using simplified ATM-method

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurinderjeet; Gupta, Manoj Kumar, E-mail: mkgupta.sliet@gmail.com; Dhaliwal, A.S.; Kahlon, K.S.

    2015-01-15

    Highlights: • Measurement of linear attenuation coefficient by simplified ATM method for the oxides of Lanthanides. • Atomic parameters are calculated from linear attenuation coefficients. • Geometrical setup has been validated with metallic targets of uniform thickness. • Experimental results are in good agreement with theoretical results within error limits. - Abstract: The linear and mass attenuation coefficient of non-uniform thick samples of oxides of lanthanide (Pr{sub 6}O{sub 11}, Nd{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, Tb{sub 4}O{sub 7}, Ho{sub 2}O{sub 3} and Er{sub 2}O{sub 3}) has been measured by gamma ray photons of energy 59.54 keV obtained from 100 mCi radioactive source of {sup 241}Am. Advanced Two Media (ATM) methods Gupta et al. (2013) is simplified by considering air as first medium and metallic foil as second medium. In the present measurements this consideration simplifies the mathematical complexities and laboratory work to find the attenuation coefficients of non-uniform thick samples. The values of attenuation coefficient were then used to calculate effective atomic numbers (Z{sub eff}), interaction cross-section (σ) and effective electron densities (N{sub eff}) of lanthanide oxides. The method is validated by measuring linear/mass attenuation coefficient and other parameters for Mo, Ag, Sn, W and Pb of uniform thickness. The measured results are compared with the theoretical values from WinXcom Gerward et al. (2001). It is found that measured values are in agreement within 2% of theoretical results. The measurement of linear attenuation coefficient, effective atomic numbers (Z{sub eff}), interaction cross-section and effective electron densities (N{sub eff}) enhances the understanding of material characteristics. Presently studied materials i.e. oxides of Lanthanide are widely used as glass colouring agent and in electronic sensing devices.

  8. PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2015-01-01

    Full Text Available The cyclic AMP-dependent protein kinase (PKA, which activates prosurvival signaling proteins, has been implicated in the expression of long-term potentiation and hippocampal long-term memory. It has come to light that H89 commonly known as the PKA inhibitor have diverse roles in the nervous system that are unrelated to its role as a PKA inhibitor. We have investigated the role of H89 in ischemic and reperfusion injury. First, we examined the expression of postsynaptic density protein 95 (PSD95, microtubule-associated protein 2 (MAP2, and synaptophysin in mouse brain after middle cerebral artery occlusion injury. Next, we examined the role of H89 pretreatment on the expression of brain-derived neurotrophic factor (BDNF, PSD95, MAP2, and the apoptosis regulators Bcl2 and cleaved caspase-3 in cultured neuroblastoma cells exposed to hypoxia and reperfusion injury. In addition, we investigated the alteration of AKT activation in H89 pretreated neuroblastoma cells under hypoxia and reperfusion injury. The data suggest that H89 may contribute to brain recovery after ischemic stroke by regulating neuronal death and proteins related to synaptic plasticity.

  9. Cyclovirobuxine D Attenuates Doxorubicin-Induced Cardiomyopathy by Suppression of Oxidative Damage and Mitochondrial Biogenesis Impairment

    Directory of Open Access Journals (Sweden)

    Qian Guo

    2015-01-01

    Full Text Available The clinical application of doxorubicin (DOX is compromised by its cardiac toxic effect. Cyclovirobuxine D (CVB-D is a steroid alkaloid extracted from a traditional Chinese medicine, Buxus microphylla. Our results showed that CVB-D pretreatment markedly attenuated DOX-induced cardiac contractile dysfunction and histological alterations. By using TUNEL assay and western blot analysis, we found that CVB-D pretreatment reduced DOX-induced apoptosis of myocardial cells and mitochondrial cytochrome c release to cytosol. CVB-D pretreatment ameliorated DOX-induced cardiac oxidative damage including lipid peroxidation and protein carbonylation and a decrease in the ratio of reduced glutathione (GSH to oxidized glutathione (GSSG. Moreover, CVB-D was found to prevent DOX-induced mitochondrial biogenesis impairment as evidenced by preservation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α and nuclear respiratory factor 1 (NRF1, as well as mitochondrial DNA copy number. These findings demonstrate that CVB-D protects against DOX-induced cardiomyopathy, at least in part, by suppression of oxidative damage and mitochondrial biogenesis impairment.

  10. Trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    Full Text Available Trimetazidine, a piperazine derivative used as an anti-anginal agent, improves myocardial glucose utilization through inhibition of fatty acid metabolism. The present study was designed to investigate whether trimetazidine has the protective effects against smoking-induced left ventricular remodeling in rats. In this study, Wistar rats were randomly divided into 3 groups: smoking group (exposed to cigarette smoke, trimetazidine group (exposed to cigarette smoke and treated with trimetazidine, and control group. The echocardiographic and morphometric data indicated that trimetazidine has protective effects against smoking-induced left ventricular remodeling. Oxidative stress was evaluated by detecting malondialdehyde, superoxide dismutase, and glutathione peroxidase in the supernatant of left ventricular tissue. Cardiomyocyte apoptotic rate was determined by flow cytometry with Annexin V/PI staining. Gene expression and serum levels of inflammatory markers, including interleukin-1β, interleukin-6, and tumor necrosis factor-α, were deteced by quantitative real-time PCR and enzyme-linked immunosorbent assay. Our results suggested that trimetazidine could significantly reduce smoking-induced oxidative stress, apoptosis, and inflammation. In conclusion, our study demonstrates that trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation.

  11. Vetiver oil (Java) attenuates cisplatin-induced oxidative stress, nephrotoxicity and myelosuppression in Swiss albino mice.

    Science.gov (United States)

    Sinha, Sonali; Jothiramajayam, Manivannan; Ghosh, Manosij; Jana, Aditi; Chatterji, Urmi; Mukherjee, Anita

    2015-07-01

    Clinical efficacy of the widely used anticancer drug cisplatin is limited due to its adverse side effects in normal tissues mediated by oxidative stress. This study was aimed to investigate the protective effects of vetiver acetate oil, Java (VO) against cisplatin-induced toxicity in Swiss albino mice. The ameliorating potential was evaluated by orally priming the animals with VO at doses 5, 10 or 20 mg/kg bw for 7 days prior to cisplatin treatment. Acute toxicity in mice was induced by injecting cisplatin (3 mg/kg bw) intraperitoneally for 5 consecutive days. Significant attenuation of renal toxicity was confirmed by histopathological examination, lowered levels of serum blood urea nitrogen, creatinine and reduced DNA damage. VO also compensated deficits in the renal antioxidant system. VO intervention significantly inhibited DNA damage, clastogenic effects, and cell cycle arrest in the bone marrow cells of mice. Hematological parameters indicated attenuation of cisplatin-induced myelosuppression. Overall, this study provides for the first time that VO has a protective role in the abatement of cisplatin-induced toxicity in mice which may be attributed to its antioxidant activity. PMID:25910835

  12. Green Tea Extract Ameliorates Learning and Memory Deficits in Ischemic Rats via Its Active Component Polyphenol Epigallocatechin-3-gallate by Modulation of Oxidative Stress and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Kuo-Jen Wu

    2012-01-01

    Full Text Available Ischemic stroke results in brain damage and behavioral deficits including memory impairment. Protective effects of green tea extract (GTex and its major functional polyphenol (−-epigallocatechin gallate (EGCG on memory were examined in cerebral ischemic rats. GTex and EGCG were administered 1 hr before middle cerebral artery ligation in rats. GTex, EGCG, and pentoxifylline (PTX significantly improved ishemic-induced memory impairment in a Morris water maze test. Malondialdehyde (MDA levels, glutathione (GSH, and superoxide dismutase (SOD activity in the cerebral cortex and hippocampus were increased by long-term treatment with GTex and EGCG. Both compounds were also associated with reduced cerebral infraction breakdown of MDA and GSH in the hippocampus. In in vitro experiments, EGCG had anti-inflammatory effects in BV-2 microglia cells. EGCG inhibited lipopolysaccharide- (LPS- induced nitric oxide production and reduced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV-2 cells. GTex and its active polyphenol EGCG improved learning and memory deficits in a cerebral ischemia animal model and such protection may be due to the reduction of oxidative stress and neuroinflammation.

  13. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Meurs Herman

    2005-03-01

    Full Text Available Abstract Background Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the modulation of neuronal nitric oxide synthase (nNOS-mediated relaxation induced by inhibitory nonadrenergic noncholinergic (iNANC nerve stimulation. Methods Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz-induced relaxation was measured in tracheal preparations precontracted to 30% with histamine, in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to the EFS-induced relaxation was assessed by the nonselective NOS inhibitor L-NNA (0.1 mM, while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor nor-NOHA (10 μM. Furthermore, the role of substrate availability to nNOS in EFS-induced relaxation was measured in the presence of various concentrations of exogenous L-arginine. Results EFS induced a frequency-dependent relaxation, ranging from 6.6 ± 0.8% at 0.5 Hz to 74.6 ± 1.2% at 16 Hz, which was inhibited with the NOS inhibitor L-NNA by 78.0 ± 10.5% at 0.5 Hz to 26.7 ± 7.7% at 8 Hz (P Conclusion The results indicate that endogenous arginase activity attenuates iNANC nerve-mediated airway relaxation by inhibition of NO generation, presumably by limiting L-arginine availability to nNOS.

  14. Intraarterial administration of norcantharidin attenuates ischemic stroke damage in rodents when given at the time of reperfusion: novel uses of endovascular capabilities.

    Science.gov (United States)

    Khan, Imad S; Odom, Mitchell; Ehtesham, Moneeb; Colvin, Daniel; Quarles, C Chad; McLaughlin, BethAnn; Singer, Robert J

    2016-07-01

    OBJECT Matrix metalloprotease-9 (MMP-9) plays a critical role in infarct progression, blood-brain barrier (BBB) disruption, and vasogenic edema. While systemic administration of MMP-9 inhibitors has shown neuroprotective promise in ischemic stroke, there has been little effort to incorporate these drugs into endovascular modalities. By modifying the rodent middle cerebral artery occlusion (MCAO) model to allow local intraarterial delivery of drugs, one has the ability to mimic endovascular delivery of therapeutics. Using this model, the authors sought to maximize the protective potential of MMP-9 inhibition by intraarterial administration of an MMP-9 inhibitor, norcantharidin (NCTD). METHODS Spontaneously hypertensive rats were subjected to 90-minute MCAO followed immediately by local intraarterial administration of NCTD. The rats' neurobehavioral performances were scored according to the ladder rung walking test results and the Garcia neurological test for as long as 7 days after stroke. MRI was also conducted 24 hours after the stroke to assess infarct volume and BBB disruption. At the end of the experimental protocol, rat brains were used for active MMP-9 immunohistochemical analysis to assess the degree of MMP-9 inhibition. RESULTS NCTD-treated rats showed significantly better neurobehavioral scores for all days tested. MR images also depicted significantly decreased infarct volumes and BBB disruption 24 hours after stroke. Inhibition of MMP-9 expression in the ischemic region was depicted on immunohistochemical analysis, wherein treated rats showed decreased active MMP-9 staining compared with controls. CONCLUSIONS Intraarterial NCTD significantly improved outcome when administered at the time of reperfusion in a spontaneously hypertensive rat stroke model. This study suggests that supplementing endovascular revascularization with local neuroprotective drug therapy may be a viable therapeutic strategy. PMID:26544777

  15. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide.

    Science.gov (United States)

    Siegert, Stefanie; Huang, Hsin-Ying; Yang, Chen-Ying; Scarpellino, Leonardo; Carrie, Lucie; Essex, Sarah; Nelson, Peter J; Heikenwalder, Matthias; Acha-Orbea, Hans; Buckley, Christopher D; Marsland, Benjamin J; Zehn, Dietmar; Luther, Sanjiv A

    2011-01-01

    Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC) in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC) but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO) thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS) was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos(-/-) mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation. PMID:22110693

  16. Wogonin attenuates diabetic cardiomyopathy through its anti-inflammatory and anti-oxidative properties.

    Science.gov (United States)

    Khan, Shahzad; Zhang, Deling; Zhang, Yemin; Li, Mingxin; Wang, Changhua

    2016-06-15

    Among diabetic cardiovascular complications cardiomyopathy is major event which if not well controlled culminates in cardiac failure. Wogonin from the root of Scutellaria baicalensis Georgi has shown specific anti-diabetes bioactivity. However, its effect on diabetic complications remains unclear. The main purpose of this study is to investigate the potential effects of wogonin on diabetic cardiomyopathy and to figure out its underlying mechanism. We found that wogonin administration suppressed hyperglycemia, improved cardiac function, and mitigated cardiac fibrosis in STZ-induced diabetic mice. Wogonin supplementation also attenuated diabetic-induced cardiomyocyte apoptosis and necrosis. In addition, wogonin treatment exhibited the properties of anti-oxidative stress and anti-inflammation in STZ diabetic mice, evidenced by improved activities of anti-oxidases including SOD1/2 and CAT, decreased ROS and MDA production, suppressed expression of inflammation factors such as IL-1β, IL-6, TNFα, and PAI-1, and inhibited NF-κB signaling. These results suggested that wogonin potentially mitigate hyperglycemia-related cardiomyocyte impairment through inhibiting inflammation and oxidative stress. PMID:27013352

  17. Adenosine preconditioning attenuates hepatic reperfusion injury in the rat by preventing the down-regulation of endothelial nitric oxide synthase

    Science.gov (United States)

    Serracino-Inglott, Ferdinand; Virlos, Ioannis T; Habib, Nagy A; Williamson, Robin CN; Mathie, Robert T

    2002-01-01

    Background Previous work has suggested that in the liver, adenosine preconditioning is mediated by nitric oxide. Whether the endothelial isoform of nitric oxide synthase plays a part in this mechanism has however not yet been investigated. Methods Wistar rats were used (6 in each group) – Groups: (1) sham, (2) ischemia-reperfusion, (3) adenosine + ischemia-reperfusion, (4) endothelial isoform inhibitor + adenosine + ischemia-reperfusion. Results Using immunohistochemistry, this study has revealed a decrease in the expression of endothelial nitric oxide synthase following hepatic ischemia-reperfusion. This was prevented by adenosine pre-treatment. When an inhibitor of endothelial nitric oxide synthase was administered prior to adenosine pre-treatment, pre-conditioning did not occur despite normal expression of endothelial nitric oxide synthase. Conclusions These findings suggest that adenosine attenuates hepatic injury by preventing the downregulation of endothelial nitric oxide synthase that occurs during ischemia-reperfusion. PMID:12241560

  18. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    International Nuclear Information System (INIS)

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  19. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Kiyoshi [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Department of Neurosurgery, Omuta City General Hospital, 2-19-1 Takarazaka, Omuta-City, Fukuoka 836-8567 (Japan); Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Tancharoen, Salunya [Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Rd., Rajthevee Bangkok 10400 (Thailand); Morimoto, Yoko [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Matsuda, Fumiyo [Division of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8560 (Japan); Oyama, Yoko; Takenouchi, Kazunori [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Miura, Naoki [Laboratory of Veterinary Diagnostic Imaging, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); and others

    2009-07-24

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  20. Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats.

    Directory of Open Access Journals (Sweden)

    Naoki Tajiri

    Full Text Available We recently reported isolation of viable rat amniotic fluid-derived stem (AFS cells [1]. Here, we tested the therapeutic benefits of AFS cells in a rodent model of ischemic stroke. Adult male Sprague-Dawley rats received a 60-minute middle cerebral artery occlusion (MCAo. Thirty-five days later, animals exhibiting significant motor deficits received intravenous transplants of rat AFS cells or vehicle. At days 60-63 post-MCAo, significant recovery of motor and cognitive function was seen in stroke animals transplanted with AFS cells compared to vehicle-infused stroke animals. Infarct volume, as revealed by hematoxylin and eosin (H&E staining, was significantly reduced, coupled with significant increments in the cell proliferation marker, Ki67, and the neuronal marker, MAP2, in the dentate gyrus (DG [2] and the subventricular zone (SVZ of AFS cell-transplanted stroke animals compared to vehicle-infused stroke animals. A significantly higher number of double-labeled Ki67/MAP2-positive cells and a similar trend towards increased Ki67/MAP2 double-labeling were observed in the DG and SVZ of AFS cell-transplanted stroke animals, respectively, compared to vehicle-infused stroke animals. This study reports the therapeutic potential of AFS cell transplantation in stroke animals, possibly via enhancement of endogenous repair mechanisms.

  1. Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Zhenying Han

    Full Text Available Activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR has a neuro-protective effect on ischemic and hemorrhagic stroke. However, the underlying mechanism is not completely understood. We hypothesized that α-7 nAchR agonist protects brain injury after ischemic stroke through reduction of pro-inflammatory macrophages (M1 and oxidative stress. C57BL/6 mice were treated with PHA568487 (PHA, α-7 nAchR agonist, methyllycaconitine (MLA, nAchR antagonist, or saline immediately and 24 hours after permanent occlusion of the distal middle cerebral artery (pMCAO. Behavior test, lesion volume, CD68(+, M1 (CD11b(+/Iba1(+ and M2 (CD206/Iba1+ microglia/macrophages, and phosphorylated p65 component of NF-kB in microglia/macrophages were quantified using histological stained sections. The expression of M1 and M2 marker genes, anti-oxidant genes and nicotinamide adenine dinucleotide phosphate (NADPH oxidase were quantified using real-time RT-PCR. Compared to the saline-treated mice, PHA mice had fewer behavior deficits 3 and 7 days after pMCAO, and smaller lesion volume, fewer CD68(+ and M1 macrophages, and more M2 macrophages 3 and 14 days after pMCAO, whereas MLA's effects were mostly the opposite in several analyses. PHA increased anti-oxidant genes and NADPH oxidase expression associated with decreased phosphorylation of NF-kB p65 in microglia/macrophages. Thus, reduction of inflammatory response and oxidative stress play roles in α-7 nAchR neuro-protective effect.

  2. Minocycline suppresses oxidative stress and attenuates fetal cardiac myocyte apoptosis triggered by in utero cocaine exposure.

    Science.gov (United States)

    Sinha-Hikim, Indrani; Shen, Ruoqing; Nzenwa, Ify; Gelfand, Robert; Mahata, Sushil K; Sinha-Hikim, Amiya P

    2011-06-01

    This study investigates the molecular mechanisms by which minocycline, a second generation tetracycline, prevents cardiac myocyte death induced by in utero cocaine exposure. Timed mated pregnant Sprague-Dawley (SD) rats received one of the following treatments twice daily from embryonic (E) day 15-21 (E15-E21): (i) intraperitoneal (IP) injections of saline (control); (ii) IP injections of cocaine (15 mg/kg BW); and (iii) IP injections of cocaine + oral administration of 25 mg/kg BW of minocycline. Pups were killed on postnatal day 15 (P15). Additional pregnant dams received twice daily IP injections of cocaine (from E15-E21) + oral administration of a relatively higher (37.5 mg/kg BW) dose of minocycline. Minocycline treatment continued from E15 until the pups were sacrificed on P15. In utero cocaine exposure resulted in an increase in oxidative stress and fetal cardiac myocyte apoptosis through activation of c-Jun-NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK)-mediated mitochondria-dependent apoptotic pathway. Continued minocycline treatment from E15 through P15 significantly prevented oxidative stress, kinase activation, perturbation of BAX/BCL-2 ratio, cytochrome c release, caspase activation, and attenuated fetal cardiac myocyte apoptosis after prenatal cocaine exposure. These results demonstrate in vivo cardioprotective effects of minocycline in preventing fetal cardiac myocyte death after prenatal cocaine exposure. Given its proven clinical safety and ability to cross the placental barrier and enter into the fetal circulation, minocycline may be an effective therapy for preventing cardiac consequences of in utero cocaine exposure. PMID:21424555

  3. Edaravone attenuates brain damage in rats after acute CO poisoning through inhibiting apoptosis and oxidative stress.

    Science.gov (United States)

    Li, Qin; Bi, Ming Jun; Bi, Wei Kang; Kang, Hai; Yan, Le Jing; Guo, Yun-Liang

    2016-03-01

    Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P < 0.01). Basal expressions of HO-1 and Nrf-2 proteins were found in normal brain tissue. CO poisoning could activate HO-1/Nrf-2 pathway, start oxidative stress response. After the administration of Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P < 0.01). These findings suggest that Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 372-379, 2016

  4. Oxidation of HMGB1 causes attenuation of its pro-inflammatory activity and occurs during liver ischemia and reperfusion.

    Directory of Open Access Journals (Sweden)

    Anding Liu

    Full Text Available High mobility group box 1 (HMGB1 is a nuclear transcription factor. Once HMGB1 is released by damaged cells or activated immune cells, it acts as danger molecule and triggers the inflammatory signaling cascade. Currently, evidence is accumulating that posttranslational modifications such as oxidation may modulate the pro-inflammatory potential of danger signals. We hypothesized that oxidation of HMGB1 may reduce its pro-inflammatory potential and could take place during prolonged ischemia and upon reperfusion.Liver grafts were cold preserved for 24 h and flushed with saline in hourly intervals to collect the effluent. Liver grafts, cold-preserved for 6 h, were transplanted into syngeneic recipients to obtain serum and liver samples 24 h after initiation of reperfusion. Addition of the effluent to a macrophage culture induced the synthesis of tumor necrosis factor-alpha (TNF-α and interleukin (IL-6. The stimulatory activity of graft effluent was reduced after depletion of HMGB1 via immunoprecipitation. Oxidation of the effluent HMGB1 using H(2O(2 attenuated its stimulatory activity as well. Liver transplantation of cold preserved grafts caused HMGB1 translocation and release as determined by immunohistochemistry and ELISA-assay, respectively. Using Western blot with non-reducing conditions revealed the presence of oxidized HMGB1 in liver samples obtained after 12 h and in effluent samples after 16 h of cold preservation as well as in liver and serum samples obtained 24 h after reperfusion.These observations confirm that post-translational oxidation of HMGB1 attenuates its pro-inflammatory activity. Oxidation of HMGB1 as induced during prolonged ischemia and by reoxygenation during reperfusion in vivo might also attenuate its pro-inflammatory activity. Our findings also call for future studies to investigate the mechanism of the inhibitory effect of oxidized HMGB1 on the pro-inflammatory potential.

  5. Human Pericytes for Ischemic Heart Repair

    OpenAIRE

    2013-01-01

    Human microvascular pericytes (CD146+/34−/45−/56−) contain multipotent precursors and repair/regenerate defective tissues, notably skeletal muscle. However, their ability to repair the ischemic heart remains unknown. We investigated the therapeutic potential of human pericytes, purified from skeletal muscle, for treating ischemic heart disease and mediating associated repair mechanisms in mice. Echocardiography revealed that pericyte transplantation attenuated left ventricular dilatation and ...

  6. Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria.

    Science.gov (United States)

    Li, Guangbin; Vilcherrez, David; Carvajal-Arroyo, Jose Maria; Sierra-Alvarez, Reyes; Field, Jim A

    2016-02-01

    Anaerobic ammonium oxidizing bacteria (anammox) can be severely inhibited by one of its main substrates, nitrite (NO2(-)). At present, there is limited information on the processes by which anammox bacteria are able to tolerate toxic NO2(-). Intracellular consumption or electrochemically driven (transmembrane proton motive force) NO2(-) export are considered the main mechanisms of NO2(-) detoxification. In this work, we evaluated the potential of exogenous nitrate (NO3(-)) on relieving NO2(-) toxicity, putatively facilitated by NarK, a NO3(-)/NO2(-) transporter encoded in the anammox genome. The relative contribution of NO3(-) to NO2(-) detoxification was found to be pH dependent. Exposure of anammox cells to NO2(-) in absence of their electron donating substrate, ammonium (NH4(+)), causes NO2(-) stress. At pH 6.7 and 7.0, the activity of NO2(-) stressed cells was respectively 0 and 27% of the non-stressed control activity (NO2(-) and NH4(+) fed simultaneously). Exogenous NO3(-) addition caused the recovery to 42% and 80% of the control activity at pH 6.7 and 7.0, respectively. The recovery of the activity of NO2(-) stressed cells improved with increasing NO3(-) concentration, the maximum recovery being achieved at 0.85 mM. The NO3(-) pre-incubation time is less significant at pH 7.0 than at pH 6.7 due to a more severe NO2(-) toxicity at lower pH. Additionally, NO3(-) caused almost complete attenuation of NO2(-) toxicity in cells exposed to the proton gradient disruptor carbonyl cyanide m-chlorophenyl hydrazone at pH 7.5, providing evidence that the NO3(-) attenuation is independent of the proton motive force. The absence of a measurable NO3(-) consumption (or NO3(-) dependent N2 production) during the batch tests leaves NO3(-) dependent active transport of NO2(-) as the only plausible explanation for the relief of NO2(-) inhibition. We suggest that anammox cells can use a secondary transport system facilitated by exogenous NO3(-) to alleviate NO2(-) toxicity. PMID

  7. Carnosine Reduces Oxidative Stress and Reverses Attenuation of Righting and Postural Reflexes in Rats with Thioacetamide-Induced Liver Failure

    OpenAIRE

    Milewski, Krzysztof; Hilgier, Wojciech; Fręśko, Inez; Polowy, Rafał; Podsiadłowska, Anna; Zołocińska, Ewa; Grymanowska, Aneta W.; Robert K Filipkowski; Albrecht, Jan; Zielińska, Magdalena

    2016-01-01

    Cerebral oxidative stress (OS) contributes to the pathogenesis of hepatic encephalopathy (HE). Existing evidence suggests that systemic administration of l-histidine (His) attenuates OS in brain of HE animal models, but the underlying mechanism is complex and not sufficiently understood. Here we tested the hypothesis that dipeptide carnosine (β-alanyl-l-histidine, Car) may be neuroprotective in thioacetamide (TAA)-induced liver failure in rats and that, being His metabolite, may mediate the w...

  8. Chongcao-Shencha Attenuates Liver and Kidney Injury through Attenuating Oxidative Stress and Inflammatory Response in D-Galactose-Treated Mice

    Science.gov (United States)

    Li, Cailan; Mo, Zhizhun; Xie, Jianhui; Xu, Lieqiang; Tan, Lihua; Luo, Dandan; Chen, Hanbin; Yang, Hongmei; Li, Yucui; Su, Ziren; Su, Zuqing

    2016-01-01

    The Chongcao-Shencha (CCSC), a Chinese herbal compound formula, has been widely used as food material and medicine for enhancing physical strength. The present study investigated the possible effect of CCSC in alleviating the liver and kidney injury in D-galactose- (D-gal-) treated mice and the underlying mechanism. Mice were given a subcutaneous injection of D-gal (200 mg/kg) and orally administered CCSC (200, 400, and 800 mg/kg) daily for 8 weeks. Results indicated that CCSC increased the depressed body weight and organ index induced by D-gal, ameliorated the histological deterioration, and decreased the levels of ALT, AST, BUN, and CRE as compared with D-gal group. Furthermore, CCSC not only elevated the activities of antioxidant enzymes SOD, CAT, and GPx but also upregulated the mRNA expression of SOD1, CAT, and GPx1, while decreasing the MDA level in D-gal-treated mice. Results of western blotting analysis showed that CCSC significantly inhibited the upregulation of expression of nuclear factor kappa B (NF-κB) p65, p-p65, p-IκBα, COX2, and iNOS and inhibited the downregulation of IκBα protein expression caused by D-gal. This study demonstrated that CCSC could attenuate the liver and kidney injury in D-gal-treated mice, and the mechanism might be associated with attenuating oxidative stress and inflammatory response. PMID:27340415

  9. Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats.

    Science.gov (United States)

    He, Meixia; Xing, Shihui; Yang, Bo; Zhao, Liqun; Hua, Haiying; Liang, Zhijian; Zhou, Wenliang; Zeng, Jinsheng; Pei, Zhong

    2007-11-21

    Oxidative DNA damage has been proposed to be a major contributor to focal cerebral ischemic injury. However, little is known about the role of oxidative DNA damage in remote damage secondary to the primary infarction. In the present study, we investigated oxidative damage within the ventroposterior nucleus (VPN) after distal middle cerebral artery occlusion (MCAO) in hypertensive rats. We also examined the possible protective effect of ebselen, one glutathione peroxidase mimic, on delayed degeneration in the VPN after distal MCAO. Neuronal damage in the ipsilateral VPN was examined by Nissl staining. Oxidative DNA damage and base repair enzyme activity were assessed by analyzing immunoreactivity of 8-hydroxy-2'-deoxyguanosine (8-ohdG) and 8-oxoguanine DNA glycosylase (OGG1), respectively. The number of intact neurons in the ipsilateral VPN decreased by 52% compared to the contralateral side in ischemia group 2 weeks after distal cerebral cortical infarction. The immunoreactivity of 8-ohdG significantly increased while OGG1 immunoreactivity significantly decreased in the ipsilateral VPN 2 weeks after distal cortical infarction (all pVPN (all pVPN region following distal MCAO. Furthermore, ebselen protects against the delayed damage in the VPN when given at 24 h following distal MCAO. PMID:17920569

  10. Protective Effect of Aliskiren in Experimental Ischemic Stroke: Up-Regulated p-PI3K, p-AKT, Bcl-2 Expression, Attenuated Bax Expression.

    Science.gov (United States)

    Miao, Jiangyong; Wang, Lina; Zhang, Xiangjian; Zhu, Chunhua; Cui, Lili; Ji, Hui; Liu, Ying; Wang, Xiaolu

    2016-09-01

    Aliskiren (ALK), a pharmacological renin inhibitor, is an effective antihypertensive drug and has potent anti-apoptotic activity, but it is currently unknown whether ALK is able to attenuate brain damage caused by acute cerebral ischemia independent of its blood pressure-lowering effects. This study aimed to investigate the role of ALK and its potential mechanism in cerebral ischemia. C57/BL6 mice were subjected to transient middle cerebral artery occlusion (tMCAO) and treated for 5 days with Vehicle or ALK (10 or 25 mg/kg per day via intragastric administration), whereas Sham-operated animals served as controls. Treatment with ALK significantly improved neurological deficits, infarct volume, brain water content and Nissl bodies after stroke (P < 0.05), which did not affect systemic blood pressure. Furthermore, the protection of ALK was also related to decreased levels of apoptosis in mice by enhanced activation of phosphatidylinositol 3-kinase (PI3K)/AKT pathway, increased level of Bcl-2 and reduced Bax expression (P < 0.05). In addition, ALK's effects were reversed by PI3K inhibitors LY294002 (P < 0.05). Our data indicated that ALK protected the brain from reperfusion injuries without affecting blood pressure, and this effect may be through PI3K/AKT signaling pathway. PMID:27180190

  11. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

    Science.gov (United States)

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Wåhlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlström, Mattias

    2016-01-01

    Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates hypertension and restores the renal excretion pattern, which is associated with reduced renal NOX and components of the renin-angiotensin-aldosterone system. This study emphasizes a link between renal nerves, the development of hypertension, and modulation of NOX function. PMID:26538440

  12. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress.

    Science.gov (United States)

    Yang, Ji Hye; Kim, Sang Chan; Kim, Kyu Min; Jang, Chang Ho; Cho, Sam Seok; Kim, Seung Jung; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2016-07-15

    Hepatic fibrosis is considered integral to the progression of chronic liver diseases, leading to the development of cirrhosis and hepatocellular carcinoma. Activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. We investigated the ability of isorhamnetin, the 3'-O-methylated metabolite of quercetin, to protect against hepatic fibrosis in vitro and in vivo. Isorhamnetin inhibited transforming growth factor (TGF)-β1-induced expression of α-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and collagen in primary murine HSCs and LX-2 cells. The TGF-β1- or Smad-induced luciferase reporter activity of Smad binding elements was significantly decreased by isorhamnetin with a concomitant decrease in Smad2/3 phosphorylation. Isorhamnetin increased the nuclear translocation of Nrf2 in HSCs and increased antioxidant response element reporter gene activity. Furthermore, isorhamnetin blocked TGF-β1-induced reactive oxygen species production. The specific role of Nrf2 in isorhamnetin-mediated suppression of PAI-1 and phosphorylated Smad3 was verified using a siRNA against Nrf2. To examine the anti-fibrotic effect of isorhamnetin in vivo, liver fibrosis was induced by CCl4 in mice. Isorhamnetin significantly prevented CCl4-induced increases in serum alanine transaminase and aspartate transaminase levels, and caused histopathological changes characterized by decreases in hepatic degeneration, inflammatory cell infiltration, and collagen accumulation. Moreover, isorhamnetin markedly decreased the expression of phosphorylated Smad3, TGF-β1, α-SMA, and PAI-1. Isorhamnetin attenuated the CCl4-induced increase in the number of 4-hydroxynonenal and nitrotyrosine-positive cells, and prevented glutathione depletion. We propose that isorhamnetin inhibits the TGF-β/Smad signaling pathway and relieves oxidative stress, thus inhibiting HSC activation and preventing liver fibrosis. PMID:27151496

  13. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling.

    Science.gov (United States)

    Ma, Yuan; Ge, Ai; Zhu, Wen; Liu, Ya-Nan; Ji, Ning-Fei; Zha, Wang-Jian; Zhang, Jia-Xiang; Zeng, Xiao-Ning; Huang, Mao

    2016-01-01

    Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2',7'-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by morin

  14. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling

    Directory of Open Access Journals (Sweden)

    Yuan Ma

    2016-01-01

    Full Text Available Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA- sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs were challenged by tumor necrosis factor alpha (TNF-α. The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS/mitogen-activated protein kinase (MAPK evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL- 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2′,7′-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were

  15. P2X7 Receptor Antagonism Attenuates the Intermittent Hypoxia-induced Spatial Deficits in a Murine Model of Sleep Apnea Via Inhibiting Neuroinflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yan Deng

    2015-01-01

    Conclusions: The P2X7R antagonism attenuates the CIH-induced neuroinflammation, oxidative stress, and spatial deficits, demonstrating that the P2X7R is an important therapeutic target in the cognition deficits accompanied OSAS.

  16. Total Glucosides of Danggui Buxue Tang Attenuate BLM-Induced Pulmonary Fibrosis via Regulating Oxidative Stress by Inhibiting NOX4

    Directory of Open Access Journals (Sweden)

    Ping Zhao

    2015-01-01

    Full Text Available Pulmonary fibrosis (PF is a serious chronic lung disease with unknown pathogenesis. Researches have confirmed that oxidative stress which is regulated by NADPH oxidase-4 (NOX4, a main source of reactive oxygen species (ROS, is an important molecular mechanism underlying PF. Previous studies showed that total glucosides of Danggui Buxue Tang (DBTG, an extract from a classical traditional Chinese herbal formula, Danggui Buxue Tang (DBT, attenuated bleomycin-induced PF in rats. However, the mechanisms of DBTG are still not clear. We hypothesize that DBTG attenuates PF through regulating the level of oxidative stress by inhibiting NOX4. And we found that fibrosis indexes hydroxyproline (HYP and type I collagen (Col-I were lower in DBTG groups compared with the model group. In addition, the expression of transforming growth factor-β1 (TGF-β1 and expression of alpha smooth muscle actin (α-SMA were also much more decreased than the model group. For oxidative stress indicators, DBTG blunted the decrease of superoxide dismutase (SOD activity, total antioxidant capacity (T-AOC, and the increase in malondialdehyde (MDA, 8-iso-prostaglandin in lung homogenates. Treatment with DBTG restrained the expression of NOX4 compared to the model group. Present study confirms that DBTG inhibits BLM-induced PF by modulating the level of oxidative stress via suppressing NOX4.

  17. Knockdown of IRF6 Attenuates Hydrogen Dioxide-Induced Oxidative Stress via Inhibiting Mitochondrial Dysfunction in HT22 Cells.

    Science.gov (United States)

    Guo, Xiao-Min; Chen, Bo; Lv, Jian-Meng; Lei, Qi; Pan, Ya-Juan; Yang, Qian

    2016-10-01

    Oxidative stress-induced cell damage is involved in many neurological diseases. Interferon regulatory factor 6 (IRF6), a member of the IRF family of transcription factors, is required for the differentiation of skin, breast epithelium, and oral epithelium. However, the regulation and function of IRF6 in central nervous system remain unknown. This study aimed to investigate the role of IRF6 in hydrogen peroxide (H2O2)-induced oxidative neuronal injury in HT22 mouse hippocampal cells. Treatment with H2O2 significantly increased the expression of IRF6 at both mRNA and protein levels, and knockdown of IRF6 using specific small interfering RNA reduced H2O2-induced cytotoxicity, as evidenced by increased cell viability and decreased apoptosis. Knockdown of IRF6 attenuated intracellular reactive oxygen species (ROS) generation and lipid peroxidation, and also preserved endogenous antioxidant enzyme activities. The inhibitory effect of IRF6 knockdown on mitochondrial dysfunction was demonstrated by reduced mitochondrial oxidative level, preserved mitochondrial membrane potential (MMP) and ATP generation, as well as attenuated mitochondrial swelling. In addition, down-regulation of IRF6 inhibited the activation of mitochondrial apoptotic factors, whereas IRF6 knockdown together with caspase inhibitors had no extra effect on cell viability and LDH release. These results suggest that knockdown of IRF6 has protective effects against H2O2-induced oxidative stress by reducing ROS accumulation and apoptosis, and these protective effects are dependent on preservation of mitochondrial function. PMID:26620051

  18. Targeted Expression of Catalase to Mitochondria Protects Against Ischemic Myopathy in High-Fat Diet-Fed Mice.

    Science.gov (United States)

    Ryan, Terence E; Schmidt, Cameron A; Green, Thomas D; Spangenburg, Espen E; Neufer, P Darrell; McClung, Joseph M

    2016-09-01

    Patients with type 2 diabetes respond poorly to treatments for peripheral arterial disease (PAD) and are more likely to present with the most severe manifestation of the disease, critical limb ischemia. The underlying mechanisms linking type 2 diabetes and the severity of PAD manifestation are not well understood. We sought to test whether diet-induced mitochondrial dysfunction and oxidative stress would increase the susceptibility of the peripheral limb to hindlimb ischemia (HLI). Six weeks of high-fat diet (HFD) in C57BL/6 mice was insufficient to alter skeletal muscle mitochondrial content and respiratory function or the size of ischemic lesion after HLI, despite reducing blood flow. However, 16 weeks of HFD similarly decreased ischemic limb blood flow, but also exacerbated limb tissue necrosis, increased the myopathic lesion size, reduced muscle regeneration, attenuated muscle function, and exacerbated ischemic mitochondrial dysfunction. Mechanistically, mitochondrial-targeted overexpression of catalase prevented the HFD-induced ischemic limb necrosis, myopathy, and mitochondrial dysfunction, despite no improvement in limb blood flow. These findings demonstrate that skeletal muscle mitochondria are a critical pathological link between type 2 diabetes and PAD. Furthermore, therapeutically targeting mitochondria and oxidant burden is an effective strategy to alleviate tissue loss and ischemic myopathy during PAD. PMID:27284110

  19. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Gravinol, a proanthocyanidin from grape seeds, has polyphenolic properties with powerful anti-oxidative effects. Although, increasing evidence strongly suggests that polyphenolic antioxidants suppress diabetic nephropathy that is causally associated with oxidative stress and inflammation, gravinol's protective action against diabetic nephropathy has not been fully explored to date. In the current study, we investigated the protective action of gravinol against oxidative stress and inflammation using the experimental diabetic nephropathy cell model, high glucose-exposed renal tubular epithelial cells. To elucidate the underlying actions of gravinol, several oxidative and inflammatory markers were estimated. Included are measurements of lipid peroxidation, total reactive species (RS), superoxide (·O2), nitric oxide (NO·), and peroxynitrite (ONOO-), as well as nuclear factor-kappa B (NF-κB) nuclear translocation. Results indicate that gravinol had a potent inhibitory action against lipid peroxidation, total RS, ·O2, NO·, ONOO-, the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio and more importantly, against NF-κB nuclear translocation. We propose that gravinol's strong protective effect against high glucose-induced renal tubular epithelial cell damage attenuates diabetic nephropathy by suppressing oxidative stress and inflammation.

  20. Thioperamide treats neonatal hypoxic-ischemic encephalopathy by postsynaptic H1 receptors*

    Institute of Scientific and Technical Information of China (English)

    Feiyong Jia; Lin Du; Yunpeng Hao; Shicheng Liu; Ning Li; Huiyi Jiang

    2013-01-01

    Thioperamide, a selective histamine H3 receptor antagonist, can increase histamine content in the brain, improve brain edema, and exert a neuroprotective effect. This study aimed to examine the mechanism of action of thioperamide during brain edema in a rat model of neonatal hypoxic- is-chemic encephalopathy. Our results showed that thioperamide significantly decreased brain water content and malondialdehyde levels, while significantly increased histamine levels and superoxide dismutase activity in the hippocampus. This evidence demonstrates that thioperamide could pre-vent oxidative damage and attenuate brain edema fol owing neonatal hypoxic-ischemic encepha-lopathy. We further observed that changes in the above indexes occurred after combined treatment of thioperamide with the H1 receptor antagonist, pyrilamine, and the H2 receptor antagonist, ci-metidine. Experimental findings indicated that pyrilamine reversed the effects of thioperamide;however, cimetidine had no significant influence on the effects of thioperamide. Our present findings suggest that thioperamide can increase brain histamine content and attenuate brain edema and oxidative damage by acting in combination with postsynaptic H1 receptors in a rat model of neo-natal hypoxic-ischemic encephalopathy.

  1. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    Science.gov (United States)

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD. PMID:27038927

  2. Photon attenuation coefficients of Heavy-Metal Oxide glasses by MCNP code, XCOM program and experimental data: A comparison study

    Science.gov (United States)

    El-Khayatt, A. M.; Ali, A. M.; Singh, Vishwanath P.

    2014-01-01

    The mass attenuation coefficients, μ/ρ, total interaction cross-section, σt, and mean free path (MFP) of some Heavy Metal Oxides (HMO) glasses, with potential applications as gamma ray shielding materials, have been investigated using the MCNP-4C code. Appreciable variations are noted for all parameters by changing the photon energy and the chemical composition of HMO glasses. The numerical simulations parameters are compared with experimental data wherever possible. Comparisons are also made with predictions from the XCOM program in the energy region from 1 keV to 100 MeV. Good agreement noticed indicates that the chosen Monte Carlo method may be employed to make additional calculations on the photon attenuation characteristics of different glass systems, a capability particularly useful in cases where no analogous experimental data exist.

  3. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Bao [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Ma, Le [Department of Public Health, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Miao, Yu-Wang [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Lu, Yan [Department of Clinical Laboratory, Sanaitang Hospital, Lanzhou 730030 (China); Song, Xin-Ai [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-09-01

    The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play a critical role in the generation and maintenance of sympathetic nerve activity. The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. This study was designed to determine whether inhibition of the angiotensin-converting enzyme (ACE) in the PVN modulates cytokines and attenuates oxidative stress (ROS) in the RVLM, and decreases the blood pressure and sympathetic activity in renovascular hypertensive rats. Renovascular hypertension was induced in male Sprague–Dawley rats by the two-kidney one-clip (2K1C) method. Renovascular hypertensive rats received bilateral PVN infusion with ACE inhibitor lisinopril (LSP, 10 μg/h) or vehicle via osmotic minipump for 4 weeks. Mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma proinflammatory cytokines (PICs) were significantly increased in renovascular hypertensive rats. The renovascular hypertensive rats also had higher levels of ACE in the PVN, and lower level of interleukin-10 (IL-10) in the RVLM. In addition, the levels of PICs, the chemokine MCP-1, the subunit of NAD(P)H oxidase (gp91{sup phox}) and ROS in the RVLM were increased in hypertensive rats. PVN treatment with LSP attenuated those changes occurring in renovascular hypertensive rats. Our findings suggest that the beneficial effects of ACE inhibition in the PVN in renovascular hypertension are partly due to modulation cytokines and attenuation oxidative stress in the RVLM. - Highlights: • Chronic ACE inhibition in PVN on renovascular hypertension was investigated. • 2K1C resulted in sympathoexcitation, increased plasma PICs and hypertension. • 2K1C rats had higher levels of cytokines and reactive oxygen species (ROS) in RVLM. • Chronic inhibiting PVN ACE attenuates cytokines and ROS in RVLM in hypertension.

  4. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension

    International Nuclear Information System (INIS)

    The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play a critical role in the generation and maintenance of sympathetic nerve activity. The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. This study was designed to determine whether inhibition of the angiotensin-converting enzyme (ACE) in the PVN modulates cytokines and attenuates oxidative stress (ROS) in the RVLM, and decreases the blood pressure and sympathetic activity in renovascular hypertensive rats. Renovascular hypertension was induced in male Sprague–Dawley rats by the two-kidney one-clip (2K1C) method. Renovascular hypertensive rats received bilateral PVN infusion with ACE inhibitor lisinopril (LSP, 10 μg/h) or vehicle via osmotic minipump for 4 weeks. Mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma proinflammatory cytokines (PICs) were significantly increased in renovascular hypertensive rats. The renovascular hypertensive rats also had higher levels of ACE in the PVN, and lower level of interleukin-10 (IL-10) in the RVLM. In addition, the levels of PICs, the chemokine MCP-1, the subunit of NAD(P)H oxidase (gp91phox) and ROS in the RVLM were increased in hypertensive rats. PVN treatment with LSP attenuated those changes occurring in renovascular hypertensive rats. Our findings suggest that the beneficial effects of ACE inhibition in the PVN in renovascular hypertension are partly due to modulation cytokines and attenuation oxidative stress in the RVLM. - Highlights: • Chronic ACE inhibition in PVN on renovascular hypertension was investigated. • 2K1C resulted in sympathoexcitation, increased plasma PICs and hypertension. • 2K1C rats had higher levels of cytokines and reactive oxygen species (ROS) in RVLM. • Chronic inhibiting PVN ACE attenuates cytokines and ROS in RVLM in hypertension

  5. Tanshinol Attenuates the Deleterious Effects of Oxidative Stress on Osteoblastic Differentiation via Wnt/FoxO3a Signaling

    Directory of Open Access Journals (Sweden)

    Yajun Yang

    2013-01-01

    Full Text Available There is now increasing evidence which suggests a pivotal role for oxidative stress in the development and progression of osteoporosis. We confirm herein the protective effects of natural antioxidant Tanshinol against oxidative stress in osteoblastic differentiation and the underlying mechanism. Our results show that hydrogen peroxide (H2O2 leads to accumulation of reactive oxygen species (ROS, decrease in cell viability, cell cycle arrest and apoptosis in a caspase-3-dependent manner, and inhibition of osteoblastic differentiation. Tanshinol reverses these deleterious consequence triggered by oxidative stress. Moreover, under the condition of oxidative stress, Tanshinol suppresses the activation of FoxO3a transcription factor and expressions of its target genes Gadd45a and catalase (CAT and simultaneously counteracts the inhibition of Wnt signalling and expressions of target genes Axin2, alkaline phosphatase (ALP, and Osteoprotegerin (OPG. The findings are further consolidated using FoxO3a siRNA interference and overexpression of Tcf4. The results illustrate that Tanshinol attenuates oxidative stress via down-regulation of FoxO3a signaling, and rescues the decrease of osteoblastic differentiation through upregulation of Wnt signal under oxidative stress. The present findings suggest that the beneficial effects of Tanshinol may be adopted as a novel therapeutic approach in recently recognized conditions of niche targeting osteoporosis.

  6. Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions

    DEFF Research Database (Denmark)

    Liu, Dong; Croteau, Deborah L; Souza-Pinto, Nadja; Pitta, Michael; Tian, Jingyan; Wu, Christopher; Jiang, Haiyang; Mustafa, Khadija; Keijzers, Guido; Bohr, Vilhelm; Mattson, Mark P

    2011-01-01

    . Cortical neurons isolated from OGG1(-/-) mice were more vulnerable to oxidative insults than were OGG1(+/+) neurons, and OGG1(-/-) mice developed larger cortical infarcts and behavioral deficits after permanent middle cerebral artery occlusion compared with OGG1(+/+) mice. Accumulations of oxidative DNA...

  7. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats.

    Science.gov (United States)

    Morán-Ramos, Sofía; Avila-Nava, Azalia; Tovar, Armando R; Pedraza-Chaverri, José; López-Romero, Patricia; Torres, Nimbe

    2012-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with multiple factors such as obesity, insulin resistance, and oxidative stress. Nopal, a cactus plant widely consumed in the Mexican diet, is considered a functional food because of its antioxidant activity and ability to improve biomarkers of metabolic syndrome. The aim of this study was to assess the effect of nopal consumption on the development of hepatic steatosis and hepatic oxidative stress and on the regulation of genes involved in hepatic lipid metabolism. Obese Zucker (fa/fa) rats were fed a control diet or a diet containing 4% nopal for 7 wk. Rats fed the nopal-containing diet had ∼50% lower hepatic TG than the control group as well as a reduction in hepatomegaly and biomarkers of hepatocyte injury such as alanine and aspartate aminotransferases. Attenuation of hepatic steatosis by nopal consumption was accompanied by a higher serum concentration of adiponectin and a greater abundance of mRNA for genes involved in lipid oxidation and lipid export and production of carnitine palmitoyltransferase-1 and microsomal TG transfer proteins in liver. Hepatic reactive oxygen species and lipid peroxidation biomarkers were significantly lower in rats fed nopal compared with the control rats. Furthermore, rats fed the nopal diet had a lower postprandial serum insulin concentration and a greater liver phosphorylated protein kinase B (pAKT):AKT ratio in the postprandial state. This study suggests that nopal consumption attenuates hepatic steatosis by increasing fatty acid oxidation and VLDL synthesis, decreasing oxidative stress, and improving liver insulin signaling in obese Zucker (fa/fa) rats. PMID:23014486

  8. Phosphodiesterase-5 inhibitor tadalafil attenuates oxidative stress and protects against myocardial ischemia/reperfusion injury in type 2 diabetic mice.

    Science.gov (United States)

    Koka, Saisudha; Das, Anindita; Salloum, Fadi N; Kukreja, Rakesh C

    2013-07-01

    Diabetic patients exhibit increased risk for the development of cardiovascular diseases primarily because of impaired nitric oxide (NO) bioavailability. The phosphodiesterase-5 (PDE-5) inhibitor sildenafil restores NO signaling and protects against ischemia/reperfusion (I/R) injury. In this study, we determined the effect of the long-acting PDE-5 inhibitor tadalafil on diabetes-associated complications and its role in attenuating oxidative stress after I/R injury in type 2 diabetic db/db mice. Adult male db/db mice (n=40/group) were randomized to receive dimethyl sulfoxide (10% DMSO, 0.2ml, ip) or tadalafil (1mg/kg in 10% DMSO, ip) for 28 days. After 28 days treatment, the hearts were isolated and subjected to 30min global ischemia followed by 60min reperfusion in the Langendorff mode. Infarct size was measured using computer morphometry of tetrazolium-stained sections. Cardiomyocytes were isolated from a subset of hearts and subjected to 40min simulated ischemia followed by 1h of reoxygenation (SI/RO). Dichlorodihydrofluorescein diacetate and JC-1 staining was used to measure reactive oxygen species (ROS) generation and mitochondrial membrane potential (Δψm), respectively. Another subset of hearts was used for the estimation of lipid peroxidation, glutathione, and the expression of myocardial pRac1, Rac1, gp91(phox), p47(phox), and p67(phox) by Western blot. Tadalafil treatment improved the metabolic status and reduced infarct size compared to the untreated db/db mice (21.2±1.8% vs 45.8±2.8%; p<0.01). The db/db mice showed enhanced oxidative stress in cardiomyocytes as indicated by a significant increase in ROS production. Cardiac NAD(P)H oxidase activity, lipid peroxidation, and oxidized glutathione were also increased in db/db mice compared to nondiabetic control animals. Tadalafil treatment in db/db mice suppressed oxidative stress, attenuated myocardial expression of pRac1 and gp91(phox), and also preserved the loss of Δψm in cardiomyocytes after SI

  9. Demethyleneberberine attenuates non-alcoholic fatty liver disease with activation of AMPK and inhibition of oxidative stress.

    Science.gov (United States)

    Qiang, Xiaoyan; Xu, Lulu; Zhang, Miao; Zhang, Pengcheng; Wang, Yinhang; Wang, Yongchen; Zhao, Zheng; Chen, Huan; Liu, Xie; Zhang, Yubin

    2016-04-15

    Non-alcoholic fatty liver disease (NAFLD) has reached an epidemic level globally, which is recognized to form non-alcoholic steatohepatitis (NASH) by the "two-hit" model, including oxidative stress and inflammation. AMP-activated protein kinase (AMPK) has long been regarded as a key regulator of energy metabolism, which is recognized as a critical target for NAFLD treatment. Here we introduce a natural product, demethyleneberberine (DMB), which potentially ameliorated NAFLD by activating AMPK pathways. Our study showed that the intraperitoneal injection of DMB (20 or 40 mg/kg body weight) decreased hepatic lipid accumulation in methionine and choline deficient (MCD) high-fat diet feeding mice and db/db mice. The further investigation demonstrated that DMB activated AMPK by increasing its phosphorylation in vitro and in vivo. Accompanied with AMPK activation, the expression of lipogenic genes were significantly reduced while genes responsible for the fatty acid β-oxidation were restored in DMB-treated NAFLD mice. In addition, the remarkable oxidative damage and inflammation induced by NAFLD were both attenuated by DMB treatment, which is reflected by decreased lipid oxidative product, malonaldehyde (MDA) and inflammatory factors, tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β). Based on all above, DMB could serve as a novel AMPK activator for treating NAFLD and preventing the pathologic progression from NAFLD to NASH by inhibiting the oxidative stress and inflammation. PMID:26970305

  10. Does Flavanol Intake Influence Mortality from Nitric Oxide-Dependent Processes? Ischemic Heart Disease, Stroke, Diabetes Mellitus, and Cancer in Panama

    Directory of Open Access Journals (Sweden)

    Vicente Bayard, Fermina Chamorro, Jorge Motta, Norman K. Hollenberg

    2007-01-01

    Full Text Available Substantial data suggest that flavonoid-rich food could help prevent cardiovascular disease and cancer. Cocoa is the richest source of flavonoids, but current processing reduces the content substantially. The Kuna living in the San Blas drink a flavanol-rich cocoa as their main beverage, contributing more than 900 mg/day and thus probably have the most flavonoid-rich diet of any population. We used diagnosis on death certificates to compare cause-specific death rates from year 2000 to 2004 in mainland and the San Blas islands where only Kuna live. Our hypothesis was that if the high flavanoid intake and consequent nitric oxide system activation were important the result would be a reduction in the frequency of ischemic heart disease, stroke, diabetes mellitus, and cancer – all nitric oxide sensitive processes. There were 77,375 deaths in mainland Panama and 558 deaths in the San Blas. In mainland Panama, as anticipated, cardiovascular disease was the leading cause of death (83.4 ± 0.70 age adjusted deaths/100,000 and cancer was second (68.4 ± 1.6. In contrast, the rate of CVD and cancer among island-dwelling Kuna was much lower (9.2 ± 3.1 and (4.4 ± 4.4 respectively. Similarly deaths due to diabetes mellitus were much more common in the mainland (24.1 ± 0.74 than in the San Blas (6.6 ± 1.94. This comparatively lower risk among Kuna in the San Blas from the most common causes of morbidity and mortality in much of the world, possibly reflects a very high flavanol intake and sustained nitric oxide synthesis activation. However, there are many risk factors and an observational study cannot provide definitive evidence.

  11. Iron sulfide attenuates the methanogenic toxicity of elemental copper and zinc oxide nanoparticles and their soluble metal ion analogs.

    Science.gov (United States)

    Gonzalez-Estrella, Jorge; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A

    2016-04-01

    Elemental copper (Cu(0)) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu(0) and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25-75μm) and coarse (500 to 1200μm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu(0) and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu(0) NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excess of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu(0) and ZnO NPs and their soluble ion analogs to methanogens. PMID:26803736

  12. Moringa oleifera Attenuates Oxidative Stress in STZ-Induced Diabetic Rats

    OpenAIRE

    Sushma G; Shivaprasad HN; Nargund LVG; Bhanumathy M; Midhun T

    2013-01-01

    Hyperglycemia in diabetes has been associated with increased formation of reactive oxygen species (ROS). Imbalance between formation and detoxification of ROS in biological systems exerts oxidative stress. Oxidative stress damages tissue compounds like DNA, protein and lipid. Moringa oleifera is a rich dietary source of natural antioxidants. The aim of this study is to evaluate the effect of leaves, stems and pods extracts of M. oleifera on lipid peroxidation, protein oxidation and antioxidan...

  13. Treadmill Exercise Attenuates Retinal Oxidative Stress in Naturally-Aged Mice: An Immunohistochemical Study

    OpenAIRE

    Chan-Sik Kim; Sok Park; Yoonseok Chun; Wook Song; Hee-Jae Kim; Junghyun Kim

    2015-01-01

    In the retina, a number of degenerative diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration, may occur as a result of aging. Oxidative damage is believed to contribute to the pathogenesis of aging as well as to age-related retinal disease. Although physiological exercise has been shown to reduce oxidative stress in rats and mice, it is not known whether it has a similar effect in retinal tissues. The aim of this study was to evaluate retinal oxidative str...

  14. Mass Attenuation Coefficients and Effective Atomic Numbers of Thermoluminescent Aluminum Oxide Based Glasses

    International Nuclear Information System (INIS)

    The photon mass attenuation coefficient of a newly prepared 15Al2O3-35P2O5- xCaO-(50-x)Na2CO3 glass system (symbolized as APCN), where x=5, 10, 15, 20, 25, 30, 35, 40 all in mol%, have been calculated at photon energies of 0.662 MeV (137Cs source) and 1.25 MeV (60Co source). In addition, the photon mass attenuation coefficient of 15Al2O3-35P2O5-25CaO-25Na2CO3 glass system (symbolized as APCN25-25), all in mol%, doped with different concentrations of SiO2 have been calculated. The WinXCOM software program on the basis of mixture rule was utilized in calculations. The total atomic (σt) and electronic (σe) cross sections, effective atomic number (Zeff) and electron density (Nel) were calculated. The results showed that the total mass attenuation coefficient showed an extremely dependence on incoherent scattering processes where it varies with Na2CO3 contents in the APCN composition while changing the concentrations of SiO2 in APCN25-25 glass showed slight changes in the values. Otherwise, the mass attenuation coefficient (µm) had higher values at 0.662 MeV than those of 1.25 MeV in both APCN and APCN25-25 glass systems. The values of Zeff showed a decrease with increasing Na2CO3 contents in the APCN composition. The should highly be considered in dealing with such prepared APCN glass system as a gamma ray detector, specially as thermoluminescence dosimeter.

  15. Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world

    Science.gov (United States)

    Wen, B.; Wang, X. X.; Cao, W. Q.; Shi, H. L.; Lu, M. M.; Wang, G.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S.

    2014-05-01

    In this work, reduced graphene oxide (r-GO) and graphite nanosheet (GN) were obtained via the chemical approach. Furthermore, r-GO composites and GN composites were prepared with a paraffin wax host. r-GO composites show high dielectric properties and electromagnetic interference shielding efficiency (EMI SE). Compared with the GN composites, the loss tangent and EMI SE of the r-GO composites with the same mass ratio are enhanced ~5 to 10 times and ~3 to 10 times, respectively. The enhanced attenuation capacity arises from higher specific surface area, clustered defects and residual bonds of the r-GOs, which increase the polarization loss, scattering and conductivity of the composite. Moreover, the higher conductivity of r-GO composites leads to higher EMI SE compared with that of GN composites. These results suggest that r-GOs are highly promising fillers for microwave attenuation in the carbon family and that r-GO composites are high-performance EMI shielding materials with application anticipated to many fields.In this work, reduced graphene oxide (r-GO) and graphite nanosheet (GN) were obtained via the chemical approach. Furthermore, r-GO composites and GN composites were prepared with a paraffin wax host. r-GO composites show high dielectric properties and electromagnetic interference shielding efficiency (EMI SE). Compared with the GN composites, the loss tangent and EMI SE of the r-GO composites with the same mass ratio are enhanced ~5 to 10 times and ~3 to 10 times, respectively. The enhanced attenuation capacity arises from higher specific surface area, clustered defects and residual bonds of the r-GOs, which increase the polarization loss, scattering and conductivity of the composite. Moreover, the higher conductivity of r-GO composites leads to higher EMI SE compared with that of GN composites. These results suggest that r-GOs are highly promising fillers for microwave attenuation in the carbon family and that r-GO composites are high-performance EMI

  16. Treatment with glial derived neurotropic factor (GDNF attenuates oxidative damages of spinal

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-05-01

    Full Text Available Spinal cord injury (SCI is a serious and debilitating issue being suffered by wide population worldwide. Extensive treatment approaches have been tested and being verified for their efficacy. Owing to the nature of central nervous system (CNS, the resident stem cells would be triggered in response to any sort of trauma with nerve factors as their communication signals. Apart from physical injuries, damages due to oxidative stress also need to be addressed while CNS repair mechanism takes place. This study looks at the potential of glial derived nerve factor (GDNF in addressing the SCI in regard to oxidative damages. A total of 60 Wistar rats were clustered into five groups and GDNF at various concentrations was tested in each group. Assessments in terms of oxidative stress parameters were noted and analyzed accordingly. It was noted that GDNF had reduced oxidative damages and increased the levels of anti-oxidants in dose-dependent manner (p < 0.05. Though treatment with 10 mg/mL and 20 mg/mL showed significant changes as compared to control group, these treatment modalities remained insignificant among each other. In conclusion, we demonstrated that GDNF exerted a neuro-protective effect on CNS by inducing anti-oxidants and reducing the levels of oxidative stress in SCI induced rat models.

  17. Effective attenuation length for lanthanum lutetium oxide between 7 and 13 keV

    OpenAIRE

    Nichau, Alexander; Rubio-Zuazo, J.; Schnee, Michael; Castro, G. R.; Schubert, Jürgen; Mantl, Siegfried

    2013-01-01

    To obtain quantitative depth information from hard X-ray photoemission spectroscopy, the effective attenuation length (EAL) is required. In this paper, the EAL was determined for LaLuO3 for electron kinetic energies between 7 and 13 keV. As a result, the EAL is in the range of 100–150A ° for the investigated photon energies. In addition, higher binding energy orbitals of La and Lu were measured and are discussed. LaLuO3 is a promising high-k dielectric for future nano-scaled MOS devices.

  18. Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells

    OpenAIRE

    Chuang Dennis Y; Chan Ming-Huan; Zong Yijia; Sheng Wenwen; He Yan; Jiang Jing Hua; Simonyi Agnes; Gu Zezong; Fritsche Kevin L; Cui Jiankun; Lee James C; Folk William R; Lubahn Dennis B; Sun Albert Y; Sun Grace Y

    2013-01-01

    Abstract Background The bark of magnolia has been used in Oriental medicine to treat a variety of remedies, including some neurological disorders. Magnolol (Mag) and honokiol (Hon) are isomers of polyphenolic compounds from the bark of Magnolia officinalis, and have been identified as major active components exhibiting anti-oxidative, anti-inflammatory, and neuroprotective effects. In this study, we investigate the ability of these isomers to suppress oxidative stress in neurons stimulated by...

  19. Puerarin attenuates cognitive dysfunction and oxidative stress in vascular dementia rats induced by chronic ischemia

    OpenAIRE

    Zhang, Jing; Guo, Wenshi; Tian, Buxian; Sun, Menghan; Li, Hui; Zhou, Lina; Liu, Xueping

    2015-01-01

    Objective: To explored the effects of puerarin on cognitive deficits and tissue oxidative stress and the underlying mechanisms. Methods: 6 to 8 week old male Wistar rats were adopted as experimental animals. Morris water maze (MWM) test was adopted to test the learning and memory function of rats. MDA, glutathione peroxidase and total thiol assessment was done to reflect the oxidative stress in the brain tissue. Cell Counting Kit-8 (CCK8) and flow cytometry (FCM) were performed to examine the...

  20. PPARγ Inhibits VSMC Proliferation and Migration via Attenuating Oxidative Stress through Upregulating UCP2

    OpenAIRE

    Zhou, Yi; Zhang, Ming-Jie; Li, Bing-Hu; Chen, Lei; Pi, Yan; Yin, Yan-Wei; Long, Chun-Yan; Wang, Xu; Sun, Meng-Jiao; Chen, Xue; Chang-yue GAO; Li, Jing-Cheng; Zhang, Li-li

    2016-01-01

    Increasing evidence showed that abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are common event in the pathophysiology of many vascular diseases, including atherosclerosis and restenosis after angioplasty. Among the underlying mechanisms, oxidative stress is one of the principal contributors to the proliferation and migration of VSMCs. Oxidative stress occurs as a result of persistent production of reactive oxygen species (ROS). Recently, the protective effects o...

  1. Cluster Differentiating 36 (CD36 Deficiency Attenuates Obesity-Associated Oxidative Stress in the Heart.

    Directory of Open Access Journals (Sweden)

    Mohamed Gharib

    Full Text Available Obesity is often associated with a state of oxidative stress and increased lipid deposition in the heart. More importantly, obesity increases lipid influx into the heart and induces excessive production of reactive oxygen species (ROS leading to cell toxicity and metabolic dysfunction. Cluster differentiating 36 (CD36 protein is highly expressed in the heart and regulates lipid utilization but its role in obesity-associated oxidative stress is still not clear.The aim of this study was to determine the impact of CD36 deficiency on cardiac steatosis, oxidative stress and lipotoxicity associated with obesity.Studies were conducted in control (Lean, obese leptin-deficient (Lepob/ob and leptin-CD36 double null (Lepob/obCD36-/- mice. Compared to lean mice, cardiac steatosis, and fatty acid (FA uptake and oxidation were increased in Lepob/ob mice, while glucose uptake and oxidation was reduced. Moreover, insulin resistance, oxidative stress markers and NADPH oxidase-dependent ROS production were markedly enhanced. This was associated with the induction of NADPH oxidase expression, and increased membrane-associated p47phox, p67phox and protein kinase C. Silencing CD36 in Lepob/ob mice prevented cardiac steatosis, increased insulin sensitivity and glucose utilization, but reduced FA uptake and oxidation. Moreover, CD36 deficiency reduced NADPH oxidase activity and decreased NADPH oxidase-dependent ROS production. In isolated cardiomyocytes, CD36 deficiency reduced palmitate-induced ROS production and normalized NADPH oxidase activity.CD36 deficiency prevented obesity-associated cardiac steatosis and insulin resistance, and reduced NADPH oxidase-dependent ROS production. The study demonstrates that CD36 regulates NADPH oxidase activity and mediates FA-induced oxidative stress.

  2. Panax notoginseng saponin attenuates hypoxia/reoxygenation-induced oxidative stress in cortical neurons★

    OpenAIRE

    Yan, Chen; Zhu, Jinqiang; Jia, Xiaoxu; Wang, Chao; Wang, Shaoxia; Kang, Liyuan

    2012-01-01

    The present study monitored the effect of 2, 10, and 50 mg/L of Panax notoginseng saponin exposure following hypoxia-reoxygenation injury in fetal rat cortical neurons. Results showed that varying doses of Panax notoginseng saponin significantly enhanced the cell viability of neurons, reduced malondialdehyde content, increased superoxide dismutase activity, inhibited mRNA and protein expression of inducible and neuronal nitric oxide synthase, and decreased the release of nitric oxide in hypox...

  3. Carnosine Reduces Oxidative Stress and Reverses Attenuation of Righting and Postural Reflexes in Rats with Thioacetamide-Induced Liver Failure.

    Science.gov (United States)

    Milewski, Krzysztof; Hilgier, Wojciech; Fręśko, Inez; Polowy, Rafał; Podsiadłowska, Anna; Zołocińska, Ewa; Grymanowska, Aneta W; Filipkowski, Robert K; Albrecht, Jan; Zielińska, Magdalena

    2016-02-01

    Cerebral oxidative stress (OS) contributes to the pathogenesis of hepatic encephalopathy (HE). Existing evidence suggests that systemic administration of L-histidine (His) attenuates OS in brain of HE animal models, but the underlying mechanism is complex and not sufficiently understood. Here we tested the hypothesis that dipeptide carnosine (β-alanyl-L-histidine, Car) may be neuroprotective in thioacetamide (TAA)-induced liver failure in rats and that, being His metabolite, may mediate the well documented anti-OS activity of His. Amino acids [His or Car (100 mg/kg)] were administrated 2 h before TAA (i.p., 300 mg/kg 3× in 24 h intervals) injection into Sprague-Dawley rats. The animals were thus tested for: (i) brain prefrontal cortex and blood contents of Car and His, (ii) amount of reactive oxygen species (ROS), total antioxidant capacity (TAC), GSSG/GSH ratio and thioredoxin reductase (TRx) activity, and (iii) behavioral changes (several models were used, i.e. tests for reflexes, open field, grip test, Rotarod). Brain level of Car was reduced in TAA rats, and His administration significantly elevated Car levels in control and TAA rats. Car partly attenuated TAA-induced ROS production and reduced GSH/GSSG ratio, whereas the increase of TRx activity in TAA brain was not significantly modulated by Car. Further, Car improved TAA-affected behavioral functions in rats, as was shown by the tests of righting and postural reflexes. Collectively, the results support the hypothesis that (i) Car may be added to the list of neuroprotective compounds of therapeutic potential on HE and that (ii) Car mediates at least a portion of the OS-attenuating activity of His in the setting of TAA-induced liver failure. PMID:26801175

  4. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    International Nuclear Information System (INIS)

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS+ and cyclooxygenase-2+) and alternatively activated profibrotic (YM-1+ and galectin-3+) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute lung injury induced by

  5. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  6. On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process.

    Science.gov (United States)

    Yu, Hye-Weon; Anumol, Tarun; Park, Minkyu; Pepper, Ian; Scheideler, Jens; Snyder, Shane A

    2015-09-15

    A combination of surrogate parameters and indicator compounds were measured to predict the removal efficiency of trace organic compounds (TOrCs) using low pressure (LP)-UV/H2O2 advanced oxidation process (AOP), engaged with online sensor-based monitoring system. Thirty-nine TOrCs were evaluated in two distinct secondary wastewater effluents in terms of estimated photochemical reactivity, as a function of the rate constants of UV direct photolysis (kUV) and hydroxyl radical (OH) oxidation (kOH). The selected eighteen TOrCs were classified into three groups that served as indicator compounds: Group 1 for photo-susceptible TOrCs but with minor degradation by OH oxidation (diclofenac, fluoxetine, iohexol, iopamidol, iopromide, simazine and sulfamethoxazole); Group 2 for TOrCs susceptible to both direct photolysis and OH oxidation (benzotriazole, diphenhydramine, ibuprofen, naproxen and sucralose); and Group 3 for photo-resistant TOrCs showing dominant degradation by OH oxidation (atenolol, carbamazepine, DEET, gemfibrozil, primidone and trimethoprim). The results indicate that TOC (optical-based measurement), UVA254 or UVT254 (UV absorbance or transmittance at 254 nm), and total fluorescence can all be used as suitable on-line organic surrogate parameters to predict the attenuation of TOrCs. Furthermore, the automated real-time monitoring via on-line surrogate sensors and equipped with the developed degradation profiles between sensor response and a group of TOrCs removal can provide a diagnostic tool for process control during advanced treatment of reclaimed waters. PMID:26074188

  7. Berberine Attenuates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Inflammation Response: Role of Silent Information Regulator 1

    Directory of Open Access Journals (Sweden)

    Liming Yu

    2016-01-01

    Full Text Available Berberine (BBR exerts potential protective effect against myocardial ischemia/reperfusion (MI/R injury. Activation of silent information regulator 1 (SIRT1 signaling attenuates MI/R injury by reducing oxidative damage and inflammation response. This study investigated the antioxidative and anti-inflammatory effects of BBR treatment in MI/R condition and elucidated its potential mechanisms. Sprague-Dawley rats were treated with BBR in the absence or presence of the SIRT1 inhibitor sirtinol (Stnl and then subjected to MI/R injury. BBR conferred cardioprotective effects by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase levels, upregulating SIRT1, Bcl-2 expressions, and downregulating Bax and caspase-3 expressions. Stnl attenuated these effects by inhibiting SIRT1 signaling. BBR treatment also reduced myocardium superoxide generation, gp91phox expression, malondialdehyde (MDA level, and cardiac inflammatory markers and increased myocardium superoxide dismutase (SOD level. However, these effects were also inhibited by Stnl. Consistently, BBR conferred similar antioxidative and anti-inflammatory effects against simulated ischemia reperfusion injury in cultured H9C2 cardiomyocytes. SIRT1 siRNA administration also abolished these effects. In summary, our results demonstrate that BBR significantly improves post-MI/R cardiac function recovery and reduces infarct size against MI/R injury possibly due to its strong antioxidative and anti-inflammatory activity. Additionally, SIRT1 signaling plays a key role in this process.

  8. Endothelium dependent hyperpolarization-type relaxation compensates for attenuated nitric oxide-mediated responses in subcutaneous arteries of diabetic patients.

    Science.gov (United States)

    Mokhtar, Siti Safiah; Vanhoutte, Paul M; Leung, Susan Wai Sum; Yusof, Mohd Imran; Wan Sulaiman, Wan Azman; Mat Saad, Arman Zaharil; Suppian, Rapeah; Rasool, Aida Hanum Ghulam

    2016-02-29

    Diabetes impairs endothelium-dependent relaxations. The present study evaluated the contribution of different endothelium-dependent relaxing mechanisms to the regulation of vascular tone in subcutaneous blood vessels of humans with Type 2 diabetes mellitus. Subcutaneous arteries were isolated from tissues of healthy controls and diabetics. Vascular function was determined using wire myography. Expressions of proteins were measured by Western blotting and immunostaining. Endothelium-dependent relaxations to acetylcholine were impaired in arteries from diabetics compared to controls (P = 0.009). Acetylcholine-induced nitric oxide (NO)-mediated relaxations [in the presence of an inhibitor of cyclooxygenases (COX; indomethacin) and small and intermediate conductance calcium-activated potassium channel blockers (UCL1684 and TRAM 34, respectively)] were attenuated in arteries from diabetics compared to controls (P bioavailability; however, EDH appears to compensate, at least in part, for this dysfunction. PMID:26768833

  9. Phosphodiesterase-3 inhibitor (cilostazol) attenuates oxidative stress-induced mitochondrial dysfunction in the heart

    Institute of Scientific and Technical Information of China (English)

    Siriporn C.Chattipakorn; Savitree Thummasorn; Jantira Sanit; Nipon Chattipakorn

    2014-01-01

    Background Cilostazol is a type 3 phosphodiesterase inhibitor which has been previously demonstrated to prevent the occurrence of tachyarrhythmia and improve defibrillation efficacy. However, the mechanism for this beneficial effect is still unclear. Since cardiac mito-chondria have been shown to play a crucial role in fatal cardiac arrhythmias and that oxidative stress is one of the main contributors to arr-hythmia generation, we tested the effects of cilostazol on cardiac mitochondria under severe oxidative stress. Methods Mitochondria were isolated from rat hearts and treated with H2O2 to induce oxidative stress. Cilostazol, at various concentrations, was used to study its protective effects. Pharmacological interventions, including a mitochondrial permeability transition pore (mPTP) blocker, cyclosporine A (CsA), and an inner membrane anion channel (IMAC) blocker, 4’-chlorodiazepam (CDP), were used to investigate the mechanistic role of cilostazol on cardiac mitochondria. Cardiac mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential change and mi-tochondrial swelling were determined as indicators of cardiac mitochondrial function. Results Cilostazol preserved cardiac mitochondrial function when exposed to oxidative stress by preventing mitochondrial depolarization, mitochondrial swelling, and decreasing ROS produc-tion. Conclusions Our findings suggest that cardioprotective effects of cilostazol reported previously could be due to its prevention of car-diac mitochondrial dysfunction caused by severe oxidative stress.

  10. Antihypertensive effects of fargesin in vitro and in vivo via attenuating oxidative stress and promoting nitric oxide release.

    Science.gov (United States)

    Sha, Sha; Xu, Dandan; Wang, Yanwei; Zhao, Weifang; Li, Xiaoni

    2016-08-01

    Fargesin, a bioactive neolignan isolated from magnolia plants, is widely used in the treatment of managing rhinitis, inflammation, histamine, sinusitis, and headache. To provide more biological information about fargesin, we investigated the effects of fargesin on rat aortic rings and 2-kidney, 1-clip (2K1C) hypertensive rats. In vitro, fargesin caused concentration-dependent vasorelaxation in rat isolated aortic rings induced by KCl and norepinephrine. The effect was weakened by endothelium denudation and nitric oxide (NO) synthesis inhibition. In vivo, the evolution of systolic blood pressure (SBP) was followed by weekly measurements. Angiotensin II (Ang II) and endothelin (ET) levels, NO and nitric oxide synthase (NOS), and plasma and liver oxidative stress markers were determined at the end of the experimental period. After 5 weeks of fargesin treatment, we found that fargesin treatment reduced SBP, cardiac hypertrophy, and Ang II and ET levels of hypertensive rats. Increased NOS activity and NO level were observed in fargesin-treated rats. Normalisation of plasma MDA concentrations and improvement of the antioxidant defence system in plasma and liver accompanied the antihypertensive effect of fargesin. Taken together, these results provided substantial evidences that fargesin has antihypertensive effect in 2K1C hypertensive rats via inhibiting oxidative stress and promoting NO release. PMID:27409158

  11. Consumption of both low and high (-)-epicatechin apple puree attenuates platelet reactivity and increases plasma concentrations of nitric oxide metabolites: a randomized controlled trial.

    Science.gov (United States)

    Gasper, Amy; Hollands, Wendy; Casgrain, Amelie; Saha, Shikha; Teucher, Birgit; Dainty, Jack R; Venema, Dini P; Hollman, Peter C; Rein, Maarit J; Nelson, Rebecca; Williamson, Gary; Kroon, Paul A

    2014-10-01

    We hypothesised that consumption of flavanol-containing apple puree would modulate platelet activity and increase nitric oxide metabolite status, and that high flavanol apple puree would exert a greater effect than low flavanol apple puree. 25 subjects consumed 230 g of apple puree containing 25 and 100mg epicatechin (low and high flavanol apple puree, respectively) and aspirin (75 mg) in random order. Measurements were made at baseline, acutely after treatment (2, 6 and 24 h), and after 14 d of treatment. Low flavanol apple puree significantly attenuated ADP and epinephrine-induced integrin-β3 expression 2 h and 6 h after consumption and ADP and epinephrine-induced P-selectin expression within 2h of consumption. High flavanol apple puree attenuated epinephrine and ADP-induced integrin-β3 expression after 2 and 6h. ADP and epinephrine-induced integrin-β3 expression was significantly attenuated 2, 6 and 24 h after consumption of aspirin, whilst 14 d aspirin consumption attenuated collagen-induced P-selectin expression only. The plasma total nitric oxide metabolite conc. was significantly increased 6h after consumption of both low and high flavanol apple purees. In conclusion, consumption of apple purees containing ⩾25 or 100 mg flavanols transiently attenuated ex vivo integrin-β3 and P-selectin expression and increased plasma nitric oxide metabolite conc. in healthy subjects, but the effect was not enhanced for the high flavanol apple puree. PMID:24929184

  12. Camellia Oil-Enriched Diet Attenuates Oxidative Stress and Inflammatory Markers in Hypercholesterolemic Subjects.

    Science.gov (United States)

    Bumrungpert, Akkarach; Pavadhgul, Patcharanee; Kalpravidh, Ruchaneekorn W

    2016-09-01

    Camellia oil is commonly used as an adjuvant in medicine. It is rich in monounsaturated fatty acids, vitamin E, and phytochemicals. The objective of this study was to examine effects of camellia oil consumption on oxidative stress, low-density lipoprotein-cholesterol (LDL-C) oxidation, and inflammatory markers in hypercholesterolemic subjects. The study design was a randomized, single-blind controlled trial. Women with hypercholesterolemia (n = 50) were randomly divided into two groups. The treatment group (n = 25) was provided camellia oil-enriched diets and the control group (n = 25) was provided diets cooked with soybean oil three meals (45 mL oil) a day for 8 weeks. Biomarkers of oxidative stress and inflammatory cytokines were assessed before and the after intervention. Camellia oil consumption significantly decreased malondialdehyde (11.2%; P stress and inflammatory markers in hypercholesterolemic women. Therefore, camellia oil consumption may reduce cardiovascular disease risk factors. PMID:27627703

  13. Polyhydroxylated fullerene attenuates oxidative stress-induced apoptosis via a fortifying Nrf2-regulated cellular antioxidant defence system

    Directory of Open Access Journals (Sweden)

    Ye SF

    2014-04-01

    (OH24. Furthermore, pretreatment with C60(OH24 attenuated hydrogen peroxide-induced apoptotic cell death in A549 cells, and knockdown of Nrf2 by small interfering ribonucleic acid diminished C60(OH24-mediated cytoprotection. Taken together, these findings demonstrate that C60(OH24 may attenuate oxidative stress-induced apoptosis via augmentation of Nrf2-regulated cellular antioxidant capacity, thus providing insights into the mechanisms of the antioxidant properties of C60(OH24.Keywords: fullerenol, Nrf2, oxidative stress, cytoprotection, A549 cells

  14. Attenuation of myocardial apoptosis by alpha-lipoic acid through suppression of mitochondrial oxidative stress to reduce diabetic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    LI Chun-jun; ZHANG Qiu-mei; LI Ming-zhen; ZHANG Jing-yun; YU Pei; YU De-min

    2009-01-01

    Background Cardiac failure is a leading cause of the mortality of diabetic patients.In part this is due to a specific cardiomyopathy,referred to as diabetic cardiomyopathy.Oxidative stress is widely considered to be one of the major factors underlying the pathogenesis of the disease.This study aimed to test whether the antioxidant α-lipoic acid(α-LA)could attenuate mitochondrion-dependent myocardial apoptosis through suppression of mitochondrial oxidative stress to reduce diabetic cardiomyopathy.Methods A rat model of diabetes was induced by a single tail intravenous injection of streptozotocin(STZ)45 mg/kg.Experimental animals were randomly assigned to 3 groups:normal control(NC),diabetes(DM)and DM treated with α-LA (α-LA).The latter group was administered with α-LA(100 mg/kg ip per day),the remainder received the same volume vehicle.At weeks 4,8,and 12 after the onset of diabetes,cardiac apoptosis was examined by TUNEL assay.Cardiomyopathy was evaluated by assessment of cardiac structure and function.Oxidative damage was evaluated by the content of malondialdehyde(MDA),reduced glutathione(GSH)and the activity of manganese superoxide diamutase (Mn-SOD)in the myocardial mitochondria.Expression of caspase-9 and caspase-3 proteins was determined by immunohistochemistry and mitochondrial cytochrome c release was detected by Western blottingResults At 4,8,and 12 weeks after the onset of diabetes,significant reductions in TUNEL-positive cells,caspase-9,-3 expression,and mitochondrial cytochrome c release were observed in the α-LA group compared to the DM group.In the DM group,the content of MDA in the myocardial mitochondria was significantly increased,and there was a decrease in both the mitochondrial GSH content and the activities of Mn-SOD.They were significantly improved by α-LA treatment.HE staining displayed structural abnormalities in diabetic hearts,while α-LA reversed this structural derangement.The index of cardiac function(±dp/dtmax)in the diabetes

  15. D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs

    International Nuclear Information System (INIS)

    Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatin exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na+, K+-ATPase and Ca2+-ATPase activities in the ampullary tissue with a good dose-response relationship but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na+, K+-ATPase and Ca2+-ATPase activities of the ampullary tissue. D-Methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea pig vestibular labyrinths. D-Methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property

  16. Perindopril Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Memory Impairment by Suppression of Oxidative Stress and RAGE Activation.

    Science.gov (United States)

    Goel, Ruby; Bhat, Shahnawaz Ali; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-02-17

    Clinical and preclinical studies account hypertension as a risk factor for dementia. We reported earlier that angiotensin-converting enzyme (ACE) inhibition attenuated the increased vulnerability to neurodegeneration in hypertension and prevented lipopolysaccharide (LPS)-induced memory impairment in normotensive wistar rats (NWRs) and spontaneously hypertensive rats (SHRs). Recently, a receptor for advanced glycation end products (RAGE) has been reported to induce amyloid beta (Aβ1-42) deposition and memory impairment in hypertensive animals. However, the involvement of ACE in RAGE activation and amyloidogenesis in the hypertensive state is still unexplored. Therefore, in this study, we investigated the role of ACE on RAGE activation and amyloidogenesis in memory-impaired NWRs and SHRs. Memory impairment was induced by repeated (on days 1, 4, 7, and 10) intracerebroventricular (ICV) injections of LPS in SHRs (25 μg) and NWRs (50 μg). Our data showed that SHRs exhibited increased oxidative stress (increased gp91-phox/NOX-2 expression and ROS generation), RAGE, and β-secretase (BACE) expression without Aβ1-42 deposition. LPS (25 μg, ICV) further amplified oxidative stress, RAGE, and BACE activation, culminating in Aβ1-42 deposition and memory impairment in SHRs. Similar changes were observed at the higher dose of LPS (50 μg, ICV) in NWRs. Further, LPS-induced oxidative stress was associated with endothelial dysfunction and reduction in cerebral blood flow (CBF), more prominently in SHRs than in NWRs. Finally, we showed that perindopril (0.1 mg/kg, 15 days) prevented memory impairment by reducing oxidative stress, RAGE activation, amyloidogenesis, and improved CBF in both SHRs and NWRs. These findings suggest that perindopril might be used as a therapeutic strategy for the early stage of dementia. PMID:26689453

  17. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    Directory of Open Access Journals (Sweden)

    Ye Han

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer and analyzed by high performance liquid chromatography (HPLC and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days drastically prevented the elevated activities of aspartate transaminase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP and triglyceride (TG in serum and the levels of malondialdehyde (MDA, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β in liver tissue (p < 0.05. Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT, superoxide dismutase (SOD, glutathione peroxidase (GSH-Px were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05. Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  18. Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats.

    Science.gov (United States)

    Coban, Funda Karabag; Ince, Sinan; Kucukkurt, Ismail; Demirel, Hasan Huseyin; Hazman, Omer

    2015-10-01

    Organophosphorus compounds cause oxidative stress and lead to alterations in antioxidant status in organisms. In this study, the effects of subchronic exposure to malathion and the protective effects of boron (B) were evaluated in 48 Wistar rats, which were divided equally into six groups. For 28 d, the control group received a normal diet and tap water, the corn oil group received a normal diet and 0.5 mL of corn oil by gastric gavage and the malathion group received a normal diet and malathion (100 mg/kg/d) by gastric gavage. During the same period, each of the three other groups received a different dosage of B (5, 10 and 20 mg/kg/d, respectively) and malathion (100 mg/kg/d) by gastric gavage. Malathion administration during the period increased malondialdehyde, nitric oxide and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, as well as markers of liver function, yet decreased acetylcholinesterase, reduced glutathione, superoxide dismutase, and catalase activities in blood, liver, kidney and brain tissues. Administration of B in a dose-dependent manner also reversed malathion-induced oxidative stress, lipid peroxidation (LPO) and antioxidant enzyme activity. Moreover, B exhibited protective action against malathion-induced histopathological changes in liver, kidney and brain tissues. These results demonstrate that, if used in a dose-dependent manner, B decreases malathion-induced oxidative stress, enhances the antioxidant defense mechanism and regenerates tissues in rats. PMID:25342379

  19. Chronic Administration of Oil Palm (Elaeis guineensis) Leaves Extract Attenuates Hyperglycaemic-Induced Oxidative Stress and Improves Renal Histopathology and Function in Experimental Diabetes

    OpenAIRE

    Varatharajan Rajavel; Munavvar Zubaid Abdul Sattar; Mahmood Ameen Abdulla; Kassim, Normadiah M.; Nor Azizan Abdullah

    2012-01-01

    Oil palm (Elaeis guineensis) leaves extract (OPLE) has antioxidant properties and because oxidative stress contributes to the pathogenesis of diabetic nephropathy (DN), we tested the hypothesis that OPLE prevents diabetes renal oxidative stress, attenuating injury. Sprague-Dawley rats received OPLE (200 and 500 mg kg−1) for 4 and 12 weeks after diabetes induction (streptozotocin 60 mg kg−1). Blood glucose level, body and kidney weights, urine flow rate (UFR), glomerular filtration rate (GFR),...

  20. Agmatine attenuates reserpine-induced oral dyskinesia in mice: Role of oxidative stress, nitric oxide and glutamate NMDA receptors.

    Science.gov (United States)

    Cunha, Andréia S; Matheus, Filipe C; Moretti, Morgana; Sampaio, Tuane B; Poli, Anicleto; Santos, Danúbia B; Colle, Dirleise; Cunha, Mauricio P; Blum-Silva, Carlos H; Sandjo, Louis P; Reginatto, Flávio H; Rodrigues, Ana Lúcia S; Farina, Marcelo; Prediger, Rui D

    2016-10-01

    Dyskinesia consists in a series of trunk, limbs and orofacial involuntary movements that can be observed following long-term pharmacological treatment in some psychotic and neurological disorders such as schizophrenia and Parkinson's disease, respectively. Agmatine is an endogenous arginine metabolite that emerges as neuromodulator and a promising agent to manage diverse central nervous system disorders by modulating nitric oxide (NO) pathway, glutamate NMDA receptors and oxidative stress. Herein, we investigated the effects of a single intraperitoneal (i.p.) administration of different agmatine doses (10, 30 or 100mg/kg) against the orofacial dyskinesia induced by reserpine (1mg/kg,s.c.) in mice by measuring the vacuous chewing movements and tongue protusion frequencies, and the duration of facial twitching. The results showed an orofacial antidyskinetic effect of agmatine (30mg/kg, i.p.) or the combined administration of sub-effective doses of agmatine (10mg/kg, i.p.) with the NMDA receptor antagonists amantadine (1mg/kg, i.p.) and MK801 (0.01mg/kg, i.p.) or the neuronal nitric oxide synthase (NOS) inhibitor 7-nitroindazole (7-NI; 0.1mg/kg, i.p.). Reserpine-treated mice displayed locomotor activity deficits in the open field and agmatine had no effect on this response. Reserpine increased nitrite and nitrate levels in cerebral cortex, but agmatine did not reverse it. Remarkably, agmatine reversed the decrease of dopamine and non-protein thiols (NPSH) levels caused by reserpine in the striatum. However, no changes were observed in striatal immunocontent of proteins related to the dopaminergic system including tyrosine hydroxylase, dopamine transporter, vesicular monoamine transporter type 2, pDARPP-32[Thr75], dopamine D1 and D2 receptors. These results indicate that the blockade of NO pathway, NMDAR and oxidative stress are possible mechanisms associated with the protective effects of agmatine against the orofacial dyskinesia induced by reserpine in mice. PMID

  1. Recombinant human deoxyribonuclease attenuates oxidative stress in a model of eosinophilic pulmonary response in mice.

    Science.gov (United States)

    da Cunha, Aline Andrea; Nuñez, Nailê Karine; de Souza, Rodrigo Godinho; Vargas, Mauro Henrique Moraes; Silveira, Josiane Silva; Antunes, Géssica Luana; Schmitz, Felipe; de Souza Wyse, Angela Terezinha; Jones, Marcus Herbert; Pitrez, Paulo Márcio

    2016-02-01

    The inflammatory cells infiltrating the airways produce several mediators, such as reactive oxygen species (ROS). ROS and the oxidant-antioxidant imbalance might play an important role in the modulation of airways inflammation. In order to avoid the undesirable effects of ROS, various endogenous antioxidant strategies have evolved, incorporating both enzymatic and non-enzymatic mechanisms. Recombinant human deoxyribonuclease (rhDNase) in clinical studies demonstrated a reduction in sputum viscosity, cleaving extracellular DNA in the airways, and facilitating mucus clearance, but an antioxidant effect was not studied so far. Therefore, we evaluated whether the administration of rhDNase improves oxidative stress in a murine model of asthma. Mice were sensitized by two subcutaneous injections of ovalbumin (OVA), on days 0 and 7, followed by three lung challenges with OVA on days 14, 15, and 16. On days 15 and 16, after 2 h of the challenge with OVA, mice received 1 mg/mL of rhDNase in the lungs. Bronchoalveolar lavage fluid and lung tissue were obtained on day 17, for inflammatory and oxidative stress analysis. We showed that rhDNase did not alter the population of inflammatory cells, such as eosinophil cells, in OVA-treated rhDNase group but significantly improved oxidative stress in lung tissue, by decreasing oxygen reactive species and increasing superoxide dismutase/catalase ratio, glutathione peroxidase activity, and thiol content. Our data provide the first evidence that rhDNase decreases some measures of oxidative stress and antioxidant status in a murine model of asthma, with a potential antioxidant effect to be further studied in human asthma. PMID:26738487

  2. Angiotensin and mineralocorticoid receptor antagonism attenuates cardiac oxidative stress in angiotensin II-infused rats.

    Science.gov (United States)

    Minas, Jacqueline N; Thorwald, Max A; Conte, Debra; Vázquez-Medina, Jose-Pablo; Nishiyama, Akira; Ortiz, Rudy M

    2015-11-01

    Angiotensin II (Ang II) and aldosterone contribute to hypertension, oxidative stress and cardiovascular damage, but the contributions of aldosterone during Ang II-dependent hypertension are not well defined because of the difficulty to assess each independently. To test the hypothesis that during Ang II infusion, oxidative and nitrosative damage is mediated through both the mineralocorticoid receptor (MR) and angiotensin type 1 receptor (AT1), five groups of Sprague-Dawley rats were studied: (i) control; (ii) Ang II infused (80 ng/min × 28 days); (iii) Ang II + AT1 receptor blocker (ARB; 10 mg losartan/kg per day × 21 days); (iv) Ang II + mineralocorticoid receptor (MR) antagonist (Epl; 100 mg eplerenone/day × 21 days); and (v) Ang II + ARB + Epl (Combo; × 21 days). Both ARB and combination treatments completely alleviated the Ang II-induced hypertension, whereas eplerenone treatment only prolonged the onset of the hypertension. Eplerenone treatment exacerbated the Ang II-mediated increase in plasma and heart aldosterone 2.3- and 1.8-fold, respectively, while ARB treatment reduced both. Chronic MR blockade was sufficient to ameliorate the AT1-mediated increase in oxidative damage. All treatments normalized protein oxidation (nitrotyrosine) levels; however, only ARB and Combo treatments completely reduced lipid peroxidation (4-hydroxynonenal) to control levels. Collectively, these data suggest that receptor signalling, and not the elevated arterial blood pressure, is the principal culprit in the oxidative stress-associated cardiovascular damage in Ang II-dependent hypertension. PMID:26234762

  3. Grape seed proanthocyanidins protects against cadmium induced oxidative pancreatitis in rats by attenuating oxidative stress, inflammation and apoptosis via Nrf-2/HO-1 signaling.

    Science.gov (United States)

    Bashir, Nazima; Manoharan, Vaihundam; Miltonprabu, Selvaraj

    2016-06-01

    The present study has been designed and carried out to explore the role of grape seed proanthocyanidins (GSP) in the pancreas of cadmium (Cd)-induced cellular oxidative stress-mediated toxicity in rats. Four groups of healthy rats were given oral doses of Cd (5-mg/kg BW) and to identify the possible mechanism of action of GSP 100-mg/kg BW was selected and was given 90 min before Cd intoxication. The causative molecular and cellular mechanism of Cd was determined using various biochemical assays, histology, western blotting and ELISA. Cd intoxication revealed increased levels of proinflammatory cytokines (TNF-α, IL1β and IFN-γ), reduced levels of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2 and GLUT-4) along with the enhanced levels of signaling molecules of apoptosis (cleaved Caspase-12/9/8/3) in the pancreas of Cd-intoxicated rats. Results suggested that the treatment with GSP reduced blood glucose level, increased plasma insulin and mitigated oxidative stress-related markers. GSP protects pancreatic tissue by attenuated inflammatory responses and inhibited apoptosis. This uniqueness and absence of any detectable adverse effect of GSP proposes the possibility of using it as an effective protector in the oxidative stress-mediated pancreatic dysfunction in rats. PMID:27142746

  4. Mailuoning protects against ischemic brain injury by inhibiting oxidative stress%脉络宁抑制氧化应激保护缺血性脑损伤

    Institute of Scientific and Technical Information of China (English)

    吴晓新; 黄偲元; 朱晓蕾; 朱海荣; 徐运

    2010-01-01

    目的 探讨脉络宁对氧化应激和缺血性脑损伤的影响.方法 健康雄性昆明小鼠126只,分为假手术组(n=18)、生理盐水对照组(n=54)和脉络宁组(n=54).建立大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)模型,脉络宁组和生理盐水对照组MCAO 2 h后分别经尾静脉给予脉络宁注射液和同体积生理盐水,然后每隔24 h重复1次.在MCAO 12、24和72 h分别进行神经功能评分、脑水含量、梗死体积、膜电位以及蛋白质氧化应激代谢产物3-硝基酪氨酸(3-nitrotyrosine,3-NT)、脂质氧化应激代谢产物4-羟基壬烯醛(4-hydroxy-2-nonenal,HNE)和核酸氧化应激代谢产物8-羟基脱氧鸟苷(8-hydroxy-2'-deoxyguanosine,8-OHdG)检测.结果 在脑缺血后不同时间点,脉络宁注射液均可显著改善脑缺血小鼠的神经功能、减轻脑水肿和缩小梗死体积,其中以72 h最为显著;脉络宁注射液可逆转脑皮质和内囊区的线粒体膜电位降低,显著下调缺血后皮质、内囊和血清3-NT、HEN 和8-OHdG的升高,其中以降低HNE效果最为显著.结论 脉络宁注射液能有效保护小鼠缺血性脑损伤,其机制与抑制氧化应激,尤其是抗脂质氧化有关.%Objective To investigate the effects of Mailuoning on oxidative stress and ischemic brain injury. Methods A total of 126 healthy male Kunming mice were divided into sham operation (n = 18), normal saline control (n = 54) and Mailuoning (n = 54) groups. A middle cerebral artery occlusion (MCAO) model was induced Two hours after MCAO,Mailuoning injection and equivalent saline were injected via the tail vein in the Mailuoning and normal saline control groups, respectively, and then they were injected every other 24 h.Neurological score was performed, and brain water content, infarct volume, membrane potential,as well as protein oxidative stress metabolites such as 3-nitrotyrosine (3-NT), lipid oxidative stress metabolite 4-hydroxy-2-nonenal (HNE) and nucleic acid

  5. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Oranuch Nakchat

    2014-05-01

    Conclusions: TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat.

  6. Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells

    Directory of Open Access Journals (Sweden)

    Chuang Dennis Y

    2013-01-01

    Full Text Available Abstract Background The bark of magnolia has been used in Oriental medicine to treat a variety of remedies, including some neurological disorders. Magnolol (Mag and honokiol (Hon are isomers of polyphenolic compounds from the bark of Magnolia officinalis, and have been identified as major active components exhibiting anti-oxidative, anti-inflammatory, and neuroprotective effects. In this study, we investigate the ability of these isomers to suppress oxidative stress in neurons stimulated by the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA and oxidative and inflammatory responses in microglial cells activated by interferon-γ (IFNγ and lipopolysaccharide (LPS. We also attempt to elucidate the mechanism and signaling pathways involved in cytokine-induced production of reactive oxygen species (ROS in microglial cells. Methods Dihydroethidium (DHE was used to assay superoxide production in neurons, while CM-H2DCF-DA was used to test for ROS production in murine (BV-2 and rat (HAPI immortalized microglial cells. NADPH oxidase inhibitors (for example, diphenyleneiodonium (DPI, AEBSF, and apocynin and immunocytochemistry targeting p47phox and gp91phox were used to assess the involvement of NADPH oxidase. Western blotting was used to assess iNOS and ERK1/2 expression, and the Griess reaction protocol was employed to determine nitric oxide (NO concentration. Results Exposure of Hon and Mag (1–10 μM to neurons for 24 h did not alter neuronal viability, but both compounds (10 μM inhibited NMDA-stimulated superoxide production, a pathway known to involve NADPH oxidase. In microglial cells, Hon and Mag inhibited IFNγ±LPS-induced iNOS expression, NO, and ROS production. Studies with inhibitors and immunocytochemical assay further demonstrated the important role of IFNγ activating the NADPH oxidase through the p-ERK-dependent pathway. Hon and, to a lesser extent, Mag inhibited IFNγ-induced p-ERK1/2 and its downstream pathway for

  7. Hyperbaric oxygen preconditioning protects the lung against acute pancreatitis induced injury via attenuating inflammation and oxidative stress in a nitric oxide dependent manner.

    Science.gov (United States)

    Yu, Qi-Hong; Zhang, Pei-Xi; Liu, Ying; Liu, Wenwu; Yin, Na

    2016-09-01

    This study aimed to investigate the protective effects of hyperbaric oxygen preconditioning (HBO-PC) on acute pancreatitis AP associated acute lung injury (ALI) and the potential mechanisms. Rats were randomly divided into sham group, AP group, HBO-PC + AP group and HBO-PC + L-NAME group. Rats in HBO-PC + AP group received HBO-PC once daily for 3 days, and AP was introduced 24 h after last HBO-PC. In HBO-PC + L-NAME group, L-NAME (40 mg/kg) was intraperitoneally injected before each HBO-PC. At 24 h after AP, the blood lipase and amylase activities were measured; the lung and pancreas were harvested for pathological examination; the bronchoalveolar lavage fluid was collected for the detection of lactate dehydrogenase (LDH) and proteins; inflammatory factors, superoxide dismutase (SOD) activity and malonaldehyde content were measured in the lung and blood; the Nrf2, SOD-1 and haem oxygenase-1 (HO-1) protein expression was measured in the lung. The lung nitric oxide (NO) and NO synthase activity increased significantly after HBO-PC. HBO-PC was able to reduce blood lipase and amylase activities, improve lung and pancreatic pathology, decrease LDH and proteins in BALF, inhibit the production of inflammatory factors, reduce malonaldehyde content and increase SOD activity in the lung and blood as well as increase protein expression of Nrf2, SOD-1 and HO-1 in the lung. However, L-NAME before HBO-PC significantly attenuated protective effects of HBO-PC. HBO-PC is able to protect the lung against AP induced injury by attenuating inflammation and oxidative stress in the lung via a NO dependent manner. PMID:27453338

  8. Probucol attenuates oxidative stress, energy starvation, and nitric acid production following transient forebrain ischemia in the rat hippocampus.

    Science.gov (United States)

    Al-Majed, Abdulhakeem A

    2011-01-01

    Oxidative stress and energy depletion are believed to participate in hippocampal neuronal damage after forebrain ischemia. This study has been initiated to investigate the potential neuroprotective effects of probucol, a lipid-lowering drug with strong antioxidant properties, against transient forebrain ischemia-induced neuronal damage and biochemical abnormalities in rat hippocampal CA1 region. Adult male Wistar albino rats were subjected to forebrain ischemia and injected with probucol for the next 7 successive days, and compared to controls. Forebrain ischemia resulted in a significant decrease in the number of intact neurons (77%), glutathione (GSH), and adenosine triphosphate (ATP), and a significant increase in thiobarbituric acid reactive substances (TBARS) and total nitrate/nitrite, (NO(x)) production in hippocampal tissues. The administration of probucol attenuated forebrain ischemia-induced neuronal damage, manifested as a complete reversal of the decrease in the number of intact neurons, ATP and GSH and the increase in TBARS and NO(x) in hippocampal tissues. This study demonstrates that probucol treatment abates forebrain ischemia-induced hippocampal neuronal loss, energy depletion, and oxidative stress in hippocampal CA1 region. Thus, probucol could be a promising neuroprotective agent in the treatment of forebrain ischemia. PMID:21904644

  9. Escin, a novel triterpene, mitigates chronic MPTP/p-induced dopaminergic toxicity by attenuating mitochondrial dysfunction, oxidative stress, and apoptosis.

    Science.gov (United States)

    Selvakumar, Govindasamy Pushpavathi; Manivasagam, Thamilarasan; Rekha, Karamkolly R; Jayaraj, Richard L; Elangovan, Namasivayam

    2015-01-01

    Parkinson's disease (PD) is a common, chronic, and debilitating neurodegenerative disorder characterized by progressive loss of nigrostriatal dopaminergic neurons due to unknown factors. In the present study, we have evaluated if escin, a triterpene saponin from seeds of horse chestnut tree (Aesculus hippocastanum), offers neuroprotection against chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced toxicity using a mouse model. Chronic administration of MPTP/p deteriorated the loss of TH immunoreactivity in striatum. Subsequently, MPTP/p also enhanced oxidative stress by mitochondrial complex I inhibition, thereby ensuing dopaminergic denervation via modulation of Bcl-2, Bax, Cyto-C, and cleaved caspases expressions. However, we observed that pretreatment with escin (4 mg/kg) significantly attenuated MPTP/p-induced mitochondrial dysfunction, oxidative stress, and apoptosis. Furthermore, behavioral studies and ultrastructural analysis of mitochondria and intracellular components were in support of these findings. Therefore, we speculate that escin might be a promising candidate for the prevention of mitochondrial dysfunction-induced apoptosis in neurodegenerative disorders such as PD. PMID:24788336

  10. Aluminum-doped zinc oxide nanoparticles attenuate the TSLP levels via suppressing caspase-1 in activated mast cells.

    Science.gov (United States)

    Kim, Min-Ho; Seo, Jun-Ho; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-04-01

    Zinc oxide nanoparticles (ZO-NPs) are used as antimicrobials, anti-inflammatories, and to treat cancer. However, although ZO-NPs have excellent efficiency and specificity, their cytotoxicity is higher than that of micron-sized zinc oxide. Doping ZO-NPs with aluminum can improve therapeutic efficacy, but the biological effects and mechanisms involved have not been elucidated. Here, we reported the efficacy of aluminum-doped ZO-NP (AZO) on thymic stromal lymphopoietin (TSLP) production and caspase-1 activation in human mast cell line, HMC-1 cells. AZO significantly reduced TSLP levels as well as interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α without inducing cytotoxicity. Furthermore, AZO more effectively reduced TSLP, IL-6, IL-8, and TNF-α levels than ZO-NP. The levels of inflammatory cytokine mRNA were also reduced by AZO treatment. AZO blocked production of IL-1β and activations of caspase-1 and nuclear factor-κB by inhibiting IκB kinase β and receptor interacting protein 2. In addition, AZO attenuated phosphorylation of mitogen-activated protein kinases, such as extracellular signal-regulated kinase, c-Jun N-terminal kinases, and p38. These findings provide evidence that AZO improves anti-inflammatory properties and offer a safe and effective potential treatment option. PMID:26825457

  11. The MRI marker gene MagA attenuates the oxidative damage induced by iron overload in transgenic mice.

    Science.gov (United States)

    Guan, Xiaoying; Jiang, Xinhua; Yang, Chuan; Tian, Xiumei; Li, Li

    2016-06-01

    We aimed to create transgenic (Tg) mice engineered for magnetic resonance imaging (MRI). To ascertain if MagA expression contributes to oxidative stress and iron metabolism, we report the generation of Tg mice in which ubiquitous expression of MagA can be detected by MRI in vivo. Expression of MagA in diverse tissues of Tg mice was assessed, and iron accumulation and deposition of nanoparticles in tissues were analyzed. Levels of antioxidant enzymes, lipid peroxidation and cytokine production were determined, and iron metabolism-related proteins were also detected. MagA Tg showed no apparent pathologic symptoms and no histologic changes compared with wild-type (WT) mice. Overexpression of MagA resulted in specific alterations of the transverse relaxation rate (R2) of water. Transgene-dependent changes in R2 were detectable by MRI in iron-overloaded mice. We also evaluated antioxidant abilities between WT and Tg groups or two iron-overloaded groups. Together with the data of cytokines and iron metabolism-related proteins, we inferred that MagA could regulate nanoparticle production and thus attenuate the oxidative damage induced by iron overload. The novel MagA Tg mouse, which expresses an MRI reporter in many tissues, would be a valuable model of MagA molecular imaging in which to study diseases related to iron metabolism. PMID:26488480

  12. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases

    International Nuclear Information System (INIS)

    In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitric oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.

  13. Alpha-Lipoic Acid Attenuates Oxidative Damage in Organs After Sepsis.

    Science.gov (United States)

    Petronilho, Fabricia; Florentino, Drielly; Danielski, Lucinéia Gainski; Vieira, Luiz Carlos; Martins, Maryane Modolon; Vieira, Andriele; Bonfante, Sandra; Goldim, Mariana Pereira; Vuolo, Francieli

    2016-02-01

    Sepsis progression is linked with the imbalance between reactive oxygen species and antioxidant enzymes. Thus, the aim of this study was to evaluate the effect of alpha-lipoic acid (ALA), a powerful antioxidant, in organs of rats submitted to sepsis. Male Wistar rats were subjected to sepsis by cecal ligation puncture (CLP) and treated with ALA or vehicle. After CLP (12 and 24 h), the myeloperoxidase (MPO) activity, protein and lipid oxidative damage, and antioxidant enzymes in the liver, kidney, heart, and lung were evaluated. ALA was effective in reducing MPO activity, lipid peroxidation in the liver, and protein carbonylation only in the kidney in 12 h after CLP. In 12 h, SOD activity increased in the kidney and CAT activity in the liver and kidney with ALA treatment. Thus, ALA was able to reduce the inflammation and oxidative stress in the liver and kidney after sepsis in rats. PMID:26431839

  14. Curcumin, a diferuloylmethane, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rat kidneys

    OpenAIRE

    2005-01-01

    Background In India, Curcumin (CMN) is popularly known as "Haldi", and has been well studied due to its economic importance. Traditional Indian medicine claims the use of its powder against biliary disorders, anorexia, coryza, cough, diabetic wounds, hepatic disorder, rheumatism and sinusitis. This study was designed to examine the possible beneficial effect of CMN in preventing the acute renal failure and related oxidative stress caused by chronic administration of cyclosporine (CsA) in rats...

  15. Resveratrol attenuates 4-hydroxy-2-hexenal-induced oxidative stress in mouse cortical collecting duct cells

    OpenAIRE

    Bae, Eun Hui; Joo, Soo Yeon; Ma, Seong Kwon; Lee, JongUn; Kim, Soo Wan

    2016-01-01

    Resveratrol (RSV) may provide numerous protective eff ects against chronic inflammatory diseases. Due to local hypoxia and hypertonicity, the renal medulla is subject to extreme oxidative stress, and aldehyde products formed during lipid peroxidation, such as 4-hydroxy-2-hexenal (HHE), might be responsible for tubular injury. This study aimed at investigating the eff ects of RSV on renal and its signaling mechanisms. While HHE treatment resulted in decreased expression of Sirt1, AQP2, and nuc...

  16. Attenuation of Methotrexate-Induced Embryotoxicity and Oxidative Stress by Ethyl Pyruvate

    OpenAIRE

    Najafi Gholamreza; Atashfaraz Elham; Farokhi Farah

    2016-01-01

    Background Methotrexate (MTX), as an anti-folate agent, is widely used in the treatment of rheumatic disorders and malignant tumors, however it damages reproductive sys- tem in mice. The aim of this research was to study the effects of ethyl pyruvate (EP) on embryo development and oxidative stress changes in the testis of mice treated with MTX. Materials and Methods In this experimental study, thirty-two adult male Naval Medical Research Institute mice, with average weight of 26 ± 2 ...

  17. Etanercept Attenuates Myocardial Ischemia/Reperfusion Injury by Decreasing Inflammation and Oxidative Stress

    OpenAIRE

    YANG Mei; Chen, Jianchang; Zhao, Jing; Meng, Mei

    2014-01-01

    The protective role of etanercept in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether etanercept modulates neutrophil accumulation, TNF-α induction and oxidative stress in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia/reperfusion (MI/R) alone, MI/R+ etanercept. The results demonstrated that compared to MI/R, etanercept reduced myocardial infarction area, myocardial myel...

  18. Ischemic preconditioning acts upstream of GluR2 down-regulation to afford neuroprotection in the hippocampal CA1

    OpenAIRE

    Tanaka, Hidenobu; Calderone, Agata; Jover, Teresa; Grooms, Sonja Y.; Yokota, Hidenori; Zukin, R. Suzanne; Bennett, Michael V. L.

    2002-01-01

    Animals subjected to sublethal transient global ischemia (ischemic preconditioning) exhibit neuroprotection against subsequent global ischemia-induced neuronal death in the hippocampal CA1 (ischemic tolerance). The molecular mechanisms underlying ischemic tolerance are unclear. Here we report that ischemic preconditioning induced a small, transient down-regulation of GluR2 mRNA expression and greatly attenuated subsequent ischemia-induced GluR2 mRNA and protein down-regulation and neuronal de...

  19. Dietary ellagic acid attenuates oxidized LDL uptake and stimulates cholesterol efflux in murine macrophages.

    Science.gov (United States)

    Park, Sin-Hye; Kim, Jung-Lye; Lee, Eun-Sook; Han, Seon-Young; Gong, Ju-Hyun; Kang, Min-Kyung; Kang, Young-Hee

    2011-11-01

    Foam cell formation is the hallmark of early atherosclerosis. Lipid uptake by scavenger receptors (SR) in macrophages initiates chronic proinflammatory cascades linked to atherosclerosis. It has been reported that the upregulation of cholesterol efflux may be protective in the development of atherosclerosis. Ellagic acid, a polyphenolic compound mostly found in berries, walnuts, and pomegranates, possesses antioxidative, growth-inhibiting and apoptosis-promoting activities in cancer cells. However, the antiatherogenic actions of ellagic acid are not well defined. The current study elucidated oxidized LDL handling of ellagic acid in J774A1 murine macrophages. Noncytotoxic ellagic acid suppressed SR-B1 induction and foam cell formation within 6 h after the stimulation of macrophages with oxidized LDL, confirmed by Oil red O staining of macrophages. Ellagic acid at ≤5 μmol/L upregulated PPARγ and ATP binding cassette transporter-1 in lipid-laden macrophages, all responsible for cholesterol efflux. In addition, 5 μmol/L ellagic acid accelerated expression and transcription of the nuclear receptor of liver X receptor-α highly implicated in the PPAR signaling. Furthermore, ellagic acid promoted cholesterol efflux in oxidized LDL-induced foam cells. These results provide new information that ellagic acid downregulated macrophage lipid uptake to block foam cell formation of macrophages and boosted cholesterol efflux in lipid-laden foam cells. Therefore, dietary and pharmacological interventions with berries rich in ellagic acid may be promising treatment strategies to interrupt the development of atherosclerosis. PMID:21940512

  20. The attenuation of oscillatory thermocapillary convection in the oxide melt by a transverse magnetic field

    Institute of Scientific and Technical Information of China (English)

    JIN WeiQing; AI Fei; HONG Yong; LUO HaoSu; LIU Yan; PAN XiuHong

    2007-01-01

    The effect of a transverse magnetic field on the oscillatory thermocapillary convection in the NaBi(WO4)2 melt was studied by using the in-situ observation system. The oscillation was attenuated when the 60 mT magnetic field was applied, as shown by the decrease in the amplitude and the frequency. Furthermore, the oscillation under smaller temperature difference was stabilized after the magnetic field was applied. The magnetic effect could be due to the Lorentz force generated by the interaction between motional ions and the vertical magnetic field. The ionic conductivities were measured to demonstrate the effect of the magnetic field. The solid ionic electrical conductivity increases with the temperature rise, and the melt ionic electrical conductivity was measured to be about 2.0×10-4 Ω-1·cm-1. Experimental results manifest that the effect of the magnetic field on anions and cations in the melt makes the flow change to the direction normal to the applied field, so the flow is more orderly and the oscillation is suppressed.

  1. Puerarin, isolated from Pueraria lobata (Willd.), protects against diabetic nephropathy by attenuating oxidative stress.

    Science.gov (United States)

    Xu, Xiaohui; Zheng, Ni; Chen, Zhaoni; Huang, Wansu; Liang, Tao; Kuang, Hai

    2016-10-15

    In this study, we evaluated the effect of puerarin (PR) on diabetic nephropathy (DN) in streptozotocin (STZ)-induced diabetic mice. The fasting blood glucose (FBG), blood urea nitrogen (BUN) and serum creatinine (Scr), as well as 24-hour urine protein levels were effectively ameliorated in DN mice treated with PR (20, 40, 80mg/kg/day). Furthermore, PR treatment markedly resulted in down-regulation of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) in kidney. Interestingly, the activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) were increased by PR. An improvement in kidney tissue damage could be observed after PR administration. Further ultrastructural investigation revealed a dramatically ameliorative effect of PR on mitochondrial damage. Meanwhile, the silent information regulator 1 (SIRT1), forkhead box protein O1 (FOXO1) and alpha subunit of peroxisome proliferators-activated receptor-gamma coactivator-1 (PGC-1α) expressions were significantly up-regulated at protein level by PR administration in renal cortex. However, the protein expression of nuclear-factor kappa B (NF-κB) was down-regulated in PR groups. Our present study demonstrates the hypoglycemic and renal protective effects of PR in DN mice, which support its anti-diabetic property. PR exerts its renal protection effect probably via the mechanism of attenuating SIRT1/FOXO1 pathway for renal protection. PMID:27317894

  2. Exogenous taurine attenuates mitochondrial oxidative stress and endoplasmic reticulum stress in rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yujie Yang; Yue Zhang; Xiaoyu Liu; Ji Zuo; Keqiang Wang; Wen Liu; Junbo Ge

    2013-01-01

    Taurine,a conditionally essential amino acid,plays a critical role in cardiovascular function.Here we examined the effect of taurine on mitochondria and endoplasmic reticulum in rat cardiomyocytes during glucose deprivation (GD).Data showed that cell viability,intracellular taurine contents,and taurine transporter expression were decreased during GD.In contrast,an increase in reactive oxygen species and intracellular Ca2+ contents was observed.GD also caused disrupted mitochondrial membrane potential,apoptotic cell death,and dissociation of unfolded protein response (UPR)-relative proteins in cardiomyocytes.Signal transduction analysis showed that Bcl-2 family protein balance was disturbed,caspase-12 was activated and UPR-relative protein levels were up-regulated.Moreover,pre-treatment with 80 mM exogenous taurine attenuated GD effect in cardiomyocytes.Our results suggest that taurine have beneficial effects on inhibiting mitochondria-dependent cell apoptosis and UPR-associated cell apoptosis and might have clinical impfications on acute myocardial infarction in future.

  3. Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin

    Directory of Open Access Journals (Sweden)

    Benvenisti-Zarom Luna

    2004-09-01

    Full Text Available Abstract Background Hemin, the oxidized form of heme, accumulates in intracranial hematomas and is a potent oxidant. Growing evidence suggests that it contributes to delayed injury to surrounding tissue, and that this process is affected by the heme oxygenase enzymes. In a prior study, heme oxygenase-2 gene deletion increased the vulnerability of cultured cortical astrocytes to hemin. The present study tested the effect of HO-2 gene deletion on protein oxidation, reactive oxygen species formation, and cell viability after mixed cortical neuron/astrocyte cultures were incubated with neurotoxic concentrations of hemin. Results Continuous exposure of wild-type cultures to 1–10 μM hemin for 14 h produced concentration-dependent neuronal death, as detected by both LDH release and fluorescence intensity after propidium iodide staining, with an EC50 of 1–2 μM; astrocytes were not injured by these low hemin concentrations. Cell death was consistently reduced by at least 60% in knockout cultures. Exposure to hemin for 4 hours, a time point that preceded cell lysis, increased protein oxidation in wild-type cultures, as detected by staining of immunoblots for protein carbonyl groups. At 10 μM hemin, carbonylation was increased 2.3-fold compared with control sister cultures subjected to medium exchanges only; this effect was reduced by about two-thirds in knockout cultures. Cellular reactive oxygen species, detected by fluorescence intensity after dihydrorhodamine 123 (DHR staining, was markedly increased by hemin in wild-type cultures and was localized to neuronal cell bodies and processes. In contrast, DHR fluorescence intensity in knockout cultures did not differ from that of sham-washed controls. Neuronal death in wild-type cultures was almost completely prevented by the lipid-soluble iron chelator phenanthroline; deferoxamine had a weaker but significant effect. Conclusions These results suggest that HO-2 gene deletion protects neurons in mixed

  4. Interactions of silica nanoparticles with therapeutics for oxidative stress attenuation in neurons

    Science.gov (United States)

    White-Schenk, Desiree; Shi, Riyi; Leary, James F.

    2015-03-01

    Oxidative stress plays a major role in many disease pathologies, notably in the central nervous system (CNS). For instance, after initial spinal cord injury, the injury site tends to increase during a secondary chemical injury process based on oxidative stress from necrotic cells and the inflammatory response. Prevention of this secondary chemical injury would represent a major advance in the treatment of people with spinal cord injuries. Few therapeutics are useful in combating such stress in the CNS due to side effects, low efficacy, or half-life. Mesoporous silica nanoparticles show promise for delivering therapeutics based on the formation of a porous network during synthesis. Ideally, they increase the circulation time of loaded therapeutics to increase the half-life while reducing overall concentrations to avoid side effects. The current study explored the use of silica nanoparticles for therapeutic delivery of anti-oxidants, in particular, the neutralization of acrolein which can lead to extensive tissue damage due to its ability to generate more and more copies of itself when it interacts with normal tissue. Both an FDA-approved therapeutic, hydralazine, and natural product, epigallocatechin gallate, were explored as antioxidants for acrolein with nanoparticles for increased efficacy and stability in neuronal cell cultures. Not only were the nanoparticles explored in neuronal cells, but also in a co-cultured in vitro model with microglial cells to study potential immune responses to near-infrared (NIRF)-labeled nanoparticles and uptake. Studies included nanoparticle toxicity, uptake, and therapeutic response using fluorescence-based techniques with both dormant and activated immune microglia co-cultured with neuronal cells.

  5. α-Terpineol attenuates morphine-induced physical dependence and tolerance in mice: role of nitric oxide

    Science.gov (United States)

    Parvardeh, Siavash; Moghimi, Mahsa; Eslami, Pegah; Masoudi, Alireza

    2016-01-01

    Objective(s): Dependence and tolerance to opioid analgesics are major problems limiting their clinical application. α-Terpineol is a monoterpenoid alcohol with neuroprotective effects which is found in several medicinal plants such as Myrtus communis, Laurus nobilis, and Stachys byzantina. It has been shown that some of these medicinal plants such as S. byzantina attenuate dependence and tolerance to morphine. Since α-terpineol is one of the bioactive phytochemical constituent of these medicinal plants, the present study was conducted to investigate the effects of α-terpineol on morphine-induced dependence and tolerance in mice. Materials and Methods: The mice were rendered dependent or tolerant to morphine by a 3-day administration schedule. The hot-plate test and naloxone-induced withdrawal syndrome were used to evaluate tolerance and dependence on morphine, respectively. To investigate a possible role for nitric oxide (NO) in the protective effect of α-terpineol, the NO synthase inhibitor, L-N(G)-nitroarginine methyl ester (L-NAME) and NO precursor, L-arginine, were used. Results: Administration of α-terpineol (5, 10, and 20 mg/kg, IP) significantly decreased the number of jumps in morphine dependent animals. Moreover, α-terpineol (20 and 40 mg/kg, IP) attenuated tolerance to the analgesic effect of morphine. The inhibitory effects of α-terpineol on morphine-induced dependence and tolerance were enhanced by pretreatment with L-NAME (10 mg/kg, IP). However, L-arginine (300 mg/kg, IP) antagonized the protective effects of α-terpineol on dependence and tolerance to morphine. Conclusion: These findings indicate that α-terpineol prevents the development of dependence and tolerance to morphine probably through the influence on NO production. PMID:27081466

  6. Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose

    Directory of Open Access Journals (Sweden)

    Shu Yun Zhu

    2014-01-01

    Full Text Available Background: Silybum marianum has been used as herbal medicine for the treatment of liver disease, liver cirrhosis, and to prevent liver cancer in Europe and Asia since ancient times. Silybum marianum oil (SMO, a by-product of silymarin production, is rich in essential fatty acids, phospholipids, sterols, and vitamin E. However, it has not been very good development and use. Objective: In the present study, we used olive oil as a control to investigate the antioxidant and anti-aging effect of SMO in D-galactose (D-gal-induced aging mice. Materials and Methods: D-gal was injected intraperitoneally (500 mg/kg body weight daily for 7 weeks while SMO was simultaneously administered orally. The triglycerides (TRIG and cholesterol (CHOL levels were estimated in the serum. Superoxide dismutase (SOD, glutathione peroxidase (GSH-Px, total antioxidant capacity (T-AOC, monoamine oxidase (MAO, malondialdehyde (MDA, caspase-3, and Bcl-2 were determined in the liver and brain. The activities of Na + -K + -adenosine triphosphatase (ATPase, Ca 2+ -Mg 2+ -ATPase, membrane potential (ΔΨm, and membrane fluidity of the liver mitochondrial were estimated. Results: SMO decreased levels of TRIG and CHOL in aging mice. SMO administration elevated the activities of SOD, GSH-Px, and T-AOC, which are suppressed by aging. The levels of MAO and MDA in the liver and brain were reduced by SMO administration in aging mice. Enzyme linked immunosorbent assay showed that SMO significantly decreased the concentration of caspase-3 and improved the activity of Bcl-2 in the liver and brain of aging mice. Furthermore, SMO significantly attenuated the D-gal induced liver mitochondrial dysfunction by improving the activities of Na + -K + -ATPase, Ca 2+ -Mg 2+ -ATPase, membrane potential (ΔΨm, and membrane fluidity. Conclusion: These results indicate that SMO effectively attenuated oxidative damage and improved apoptosis related factors as well as liver mitochondrial dysfunction in

  7. A blueberry-enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress.

    Directory of Open Access Journals (Sweden)

    Carrie M Elks

    Full Text Available To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Oxidative stress (OS appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-induced renal injury; however, attention has shifted recently to the therapeutic potential of natural products as antioxidants. Blueberries (BB have among the highest antioxidant capacities of fruits and vegetables.Male spontaneously hypertensive rats received a BB-enriched diet (2% w/w or an isocaloric control diet for 6 or 12 weeks or 2 days. Compared to controls, rats fed BB-enriched diet for 6 or 12 weeks exhibited lower blood pressure, improved glomerular filtration rate, and decreased renovascular resistance. As measured by electron paramagnetic resonance spectroscopy, significant decreases in total reactive oxygen species (ROS, peroxynitrite, and superoxide production rates were observed in kidney tissues in rats on long-term dietary treatment, consistent with reduced pathology and improved function. Additionally, measures of antioxidant status improved; specifically, renal glutathione and catalase activities increased markedly. Contrasted to these observations indicating reduced OS in the BB group after long-term feeding, similar measurements made in rats fed the same diet for only 2 days yielded evidence of increased OS; specifically, significant increases in total ROS, peroxynitrite, and superoxide production rates in all tissues (kidney, brain, and liver assayed in BB-fed rats. These results were evidence of "hormesis" during brief exposure, which dissipated with time as indicated by enhanced levels of catalase in heart and liver of BB group.Long-term feeding of BB-enriched diet lowered blood pressure, preserved renal hemodynamics, and improved redox status in kidneys of hypertensive rats and concomitantly demonstrated the potential to delay or attenuate development

  8. Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis.

    Science.gov (United States)

    Khan, Shams Tabrez; Ahmad, Javed; Ahamed, Maqusood; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2016-06-01

    Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml(-1), respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml(-1), respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26-83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene. PMID:26837748

  9. CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection.

    Science.gov (United States)

    Aubert, Yann; Widemann, Emilie; Miesch, Laurence; Pinot, Franck; Heitz, Thierry

    2015-07-01

    Induced resistance to the necrotrophic pathogen Botrytis cinerea depends on jasmonate metabolism and signalling in Arabidopsis. We have presented here extensive jasmonate profiling in this pathosystem and investigated the impact of the recently reported jasmonoyl-isoleucine (JA-Ile) catabolic pathway mediated by cytochrome P450 (CYP94) enzymes. Using a series of mutant and overexpressing (OE) plant lines, we showed that CYP94B3 and CYP94C1 are integral components of the fungus-induced jasmonate metabolic pathway and control the abundance of oxidized conjugated but also some unconjugated derivatives, such as sulfated 12-HSO4-JA. Despite causing JA-Ile overaccumulation due to impaired oxidation, CYP94 deficiency had negligible impacts on resistance, associated with enhanced JAZ repressor transcript levels. In contrast, plants overexpressing (OE) CYP94B3 or CYP94C1 were enriched in 12-OH-JA-Ile or 12-COOH-JA-Ile respectively. This shift towards oxidized JA-Ile derivatives was concomitant with strongly impaired defence gene induction and reduced disease resistance. CYP94B3-OE, but unexpectedly not CYP94C1-OE, plants displayed reduced JA-Ile levels compared with the wild type, suggesting that increased susceptibility in CYP94C1-OE plants may result from changes in the hormone oxidation ratio rather than absolute changes in JA-Ile levels. Consistently, while feeding JA-Ile to seedlings triggered strong induction of JA pathway genes, induction was largely reduced or abolished after feeding with the CYP94 products 12-OH-JA-Ile and 12-COOH-JA-Ile, respectively. This trend paralleled in vitro pull-down assays where 12-COOH-JA-Ile was unable to promote COI1-JAZ9 co-receptor assembly. Our results highlight the dual function of CYP94B3/C1 in antimicrobial defence: by controlling hormone oxidation status for signal attenuation, these enzymes also define JA-Ile as a metabolic hub directing jasmonate profile complexity. PMID:25903915

  10. Attenuation of CCl4-Induced Oxidative Stress and Hepatonephrotoxicity by Saudi Sidr Honey in Rats

    Directory of Open Access Journals (Sweden)

    Mohammed Al-Yahya

    2013-01-01

    Full Text Available The present study was undertaken to investigate the possible protective effect of Saudi Sidr honey (SSH on carbon tetrachloride (CCl4 induced oxidative stress and liver and kidney damage in rat. Moreover, the antioxidant activity and the phenolic and flavonoidal contents were determined. The hepatorenal protective activity of the SSH was determined by assessing biochemical, hematological, and histological parameters. Serum transaminases, ALP, GGT, creatinine, bilirubin urea, uric acid, and MDA level in liver and kidney tissues were significantly elevated, and the antioxidant status of nonprotein sulfhydryls, albumin, and total protein levels in liver and kidney were declined significantly in CCl4 alone treated animals. Pretreatment with SSH and silymarin prior to the administration of CCl4 significantly prevented the increase of the serum levels of enzyme markers and reduced oxidative stress. SSH also exhibited a significant lipid-lowering effect and caused an HDL-C enhanced level in serum. The histopathological evaluation of the liver and kidney also revealed that honey protected incidence of both liver and kidney lesions. Moreover, SSH showed a strong antioxidant activity in DPPH and β-carotene-linoleic acid assays. SSH was found to contain phenolic compounds. Additionally, the SSH supplementation restored the hepatocytes viability against 2′,7′-dichlorofluorescein (DCF toxicity in ex vivo test.

  11. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    International Nuclear Information System (INIS)

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 μg/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 μg/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ► Particulate matter (PM) increases arrhythmia. ► PM induced arrhythmias are related with oxidative stress and CaMKII activation. ► Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ► CryAB decreases oxidative stress and CaMKII activation

  12. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyelim [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Park, Sanghoon; Jeon, Hyunju [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Song, Byeong-Wook [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Kim, Jin-Bae [Division of Cardiology, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Chang-Soo [The Department of Preventive Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Pak, Hui-Nam [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Hwang, Ki-Chul [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Lee, Moon-Hyoung [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chung, Ji Hyung, E-mail: jhchung@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Joung, Boyoung, E-mail: cby6908@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of)

    2013-01-15

    Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 μg/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 μg/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ► Particulate matter (PM) increases arrhythmia. ► PM induced arrhythmias are related with oxidative stress and CaMKII activation. ► Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ► CryAB decreases oxidative stress and CaMKII activation

  13. HSP25 overexpression attenuates oxidative stress-induced apoptosis: role of ERK1/2 signaling and manganase superoxide dismutase

    International Nuclear Information System (INIS)

    Full text: HSP25 has been shown to induce resistance to radiation and oxidative stress. However, its exact mechanisms remain unclear. In the present study, high concentration of H 2 O 2 was found to induce DNA fragmentation in L929 mouse fibroblast cells, and HSP25 overexpression attenuated this phenomenon. To elucidate the mechanisms of H 2 O 2 mediated cell death, ERK1/2, p38-MAPK and JNK1/2 phosphorylation by H2O2were examined. ERK1/2 and JNK1/2 were activated by H2O2and ERK1/2 activation was inhibited in HSP25 overexpressed cells, while JNK1/2 was indifferent. Inhibition of ERK1/2 activation by treatment with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced cell death, while HSP25 overexpressed cells was not affected at all. Moreover, inhibition of JNK1/2 by dominant-negative JNK1 or JNK2, or MKK4 or MKK7 transfection did not affect H2O2-mediated cell death in control cells. Dominant negative Ras or Raf transfection inhibited H2O2-mediated ERK1/2 activation and cell death in control cells. On the contrary, HSP25 overexpressed cells did not show any differences. Upstream pathways of H2O2-mediated ERK1/2 activation and cell death were both tyrosine kinase (PDGF and receptor and Src) and PKC and, while these kinases did not respond by H2O2treatment in HSP25 overexpressed cells. Since HSP25 overexpression increased manganese superoxide dismutase (MnSOD) gene expression and enzyme activity, involvement of MnSOD in HSP25 mediated attenuation of H2O2-mediated ERK1/2 activation and cell death was examined. Blockage of MnSOD with antisense oligonucleotides prevented DNA fragmentation and returned the ERK1/2 activation to the control level. Indeed, when MnSOD was overexpressed in L929 cells, similar phenomenon to HSP25 overexpressed cells to reduce DNA fragmentation and ERK1/2 activation was observed. From the above results, we suggested for the first time that reduced oxidative damage by HSP25 was due to MnSOD-mediated downregulation of ERK1/2

  14. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis

    DEFF Research Database (Denmark)

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting;

    2016-01-01

    Hydronephrosis is associated with development of salt-sensitive hypertension. Studies suggest that increased sympathetic nerve activity (SNA) and oxidative stress play important roles in renovascular hypertension. This study aimed to investigate the link between renal SNA and NADPH oxidase (NOX......) regulation in the development of hypertension in rats with hydronephrosis. Hydronephrosis was induced by partial unilateral ureteral obstruction (PUUO) in young rats. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high and low salt diets. Renal...... excretion pattern, NOX activity and expression, as well as components of RAAS were characterized. On normal salt diet, PUUO rats had elevated blood pressure compared with controls (115±3 vs 87±1 mmHg), and displayed increased urine production and lower urine osmolality. Blood pressure change in response to...

  15. HSL Attenuates the Follicular Oxidative Stress and Enhances the Hair Growth in ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Takeo Minematsu, PhD

    2013-10-01

    Full Text Available Summary: We demonstrated enhanced hair regeneration following topical administration of N-(3-oxododecanoyl-L-homoserine lactone (HSL in ob/ob mice. The ob/ob mice showed delayed hair regeneration (more than 6 wk after depilation, which rapidly induced transition to anagen in the hair cycle in wild-type mice. Vehicle and HSL solutions were applied to the depilated dorsal skin of ob/ob mice. The depilated skin of the HSL-treated mice was fully covered with hair, whereas no macroscopic alteration was observed in vehicle-treated group by the fourth week after depilation. Oxidative stress was drastically decreased and the expression of the antioxidative enzymes PON1 and PON3 was increased in the HSL-treated skin with highly proliferative anagen follicles. These results suggest that HSL is a candidate therapeutic agent for alopecia in metabolic syndrome.

  16. Dragon's blood and its extracts attenuate radiation-induced oxidative stress in mice

    International Nuclear Information System (INIS)

    Dragon's blood (DB) possesses great medicinal values due to the presence of several phenolic compounds. This study was designed to investigate the effects of DB and its extracts (DBEs) on oxidative stress in mice exposed to whole body 60Co-γ irradiation (4 Gy). DB and DBEs were intragastrically administered to mice for 5 d prior to radiation. The antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) levels in liver and spleen were measured using kits. Furthermore, DB and DBE effects were determined by organ indices and histology of liver and spleen. Our results indicated that the DB and DBE-treated groups showed a significant decrease (P < 0.05) in levels of MDA in liver and spleen compared with the irradiation-only group. Moreover, the activity of SOD, CAT and the level of GSH in liver and spleen tissue were enhanced significantly (P < 0.05) in the DB and DBE groups. DB and DBE also had a significant effect on the recovery of thymus indices. The histological observations of groups having treatment with DB and DBE indicated significant reduction in the radiation-induced damage to the liver and spleen, together with improvement in the morphology of the liver and spleen. These results suggest that DB and DBE treatment prevents radiation-induced oxidative stress injury and restores antioxidant status and histopathological changes in the liver and spleen, but there is need for further study to explore the precise molecular mechanism and strategy for optimal practical application of DB and DBE. (author)

  17. Methane attenuates retinal ischemia/reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    Science.gov (United States)

    Liu, Lin; Sun, Qinglei; Wang, Ruobing; Chen, Zeli; Wu, Jiangchun; Xia, Fangzhou; Fan, Xian-Qun

    2016-09-01

    Retinal ischemia/reperfusion injury (IRI) may cause incurable visual impairment due to neural regeneration limits. Methane was shown to exert a protective effect against IRI in many organs. This study aims to explore the possible protective effects of methane-rich saline against retinal IRI in rat. Retinal IRI was performed on the right eyes of male Sprague-Dawley rats, which were immediately injected intraperitoneally with methane-saturated saline (25ml/kg). At one week after surgery, the number of retinal ganglion cells (RGCs), total retinal thickness, visual function were measured by hematoxylin and eosin staining, FluoroGold anterograde labeling and flash visual evoked potentials. The levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), 4-Hydroxy-2-nonenal (4-HNE), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), caspase-3, caspase-9, B cell lymphoma/leukemia-2 (Bcl-2) and Bcl-2 associated X protein (Bax) in retinas were assessed by immunofluorescence staining, enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. As expected, methane treatment significantly improved the retinal IRI-induced RGC loss, total retinal layer thinning and visual dysfunction. Moreover, methane treatment significantly reduced the levels of oxidative stress biomarkers (8-OHdG, 4-HNE, MDA) and increased the antioxidant enzyme activities (SOD, CAT, GPx) in the retinas with IRI. Meanwhile, methane treatment significantly increased the anti-apoptotic gene (Bcl-2) expression and decreased the pro-apoptotic gene (Bax) expression, accompanied by the suppression of caspase-3 and caspase-9 activity. Thus, these data demonstrated that methane can exert a neuroprotective role against retinal IRI through anti-oxidative and anti-apoptotic pathways. PMID:27208496

  18. Hypoxic preconditioning with cobalt attenuates hypobaric hypoxia-induced oxidative damage in rat lungs.

    Science.gov (United States)

    Shukla, Dhananjay; Saxena, Saurabh; Jayamurthy, Purushotman; Sairam, Mustoori; Singh, Mrinalini; Jain, Swatantra Kumar; Bansal, Anju; Ilavazaghan, Govindaswamy

    2009-01-01

    Shukla, Dhananjay, Saurabh Saxena, Purushotman Jayamurthy, Mustoori Sairam, Mrinalini, Singh, Swatantra Kumar Jain, Anju Bansal, and Govindaswamy Ilavazaghan. High Alt. Med. Biol. 10:57-69, 2009.-Hypoxic preco759nditioning (HPC) provides robust protection against injury from subsequent prolonged hypobaric hypoxia, which is a characteristic of high altitude and is known to induce oxidative injury in lung by increasing the generation of reactive oxygen species (ROS) and decreasing the effectiveness of the antioxidant defense system. We hypothesize that HPC with cobalt might protect the lung from subsequent hypobaric hypoxia-induced lung injury. HPC with cobalt can be achieved by oral feeding of CoCl(2) (12.5 mg kg(-1)) in rats for 7 days. Nonpreconditioned rats responded to hypobaric hypoxia (7619 m) by increased reactive oxygen species (ROS) generation and a decreased GSH/GSSG ratio. They also showed a marked increase in lipid peroxidation, heat-shock proteins (HSP32, HSP70), metallothionins (MT), levels of inflammatory cytokines (TNF-alpha, IFN-gamma, MCP-1), and SOD, GPx, and GST enzyme activity. In contrast, rats preconditioned with cobalt were far less impaired by severe hypobaric hypoxia, as observed by decreased ROS generation, lipid peroxidation, and inflammatory cytokine release and an inceased GSH/GSSG ratio. Increased expression of antioxidative proeins Nrf-1, HSP-32, and MT was also observed in cobalt- preconditioned animals. A marked increase in the protein expression and DNA binding activity of hypoxia-inducible transcriptional factor (HIF-1alpha) and its regulated genes, such as erythropoietin (EPO) and glucose transporter-1 (glut-1), was observed after HPC with cobalt. We conclude that HPC with cobalt enhances antioxidant status in the lung and protects from subsequent hypobaric hypoxia-induced oxidative stress. PMID:19278353

  19. Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress.

    Science.gov (United States)

    Zhang, Bo; Wang, Bing; Cao, Shuhua; Wang, Yongqiang

    2015-11-01

    Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of p47(phox) translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress. PMID:26557015

  20. Attenuation of Methotrexate-Induced Embryotoxicity and Oxidative Stress by Ethyl Pyruvate

    Directory of Open Access Journals (Sweden)

    Najafi Gholamreza

    2016-07-01

    Full Text Available Background Methotrexate (MTX, as an anti-folate agent, is widely used in the treatment of rheumatic disorders and malignant tumors, however it damages reproductive sys- tem in mice. The aim of this research was to study the effects of ethyl pyruvate (EP on embryo development and oxidative stress changes in the testis of mice treated with MTX. Materials and Methods In this experimental study, thirty-two adult male Naval Medical Research Institute mice, with average weight of 26 ± 2 g, were divided into four groups. The first group (control received distilled water (0.1 ml/mice/day, while the second group was intraperitoneally (IP treated with 20 mg/kg MTX once per week. The third group was IP treated with 40 mg/kg/day EP, and the fourth group was IP treated with both 20 mg/kg MTX and 40 mg/kg/day EP for 30 days. At the end of treatment fertilization rate and embryonic development were evaluated. Differences between these groups were assessed by ANOVA using the SPSS software package for Windows with a Tukey-Kramer multiple post-hoc comparison test. Results MTX treatment caused significant (P<0.05 increase in malondialdehyde (MDA and reduced catalase (CAT, as well as leading to in vitro fertilization (IVF and embryonic development. The improved effects of EP on the IVF were determined by the reduced level of MDA (index of oxidative stress and significant increased level of CAT (a key antioxidant. We observed significant increase in fertilization rate and embryonic development in the treated group with both MTX and EP. Conclusion It is suggested that EP can be useful in ameliorating testicular damages and embryotoxicity induced by MTX. These effects could be attributed to its antioxidant properties.

  1. Subchronic Toxicity of Copper Oxide Nanoparticles and Its Attenuation with the Help of a Combination of Bioprotectors

    Directory of Open Access Journals (Sweden)

    Larisa I. Privalova

    2014-07-01

    Full Text Available In the copper metallurgy workplace air is polluted with condensation aerosols, which a significant fraction of is presented by copper oxide particles <100 nm. In the scientific literature, there is a lack of their in vivo toxicity characterization and virtually no attempts of enhancing organism’s resistance to their impact. A stable suspension of copper oxide particles with mean (±SD diameter 20 ± 10 nm was prepared by laser ablation of pure copper in water. It was being injected intraperitoneally to rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water three times a week up to 19 injections. In parallel, another group of rats was so injected with the same suspension against the background of oral administration of a “bio-protective complex” (BPC comprising pectin, a multivitamin-multimineral preparation, some amino acids and fish oil rich in ω-3 PUFA. After the termination of injections, many functional and biochemical indices for the organism’s status, as well as pathological changes of liver, spleen, kidneys, and brain microscopic structure were evaluated for signs of toxicity. In the same organs we have measured accumulation of copper while their cells were used for performing the Random Amplification of Polymorphic DNA (RAPD test for DNA fragmentation. The same features were assessed in control rats infected intraperitoneally with water with or without administration of the BPC. The copper oxide nanoparticles proved adversely bio-active in all respects considered in this study, their active in vivo solubilization in biological fluids playing presumably an important role in both toxicokinetics and toxicodynamics. The BPC proposed and tested by us attenuated systemic and target organs toxicity, as well as genotoxicity of this substance. Judging by experimental data obtained in this investigation, occupational exposures to nano-scale copper oxide particles can present a significant health risk while the further search for its

  2. Impaired learning in rats in a 14-unit T-maze by 7-nitroindazole, a neuronal nitric oxide synthase inhibitor, is attenuated by the nitric oxide donor, molsidomine.

    Science.gov (United States)

    Meyer, R C; Spangler, E L; Patel, N; London, E D; Ingram, D K

    1998-01-01

    In previous experiments, it was demonstrated that systemic or central administration of the nitric oxide synthase (NO synthase) inhibitor, NG-nitro-L-arginine (N-Arg), produced dose-dependent learning impairments in rats in a 14-unit T-maze; and that sodium nitroprusside, a NO donor, could attenuate the impairment. Since N-Arg is not specific for neuronal NO synthase and produces hypertension, it is possible that effects on the cardiovasculature may have contributed to the impaired maze performance. In the present experiment, we have investigated the maze performance of 3-4 months old male Fischer-344 rats following treatment with 7-nitroindazole, a NO synthase inhibitor that is selective for neuronal NO synthase and does not produce hypertension. In addition, we examined the effects of the NO donor, molsidomine, which is much longer acting than sodium nitroprusside. Rats were pretrained to avoid footshock in a straight runway and received training in a 14-unit T-maze 24 h later. In an initial dose-response study, rats received intraperitoneal (i.p.) injections of either 7-nitroindazole (25, 50, or 65 mg/kg) or peanut oil 30 min prior to maze training. 7-nitroindazole produced significant, dose-dependent maze acquisition deficits, with 65 mg/kg producing the greatest learning impairment. This dose of 7-nitroindazole had no significant effect on systolic blood pressure. Following the dose-response study, rats were given i.p. injections of either 7-nitroindazole (70 mg/kg) plus saline, 7-nitroindazole (70 mg/kg) plus the NO donor, molsidomine (2 or 4 mg/kg), or peanut oil plus saline as controls. Both doses of molsidomine significantly attenuated the learning deficit induced by 7-nitroindazole relative to controls. These findings represent the first evidence that impaired learning produced by inhibition of neuronal NO synthase can be overcome by systemic administration of a NO donor. PMID:9489851

  3. Dexmedetomidine Attenuates Oxidative Stress Induced Lung Alveolar Epithelial Cell Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Jian Cui

    2015-01-01

    Full Text Available Background. Oxidative stress plays a pivotal role in the lung injuries of critical ill patients. This study investigates the protection conferred by α2 adrenoceptor agonist dexmedetomidine (Dex from lung alveolar epithelial cell injury induced by hydrogen peroxide (H2O2 and the underlying mechanisms. Methods. The lung alveolar epithelial cell line, A549, was cultured and then treated with 500 μM H2O2 with or without Dex (1 nM or Dex in combination with atipamezole (10 nM, an antagonist of α2 receptors. Their effect on mitochondrial membrane potential (Δψm, reactive oxygen species (ROS, and the cell cycle was assessed by flow cytometry. Cleaved-caspases 3 and 9, BAX, Bcl-2, phospho-mTOR (p-mTOR, ERK1/2, and E-cadherin expression were also determined with immunocytochemistry. Results. Upregulation of cleaved-caspases 3 and 9 and BAX and downregulation of Bcl-2, p-mTOR, and E-cadherin were found following H2O2 treatment, and all of these were reversed by Dex. Dex also prevented the ROS generation, cytochrome C release, and cell cycle arrest induced by H2O2. The effects of Dex were partially reversed by atipamezole. Conclusion. Our study demonstrated that Dex protected lung alveolar epithelial cells from apoptotic injury, cell cycle arrest, and loss of cell adhesion induced by H2O2 through enhancing the cell survival and proliferation.

  4. Over-expression of GTP-cyclohydrolase 1 feedback regulatory protein attenuates LPS and cytokine-stimulated nitric oxide production.

    Science.gov (United States)

    Nandi, Manasi; Kelly, Peter; Vallance, Patrick; Leiper, James

    2008-02-01

    GTP-cyclohydrolase 1 (GTP-CH1) catalyses the first and rate-limiting step for the de novo production of tetrahydrobiopterin (BH(4)), an essential cofactor for nitric oxide synthase (NOS). The GTP-CH1-BH(4) pathway is emerging as an important regulator in a number of pathologies associated with over-production of nitric oxide (NO) and hence a more detailed understanding of this pathway may lead to novel therapeutic targets for the treatment of certain vascular diseases. GTP-CH1 activity can be inhibited by BH(4) through its protein-protein interactions with GTP-CH1 regulatory protein (GFRP), and transcriptional and post-translational modification of both GTP-CH1 and GFRP have been reported in response to proinflammatory stimuli. However, the functional significance of GFRP/GTP-CH1 interactions on NO pathways has not yet been demonstrated. We aimed to investigate whether over-expression of GFRP could affect NO production in living cells. Over-expression of N-terminally Myc-tagged recombinant human GFRP in the murine endothelial cell line sEnd 1 resulted in no significant effect on basal BH(4) nor NO levels but significantly attenuated the rise in BH(4) and NO observed following lipopolysaccharide and cytokine stimulation of cells. This study demonstrates that GFRP can play a direct regulatory role in iNOS-mediated NO synthesis and suggests that the allosteric regulation of GTP-CH1 activity by GFRP may be an important mechanism regulating BH(4) and NO levels in vivo. PMID:18372436

  5. L-arginine increases nitric oxide and attenuates pressor and heart rate responses to change in posture in sickle cell anemia subjects.

    Science.gov (United States)

    Ogungbemi, S I; Anigbogu, C N; Kehinde, M O; Jaja, S I

    2013-01-01

    Pressor and heart rate changes following change in posture without or with L-arginine supplementation (1g/day for 6 weeks) were studied in 28 sickle cell anemia (SCA) and 32 non-sickle cell anemia (NSCA) subjects. Change in posture increased HR (pplasma L-Arginine concentration ([R]) in both groups of subjects (pnitric oxide metabolites concentration ([NOx]) (pChange (Δ) [R] correlated positively with Δ [NOx] in both groups (+ 0.7 in each group). L-Arginine supplementation caused greater reduction of MABP (pchange in posture were attenuated in the two groups. However, while HR and RPP responses in SCAS were attenuated, the same responses were enhanced in NSCAS by change in posture after supplementation. In conclusion, study shows that oral, low dose, chronic supplementation with L-arginine increased NO availability and attenuated pressor and heart rate responses to change in posture in sickle cell anemia subjects. PMID:23955406

  6. Food restriction attenuates oxidative stress in brown adipose tissue of striped hamsters acclimated to a warm temperature.

    Science.gov (United States)

    Zhang, Ji-Ying; Zhao, Xiao-Ya; Wang, Gui-Ying; Wang, Chun-Ming; Zhao, Zhi-Jun

    2016-05-01

    It has been suggested that the up-regulation of uncoupling proteins (UCPs) decreases reactive oxygen species (ROS) production, in which case there should be a negative relationship between UCPs expression and ROS levels. In this study, the effects of temperature and food restriction on ROS levels and metabolic rate, UCP1 mRNA expression and antioxidant levels were examined in the brown adipose tissue (BAT) of the striped hamsters (Cricetulus barabensis). The metabolic rate and food intake of hamsters which had been restricted to 80% of ad libitum food intake, and acclimated to a warm temperature (30°C), decreased significantly compared to a control group. Hydrogen peroxide (H2O2) levels were 42.9% lower in food restricted hamsters than in the control. Malonadialdehyde (MDA) levels of hamsters acclimated to 30°C that were fed ad libitum were significantly higher than those of the control group, but 60.1% lower than hamsters that had been acclimated to the same temperature but subject to food restriction. There were significantly positive correlations between H2O2 and, MDA levels, catalase activity, and total antioxidant capacity. Cytochrome c oxidase activity and UCP1 mRNA expression significantly decreased in food restricted hamsters compared to the control. These results suggest that warmer temperatures increase oxidative stress in BAT by causing the down-regulation of UCP1 expression and decreased antioxidant activity, but food restriction may attenuate the effects. PMID:27157336

  7. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats.

    Science.gov (United States)

    Yan, Tingxu; Shang, Lei; Wang, Mengshi; Zhang, Chenning; Zhao, Xu; Bi, Kaishun; Jia, Ying

    2016-06-01

    The aim of this study was to explore the neuroprotective effects of active compounds from Schisandra chinensis (Trucz.) Baill. (Magnoliaceae) against the D-galactose (D-gal)-induced neurotoxicity in rat. The Wistar rats were subcutaneously injected with D-gal (150 mg/(kg day)) for six weeks and orally administered with water extract or 95 % ethanol extract (partitioned with petroleum ether (PE), chloroform (CF), ethyl acetate (EA) and n-Butanol (NB), respectively) of the fruits of Schisandra chinensis simultaneously. The alteration of cognitive functions was assessed by using Morris water maze and Step-down type passive avoidance test. The results demonstrated that PE fraction was the most effective fraction to ameliorate cognitive deficits. Further biochemical examination indicated that PE could attenuate the activities decreasing of superoxide dismutase (SOD), catalase (CAT), the total antioxidant (T-AOC) induced by D-gal, and maintain the normal levels of glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) in the serum, prefrontal cortex, striatum and hippocampus of the brain of related rat, selectively. Meanwhile, the compounds of PE fraction were also identified as mainly lignans, thus, these results suggest that lignans from the PE fraction of Schisandra chinensis represented a potential source of medicine for the treatment of the aging-associated neurodegenerative diseases. PMID:26847610

  8. Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats.

    Science.gov (United States)

    Deshmukh, Rahul; Kaundal, Madhu; Bansal, Vikas; Samardeep

    2016-07-01

    Oxidative stress has been implicated in cognitive decline as seen during normal aging and in sporadic Alzheimer's disease (AD). Caffeic acid, a polyphenolic compound, has been reported to possess potent antioxidant and neuroprotective properties. The role of caffeic acid in experimental dementia is not fully understood. Thus the present study was designed to investigate the therapeutic potential of caffeic acid in streptozotocin (STZ)-induced experimental dementia of Alzheimer's type in rats. Streptozotocin (STZ) was administered intracerebroventrically (ICV) on day 1 and 3 (3mg/kg, ICV bilaterally) in Wistar rats. Caffeic acid was administered (10, 20 and 40mg/kg/day p.o.) 1h following STZ infusion upto 21st day. Morris water maze and object recognition task were used to assess learning and memory in rats. Terminally, acetylcholinesterase (AChE) activity and the levels of oxido-nitrosative stress markers were determined in cortical and hippocampal brain regions of rats. STZ produced significant (plearning and memory impairment, oxido-nitrosative stress and cholinergic deficit in rats. Whereas, caffeic acid treatment significantly (p<0.001) and dose dependently attenuated STZ induced behavioral and biochemical abnormalities in rats. The observed cognitive improvement following caffeic acid in STZ treated rats may be due to its antioxidant activity and restoration of cholinergic functions. Our results suggest the therapeutic potential of caffeic acid in cognitive disorders such as AD. PMID:27261577

  9. Spirulina vesicolor Improves Insulin Sensitivity and Attenuates Hyperglycemia-Mediated Oxidative Stress in Fructose-Fed Rats

    Directory of Open Access Journals (Sweden)

    Walaa Hozayen

    2016-03-01

    Full Text Available Aim: The current study aimed to investigate the anti-hyperglycemic, anti-hyperlipidemic and insulin sensitizing effects of the cyanobacterium Spirulina vesicolor extract in fructose-fed rats. Materials and Methods: Rats were fed 30% fructose solution in drinking water for 4 weeks. Animals exhibited hyperglycemia and hyperinsulinemia were selected for further investigations. Diabetic and control rats were orally supplemented with 50 mg/kg body weight S. vesicolor extract for 4 weeks. Results: At the end of 8 weeks, fructose-fed rats showed significant increase in serum glucose, insulin, cholesterol, triglycerides, cardiovascular risk indices and insulin resistance. Treatment of the fructose-fed rats with S. vesicolor extract improved this metabolic profile. Fructose feeding produced a significant increase in serum tumor necrosis factor alpha (TNF- and #945; and a decrease in adiponectin levels. In addition, fructose-fed rats exhibited a significant increase in liver, kidney and heart lipid peroxidation levels, and declined antioxidant defenses. Supplementation of the fructose-fed rats with S. vesicolor extract reversed these alterations. Conclusion: S. vesicolor attenuates hyperglycemia-mediated oxidative stress and inflammation, and is thus effective in improving insulin sensitivity in fructose-fed rats. [J Intercult Ethnopharmacol 2016; 5(1.000: 57-64

  10. Lycopene attenuates dichlorvos-induced oxidative damage and hepatotoxicity in rats.

    Science.gov (United States)

    El-Saad, Am Abu; Ibrahim, M M; Hazani, A A; El-Gaaly, G A

    2016-06-01

    Because of the widespread use of dichlorvos (DDVP) for domestic applications, evaluation of their toxic effects is of major concern to public health. Lycopene may lower oxidative stress by a mechanism that is not fully elucidated. The present study was undertaken to evaluate the protective efficacy of lycopene in terms of normalization of altered biochemical parameters following DDVP treatment in rats. Animals were divided into four groups. The first group was used as control, while groups 2, 3, and 4 were orally treated with lycopene (10 mg kg(-1) body weight (b.w.)), DDVP (1.6 mg kg(-1) b.w.), and DDVP plus lycopene, respectively. Results showed that oral administration of DDVP for 30 days increased the levels of lipid peroxidation markers such as malondialdehyde, 4-hydroxynonanal, and protein carbonyl content in liver. Also, a decrease in levels of vitamin C, vitamin E, and reduced glutathione was detected due to DDVP administration. These were accompanied by a decrease in the activities of antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase in the liver tissue. Moreover, DDVP increased the activities of serum transaminases, alkaline phosphatase, lactate dehydrogenase, and lipoxygenase, and the levels of bilirubin, total cholesterol, low-density lipoprotein cholesterol, triglyceride and DNA-protein crosslinks, and 8-hydroxy-2-deoxyguanosine, while decreased the level of high-density lipoprotein cholesterol. Our results provide new insights into the biochemical studies of relation between DDVP hepatotoxicity and lycopene treatment. Administration of lycopene to DDVP-treated rats reverted the status of hepatic markers to near-normal levels. These data suggest that lycopene can protect against the liver damage induced by DDVP. PMID:26231422

  11. Quercetin Attenuates Testicular Damage and Oxidative Stress in Streptozotocin-induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Osama A. Alkhamees

    2014-04-01

    Full Text Available The present study aims to examine the influence of Quercetin (QR in testis of Streptozotocin (STZ-induced diabetic rats. Diabetes was induced by a single injection of STZ (65 mg/kg, ip. Quercetin (25 and 50 mg/kg/day was treated to normal and diabetic rats for 5 weeks. In serum, glucose, testosterone, Interleukin-6 (IL-6, Interleukin-1beta (IL-1&beta and Tumor Necrosis Factor-α (TNF-&alpha levels were estimated and in testis tissues Thiobarbituric Acid Reactive Substances (TBARS, sulfhydryl groups, nucleic acids and Total Protein (TP levels were estimated. Superoxide Dismutase (SOD, Catalase (CAT and Glutathione-S-Transferase (GST activities were also determined in testicular cells. In penile tissue cyclic Guanosine Monophosphate (cGMP levels were measured. Histopathological changes were evaluated in a cross-section of testis. Testosterone levels were decreased while pro-inflammatory markers were increased in diabetic rats. QR treatment to diabetic rats corrected these changes. In penile tissues cGMP content was markedly inhibited and normalized by the QR treatment. In STZ-induced diabetic rats, TBARS levels were significantly increased while T-GSH, NP-SH, DNA, RNA and TP levels were decreased and in QR treated groups showed significant inhibition in increased TBARS levels and decreased T-GSH and NP-SH levels. The inhibited activities of SOD, CAT and GST in testicular cells of diabetic rats were increased after QR treatment. The reduced levels of nucleic acids and TP in diabetic rats were markedly corrected in QR treated groups. Histopathological evaluation revealed damage in testicular cells of diabetic rats and the treatment with QR showed protection. These results suggest that, QR supplementation to STZ-induced diabetic rats for five consecutive weeks is a potentially beneficial agent to reduce testicular damage in adult diabetic rats, probably by decreasing oxidative stress.

  12. Attenuating Oxidative Stress by Paeonol Protected against Acetaminophen-Induced Hepatotoxicity in Mice.

    Directory of Open Access Journals (Sweden)

    Yi Ding

    Full Text Available Acetaminophen (APAP overdose is the most frequent cause of drug-induced acute liver failure. The purpose of this study was to investigate whether paeonol protected against APAP-induced hepatotoxicity. Mice treated with paeonol (25, 50, 100 mg/kg received 400 mg/kg acetaminophen intraperitoneally (i.p. and hepatotoxicity was assessed. Pre-treatment with paeonol for 6 and 24 h ameliorated APAP-induced hepatic necrosis and significantly reduced the serum alanine aminotransferase (ALT and aspartate transaminase (AST levels in a dose-dependent manner. Post-treatment with 100 mg/kg paeonol ameliorated APAP-induced hepatic necrosis and reduced AST and ALT levels in the serum after APAP administration for 24 h. Western blot revealed that paeonol inhibited APAP-induced phosphorylated JNK protein expression but not p38 and Erk1/2. Moreover, paeonol showed anti-oxidant activities with reducing hepatic MDA contents and increasing hepatic SOD, GSH-PX and GSH levels. Paeonol dose-dependently prevented against H2O2 or APAP-induced LDH releasing and ROS production in primary mouse hepatocytes. In addition, the mRNA levels of pro-inflammatory genes such as TNF-α, MCP-1, IL-1β and IL-6 in the liver were dose-dependently reduced by paeonol pre-treatment. Pre-treatment with paeonol significantly inhibited IKKα/β, IκBα and p65 phosphorylation which contributed to ameliorating APAP-induced hepatic inflammation. Collectively, the present study demonstrates paeonol has a protective ability against APAP-induced hepatotoxicity and might be an effective candidate compound against drug-induced acute liver failure.

  13. Attenuating Oxidative Stress by Paeonol Protected against Acetaminophen-Induced Hepatotoxicity in Mice

    Science.gov (United States)

    Chen, Yuning; Deng, Yue; Zhi, Feng; Qian, Ke

    2016-01-01

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. The purpose of this study was to investigate whether paeonol protected against APAP-induced hepatotoxicity. Mice treated with paeonol (25, 50, 100 mg/kg) received 400 mg/kg acetaminophen intraperitoneally (i.p.) and hepatotoxicity was assessed. Pre-treatment with paeonol for 6 and 24 h ameliorated APAP-induced hepatic necrosis and significantly reduced the serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels in a dose-dependent manner. Post-treatment with 100 mg/kg paeonol ameliorated APAP-induced hepatic necrosis and reduced AST and ALT levels in the serum after APAP administration for 24 h. Western blot revealed that paeonol inhibited APAP-induced phosphorylated JNK protein expression but not p38 and Erk1/2. Moreover, paeonol showed anti-oxidant activities with reducing hepatic MDA contents and increasing hepatic SOD, GSH-PX and GSH levels. Paeonol dose-dependently prevented against H2O2 or APAP-induced LDH releasing and ROS production in primary mouse hepatocytes. In addition, the mRNA levels of pro-inflammatory genes such as TNF-α, MCP-1, IL-1β and IL-6 in the liver were dose-dependently reduced by paeonol pre-treatment. Pre-treatment with paeonol significantly inhibited IKKα/β, IκBα and p65 phosphorylation which contributed to ameliorating APAP-induced hepatic inflammation. Collectively, the present study demonstrates paeonol has a protective ability against APAP-induced hepatotoxicity and might be an effective candidate compound against drug-induced acute liver failure. PMID:27144271

  14. Effects of ischemic preconditioning in a pig model of large-for-size liver transplantation

    Directory of Open Access Journals (Sweden)

    Antonio José Gonçalves Leal

    2015-02-01

    Full Text Available OBJECTIVE: In most cases of pediatric liver transplantation, the clinical scenario of large-for-size transplants can lead to hepatic dysfunction and a decreased blood supply to the liver graft. The objective of the present experimental investigation was to evaluate the effects of ischemic preconditioning on this clinical entity. METHODS: Eighteen pigs were divided into three groups and underwent liver transplantation: a control group, in which the weights of the donors were similar to those of the recipients, a large-for-size group, and a large-for-size + ischemic preconditioning group. Blood samples were collected from the recipients to evaluate the pH and the sodium, potassium, aspartate aminotransferase and alanine aminotransferase levels. In addition, hepatic tissue was sampled from the recipients for histological evaluation, immunohistochemical analyses to detect hepatocyte apoptosis and proliferation and molecular analyses to evaluate the gene expression of Bax (pro-apoptotic, Bcl-XL (anti-apoptotic, c-Fos and c-Jun (immediate-early genes, ischemia-reperfusion-related inflammatory cytokines (IL-1, TNF-alpha and IL-6, which is also a stimulator of hepatocyte regeneration, intracellular adhesion molecule, endothelial nitric oxide synthase (a mediator of the protective effect of ischemic preconditioning and TGF-beta (a pro-fibrogenic cytokine. RESULTS: All animals developed acidosis. At 1 hour and 3 hours after reperfusion, the animals in the large-for-size and large-for-size + ischemic preconditioning groups had decreased serum levels of Na and increased serum levels of K and aspartate aminotransferase compared with the control group. The molecular analysis revealed higher expression of the Bax, TNF-alpha, I-CAM and TGF-beta genes in the large-for-size group compared with the control and large-for-size + ischemic preconditioning groups. Ischemic preconditioning was responsible for an increase in c-Fos, IL-1, IL-6 and e-NOS gene expression

  15. Momordica charantia (bitter melon attenuates high-fat diet-associated oxidative stress and neuroinflammation

    Directory of Open Access Journals (Sweden)

    Feher Domonkos

    2011-06-01

    . Similarly, HFD-induced brain oxidative stress was significantly reduced by BM supplementation with a concomitant reduction in FoxO, normalization of Sirt1 protein expression and up-regulation of Sirt3 mRNA expression. Furthermore, plasma antioxidant enzymes and pro-inflammatory cytokines were also normalized in mice fed HFD with BM as compared to HFD-fed mice. Conclusions Functional foods such as BM offer a unique therapeutic strategy to improve obesity-associated peripheral inflammation and neuroinflammation.

  16. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota

    OpenAIRE

    Chen, Ming-liang; Yi, Long; Zhang, Yong; Zhou, Xi; Ran, Li; Yang, Jining; Zhu, Jun-Dong; Zhang, Qian-yong; Mi, Man-tian

    2016-01-01

    ABSTRACT The gut microbiota is found to be strongly associated with atherosclerosis (AS). Resveratrol (RSV) is a natural phytoalexin with anti-AS effects; however, its mechanisms of action remain unclear. Therefore, we sought to determine whether the anti-AS effects of RSV were related to changes in the gut microbiota. We found that RSV attenuated trimethylamine-N-oxide (TMAO)-induced AS in ApoE−/− mice. Meanwhile, RSV decreased TMAO levels by inhibiting commensal microbial trimethylamine (TM...

  17. A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice

    Directory of Open Access Journals (Sweden)

    Shen CC

    2011-06-01

    Full Text Available Chien-Chang Shen1, Chia-Chi Wang1, Mei-Hsiu Liao2, Tong-Rong Jan11Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; 2Division of Isotope Application, Institute of Energy Research, Taoyuan, TaiwanBackground: Superparamagnetic iron oxide nanoparticles have been used in clinical applications as a diagnostic contrasting agent. Previous studies showed that iron oxide nanoparticles deposited in the liver and spleen after systemic administration. The present study investigated the effect of iron oxide nanoparticles on antigen-specific immune responses in mice sensitized with the T cell-dependent antigen ovalbumin (OVA.Methods: BALB/c mice were intravenously administered with a single dose of iron oxide nanoparticles (10-60 mg Fe/kg 1 hour prior to OVA sensitization, and the serum antibody production and splenocyte reactivity were examined 7 days later.Results: The serum levels of OVA-specific IgG1 and IgG2a were significantly attenuated by treatment with iron oxide nanoparticles. The production of interferon-γ and interleukin-4 by splenocytes re-stimulated with OVA in culture was robustly suppressed in mice administered with iron oxide nanoparticles. The viability of OVA-stimulated splenocytes was also attenuated. In contrast, treatment with iron oxide nanoparticles did not affect the viability of splenocytes stimulated with concanavalin A, a T-cell mitogen.Conclusion: Collectively, these data indicate that systemic exposure to a single dose of iron oxide nanoparticles compromises subsequent antigen-specific immune reactions, including the serum production of antigen-specific antibodies, and the functionality of T cells.Keywords: iron oxide nanoparticle, antigen-specific, immune, ovalbumin

  18. Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Minglong Shao

    Full Text Available BACKGROUND: Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR plays a critical role in attenuating insulin resistance, inflammation and oxidative stress. OBJECTIVE: The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms. METHODS: Mice were fed with a high-fat diet (HFD, 40% of calories from fat for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured. RESULTS: HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2 expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks. CONCLUSION: These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity

  19. Study of interfacial reactions and phase stabilization of mixed Sc, Dy, Hf high-k oxides by attenuated total reflectance infrared spectroscopy

    OpenAIRE

    Hardy, An; Adelmann, C; Van Elshocht, S.; Van den Rul, Heidi; Van Bael, Marlies; de Gendt, S.; D'Olieslaeger, Marc; Heyns, M.; Kittl, J. A.; Mullens, Jules

    2009-01-01

    Grazing angle attenuated total reflectance Fourier transform infrared spectroscopy is applied to study ultrathin film Hf4+, Sc3+ and Dy3+ oxides, due to its high surface sensitivity. The (multi) metal oxides studied, are of interest as high-k dielectrics. Important properties affecting the permittivity, such as the amorphous or crystalline phase and interfacial reactions, are characterized. Dy2O3 is prone to silicate formation on SiO2/Si substrates, which is expressed in DyScO3 as well, but s...

  20. Chronic Administration of Oil Palm (Elaeis guineensis Leaves Extract Attenuates Hyperglycaemic-Induced Oxidative Stress and Improves Renal Histopathology and Function in Experimental Diabetes

    Directory of Open Access Journals (Sweden)

    Varatharajan Rajavel

    2012-01-01

    Full Text Available Oil palm (Elaeis guineensis leaves extract (OPLE has antioxidant properties and because oxidative stress contributes to the pathogenesis of diabetic nephropathy (DN, we tested the hypothesis that OPLE prevents diabetes renal oxidative stress, attenuating injury. Sprague-Dawley rats received OPLE (200 and 500 mg kg−1 for 4 and 12 weeks after diabetes induction (streptozotocin 60 mg kg−1. Blood glucose level, body and kidney weights, urine flow rate (UFR, glomerular filtration rate (GFR, and proteinuria were assessed. Oxidative stress variables such as 8-hydroxy-2′-deoxyguanosine (8-OHdG, glutathione (GSH, and lipid peroxides (LPO were quantified. Renal morphology was analysed, and plasma transforming growth factor-beta1 (TGF-β1 was measured. Diabetic rats demonstrated increase in blood glucose and decreased body and increased kidney weights. Renal dysfunction (proteinuria, elevations in UFR and GFR was observed in association with increases in LPO, 8-OHdG, and TGF-β1 and a decrease in GSH. Histological evaluation of diabetic kidney demonstrated glomerulosclerosis and tubulointerstitial fibrosis. OPLE attenuated renal dysfunction, improved oxidative stress markers, and reduced renal pathology in diabetic animals. These results suggest OPLE improves renal dysfunction and pathology in diabetes by reducing oxidative stress; furthermore, the protective effect of OPLE against renal damage in diabetes depends on the dose of OPLE as well as progression of DN.

  1. Lactobacillus acidophilus attenuates Aeromonas hydrophila induced cytotoxicity in catla thymus macrophages by modulating oxidative stress and inflammation.

    Science.gov (United States)

    Patel, Bhakti; Kumar, Premranjan; Banerjee, Rajanya; Basu, Madhubanti; Pal, Arttatrana; Samanta, Mrinal; Das, Surajit

    2016-07-01

    The pathogenesis of Aeromonas hydrophila, a potent fish pathogen, is attributed to its ability to cause motile aeromonad septicaemia leading to apoptosis in a myriad of fish species, including freshwater carp Catla catla. However, the underlying mechanism of antagonistic activity of probiotics against A. hydrophila induced apoptosis is not elucidated due to lack of appropriate in-vitro models. This study reported that the exposure of catla thymus macrophages (CTM) to A. hydrophila markedly induced cellular injuries as evidenced by elevated levels of reactive oxygen species (ROS), reactive nitrogen species (RNS), increased apoptosis, DNA damage and decreased cellular viability. Flow cytometry analysis and Annexin-V/propidium iodide assay further confirmed increased ROS positive cells leading to cell death after infection. The quantitative real-time PCR analysis, also revealed upregulation of inducible nitric-oxide synthase (iNOS), pro-inflammatory cytokine (TNFα), cyclooxygenase2 (COX-2) and downregulation of anti-inflammatory cytokine (IL-10). Pretreatment of cells with probiotic, Lactobacillus acidophilus attenuated A. hydrophila induced apoptosis as evident from the decrease in the levels of ROS, RNS and DNA damage. Significant increase (P≤0.05) in expression of TNFα and IL-10 and decrease in iNOS and COX-2 was observed on probiotic stimulation. In-vivo study using catla fingerlings confirmed similar pattern of ROS, iNOS, NO production and cytokine expression in thymus. This study provides a comprehensive insight into the mechanistic basis of L. acidophilus induced macrophage mediated inflammatory response against A. hydrophila in CTM cells. Further, it speculates the possibility of using cost-effective in-vitro models for screening probiotic candidates of therapeutic potential in aquaculture industry. PMID:27262084

  2. Blueberry treatment attenuated cirrhotic and preneoplastic lesions and oxidative stress in the liver of diethylnitrosamine-treated rats.

    Science.gov (United States)

    Bingül, İlknur; Başaran-Küçükgergin, Canan; Aydın, A Fatih; Soluk-Tekkeşin, Merva; Olgaç, Vakur; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2016-09-01

    Diethylnitrosamine (DEN)-induced liver cancer normally develops in stages that progress from cirrhosis and carcinoma. Increased oxidative stress is suggested to play a role in DEN-induced carcinogenicity. Blueberries (BB) contain high antioxidant capacity. We investigated the effect of BB supplementation on development of DEN-induced cirrhosis and neoplastic lesions in the liver. Rats were injected with DEN (200 mg/kg; i.p.) three times with an interval of 15 days at 4, 6, and 8 weeks and sacrificed 8 weeks after the last DEN injection. They were also fed on 8% BB (w/w) containing chow for 16 weeks. Hepatic damage markers in serum were determined together with hepatic histopathological examinations. Hydroxyproline (HYP), malondialdehyde (MDA), diene conjugate (DC), protein carbonyl (PC), and glutathione (GSH) levels, and CuZn-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, and their mRNA expressions were measured. Protein and mRNA expressions of glutathione transferase-pi (GST-pi) were evaluated as a marker of preneoplastic lesions. BB supplementation decreased hepatic damage markers in serum and hepatic MDA, DC, and PC levels, but SOD, CAT, and GSH-Px activities and their mRNA expressions remained unchanged in DEN-treated rats. BB attenuated cirrhotic changes and decreased hepatic HYP levels and GST-pi expressions. Our results indicate that BB is effective in decreasing development of DEN-induced hepatic cirrhosis and preneoplastic lesions by acting as an antioxidant (radical scavenger) itself without affecting activities and mRNA expressions of antioxidant enzymes. PMID:26684621

  3. Glucose metabolism in ischemic myocardium

    International Nuclear Information System (INIS)

    We determined the myocardial metabolic rate for glucose (MMRGlc) in the ischemic or infarcted myocardium using 18-F-fluorodeoxyglucose (18-FDG) with positron emission tomography (PET), and studied energy metabolism in the ischemic myocardium. In some cases, we compared glucose metabolism images by 18-FDG with myocardial blood flow images using 15-oxygen water. Two normal subjects, seven patients with myocardial infarction and four patients with angina pectoris were studied. Coronary angiography was performed within two weeks before or after the PET study to detect ischemic areas. PET studies were performed for patients who did not eat for 5 to 6 hours after breakfast. Cannulation was performed in the pedal artery to measure free fatty acid, blood sugar, and insulin. After recording the transmission scan for subsequent correction of photon attenuation, blood pool images were recorded for two min. after the inhalation of carbon monoxide (oxygen-15) which labeled the red blood cells in vivo. After 20 min., oxygen-15 water (15 to 20 mCi) was injected for dynamic scans, and flow images were obtained. Thirty min. after this procedure, 18-FDG (5 to 6 mCi) was injected, and 60 min later, a static scan was performed and glucose metabolism images were obtained. Arterial blood sampling for the time activity curve of the tracer was performed at the same time. According to the method of Phelps et al, MMRGlc was calculated in each of the region of interest (ROI) which was located in the left ventricular wall. MMRGlc obtained from each ROI was 0 to 17 mg/100 ml/min. In normal subjects MMRGlc was 0.4 to 7.3 mg/100 ml/min. In patients with myocardial infarction, it ranged from 3 to 5 mg/100 ml/min in the infarcted lesion. In patients with angina pectoris and subendocardial infarction, MMRGlc was 7 to 17 mg/100 ml/min in the ischemic lesion. In this lesion, myocardial blood flow was relatively low by oxygen-15 imagings (so-called mismatch). (J.P.N.)

  4. Magnetic resonance imaging in acute ischemic stroke

    International Nuclear Information System (INIS)

    This paper summarizes current MRI technology used in the diagnosis of acute cerebral infarction and discusses tasks for further improvement of MRI technology. First, the principles and methods of MRI imaging are described in terms of 1) diffusion-weighted imaging (DWI) and ADC maps, 2) perfusion imaging, 3) the fluid-attenuated inversion recovery (FLAIR) method, and 4) MR angiography (MRA). Then, the actual use of MRI in the early phase of ischemic cerebrovascular disorders is discussed focusing on general MRI procedures, cases in which an ischemic lesion dose not yield a high signal with DWI in the acute phase, and chronological changes in DWI signal strength and ADC. Third, chronological changes in acute cerebrovascular disorder in an animal model of local cerebral ischemia are summarized in terms of expansion of reduced ADC areas and ischemic penumbras in the acute phase of cerebral ischemia. Finally, chronological changes in acute ischemic disorders in patients with cerebrovascular disorders are assessed by reviewing the development of reduced ADC and expansion of DWI lesions. Whether MRI can identify cerebral tissues that can be rescued by the reperfusion method by examining the mismatchs between perfusion images and DWI, relative CBV, and ADC is also discussed. (K.H.)

  5. Transient Ischemic Attack

    Medline Plus

    Full Text Available ... TIA , or transient ischemic attack, is a "mini stroke" that occurs when a blood clot blocks an ... a short time. The only difference between a stroke and TIA is that with TIA the blockage ...

  6. Propensity of Withania somnifera to Attenuate Behavioural, Biochemical, and Histological Alterations in Experimental Model of Stroke.

    Science.gov (United States)

    Sood, Abhilasha; Kumar, Aditya; Dhawan, Devinder K; Sandhir, Rajat

    2016-10-01

    The present study was designed to evaluate the beneficial effects of Withania somnifera (WS) pre-supplementation on middle cerebral artery occlusion (MCAO) model of ischemic stroke. Ischemic stroke was induced in the rats by inserting intraluminal suture for 90 min, followed by reperfusion injury for 24 h. The animals were assessed for locomotor functions (by neurological deficit scores, narrow beam walk and rotarod test), cognitive and anxiety-like behavioural functions (by morris water maze and elevated plus maze test). MCAO animals showed significant impairment in locomotor and cognitive functions. Neurobehavioural changes were accompanied by decreased acetylcholinesterase activity, increased oxidative stress in terms of enhanced lipid peroxidation and lowered thiol levels in the MCAO animals. In addition, MCAO animals had cerebral infarcts and the presence of pycnotic nuclei. Single-photon emission computerized tomography (SPECT) of MCAO animals revealed a cerebral infarct as a hypoactive area. On the other hand, pre-supplementation with WS (300 mg/kg body weight) for 30 days to MCAO animals was effective in restoring the acetylcholinesterase activity, lipid peroxidation, thiols and attenuated MCAO induced behavioural deficits. WS significantly reduced the cerebral infarct volume and ameliorated histopathological alterations. Improved blood flow was observed in the SPECT images from the brain regions of ischemic rats pre-treated with WS. The results of the study showed a protective effect of WS supplementation in ischemic stroke and are suggestive of its potential application in stroke management. PMID:26718711

  7. Acute ischemic cerebral attack

    OpenAIRE

    Franco-Garcia Samir; Barreiro-Pinto Belis

    2010-01-01

    The decrease of the cerebral blood flow below the threshold of autoregulation led to changes of cerebral ischemia and necrosis that traduce in signs and symtoms of focal neurologic dysfunction called acute cerebrovascular symdrome (ACS) or stroke. Two big groups according to its etiology are included in this category the hemorragic that constitue a 20% and the ischemic a 80% of cases. Great interest has wom the ischemic ACS because of its high social burden, being the third cause of no violen...

  8. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells.

    Science.gov (United States)

    Huang, Qian; Sparatore, Anna; Del Soldato, Piero; Wu, Lingyun; Desai, Kaushik

    2014-01-01

    Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4) and inducible nitric oxide synthase (iNOS) protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM) and high glucose (25 mM). ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor), all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM). ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM). In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known deleterious effects

  9. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Qian Huang

    Full Text Available Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4 and inducible nitric oxide synthase (iNOS protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM and high glucose (25 mM. ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor, all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM. ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM. In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known

  10. Selective inducible nitric oxide synthase inhibition attenuates organ dysfunction and elevated endothelin levels in LPS-induced DIC model rats.

    Science.gov (United States)

    Asakura, H; Asamura, R; Ontachi, Y; Hayashi, T; Yamazaki, M; Morishita, E; Miyamoto, K-I; Nakao, S

    2005-05-01

    We examined the role of nitric oxide (NO) produced by an inducible isoform of NO synthase (iNOS) using N[6]-(iminoethyl)-lysine (L-NIL), a selective iNOS inhibitor, in the rat model of lipopolysaccharide (LPS)-induced disseminated intravascular coagulation (DIC) and investigated changes in organ function, plasma levels of NOX (metabolites of NO) and endothelin. We induced experimental DIC by the sustained infusion of 30 mg kg(-1) LPS for 4 h via the tail vein. We then investigated the effect of L-NIL (6 mg kg(-1), from - 0.5 to 4 h) on LPS-induced DIC. Blood was withdrawn at 4 and 8 h, and all four groups (LPS with or without L-NIL at 4 and 8 h) consisted of eight rats. Three of the animals in the 8-h LPS group died, and we examined blood samples from five rats in this group. None of the other rats died. The LPS-induced elevation of creatinine, alanine aminotransferase, glomerular fibrin deposition and plasminogen activator inhibitor was significantly suppressed by L-NIL coadministration, although L-NIL did not affect the platelet count, fibrinogen concentration or the level of thrombin-antithrombin complex. Moreover, plasma levels of the D-dimer that reflect the lysis of cross-linked fibrin were significantly increased by L-NIL coadministration in the LPS-induced DIC model. Plasma levels of NOX and endothelin were obviously increased by LPS infusion. However, both levels were significantly suppressed in the LPS + L-NIL group, when compared with the LPS group. Although mean arterial pressure (MAP) was significantly decreased between 2 and 8 h compared with the control in the LPS group, this depression was significantly attenuated in the LPS + L-NIL group. Our results suggest that NO induced by iNOS contributes to hypotension (depressed MAP), the progression of hepatic and renal dysfunction, microthrombus deposition and elevated endothelin levels in the rat model of LPS-induced DIC. PMID:15869603

  11. Electrochemical oxidation of 2-propanol over platinum and palladium electrodes in alkaline media studied by in situ attenuated total reflection infrared spectroscopy.

    Science.gov (United States)

    Okanishi, Takeou; Katayama, Yu; Ito, Ryota; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-04-21

    The electrochemical oxidation of 2-propanol over Pt and Pd electrodes was evaluated in alkaline media. Linear sweep voltammograms (LSVs), chronoamperograms (CAs), and simultaneous time-resolved attenuated total reflection infrared (ATR-IR) spectra of both electrodes were obtained in a 0.25 M KOH solution containing 1 M 2-propanol. The onset potential of 2-propanol oxidation for Pt was lower than that for Pd in LSVs while the degree of performance degradation observed for Pd was significantly smaller than that observed for Pt in CAs. The main product of 2-propanol oxidation was acetone over both electrodes and, over Pt only, acetone produced was catalytically oxidized to the enolate ion, which was accumulated on the Pt surface, leading to significant performance degradation. Carbon dioxide and carbonate species (CO3(2-), HCO3(-)) were not observed during 2-propanol oxidation over both electrodes, indicating that the complete oxidation of 2-propanol to CO2 will be a minor reaction. PMID:27009749

  12. Curcumin protects against ischemic spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Jinhua Zhang; Hao Wei; Meimei Lin; Chunmei Chen; Chunhua Wang; Maobai Liu

    2013-01-01

    Inducible nitric oxide synthase and N-methyl-D-aspartate receptors have been shown to participate in nerve cellinjury during spinal cord ischemia. This study observed a protective effect of curcumin on ischemic spinal cord injury. Models of spinal cord ischemia were established by ligating the lumbar artery from the left renal artery to the bifurcation of the abdominal aorta. At 24 hours after model establishment, the rats were intraperitoneal y injected with curcumin. Reverse transcrip-tion-polymerase chain reaction and immunohistochemical results demonstrated that after spinal cord ischemia, inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression significantly increased. However, curcumin significantly decreased inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression in the ischemic spinal cord. Tarlov scale results showed that curcumin significantly improved motor function of the rat hind limb after spinal cord ischemia. The results demonstrate that curcumin exerts a neuroprotective ef-fect against ischemic spinal cord injury by decreasing inducible nitric oxide synthase and N-methyl-D-aspartate receptor expression.

  13. Gamma-ray attenuation coefficients in some heavy metal oxide borate glasses at 662 keV

    International Nuclear Information System (INIS)

    The linear attenuation coefficient (μ) and mass attenuation coefficients (μ/ρ) of glasses in three systems: xPbO(1-x)B2O3, 0.25PbO.xCdO(0.75-x)B2O3 and xBi2O3(1-x)B2O3 were measured at 662 keV. Appreciable variations were noted in the attenuation coefficients due to changes in the chemical composition of glasses. In addition to this, absorption cross-sections per atom were also calculated. A comparison of shielding properties of these glasses with standar d shielding materials like lead, lead glass and concrete has proven that these glasses have a potential application as transparent radiation shielding. (orig.)

  14. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    International Nuclear Information System (INIS)

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H2O2), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H2O2 at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H2O2-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H2O2 stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H2O2-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation. ► Ligustrazine reduces fibrotic marker genes in HSCs under

  15. Effect of fiberoptic intubation on myocardial ischemia and hormonal stress response in diabetics with ischemic heart disease

    Directory of Open Access Journals (Sweden)

    Nashwa Nabil Mohamed

    2014-01-01

    Conclusion: The optimum use of fiberoptic bronchoscope with avoidance of jaw thrust maneuver attenuates the hemodynamic response to intubation which is beneficial in diabetic patients with ischemic heart disease. Stress response hormones showed no statistically significant difference between groups.

  16. Effect of obesity reduction on preservation of heart function and attenuation of left ventricular remodeling, oxidative stress and inflammation in obese mice

    Directory of Open Access Journals (Sweden)

    Wang Hui-Ting

    2012-07-01

    Full Text Available Abstract Background Obesity is an important cardiovascular risk factor. This study tested the effect of obesity reduction on preserving left ventricular ejection fraction (LVEF and attenuating inflammation, oxidative stress and LV remodeling in obese mice. Methods and results Eight-week-old C57BL/6 J mice (n=24 were equally divided into control (fed a control diet for 22 weeks, obesity (high-fat diet, 22 weeks, and obese reduction (OR (high-fat diet, 14 weeks; then control diet, 8 weeks. Animals were sacrificed at post 22-week high-fat diet and the LV myocardium collected. Heart weight, body weight, abdominal-fat weight, total cholesterol level and fasting blood glucose were higher in obesity than in control and OR (all p Conclusion Impaired LVEF, enhanced LV remodeling, inflammation, fibrosis, oxidative stress and apoptosis were reversed by reduction in mouse obesity.

  17. Electroacupuncture pretreatment prevents cognitive impairment induced by limb ischemia-reperfusion via inhibition of microglial activation and attenuation of oxidative stress in rats.

    Science.gov (United States)

    Chen, Ye; Zhou, Jun; Li, Jun; Yang, Shi-Bin; Mo, Li-Qun; Hu, Jie-Hui; Yuan, Wan-Li

    2012-01-13

    Limb ischemia-reperfusion (LI/R) is associated with high morbidity and mortality. Furthermore, critical trauma survivors can present cognitive impairment. Cognitive function, survival rate, oxidative stress and neuronal health were examined to elucidate (1) the magnitude of cognitive effects of prolonged reperfusion, (2) potential players in the mechanistic pathway mediating such effects, and (3) possible benefits of electroacupuncture (EA) pretreatment at Baihui (GV20), Yanglingquan (GB34), Taichong (LR3), Zusanli (ST36) and Xuehai (SP10) acupoints. LI/R was induced in rats by placing a rubber tourniquet on each hind limb for 3h, and the animals were evaluated periodically for 7d after LI/R. Rats subjected to LI/R had significantly lower survival rates, and displayed evidence of brain injury and cognitive dysfunction (as determined by the Morris water maze test) 1d and 3d after reperfusion compared to sham-operated controls. LI/R also resulted in higher levels of reactive oxygen species (ROS) and malondialdehyde (MDA), microglial activation, and decreased superoxide dismutase (SOD) activity within Cornu Ammonis area 1 (CA1) of the hippocampus. Depressed survival rates, microglial activation, oxidative damage, and histological changes, as well as cognitive dysfunction were partially or fully attenuated in rats that received 14d of EA prior to LI/R. These findings indicate that LI/R can result in cognitive dysfunction related to activated microglia and elevated oxidative stress, and that EA has neuroprotective potential mediated, at least in part, by inhibition of microglial activation and attenuation of oxidative stress. PMID:22129788

  18. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment. PMID:27158393

  19. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Oranuch Nakchat; Nonthaneth Nalinratana; Duangdeun Meksuriyen; Sunanta Pongsamart

    2014-01-01

    Objective:To investigate the role and mechanism of tamarind seed coat extract (TSCE) on normal human skin fibroblast CCD-1064Sk cells under normal and oxidative stress conditions induced by hydrogen peroxide (H2O2). Methods:Tamarind seed coats were extracted with boiling water and then partitioned with ethyl acetate before the cell analysis. Effect of TSCE on intracellular reactive oxygen species (ROS), glutathione (GSH) level, antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activity including antioxidant protein expression was investigated. Results: TSCE significantly attenuated intracellular ROS in the absence and presence of H2O2 by increasing GSH level. In the absence of H2O2, TSCE significantly enhanced SOD and catalase activity but did not affected on GPx. Meanwhile, TSCE significantly increased the protein expression of SOD and GPx in H2O2-treated cells. Conclusions: TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat.

  20. Ischemic strokes and migraine

    International Nuclear Information System (INIS)

    Lasting neurological deficits, though most infrequent, do occur in migrainous subjects and are well documented by clinical angiographic computed tomographic (CT scan) and even pathological studies. However the mechanism of cerebral ischemia in migraine remains widely unknown and the precise role of migraine in the pathogenesis of ischemic strokes is still debated. (orig./MG)

  1. Testosterone replacement attenuates cognitive decline in testosterone-deprived lean rats, but not in obese rats, by mitigating brain oxidative stress.

    Science.gov (United States)

    Pintana, Hiranya; Pongkan, Wanpitak; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-10-01

    Testosterone replacement improves metabolic parameters and cognitive function in hypogonadism. However, the effects of testosterone therapy on cognition in obese condition with testosterone deprivation have not been investigated. We hypothesized that testosterone replacement improves cognitive function in testosterone-deprived obese rats by restoring brain insulin sensitivity, brain mitochondrial function, and hippocampal synaptic plasticity. Thirty male Wistar rats had either a bilateral orchiectomy (ORX: O, n = 24) or a sham operation (S, n = 6). ORX rats were further divided into two groups fed with either a normal diet (NDO) or a high-fat diet (HFO) for 12 weeks. Then, ORX rats in each dietary group were divided into two subgroups (n = 6/subgroup) and were given either castor oil or testosterone (2 mg/kg/day, s.c.) for 4 weeks. At the end of this protocol, cognitive function, metabolic parameters, brain insulin sensitivity, hippocampal synaptic plasticity, and brain mitochondrial function were determined. We found that testosterone replacement increased peripheral insulin sensitivity, decreased circulation and brain oxidative stress levels, and attenuated brain mitochondrial ROS production in HFO rats. However, testosterone failed to restore hippocampal synaptic plasticity and cognitive function in HFO rats. In contrast, in NDO rats, testosterone decreased circulation and brain oxidative stress levels, attenuated brain mitochondrial ROS production, and restored hippocampal synaptic plasticity as well as cognitive function. These findings suggest that testosterone replacement improved peripheral insulin sensitivity and decreased oxidative stress levels, but failed to restore hippocampal synaptic plasticity and cognitive function in testosterone-deprived obese rats. However, it provided beneficial effects in reversing cognitive impairment in testosterone-deprived non-obese rats. PMID:26277724

  2. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Ni, Chunyan [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); The First People' s Hospital of Changzhou, Changzhou 213003 (China); Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Lu, Yin [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046 (China); National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210046 (China); Zheng, Shizhong, E-mail: nytws@163.com [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046 (China); National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210046 (China)

    2012-11-15

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H{sub 2}O{sub 2}), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H{sub 2}O{sub 2} at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H{sub 2}O{sub 2}-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H{sub 2}O{sub 2} stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H{sub 2}O{sub 2}-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation.

  3. Environmental enrichment promotes neural remodeling in newborn rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Chuanjun Liu; Yankui Guo; Yalu Li; Zhenying Yang

    2011-01-01

    We evaluated the effect of hypoxic-ischemic brain damage and treatment with early environmental enrichment intervention on development of newborn rats, as evaluated by light and electron microscopy and morphometry. Early intervention with environmental enrichment intelligence training attenuated brain edema and neuronal injury, promoted neuronal repair, and increased neuronal plasticity in the frontal lobe cortex of the newborn rats with hypoxic-ischemic brain damage.

  4. Zygophyllum gaetulum attenuates hypercholesterolemia and protects against oxidative stress in rats fed a high-cholesterol diet

    Directory of Open Access Journals (Sweden)

    Sadia Berzou

    2014-12-01

    Conclusion: These results show that Zygophyllum gaetulum aqueous extract improves hypercholesterolemia and oxidative stress induced by a high cholesterol diet and consequently may protect against cardiovascular diseases. [J Exp Integr Med 2014; 4(4.000: 255-260

  5. Attenuation of Oxidative Stress, Inflammation and Insulin Resistance by Allium Sativum in Fructose–Fed Male Rats

    OpenAIRE

    K., Sivaraman; Senthilkumar, G. P; Sankar, P; Bobby, Zachariah

    2013-01-01

    Background: Fructose is widely used as a food ingredient and has potential to increase oxidative stress. Moreover, the beneficial health effects of medicinal plants are frequently attributed to their potent antioxidant effects.

  6. Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling

    OpenAIRE

    Silva, Marcondes A. B.; Bruder-Nascimento, Thiago; Cau, Stefany B. A.; Lopes, Rheure A. M.; Mestriner, Fabiola L. A. C.; Fais, Rafael S.; Touyz, Rhian M.; Tostes, Rita C.

    2015-01-01

    Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes. Leptin receptor knockout [LepRdb/LepRdb (db/db)] mice, a model of DM2, and their ...

  7. Atorvastatin attenuates inflammation and oxidative stress induced by ischemia/reperfusion in rat heart via the Nrf2 transcription factor

    OpenAIRE

    Sun, Guoqiang; Li, Yubo; Ji, Zhiyong

    2015-01-01

    The role of atorvastatin in inflammation and oxidative stress induced by ischemia/reperfusion is currently not well understood. The aim of this study was toinvestigate whether atorvastatin modulates neutrophil accumulation, TNF-α induction and oxidative stress and to examine the possible role of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway in an ischemia/reperfusion injured rat heart model. Rats were randomly assigned into tosham operation ...

  8. Iron oxide nanoparticles and magnetic field exposure promote functional recovery by attenuating free radical-induced damage in rats with spinal cord transection

    Directory of Open Access Journals (Sweden)

    Pal A

    2013-06-01

    Full Text Available Ajay Pal,1 Anand Singh,2 Tapas C Nag,3 Parthaprasad Chattopadhyay,2 Rashmi Mathur,1 Suman Jain1 1Department of Physiology, 2Department of Biochemistry, 3Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India Background: Iron oxide nanoparticles (IONPs can attenuate oxidative stress in a neutral pH environment in vitro. In combination with an external electromagnetic field, they can also facilitate axon regeneration. The present study demonstrates the in vivo potential of IONPs to recover functional deficits in rats with complete spinal cord injury. Methods: The spinal cord was completely transected at the T11 vertebra in male albino Wistar rats. Iron oxide nanoparticle solution (25 µg/mL embedded in 3% agarose gel was implanted at the site of transection, which was subsequently exposed to an electromagnetic field (50 Hz, 17.96 µT for two hours daily for five weeks. Results: Locomotor and sensorimotor assessment as well as histological analysis demonstrated significant functional recovery and a reduction in lesion volume in rats with IONP implantation and exposure to an electromagnetic field. No collagenous scar was observed and IONPs were localized intracellularly in the immediate vicinity of the lesion. Further, in vitro experiments to explore the cytotoxic effects of IONPs showed no effect on cell survival. However, a significant decrease in H2O2-mediated oxidative stress was evident in the medium containing IONPs, indicating their free radical scavenging properties. Conclusion: These novel findings indicate a therapeutic role for IONPs in spinal cord injury and other neurodegenerative disorders mediated by reactive oxygen species. Keywords: secondary damage, oxidative stress, electromagnetic field, cytotoxicity, neurodegeneration, pain

  9. Aliskiren attenuates bleomycin-induced pulmonary fibrosis in rats: focus on oxidative stress, advanced glycation end products, and matrix metalloproteinase-9.

    Science.gov (United States)

    Abuelezz, Sally A; Hendawy, Nevien; Osman, Wesam M

    2016-08-01

    Pulmonary fibrosis is a progressive lung disorder with high mortality rate and limited successful treatment. This study was designed to assess the potential anti-oxidant and anti-fibrotic effects of aliskiren (Alsk) during bleomycin (BLM)-induced pulmonary fibrosis. Male Wistar rats were used as control untreated or treated with the following: a single dose of 2.5 mg/kg of BLM endotracheally and BLM and Alsk (either low dose 30 mg/kg/day or high dose 60 mg/kg/day), and another group was given Alsk 60 mg/kg/day alone. Alsk was given by gavage. Alsk anti-oxidant and anti-fibrotic effects were assessed. BLM significantly increased relative lung weight and the levels of lactate dehydrogenase and total and differential leucocytic count in bronchoalveolar lavage that was significantly ameliorated by high-dose Alsk treatment. As markers of oxidative stress, BLM caused a significant increase in the levels of lipid peroxides and nitric oxide accompanied with a significant decrease of superoxide dismutase and glutathione transferase enzymes. High-dose Alsk treatment restored these markers toward normal values. Alsk counteracted the overexpression of advanced glycation end products, matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 in lung tissue induced by BLM. Fibrosis assessed by measuring hydroxyproline content, which markedly increased in the BLM group, was also significantly reduced by Alsk. These were confirmed by histopathological and immunohistochemical examination which revealed that Alsk attenuates signs of pulmonary fibrosis and decreased the overexpressed MMP-9 and transforming growth factor β1. Collectively, these findings indicate that Alsk has a potential anti-fibrotic effect beside its anti-oxidant activity. PMID:27154762

  10. Attenuation of lipopolysaccharide-induced oxidative stress and apoptosis in fetal pulmonary artery endothelial cells by hypoxia.

    Science.gov (United States)

    Sampath, Venkatesh; Radish, Aaron C; Eis, Annie L; Broniowska, Katarzyna; Hogg, Neil; Konduri, Girija G

    2009-03-01

    Pulmonary vascular endothelial injury resulting from lipopolysaccharide (LPS) and oxygen toxicity contributes to vascular simplification seen in the lungs of premature infants with bronchopulmonary dysplasia. Whether the severity of endotoxin-induced endothelial injury is modulated by ambient oxygen tension (hypoxic intrauterine environment vs. hyperoxic postnatal environment) remains unknown. We posited that ovine fetal pulmonary artery endothelial cells (FPAEC) will be more resistant to LPS toxicity under hypoxic conditions (20-25 Torr) mimicking the fetal milieu. LPS (10 microg/ml) inhibited FPAEC proliferation and induced apoptosis under normoxic conditions (21% O(2)) in vitro. LPS-induced FPAEC apoptosis was attenuated in hypoxia (5% O(2)) and exacerbated by hyperoxia (55% O(2)). LPS increased intracellular superoxide formation, as measured by 2-hydroxyethidium (2-HE) formation, in FPAEC in normoxia and hypoxia. 2-HE formation in LPS-treated FPAEC increased in parallel with the severity of LPS-induced apoptosis in FPAEC, increasing from hypoxia to normoxia to hyperoxia. Differences in LPS-induced apoptosis between hypoxia and normoxia were abolished when LPS-treated FPAEC incubated in hypoxia were pretreated with menadione to increase superoxide production. Apocynin decreased 2-HE formation, and attenuated LPS-induced FPAEC apoptosis under normoxic conditions. We conclude that ambient oxygen concentration modulates the severity of LPS-mediated injury in FPAEC by regulating superoxide levels produced in response to LPS. PMID:19135525

  11. Attenuation of β-Amyloid-Induced Oxidative Cell Death by Sulforaphane via Activation of NF-E2-Related Factor 2

    Directory of Open Access Journals (Sweden)

    Chan Lee

    2013-01-01

    Full Text Available β-amyloid peptide (Aβ, a major component of senile plaques, plays important roles in neuropathology of Alzheimer's disease (AD. An array of in vitro and in vivo data indicates that Aβ-induced neuronal death is mediated by oxidative stress. In this study, we aimed to investigate effects of sulforaphane (SUL, an isothiocyanate in cruciferous vegetables, on Aβ-induced oxidative cell death in SH-SY5Y cells. Cells treated with Aβ25–35 exhibited decreased cell viability and underwent apoptosis as determined by MTT assay and TUNEL, respectively. Aβ25–35-induced cytotoxicity and apoptotic characteristics such as activation of c-JNK, dissipation of mitochondrial membrane potential, altered expression of Bcl-2 family proteins, and DNA fragmentation were effectively attenuated by SUL pretreatment. The antiapoptotic activity of SUL seemed to be mediated by inhibition of intracellular accumulation of reactive oxygen species and oxidative damages. SUL exerted antioxidant potential by upregulating expression of antioxidant enzymes including γ-glutamylcysteine ligase, NAD(PH:quinone oxidoreductase-1, and heme oxygenase-1 via activation of NF-E2-related factor 2(Nrf2. The protective effect of SUL against Aβ25–35-induced apoptotic cell death was abolished by siRNA of Nrf2. Taken together, the results suggest that pharmacologic activation of Nrf2 signaling pathway by SUL might be a practical prevention and/or protective treatment for the management of AD.

  12. Pre-Conditioning with CDP-Choline Attenuates Oxidative Stress-Induced Cardiac Myocyte Death in a Hypoxia/Reperfusion Model

    Directory of Open Access Journals (Sweden)

    Héctor González-Pacheco

    2014-01-01

    Full Text Available Background. CDP-choline is a key intermediate in the biosynthesis of phosphatidylcholine, which is an essential component of cellular membranes, and a cell signalling mediator. CDP-choline has been used for the treatment of cerebral ischaemia, showing beneficial effects. However, its potential benefit for the treatment of myocardial ischaemia has not been explored yet. Aim. In the present work, we aimed to evaluate the potential use of CDP-choline as a cardioprotector in an in vitro model of ischaemia/reperfusion injury. Methods. Neonatal rat cardiac myocytes were isolated and subjected to hypoxia/reperfusion using the coverslip hypoxia model. To evaluate the effect of CDP-choline on oxidative stress-induced reperfusion injury, the cells were incubated with H2O2 during reperfusion. The effect of CDP-choline pre- and postconditioning was evaluated using the cell viability MTT assay, and the proportion of apoptotic and necrotic cells was analyzed using the Annexin V determination by flow cytometry. Results. Pre- and postconditioning with 50 mg/mL of CDP-choline induced a significant reduction of cells undergoing apoptosis after hypoxia/reperfusion. Preconditioning with CDP-choline attenuated postreperfusion cell death induced by oxidative stress. Conclusion. CDP-choline administration reduces cell apoptosis induced by oxidative stress after hypoxia/reperfusion of cardiac myocytes. Thus, it has a potential as cardioprotector in ischaemia/reperfusion-injured cardiomyocytes.

  13. Attenuation of oxidative stress and hepatic damage by some fermented tropical legume condiment diets in streptozotocin-induced diabetes in rats

    Institute of Scientific and Technical Information of China (English)

    Adedayo O Ademiluyi; Ganiyu Oboh

    2012-01-01

    Objective:To investigate the modulatory effect of fermented legume condiments diet on oxidative stress in streptozotocin(STZ) induced diabetic rats.Methods:Adult maleWistar rats were randomly divided into six groups with six animals in each group.Diabetes was induced by intraperitoneal injection ofSTZ(35 mg/kg b.w.).After being confirmed diabetic, the rats were fed with fermentedBambara groundnut,Locust beanandSoybean diets for14 days.The plasma was obtained after14-day treatment and analyzed for hepatic damage marker enzymes(AST,ALT andALP) andin vivo antioxidant indices.Results:The diabetic untreated rats showed elevated (P<0.05) levels ofAST,ALT,ALP and malondialdehyde with reduced activities of glutathione-S-transferase, catalase as well as plasma reduced glutathione, vitaminC and total protein content.However, treatment of diabetic rats with fermented legume condiments diets for14 days significantly(P<0.05) reversed the above parameters towards normalcy, suggesting their modulation of oxidative stress, which may be due to their high phenolic content and antioxidant capacity.Conclusions:The attenuation of oxidative stress and protection of hepatic tissue damage by the legume condiment diets inSTZ induced diabetic rats compare favourably with that of metformin, a well known oral hypoglycemic drug.

  14. Amaranthus spinosus L. (Amaranthaceae) leaf extract attenuates streptozotocin-nicotinamide induced diabetes and oxidative stress in albino rats:A histopathological analysis

    Institute of Scientific and Technical Information of China (English)

    Shanti Bhushan Mishra; Amita Verma; Alok Mukerjee; Madhavan Vijayakumar

    2012-01-01

    Objective: The aim of the present study was to evaluate the possible antidiabetic effects of Amaranthus spinosus leaf extract (ASEt) against streptozotocin-nicotinamide induced diabetes &oxidative stress in albino rats.Methods: Experimental diabetes was induced by a single dose of STZ (60 mg/kg) administered by intraperitoneal way after the administration of nicotinamide (120mg/kg). The oxidative stress was measured by reduced glutathione (GSH) content and by enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in liver and kidney. Biochemical observations were further substantiated with histological examination of pancreas, kidney and liver. Results: The increase in blood glucose with the decrease in GSH content and in enzymatic activities were the salient features observed in diabetic rats. Administration of ASEt (250 & 500 mg/kg bw/day, i.p) for 21 days caused a significant reduction in blood glucose in STZ-nicotinamide treated rats when compared with diabetic rats. Furthermore, diabetic rats treated with ASEt leaf extract showed a significant increase in the activities of both enzymatic and non-enzymatic antioxidants when compared to those of diabetic rats. Degenerative changes of pancreatic cells in STZ treated rats were minimized to near normal morphology by administration of ASEt leaf extract as evidenced by histopathological examination.Conclusion: Results clearly indicate that Amaranthusspinosus treatment attenuate hyperglycemia by decreasing oxidative stress and pancreatic cells damage which may be attributed to its antioxidative potential.

  15. Gender and post-ischemic recovery of hypertrophied rat hearts

    Directory of Open Access Journals (Sweden)

    Popov Kirill M

    2006-03-01

    Full Text Available Abstract Background Gender influences the cardiac response to prolonged increases in workload, with differences at structural, functional, and molecular levels. However, it is unknown if post-ischemic function or metabolism of female hypertrophied hearts differ from male hypertrophied hearts. Thus, we tested the hypothesis that gender influences post-ischemic function of pressure-overload hypertrophied hearts and determined if the effect of gender on post-ischemic outcome could be explained by differences in metabolism, especially the catabolic fate of glucose. Methods Function and metabolism of isolated working hearts from sham-operated and aortic-constricted male and female Sprague-Dawley rats before and after 20 min of no-flow ischemia (N = 17 to 27 per group were compared. Parallel series of hearts were perfused with Krebs-Henseleit solution containing 5.5 mM [5-3H/U-14C]-glucose, 1.2 mM [1-14C]-palmitate, 0.5 mM [U-14C]-lactate, and 100 mU/L insulin to measure glycolysis and glucose oxidation in one series and oxidation of palmitate and lactate in the second. Statistical analysis was performed using two-way analysis of variance. The sequential rejective Bonferroni procedure was used to correct for multiple comparisons and tests. Results Female gender negatively influenced post-ischemic function of non-hypertrophied hearts, but did not significantly influence function of hypertrophied hearts after ischemia such that mass-corrected hypertrophied heart function did not differ between genders. Before ischemia, glycolysis was accelerated in hypertrophied hearts, but to a greater extent in males, and did not differ between male and female non-hypertrophied hearts. Glycolysis fell in all groups after ischemia, except in non-hypertrophied female hearts, with the reduction in glycolysis after ischemia being greatest in males. Post-ischemic glycolytic rates were, therefore, similarly accelerated in hypertrophied male and female hearts and higher in

  16. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Pang

    Full Text Available The endoplasmic reticulum (ER plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs. Myocardial mechanical and intracellular Ca(2+ properties, ER stress, autophagy and associated cell signaling molecules were evaluated.ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca(2+ homeostasis, oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62, along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene.Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy.

  17. Chronic hyperbaric oxygen treatment elicits an anti-oxidant response and attenuates atherosclerosis in apoE knockout mice.

    Science.gov (United States)

    Kudchodkar, Bhalchandra J; Pierce, Anson; Dory, Ladislav

    2007-07-01

    We previously demonstrated that hyperbaric oxygen (HBO) treatment inhibits diet-induced atherosclerosis in New Zealand White rabbits. In the present study we investigate the mechanisms that might be involved in the athero-protective effect of HBO treatment in a well-accepted model of atherosclerosis, the apoE knockout (KO) mouse. We examine the effects of daily HBO treatment (for 5 and 10 weeks) on the components of the anti-oxidant defense mechanism and the redox state in blood, liver and aortic tissues and compare them to those of untreated apoE KO mice. HBO treatment results in a significant reduction of aortic cholesterol content and decreased fatty streak formation. These changes are accompanied by a significant reduction of autoantibodies against oxidatively modified LDL and profound changes in the redox state of the liver and aortic tissues. A 10-week treatment significantly reduces hepatic levels of TBARS and oxidized glutathione, while significantly increases the levels of reduced glutathione, glutathione reductase (GR), transferase, Se-dependent glutathione peroxidase and catalase (CAT). The effects of HBO treatment are similar in the aortic tissues. These observations provide evidence that HBO treatment has a powerful effect on the redox state of relevant tissues and produces an environment that inhibits oxidation. The anti-oxidant response may be the key to the anti-atherogenic effect of HBO treatment. PMID:16973170

  18. Dioscorea bulbifera polysaccharide and cyclophosphamide combination enhances anti-cervical cancer effect and attenuates immunosuppression and oxidative stress in mice

    OpenAIRE

    Hongxia Cui; Ting Li; Liping Wang; Yan Su; Xian, Cory J.

    2016-01-01

    Cyclophosphamide (CTX) is commonly used in cancer chemotherapy, which causes immunosuppression and tissue oxidative stress at high doses. As potential protective agents, some polysaccharides were shown to have anti-tumor, anti-inflammatory and/or anti-oxidant properties. This study explored potential effects of oral treatment of Dioscorea bulbifera polysaccharides (DBLP at 100 or 150 mg/kg) in U14 cervical tumor-bearing mice treated with CTX (25 mg/kg). While CTX suppressed tumor growth (65.4...

  19. Olmesartan, an AT1 Antagonist, Attenuates Oxidative Stress, Endoplasmic Reticulum Stress and Cardiac Inflammatory Mediators in Rats with Heart Failure Induced by Experimental Autoimmune Myocarditis

    Directory of Open Access Journals (Sweden)

    Vijayakumar Sukumaran, Kenichi Watanabe, Punniyakoti T. Veeraveedu, Narasimman Gurusamy, Meilei Ma, Rajarajan A. Thandavarayan, Arun Prasath Lakshmanan, Ken'ichi Yamaguchi, Kenji Suzuki, Makoto Kodama

    2011-01-01

    Full Text Available Studies have demonstrated that angiotensin II has been involved in immune and inflammatory responses which might contribute to the pathogenesis of immune-mediated diseases. Recent evidence suggests that oxidative stress may play a role in myocarditis. Here, we investigated whether olmesartan, an AT1R antagonist protects against experimental autoimmune myocarditis (EAM by suppression of oxidative stress, endoplasmic reticulum (ER stress and inflammatory cytokines. EAM was induced in Lewis rats by immunization with porcine cardiac myosin, were divided into two groups and treated with either olmesartan (10 mg/kg/day or vehicle for a period of 21 days. Myocardial functional parameters measured by hemodynamic and echocardiographic analyses were significantly improved by the treatment with olmesartan compared with those of vehicle-treated rats. Treatment with olmesartan attenuated the myocardial mRNA expressions of proinflammatory cytokines, [Interleukin (IL-1β, monocyte chemoattractant protein-1, tumor necrosis factor-α and interferon-γ] and the protein expression of tumor necrosis factor-α compared with that of vehicle-treated rats. Myocardial protein expressions of AT1R, NADPH oxidase subunits (p47phox, p67phox, gp91phox and the expression of markers of oxidative stress (3-nitrotyrosine and 4-hydroxy-2-nonenal, and the cardiac apoptosis were also significantly decreased by the treatment with olmesartan compared with those of vehicle-treated rats. Furthermore, olmesartan treatment down-regulated the myocardial expressions of glucose regulated protein-78, growth arrest and DNA damage-inducible gene, caspase-12, phospho-p38 mitogen-activated protein kinase (MAPK and phospho-JNK. These findings suggest that olmesartan protects against EAM in rats, at least in part via suppression of oxidative stress, ER stress and inflammatory cytokines.

  20. Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2013-01-01

    Full Text Available This study investigated endothelium-derived vasodilators and potassium channels involved in the modulation of ropivacaine-induced contraction. In endothelium-intact rat aortae, ropivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: the nonspecific nitric oxide synthase (NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, the neuronal NOS inhibitor Nω-propyl-L-arginine hydrochloride, the inducible NOS inhibitor 1400W dihydrochloride, the nitric oxide-sensitive guanylyl cyclase (GC inhibitor ODQ, the NOS and GC inhibitor methylene blue, the phosphoinositide-3 kinase inhibitor wortmannin, the cytochrome p450 epoxygenase inhibitor fluconazole, the voltage-dependent potassium channel inhibitor 4-aminopyridine (4-AP, the calcium-activated potassium channel inhibitor tetraethylammonium (TEA, the inward-rectifying potassium channel inhibitor barium chloride, and the ATP-sensitive potassium channel inhibitor glibenclamide. The effect of ropivacaine on endothelial nitric oxide synthase (eNOS phosphorylation in human umbilical vein endothelial cells was examined by western blotting. Ropivacaine-induced contraction was weaker in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, and methylene blue enhanced ropivacaine-induced contraction, whereas wortmannin, Nω-propyl-L-arginine hydrochloride, 1400W dihydrochloride, and fluconazole had no effect. 4-AP and TEA enhanced ropivacaine-induced contraction; however, barium chloride and glibenclamide had no effect. eNOS phosphorylation was induced by ropivacaine. These results suggest that ropivacaine-induced contraction is attenuated primarily by both endothelial nitric oxide and voltage-dependent potassium channels.

  1. Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling.

    Science.gov (United States)

    Silva, Marcondes A B; Bruder-Nascimento, Thiago; Cau, Stefany B A; Lopes, Rheure A M; Mestriner, Fabiola L A C; Fais, Rafael S; Touyz, Rhian M; Tostes, Rita C

    2015-01-01

    Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes. Leptin receptor knockout [LepR(db)/LepR(db) (db/db)] mice, a model of DM2, and their counterpart controls [LepR(db)/LepR(+), (db/+) mice] received spironolactone (50 mg/kg body weight/day) or vehicle (ethanol 1%) via oral per gavage for 6 weeks. Spironolactone treatment abolished endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS) phosphorylation (Ser(1177)) in arteries from db/db mice, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 and catalase expression, improved sodium nitroprusside and BAY 41-2272-induced relaxation, and increased soluble guanylyl cyclase (sGC) β subunit expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes. PMID:26500555

  2. Metformin prevents ischemia reperfusion-induced oxidative stress in the fatty liver by attenuation of reactive oxygen species formation

    Czech Academy of Sciences Publication Activity Database

    Cahová, M.; Páleníčková, E.; Danková, H.; Sticová, E.; Burian, M.; Drahota, Zdeněk; Červinková, Z.; Kučera, O.; Gladkova, Ch.; Stopka, Pavel; Křížová, Jana; Papáčková, Z.; Oliyarnyk, O.; Kazdová, L.

    2015-01-01

    Roč. 309, č. 2 (2015), G100-G111. ISSN 0193-1857 R&D Projects: GA MŠk(CZ) LL1204 Institutional support: RVO:67985823 ; RVO:61388980 Keywords : metformin * oxidative stress * mitochondrial respiration * liver injury * 31P MR spectroscopy Subject RIV: EB - Genetics ; Molecular Biology; CA - Inorganic Chemistry (UACH-T) Impact factor: 3.798, year: 2014

  3. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer’s disease in focal cerebral ischemic rats

    Science.gov (United States)

    Daulatzai, Mak Adam

    2016-01-01

    Alzheimer’s disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD

  4. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease in focal cerebral ischemic rats.

    Science.gov (United States)

    Daulatzai, Mak Adam

    2016-01-01

    Alzheimer's disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD. A

  5. Effect of Exercise Training and L-arginine on Oxidative Stress and Left Ventricular Function in the Post-ischemic Failing Rat Heart.

    Science.gov (United States)

    Ranjbar, Kamal; Nazem, Farzad; Nazari, Afshin

    2016-04-01

    The aim of the present study was to evaluate the effect of exercise training (ET) and L-arginine on oxidative stress and ventricular function in rat with myocardial infarction (MI). Four weeks after the surgical procedures, 40 Wistar male rats were randomized to the following groups: MI-sedentary (Sed); MI-exercise (Ex); MI-sedentary + L-arginine (Sed + LA); and MI-exercise + L-arginine (Ex + LA); the rats were subjected to aerobic training in the form of treadmill running. Rats in the L-arginine-treated groups drank water containing 4 % L-arginine. Before and after the training program, all subjects underwent resting echocardiography. Catalase (CAT) glutathione peroxidase (GPx), malondialdehyde (MDA) and myeloperoxidase (MPO) were measured. Cardiac output, stroke volume and fractional shortening in Ex and Ex + LA groups significantly increased in comparison with the Sed group. Cardiac systolic function indices in Ex + LA group were significantly greater than Ex group. Also, GPx activity and MDA, respectively, increased and decreased in response to ET, but no change was observed in MPO and CAT. These results suggest that ET increased LV function by decreasing oxidative stress and increasing antioxidant defense system in rats with MI. In addition in response to training, L-arginine appears to have additive effect on cardiac function, but have no effect on oxidative stress indices. PMID:25762197

  6. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose

    Science.gov (United States)

    Shen, Zi-Ying; Sun, Qian; Xia, Zhong-Yuan; Meng, Qing-Tao; Lei, Shao-Qing; Zhao, Bo; Tang, Ling-Hua; Xue, Rui; Chen, Rong

    2016-01-01

    Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ-1 protein expression. The overexpression of DJ-1 by transfection with a DJ-1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ-1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG. PMID:27430285

  7. Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling

    OpenAIRE

    Marcondes Alves Barbosa Da Silva; Thiago eBruder-Nascimento; Stêfany Bruno Assis Cau; Rheure AM Lopes; Fabiola LAC Mestriner; Fais, Rafael S.; Touyz, Rhian M.; Tostes, Rita C.

    2015-01-01

    Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases ROS-associated vascular dysfunction and improves vascular NO signaling in diabetes. Leptin receptor knockout [LepRdb/LepRdb (db/db)] mice, a model of DM2, and their counterpart controls [LepRdb/LepR+, (db/+...

  8. Probucol Attenuates Oxidative Stress, Energy Starvation, and Nitric Acid Production Following Transient Forebrain Ischemia in the Rat Hippocampus

    OpenAIRE

    Abdulhakeem A. Al-Majed

    2011-01-01

    Oxidative stress and energy depletion are believed to participate in hippocampal neuronal damage after forebrain ischemia. This study has been initiated to investigate the potential neuroprotective effects of probucol, a lipid-lowering drug with strong antioxidant properties, against transient forebrain ischemia-induced neuronal damage and biochemical abnormalities in rat hippocampal CA1 region. Adult male Wistar albino rats were subjected to forebrain ischemia and injected with probucol for ...

  9. Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts

    OpenAIRE

    Chen, Baosheng; TUULI, Methodius G.; Mark S Longtine; Shin, Joong Sik; Lawrence, Russell; Inder, Terrie; Michael Nelson, D.

    2012-01-01

    The human placenta is key to pregnancy outcome, and the elevated oxidative stress present in many complicated pregnancies contributes to placental dysfunction and suboptimal pregnancy outcomes. We tested the hypothesis that pomegranate juice, which is rich in polyphenolic antioxidants, limits placental trophoblast injury in vivo and in vitro. Pregnant women with singleton pregnancies were randomized at 35∼38 wk gestation to 8 oz/day of pomegranate juice or apple juice (placebo) until the time...

  10. NAC attenuates LPS-induced toxicity in aspirin-sensitized mouse macrophages via suppression of oxidative stress and mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Bacterial endotoxin lipopolysaccharide (LPS induces the production of inflammatory cytokines and reactive oxygen species (ROS under in vivo and in vitro conditions. Acetylsalicylic acid (ASA, aspirin is a commonly used anti-inflammatory drug. Our aim was to study the effects of N-acetyl cysteine (NAC, an antioxidant precursor of GSH synthesis, on aspirin-sensitized macrophages treated with LPS. We investigated the effects of LPS alone and in conjunction with a sub-toxic concentration of ASA, on metabolic and oxidative stress, apoptosis, and mitochondrial function using J774.2 mouse macrophage cell line. Protection from LPS-induced toxicity by NAC was also studied. LPS alone markedly induced ROS production and oxidative stress in macrophage cells. When ASA was added to LPS-treated macrophages, the increase in oxidative stress was significantly higher than that with LPS alone. Similarly, alteration in glutathione-dependent redox metabolism was also observed in macrophages after treatment with LPS and ASA. The combination of LPS and ASA selectively altered the CYP 3A4, CYP 2E1 and CYP 1A1 catalytic activities. Mitochondrial respiratory complexes and ATP production were also inhibited by LPS-ASA treatment. Furthermore a higher apoptotic cell death was also observed in LPS-ASA treated macrophages. NAC pre-treatment showed protection against oxidative stress induced apoptosis and mitochondrial dysfunction. These effects are presumed, at least in part, to be associated with alterations in NF-κB/Nrf-2 mediated cell signaling. These results suggest that macrophages are more sensitive to LPS when challenged with ASA and that NAC pre-treatment protects the macrophages from these deleterious effects.

  11. Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling

    Directory of Open Access Journals (Sweden)

    Marcondes Alves Barbosa Da Silva

    2015-10-01

    Full Text Available Type 2 diabetes (DM2 increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR with spironolactone decreases ROS-associated vascular dysfunction and improves vascular NO signaling in diabetes. Leptin receptor knockout [LepRdb/LepRdb (db/db] mice, a model of DM2, and their counterpart controls [LepRdb/LepR+, (db/+ mice] received spironolactone (50 mg/kg body weight/day or vehicle (ethanol 1% via oral per gavage for 6 weeks. Spironolactone treatment abolished the endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS phosphorylation (Ser1177, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 (SOD1 and catalase expression, improved sodium nitroprusside (SNP and BAY 41-2272-induced relaxation, as well as increased soluble guanylyl cyclase (sGC subunit β protein expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes.

  12. rAAV/ABAD-DP-6His attenuates oxidative stress-induced injur y of PC12 cells

    Institute of Scientific and Technical Information of China (English)

    Mingyue Jia; Mingyu Wang; Yi Yang; Yixin Chen; Dujuan Liu; Xu Wang; Lei Song; Jiang Wu; Yu Yang

    2014-01-01

    Our previous studies have revealed that amyloidβ(Aβ)-binding alcohol dehydrogenase (ABAD) decoy peptide antagonizes Aβ42-induced neurotoxicity. However, whether it improves oxidative stress injury remains unclear. In this study, a recombinant adenovirus constitutively secreting and expressing Aβ-ABAD decoy peptide (rAAV/ABAD-DP-6His) was successfully constructed. Our results showed that rAAV/ABAD-DP-6His increased superoxide dismutase activity in hydro-gen peroxide-induced oxidative stress-mediated injury of PC12 cells. Moreover, rAAV/ABAD-DP-6His decreased malondialdehyde content, intracellular Ca2+concentration, and the level of reactive oxygen species. rAAV/ABAD-DP-6His maintained the stability of the mitochondrial membrane potential. In addition, the ATP level remained constant, and apoptosis was reduced. Overall, the results indicate that rAAV/ABAD-DP-6His generates the fusion peptide, Aβ-ABAD decoy peptide, which effectively protects PC12 cells from oxidative stress injury induced by hy-drogen peroxide, thus exerting neuroprotective effects.

  13. β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats.

    Science.gov (United States)

    Basha, Rafeek Hidhayath; Sankaranarayanan, Chandrasekaran

    2016-02-01

    Oxidative and inflammatory stress has been implicated in the onset and progression of diabetes mellitus and its complications. The present study was designed to evaluate the effect of β-Caryophyllene (BCP) on hyperglycemia mediated oxidative and inflammatory stress in streptozotocin (STZ) induced diabetic rats. Diabetes was induced in experimental rats by a single intraperitoneal injection of STZ (40 mg/kg b.w.) dissolved in 0.1 M citrate buffer (pH 4.5). Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes and the levels of non-enzymic antioxidants were decreased while increases in the levels of lipidperoxidative markers, protein carbonyls and conjugated dienes were observed in pancreatic tissues of diabetic rats. An elevation of proinflammatory cytokines tumor necrosis factor-α and interleukin-6 were observed in plasma and pancreatic tissues of diabetic rats. Intragastric administration of BCP (200 mg/kg b.w) for 45 days significantly decreased glucose and increased insulin levels in diabetic rats. BCP administration significantly restored antioxidant status and decreased proinflammatory cytokines in diabetic rats. These findings were supported by histological and immunohistochemical studies. Thus, we conclude that oral administration of BCP effectively rescued β-cells by mitigating hyperglycemia through enhancing insulin release and also averted oxidative/inflammatory stress in pancreatic tissue of diabetic rats. The efficacy of BCP was compared with glibenclamide, a standard antidiabetic drug. PMID:26748309

  14. The attenuation of oscillatory thermo-capillary convection in the oxide melt by a transverse magnetic field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of a transverse magnetic field on the oscillatory thermocapillary con- vection in the NaBi(WO4)2 melt was studied by using the in-situ observation system. The oscillation was attenuated when the 60 mT magnetic field was applied, as shown by the decrease in the amplitude and the frequency. Furthermore, the os- cillation under smaller temperature difference was stabilized after the magnetic field was applied. The magnetic effect could be due to the Lorentz force generated by the interaction between motional ions and the vertical magnetic field. The ionic conductivities were measured to demonstrate the effect of the magnetic field. The solid ionic electrical conductivity increases with the temperature rise, and the melt ionic electrical conductivity was measured to be about 2.0×10-4 -1cm-1. Experi- mental results manifest that the effect of the magnetic field on anions and cations in the melt makes the flow change to the direction normal to the applied field, so the flow is more orderly and the oscillation is suppressed.

  15. Inhibition of Spinal Oxidative Stress by Bergamot Polyphenolic Fraction Attenuates the Development of Morphine Induced Tolerance and Hyperalgesia in Mice.

    Science.gov (United States)

    Lauro, Filomena; Giancotti, Luigino Antonio; Ilari, Sara; Dagostino, Concetta; Gliozzi, Micaela; Morabito, Chiara; Malafoglia, Valentina; Raffaeli, William; Muraca, Maurizio; Goffredo, Bianca M; Mollace, Vincenzo; Muscoli, Carolina

    2016-01-01

    Citrus Bergamia Risso, commonly known as Bergamot, is a fruit whose Essential Oil and Bergamot Polyphenolic Fraction have numerous medicinal properties. It is also an excellent antioxidant and in this study, for the first time, its potential effect on morphine induced tolerance in mice has been investigated. Our studies revealed that development of antinociceptive tolerance to repeated doses of morphine in mice is consistently associated with increased formation of superoxide, malondialdehyde and tyrosine-nitrated proteins in the dorsal horn of the spinal cord such as the enzyme glutamine synthase. Nitration of this protein is intimately linked to inactivation of its biological function and resulting increase of glutamate levels in the spinal cord. Administration of Bergamot Polyphenolic Fraction (5-50 mg/kg) attenuated tolerance development. This effect was accompanied by reduction of superoxide and malondialdehyde production, prevention of GS nitration, re-establishment of its activity and of glutamate levels. Our studies confirmed the main role of free radicals during the cascade of events induced by prolonged morphine treatment and the co-administration of natural derivatives antioxidant such as Bergamot Polyphenolic Fraction can be an important therapeutic approach to restore opioids analgesic efficacy. PMID:27227548

  16. Inhibition of Spinal Oxidative Stress by Bergamot Polyphenolic Fraction Attenuates the Development of Morphine Induced Tolerance and Hyperalgesia in Mice.

    Directory of Open Access Journals (Sweden)

    Filomena Lauro

    Full Text Available Citrus Bergamia Risso, commonly known as Bergamot, is a fruit whose Essential Oil and Bergamot Polyphenolic Fraction have numerous medicinal properties. It is also an excellent antioxidant and in this study, for the first time, its potential effect on morphine induced tolerance in mice has been investigated. Our studies revealed that development of antinociceptive tolerance to repeated doses of morphine in mice is consistently associated with increased formation of superoxide, malondialdehyde and tyrosine-nitrated proteins in the dorsal horn of the spinal cord such as the enzyme glutamine synthase. Nitration of this protein is intimately linked to inactivation of its biological function and resulting increase of glutamate levels in the spinal cord. Administration of Bergamot Polyphenolic Fraction (5-50 mg/kg attenuated tolerance development. This effect was accompanied by reduction of superoxide and malondialdehyde production, prevention of GS nitration, re-establishment of its activity and of glutamate levels. Our studies confirmed the main role of free radicals during the cascade of events induced by prolonged morphine treatment and the co-administration of natural derivatives antioxidant such as Bergamot Polyphenolic Fraction can be an important therapeutic approach to restore opioids analgesic efficacy.

  17. Etiologic Classification in Ischemic Stroke

    OpenAIRE

    Hakan Ay

    2011-01-01

    Ischemic stroke is an etiologically heterogenous disorder. Classification of ischemic stroke etiology into categories with discrete phenotypic, therapeutic, and prognostic features is indispensible to generate consistent information from stroke research. In addition, a functional classification of stroke etiology is critical to ensure unity among physicians and comparability among studies. There are two major approaches to etiologic classification in stroke. Phenotypic systems define subtypes...

  18. The L-arginine Pathway in Acute Ischemic Stroke and Severe Carotid Stenosis

    DEFF Research Database (Denmark)

    Molnar, Tihamer; Pusch, Gabriella; Papp, Viktoria;

    2014-01-01

    BACKGROUND: Endothelial dysfunction is associated with increased levels of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) resulting in a decreased production of nitric oxide, which regulates the vascular tone. METHODS: Patients with acute ischemic stroke (AIS, n = 55) an...

  19. Astaxanthin reduces type 2 diabetic‑associated cognitive decline in rats via activation of PI3K/Akt and attenuation of oxidative stress.

    Science.gov (United States)

    Li, Xiaobin; Qi, Zhonghua; Zhao, Longshan; Yu, Zhan

    2016-01-01

    Astaxanthin (AST) is an oxygenated derivative of carotenoid, which possesses a strong antioxidant activity. AST can effectively remove active oxygen from the body, and is thus considered to have an important role in disease prevention and treatment. The present study aimed to determine the effects of AST on type 2 diabetic‑associated cognitive decline (DACD) in rats. Rats were intraperitoneally injected with streptozotocin (STZ), in order to establish a model of diabetes mellitus (DM). A total of 40 rats were randomly divided into five groups: The control group, the DM group, the AST (50 mg/kg) group, the AST (100 mg/kg) group, and the AST+LY294002 group (AST, 50 mg/kg and LY, 0.25 µg/100 g). Following a 14‑day treatment with AST, the body weight, blood glucose levels and cognitive function were determined. In addition, the protein expression levels of phosphatidylinositol 3‑kinase (PI3K)/Akt, glutathione peroxidase and superoxide dismutase activity, glutathione and malondialdehyde content, and inducible nitric oxide synthase (iNOS), caspase‑3 and caspase‑9 activity were detected in the rats with DM. AST clearly augmented body weight and reduced blood glucose levels in rats with DM. Furthermore, treatment with AST significantly improved the cognitive function of rats with DM. Treatment with AST activated the PI3K/Akt pathway, and suppressed oxidative stress in the DM rats. In the cerebral cortex and hippocampus of the rats with DM, the activities of iNOS, caspase‑3 and caspase‑9 were markedly reduced. Furthermore, treatment with the Akt inhibitor LY294002 reduced the effectiveness of AST on DACD in rats. In conclusion, AST may reduce type 2 DACD in rats via activation of PI3K/Akt and attenuation of oxidative stress. PMID:26648531

  20. Thymoquinone blocks lung injury and fibrosis by attenuating bleomycin-induced oxidative stress and activation of nuclear factor Kappa-B in rats

    International Nuclear Information System (INIS)

    Pulmonary fibrosis is one of the most common chronic interstitial lung diseases with high mortality rate after diagnosis and limited successful treatment. The present study was designed to assess the potential antifibrotic effect of thymoquinone (TQ) and whether TQ can attenuate the severity of oxidative stress and inflammatory response during bleomycin-induced pulmonary fibrosis. Male Wister rats were treated intraperitoneally with either bleomycin (15 mg/kg, 3 times a week for 4 weeks) and/or thymoquinone (5 mg/kg/day, 1 week before and until the end of the experiment). Bleomycin significantly increased lung weight and the levels of Lactate dehydrogenase, total leucocytic count, total protein and mucin in bronchoalveolar lavage and these effects were significantly ameliorated by TQ treatment. As markers of oxidative stress, bleomycin caused a significant increase in the levels of lipid peroxides and nitric oxide accompanied with a significant decrease in the antioxidant enzyme activity of superoxide dismutase and glutathione transferase. TQ treatment restored these markers toward normal values. TQ also counteracted emphysema in air alveoli, inflammatory cell infiltration, lymphoid hyperplastic cells activation surrounding the bronchioles and the over expression of activated form of nuclear factor kappa-B (NF-B) in lung tissue that was induced by bleomycin. Fibrosis was assessed by measuring hydroxyproline content, which increased markedly in the bleomycin group and significantly reduced by concurrent treatment with TQ. Furthermore, histopathological examination confirmed the antifibrotic effect of TQ. Collectively these findings indicate that TQ has potential antifibrotic effect beside its antioxidant activity that could be through NF-κB inhibition.

  1. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease.

    Science.gov (United States)

    Ojha, Shreesh; Javed, Hayate; Azimullah, Sheikh; Haque, M Emdadul

    2016-07-01

    Parkinson disease (PD) is a neurodegenerative disease characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta (SNc) area. The present study was undertaken to evaluate the neuroprotective effect of β-caryophyllene (BCP) against rotenone-induced oxidative stress and neuroinflammation in a rat model of PD. In the present study, BCP was administered once daily for 4 weeks at a dose of 50 mg/kg body weight prior to a rotenone (2.5 mg/kg body weight) challenge to mimic the progressive neurodegenerative nature of PD. Rotenone administration results in oxidative stress as evidenced by decreased activities of superoxide dismutase, catalase, and depletion of glutathione with a concomitant rise in lipid peroxidation product, malondialdehyde. Rotenone also significantly increased pro-inflammatory cytokines in the midbrain region and elevated the inflammatory mediators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Further, immunohistochemical analysis revealed loss of dopaminergic neurons in the SNc area and enhanced expression of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP), indicators of microglia activation, and astrocyte hypertrophy, respectively, as an index of inflammation. However, treatment with BCP rescued dopaminergic neurons and decreased microglia and astrocyte activation evidenced by reduced Iba-1 and GFAP expression. BCP in addition to attenuation of pro-inflammatory cytokines and inflammatory mediators such as COX-2 and iNOS, also restored antioxidant enzymes and inhibited lipid peroxidation as well as glutathione depletion. The findings demonstrate that BCP provides neuroprotection against rotenone-induced PD and the neuroprotective effects can be ascribed to its potent antioxidant and anti-inflammatory activities. PMID:27316720

  2. Curcumin activates autophagy and attenuates oxidative damage in EA.hy926 cells via the Akt/mTOR pathway.

    Science.gov (United States)

    Guo, Shouyu; Long, Mingzhi; Li, Xiuzhen; Zhu, Shushu; Zhang, Min; Yang, Zhijian

    2016-03-01

    Curcumin, which is the effective component of turmeric (Curcuma longa), has previously been shown to exert potent antioxidant, antitumor and anti‑inflammatory activities in vitro and in vivo. However, the mechanism underlying the protective effects of curcumin against oxidative damage in endothelial cells remains unclear. The present study aimed to examine the effects of curcumin on hydrogen peroxide (H2O2)‑induced apoptosis and autophagy in EA.hy926 cells, and to determine the underlying molecular mechanism. Cultured EA.hy926 cells were treated with curcumin (5‑20 µmol/l) 4 h prior to and for 4 h during exposure to H2O2 (200 µmol/l). Oxidative stress resulted in a significant increase in the rate of cell apoptosis, which was accompanied by an increase in the expression levels of caspase‑3 and B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax), and a decrease in the expression levels of Bcl‑2. Treatment with curcumin (5 or 20 µmol/l) significantly inhibited apoptosis, and reversed the alterations in caspase‑3, Bcl‑2 and Bax expression. Furthermore, curcumin induced autophagy and microtubule‑associated protein 1A/1B‑light chain 3‑Ⅱ expression, and suppressed the phosphorylation of Akt and mammalian target of rapamycin (mTOR). These results indicated that curcumin may protect cells against oxidative stress‑induced damage through inhibiting apoptosis and inducing autophagy via the Akt/mTOR pathway. PMID:26781771

  3. Neuroprotective effects of thymoquinone against spinal cord ischemia-reperfusion injury by attenuation of inflammation, oxidative stress, and apoptosis.

    Science.gov (United States)

    Gökce, Emre Cemal; Kahveci, Ramazan; Gökce, Aysun; Cemil, Berker; Aksoy, Nurkan; Sargon, Mustafa Fevzi; Kısa, Üçler; Erdoğan, Bülent; Güvenç, Yahya; Alagöz, Fatih; Kahveci, Ozan

    2016-06-01

    OBJECTIVE Ischemia-reperfusion (I/R) injury of the spinal cord following thoracoabdominal aortic surgery remains the most devastating complication, with a life-changing impact on the patient. Thymoquinone (TQ), the main constituent of the volatile oil from Nigella sativa seeds, is reported to possess strong antioxidant, antiinflammatory, and antiapoptotic properties. This study investigated the effects of TQ administration following I/R injury to the spinal cord. METHODS Thirty-two rats were randomly allocated into 4 groups. Group 1 underwent only laparotomy. For Group 2, aortic clip occlusion was introduced to produce I/R injury. Group 3 was given 30 mg/kg of methylprednisolone intraperitoneally immediately after the I/R injury. Group 4 was given 10 mg/kg of TQ intraperitoneally for 7 days before induction of spinal cord I/R injury, and administration was continued until the animal was euthanized. Locomotor function (Basso, Beattie, and Bresnahan scale and inclined plane test) was assessed at 24 hours postischemia. Spinal cord tissue samples were harvested to analyze tissue concentrations of malondialdehyde, nitric oxide, tumor necrosis factor-α, interleukin-1, superoxide dismutase, glutathione-peroxidase, catalase, and caspase-3. In addition, histological and ultrastructural evaluations were performed. RESULTS Thymoquinone treatment improved neurological outcome, which was supported by decreased levels of oxidative products (malondialdehyde and nitric oxide) and proinflammatory cytokines (tumor necrosis factor-α and interleukin-1), increased activities of antioxidant enzymes (superoxide dismutase, glutathione-peroxidase, and catalase), as well as reduction of motor neuron apoptosis. Light microscopy and electron microscopy results also showed preservation of tissue structure in the treatment group. CONCLUSIONS As shown by functional, biochemical, histological, and ultrastructural analysis, TQ exhibits an important protective effect against I/R injury of the

  4. Asymptomatic ischemic cerebral lesions

    International Nuclear Information System (INIS)

    For the purpose of studying the incidence, pathomorphology and etiology of asymptomatic ischemic cerebral lesions, we carried out a brain MRI study on 65 patients with diabetes mellitus accompanied with hypertension who are thought to belong to a high risk group of ischemic cerebrovascular diseases. Excluding the abnormality of tendon reflex due to diabetic neuropathy, sixty percent of the total patients had some mild neurological signs and symptoms, most of them was discrepancy in tendon reflex. The percentage of the patients in whom MRI disclosed some abnormalities was as high as 70%, they were lacunar stroke, multiple lacunar state, cortical infarct, and patchy high signal lesions visible only in the T2 weighted image. Lacunes or these patchy high signal lesions (considered to be the dilatation of the perivascular space or true lacunes) tended to be found along the border zone or the terminal zone. These results indicate that asymptomatic patients in whom MRI discloses the abnormalities should be considered as candidates for the future onset of multi-infarct. (author)

  5. Comportamento do estresse oxidativo e da capacidade antioxidante total em ratos submetidos a retalhos cutâneos isquêmicos Oxidative stress and total antioxidant status in ischemic skin flaps in rats

    Directory of Open Access Journals (Sweden)

    Moacir Cymrot

    2004-01-01

    Full Text Available OBJETIVO: Estudar o comportamento do estresse oxidativo (MDA e da defesa antioxidante (CAT, em fragmentos de retalhos cutâneos randômicos isquêmicos em ratos. MÉTODOS: Foram utilizados 18 ratos adultos jovens, machos (Wistar EPM-1, 290 a 350g, submetidos à elevação de retalho cutâneo de base cranial no dorso, divididos em três grupos (N=6 em função do tempo pós-operatório: imediato (POI, terceiro e sétimo dias (PO3 e PO7, respectivamente. Ao final, foram coletadas amostras de sangue periférico e fragmentos de tecido do retalho e de área cutânea normal fora do retalho para dosagem de MDA e de CAT. RESULTADOS: Para MDA no soro, o grupo POI apresentou valores significativamente menores que os grupos PO3 e PO7, os quais não diferiram entre si. Não foi encontrada diferença entre os valores das amostras cutâneas em nenhum dos três grupos estudados. Para os valores da capacidade antioxidante total (CAT não houve diferença significante entre os três grupos, quando analisado o soro dos animais, no entanto, para as amostras de fragmentos cutâneos, os valores diminuíram significativamente em função do tempo. CONCLUSÃO: A inexistência de diferença para os valores de MDA nas amostras cutâneas entre os grupos e a diminuição dos valores da CAT ao longo do tempo sugere que a presença de necrose na porção distal dos retalhos dos animais do grupo PO7 decorra, não somente da agressão oxidativa, mas também da diminuição da capacidade de defesa antioxidante local.PURPOSE: to study oxidative stress (MDA and total antioxidant status (CAT in fragments of randomic ischemic skin flaps from rat dorsum. METHODS: 18 male rats, young adults (Wistar EPM-1, 290 - 350g, that underwent elevation of randomic ischemic flaps from dorsum, were divided in three groups (N=6, according to post-operative time-points: immediate (POI, third and seventh post-operative days (PO3 and PO7, respectively. At the end, peripheral blood samples and tissue

  6. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Iva Bozic

    2015-01-01

    Full Text Available Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation.

  7. Astaxanthin Attenuates Early Acute Kidney Injury Following Severe Burns in Rats by Ameliorating Oxidative Stress and Mitochondrial-Related Apoptosis

    Directory of Open Access Journals (Sweden)

    Song-Xue Guo

    2015-04-01

    Full Text Available Early acute kidney injury (AKI is a devastating complication in critical burn patients, and it is associated with severe morbidity and mortality. The mechanism of AKI is multifactorial. Astaxanthin (ATX is a natural compound that is widely distributed in marine organisms; it is a strong antioxidant and exhibits other biological effects that have been well studied in various traumatic injuries and diseases. Hence, we attempted to explore the potential protection of ATX against early post burn AKI and its possible mechanisms of action. The classic severe burn rat model was utilized for the histological and biochemical assessments of the therapeutic value and mechanisms of action of ATX. Upon ATX treatment, renal tubular injury and the levels of serum creatinine and neutrophil gelatinase-associated lipocalin were improved. Furthermore, relief of oxidative stress and tubular apoptosis in rat kidneys post burn was also observed. Additionally, ATX administration increased Akt and Bad phosphorylation and further down-regulated the expression of other downstream pro-apoptotic proteins (cytochrome c and caspase-3/9; these effects were reversed by the PI3K inhibitor LY294002. Moreover, the protective effect of ATX presents a dose-dependent enhancement. The data above suggested that ATX protects against early AKI following severe burns in rats, which was attributed to its ability to ameliorate oxidative stress and inhibit apoptosis by modulating the mitochondrial-apoptotic pathway, regarded as the Akt/Bad/Caspases signalling cascade.

  8. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Jovanovic, Marija; Bjelobaba, Ivana; Laketa, Danijela; Nedeljkovic, Nadezda; Stojiljkovic, Mirjana; Pekovic, Sanja; Lavrnja, Irena

    2015-01-01

    Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM) modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM) to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS) stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation. PMID:26413464

  9. Inducible nitric oxide synthase inhibition attenuates physical stress-induced lung hyper-responsiveness and oxidative stress in animals with lung inflammation.

    Science.gov (United States)

    Marques, Ricardo Henrique; Reis, Fabiana G; Starling, Claudia M; Cabido, Claudia; de Almeida-Reis, Rafael; Dohlnikoff, Marisa; Prado, Carla M; Leick, Edna A; Martins, Mílton A; Tibério, Iolanda F L C

    2012-01-01

    Mechanisms involved in stress-induced asthmatic alterations have been poorly characterised. We assessed whether inducible nitric oxide synthase (iNOS) inhibition modulates the stress-amplified lung parenchyma responsiveness, oxidative stress and extracellular matrix remodelling that was previously increased by chronic lung inflammation. Guinea pigs were subjected to 7 exposures to ovalbumin (1-5 mg/ml) or saline (OVA and SAL groups) over 4 weeks. To induce behavioural stress, animals were subjected to a forced swimming protocol (5 times/week, over 2 weeks; SAL-Stress and OVA-Stress groups) 24 h after the 4th inhalation. 1400W (iNOS-specific inhibitor) was administered intraperitoneally in the last 4 days of the protocol (SAL-1400W, OVA-1400W, SAL-Stress+1400W and OVA-Stress+1400W groups). Seventy-two hours after the last inhalation, animals were anaesthetised and exsanguinated, and adrenal glands were removed. Lung tissue resistance and elastance were evaluated by oscillatory mechanics and submitted for histopathological evaluation. Stressed animals had higher adrenal weights compared to non-stressed groups, which were reduced by 1400W treatment. Behavioural stress in sensitised animals amplified the resistance and elastance responses after antigen challenge, numbers of eosinophils and iNOS+ cells, actin content and 8-iso-PGF2α density in the distal lung compared to the OVA group. 1400W treatment in ovalbumin-exposed and stressed animals reduced lung mechanics, iNOS+ cell numbers and 8-iso-PGF2α density compared to sensitised and stressed animals that received vehicle treatment. We concluded that stress amplifies the distal lung constriction, eosinophilic inflammation, iNOS expression, actin content and oxidative stress previously induced by chronic lung inflammation. iNOS-derived NO contributes to stress-augmented lung tissue functional alterations in this animal model and is at least partially due to activation of the oxidative stress pathway. PMID:22262048

  10. Overexpression of steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability

    Directory of Open Access Journals (Sweden)

    Tian Dai

    2012-11-01

    Full Text Available Abstract Background Endothelial dysfunction is a well documented evidence for the onset of atherosclerosis and other cardiovascular diseases. Lipids disorder is among the main risk factors for endothelial dysfunction in these diseases. Steroidogenic acute regulatory protein (StAR, one of the cholesterol transporters, plays an important role in the maintenance of intracellular lipid homeostasis. However, the effect of StAR on endothelial dysfunction is not well understood. Palmitic acid (PA has been shown to decrease eNOS activity and induce inflammation, both are the causes of endothelial dysfunction, in an endothelial cell culture model. Methods StAR gene was introduced into primary rat aortic endothelial cells by adenovirus infection. Real-time PCR and Western blotting were performed to determine the relative genes and proteins expression level to elucidate the underlying mechanism. The free fatty acid and cholesterol quantification kits were used to detect total cellular free fatty acid and cholesterol. The levels of inflammatory factors and nitric oxide were determined by ELISA and classic Griess reagent methods respectively. Results We successfully overexpressed StAR in primary rat aortic endothelial cells. Following StAR overexpression, mRNA levels of IL-1β, TNFα, IL6 and VCAM-1 and protein levels of IL-1β, , TNFα and IL-6 in culture supernatant were significantly decreased, which duing to blocke NFκB nuclear translocation and activation. Moreover, StAR overexpression attenuated the PA-induced reduction of nitric oxide bioavailability by protecting the bioactivity of pAkt/peNOS/NO pathway. Furthermore, the key genes involved in lipid metabolism were greatly reduced following StAR overexpression. In order to investigate the underlying mechanism, cerulenin and lovastatin, the inhibitor of fatty acid and cholesterol synthase, were added prior to PA treatment. The results showed that both cerulenin and lovastatin had a similar effect as

  11. SIRT1 activation by pterostilbene attenuates the skeletal muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury.

    Science.gov (United States)

    Cheng, Yedong; Di, Shouyin; Fan, Chongxi; Cai, Liping; Gao, Chao; Jiang, Peng; Hu, Wei; Ma, Zhiqiang; Jiang, Shuai; Dong, Yushu; Li, Tian; Wu, Guiling; Lv, Jianjun; Yang, Yang

    2016-08-01

    Ischemia reperfusion (IR) injury is harmful to skeletal muscles and causes mitochondrial oxidative stress. Pterostilbene (PTE), an analogue of resveratrol, has organic protective effects against oxidative stress. However, no studies have investigated whether PTE can protect against IR-related skeletal muscular injury. In this study, we sought to evaluate the protective effect of PTE against IR-related skeletal muscle injury and to determine the mechanisms in this process. Male Sprague-Dawley rats were pretreated with PTE for a week and then underwent limb IR surgery. The IR injury induced segmental necrosis and apoptosis, myofilament disintegration, thicker interstitial spaces, and inflammatory cell infiltration. Furthermore, mitochondrial respiratory chain activity in the muscular tissue was inhibited, methane dicarboxylic aldehyde concentration and myeloperoxidase activity were up-regulated, and superoxide dismutase was down-regulated after IR. However, these effects were significantly inhibited by PTE in a dose-dependent manner. The mechanism underlying IR injury is attributed to the down-regulation of silent information regulator 1 (SIRT1)-FOXO1/p53 pathway and the increase of the Bax/Bcl2 ratio, Cleaved poly ADP-ribose polymerase 1, Cleaved Caspase 3, which can be reversed with PTE. Furthermore, EX527, an SIRT1 inhibitor, counteracted the protective effects of PTE on IR-related muscle injury. In conclusion, PTE has protective properties against IR injury of the skeletal muscles. The mechanism of this protective effect depends on the activation of the SIRT1-FOXO1/p53 signaling pathway and the decrease of the apoptotic ratio in skeletal muscle cells. PMID:27270300

  12. Osthol attenuates neutrophilic oxidative stress and hemorrhagic shock-induced lung injury via inhibition of phosphodiesterase 4.

    Science.gov (United States)

    Tsai, Yung-Fong; Yu, Huang-Ping; Chung, Pei-Jen; Leu, Yann-Lii; Kuo, Liang-Mou; Chen, Chun-Yu; Hwang, Tsong-Long

    2015-12-01

    Oxidative stress caused by neutrophils is an important pathogenic factor in trauma/hemorrhagic (T/H)-induced acute lung injury (ALI). Osthol, a natural coumarin found in traditional medicinal plants, has therapeutic potential in various diseases. However, the pharmacological effects of osthol in human neutrophils and its molecular mechanism of action remain elusive. In this study, our data showed that osthol potently inhibited the production of superoxide anion (O2(•-)) and reactive oxidants derived therefrom as well as expression of CD11b in N-formylmethionylleucylphenylalanine (FMLP)-activated human neutrophils. However, osthol inhibited neutrophil degranulation only slightly and it failed to inhibit the activity of subcellular NADPH oxidase. FMLP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) was inhibited by osthol. Notably, osthol increased the cAMP concentration and protein kinase A (PKA) activity in activated neutrophils. PKA inhibitors reversed the inhibitory effects of osthol, suggesting that these are mediated through cAMP/PKA-dependent inhibition of ERK and Akt activation. Furthermore, the activity of cAMP-specific phosphodiesterase (PDE) 4, but not PDE3 or PDE7, was significantly reduced by osthol. In addition, osthol reduced myeloperoxidase activity and pulmonary edema in rats subjected to T/H shock. In conclusion, our data suggest that osthol has effective anti-inflammatory activity in human neutrophils through the suppression of PDE4 and protects significantly against T/H shock-induced ALI in rats. Osthol may have potential for future clinical application as a novel adjunct therapy to treat lung inflammation caused by adverse circulatory conditions. PMID:26432981

  13. Solanum torvum Swartz. fruit attenuates cadmium-induced liver and kidney damage through modulation of oxidative stress and glycosylation.

    Science.gov (United States)

    Ramamurthy, C H; Subastri, A; Suyavaran, A; Subbaiah, K C V; Valluru, L; Thirunavukkarasu, C

    2016-04-01

    Increased levels of environmental pollutants are linked to almost all human disorders; the efficient method to manage the human health is through naturally available dietary molecule. Solanum torvum (ST) Swartz (Solanaceae) commonly called Turkey Berry is found in Africa, Asia, and South America. Its fruit, part of traditional Indian cuisine, is a widely consumed nutritious herb, acclaimed for its medicinal value. ST aqueous extract (STAe) (250, 500, and 1000 mg/kg b.w., 6 days; oral) against acute Cadmium (Cd) (6.3 mg/kg b.w., single dose; oral) toxicity was evaluated in rats. Protective effect was assessed using serum markers, tissue antioxidants, oxidant derivatives, glycoprotein, and histopathological studies. The activities of serum marker enzymes were increased (40-60 %); antioxidant enzymes such as SOD and CAT, GSH, and its metabolic enzyme activities were decreased (50-80 %) in the liver and kidney upon Cd intoxication. During STAe pre-treatment, at doses of 250 and 500 mg/kg b.w., the above changes were brought to near normal (25-63 %). Tissue 4-hydroxynonenal, 3-nitrotyrosine, and protein carbonyls were increased (8-15 fold) in Cd-alone-treated rats, whereas pre-supplementation of STAe significantly decreased their levels and inhibited the protein glycosylation effectively. The pharmacological effect of STAe was confirmed by histopathological observations. Based on previous literature and present investigation, we conclude that ST may serve as a potential functional food against environmental contaminant such as heavy metal-induced oxidative stress. PMID:26762936

  14. Lipopolysaccharide-Induced Behavioral Alterations Are Alleviated by Sodium Phenylbutyrate via Attenuation of Oxidative Stress and Neuroinflammatory Cascade.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Lahkar, Mangala

    2016-08-01

    Oxido-nitrosative stress, neuroinflammation, and reduced level of neurotrophins are implicated in the pathophysiology of anxiety and depressive illness. A few recent studies have revealed the role of endoplasmic reticulum (ER) stress in the pathophysiology of stress and depression. The aim of the present study is to investigate the neuroprotective potential of sodium phenylbutyrate (SPB), an ER stress inhibitor against lipopolysaccharide (LPS)-induced anxiety and depressive-like behavior in Swiss albino mice. Anxiety and depressive-like behavior was induced by LPS (0.83 mg/kg; i.p.) administration. Various behavioral tests were conducted to evaluate the anxiety and depressive-like behavior in mice. Real-time PCR was employed for the detection and expression of ER stress markers (78-kDa glucose-regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Pretreatment with SPB significantly ameliorated the LPS-induced anxiety and depressive-like behavior as revealed by behavioral paradigm results. LPS-induced oxidative stress was ameliorated by SPB pretreatment in hippocampus (HC) and prefrontal cortex (PFC) region. Neuroinflammation was significantly reduced by SPB pretreatment in LPS-treated mice as evident from reduction in proinflammatory cytokines (IL-1β and TNF-α). Importantly, LPS administration significantly up-regulated the GRP78 mRNA expression level in the HC which suggests the involvement of unfolded protein response (UPR) in LPS-evoked behavioral anomalies. These results highlight the neuroprotective potential of SPB in LPS-induced anxiety and depressive illness model which may be partially due to inhibition of oxidative stress-neuroinflammatory cascade. PMID:27192986

  15. Apocynin attenuates oxidative stress and cardiac fibrosis in angiotensin Ⅱ-induced cardiac diastolic dysfunction in mice

    Institute of Scientific and Technical Information of China (English)

    Yu-qiong LI; Xiao-bo LI; Shu-jie GUO; Shao-li CHU; Ping-jin GAO; Ding-liang ZHU; Wen-quan NIU

    2013-01-01

    Aim:To investigate whether apocynin,a NADPH oxidase inhibitor,produced cardioproteictive effects in Ang Ⅱ-induced hypertensive mice,and to elucidate the underlying mechanisms.Methods:C57BL/6 mice were subcutaneously infused Ang Ⅱ for 4 weeks to mimic cardiac remodeling and fibrosis.Concomitantly the mice were administered apocynin (100 mg· kg-1·d-1) or/and the aldosterone receptor blocker eplerenone (200 mg·kg-1d-1) via gavage for 4 weeks.Systolic blood pressure (SBP) and heart rate were measured,and transthoracic echocardiography was performed.For in vitro study,cardiac fibroblasts were treated with Ang Ⅱ (10 7 mol/L) in the presence of apocynin (105 mol/L) or/and eplerenone (105 mol/L).Immunohistochemistry and Western blotting were used to quantify the expression levels of NADPH oxidase and osteopontin (OPN) proteins in the cells.Results:Both apocynin and eplerenone significantly decreased SBP,and markedly improved diastolic dysfunction in Ang Ⅱ-induced hypertensive mice,accompanied with ameliorated oxidative stress and cardiac fibrosis.In the Ang Ⅱ-treated cardiac fibroblasts,the expression levels of NOX4 and OPN proteins were markedly upregulated.Both Apocynin and eplerenone significantly suppressed the increased expression levels of NOX4 and OPN proteins in the Ang Ⅱ-treated cells.In all the experiments,apocynin and eplerenone produced comparable effects.Co-administration of the two agents did not produce synergic effects.Conclusion:Apocynin produces cardioproteictive effects comparable to those of eplerenone.The beneficial effects of apocynin on myocardial oxidative stress and cardiac fibrosis might be mediated partly through a pathway involving NADPH oxidase and OPN.

  16. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats

    Science.gov (United States)

    2013-01-01

    Background The present study described the phytochemical profile of Lavandula stoechas essential oils, collected in the area of Ain-Draham (North-West of Tunisia), as well as their protective effects against alloxan-induced diabetes and oxidative stress in rat. Methods Essential oils samples were obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC–MS. Rats were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy + Essential Oils (H + EO) and Diabetic + Essential Oils (D + EO). Antidiabetic and antioxidant activities were evaluated after subacute intraperitoneally injection of Lavandula stoechas essential oils (50 mg/kg b.w., i.p.) to rats during 15 days. Results The principal compounds detected are: D-Fenchone (29.28%), α-pinene (23.18%), Camphor (15.97%), Camphene (7.83%), Eucapur (3.29%), Limonene, (2.71%) Linalool, (2.01%) Endobornyl Acetate (1.03%). The essential oils also contained smaller percentages of Tricyclene, Cymene, Delta-Cadinene, Selina-3,7(11)-diene. Furthermore, we found that Lavandula stoechas essential oils significantly protected against the increase of blood glucose as well as the decrease of antioxidant enzyme activities induced by aloxan treatment. Subacute essential oils treatment induced a decrease of lipoperoxidation as well as an increase of antioxidant enzyme activities. Conclusions These findings suggested that lavandula stoechas essential oils protected against diabetes and oxidative stress induced by alloxan treatment. These effects are in partly due to its potent antioxidant properties. PMID:24373672

  17. Sleep Deprivation Attenuates Inflammatory Responses and Ischemic Cell Death

    OpenAIRE

    Weil, Zachary M.; Norman, Greg J.; Karelina, Kate; Morris, John S.; Barker, Jacqueline M.; Su, Alan J.; Walton, James C.; Bohinc, Steven; Nelson, Randy J.; DeVries, A. Courtney

    2009-01-01

    Although the biological function of sleep remains uncertain, the consequences of sleep deprivation are well-described and are reported to be detrimental to cognitive function and affective well-being. Sleep deprivation also is strongly associated with elevated risk factors for cardiovascular disease. We used a mouse model of cardiac arrest/cardiopulmonary resuscitation to test the hypothesis that acute sleep deprivation would exacerbate neuroinflammation and neurodegeneration after global isc...

  18. [Cerebrolysin for acute ischemic stroke].

    Science.gov (United States)

    iganshina, L E; Abakumova, T R

    2013-01-01

    The review discusses existing evidence of benefits and risks of cerebrolysin--a mixture of low-molecular-weight peptides and amino acids derived from pigs' brain tissue with proposed neuroprotective and neurotrophic properties, for acute ischemic stroke. The review presents results of systematic search and analysis of randomised clinical trials comparing cerebrolysin with placebo in patients with acute ischemic stroke. Only one trial was selected as meeting quality criteria. No difference in death and adverse events between cerebrolysin and placebo was established. The authors conclude about insufficiency of evidence to evaluate the effect of cerebrolysin on survival and dependency in people with acute ischemic stroke. PMID:23805635

  19. Attenuation of Combined Nickel(II Oxide and Manganese(II, III Oxide Nanoparticles’ Adverse Effects with a Complex of Bioprotectors

    Directory of Open Access Journals (Sweden)

    Ilzira A. Minigalieva

    2015-09-01

    Full Text Available Stable suspensions of NiO and Mn3O4 nanoparticles (NPs with a mean (±s.d. diameter of 16.7 ± 8.2 and 18.4 ± 5.4 nm, respectively, purposefully prepared by laser ablation of 99.99% pure nickel or manganese in de-ionized water, were repeatedly injected intraperitoneally (IP to rats at a dose of 2.5 mg/kg 3 times a week up to 18 injections, either alone or in combination. A group of rats was injected with this combination with the background oral administration of a “bio-protective complex” (BPC comprising pectin, vitamins A, C, E, glutamate, glycine, N-acetylcysteine, selenium, iodide and omega-3 PUFA, this composition having been chosen based on mechanistic considerations and previous experience. After the termination of injections, many functional and biochemical indices and histopathological features (with morphometric assessment of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The Ni and Mn content of these organs was measured with the help of the atomic emission and electron paramagnetic resonance spectroscopies. We obtained blood leukocytes for performing the RAPD (Random Amplified Polymorphic DNA test. Although both metallic NPs proved adversely bio-active in many respects considered in this study, Mn3O4-NPs were somewhat more noxious than NiO-NPs as concerns most of the non-specific toxicity manifestations and they induced more marked damage to neurons in the striatum and the hippocampus, which may be considered an experimental correlate of the manganese-induced Parkinsonism. The comparative solubility of the Mn3O4-NPs and NiO-NPs in a biological medium is discussed as one of the factors underlying the difference in their toxicokinetics and toxicities. The BPC has attenuated both the organ-systemic toxicity and the genotoxicity of Mn3O4-NPs in combination with NiO-NPs.

  20. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model.

    Science.gov (United States)

    Rai, Sachchida Nand; Yadav, Satyndra Kumar; Singh, Divakar; Singh, Surya Pratap

    2016-01-01

    Parkinson's disease (PD) is characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc) region of brain. Oxidative stress and inflammation plays important role in the neurodegeneration and development of PD. Ursolic Acid (UA: 3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid found in various medicinal plants. Its anti-inflammatory and antioxidant activity is a well-established fact. In this paper, the neuroprotective efficiency of UA in MPTP induced PD mouse model has been explored. For this purpose, we divided 30 mice into 5 different groups; first was control, second was MPTP-treated, third, fourth and fifth were different doses of UA viz., 5 mg/kg, 25 mg/kg, and 50 mg/kg body weight (wt) respectively, along with MPTP. After 21 days of treatment, different behavioral parameters and biochemical assays were conducted. Tyrosine hydroxylase (TH) immunostaining of SN dopaminergic neurons as well as HPLC quantification of dopamine and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) were also performed. Our results proved that, UA improves behavioral deficits, restored altered dopamine level and protect dopaminergic neurons in the MPTP intoxicated mouse. Among three different doses, 25 mg/kg body wt was the most effective dose for the PD. This work reveals the potential of UA as a promising drug candidate for PD treatment. PMID:26686287

  1. Phenolic compounds from Rosemary (Rosmarinus officinalis L. attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Afonso Milessa S

    2013-02-01

    Full Text Available Abstract Background Phenolic compounds combine antioxidant and hypocholesterolemic activities and, consequently, are expected to prevent or minimize cardiometabolic risk. Methods To evaluate the effect of an aqueous extract (AQ and non-esterified phenolic fraction (NEPF from rosemary on oxidative stress in diet-induced hypercholesterolemia, 48 male 4-week old Wistar rats were divided into 6 groups: 1 chow diet group (C and 5 hypercholesterolemic diet groups, with 1 receiving water (HC, 2 receiving AQ at concentrations of 7 and 140 mg/kg body weight (AQ70 and AQ140, respectively, and 2 receiving NEPF at concentrations of 7 and 14 mg/kg body weight (NEPF7 and NEPF14, respectively by gavage for 4 weeks. Results In vitro, both AQ and NEPF had remarkable antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH● assay, which was similar to BHT. In vivo, the group that received AQ at 70 mg/kg body weight had lower serum total cholesterol (−39.8%, non-HDL-c (−44.4% and thiobarbituric acid reactive substance (TBARS levels (−37.7% compared with the HC group. NEPF (7 and 14 mg/kg reduced the tissue TBARS levels and increased the activity of tissular antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase. Neither AQ nor NEPF was able to ameliorate the alterations in the hypercholesterolemic diet-induced fatty acid composition in the liver. Conclusions These data suggest that phenolic compounds from rosemary ameliorate the antioxidant defense in different tissues and attenuate oxidative stress in diet-induced hypercholesterolemic rats, whereas the serum lipid profile was improved only in rats that received the aqueous extract.

  2. LEDGF/p75 Overexpression Attenuates Oxidative Stress-Induced Necrosis and Upregulates the Oxidoreductase ERP57/PDIA3/GRP58 in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Anamika Basu

    Full Text Available Prostate cancer (PCa mortality is driven by highly aggressive tumors characterized by metastasis and resistance to therapy, and this aggressiveness is mediated by numerous factors, including activation of stress survival pathways in the pro-inflammatory tumor microenvironment. LEDGF/p75, also known as the DFS70 autoantigen, is a stress transcription co-activator implicated in cancer, HIV-AIDS, and autoimmunity. This protein is targeted by autoantibodies in certain subsets of patients with PCa and inflammatory conditions, as well as in some apparently healthy individuals. LEDGF/p75 is overexpressed in PCa and other cancers, and promotes resistance to chemotherapy-induced cell death via the transactivation of survival proteins. We report in this study that overexpression of LEDGF/p75 in PCa cells attenuates oxidative stress-induced necrosis but not staurosporine-induced apoptosis. This finding was consistent with the observation that while LEDGF/p75 was robustly cleaved in apoptotic cells into a p65 fragment that lacks stress survival activity, it remained relatively intact in necrotic cells. Overexpression of LEDGF/p75 in PCa cells led to the upregulation of transcript and protein levels of the thiol-oxidoreductase ERp57 (also known as GRP58 and PDIA3, whereas its depletion led to ERp57 transcript downregulation. Chromatin immunoprecipitation and transcription reporter assays showed LEDGF/p75 binding to and transactivating the ERp57 promoter, respectively. Immunohistochemical analysis revealed significantly elevated co-expression of these two proteins in clinical prostate tumor tissues. Our results suggest that LEDGF/p75 is not an inhibitor of apoptosis but rather an antagonist of oxidative stress-induced necrosis, and that its overexpression in PCa leads to ERp57 upregulation. These findings are of significance in clarifying the role of the LEDGF/p75 stress survival pathway in PCa.

  3. Purple Sweet Potato Color Ameliorates Cognition Deficits and Attenuates Oxidative Damage and Inflammation in Aging Mouse Brain Induced by D-Galactose

    Directory of Open Access Journals (Sweden)

    Qun Shan

    2009-01-01

    Full Text Available Purple sweet potato color (PSPC, a naturally occurring anthocyanin, has a powerful antioxidant activity in vitro and in vivo. This study explores whether PSPC has the neuroprotective effect on the aging mouse brain induced by D-galactose (D-gal. The mice administrated with PSPC (100 mg/kg.day, 4 weeks, from 9th week via oral gavage showed significantly improved behavior performance in the open field and passive avoidance test compared with D-gal-treated mice (500 mg/kg.day, 8 weeks. We further investigate the mechanism involved in neuroprotective effects of PSPC on mouse brain. Interestingly, we found, PSPC decreased the expression level of glial fibrillary acidic protein (GFAP, inducible nitric oxide synthase (iNOS, and cyclooxygenase-2 (COX-2, inhibited nuclear translocation of nuclear factor-kappaB (NF-κB, increased the activity of copper/zinc superoxide dismutase (Cu/Zn-SOD and catalase (CAT, and reduced the content of malondialdehyde (MDA, respectively. Our data suggested that PSPC attenuated D-gal-induced cognitive impairment partly via enhancing the antioxidant and anti-inflammatory capacity.

  4. Taurine and pioglitazone attenuate diabetes-induced testicular damage by abrogation of oxidative stress and up-regulation of the pituitary-gonadal axis.

    Science.gov (United States)

    Abd El-Twab, Sanaa M; Mohamed, Hanaa M; Mahmoud, Ayman M

    2016-06-01

    Chronic hyperglycemia is associated with impairment of testicular function. The current study aimed to investigate the protective effects and the possible mechanisms of taurine and pioglitazone against diabetes-induced testicular dysfunction in rats. Diabetes was induced by streptozotocin injection. Both normal and diabetic rats received taurine (100 mg/kg) or pioglitazone (10 mg/kg) orally and daily for 6 weeks. Diabetic rats showed a significant (P diabetic rats. Taurine and pioglitazone alleviated hyperglycemia, decreased pro-inflammatory cytokines, and increased circulating levels of insulin, testosterone, LH, and FSH. Gene and protein expression of LH and FSH receptors and cytochrome P450 17α-hydroxylase (CYP17) was significantly (P diabetic rats, an effect which was significantly increased after administration of taurine and pioglitazone. In addition, taurine and pioglitazone significantly decreased lipid peroxidation and DNA damage, and enhanced activity of the antioxidant enzymes in testes of diabetic rats. In conclusion, taurine and pioglitazone exerted protective effects against diabetes-induced testicular damage through attenuation of hyperglycemia, inflammation, oxidative stress and DNA damage, and up-regulation of the pituitary/gonadal axis. PMID:27089006

  5. Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment

    Directory of Open Access Journals (Sweden)

    Masoud Muhammad

    2012-12-01

    Full Text Available Abstract Background Ischemia is the major cause of acute kidney injury (AKI, associated with high mortality and morbidity. Mesenchymal stem cells (MSCs have multilineage differentiation potential and can be a potent therapeutic option for the cure of AKI. Methods MSCs were cultured in four groups SNAP (S-nitroso N-acetyl penicillamine, SNAP + Methylene Blue (MB, MB and a control for in vitro analysis. Cultured MSCs were pre-conditioned with either SNAP (100 μM or MB (1 μM or both for 6 hours. Renal ischemia was induced in four groups (as in in vitro study of rats by clamping the left renal padicle for 45 minutes and then different pre-conditioned stem cells were transplanted. Results We report that pre-conditioning of MSCs with SNAP enhances their proliferation, survival and engraftment in ischemic kidney. Rat MSCs pre-conditioned with SNAP decreased cell apoptosis and increased proliferation and cytoprotective genes’ expression in vitro. Our in vivo data showed enhanced survival and engraftment, proliferation, reduction in fibrosis, significant improvement in renal function and higher expression of pro-survival and pro-angiogenic factors in ischemic renal tissue in SNAP pre-conditioned group of animals. Cytoprotective effects of SNAP pre-conditioning were abrogated by MB, an inhibitor of nitric oxide synthase (NOS and guanylate cyclase. Conclusion The results of these studies demonstrate that SNAP pre-conditioning might be useful to enhance therapeutic potential of MSCs in attenuating renal ischemia reperfusion injury.

  6. Minocycline Attenuates Depressive-Like Behaviour Induced by Rat Model of Testicular Torsion: Involvement of Nitric Oxide Pathway.

    Science.gov (United States)

    Saravi, Seyed Soheil Saeedi; Mousavi, Seyyedeh Elaheh; Saravi, Seyed Sobhan Saeedi; Dehpour, Ahmad Reza

    2016-04-01

    Testicular torsion/detorsion (T/D) can induce depression in pre- and post-pubertal patients. This study was conducted to investigate the psychological impact of testicular torsion and mechanism underlying its depressive-like behaviour, as well as antidepressant-like activity of minocycline and possible involvement of nitric oxide (NO)/cyclic GMP pathway in this paradigm in male rats undergoing testicular T/D. Unilateral T/D was performed in 36 male adult Wistar rats, and different doses of minocycline were injected alone or combined with N(ω) -nitro-l-arginine methyl ester (l-NAME), non-specific NO synthase (NOS) inhibitor; aminoguanidine (AG), specific inducible NOS inhibitor; l-arginine, an NO precursor; and selective PDE5I, sildenafil. After assessment of locomotor activity in open-field test, immobility times were recorded in the forced swimming test (FST). Moreover, 30 days after testicular T/D, testicular venous testosterone and serum nitrite concentrations were measured. A correlation was observed between either a decrease in plasma testosterone or an increase in serum nitrite concentrations with prolongation in immobility time in the testicular T/D-operated rats FST. Minocycline (160 mg/kg) exerted the highest significant antidepressant-like effect in the operated rats in the FST (p < 0.001). Furthermore, combination of subeffective doses of minocycline (80 mg/kg) and either l-NAME (10 mg/kg) or AG (50 mg/kg) demonstrated a significant robust antidepressant-like activity in T/D group (p < 0.01). Consequently, NO/cGMP pathway was involved in testicular T/D-induced depressive-like behaviour and antidepressant-like activity of minocycline in the animal model. Moreover, a contribution was observed between either decreased testosterone or elevated serum nitrite levels and depressive-like behaviour following testicular T/D. PMID:26381433

  7. Echocardiographic Findings And Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Natalya Gamletovna Dadamyants

    2011-10-01

    Full Text Available In order to study cardiac pathology in different subtypes of ischemic stroke we examined 165 stroke patients. The 1st group included 90 (54.5% patients with hemodynamic stroke, the 2nd one - 75 (45.5% patients with cardioembolic stroke. Control group consisted of 45 individuals without cerebrovascular diseases. Cardiac pathologies with the prevalence of various types of ischemic heart disease were observed in all groups. The parameters of left ventricular stroke volume and ejection fraction were lower in patients with hemodynamic stroke than in other groups, but were within normal limits. Potential sources of cardiogenic embolism were found in all groups: in the 1st group at 74.4%, in the 2nd one at 100%. Thus, most patients with ischemic stroke have different heart defects related to the subtypes of ischemic stroke. 

  8. RANOLAZINE IN ISCHEMIC HEART DISEASE

    OpenAIRE

    V. P. Lupanov

    2015-01-01

    Study results of a new anti-anginal drug (an inhibitor of sodium channels — ranolazine) are presented. Indications, contraindications, major clinical trials of the drug in patients with ischemic heart disease are considered.

  9. RANOLAZINE IN ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    V. P. Lupanov

    2015-12-01

    Full Text Available Study results of a new anti-anginal drug (an inhibitor of sodium channels — ranolazine are presented. Indications, contraindications, major clinical trials of the drug in patients with ischemic heart disease are considered.

  10. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway

    International Nuclear Information System (INIS)

    Highlights: • Aloperine has anti-nociceptive effects on neuropathic pain induced CCI. • Aloperine reduces ROS in neuropathic pain mice. • Aloperine down-regulates the expression of NF-κB and its downstream pro-inflammatory cytokines in neuropathic pain mice. - Abstract: Objective: To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain. Methods: Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressure and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot. Results: Administration of ALO (80 mg/kg and 40 mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80 mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10 mg/kg (i.p.). Conclusion: ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway

  11. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ya-Qiong [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Jin, Shao-Ju [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Luohe Medical College, Luohe 462002, Henan Province (China); Liu, Ning [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Li, Yu-Xiang [College of Nursing, Ningxia Medical University, Yinchuan 750004 (China); Zheng, Jie [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Ma, Lin [Ningxia Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004 (China); Du, Juan; Zhou, Ru [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Zhao, Cheng-Jun [Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750000 (China); Niu, Yang [Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004 (China); Sun, Tao [Ningxia Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004 (China); Yu, Jian-Qiang, E-mail: Yujq910315@163.com [Department of Pharmacology, Ningxia Medical university, Yinchuan 750000 (China); Luohe Medical College, Luohe 462002, Henan Province (China)

    2014-09-05

    Highlights: • Aloperine has anti-nociceptive effects on neuropathic pain induced CCI. • Aloperine reduces ROS in neuropathic pain mice. • Aloperine down-regulates the expression of NF-κB and its downstream pro-inflammatory cytokines in neuropathic pain mice. - Abstract: Objective: To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain. Methods: Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressure and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot. Results: Administration of ALO (80 mg/kg and 40 mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80 mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10 mg/kg (i.p.). Conclusion: ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway.

  12. Hemorrhagic transformation in ischemic stroke and its treatment during thrombolysis

    Directory of Open Access Journals (Sweden)

    Maurizio Paciaroni

    2011-08-01

    Full Text Available Haemorrhagic transformation (HT of brain infarction or hemorrhagic infarction is a complication of acute ischemic stroke, especially in cardioembolic stroke, and represents the most feared complication of thrombolysis. HT is a multifocal secondary bleeding into brain infarcts with innumerable foci of capillary and venular extravasation either remaining as discrete petechiae or emerging to form confluent purpura. HT is evidenced as a parenchymal area of increased density within an area of low attenuation in a typical vascular distribution on non-contrasted CT scans and is subdivided into two major categories on the basis of standardised definition: haemorrhagic infarct (HI and parenchymal haematoma (PH. PH has been associated to poor outcome in ischemic stroke patients. Thus, its prevention, early detection and adequate treatment represent key points in the management of acute stroke.

  13. Acute ischemic cerebral attack

    Directory of Open Access Journals (Sweden)

    Franco-Garcia Samir

    2010-12-01

    Full Text Available The decrease of the cerebral blood flow below the threshold of autoregulation led to changes of cerebral ischemia and necrosis that traduce in signs and symtoms of focal neurologic dysfunction called acute cerebrovascular symdrome (ACS or stroke. Two big groups according to its etiology are included in this category the hemorragic that constitue a 20% and the ischemic a 80% of cases. Great interest has wom the ischemic ACS because of its high social burden, being the third cause of no violent death in the world and the first of disability. Many risk factors favor the presentation of these events and some of them are susceptible of modification and therfore are objetives of primary prevention just as the control of diabetes, hypertension and the practice of healthy habits of life. The advances in the knowledge of the physiopatology, had taken to sustantial change in the nomenclature and management of ischemic ACS. Within these changes it was substituted the term cerebrovascular accident fo acute stroke, making emphasis in the key rol of a timely management with goals of time similiar to the acute coronary syndrome. It was redefined the time of acute ischemic attack to a one hour. Once stablished the cerebrovascular attack the semiology of symtoms with frecuency will led us make a topographic diagnosis of the in injury that joined to the cerebral TAC will allow us to exclude an hemorragic event and to start the treatment. In the management of these patients its essential the coordination of the differents teams of work, from the early recognition of symtoms on the part of patients andthe family, the rapid activation and response of emergency systems and the gearing of health care institutions. Are pillars of treatment: the abcde of reanimatiion, to avoid the hiperpirexis, the seizures, the hipoglicemy, the hiperglicemy, to achieve the thrombolysis in the first three hours of the begining of symtoms, to use antiplatelets, antithrombotic profilaxis

  14. Quercetin and hydroxytyrosol attenuates xanthine/xanthine oxidase-induced toxicity in H9c2 cardiomyocytes by regulation of oxidative stress and stress-sensitive signaling pathways.

    Science.gov (United States)

    Ozbek, Namik; Bali, Elif B; Karasu, Cimen

    2015-10-01

    The increased activity of xanthine/xanthine oxidase (X/XO) has been suggested as a risk factor for heart disease and herbal polyphenols exhibits cardioprotection in vitro and in vivo. To understand the cardioprotective action mechanisms of polyphenol quercetin and hydroxytyrosol, the expression levels of stress-responsive proteins were studied in X/XO-induced toxicity model of H9c2 cardiomyocyocytes. Pretreatment with each polypenol (0.1-10 μg/ml; 24 h) enhanced viability (p < 0.01; MTT test) and inhibited reactive oxygen species (ROS) generation (p < 0.001; H2DCFDA assay) against 12 h exposure to a free radical generating system, X (0.5 mM) and XO (5 mU/ml). Western blotting experiments showed that X/XO increases the phosphorylation of downstream substrate of p38, MAPK-activated protein kinase 2 (MAPKAPK-2), p44/42-MAPK (Erk1/2) and cleaved caspase-3 (p < 0.001, vs. Control), however inhibits the levels of phosphorylated c-Jun and Hsp27 (p < 0.01, vs. Control). Pretreatment with quercetin or hydroxytyrosol attenuated the phosphorylation of MAPKAPK-2 and cleaved caspase-3 in X/XO-exposed cells (p < 0.01, vs. X/XO). Hydroxytyrosol enhanced the reduction of phosphorylation of a transcriptional target c-Jun and led to overphosphorylation in protective proteins, p44/42-MAPK and Hsp27 in X/XO-exposed cells (p < 0.01, vs. X/XO). Our data suggest that quercetin and hydroxytyrosol protects cardiomyocytes against X/XO-induced oxidative toxicity by diminishing intracellular ROS and the regulation of stress-sensitive protein kinase cascades and transcription factors. PMID:26374991

  15. Adiponectin attenuates angiotensin II-induced vascular smooth muscle cell remodeling through nitric oxide and the RhoA/ROCK pathway.

    Directory of Open Access Journals (Sweden)

    Wared eNour-Eldine

    2016-04-01

    Full Text Available INTRODUCTION: Adiponectin (APN, an adipocytokine, exerts protective effects on cardiac remodeling, while angiotensin II (Ang II induces hypertension and vascular remodeling. The potential protective role of APN on the vasculature during hypertension has not been fully elucidated yet. Here, we evaluate the molecular mechanisms of the protective role of APN in the physiological response of the vascular wall to Ang II.METHODS AND RESULTS: Rat aortic tissues were used to investigate the effect of APN on Ang II-induced vascular remodeling and hypertrophy. We investigated whether nitric oxide (NO, the RhoA/ROCK pathway, actin cytoskeleton remodeling, and reactive oxygen species (ROS mediate the anti-hypertrophic effect of APN. Ang II-induced protein synthesis was attenuated by pre-treatment with APN, NO donor (SNAP, or cGMP. The hypertrophic response to Ang II was associated with a significant increase in RhoA activation and vascular force production, which were prevented by APN and SNAP. NO was also associated with inhibition of Ang II-induced phosphorylation of cofilin. In addition, immunohistochemistry revealed that 24 hr Ang II treatment increased the F- to G-actin ratio, an effect that was inhibited by SNAP. Ang II-induced ROS formation and upregulation of p22phox mRNA expression were inhibited by APN and NO. Both compounds failed to inhibit Nox1 and p47phox expression. CONCLUSIONS: Our results suggest that the anti-hypertrophic effects of APN are due, in part, to NO-dependent inhibition of the RhoA/ROCK pathway and ROS formation.

  16. Management of the virulent influenza virus infection by oral formulation of nonhydrolized carnosine and isopeptide of carnosine attenuating proinflammatory cytokine-induced nitric oxide production.

    Science.gov (United States)

    Babizhayev, Mark A; Deyev, Anatoly I

    2012-01-01

    important factors of natural immunity in controlling the initial stages of influenza A virus infection (inhibition of virus replication) and virus-induced regulation of cytokine gene expression. The protective effects of orally applied nonhydrolized formulated species of carnosine include at least direct interaction with nitric oxide, inhibition of cytotoxic NO-induced proinflammatory condition, and attenuation of the effects of cytokines and chemokines that can exert profound effects on inflammatory cells. These data are consistent with the hypothesis that natural products, such as chicken soup and chicken breast extracts rich in carnosine and its derivative anserine (beta-alanyl-1-methyl-L-histidine) could contribute to the pathogenesis and prevention of influenza virus infections and cold but have a limitation due to susceptibility to enzymatic hydrolysis of dipeptides with serum carnosinase and urine excretion after oral ingestion of a commercial chicken extract. The developed and patented by the authors formulations of nonhydrolized in digestive tract and blood natural carnosine peptide and isopeptide (gamma-glutamyl-carnosine) products have a promise in the Influenza A (H1N1) virus infection disease control and prevention. PMID:20841992

  17. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model.

    Science.gov (United States)

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Shim, Hyun Jung; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms. PMID:26399322

  18. Creatine kinase in ischemic and inflammatory disorders.

    Science.gov (United States)

    Kitzenberg, David; Colgan, Sean P; Glover, Louise E

    2016-12-01

    The creatine/phosphocreatine pathway plays a conserved and central role in energy metabolism. Compartmentalization of specific creatine kinase enzymes permits buffering of local high energy phosphates in a thermodynamically favorable manner, enabling both rapid energy storage and energy transfer within the cell. Augmentation of this metabolic pathway by nutritional creatine supplementation has been shown to elicit beneficial effects in a number of diverse pathologies, particularly those that incur tissue ischemia, hypoxia or oxidative stress. In these settings, creatine and phosphocreatine prevent depletion of intracellular ATP and internal acidification, enhance post-ischemic recovery of protein synthesis and promote free radical scavenging and stabilization of cellular membranes. The creatine kinase energy system is itself further regulated by hypoxic signaling, highlighting the existence of endogenous mechanisms in mammals that can enhance creatine metabolism during oxygen deprivation to promote tissue resolution and homeostasis. Here, we review recent insights into the creatine kinase pathway, and provide rationale for dietary creatine supplementation in human ischemic and inflammatory pathologies. PMID:27527620

  19. Transient Ischemic Attack (Beyond the Basics)

    Science.gov (United States)

    ... and diagnosis (Beyond the Basics)" and "Patient information: Hemorrhagic stroke treatment (Beyond the Basics)" and "Patient information: Ischemic ... symptoms and diagnosis (Beyond the Basics) Patient information: Hemorrhagic stroke treatment (Beyond the Basics) Patient information: Ischemic stroke ...

  20. STATINS IN PREVENTION OF ISCHEMIC STROKE

    Directory of Open Access Journals (Sweden)

    A. V. Susekov

    2015-09-01

    Full Text Available The evidence base of statin therapy in primary and secondary prevention of ischemic stroke is surveyed. Results of classical trails with statins in ischemic stroke prevention as well as results of meta-analyses are discussed.

  1. Statins in prevention of ischemic stroke

    OpenAIRE

    A.V. Susekov; A. B. Blohin; Z. G. Luginova; E. J. Soloveva; N. V. Maltseva; O.E. Tarasova; V.V. Kuharchuk

    2013-01-01

    The evidence base of statin therapy in primary and secondary prevention of ischemic stroke is surveyed. Results of classical trails with statins in ischemic stroke prevention as well as results of meta-analyses are discussed.

  2. MRI in ischemic heart disease

    International Nuclear Information System (INIS)

    Full text: The role of magnetic resonance imaging in the evaluation of ischemic heart disease has increased over the last years. Cardiac MRI is the only imaging modality that provides 'one stop shop' assessment. Information about ventricular function, myocardial ischemia and myocardial viability can be obtained in a single cardiac MRI session. Additionally, Cardiac MRI has become a gold standard method in evaluation of myocardial viability and in assessment of ventricular mass and function. As a result, cardiac MRI enable radiologist to comprehensively assess ischemic heart disease. The aim of this presentation is to provide the reader a state-of-the art on how the newest cardiac MRI techniques can be used to study ischemic heart disease patients.

  3. MR imaging of ischemic penumbra

    International Nuclear Information System (INIS)

    Cerebral ischemic stroke is one of the most fatal diseases despite current advances in medical science. Recent demonstration of efficacy using intravenous and intra-arterial thrombolysis demands therapeutic intervention tailored to the physiologic state of the individual tissue and stratification of patients according to the potential risks for therapies. In such an era, the role of the neuroimaging becomes increasingly important to evaluate the extent and location of tissues at risk of infarction (ischemic penumbra), to distinguish it from unsalvageable infarcted tissues or doomed hemorrhagic parenchyma. In this review, we present briefly the current role and limitation of computed tomography and conventional magnetic resonance imaging (MRI). We also present the possible applications of advanced MR techniques, such as diffusion and perfusion imaging, concentrating on the delineation or detection of ischemic penumbra

  4. MR imaging of ischemic penumbra

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Osamu E-mail: abediag-tky@umin.ac.jp; Aoki, Shigeki; Shirouzu, Ichiro; Kunimatsu, Akira; Hayashi, Naoto; Masumoto, Tomohiko; Mori, Harushi; Yamada, Haruyasu; Watanabe, Makoto; Masutani, Yoshitaka; Ohtomo, Kuni

    2003-04-01

    Cerebral ischemic stroke is one of the most fatal diseases despite current advances in medical science. Recent demonstration of efficacy using intravenous and intra-arterial thrombolysis demands therapeutic intervention tailored to the physiologic state of the individual tissue and stratification of patients according to the potential risks for therapies. In such an era, the role of the neuroimaging becomes increasingly important to evaluate the extent and location of tissues at risk of infarction (ischemic penumbra), to distinguish it from unsalvageable infarcted tissues or doomed hemorrhagic parenchyma. In this review, we present briefly the current role and limitation of computed tomography and conventional magnetic resonance imaging (MRI). We also present the possible applications of advanced MR techniques, such as diffusion and perfusion imaging, concentrating on the delineation or detection of ischemic penumbra.

  5. Salvia miltiorrhiza and ischemic diseases

    Institute of Scientific and Technical Information of China (English)

    Xin-Yan JI; Benny K-H TAN; Yi-Zhun ZHU

    2000-01-01

    The demonstration of beneficial effects of salvia miltiorrhiza (DanShen) on ischemic diseases has revolutionized the management of angina pectoris, myocardial infarction (MI) or stroke in Chinese society. Experimental studies have shown that DanShen dilated coronary arteries, increased coronary blood flow, and scavenged free radicals in ischemic diseases, so that it reduced the cellular damage from ischemia and improved heart functions. Clinical trials also indicated that DanShen was an effective medicine for angina pectoris, MI, and stroke. This review will focus on DanShen's effects in angina pectoris, MI and stroke.

  6. The protective effect of ischemic preconditioning on rat testis

    Directory of Open Access Journals (Sweden)

    Ciralik Harun

    2007-12-01

    Full Text Available Abstract Background It has been demonstrated that brief episodes of sublethal ischemia-reperfusion, so-called ischemic preconditioning, provide powerful tissue protection in different tissues such as heart, brain, skeletal muscle, lung, liver, intestine, kidney, retina, and endothelial cells. Although a recent study has claimed that there are no protective effects of ischemic preconditioning in rat testis, the protective effects of ischemic preconditioning on testicular tissue have not been investigated adequately. The present study was thus planned to investigate whether ischemic preconditioning has a protective effect on testicular tissue. Methods Rats were divided into seven groups that each contained seven rats. In group 1 (control group, only unilateral testicular ischemia was performed by creating a testicular torsion by a 720 degree clockwise rotation for 180 min. In group 2, group 3, group 4, group 5, group 6, and group 7, unilateral testicular ischemia was performed for 180 min following different periods of ischemic preconditioning. The ischemic preconditioning periods were as follows: 10 minutes of ischemia with 10 minutes of reperfusion in group 2; 20 minutes of ischemia with 10 minutes of reperfusion in group 3; 30 minutes of ischemia with 10 minutes of reperfusion in group 4; multiple preconditioning periods were used (3 × 10 min early phase transient ischemia with 10 min reperfusion in all episodes in group 5; multiple preconditioning periods were used (5, 10, and 15 min early phase transient ischemia with 10 min reperfusion in all episodes in group 6; and, multiple preconditioning periods were used (10, 20, and 30 min early phase transient ischemia with 10 min reperfusion in all episodes in group 7. After the ischemic protocols were carried out, animals were sacrificed by cervical dislocation and testicular tissue samples were taken for biochemical measurements (protein, malondialdehyde, nitric oxide and histological examination

  7. Ischemic glans penis after circumcision

    Institute of Scientific and Technical Information of China (English)

    Yuan-ShengTzeng; Shou-HungTang; EnMeng; Teng-FuLin; Guang-HuanSun

    2004-01-01

    A 33-year-old male receiving dorsal penile nerve block (DPNB) for circumcision exhibited a postoperative ischemic change over the glans penis. The event occurred nearly 24 hours after the procedure. The patient was treated with intravenous pentoxifyllin and hyperbaric oxygenation. Total reverse of the ischemia was observed. The complications associated with circumcision and DPNB were reviewed and discussed.

  8. Let's Talk about Ischemic Stroke

    Science.gov (United States)

    ... Tools & Resources Stroke More Let's Talk About Ischemic Stroke Updated:Dec 9,2015 The majority of strokes occur when blood vessels to the brain become ... cuts off blood flow to brain cells. A stroke caused by lack of blood reaching part of ...

  9. Diabetes and ischemic heart disease

    DEFF Research Database (Denmark)

    Bergmann, Natasha; Ballegaard, Søren; Holmager, Pernille;

    2014-01-01

    The aim of this study was to test i) whether patients having diabetes and ischemic heart disease (IHD), i.e., patients suffering from two chronic diseases, demonstrate a higher degree of chronic stress when compared with patients suffering from IHD alone, and ii) whether suffering from the two...

  10. Ischemic strokes and oral contraception

    International Nuclear Information System (INIS)

    The authors describe the epidemiology and the physiopathological aspects of ischemic strokes in patients with history of oestroprogestogen use. They then study their main radiological correlates: arterial infarcts at CT scan and angiographic non-specific lesions which can be included in the extremely wide framework of arteritis, much more rarely venous thrombophlebitis. (orig.)

  11. Ischemic strokes and oral contraception

    International Nuclear Information System (INIS)

    The authors describe the epidemiology and the physiopathological aspects of ischemic strokes in patients with a history of oestroprogestogen use. They then study their main radiological correlates: arterial infarcts at CT scan and angiographic non-specific lesions which can be included in the extremely wide framework of arteritis and, much more rarely, venous thrombophlebitis

  12. Rotary antenna attenuator

    Science.gov (United States)

    Dickinson, R. M.; Hardy, J. C.

    1969-01-01

    Radio frequency attenuator, having negligible insertion loss at minimum attenuation, can be used for making precise antenna gain measurements. It is small in size compared to a rotary-vane attenuator.

  13. The endonuclease VIII-like proteins: new targets in the treatment of ischemic stroke?

    Directory of Open Access Journals (Sweden)

    Long-Xiu Yang

    2015-01-01

    Full Text Available Oxidative deoxyribonucleic acid (DNA damage is one of the major causes of neuronal injury in ischemia. The endonuclease VIII-like (NEIL DNA glycosylases have a specific role in recognition and removal of oxidative DNA damage. The NEIL family includes NEIL1, NEIL2, and NEIL3, that differ in substrate specificity, catalytic efficiency, and subcellular/tissue distribution. This opens for a situation-dependent phenotype in their absence. In this review, we will discuss the current knowledge on the involvement of the NEILs in ischemic stroke and discuss the potential of these enzymes to serve as new targets in the treatment of ischemic stroke.

  14. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21Cip1 pathway and restores osteoblastic differentiation in human dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    Park YJ

    2012-09-01

    Full Text Available Yoon Jung Choi,1,* Jue Yeon Lee,2,* Chong Pyoung Chung,2 Yoon Jeong Park,1,21Craniomaxillofacial Reconstructive Sciences, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea; 2Research Institute, Nano Intelligent Biomedical Engineering, Seoul, Republic of Korea*These authors contributed equally to this workBackground: Human dental pulp stem cells (DPSCs have potential applications in tissue regeneration because of their convenient cell harvesting procedures and multipotent capacity. However, the tissue regenerative potential of DPSCs is known to be negatively regulated by aging in long-term culture and under oxidative stress. With an aim of reducing cellular senescence and oxidative stress in DPSCs, an intracellular delivery system for superoxide dismutase 1 (SOD1 was developed. We conjugated SOD1 with a cell-penetrating peptide known as low-molecular weight protamine (LMWP, and investigated the effect of LMWP-SOD1 conjugates on hydrogen peroxide-induced cellular senescence and osteoblastic differentiation.Results: LMWP-SOD1 significantly attenuated enlarged and flattened cell morphology and increased senescence-associated β-galactosidase activity. Under the same conditions, LMWP-SOD1 abolished activation of the cell cycle regulator proteins, p53 and p21Cip1, induced by hydrogen peroxide. In addition, LMWP-SOD1 reversed the inhibition of osteoblastic differentiation and downregulation of osteogenic gene markers induced by hydrogen peroxide. However, LMWP-SOD1 could not reverse the decrease in odontogenesis caused by hydrogen peroxide.Conclusion: Overall, cell-penetrating LMWP-SOD1 conjugates are effective for attenuation of cellular senescence and reversal of osteoblastic differentiation of DPSCs caused by oxidative stress inhibition. This result suggests potential application in the field of antiaging and tissue engineering to overcome the limitations of senescent stem cells.Keywords: superoxide

  15. Ischemic stroke and incomplete infarction

    DEFF Research Database (Denmark)

    Garcia, Javier; Lassen, N A; Weiller, C;

    1996-01-01

    The concept of selective vulnerability or selective loss o f individual neurons, with survival of glial and vascular elements as one of the consequences of a systemic ischemic-hypoxic insult (eg, transient cardiac arrest or severe hypotension), has been recognized for decades. In contrast, select......, selective neuronal death as one of the lesions that may develop in the brain after occluding an intracranial artery is an idea not readily acknowledged in the current medical literature dealing with human stroke....

  16. Perinatal Hypoxic-Ischemic Encephalopathy

    OpenAIRE

    Ming-Chi Lai; San-Nan Yang

    2010-01-01

    Perinatal hypoxic-ischemic encephalopathy (HIE) is an important cause of brain injury in the newborn and can result in long-term devastating consequences. Perinatal hypoxia is a vital cause of long-term neurologic complications varying from mild behavioural deficits to severe seizure, mental retardation, and/or cerebral palsy in the newborn. In the mammalian developing brain, ongoing research into pathophysiological mechanism of neuronal injury and therapeutic strategy after perinatal hypoxia...

  17. Adiponectin Promotes Revascularization of Ischemic Muscle through a Cyclooxygenase 2-Dependent Mechanism ▿ †

    OpenAIRE

    Ohashi, Koji; Ouchi, Noriyuki; Sato, Kaori; Higuchi, Akiko; Ishikawa, Tomo-o; Herschman, Harvey R.; Kihara, Shinji; Walsh, Kenneth

    2009-01-01

    Adiponectin is a fat-derived plasma protein that has cardioprotective roles in obesity-linked diseases. Because cyclooxygenase 2 (COX-2) is an important modulator of endothelial function, we investigated the possible contribution of COX-2 to adiponectin-mediated vascular responses in a mouse hind limb model of vascular insufficiency. Ischemic insult increased COX-2 expression in endothelial cells of wild-type mice, but this induction was attenuated in adiponectin knockout mice. Ischemia-induc...

  18. Cinnamon polyphenols attenuate cell swelling and mitochondrial dysfunction following oxygen-glucose deprivation in glial cells

    Science.gov (United States)

    Astrocyte swelling is an integral component of cytotoxic brain edema in ischemic injury. While mechanisms underlying astrocyte swelling are likely multifactorial, oxidative stress and mitochondrial dysfunction are hypothesized to contribute to such swelling. We investigated the protective effects of...

  19. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD)

    OpenAIRE

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, whi...

  20. Visual field damage in normal-tension glaucoma patients with or without ischemic changes in cerebral magnetic resonance imaging

    International Nuclear Information System (INIS)

    The purpose of this study was to compare the pattern of visual field damage between normal-tension glaucoma (NTG) patients with signs indicative of ischemic changes and those NTG patients without signs of ischemic changes, using brain magnetic resonance imaging (MRI), in a single center, cross-sectional study. In 94 consecutive NTG patients who were younger than 61 years old, brain MRI images were obtained using fluid-attenuated inversion recovery pulse sequences. The presence of signs indicative of ischemic changes in brain MRI images was decided separately by two neuroradiologists masked to the diagnosis and stage of glaucoma. Visual field testing was performed using the 30-2 program of the Humphrey Visual Field Analyzer. Between the patients with signs indicative of ischemic changes in brain MRI (ischemic group) and those without MRI signs (nonischemic group), total deviation (TD) at each test point less the average of TDs of the 30-2 program ([TD-TDmean]) was compared at each test point. Signs indicative of ischemic changes in brain MRI were found in 32 of the 94 patients (34.0%). Age, blood pressure, refraction, intraocular pressure, the average of TDs, mean deviation, and corrected pattern standard deviation were not significantly different between the ischemic (N=32) and nonischemic (N=62) groups (P>0.2). [TD-TDmean] in the ischemic group was significantly smaller than that in the nonischemic group at 6 nonedge contiguous test points in the inferior pericentral to nasal field (P=0.005-0.047). NTG patients with signs indicative of ischemic changes in brain MRI had a relatively deeper depression in the inferior pericentral visual field. (author)

  1. DC attenuation meter

    Science.gov (United States)

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  2. Coupling chemical oxidation and biostimulation: Effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil

    NARCIS (Netherlands)

    Martínez-Pascual, E.; Grotenhuis, J.T.C.; Solanas, A.M.; Viñas, M.

    2015-01-01

    Coupling chemical oxidation with bioremediation could be a cost-effective system to cope with soil and groundwater pollution. However, the effects of chemical oxidation on autochthonous microbial communities are scarcely known. A detailed analysis that considers both the efficiency of the two techno

  3. Sex Hormones and Ischemic Stroke

    DEFF Research Database (Denmark)

    Holmegard, Haya N; Nordestgaard, Børge G; Jensen, Gorm B;

    2016-01-01

    = 4615) and women (n = 4724) with measurements of endogenous sex hormones during the 1981-1983 examination of the Copenhagen City Heart Study, Denmark, were followed for up to 29 years for incident IS, with no loss to follow-up. Mediation analyses assessed whether risk of IS was mediated through......CONTEXT AND OBJECTIVE: Whether endogenous sex hormones are associated with ischemic stroke (IS) is unclear. We tested the hypothesis that extreme concentrations of endogenous sex hormones are associated with risk of IS in the general population. DESIGN, SETTING, AND PARTICIPANTS: Adult men (n...

  4. Persimmon leaf flavonoid promotes brain ischemic tolerance**

    Institute of Scientific and Technical Information of China (English)

    Mingsan Miao; Xuexia Zhang; Ming Bai; Linan Wang

    2013-01-01

    Persimmon leaf flavonoid has been shown to enhance brain ischemic tolerance in mice, but its mechanism of action remains unclear. The bilateral common carotid arteries were occluded using a micro clip to block blood flow for 10 minutes. After 10 minutes of ischemic preconditioning, 200, 100, and 50 mg/kg persimmon leaf flavonoid or 20 mg/kg ginaton was intragastrical y administered per day for 5 days. At 1 hour after the final administration, ischemia/reperfusion models were estab-lished by blocking the middle cerebral artery for 2 hours. At 24 hours after model establishment, compared with cerebral ischemic rats without ischemic preconditioning or drug intervention, plasma endothelin, thrombomodulin and von Wil ebrand factor levels significantly decreased and intercel-lular adhesion molecule-1 expression markedly reduced in brain tissue from rats with ischemic pre-conditioning. Simultaneously, brain tissue injury reduced. Ischemic preconditioning combined with drug exposure noticeably improved the effects of the above-mentioned indices, and the effects of 200 mg/kg persimmon leaf flavonoid were similar to 20 mg/kg ginaton treatment. These results indicate that ischemic preconditioning produces tolerance to recurrent severe cerebral ischemia. However, persimmon leaf flavonoid can elevate ischemic tolerance by reducing inflammatory reactions and vascular endothelial injury. High-dose persimmon leaf flavonoid showed an identical effect to ginaton.

  5. Mild hypothermia reduces cardiac post-ischemic reactive hyperemia

    Directory of Open Access Journals (Sweden)

    Van der Pals Jesper

    2007-02-01

    Full Text Available Abstract Background In experimentally induced myocardial infarction, mild hypothermia (33–35°C is beneficial if applied prior to ischemia or reperfusion. Hypothermia, when applied after reperfusion seems to confer little or no benefit. The mechanism by which hypothermia exerts its cell-protective effect during cardiac ischemia remains unclear. It has been hypothesized that hypothermia reduces the reperfusion damage; the additional damage incurred upon the myocardium during reperfusion. Reperfusion results in a massive increase in blood flow, reactive hyperemia, which may contribute to reperfusion damage. We postulated that hypothermia could attenuate the post-ischemic reactive hyperemia. Methods Sixteen 25–30 kg pigs, in a closed chest model, were anesthetized and temperature was established in all pigs at 37°C using an intravascular cooling catheter. The 16 pigs were then randomized to hypothermia (34°C or control (37°C. The left main coronary artery was then catheterized with a PCI guiding catheter. A Doppler flow wire was placed in the mid part of the LAD and a PCI balloon was then positioned proximal to the Doppler wire but distal to the first diagonal branch. The LAD was then occluded for ten minutes in all pigs. Coronary blood flow was measured before, during and after ischemia/reperfusion. Results The peak flow seen during post-ischemic reactive hyperemia (during the first minutes of reperfusion was significantly reduced by 43 % (p Conclusion Mild hypothermia significantly reduces post-ischemic hyperemia in a closed chest pig model. The reduction of reactive hyperemia during reperfusion may have an impact on cardiac reperfusion injury.

  6. Magnetic resonance imaging in acute ischemic stroke treatment.

    Science.gov (United States)

    Kim, Bum Joon; Kang, Hyun Goo; Kim, Hye-Jin; Ahn, Sung-Ho; Kim, Na Young; Warach, Steven; Kang, Dong-Wha

    2014-09-01

    Although intravenous administration of tissue plasminogen activator is the only proven treatment after acute ischemic stroke, there is always a concern of hemorrhagic risk after thrombolysis. Therefore, selection of patients with potential benefits in overcoming potential harms of thrombolysis is of great importance. Despite the practical issues in using magnetic resonance imaging (MRI) for acute stroke treatment, multimodal MRI can provide useful information for accurate diagnosis of stroke, evaluation of the risks and benefits of thrombolysis, and prediction of outcomes. For example, the high sensitivity and specificity of diffusion-weighted image (DWI) can help distinguish acute ischemic stroke from stroke-mimics. Additionally, the lesion mismatch between perfusion-weighted image (PWI) and DWI is thought to represent potential salvageable tissue by reperfusion therapy. However, the optimal threshold to discriminate between benign oligemic areas and the penumbra is still debatable. Signal changes of fluid-attenuated inversion recovery image within DWI lesions may be a surrogate marker for ischemic lesion age and might indicate risks of hemorrhage after thrombolysis. Clot sign on gradient echo image may reflect the nature of clot, and their location, length and morphology may provide predictive information on recanalization by reperfusion therapy. However, previous clinical trials which solely or mainly relied on perfusion-diffusion mismatch for patient selection, failed to show benefits of MRI-based thrombolysis. Therefore, understanding the clinical implication of various useful MRI findings and comprehensively incorporating those variables into therapeutic decision-making may be a more reasonable approach for expanding the indication of acute stroke thrombolysis. PMID:25328872

  7. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    Science.gov (United States)

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-01

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016. PMID:27094023

  8. Role of mitochondria in ischemic acute renal failure.

    Science.gov (United States)

    Burke, T J; Wilson, D R; Levi, M; Gordon, J A; Arnold, P E; Schrier, R W

    1983-01-01

    Ischemic ARF is characterized by progressive mitochondrial accumulation of Ca++ which is inversely correlated with the level of oxidative phosphorylation. At least two possibilities exist which would be compatible with these data 1) depressed respiration leads to Ca++ accumulation or 2) increased mitochondrial Ca++ leads to reduced mitochondrial respiration. We favor the latter hypothesis for the reasons outlined above; furthermore, this conclusion is supported by the observations of Lehninger, made some 20 years ago: first, that either oxidative phosphorylation or mitochondrial Ca++ accumulation can be accomplished by intact mitochondria but that these events cannot occur simultaneously and second, that Ca++ accumulation takes precedence over oxidative phosphorylation. Our observation made during post-ischemic reflow that mitochondrial Ca++ accumulation occurs to a significant degree, strongly suggest a potential role for mitochondrial Ca++ overload in the pathogenesis of ARF. Nevertheless, this is not an irreversible pathogenetic process. Clearly, impermeant solutes, vasodilators and Ca++ membrane blockers will alter the natural history of this injury and prevent the severity of the functional defect. A common mechanism of action may involve direct or indirect modification of cellular Ca++ overload in renal vascular and epithelial tissue. The vascular smooth muscle may then revert to a less constricted state with a subsequent more rapid recovery of renal blood flow and that the renal epithelial cell death may be minimized thereby reducing tubular obstruction. PMID:6883804

  9. Swallowing disorders after ischemic stroke

    Directory of Open Access Journals (Sweden)

    Gabriela Camargo Remesso

    2011-10-01

    Full Text Available OBJECTIVE: To investigate occurrences of swallowing disorders after ischemic stroke. METHOD: This was a retrospective study on 596 medical files. The inclusion criterion was that the patients needed to have been hospitalized with a diagnosis of ischemic stroke; the exclusion criteria were the presence of associated cardiac problems and hospital stay already more than 14 days. RESULTS: 50.5% were men and 49.5% women; mean age 65.3 years (SD=±11.7 (p<0.001. Among the risk factors, 79.4% had hypertension, 36.7% had diabetes (p<0.001 and 42.7% were smokers. 13.3% of the patients died. Swallowing disorders occurred in 19.6%, among whom 91.5% had mild difficulty and 8.5% had severe difficulty. 87.1% had spontaneous recovery after a mean of 2.4 months. A lesion in the brainstem region occurred in 6.8% (p<0.001. CONCLUSION: Swallowing disorders occurred in almost 20% of the population and most of the difficulty in swallowing found was mild. The predictors for swallowing disorders were older age, diabetes mellitus and lesions in the brainstem region.

  10. Chinese Ischemic Stroke Subclassification (CISS

    Directory of Open Access Journals (Sweden)

    ShanGAO

    2011-02-01

    Full Text Available Accurate classification of stroke has significant impact on patient care and conduction of stroke clinical trials. The current systems such as TOAST, SSS-TOAST, Korean TOAST and A-S-C-O have limitations. With the advent of new imaging technology, there is a need to have a more accurate stroke subclassification system. Chinese Ischemic Stroke Subclassification (CISS system is a new two step system aims at the etiology and then underlying mechanism of a stroke. The first step classifies stroke into five categories: large artery atherosclerosis (LAA, including atherosclerosis of aortic arch and intra-/extracranial large arteries, cardiogenic stroke (CS, penetrating artery disease (PAD, other etiology (OE and undetermined etiology (UE. The second step is to further classify the underlying mechanism of ischemic stroke from the intracranial and extracranial large artery atherosclerosis into the parent artery (plaque or thrombosis occluding penetrating artery, artery-to-artery embolism, hypoperfusion/impaired emboli clearance and multiple mechanisms. Although clinical validation of CISS is being planned, CISS is an innovative system that offers much more detailed information on the pathophysiology of a stroke.

  11. Morbidity predictors in ischemic stroke

    Directory of Open Access Journals (Sweden)

    Panicker J

    2003-01-01

    Full Text Available Background: Although ischemic CVA is one of the leading causes for death and disability, parameters for predicting long-term outcome in such patients have not been clearly delineated, especially in the Indian context. Methods: A prospective hospital-based study of 105 patients of ischemic stroke, focal neurological deficits and functional score was assessed and the C-reactive protein level (CRP was measured. A follow-up was done at 5 days and at 6 months and outcome variable was the functional status at 6 months using Barthel Index of Activities of Daily Living. Accordingly, patients were grouped into 3 - Barthel Index < 41: Severely disabled, Barthel Index 41-60: Moderately disabled and Barthel Index > 60: Mildly disabled. Results: At admission, if upper limb power was less than Medical Research Council (MRC grade 4, or aphasia was present or CRP assay was positive, then at 6 months, these patients most likely belonged to the severely disabled group. If upper limb or lower limb power was greater than MRC grade 3 or there was no aphasia or conjugate gaze deviation or CRP assay was negative, these patients most likely belonged to the mildly disabled group at 6 months. Follow-up rate was 86%. Conclusion: Patients can be stratified according to the predicted prognosis. The treatment and rehabilitation can be properly planned and strictly adhered to in patients predicted to have worse prognosis.

  12. Arctigenin, a Potent Ingredient of Arctium lappa L., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model.

    Science.gov (United States)

    Chang, Chih-Zen; Wu, Shu-Chuan; Chang, Chia-Mao; Lin, Chih-Lung; Kwan, Aij-Lie

    2015-01-01

    Upregulation of protein kinase B (PKB, also known as Akt) is observed within the cerebral arteries of subarachnoid hemorrhage (SAH) animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS) and Akt pathways in a SAH in vitro study. Basilar arteries (BAs) were obtained to examine phosphatidylinositol-3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt (Western blot) and morphological examination. Endothelins (ETs) and eNOS evaluation (Western blot and immunostaining) were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p Arctigenin (p Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH. PMID:26539501

  13. Low dose of L-glutamic acid attenuated the neurological dysfunctions and excitotoxicity in bilateral common carotid artery occluded mice.

    Science.gov (United States)

    Ramanathan, Muthiah; Abdul, Khadar K; Justin, Antony

    2016-10-01

    Glutamate, an excitatory neurotransmitter in the brain, produces excitotoxicity through its agonistic action on postsynaptic N-methyl-D-aspartate receptor, resulting in neurodegeneration. We hypothesized that the administration of low doses of glutamate in cerebral ischemia could attenuate the excitotoxicity in neurons through its autoreceptor regulatory mechanism, and thereby control neurodegeneration. To test the hypothesis, the effect of L-glutamic acid (L-GA) 400 μmol/l/kg was evaluated in a bilateral common carotid artery occlusion-induced global ischemic mouse model. Memantine was used as a positive control. Global ischemia in mice was induced by occlusion of both the common carotid artery (bilateral common carotid artery occlusion) for 20 min, followed by reperfusion injury. L-GA was infused slowly through the tail vein 30 min before the surgery and every 24 h thereafter until the end of the experiment. The time-dependent change in cerebral blood flow was monitored using a laser Doppler image analyzer. The neurotransmitters glutamate and γ-aminobutyric acid (GABA) and the neurobiochemicals ATP, glutathione, and nitric oxide were measured in the different regions of brain at 0, 24, 48, and 72 h after reperfusion injury. L-GA increased locomotor activity, muscle coordination, and cerebral blood flow in ischemic mice at 72 h after ischemic insult. L-GA reduced glutamate levels in the cortex, striatum, and hippocampus at 72 h, whereas GABA levels were elevated in all three brain regions studied. Further, L-GA elevated glutathione levels and attenuated nitric oxide levels, but failed to restore ATP levels 72 h after ischemia-reperfusion. We conclude that the gradual reduction of glutamate along with elevation of GABA in different brain regions could have contributed toward the neuroprotective effect of L-GA. Hence, a slow infusion of a low dose of L-GA could be beneficial in controlling excitotoxicity-induced neurodegeneration following ischemia

  14. Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death

    OpenAIRE

    Mukhopadhyay, Partha; Rajesh, Mohanraj; Horváth, Béla; Bátkai, Sándor; Park, Ogyi; Tanashian, Galin; Gao, Rachel Y; Patel, Vivek; Wink, David A.; Liaudet, Lucas; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2011-01-01

    Ischemia-reperfusion (I/R) is a pivotal mechanism of liver damage following liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol(CBD), the non-psychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, gp91phox and inducible nitric oxide synthase mRNA), ...

  15. Pressure surge attenuator

    Science.gov (United States)

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  16. Immune mechanisms in cerebral ischemic tolerance

    Directory of Open Access Journals (Sweden)

    LidiaGarcia-Bonilla

    2014-03-01

    Full Text Available Stressor-induced tolerance is a central mechanism in the response of bacteria, plants, and animals to potentially harmful environmental challenges. This response is characterized by immediate changes in cellular metabolism and by the delayed transcriptional activation or inhibition of genetic programs that are not generally stressor specific (cross-tolerance. These programs are aimed at countering the deleterious effects of the stressor. While induction of this response (preconditioning can be established at the cellular level, activation of systemic networks is essential for the protection to occur throughout the organs of the body. This is best signified by the phenomenon of remote ischemic preconditioning, whereby application of ischemic stress to one tissue or organ induces ischemic tolerance in remote organs through humoral, cellular and neural signaling. The immune system is an essential component in cerebral ischemic tolerance acting simultaneously both as mediator and target. This dichotomy is based on the fact that activation of inflammatory pathways is necessary to establish ischemic tolerance and that ischemic tolerance can be, in part, attributed to a subdued immune activation after index ischemia. Here we describe the components of the immune system required for induction of ischemic tolerance and review the mechanisms by which a reprogrammed immune response contributes to the neuroprotection observed after preconditioning. Learning how local and systemic immune factors participate in endogenous neuroprotection could lead to the development of new stroke therapies.

  17. Calorie Restriction with a High-Fat Diet Effectively Attenuated Inflammatory Response and Oxidative Stress-Related Markers in Obese Tissues of the High Diet Fed Rats

    Directory of Open Access Journals (Sweden)

    Seungae Park

    2012-01-01

    Full Text Available Obesity characterized by increased mass of adipose tissue leads to systemic inflammation. Calorie restriction (CR improves parameters associated with immune response and antioxidant defense. We hypothesized that CR with a high fat diet (HFCR regulates local and systemic inflammation and oxidative stress damage in a high fat diet induced obesity (HF group. We investigated effect of HFCR on inflammation and oxidative stress-related markers in liver and adipose tissues as well as adipokines in plasma. HFCR lowered liver triglyceride levels, total cholesterol levels, and the plasma leptin/adiponectin ratio to normal levels and improved glucose tolerance. HFCR also improved fatty liver and normalized adipocyte size and morphology. HFCR reduced lipid peroxidation and decreased the expression levels of inducible nitric oxide synthetase, cyclooxygenase-2, NF-E2-related factor, and heme oxygenase-1 in the liver. Moreover, HFCR suppressed the expression levels of C- reactive protein and manganese superoxide dismutase in the adipose tissue in the HF group. These results suggest that HFCR may have beneficial effects on inflammation and oxidative stress as well as lipid profiles in the HF diet induced obesity. Moreover, HFCR may be a good way to increase compliance in obese patients and to prevent obesity induced complications without changes in dietary pattern.

  18. Polyploidy Analysis and Attenuation of Oxidative Stress in Hepatic Tissue of STZ-Induced Diabetic Rats Treated with an Aqueous Extract of Vochysia rufa

    Directory of Open Access Journals (Sweden)

    Izabela Barbosa Moraes

    2015-01-01

    Full Text Available Diabetes mellitus (DM is characterized by hyperglycemia and alterations in the metabolism of lipids, carbohydrates, and proteins. Due to its hypoglycemic effect Vochysia rufa is frequently used in Uberlandia, Brazil, to treat DM. Despite its popularity, there is little information about its effect on hepatic tissue. Therefore, we evaluated the histoarchitecture, oxidative stress parameters, and polyploidy of liver tissue from streptozotocin- (STZ- induced diabetic rats treated with aqueous extract of Vochysia rufa (AEV. Histology was determined by fixing the livers, processing, and staining with HE. Oxidative stress was determined by evaluating CAT, GPx, and SOD activity in liver homogenates and hepatic mitochondria fraction and by measuring GST, GSH levels and lipid peroxidation (MDA. Polyploidy was determined by subjecting isolated hepatocyte nuclei to flow cytometry. In the diabetic group, GST activity and GSH rates decreased whereas liver homogenate analysis showed that GPx, SOD activity and MDA increased. AEV treatment restored all parameters to normal levels. The oxidative stress analysis of hepatic mitochondria fraction showed similar results. Lower polyploid cell populations were found in the diabetic rat livers, even after glibenclamide treatment. Thus, AEV treatment efficiently reduced hepatic oxidative stress caused by STZ-induced diabetes and produced no morphological changes in the histological analysis.

  19. Consumption of both low and high (-)-epicatechin apple puree attenuates platelet reactivity and increases plasma concentrations of nitric oxide metabolites: A randomized controlled trial

    NARCIS (Netherlands)

    Gasper, A.; Hollands, W.; Casgrain, A.; Saha, S.; Teucher, B.; Dainty, J.R.; Venema, D.P.; Hollman, P.C.H.

    2014-01-01

    We hypothesised that consumption of flavanol-containing apple puree would modulate platelet activity and increase nitric oxide metabolite status, and that high flavanol apple puree would exert a greater effect than low flavanol apple puree. 25 subjects consumed 230 g of apple puree containing 25 and

  20. Photonic Crystal Fiber Attenuator

    Institute of Scientific and Technical Information of China (English)

    Joo Beom Eom; Hokyung Kim; Jinchae Kim; Un-Chul Paek; Byeong Ha Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  1. Quantitative Measurement of Physical Activity in Acute Ischemic Stroke and Transient Ischemic Attack

    DEFF Research Database (Denmark)

    Strømmen, Anna Maria; Christensen, Thomas; Jensen, Kai

    2014-01-01

    BACKGROUND AND PURPOSE: The purpose of this study was to quantitatively measure and describe the amount and pattern of physical activity in patients within the first week after acute ischemic stroke and transient ischemic attack using accelerometers. METHODS: A total of 100 patients with acute...... ischemic stroke or transient ischemic attack admitted to our acute stroke unit wore Actical accelerometers attached to both wrists and ankles and the hip for ≤7 days. Patients were included within 72 hours of symptom onset. Accelerometer output was measured in activity counts (AC). Patients were tested...... feasibility of using accelerometers to quantitatively and continuously measure physical activity simultaneously from all 4 extremities and the hip in patients with acute ischemic stroke and transient ischemic attack. Our study provides quantitative evidence of physical inactivity in patients with acute...

  2. Progressive Evaluation of Apoptosis, Proliferation, and Angiogenesis in Fresh Rat Ovarian Autografts Under Remote Ischemic Preconditioning.

    Science.gov (United States)

    Damous, Luciana Lamarão; Silva, Sônia Maria da; Carbonel, Adriana Aparecida Ferraz; Simões, Manuel de Jesus; Baracat, Edmund Chada; Montero, Edna Frasson de Souza

    2016-06-01

    This study evaluated the remote ischemic preconditioning (R-IPC) early and late repercussion on fresh ovarian transplants, aiming to assess a probable protective effect in ovarian follicular pool. Sixty Wistar EPM-1 rats were used, divided in 2 study groups: ovarian transplantation (Tx) and Tx + R-IPC, submitted to ovary transplant with or without R-IPC, respectively. These groups were subdivided according to the date for euthanasia: 4th, 7th, 14th, 21st, and 30th days of the postoperatory period. Morphology, morphometry, neoangiogenesis (vascular endothelial growth factor [VEGF]), proliferative activity (Ki-67), and apoptosis (cleaved caspase-3) were evaluated. Remote ischemic preconditioning was performed in the common iliac artery. Fresh autologous ovarian tissue was implanted integrally in the retroperitoneum. All animals showed resumption of estrous phase after ovary transplantation. Remote ischemic preconditioning attenuated the lesions progressively from the 7th day, with greater number of the immature follicles (14 days, P .05). Immunohistochemical analyzes, taken as a whole, show that R-IPC benefic effect is more evident in the later periods of evaluation, when a greater proliferative activity (14, 21, and 30 days, P .05). Remote ischemic preconditioning could have a benefic effect in the progressive evaluation of freshly grafted ovarian, especially on the latest phases of the posttransplant period. The 14th day was a landmark in the recuperation of the graft. Further investigations are necessary to determine the role of R-IPC in this scenario and its effect in frozen-thawed ovarian tissue. PMID:26674322

  3. Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury.

    Directory of Open Access Journals (Sweden)

    Ferah Yildirim

    Full Text Available Epigenetic transcriptional regulation by histone acetylation depends on the balance between histone acetyltransferase (HAT and deacetylase activities (HDAC. Inhibition of HDAC activity provides neuroprotection, indicating that the outcome of cerebral ischemia depends crucially on the acetylation status of histones. In the present study, we characterized the changes in histone acetylation levels in ischemia models of focal cerebral ischemia and identified cAMP-response element binding protein (CREB-binding protein (CBP as a crucial factor in the susceptibility of neurons to ischemic stress. Both neuron-specific RNA interference and neurons derived from CBP heterozygous knockout mice showed increased damage after oxygen-glucose deprivation (OGD in vitro. Furthermore, we demonstrated that ischemic preconditioning by a short (5 min subthreshold occlusion of the middle cerebral artery (MCA, followed 24 h afterwards by a 30 min occlusion of the MCA, increased histone acetylation levels in vivo. Ischemic preconditioning enhanced CBP recruitment and histone acetylation at the promoter of the neuroprotective gene gelsolin leading to increased gelsolin expression in neurons. Inhibition of CBP's HAT activity attenuated neuronal ischemic preconditioning. Taken together, our findings suggest that the levels of CBP and histone acetylation determine stroke outcome and are crucially associated with the induction of an ischemia-resistant state in neurons.

  4. Treatment with Isorhamnetin Protects the Brain Against Ischemic Injury in Mice.

    Science.gov (United States)

    Zhao, Jin-Jing; Song, Jin-Qing; Pan, Shu-Yi; Wang, Kai

    2016-08-01

    Ischemic stroke is a major cause of morbidity and mortality, yet lacks effective neuroprotective treatments. The aim of this work was to investigate whether treatment with isorhamnetin protected the brain against ischemic injury in mice. Experimental stroke mice underwent the filament model of middle cerebral artery occlusion with reperfusion. Treatment with isorhamnetin or vehicle was initiated immediately at the onset of reperfusion. It was found that treatment of experimental stroke mice with isorhamnetin reduced infarct volume and caspase-3 activity (a biomarker of apoptosis), and improved neurological function recovery. Treatment of experimental stroke mice with isorhamnetin attenuated cerebral edema, improved blood-brain barrier function, and upregulated gene expression of tight junction proteins including occludin, ZO-1, and claudin-5. Treatment of experimental stroke mice with isorhamnetin activated Nrf2/HO-1, suppressed iNOS/NO, and led to reduced formation of MDA and 3-NT in ipsilateral cortex. In addition, treatment of experimental stroke mice with isorhamnetin suppressed activity of MPO (a biomarker of neutrophil infiltration) and reduced protein levels of IL-1β, IL-6, and TNF-α in ipsilateral cortex. Furthermore, it was found that treatment of experimental stroke mice with isorhamnetin reduced mRNA and protein expression of NMDA receptor subunit NR1 in ipsilateral cortex. In conclusion, treatment with isorhamnetin protected the brain against ischemic injury in mice. Isorhamnetin could thus be envisaged as a countermeasure for ischemic stroke but remains to be tested in humans. PMID:27161367

  5. Hypericum perforatum Attenuates Spinal Cord Injury-Induced Oxidative Stress and Apoptosis in the Dorsal Root Ganglion of Rats: Involvement of TRPM2 and TRPV1 Channels.

    Science.gov (United States)

    Özdemir, Ümit Sinan; Nazıroğlu, Mustafa; Şenol, Nilgün; Ghazizadeh, Vahid

    2016-08-01

    Oxidative stress and cytosolic Ca(2+) overload have important roles on apoptosis in dorsal root ganglion (DRG) neurons after spinal cord injury (SCI). Hypericum perforatum (HP) has an antioxidant property in the DRGs due to its ability to modulate NADPH oxidase and protein kinase C pathways. We aimed to investigate the protective property of HP on oxidative stress, apoptosis, and Ca(2+) entry through transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels in SCI-induced DRG neurons of rats. Rats were divided into four groups as control, HP, SCI, and SCI + HP. The HP groups received 30 mg/kg HP for three concessive days after SCI induction. The SCI-induced TRPM2 and TRPV1 currents and cytosolic free Ca(2+) concentration were reduced by HP. The SCI-induced decrease in glutathione peroxidase and cell viability values were ameliorated by HP treatment, and the SCI-induced increase in apoptosis, caspase 3, caspase 9, cytosolic reactive oxygen species (ROS) production, and mitochondrial membrane depolarization values in DRG of SCI group were overcome by HP treatment. In conclusion, we observed a protective role of HP on SCI-induced oxidative stress, apoptosis, and Ca(2+) entry through TRPM2 and TRPV1 in the DRG neurons. Our findings may be relevant to the etiology and treatment of SCI by HP. Graphical Abstract Possible molecular pathways of involvement of Hypericum perforatum (HP) on apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in DRG neurons of SCI-induced rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress through activation of ADP-ribose pyrophosphate although it was inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-aminoethyl diphenylborinate (2APB). The TRPV1 channel is activated by oxidative stress and capsaicin and it is blocked by capsazepine. Injury in the DRG can result in augmented ROS release, leading to Ca(2+) uptake through

  6. Grapefruit-seed extract attenuates ethanol-and stress-induced gastric lesions via activation of prostaglandin, nitric oxide and sensory nerve pathways

    Institute of Scientific and Technical Information of China (English)

    Tomasz Brzozowski; Peter C Konturek; Danuta Drozdowicz; Stanislaw J Konturek; Oxana Zayachivska; Robert Pajdo; Slawomir Kwiecien; Wieslaw W Pawlik; Eckhart G Hahn

    2005-01-01

    AIM: Grapefruit-seed extract (GSE) containing flavonoids, possesses antibacterial and antioxidative properties but whether it influences the gastric defense mechanism and gastroprotection against ethanol- and stress-induced gastric lesions remains unknown.METHODS: We compared the effects of GSE on gastric mucosal lesions induced in rats by topical application of 100% ethanol or 3.5 h of water immersion and restraint stress (WRS) with or without (A) inhibition of cyclooxygenase (COX)-1 activity by indomethacin and rofecoxib, the selective COX-2 inhibitor, (B) suppression of NO-synthase with L-NNA (20 mg/kg ip), and (C) inactivation by capsaicin (125 mg/kg sc) of sensory nerves with or without intragastric (ig) pretreatment with GSE applied 30 min prior to ethanol or WRS. One hour after ethanol and 3.5 h after the end of WRS, the number and area of gastric lesions were measured by planimetry, the gastric bloodflow (GBF) was assessed by H2-gas clearance technique and plasma gastrin levels and the gastric mucosal generation of PGE2, superoxide dismutase (SOD) activity and malonyldialdehyde (MDA) concentration, as an index of lipid peroxidation were determined.RESULTS: Ethanol and WRS caused gastric lesions accompanied by the significant fall in the GBF and SOD activity and the rise in the mucosal MDA content.Pretreatment with GSE (8-64 mg/kg i g) dosedependently attenuated gastric lesions induced by 100% ethanol and WRS; the dose reducing these lesions by 50% (ID50) was 25 and 36 mg/kg, respectively, and this protective effect was similar to that obtained with methyl PGE2 analog (5 μg/kg i g). GSE significantly raised the GBF, mucosal generation of PGE2, SOD activity and plasma gastrin levels while attenuating MDA content.Inhibition of PGE2 generation with indomethacin or rofecoxib and suppression of NO synthase by L-NNA or capsaicin denervation reversed the GSE-induced protection and the accompanying hyperemia. Cotreatment of exogenous calcitonine gene

  7. Cobalt Protoporphyrin Improves Heart Function by Attenuating Cardiac Beta-oxidation and Restoring Redox Balance in an Animal Model of Experimental Diabetes

    Directory of Open Access Journals (Sweden)

    NaderG.Abraham

    2012-06-01

    Full Text Available Myocardial dysfunction and coronary macro/microvascular alterations are the hallmarks of diabetic cardiomyopathy and are ascribed to increased oxidative stress and altered nitric oxide synthase (NOS activity. We hypothesize that pretreatment by cobalt-protoporphyrin IX (CoPP ameliorates both myocardial function and coronary circulation in streptozotocin(STZ-induced diabetic rats. Isolated hearts from diabetic rats in Langendorff configuration displayed lower left ventricular (LV function and higher coronary resistance (CR compared to hearts from control animals. CoPP treatment of diabetic animals (0.3mg/100g body weight i.p., once a week for three weeks significantly increased all the contractile/relaxation indexes (p<0.01, while decreasing CR (p<0.01. CoPP enhanced HO-1 protein levels and reduced oxidative/nitrosative stress in diabetic animals, as indicated by the significant (p<0.05 decrease in heart GSSG/GSHtotal, O2-, malondialdehyde (MDA, and 3-nitrotyrosine levels. CoPP increased adiponectin levels and phosphorylation of AKT and AMPK and reversed the eNOS/iNOS expression imbalance observed in the untreated diabetic heart. Furthermore, after CoPP treatment, a rise in malonylCoA as well as a decrease in acetylCoA was observed in diabetic hearts. In this experimental model of diabetic cardiomyopathy, CoPP treatment improved both cardiac function and coronary flow by blunting oxidative/nitrosative stress, restoring eNOS/ iNOS expression balance and increasing HO-1 levels, thereby favoring improvement in both endothelial function and insulin sensitivity.

  8. Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila

    OpenAIRE

    Wang, Ching-Tzu; Chen, Yi-Chun; Wang, Yi-Yun; Huang, Ming-Hao; Yen, Tzu-Li; Li, Hsun; Liang, Cyong-Jhih; Sang, Tzu-Kang; Cho, Si-Chih; Yuh, Chiou-Hwa; Wang, Chao-Yung; Brummel, Theodore J.; Wang, Horng-Dar

    2011-01-01

    Aging and age-related diseases can be viewed as the result of the lifelong accumulation of stress insults. The identification of mutant strains and genes which are responsive to stress and can alter longevity profiles provides new therapeutic targets for age-related diseases. Here we reported that a Drosophila strain with reduced expression of ribose-5-phosphate isomerase (rpi), EP2456, exhibits increased resistance to oxidative stress and enhanced lifespan. In addition, the strain also displ...

  9. Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats

    OpenAIRE

    Afonso Milessa S; de O Silva Ana Mara; Carvalho Eliane BT; Rivelli Diogo P; Barros Sílvia BM; Rogero Marcelo M; Lottenberg Ana Maria; Torres Rosângela P; Mancini-Filho Jorge

    2013-01-01

    Abstract Background Phenolic compounds combine antioxidant and hypocholesterolemic activities and, consequently, are expected to prevent or minimize cardiometabolic risk. Methods To evaluate the effect of an aqueous extract (AQ) and non-esterified phenolic fraction (NEPF) from rosemary on oxidative stress in diet-induced hypercholesterolemia, 48 male 4-week old Wistar rats were divided into 6 groups: 1 chow diet group (C) and 5 hypercholesterolemic diet groups, with 1 receiving water (HC), 2 ...

  10. Resveratrol attenuates lipopolysaccharide-induced hepatitis in D-Galactosamine sensitized rats: Role of nitric oxide synthase 2 and heme oxygenase-1

    Czech Academy of Sciences Publication Activity Database

    Farghali, H.; Černý, D.; Kameníková, L.; Martínek, J.; Hořínek, A.; Kmoníčková, Eva; Zídek, Zdeněk

    2009-01-01

    Roč. 21, 3-4 (2009), s. 216-225. ISSN 1089-8603 R&D Projects: GA ČR GA305/07/0061 Grant ostatní: GA ČR(CZ) GA305/09/0004; GA MZd(CZ) NR9379 Institutional research plan: CEZ:AV0Z50390512 Keywords : resveratrol * lipopolysacchride * nitrix oxide Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.506, year: 2009

  11. Protein S and ischemic brain disease

    Directory of Open Access Journals (Sweden)

    Raičević Ranko

    2003-01-01

    Full Text Available Ischemic brain disease (IBD represents clinical entity participating with almost 80% in all vascular brain diseases. Ethiopatogenesis and pathophysiology of the ischemic brain disease are apparently most complex in human medicine. In addition to the significant progression in understanding of ethiopatogenesis and pathophysiology of the ischemic brain disease, we are currently aware of the fact that in one third of these patients the source - the disorder or the disease of crucial importance for this sequence of events in the opposing direction cannot be diagnosed with certainty. This case report presents a 32-year-old patient with the verified ischemic lesion of brain parenchyma, in whom the lowered concentrations of protein S were registered by comprehensive clinical and biochemical examinations. The lower concentrations of protein S are a significant co-factor of anticoagulant system, in the absence of other significant diseases, disorders or abnormalities which could ethiopatogenetically be significant for IBD.

  12. Cerebral Ischemic Events with Sickle Cell Anemia

    OpenAIRE

    J Gordon Millichap

    2013-01-01

    Researchers at Cincinnati Children's Hospital and several additional centers in the US and UK studied the incidence of acute silent cerebral ischemic events (ASCIEs) in MRIs of children with asymptomatic sickle cell anemia (SCA).

  13. 25-Hydroxyvitamin D and symptomatic ischemic stroke

    DEFF Research Database (Denmark)

    Brøndum-Jacobsen, Peter; Nordestgaard, Børge G; Schnohr, Peter;

    2013-01-01

    OBJECTIVE: We tested the hypothesis that low plasma concentrations of 25-hydroxyvitamin D are associated with increased risk of symptomatic ischemic stroke in the general population. METHODS: We measured plasma 25-hydroxyvitamin D in 10,170 individuals from the general population, the Copenhagen...... City Heart Study. During 21 years of follow-up, 1,256 and 164 persons developed ischemic and hemorrhagic stroke, respectively. In a meta-analysis of ischemic stroke, we included 10 studies, 58,384 participants, and 2,644 events. RESULTS: Stepwise decreasing plasma 25-hydroxyvitamin D concentrations...... were associated with stepwise increasing risk of ischemic stroke both as a function of seasonally adjusted percentile categories and as a function of clinical categories of 25-hydroxyvitamin D (p for trend ≤ 2 × 10(-3) ). In a Cox regression model comparing individuals with plasma 25-hydroxyvitamin D...

  14. Molecular Mechanisms of Renal Ischemic Conditioning Strategies.

    Science.gov (United States)

    Kierulf-Lassen, Casper; Nieuwenhuijs-Moeke, Gertrude J; Krogstrup, Nicoline V; Oltean, Mihai; Jespersen, Bente; Dor, Frank J M F

    2015-01-01

    Ischemia-reperfusion injury is the leading cause of acute kidney injury in a variety of clinical settings such as renal transplantation and hypovolemic and/or septic shock. Strategies to reduce ischemia-reperfusion injury are obviously clinically relevant. Ischemic conditioning is an inherent part of the renal defense mechanism against ischemia and can be triggered by short periods of intermittent ischemia and reperfusion. Understanding the signaling transduction pathways of renal ischemic conditioning can promote further clinical translation and pharmacological advancements in this era. This review summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many of the same protective signaling pathways as in other organs, but differences are recognized. PMID:26330099

  15. Early Arterial Ischemic Stroke in Premature Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-05-01

    Full Text Available Presentation, clinical course, and outcomes for 23 premature children with arterial ischemic stroke before 44 weeks gestational age are reported from Riley Hospital for Children, Indianapolis, IN.

  16. Insular Ischemic Stroke: Clinical Presentation and Outcome

    OpenAIRE

    Lemieux, F.; Lanthier, S.; Chevrier, M.-C.; de Gioia, L.; I. Rouleau; Cereda, C.; Nguyen, D.K.

    2012-01-01

    Background The insula is a small but complex structure located in the depth of the sylvian fissure, covered by the frontal, parietal and temporal operculum. Ischemic strokes limited to the insula are rare and have not been well studied. Our objective is to better define the clinical presentation and outcome of insular ischemic strokes (IIS). Methods We reviewed the institutional prospective, consecutive stroke database from two centers to identify patients with IIS seen between 2008 and 2010....

  17. Transient central diabetes insipidus following ischemic stroke

    Directory of Open Access Journals (Sweden)

    Muthukrishnan Jayaraman

    2013-01-01

    Full Text Available Central Diabetes Insipidus (CDI following ischemic infarction of the brain has been described as a rare presentation. Posterior pituitary ischemia has also been postulated as a possible cause of idiopathic CDI. We encountered a young male with bilateral extensive ischemic infarction sustained at high altitude, who had transient polyuria due to central diabetes insipidus, requiring desmopressin therapy. DI completely resolved during the course of his neurological recovery.

  18. Transient central diabetes insipidus following ischemic stroke

    OpenAIRE

    Muthukrishnan Jayaraman; Sandeep Kumar; Ahmad, F. M. H.

    2013-01-01

    Central Diabetes Insipidus (CDI) following ischemic infarction of the brain has been described as a rare presentation. Posterior pituitary ischemia has also been postulated as a possible cause of idiopathic CDI. We encountered a young male with bilateral extensive ischemic infarction sustained at high altitude, who had transient polyuria due to central diabetes insipidus, requiring desmopressin therapy. DI completely resolved during the course of his neurological recovery.

  19. Transient central diabetes insipidus following ischemic stroke.

    Science.gov (United States)

    Jayaraman, Muthukrishnan; Kumar, Sandeep; Ahmad, F M H

    2013-10-01

    Central Diabetes Insipidus (CDI) following ischemic infarction of the brain has been described as a rare presentation. Posterior pituitary ischemia has also been postulated as a possible cause of idiopathic CDI. We encountered a young male with bilateral extensive ischemic infarction sustained at high altitude, who had transient polyuria due to central diabetes insipidus, requiring desmopressin therapy. DI completely resolved during the course of his neurological recovery. PMID:24251140

  20. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    Science.gov (United States)

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  1. Troxerutin protects against 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD{sup +}-depletion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Feng [School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province (China); Zhang, Yan-qiu [School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Fan, Shao-Hua [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province (China); Zhuang, Juan [School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zheng, Yuan-Lin, E-mail: ylzheng@jsnu.edu.cn [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province (China); Lu, Jun; Wu, Dong-Mei; Shan, Qun; Hu, Bin [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province (China)

    2015-02-11

    Highlights: • BDE-47 promotes liver inflammation by triggering oxidative stress-induced NAD{sup +} depletion. • Troxerutin inhibits BDE-47-induced liver inflammation via its antioxidant properties. • Troxerutin restores NAD{sup +} level and consequently abates SirT1 loss. • Troxerutin represses acetylation of NF-κB p65 (K310) and H3K9. • Troxerutin is a candidate for prevention and therapy of BDE-47-induced hepatotoxicity. - Abstract: Emerging evidence indicates that 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) induces liver injury through enhanced ROS production and lymphocytic infiltration, which may promote a liver inflammatory response. Antioxidants have been reported to attenuate the cellular toxicity associated with polybrominated diphenyl ethers (PBDEs). In this study, we investigated the effect of troxerutin, a trihydroxyethylated derivative of the natural bioflavonoid rutin, on BDE-47-induced liver inflammation and explored the potential mechanisms underlying this effect. Our results showed that NAD{sup +}-depletion was involved in the oxidative stress-mediated liver injury in a BDE-47 treated mouse model, which was confirmed by Vitamin E treatment. Furthermore, our data revealed that troxerutin effectively alleviated liver inflammation by mitigating oxidative stress-mediated NAD{sup +}-depletion in BDE-47 treated mice. Consequently, troxerutin remarkably restored SirT1 protein expression and activity in the livers of BDE-47-treated mice. Mechanistically, troxerutin dramatically repressed the nuclear translocation of NF-κB p65 and the acetylation of NF-κB p65 (Lys 310) and Histone H3 (Lys9) to abate the transcription of inflammatory genes in BDE-47-treated mouse livers. These inhibitory effects of troxerutin were markedly blunted by EX527 (SirT1 inhibitor) treatment. This study provides novel mechanistic insights into the toxicity of BDE-47 and indicates that troxerutin might be used in the prevention and therapy of BDE-47-induced

  2. Cardioprotection against experimental myocardial ischemic injury using cornin

    Directory of Open Access Journals (Sweden)

    Y. Xu

    2016-01-01

    Full Text Available Phosphorylated-cyclic adenosine monophosphate response element-binding protein (Phospho-CREB has an important role in the pathogenesis of myocardial ischemia. We isolated the iridoid glycoside cornin from the fruit of Verbena officinalis L, investigated its effects against myocardial ischemia and reperfusion (I/R injury in vivo, and elucidated its potential mechanism in vitro. Effects of cornin on cell viability, as well as expression of phospho-CREB and phospho-Akt in hypoxic H9c2 cells in vitro, and myocardial I/R injury in vivo, were investigated. Cornin attenuated hypoxia-induced cytotoxicity significantly in H9c2 cells in a concentration-dependent manner. Treatment of H9c2 cells with cornin (10 µM blocked the reduction of expression of phospho-CREB and phospho-Akt in a hypoxic condition. Treatment of rats with cornin (30 mg/kg, iv protected them from myocardial I/R injury as indicated by a decrease in infarct volume, improvement in hemodynamics, and reduction of severity of myocardial damage. Cornin treatment also attenuated the reduction of expression of phospho-CREB and phospho-Akt in ischemic myocardial tissue. These data suggest that cornin exerts protective effects due to an increase in expression of phospho-CREB and phospho-Akt.

  3. Anti-tumor Necrosis Factor Alpha (Infliximab) Attenuates Apoptosis, Oxidative Stress, and Calcium Ion Entry Through Modulation of Cation Channels in Neutrophils of Patients with Ankylosing Spondylitis.

    Science.gov (United States)

    Ugan, Yunus; Nazıroğlu, Mustafa; Şahin, Mehmet; Aykur, Mehmet

    2016-08-01

    Ankylosing Spondylitis (AS) is known to be associated with increased neutrophil activation and oxidative stress, however, the mechanism of neutrophil activation is still unclear. We have hypothesized that the antioxidant and anti-tumor necrosis factor properties of infliximab may affect intracellular Ca(2+) concentration in the neutrophils of AS patients. The objective of this study was to investigate the effects of infliximab on calcium signaling, oxidative stress, and apoptosis in neutrophils of AS patients. Neutrophils collected from ten patients with AS and ten healthy controls were used in the study. In a cell viability test, the ideal non-toxic dose and incubation time of infliximab were found as 100 μM and 1 h, respectively. In some experiments, the neutrophils were incubated with the voltage-gated calcium channel (VGCC) blockers verapamil + diltiazem (V + D) and the TRPM2 channel blocker 2-aminoethyl diphenylborinate (2-APB). Intracellular Ca(2+) concentration, lipid peroxidation, apoptosis, caspase 3, and caspase 9 values were high in neutrophils of AS patients and were reduced with infliximab treatment. Reduced glutathione level and glutathione peroxidase activity were low in the patients and increased with infliximab treatment. The intracellular Ca(2+) concentrations were low in 2-APB and V + D groups. In conclusion, the current study suggests that infliximab is useful against apoptotic cell death and oxidative stress in neutrophils of patients with AS, which seem to be dependent on increased levels of intracellular Ca(2+) through activation of TRPM2 and VGCC. PMID:26956056

  4. Attenuation by methyl mercury and mercuric sulfide of pentobarbital induced hypnotic tolerance in mice through inhibition of ATPase activities and nitric oxide production in cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Chuu, Jiunn-Jye; Huang, Zih-Ning; Yu, Hsun-Hsin; Chang, Liang-Hao [College of Engineering, Southern Taiwan University, Institute of Biotechnology, Tainan (China); Lin-Shiau, Shoei-Yn [College of Medicine, National Taiwan University, Institute of Pharmacology, Taipei (China)

    2008-06-15

    This study is aimed at exploring the possible mechanism of hypnosis-enhancing effect of HgS or cinnabar (a traditional Chinese medicine containing more than 95% HgS) in mice treated with pentobarbital. We also examined whether the effect of HgS is different from that of the well-known methyl mercury (MeHg). After a short period (7 days) of oral administration to mice, a nontoxic dose (0.1 g/kg) of HgS not only significantly enhanced pentobarbital-induced hypnosis but also attenuated tolerance induction; while a higher dose (1 g/kg) of HgS or cinnabar exerted an almost irreversible enhancing effect on pentobarbital-hypnosis similar to that of MeHg (2 mg/kg) tested, which was still effective even after 10 or 35 days cessation of administration. To study comparatively the effects of different mercury forms from oral administration of MeHg and HgS on membrane ATPase activities of experimental mice, analysis of the Hg content in the cerebral cortex revealed that correlated with the decrease of Na{sup +}/K{sup +}-ATPase and Ca{sup 2+}-ATPase activities. Furthermore, NO levels of blood but not that of cerebral cortex were also decreased by mercuric compounds. Although pentobarbital alone enhanced cytochrome p450-2C9 in time dependent manner, all of mercurial compounds tested had no such effect. All of these findings indicated that the mercurial compounds including cinnabar, HgS and MeHg exert a long-lasting enhancing hypnotic activity without affecting pentobarbital metabolism, which provides evidence-based sedative effect of cinnabar used in Chinese traditional medicine for more than 2,000 years. The nontoxic HgS dosing (0.1 g/kg/day) for consecutive 7 days is perhaps useful for delaying or preventing pentobarbital-tolerance. (orig.)

  5. Abnormalities on diffusion-weighted magnetic resonance imaging in patients with transient ischemic attack

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tomomi; Shibagaki, Yasuro [Ushiku Aiwa General Hospital, Ibaraki (Japan); Uchiyama, Shinichiro; Iwata, Makoto [Tokyo Women' s Medical Coll. (Japan)

    2003-03-01

    We studied abnormalities on diffusion-weighted magnetic resonance imaging (DWI) in patients with transient ischemic attack (TIA). Out of 18 consecutive TIA patients, 9 patients had relevant focal abnormalities on DWI. Among TIA patients, six patients were associated with atrial fibrillation (Af), and all of these patients had focal abnormalities on DWI as well. TIA patients with Af had significantly more frequent focal abnormalities on DWI than those without Af (p=0.009; Fisher's exact probability test). In addition, the duration of TIA symptoms was not related to the presence of focal abnormalities on DWI. These results indicate that embolic mechanism may cause focal abnormalities on DWI. DWI was more sensitive to detect responsible ischemic lesions in these patients than T2-weighted image or fluid-attenuated inversion recovery image. (author)

  6. Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair.

    Science.gov (United States)

    Mohajeri, Maryam; Sadeghizadeh, Majid; Najafi, Farhood; Javan, Mohammad

    2015-12-01

    Multiple Sclerosis (MS) is an inflammatory demyelinating disorder of central nervous system (CNS). Polyphenol curcumin has been used in traditional medicine as an effective drug for a variety of diseases. Different formulations of curcumin are introduced to increase its stability and effectiveness. Here we have examined the effect of polymerized form of nano-curcumin (PNC) on experimental autoimmune encephalomyelitis (EAE) as an animal model of MS. EAE was induced in female Lewis rats and PNC or curcumin was daily administrated intraperitonealy from day 12-29 post immunization. When the prophylactic effect of PNC was under investigation, rats received PNC from the first day of immunization. Treatment with PNC resulted in decreased scores of disease in therapeutic and prophylactic administration when compared with control group. Staining by luxol fast blue and H&E and immuno-staining of lumbar spinal cord cross sections, confirmed a significant decrease in the amounts of demyelination, inflammation and BBB breaking down. Gene expression studies in lumbar spinal cord showed a corrected balance of pro-inflammatory and anti-inflammatory genes expression, decreased oxidative stress, improved remyelination and increased progenitor cell markers after treatment with PNC. Our results demonstrated an efficient therapeutic effect of PNC as an anti-inflammatory and anti-oxidative stress agent, with significant effects on the EAE scores and myelin repair mechanisms. PMID:26211978

  7. Epigallocatechin Gallate Attenuates Proliferation and Oxidative Stress in Human Vascular Smooth Muscle Cells Induced by Interleukin-1β via Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Po-Len Liu

    2014-01-01

    Full Text Available Proliferation of vascular smooth muscle cells (VSMCs triggered by inflammatory stimuli and oxidative stress contributes importantly to atherogenesis. The association of green tea consumption with cardiovascular protection has been well documented in epidemiological observations, however, the underlying mechanisms remain unclear. This study aimed to elucidate the effects of the most active green tea catechin derivative, (−-epigallocatechin-3-gallate (EGCG, in human aortic smooth muscle cells (HASMCs, focusing particularly on the role of a potent anti-inflammatory and antioxidative enzyme heme oxygenase-1 (HO-1. We found that pretreatment of EGCG dose- and time-dependently induced HO-1 protein levels in HASMCs. EGCG inhibited interleukin- (IL-1β-induced HASMC proliferation and oxidative stress in a dose-dependent manner. The HO-1 inducer CoPPIX decreased IL-1β-induced cell proliferation, whereas the HO-1 enzyme inhibitor ZnPPIX significantly reversed EGCG-caused growth inhibition in IL-1β-treated HASMCs. At the molecular level, EGCG treatment significantly activated nuclear factor erythroid-2-related factor (Nrf2 transcription activities. These results suggest that EGCG might serve as a complementary and alternative medicine in the treatment of these pathologies by inducing HO-1 expression and subsequently decreasing VSMC proliferation.

  8. Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles.

    Science.gov (United States)

    Selvaraj, Vellaisamy; Nepal, Niraj; Rogers, Steven; Manne, Nandini D P K; Arvapalli, Ravikumar; Rice, Kevin M; Asano, Shinichi; Fankhanel, Erin; Ma, Jane J; Shokuhfar, Tolou; Maheshwari, Mani; Blough, Eric R

    2015-08-01

    Sepsis is a life threatening disease that is associated with high mortality. Existing treatments have failed to improve survivability in septic patients. The purpose of this present study is to evaluate whether cerium oxide nanoparticles (CeO2NPs) can prevent lipopolysaccharide (LPS) induced severe sepsis mortality by preventing hepatic dysfunction in male Sprague Dawley rats. Administration of a single dose (0.5 mg/kg) of CeO2NPs intravenously to septic rats significantly improved survival rates and functioned to restore body temperature, respiratory rate and blood pressure towards baseline. Treatment-induced increases in animal survivability were associated with decreased hepatic damage along with reductions in serum cytokines/chemokines, and diminished inflammatory related signaling. Kupffer cells and macrophage cells exposed to CeO2NPs exhibited decreases in LPS-induced cytokine release (TNF-α, IL-1β, IL-6, HMGB1) which were associated with diminished cellular ROS, reduced levels of nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and decreased nuclear factor-kappa light chain enhancer of activated B cells (NF-kB) transcriptional activity. The findings of this study indicate that CeO2NPs may be useful as a therapeutic agent for sepsis. PMID:25968464

  9. Herbal Formulation C168 Attenuates Proliferation and Induces Apoptosis in HCT 116 Human Colorectal Carcinoma Cells: Role of Oxidative Stress and DNA Damage

    Directory of Open Access Journals (Sweden)

    Lek Mun Leong

    2016-01-01

    Full Text Available The use of herbal formulations has gained scientific interest, particularly in cancer treatment. In this study, the herbal formulation of interest, denoted as C168, is a mixture of eight genera of plants. This study aims to investigate the antiproliferative effect of C168 methanol extract (CME on various cancer cells and its underlying mechanism of action on the most responsive cell line, namely, HCT 116 cells. CME exerted antiproliferative activities on HCT 116 colorectal carcinoma cells and HepG2 hepatocellular carcinoma cells but not on CCD-841-CoN normal colon epithelial cells, Jurkat E6.1 lymphoblastic leukemic cells, and V79-4 Chinese hamster lung fibroblasts. Further investigation on HCT 116 cells showed that CME induced G2/M cell-cycle arrest and apoptosis. Treatment of CME induced oxidative stress in HCT 116 cells by increasing the superoxide anion level and decreasing the intracellular glutathione. CME also increased tail moment value and H2AX phosphorylation in HCT 116 cells, suggesting DNA damage as an early signal of CME induced apoptosis. Loss of mitochondrial membrane potential in CME-treated cells also indicated the involvement of mitochondria in CME induced apoptosis. This study indicated the selectivity of CME toward colon cancer cells with the involvement of oxidative damage as its possible mechanism of action.

  10. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    Science.gov (United States)

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population. PMID:26184082

  11. Natural attenuation of biogas in landfill covers

    International Nuclear Information System (INIS)

    In the risk evaluation of uncontrolled biogas emissions from landfills, the process of natural attenuation in landfill covers assumes a very important role. The capacity of biogas oxidation in the cover soils seems to be the most important control to mitigate the biogas emission during the aftercare period when the biogas collection system might fail. In the present paper laboratory experiences on lab columns to study the biogas oxidation are discussed

  12. Imaging of ischemic heart disease

    International Nuclear Information System (INIS)

    Despite advances in the understanding and treatment of ischemic cardiomyopathy, characterized by extensive coronary artery disease and left ventricular (LV) dysfunction, the prognosis remains poor with only a 50-60% 5-year survival rate. The composition of atherosclerotic lesions is currently regarded as being more important than the degree of stenosis in determining acute events. If imaging techniques could distinguish vulnerable from stable plaques, then high-risk patient subgroups could be identified. Another important concept is that LV dysfunction may be the result of either scarring due to necrosis or to the presence of myocardial hibernation, in which there is sufficient blood flow to sustain viable myocytes, but insufficient to maintain systolic contraction. This concept of myocardial viability is critical for making optimal clinical management decisions. This review describes how noninvasive imaging methods can be used to distinguish regions of irreversibly injured myocardium from viable but hibernating segments. Technical advances in CT and MR have made imaging of the beating heart possible. Considerable clinical progress has already been made and further cardiac applications are expected. Radiologists therefore have new opportunities for involvement in cardiac imaging but must recognize the political implications as well as the diagnostic potential of these modalities not only for the heart, but also for the whole vascular system. This review focuses on imaging myocardial injury. It compares state-of-the-art CT and MR with more established yet contemporary echocardiography and nuclear scintigraphy. (orig.)

  13. Variable laser attenuator

    Science.gov (United States)

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  14. Intracoronary Delivery of Mitochondria to the Ischemic Heart for Cardioprotection

    Science.gov (United States)

    Cowan, Douglas B.; Yao, Rouan; Akurathi, Vamsidhar; Snay, Erin R.; Thedsanamoorthy, Jerusha K.; Zurakowski, David; Ericsson, Maria; Friehs, Ingeborg; Wu, Yaotang; Levitsky, Sidney; del Nido, Pedro J.; Packard, Alan B.

    2016-01-01

    We have previously shown that transplantation of autologously derived, respiration-competent mitochondria by direct injection into the heart following transient ischemia and reperfusion enhances cell viability and contractile function. To increase the therapeutic potential of this approach, we investigated whether exogenous mitochondria can be effectively delivered through the coronary vasculature to protect the ischemic myocardium and studied the fate of these transplanted organelles in the heart. Langendorff-perfused rabbit hearts were subjected to 30 minutes of ischemia and then reperfused for 10 minutes. Mitochondria were labeled with 18F-rhodamine 6G and iron oxide nanoparticles. The labeled mitochondria were either directly injected into the ischemic region or delivered by vascular perfusion through the coronary arteries at the onset of reperfusion. These hearts were used for positron emission tomography, microcomputed tomography, and magnetic resonance imaging with subsequent microscopic analyses of tissue sections to confirm the uptake and distribution of exogenous mitochondria. Injected mitochondria were localized near the site of delivery; while, vascular perfusion of mitochondria resulted in rapid and extensive dispersal throughout the heart. Both injected and perfused mitochondria were observed in interstitial spaces and were associated with blood vessels and cardiomyocytes. To determine the efficacy of vascular perfusion of mitochondria, an additional group of rabbit hearts were subjected to 30 minutes of regional ischemia and reperfused for 120 minutes. Immediately following regional ischemia, the hearts received unlabeled, autologous mitochondria delivered through the coronary arteries. Autologous mitochondria perfused through the coronary vasculature significantly decreased infarct size and significantly enhanced post-ischemic myocardial function. In conclusion, the delivery of mitochondria through the coronary arteries resulted in their rapid

  15. Type 2 diabetes is not a risk factor for asymptomatic ischemic brain lesion. The Funagata study

    International Nuclear Information System (INIS)

    The purpose of this study is to clarify whether type 2 diabetes (DM) is a risk factor for asymptomatic (silent) ischemic brain lesion, which is controversial at present. The subjects (n=187), who showed normal results on both neurological and neuropsychological examinations, underwent a 75-g OGTT and were examined by brain MRI on T1-weighted, T2-weighted, and FLAIR (fluid-attenuated inversion recovery) images. Their brain MRIs were evaluated quantitatively with the ischemia rating scale defined here. The subjects were grouped based on their glucose tolerance: normal glucose tolerance (NGT) (n=48), impaired glucose tolerance (IGT) (n=62), and DM (n=65). The subjects with DM were further divided based on their duration of illness: 20 with short duration (short DM: 1.3±0.8 years) and 45 with long duration (long DM; 8.9±5.4 years). Ages were matched among the groups. The percentages of individuals with asymptomatic ischemic brain lesion were 81% in NGT, 74% in IGT, 65% in short DM, and 78% in long DM. No significant difference was observed among the groups in terms of the percentage. Namely, even in individuals with a long history of DM without clinical stroke, the prevalence of asymptomatic ischemic brain lesion was not different from that of the other groups. Multiple regression and multiple logistic regression analyses showed that age and hypertension were significant independent risk factors for asymptomatic ischemic brain lesion, whereas hypercholesterolemia, smoking, and glucose intolerance, including IGT, short DM and long DM, were not. DM is not a risk factor for asymptomatic ischemic brain lesion. (author)

  16. Type 2 diabetes is not a risk factor for asymptomatic ischemic brain lesion. The Funagata study

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Tamotsu; Daimon, Makoto; Eguchi, Hideyuki; Hosoya, Takaaki; Kawanami, Toru; Kurita, Keiji; Tominaga, Makoto; Kato, Takeo [Yamagata Univ. (Japan). School of Medicine

    2002-05-01

    The purpose of this study is to clarify whether type 2 diabetes (DM) is a risk factor for asymptomatic (silent) ischemic brain lesion, which is controversial at present. The subjects (n=187), who showed normal results on both neurological and neuropsychological examinations, underwent a 75-g OGTT and were examined by brain MRI on T1-weighted, T2-weighted, and FLAIR (fluid-attenuated inversion recovery) images. Their brain MRIs were evaluated quantitatively with the ischemia rating scale defined here. The subjects were grouped based on their glucose tolerance: normal glucose tolerance (NGT) (n=48), impaired glucose tolerance (IGT) (n=62), and DM (n=65). The subjects with DM were further divided based on their duration of illness: 20 with short duration (short DM: 1.3{+-}0.8 years) and 45 with long duration (long DM; 8.9{+-}5.4 years). Ages were matched among the groups. The percentages of individuals with asymptomatic ischemic brain lesion were 81% in NGT, 74% in IGT, 65% in short DM, and 78% in long DM. No significant difference was observed among the groups in terms of the percentage. Namely, even in individuals with a long history of DM without clinical stroke, the prevalence of asymptomatic ischemic brain lesion was not different from that of the other groups. Multiple regression and multiple logistic regression analyses showed that age and hypertension were significant independent risk factors for asymptomatic ischemic brain lesion, whereas hypercholesterolemia, smoking, and glucose intolerance, including IGT, short DM and long DM, were not. DM is not a risk factor for asymptomatic ischemic brain lesion. (author)

  17. Study of retinal vessel oxygen saturation in ischemic and non-ischemic branch retinal vein occlusion

    Science.gov (United States)

    Lin, Lei-Lei; Dong, Yan-Min; Zong, Yao; Zheng, Qi-Shan; Fu, Yue; Yuan, Yong-Guang; Huang, Xia; Qian, Garrett; Gao, Qian-Ying

    2016-01-01

    AIM To explore how oxygen saturation in retinal blood vessels is altered in ischemic and non-ischemic branch retinal vein occlusion (BRVO). METHODS Fifty BRVO eyes were divided into ischemic (n=26) and non-ischemic (n=24) groups, based on fundus fluorescein angiography. Healthy individuals (n=52 and n=48, respectively) were also recruited as controls for the two groups. The mean oxygen saturations of the occluded vessels and central vessels were measured by oximetry in the BRVO and control groups. RESULTS In the ischemic BRVO group, the occluded arterioles oxygen saturation (SaO2-A, 106.0%±14.3%), instead of the occluded venule oxygen saturation (SaO2-V, 60.8%±9.4%), showed increases when compared with those in the same quadrant vessels (SaO2-A, 86.1%±16.5%) in the contralateral eyes (P<0.05). The oxygen saturations of the central vessels showed similar trends with those of the occluded vessels. In the non-ischemic BRVO group, the occluded and central SaO2-V and SaO2-A showed no significant changes. In both the ischemic and non-ischemic BRVOs, the central SaO2-A was significantly increased when compared to healthy individuals. CONCLUSION Obvious changes in the occluded and central SaO2-A were found in the ischemic BRVO group, indicating that disorders of oxygen metabolism in the arterioles may participate in the pathogenesis of ischemic BRVO. PMID:26949618

  18. A novel nuclear factor erythroid 2-related factor 2 (Nrf2) activator RS9 attenuates brain injury after ischemia reperfusion in mice.

    Science.gov (United States)

    Yamauchi, Keita; Nakano, Yusuke; Imai, Takahiko; Takagi, Toshinori; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Iwama, Toru; Hara, Hideaki

    2016-10-01

    Recanalization of occluded vessels leads to ischemia-reperfusion injury (IRI), with oxidative stress as one of the main causes of injury, despite the fact that recanalization therapy is the most effective treatment for ischemic stroke. The nuclear factor erythroid 2-related factor 2 (Nrf2) is one of the transcription factors which has an essential role in protection against oxidative stress. RS9 is a novel Nrf2 activator obtained from bardoxolone methyl (BARD), an Nrf2 activator that has already been tested in a clinical trial, using a biotransformation technique. RS9 has been reported to lead to higher Nrf2 activation and less cytotoxicity than BARD. In this study, we investigated the effects of RS9 on IRI. Mice were intraperitoneally treated immediately after 2h of transient middle cerebral artery occlusion (MCAO) with a vehicle solution or 0.2mg/kg of RS9. Post-onset treatment of RS9 attenuated the infarct volume and improved neurological deficits 22h after reperfusion. RS9 activated Nrf2 2 and 6h after reperfusion and activated heme oxygenase-1 at 6 and 22h after reperfusion. RS9 also attenuated the phosphorylation of NF-κB p65 2 and 6h after reperfusion. Finally, RS9 improved the survival rate and neurological deficits 7days after MCAO. Our results suggest that the activation of Nrf2 by RS9 has a neuroprotective effect, mediated by attenuating both oxidative stress and neuroinflammation, and that RS9 is an effective therapeutic candidate for the treatment of IRI. PMID:27474227

  19. Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis.

    Science.gov (United States)

    Liu, Lingling; Xie, Keliang; Chen, Hongguang; Dong, Xiaoqing; Li, Yuan; Yu, Yang; Wang, Guolin; Yu, Yonghao

    2014-11-17

    During the development of sepsis, the complication in central nervous system (CNS), appearing early and frequently relative to other systems, can obviously increase the mortality of sepsis. Moreover, sepsis survivors also accompany long-term cognitive dysfunction, while the ultimate causes and effective therapeutic strategies of brain injury in sepsis are still not fully clear. We designed this study to investigate the effects of 2% hydrogen gas (H2) on brain injury in a mouse model of sepsis. Male ICR mice were underwent cecal ligation and puncture (CLP) or sham operation. 2% H2 was inhaled for 60min beginning at both 1 and 6h after sham or CLP operation, respectively. H2 concentration in arterial blood, venous blood and brain tissue was detected after H2 inhalation separately. The survival rate was observed and recorded within 7 days after sham or CLP operation. The histopathologic changes and neuronal apoptosis were observed in hippocampus by Nissl staining and TUNEL assay. The permeability of brain-blood barrier (BBB), brain water content, inflammatory cytokines, activities of antioxidant enzymes (SOD and CAT) and oxidative products (MDA and 8-iso-PGF2α) in serum and hippocampus were detected at 24h after sham or CLP operation. The expressions of nucleus and total nuclear factor erythroid 2-related factor 2 (Nrf2) and cytoplasmic heme oxygenase-1(HO-1) in hippocampus were measured at 24h after sham or CLP operation. We assessed their cognitive function via Y-maze and Fear Conditioning test on day 3, 5, 7 and 14 after operation. H2 treatment markedly improved the survival rate and cognitive dysfunction of septic mice. CLP mice showed obvious brain injury characterized by aggravated pathological damage, BBB disruption and brain edema at 24h after CLP operation, which was markedly alleviated by 2% H2 treatment. Furthermore, we found that the beneficial effects of H2 on brain injury in septic mice were linked to the decreased levels of inflammatory cytokines and

  20. Short-term supplementation with alpha-ketoglutaric acid and 5-hydroxymethylfurfural does not prevent the hypoxia induced decrease of exercise performance despite attenuation of oxidative stress.

    Science.gov (United States)

    Gatterer, H; Greilberger, J; Philippe, M; Faulhaber, M; Djukic, R; Burtscher, M

    2013-01-01

    Reactive oxygen species are thought to partly be responsible for the hypoxia induced performance decrease. The present study evaluated the effects of a broad based antioxidant supplementation or the combined intake of alpha-ketoglutaric acid (α-KG) and 5-hydroxymethylfurfural (5-HMF) on the performance decrease at altitude. 18 healthy, well-trained males (age: 25±3 years; height: 179±6 cm; weight: 76.4±6.8 kg) were randomly assigned in a double-blind fashion to a placebo group (PL), a α-KG and 5-HMF supplementation group (AO1) or a broad based antioxidant supplementation group (AO2). Participants performed 2 incremental exercise tests to exhaustion on a cycle ergometer; the first test under normoxia and the second under hypoxia conditions (simulated altitude, FiO2=13% ~ 4 300 m). Supplementation started 48 h before the hypoxia test. Maximal oxygen uptake, maximal power output, power output at the ventilatory and lactate threshold and the tissue oxygenation index (NIRS) were measured under both conditions. Oxidative stress markers were measured before the supplementation and after the hypoxia test. Under hypoxia conditions all performance parameters decreased in the range of 19-39% with no differences between groups. A significant change from normoxia to hypoxia (pextraction, as indicated by the tissue oxygenation index, might indicate that mitochondrial functioning was actually influenced by the supplementation. PMID:22893323

  1. Excitotoxicity in the Lung: N-Methyl-D-Aspartate-Induced, Nitric Oxide-Dependent, Pulmonary Edema is Attenuated by Vasoactive Intestinal Peptide and by Inhibitors of Poly(ADP-Ribose) Polymerase

    Science.gov (United States)

    Said, Sami I.; Berisha, Hasan I.; Pakbaz, Hedayatollah

    1996-05-01

    Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the ``adult respiratory distress syndrome,'' and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

  2. Arctigenin, a Potent Ingredient of Arctium lappa L., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model

    Directory of Open Access Journals (Sweden)

    Chih-Zen Chang

    2015-01-01

    Full Text Available Upregulation of protein kinase B (PKB, also known as Akt is observed within the cerebral arteries of subarachnoid hemorrhage (SAH animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS and Akt pathways in a SAH in vitro study. Basilar arteries (BAs were obtained to examine phosphatidylinositol-3-kinase (PI3K, phospho-PI3K, Akt, phospho-Akt (Western blot and morphological examination. Endothelins (ETs and eNOS evaluation (Western blot and immunostaining were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p<0.01. The reduced eNOS protein and phospho-Akt expression in the SAH groups were relieved by the treatment of Arctigenin (p<0.01. This result confirmed that Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH.

  3. Small vessel hematocrit in ischemic myocardium

    International Nuclear Information System (INIS)

    As blood enters the microvasculature of normally perfused myocardium, there is a progressive decrease in small vessel hematocrit (SV Hct) due to RBC streaming in smaller branching vessels and the Fahraeus-Lindqvist effect. We hypothesized that if the coronary collateral circulation was composed of very small vessels branching from large parent vessels, plasma streaming would result in a further decrease of SV Hct in ischemic myocardium. Six open chest anesthetized dogs were studied. Plasma was labelled with 59FeCl siderophilin and RBC's with 99mTc to estimate SV Hct from myocardial biopsies. The LAD was occluded and cannulated for measurement of retrograde flow (arising presumably from proximal collaterals). The ischemic region was identified using the microsphere shadow technique. Collateral flow after LAD occlusion was 30 +- 12 ml/min 100g (x +- SE). Systemic Hct was 40 +- 1%. The Hct of blood from retrograde flow was 39 +- 1% (p = NS). Activity of 59FeCl and 99mTc in known quantities of blood were compared to myocardial biopsies to estimate SV Hct. Ischemic SV Hct was 23 +- 2% and non-ischemic SV Hct was 21 +- 1% (p = NS). We conclude that the size and branching pattern of coronary collaterals is such that plasma streaming in collaterals does not result in an additional decrease in SV Hct in ischemic myocardium

  4. 缺血预处理对糖尿病大鼠在体心肌NO-cGMP表达的影响%Changes in nitric oxide level and guanosine monophosphate activity after ischemic preconditioning in diabetes myocardium: in vivo rat hearts

    Institute of Scientific and Technical Information of China (English)

    韩宏光; 韩劲松; 王辉山; 张南滨; 姜辉; 尹宗涛

    2011-01-01

    目的 通过糖尿病大鼠心肌在缺血预处理(IPC)后环磷酸鸟苷(cGMP)及一氧化氮(NO)、一氧化氮合酶(NOS)表达的变化,探讨糖尿病抑制IPC心肌保护作用的机制.方法 取糖尿病及非糖尿病SD大鼠各30只,各分为3组(每组10只).(1)假手术组(Sham组):开胸后穿线做套环,但不收紧结扎线;持续155 min,全程旷置作为基础对照.(2)缺血再灌注组(I/R组):穿线平衡35 min后,持续收紧结扎造成缺血30 min,放松后再灌注90 min.(3)IPC组:穿线平衡35 min后,缺血5min,再灌注5 min,反复3次,而后重复I/R组操作.比较各组血清肌酸激酶(CK)、肌酸激酶同工酶(CK-MB)及乳酸脱氢酶(LDH)的变化,心肌组织丙二醛(MDA)含量和超氧化物岐化酶(SOD)活性及心肌组织cGMP、NO、NOS含量的变化.电镜标本行线粒体Flameng评分.结果 非糖尿病IPC组与I/R组比较,心肌酶漏出明显减少,MDA含量明显降低,SOD含量明显增加,线粒体损伤明显减轻,cGMP、NO、NOS含量明显增加(P<0.05);而IPC在糖尿病大鼠未表现出明显心肌保护作用,cGMP、NO、NOS含量无明显增加(P>0.05).结论 糖尿病抑制IPC的心肌保护作用,其机制可能与糖尿病大鼠心肌NO-cGMP通路表达受抑制有关.%Objective To study the changes of nitric oxide (NO),guanosine monophosphate(cGMP) and nitric oxide synthase (NOS) expression of diabetic rat heart after ischemic preconditioning (IPC),and to explore the possible mechanism of diabetes mellitus inhibiting myocardial protection of IPC.Methods Thirty diabetic SD rats and thirty non-diabetic SD rats were divided into 3 groups (n =10) randomly.Control group (Sham group,n =10),After surgery,no procedures were made; After 155 min,the experiment was ended.Ischemic preconditioning group ( IPC group,n =10),the rats were subjected three cycles of five minutes of ischemia followed by five minutes of reperfusion and then subjected to 30 minutes of ischemia followed by 90 minutes of

  5. Ischemic Postconditioning Alleviates Neuronal Injury Caused by Relief of Carotid Stenosis in a Rat Model of Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Pengfei Ge

    2012-10-01

    Full Text Available The effects of early relief of heavy bilateral carotid stenosis and ischemic postconditioning on hippocampus CA1 neurons are still unclear. In this study, we used a rat model to imitate severe bilateral carotid stenosis in humans. The rats were divided into sham group, carotid stenosis group, stenosis relief group and ischemic postconditioning group. Ischemic postconditioning consisted of three cycles of 30 s ischemia and 30 s reperfusion. The cerebral blood flow was measured with a laser Doppler flowmeter. Neuronal death in the CA1 region was observed by hematoxylin-eosin staining, and the number of live neurons was assessed by cell counting under a light microscope. The levels of oxidative products MDA and 8-iso-PGF2α, inflammatory factors IL-1β and TNF-α, and the activities of anti-oxidative enzymes SOD and CAT were assayed by specific enzyme-linked immunosorbent assay (ELISA kits, respectively. We found that relief of carotid stenosis and ischemic postconditioning could increase cerebral blood flow. When stenosis was relieved, the percentage of live neurons was 66.6% ± 6.2% on day 3 and 62.3% ± 9.8% on day 27, which was significantly higher than 55.5% ± 4.8% in stenosis group. Ischemic postconditioning markedly improved the live neurons to 92.5% ± 6.7% on day 3 and 88.6% ± 9.1% on day 27. Further study showed that, neuronal death caused by relief of stenosis is associated with increased oxidative stress and enhanced inflammatory response, and the protection of ischemic postconditioning is related to inhibition of oxidative stress and suppression of inflammatory response.

  6. Cordyceps militaris fruit body extract ameliorates membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-κB pathway.

    Science.gov (United States)

    Song, Jingjing; Wang, Yingwu; Liu, Chungang; Huang, Yan; He, Liying; Cai, Xueying; Lu, Jiahui; Liu, Yan; Wang, Di

    2016-04-01

    Membranous glomerulonephritis (MGN) is a common pathogenesis of nephritic syndrome in adult patients. Nuclear factor kappa B (NF-κB) serves as the main transcription factor for the inflammatory response mediated nephropathy. Cordyceps militaris, containing various pharmacological components, has been used as a kind of crude drug and folk tonic food for improving immunity and reducing inflammation. The current study aims to investigate the renoprotective activity of Cordyceps militaris aqueous extract (CM) in the cationic bovine serum albumin (C-BSA)-induced rat model of membranous glomerulonephritis. Significant renal dysfunction was observed in MGN rats; comparatively, 4-week CM administration strongly decreased the levels of 24 h urine protein, total cholesterol, triglyceride, blood urea nitrogen and serum creatinine, and increased the levels of serum albumin and total serum protein. Strikingly, recovery of the kidney histological architecture was noted in CM-treated MGN rats. A significant improvement in the glutathione peroxidase and superoxide dismutase levels, and a reduced malondialdehyde concentration were observed in the serum and kidney of CM-treated rats. Altered levels of inflammatory cytokines including interleukins, monocyte chemoattractant protein-1, intercellular adhesion molecule 1, vascular adhesion molecule 1, tumor necrosis factor-α, 6-keto-prostaglandin F1α, and nuclear transcriptional factor subunit NF-κB p65 reverted to normal levels upon treatment with CM. The present data suggest that CM protects rats against membranous glomerulonephritis via the normalization of NF-κB activity, thereby inhibiting oxidative damage and reducing inflammatory cytokine levels, which further provide experimental evidence in support of the clinical use of CM as an effective renoprotective agent. PMID:27008597

  7. Butanolic fraction of Moringa oleifera Lam. (Moringaceae) attenuates isoprotrenol-induced cardiac necrosis and oxidative stress in rats: an EPR study.

    Science.gov (United States)

    Panda, Sunanda

    2015-01-01

    The preventive effect of Moringa oleifera polyphenolic fraction (MOPF) on cardiac damage was evaluated in isoproterenol (ISO) induced cardiotoxicity model of Wistar rats. Male rats in different groups were treated with MOPF orally at the dose of 50, 100 and 150 mg/kg/day for 28 days and were subsequently administered (s.c.) with ISO (85 mg/kg body weight) for the last two days. At the end of the experiment levels of serum troponin-T, creatine kinase-MB, lactate dehydrogenase, content of malondialdehyde (MDA), activities/levels of different cellular antioxidants were estimated in control and experimental groups. Additionally, scavenging potential to the hydroxyl radical of the fraction was measured by electron paramagnetic resonance (EPR). ISO administered rats showed significant increase in the levels of serum troponin-I, creatine kinase, lactate dehydrogenase, and heart tissue MDA content. Furthermore, marked reduction in the activities of antioxidants such as superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione levels were observed. EPR study showed an increase in signal intensity in ISO-induced rats. Triphenyl tetrazolium chloride (TTC) staining of heart section revealed a marked increase in infarcted area in ISO-induced rats. Histological features of the heart also indicated a disruption in the structure of cardiac myofibrils in these animals. MOPF (100 mg/kg body weight) pretreatment prevented all these adverse effects of ISO. Present results show that the rich polyphenolic content of Moringa oleifera significantly reduced the myocardial damage and decreased the oxidative stress, possibly through hydroxyl radical scavenging activity as evidenced from the EPR spectra. PMID:26417351

  8. Caffeine prevents protection in two human models of ischemic preconditioning.

    NARCIS (Netherlands)

    Riksen, N.P.; Zhou, Z.; Oyen, W.J.G.; Jaspers, R.A.; Ramakers, B.P.; Brouwer, R.M.H.J.; Boerman, O.C.; Steinmetz, N.; Smits, P.; Rongen, G.A.

    2006-01-01

    OBJECTIVES: We studied whether caffeine impairs protection by ischemic preconditioning (IP) in humans. BACKGROUND: Ischemic preconditioning is critically dependent on adenosine receptor stimulation. We hypothesize that the adenosine receptor antagonist caffeine blocks the protective effect of IP. ME

  9. Electroacupuncture attenuates liver and kidney oxidative stress in anesthetized rats Eletroacupuntura atenua o estresse oxidativo no fígado e no rim em ratos anestesiados

    Directory of Open Access Journals (Sweden)

    Agamenon Honório Silva

    2011-01-01

    Full Text Available PURPOSE: Investigate the effects of a single electroacupuncture (EA session at acupoints Zusanli (ST-36 and Zhongwan (CV-12 combined in regulating oxidative stress in liver and kidney in anesthetized rats. METHODS: Eighteen healthy rats randomly assigned to 3 groups (n=6 were anesthetized intraperitoneally with ketamine (90mg kg-1 body weight + xylazine (10mg/kg body weight: G-1: Control (anesthesia, G-2: anesthesia+EA10Hz and 10 mA, 10 Hz applied to right ST-36 and CV-12 acupoints for 30 minutes. G-3 was likewise treated, using a tenfold higher frequency (100 Hz. G6PDH activity, malondialdehyde (MDA and glutathione (GSH levels were assayed spectrophotometrically. RESULTS: Liver MDA and GSH concentrations increased significantly in rats submitted to EA 10Hz (pOBJETIVO: Investigar os efeitos de uma única sessão de eletroacupuntura (EA aplicada nos acupontos Zusanli (E-36 e Zhongwan (RM-12 simultaneamente, na regulação do estresse oxidativo no fígado e rins em ratos anestesiados. MÉTODOS: Dezoito ratos sadios, distribuídos aleatoriamente em três grupos (n = 6, foram anestesiados com cetamina (90mg/kg de peso + xilazina (10mg/kg de peso: G-1: Controle (anestesia, G-2: anestesia + EA10Hz e G-3: anestesia + EA100Hz. Os ratos do grupo G-2 foram submetidos à EA (ondas quadradas pulsadas, 10 mA, 10 Hz aplicada aos acupontos ST-36 direito e VC-12 por 30 minutos. Nos ratos do grupo G-3 utilizou-se uma freqüência dez vezes maior (100 Hz. A atividade da enzima G6PDH e as concentrações de malondialdeído (MDA e glutationa (GSH foram verificadas por espectrofotometria. RESULTADOS: As concentrações hepáticas de MDA e GSH aumentaram significativamente nos ratos submetidos à EA, utilizando 10Hz (p <0,01 e 100Hz (p <0,001, comparado com o controle. A atividade de G6GPH diminuiu significativamente no G-2 (p <0,01 e G-3 (p <0,001 no fígado e no rim em comparação ao grupo G-1 em ratos tratados com 100Hz. CONCLUSÃO: Uma única sessão de EA 10

  10. Spectroscopic Monitoring of Kidney Tissue Ischemic Injury

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S G; Fitzgerald, J T; Michalopoulou, A P; Troppmann, C

    2004-03-11

    Noninvasive evaluation of tissue viability of donor kidneys used for transplantation is an issue that current technology is not able to address. In this work, we explore optical spectroscopy for its potential to assess the degree of ischemic damage in kidney tissue. We hypothesized that ischemic damage to kidney tissue will give rise to changes in its optical properties which in turn may be used to asses the degree of tissue injury. The experimental results demonstrate that the autofluorescence intensity of the injured kidney is decreasing as a function of time exposed to ischemic injury. Changes were also observed in the NIR light scattering intensities most probably arising from changes due to injury and death of the tissue.

  11. The effects of phosphodiesterase-5 inhibitor sildenafil against post-resuscitation myocardial and intestinal microcirculatory dysfunction by attenuating apoptosis and regulating microRNAs expression: essential role of nitric oxide syntheses signaling

    OpenAIRE

    Qian ZHANG; Wang, Guoxing; Yuan, Wei; Wu, Junyuan; Wang, Miaomiao; Li, Chunsheng

    2015-01-01

    Background Recent experimental and clinical studies have indicated the cardioprotective role of sildenafil during ischemia/reperfusion (I/R) injury. Sildenafil has been shown to attenuate postresuscitation myocardial dysfunction in piget models of ventricular fibrillation. This study was designed to investigate if administration of sildenafil will attenuate post-resuscitation myocardial dysfunction by attenuating apoptosis and regulating miRNA expressions, furthermore, ameliorating the severi...

  12. Computer Aided Detection of Ischemic Stroke Using Verilog HDL

    OpenAIRE

    P. Arivalagan*1; K. Adalarasu2

    2014-01-01

    Computed tomography (CT) images are widely used in the diagnosis of ischemic stroke because of its faster acquisition and compatibility with most life support devices. In present work we proposal advance techniques to automated detection of ischemic stroke using verilog code and image feature characteristics, which separate the ischemic stroke region from healthy tissues in computed tomography images.

  13. Sonographic and Endoscopic Findings in Cocaine-Induced Ischemic Colitis

    DEFF Research Database (Denmark)

    Leth, Thomas; Wilkens, Rune; Bonderup, Ole Kristian

    2015-01-01

    Cocaine-induced ischemic colitis is a recognized entity. The diagnosis is based on clinical and endoscopic findings. However, diagnostic imaging is helpful in the evaluation of abdominal symptoms and prior studies have suggested specific sonographic findings in ischemic colitis. We report...... sonographic and endoscopic images along with abdominal computed tomography in a case of cocaine-induced ischemic colitis....

  14. Neonatal ischemic brain injury: what every radiologist needs to know

    International Nuclear Information System (INIS)

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  15. Lactulose: an effective preventive and therapeutic option for ischemic stroke by production of hydrogen

    OpenAIRE

    Chen Xiao; Zhai Xiao; Kang Zhimin; Sun Xuejun

    2012-01-01

    Abstract Lactulose, a synthetic sugar not able to be digested and absorbed by human beings, is widely used to treat constipation and hepatic encephalopathy clinically. Through fermentation by the bacteria in the gastrointestinal tract, lactulose can produce considerable amount of hydrogen, which is protective for ischemic stroke as a unique antioxidant. We propose that lactulose can induce the production of endogenous hydrogen that in turn reduces oxidative stress and ameliorate the stroke da...

  16. Lactulose: an effective preventive and therapeutic option for ischemic stroke by production of hydrogen

    Directory of Open Access Journals (Sweden)

    Chen Xiao

    2012-02-01

    Full Text Available Abstract Lactulose, a synthetic sugar not able to be digested and absorbed by human beings, is widely used to treat constipation and hepatic encephalopathy clinically. Through fermentation by the bacteria in the gastrointestinal tract, lactulose can produce considerable amount of hydrogen, which is protective for ischemic stroke as a unique antioxidant. We propose that lactulose can induce the production of endogenous hydrogen that in turn reduces oxidative stress and ameliorate the stroke damage in human beings.

  17. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  18. RADIO FREQUENCY ATTENUATOR

    Science.gov (United States)

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  19. Propofol and in vivo oxidative stress: effects of preservative.

    Science.gov (United States)

    Brown, Robert H; Wagner, Elizabeth M; Cope, Keary A; Risby, Terence H

    2009-03-01

    Reactive oxygen species are associated with tissue inflammation and injury. Our laboratory has demonstrated that ethane, a stable product of lipid peroxidation, in exhaled breath can be used to measure total body oxidative stress. An ischemia-reperfusion model of lung injury in sheep has been studied in which pulmonary and bronchial lung perfusion could be interrupted and restored. The goal of this study was to investigate whether two commercial formulations of propofol and the individual components of the commercial formulations attenuated the oxidative stress produced in this model. Breath ethane and breath carbon monoxide were measured as biomarkers of oxidative stress that occur at reperfusion of ischemic tissue. Data were analyzed by a standard least-squares-fit model. One of the formulations for propofol, which contained the preservative ethylenediaminetetraacetic acid (EDTA), was found to decrease the overall level of oxidative stress in sheep. Furthermore, while several models of severe lung injury demonstrate additional production of reactive oxygen species, our model of ischemia/reperfusion of lung tissue did not. PMID:21383451

  20. High plasma concentrations of asymmetric dimethylarginine inhibit ischemic cardioprotection in hypercholesterolemic rats

    International Nuclear Information System (INIS)

    A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs 0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats

  1. High plasma concentrations of asymmetric dimethylarginine inhibit ischemic cardioprotection in hypercholesterolemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Landim, M.B.P.; Dourado, P.M.M.; Casella-Filho, A.; Chagas, A.C.P.; Luz, P.L. da [Unidade de Aterosclerose, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-05-10

    A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs 0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats.

  2. Selected acute phase CSF factors in ischemic stroke: findings and prognostic value

    Directory of Open Access Journals (Sweden)

    Intskirveli Nino

    2011-03-01

    Full Text Available Abstract Background Study aimed at investigation of pathogenic role and prognostic value of several selected cerebrospinal fluid acute phase factors that can reflect the severity of ischemic brain damage. Methods Ninety five acute ischemic stroke patients were investigated. Ischemic region visualized at the twenty fourth hour by conventional Magnetic Resonance Imaging. Stroke severity evaluated by National Institute Health Stroke Scale. One month outcome of disease was assessed by Barthel Index. Cerebrospinal fluid was taken at the sixth hour of stroke onset. CSF pro- and anti-inflammatory cytokines were studied by Enzyme Linked Immunosorbent Assay. Nitric Oxide and Lipoperoxide radical were measured by Electron Paramagnetic Resonance. CSF Nitrate levels were detected using the Griess reagent. Statistics performed by SPSS-11.0. Results At the sixth hour of stroke onset, cerebrospinal fluid cytokine levels were elevated in patients against controls. Severe stroke patients had increased interleukin-6 content compared to less severe strokes (P Conclusion According to present study the cerebrospinal fluid contents of interleukin-6 and nitrates seem to be the most reliable prognostic factors in acute phase of ischemic stroke.

  3. Ischemic preconditioning and inflammatory response syndrome after reperfusion injury: an experimental model in diabetic rats.

    Science.gov (United States)

    Grigorescu, Bianca Liana; Georgescu, Anca Meda; Cioc, Adrian-Dan; Fodor, Raluca-Ştefania; Cotoi, Ovidiu Simion; Fodor, Pal; Copotoiu, Sanda Maria; Azamfirei, Leonard

    2015-01-01

    Quantification of local ischemia and inflammatory response syndrome correlated with histological changes associated with ischemia-reperfusion injury (IRI) after revascularization techniques. We included 12 adult male Wistar rats, aged eight weeks that were randomly divided into two groups. The first group acted as the control and at the second group, we induced diabetes by intraperitoneal streptozotocin administration (60 mg/kg). After eight weeks, the rats were subject to ischemic preconditioning for 10 minutes at three regular intervals. Twenty-four hours post-preconditioning, both groups were subject to ischemia for 20 minutes, followed by 30 minutes of reperfusion. Oxygen extraction was higher in Group 1, the arterio-venous CO2 gradient was higher in the control group, but not significant. The lactate production was higher in Group 1. The second group had a higher Na+ and also a significant difference in K+ values. Receptor for Advanced Glycation End (RAGE) values were higher in the second group but with no significant difference (RAGE1=0.32 ng/mL versus RAGE2=0.40 ng/mL). The muscle samples from the control group displayed significant rhabdomyolysis, damage to the nucleus, while the preconditioned group showed almost normal morphological characteristics. The lungs and kidneys were most damaged in the control group, with damage expressed as thickened alveolar septa, neutrophil infiltrates, eosinophilic precipitates in the proximal convolute tubule. Ischemic preconditioning significantly attenuates the ischemic reperfusion injury. PMID:26743274

  4. Left ventricular geometry and white matter lesions in ischemic stroke patients.

    Science.gov (United States)

    Butenaerts, Demian; Chrzanowska-Wasko, Joanna; Slowik, Agnieszka; Dziedzic, Tomasz

    2016-06-01

    Abnormal left ventricular (LV) geometry is associated with extracardiac organ damage in patients with hypertension. The aim of this study was to determine the relationship between LV geometry and white matter lesions (WMLs) in ischemic stroke patients. We retrospectively analyzed data from 155 patients (median age 62; 49.8% male) with mild ischemic stroke (median National Institutes of Health Stroke Scale score 4) who underwent brain magnetic resonance imaging and echocardiography. Patients were categorized into four groups: normal LV geometry, concentric remodeling, eccentric left ventricular hypertrophy (LVH) and concentric LVH. WMLs were graded using the Fazekas scale on fluid-attenuated inversion recovery images. Extensive WMLs were defined as a Fazekas score > 2. Extensive WMLs were more prevalent in patients with concentric LVH, eccentric LVH and concentric remodeling than in those with normal LV geometry. After adjusting for hypertension, age, diabetes mellitus, hypercholesterolemia, glomerular filtration rate and ischemic heart disease, patients with concentric remodeling [odds ratio (OR) 3.94, 95% confidence interval (CI) 1.26-12.31, p = 0.02] and those with concentric LVH (OR 3.69, 95% CI 1.24-10.95, p = 0.02), but not patients with eccentric LVH (OR 2.44, 95% CI 0.72-8.29, p = 0.15), had higher risk of extensive WMLs than patients with normal LV geometry. PMID:26581453

  5. Attenuator And Conditioner

    Science.gov (United States)

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  6. Rehabilitation Outcomes: Ischemic versus Hemorrhagic Strokes

    Directory of Open Access Journals (Sweden)

    Robert Perna

    2015-01-01

    Full Text Available Background. Ischemic and hemorrhagic strokes have different pathophysiologies and possibly different long-term cerebral and functional implications. Hemorrhagic strokes expose the brain to irritating effects of blood and ischemic strokes reflect localized or diffuse cerebral vascular pathology. Methods. Participants were individuals who suffered either an ischemic (n=172 or hemorrhagic stroke (n=112 within the past six months and were involved in a postacute neurorehabilitation program. Participants completed three months of postacute neurorehabilitation and the Mayo Portland Adaptability Inventory-4 (MPAI-4 at admission and discharge. Admission MPAI-4 scores and level of functioning were comparable. Results. Group ANOVA comparisons show no significant group differences at admission or discharge or difference in change scores. Both groups showed considerably reduced levels of productivity/employment after discharge as compared to preinjury levels. Conclusions. Though the pathophysiology of these types of strokes is different, both ultimately result in ischemic injuries, possibly accounting for lack of findings of differences between groups. In the present study, participants in both groups experienced similar functional levels across all three MPAI-4 domains both at admission and discharge. Limitations of this study include a highly educated sample and few outcome measures.

  7. An overview of antithrombotics in ischemic stroke.

    Science.gov (United States)

    Schweickert, Patricia A; Gaughen, John R; Kreitel, Elizabeth M; Shephard, Timothy J; Solenski, Nina J; Jensen, Mary E

    2016-06-19

    The use of antithrombotic medications is an important component of ischemic stroke treatment and prevention. This article reviews the evidence for best practices for antithrombotic use in stroke with focused discussion on the specific agents used to treat and prevent stroke. PMID:27153001

  8. Hyperglycemia Increases Susceptibility to Ischemic Necrosis

    Directory of Open Access Journals (Sweden)

    D. Lévigne

    2013-01-01

    Full Text Available Diabetic patients are at risk for spontaneous foot ulcers, chronic wounds, infections, and tissue necrosis. Current theories suggest that the development and progression of diabetic foot ulcers are mainly caused by arteriosclerosis and peripheral neuropathy. Tissue necrosis plays a primordial role in the progression of diabetic foot ulcers but the underlying mechanisms are poorly understood. The aim of the present study was to investigate the effects of hyperglycemia per se on the susceptibility of ischemic tissue to necrosis, using a critical ischemic hind limb animal model. We inflicted the same degree of ischemia in both euglycemic and streptozotocin-induced hyperglycemic rats by resecting the external iliac, the femoral, and the saphenous arteries. Postoperative laser Doppler flowmetry of the ischemic feet showed the same degree of reduction in skin perfusion in both hyperglycemic and euglycemic animals. Nevertheless, we found a significantly higher rate of limb necrosis in hyperglycemic rats compared to euglycemic rats (71% versus 29%, resp.. In this study, we revealed that hyperglycemia per se increases the susceptibility to limb necrosis in ischemic conditions. Our results may help to better understand the physiopathology of progressive diabetic wounds and underline the importance of strict glycemic control in patients with critical limb ischemia.

  9. Cerebral Ischemic Preconditioning: the Road So Far….

    Science.gov (United States)

    Thushara Vijayakumar, N; Sangwan, Amit; Sharma, Bhargy; Majid, Arshad; Rajanikant, G K

    2016-05-01

    Cerebral preconditioning constitutes the brain's adaptation to lethal ischemia when first exposed to mild doses of a subtoxic stressor. The phenomenon of preconditioning has been largely studied in the heart, and data from in vivo and in vitro models from past 2-3 decades have provided sufficient evidence that similar machinery exists in the brain as well. Since preconditioning results in a transient protective phenotype labeled as ischemic tolerance, it can open many doors in the medical warfare against stroke, a debilitating cerebrovascular disorder that kills or cripples thousands of people worldwide every year. Preconditioning can be induced by a variety of stimuli from hypoxia to pharmacological anesthetics, and each, in turn, induces tolerance by activating a multitude of proteins, enzymes, receptors, transcription factors, and other biomolecules eventually leading to genomic reprogramming. The intracellular signaling pathways and molecular cascades behind preconditioning are extensively being investigated, and several first-rate papers have come out in the last few years centered on the topic of cerebral ischemic tolerance. However, translating the experimental knowledge into the clinical scaffold still evades practicality and faces several challenges. Of the various preconditioning strategies, remote ischemic preconditioning and pharmacological preconditioning appears to be more clinically relevant for the management of ischemic stroke. In this review, we discuss current developments in the field of cerebral preconditioning and then examine the potential of various preconditioning agents to confer neuroprotection in the brain. PMID:26081149

  10. Remnant cholesterol and ischemic heart disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Nordestgaard, Børge G

    2014-01-01

    PURPOSE OF REVIEW: To review recent advances in the field of remnant cholesterol as a contributor to the development of ischemic heart disease (IHD). RECENT FINDINGS: Epidemiologic, mechanistic, and genetic studies all support a role for elevated remnant cholesterol (=cholesterol in triglyceride...

  11. The neuroprotective mechanism of brain ischemic preconditioning

    Institute of Scientific and Technical Information of China (English)

    Xiao-qian LIU; Rui SHENG; Zheng-hong QIN

    2009-01-01

    Brain ischemia is one of the most common causes of death and the leading cause of adult disability in the world. Brain ischemic pre- conditioning (BIP) refers to a transient, sublethal ischemia which results in tolerance to later, otherwise lethal, cerebral ischemia. Many attempts have been made to understand the molecular and cellular mechanisms underlying the neuroprotection offered by ischemic preconditioning. Many studies have shown that neuroprotective mechanisms may involve a series of molecular regulatory pathways including activation of the N-methyI-D-aspartate (NMDA) and adenosine receptors; activation of intracellular signaling pathways such as mitogen activated protein kinases (MAPK) and other protein kinases; upregulation of Bcl-2 and heat shock proteins (HSPs); and activation of the ubiquitin-proteasome pathway and the autophagic-lysosomal pathway. A better understanding of the processes that lead to cell death after stroke as well as of the endogenous neuroprotective mechanisms by which BIP protects against brain ischemic insults could help to develop new therapeutic strategies for this devastating neurological disease. The purpose of the present review is to summarize the neuroprotective mechanisms of BIP and to discuss the possibility of mimicking ischemic preconditioning as a new strategy for preventive treatment of ischemia.

  12. Ischemic Stroke during Pregnancy and Puerperium

    Directory of Open Access Journals (Sweden)

    Elisabetta Del Zotto

    2011-01-01

    Full Text Available Ischemic stroke during pregnancy and puerperium represents a rare occurrence but it could be a serious and stressful event for mothers, infants, and also families. Whenever it does occur, many concerns arise about the safety of the mother and the fetus in relation to common diagnostic tests and therapies leading to a more conservative approach. The physiological adaptations in the cardiovascular system and in the coagulability that accompany the pregnant state, which are more significant around delivery and in the postpartum period, likely contribute to increasing the risk of an ischemic stroke. Most of the causes of an ischemic stroke in the young may also occur in pregnant patients. Despite this, there are specific conditions related to pregnancy which may be considered when assessing this particular group of patients such as pre-eclampsia-eclampsia, choriocarcinoma, peripartum cardiomiopathy, amniotic fluid embolization, and postpartum cerebral angiopathy. This article will consider several questions related to pregnancy-associated ischemic stroke, dwelling on epidemiological and specific etiological aspects, diagnostic issue concerning the use of neuroimaging, and the related potential risks to the embryo and fetus. Therapeutic issues surrounding the use of anticoagulant and antiplatelets agents will be discussed along with the few available reports regarding the use of thrombolytic therapy during pregnancy.

  13. Validation of [1-11C]acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium

    International Nuclear Information System (INIS)

    Extraction and clearance kinetics of [1-11C]acetate were examined in 65 experiments in 30 open-chest dogs. Twenty-nine studies were performed at control, 13 during ischemia, eight after reperfusion, 13 during dipyridamole-induced hyperemia, and two during alteration of cardiac workload. [1-11C]acetate was injected directly into the left anterior descending coronary artery, and myocardial tissue-time activity curves were recorded with a gamma probe. The single-pass extraction fraction averaged 64.2 +/- 9.7% in control, 65.3 +/- 9.1% in ischemia, 70.0 +/- 4.4% in reperfusion, and 46.5 +/- 7.4% in dipyridamole-induced hyperemia groups. 11C clearance was biexponential in all cases. The rate constant k1 for the first rapid clearance phase correlated closely with myocardial oxygen consumption (r = 0.94) in control, ischemia, reperfusion, and dipyridamole-induced hyperemia groups. Monoexponential fitting of only the first linear part of the clearance curve yielded the rate constant kmono, which also correlated with myocardial oxygen consumption (r = 0.96). Arterial lactate concentrations and the amount of free fatty acid oxygen equivalents consumed by the myocardium were shown to have a small but statistically significant impact on the relation between [1-11C]acetate clearance rate constants and myocardial oxygen consumption. The fraction of 14CO2 activity contributing to overall 14C activity leaving the myocardium after simultaneous injection of [1-14C]acetate (n = 24) was relatively high in all cases , indicating that externally measured 11C clearance corresponds to CO2 production and thus to tricarboxylic acid cycle activity. In conclusion, the results validate the use of [1-11C]acetate as a tracer of oxidative myocardial metabolism for use with positron emission tomography

  14. Blueberry-enriched diet protects rat heart from ischemic damage.

    Directory of Open Access Journals (Sweden)

    Ismayil Ahmet

    Full Text Available OBJECTIVES: to assess the cardioprotective properties of a blueberry enriched diet (BD. BACKGROUND: Reactive oxygen species (ROS play a major role in ischemia-related myocardial injury. The attempts to use synthetic antioxidants to block the detrimental effects of ROS have produced mixed or negative results precipitating the interest in natural products. Blueberries are readily available product with the highest antioxidant capacity among fruits and vegetables. METHODS AND RESULTS: Following 3-mo of BD or a regular control diet (CD, the threshold for mitochondrial permeability transition (t(MPT was measured in isolated cardiomyocytes obtained from young male Fischer-344 rats. Compared to CD, BD resulted in a 24% increase (p<0.001 of ROS indexed t(MPT. The remaining animals were subjected to a permanent ligation of the left descending coronary artery. 24 hrs later resulting myocardial infarction (MI in rats on BD was 22% less than in CD rats (p<0.01. Significantly less TUNEL(+ cardiomyocytes (2% vs 9% and 40% less inflammation cells were observed in the myocardial area at risk of BD compared to CD rats (p<0.01. In the subgroup of rats, after coronary ligation the original diet was either continued or switched to the opposite one, and cardiac remodeling and MI expansion were followed by serial echocardiography for 10 weeks. Measurements suggested that continuation of BD or its withdrawal after MI attenuated or accelerated rates of post MI cardiac remodeling and MI expansion. CONCLUSION: A blueberry-enriched diet protected the myocardium from induced ischemic damage and demonstrated the potential to attenuate the development of post MI chronic heart failure.

  15. Polyethylene glycol-coated graphene oxide attenuates antigen-specific IgE production and enhanced antigen-induced T-cell reactivity in ovalbumin-sensitized BALB/c mice

    Directory of Open Access Journals (Sweden)

    Wu HY

    2014-09-01

    Full Text Available Hsin-Ying Wu,1,* Kun-Ju Lin,2,* Ping-Yen Wang,1 Chi-Wen Lin,3 Hong-Wei Yang,3 Chen-Chi M Ma,3 Yu-Jen Lu,4 Tong-Rong Jan1 1Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; 2Animal Molecular Imaging Center and Department of Nuclear Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan; 3Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu, Taiwan; 4Department of Neurosurgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan *These authors contributed equally to this work Background: Graphene oxide (GO is a promising nanomaterial for potential application in the versatile field of biomedicine. Graphene-based nanomaterials have been reported to modulate the functionality of immune cells in culture and to induce pulmonary inflammation in mice. Evidence pertaining to the interaction between graphene-based nanomaterials and the immune system in vivo remains scarce. The present study investigated the effect of polyethylene glycol-coated GO (PEG-GO on antigen-specific immunity in vivo. Methods: BALB/c mice were intravenously administered with a single dose of PEG-GO (0.5 or 1 mg/kg 1 hour before ovalbumin (OVA sensitization, and antigen-specific antibody production and splenocyte reactivity were measured 7 days later. Results: Exposure to PEG-GO significantly attenuated the serum level of OVA-specific immunoglobulin E. The production of interferon-γ and interleukin-4 by splenocytes restimulated with OVA in culture was enhanced by treatment with PEG-GO. In addition, PEG-GO augmented the metabolic activity of splenocytes restimulated with OVA but not with the T-cell mitogen concanavalin A. Conclusion: Collectively, these results demonstrate that systemic exposure to PEG-GO modulates several aspects of antigen-specific immune responses, including the serum production of immunoglobulin E and T-cell functionality. Keywords: graphene oxide, T

  16. Cerebrospinal fluid may mediate CNS ischemic injury

    Directory of Open Access Journals (Sweden)

    Soriano Sulpicio G

    2005-09-01

    Full Text Available Abstract Background The central nervous system (CNS is extremely vulnerable to ischemic injury. The details underlying this susceptibility are not completely understood. Since the CNS is surrounded by cerebrospinal fluid (CSF that contains a low concentration of plasma protein, we examined the effect of changing the CSF in the evolution of CNS injury during ischemic insult. Methods Lumbar spinal cord ischemia was induced in rabbits by cross-clamping the descending abdominal aorta for 1 h, 2 h or 3 h followed by 7 d of reperfusion. Prior to ischemia, rabbits were subjected to the following procedures; 1 CSF depletion, 2 CSF replenishment at 0 mmHg intracranial pressure (ICP, and 3 replacement of CSF with 8% albumin- or 1% gelatin-modified artificial CSF, respectively. Motor function of the hind limbs and histopathological changes of the spinal cord were scored. Post-ischemic microcirculation of the spinal cord was visualized by fluorescein isothiocyanate (FITC albumin. Results The severity of histopathological damage paralleled the neurological deficit scores. Paraplegia and associated histopathological changes were accompanied by a clear post-ischemic deficit in blood perfusion. Spinal cord ischemia for 1 h resulted in permanent paraplegia in the control group. Depletion of the CSF significantly prevented paraplegia. CSF replenishment with the ICP reduced to 0 mmHg, did not prevent paraplegia. Replacement of CSF with albumin- or gelatin-modified artificial CSF prevented paraplegia in rabbits even when the ICP was maintained at 10–15 mmHg. Conclusion We conclude that the presence of normal CSF may contribute to the vulnerability of the spinal cord to ischemic injury. Depletion of the CSF or replacement of the CSF with an albumin- or gelatin-modified artificial CSF can be neuroprotective.

  17. Cerebroprotective Effect of Moringa oleifera against Focal Ischemic Stroke Induced by Middle Cerebral Artery Occlusion

    OpenAIRE

    Woranan Kirisattayakul; Jintanaporn Wattanathorn; Terdthai Tong-Un; Supaporn Muchimapura; Panakaporn Wannanon; Jinatta Jittiwat

    2013-01-01

    The protection against ischemic stroke is still required due to the limitation of therapeutic efficacy. Based on the role of oxidative stress in stroke pathophysiology, we determined whether Moringa oleifera, a plant possessing potent antioxidant activity, protected against brain damage and oxidative stress in animal model of focal stroke. M. oleifera leaves extract at doses of 100, 200 and 400 mg·kg−1 was orally given to male Wistar rats (300–350 g) once daily at a period of 2 weeks before t...

  18. Monitoring the catalytic synthesis of glycerol carbonate by real-time attenuated total reflection FTIR spectroscopy

    NARCIS (Netherlands)

    Calvino-Casilda, V.; Mul, G.; Fernandez, J.F.; Rubio-Marcos, F.; Banares, M.A.

    2011-01-01

    In situ Attenuated Total Reflectance FTIR spectroscopy was used to study the carbonylation of glycerol with urea. Cobalt oxide nanoparticles, Co3O4, hierarchically dispersed on zinc oxide microparticles, ZnO, were used as catalysts. The present work demonstrates that in situ real-time attenuated tot

  19. Comparing the Effect of Interavitreal Bevacizumab in Visual Acuity of Ischemic and Non-Ischemic Diabetic Macular Edema

    Directory of Open Access Journals (Sweden)

    Farzaneh Ghasemzadeh

    2013-02-01

    Full Text Available Background: The paper tries to examine the effect of avastin on visual acuity in patients with Ischemic and non-ischemic diabetic macular edema which was estimated convenient, inexpensive, safe, and quick in contrast to laser or deep vitrectomy. Materials and Methods: In this clinical trial study, patients with clinically significant macular edema (CSMA were subjected to fluorescein angiography (FA and people whose foveal avascular zones (FAZ were over 1000 µm were defined as ischemic diabetic macular edema. Patients were divided into two ischemic and non-ischemic groups. The best corrected visual acuity (BCVA and the central macular thickness (CMT in all eyes were measured and recorded by optical coherence tomography (OCT. All patients received 3 vitreous injections of bevacizumab (avastin at 1-month intervals. One month after the third injection, BCVA and CMT were measured again and patient’s information was compared before and after the injection. Results: Out of 87 eyes (66 patients, 23 eyes (26.4% belonged to ischemic group and 64 eyes (73.6% belonged to non-ischemic group. In ischemic group, BCVA improved from 0.653 ±0.309 LogMAR to 0.404 ±0.255 LogMAR (p=0.001, while no significant change was seen in non-ischemic group (from 0.881 ±0.332 to 0.879 ±0.378. In ischemic group, CMT was increased from 362.9±34.66 to 278.76 ± 45.57 and in non-ischemic group it was enhanced from 353.47 ±67.61 to 239.87±55.44 (p=0.001.Conclusion: In spite of the great impact of vitreous injection of avastin in reducing the central macular thickness in both ischemic and non-ischemic groups and sensible improvement of patients’ visibility, the visibility itself was not improved considerably in ischemic group.

  20. Particulate matter and hospital admissions due to ischemic heart disease in Sorocaba, SP

    Directory of Open Access Journals (Sweden)

    Samara da Silva Gavinier

    2013-12-01

    Full Text Available There is evidence that air pollution is a risk factor for ischemic heart diseases (IHD. The objective of this study was to estimate the association between exposure to particulate matter (PM10 and hospital admissions due to ischemic heart diseases. It was a time-series ecological study with individuals of both genders, 50 or more years old, and residents of Sorocaba, São Paulo. The admission data was obtained from the DATASUS site according to ICD-10 (I20 to I22 and I24 to I25.0, for the period from January 1st 2007 to December 31st 2010. The concentrations of air pollutants (particulate matter, ozone, nitrogen dioxide, nitrogen oxide and oxides of nitrogen, temperature and mean relative humidity were provided by the São Paulo State Environmental Agency. The generalized additive model Poisson regression with lags of up to four days was used. There were 1804 admissions during the period. Exposure to PM10 was significantly associated with hospitalization for IHD two and four days after exposure with RR = 1.006, 95% CI 1.001-1.012 and an increment of 21 μg m-³ was associated with an increase of 13% in risk of hospitalization two days after exposure and 14% after four days. It was therefore possible to identify an association with exposure to PM10 in hospitalizations due to ischemic heart diseases in individuals from a medium-sized city of Sao Paulo.

  1. Radiofrequency attenuator and method

    Science.gov (United States)

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-11-10

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  2. Ischemic stroke: carotid and vertebral artery disease.

    Science.gov (United States)

    Vilela, P; Goulão, A

    2005-03-01

    Ischemic strokes may have distinct aetiologies, including several different intrinsic arterial pathological disorders. The diagnosis and understanding of these arterial diseases is critical for the correct management of stroke as different treatment approaches are undertaken according to the aetiology. Atherosclerosis is by far the most common arterial disease among adults, and other pathological processes include arterial dissection, small vessel disease, inflammatory and non-inflammatory vasculopathy and vasomotor disorders. In children, there are several vasculopathies responsible for vaso-occlusive disease such as sickle-cell anemia, acute regressive angiopathy and Moya-Moya disease, neurofibromatosis, dissections, vasculitis associated with intracranial and systemic infections. An overview of the major carotid and vertebral pathological diseases responsible for ischemic stroke in adults and children, highlighting the accuracy of the different imaging modalities for its diagnosis and the imaging appearance of these diseases, is given. PMID:15657789

  3. Ischemic stroke: carotid and vertebral artery disease

    International Nuclear Information System (INIS)

    Ischemic strokes may have distinct aetiologies, including several different intrinsic arterial pathological disorders. The diagnosis and understanding of these arterial diseases is critical for the correct management of stroke as different treatment approaches are undertaken according to the aetiology. Atherosclerosis is by far the most common arterial disease among adults, and other pathological processes include arterial dissection, small vessel disease, inflammatory and non-inflammatory vasculopathy and vasomotor disorders. In children, there are several vasculopathies responsible for vaso-occlusive disease such as sickle-cell anemia, acute regressive angiopathy and Moya-Moya disease, neurofibromatosis, dissections, vasculitis associated with intracranial and systemic infections. An overview of the major carotid and vertebral pathological diseases responsible for ischemic stroke in adults and children, highlighting the accuracy of the different imaging modalities for its diagnosis and the imaging appearance of these diseases, is given. (orig.)

  4. Genetics of ischemic stroke: Indian perspective

    Directory of Open Access Journals (Sweden)

    Subhash Kaul

    2012-01-01

    Full Text Available A stroke is still a major cause of long-term disability and the third largest killer in the world after heart attack and cancer. Inherited genetic variation has been shown to play a role in its pathogenesis and therefore, there is a need to identify the culprit genetic variants. They may provide novel targets for preventive therapeutics. The most intensively investigated candidate gene is PDE4D. There are several positive replication studies of PDE4D gene with stroke. The genetic contribution to ischemic stroke risk in India has not been explored adequately. Reports on few candidate genes are available but we are still lagging behind in this aspect. Most of the reports are from Andhra Pradesh, a province in south India and a few parts of north India. PDE4D has been identified as a predisposition gene for ischemic stroke in Southern as well as the Northern population of India.

  5. Evolving Treatments for Acute Ischemic Stroke.

    Science.gov (United States)

    Zerna, Charlotte; Hegedus, Janka; Hill, Michael D

    2016-04-29

    The purpose of this article is to review advances in stroke treatment in the hyperacute period. With recent evolutions of technology in the fields of imaging, thrombectomy devices, and emergency room workflow management, as well as improvement in statistical methods and study design, there have been ground breaking changes in the treatment of acute ischemic stroke. We describe how stroke presents as a clinical syndrome and how imaging as the most important biomarker will help differentiate between stroke subtypes and treatment eligibility. The evolution of hyperacute treatment has led to the current standard of care: intravenous thrombolysis with tissue-type plasminogen activator and endovascular treatment for proximal vessel occlusion in the anterior cerebral circulation. All patients with acute ischemic stroke are in need of hyperacute secondary prevention because the risk of recurrence is highest closest to the index event. The dominant themes of modern stroke care are the use of neurovascular imaging and speed of diagnosis and treatment. PMID:27126651

  6. Ischemic stroke: carotid and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, P.; Goulao, A. [Hospital Garcia de Orta, Servico de Neurorradiologia, Almada (Portugal)

    2005-03-01

    Ischemic strokes may have distinct aetiologies, including several different intrinsic arterial pathological disorders. The diagnosis and understanding of these arterial diseases is critical for the correct management of stroke as different treatment approaches are undertaken according to the aetiology. Atherosclerosis is by far the most common arterial disease among adults, and other pathological processes include arterial dissection, small vessel disease, inflammatory and non-inflammatory vasculopathy and vasomotor disorders. In children, there are several vasculopathies responsible for vaso-occlusive disease such as sickle-cell anemia, acute regressive angiopathy and Moya-Moya disease, neurofibromatosis, dissections, vasculitis associated with intracranial and systemic infections. An overview of the major carotid and vertebral pathological diseases responsible for ischemic stroke in adults and children, highlighting the accuracy of the different imaging modalities for its diagnosis and the imaging appearance of these diseases, is given. (orig.)

  7. Acupuncture at Waiguan (TE5) influences activation/deactivation of functional brain areas in ischemic stroke patients and healthy people A functional MRI study

    Institute of Scientific and Technical Information of China (English)

    Junqi Chen; Yong Huang; Xinsheng Lai; Chunzhi Tang; Junjun Yang; Hua Chen; Tongjun Zeng; Junxian Wu; Shanshan Qu

    2013-01-01

    In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhanced activation in Broadmann areas 5, 6, 7, 18, 19, 24, 32, the hypothalamic inferior lobe, the mamillary body, and the ventral posterolateral nucleus of the left hemisphere, and Broadmann areas 4, 6, 7, 18, 19 and 32 of the right hemisphere, but attenuated activation of Broadmann area 13, the hypothalamic inferior lobe, the posterior lobe of the tonsil of cerebellum, and the culmen of the anterior lobe of hypophysis, in the left hemisphere and Broadmann area 13 in the right hemisphere. In ischemic stroke subjects, a number of deactivated brain areas were enhanced, including Broadmann areas 6, 11, 20, 22, 37, and 47, the culmen of the anterior lobe of hypophysis, alae lingulae cerebella, and the posterior lobe of the tonsil of cerebellum of the left hemisphere, and Broadmann areas 8, 37, 45 and 47, the culmen of the anterior lobe of hypophysis, pars tuberalis adenohypophyseos, inferior border of lentiform nucleus, lateral globus pallidus, inferior temporal gyrus, and the parahippocampal gyrus of the right hemisphere. These subjects also exhibited attenuation of a number of deactivated brain areas, including Broadmann area 7. These data suggest that acupuncture at Waiguan specifically alters brain function in regions associated with sensation, vision, and motion in ischemic stroke patients. By contrast, in normal individuals, acupuncture at Waiguan generally activates brain areas associated with insomnia and other functions.

  8. Transient ischemic attack after Mesobuthus gibbosus envenomation

    OpenAIRE

    Golcuk, Yalcin; Ozsarac, Murat; Bilge, Adnan; Golcuk, Burcu; Cinar, Bilge Piri; Hayran, Mustafa

    2014-01-01

    Endometriosis Mesobuthus gibbosus is a medically important venomous scorpion in western of Turkey which causes significant morbidity. Envenoming of this species scorpion results with varying degrees of local symptoms and clinically important systemic effects. This case describes an authenticated first case of transient ischemic attack in a 68 year-old-woman following envenoming by M. gibbosus in Turkey.Keywords: Scorpion, Envenomation, Emergency department

  9. ENDOTHELIAL DYSFUNCTION IN ISCHEMIC HEART DISEASE

    OpenAIRE

    N. E. Zakirova; R. G. Oganov; A. N. Zakirova; M. P. Plotnikova; G. M. Salakhova

    2016-01-01

    Aim. To assess the role of endothelial vasodilating, vasoconstrictive and adhesive dysfunction in the development of angina pectoris (AP) in patients with ischemic heart disease (IHD).Material and methods. 83 patients with IHD were included in the study. 30 patients had AP of functional class (FC)-II, 27 patients - FC-III and 26 patients - FC-IV. The control group consisted of 25 healthy persons. Bicycle ergometry, daily ECG monitoring and echocardiography were used for verification of IHD. E...

  10. Inflammatory responses in hypoxic ischemic encephalopathy

    OpenAIRE

    Liu, Fudong; McCullough, Louise D.

    2013-01-01

    Inflammation plays a critical role in mediating brain injury induced by neonatal hypoxic ischemic encephalopathy (HIE). The mechanisms underlying inflammatory responses to ischemia may be shared by neonatal and adult brains; however, HIE exhibits a unique inflammation phenotype that results from the immaturity of the neonatal immune system. This review will discuss the current knowledge concerning systemic and local inflammatory responses in the acute and subacute stages of HIE. The key compo...

  11. Endothelial progenitor cells in acute ischemic stroke

    Science.gov (United States)

    Martí-Fàbregas, Joan; Crespo, Javier; Delgado-Mederos, Raquel; Martínez-Ramírez, Sergi; Peña, Esther; Marín, Rebeca; Dinia, Lavinia; Jiménez-Xarrié, Elena; Fernández-Arcos, Ana; Pérez-Pérez, Jesús; Querol, Luis; Suárez-Calvet, Marc; Badimon, Lina

    2013-01-01

    Objectives The levels of circulating endothelial progenitor cells (EPCs) in ischemic stroke have not been studied extensively and reported results are inconsistent. We aimed to investigate the time course, the prognostic relevance, and the variables associated with EPC counts in patients with ischemic stroke at different time points. Material and methods We studied prospectively 146 consecutive patients with ischemic stroke within the first 48 h from the onset of symptoms (baseline). We evaluated demographic data, classical vascular risk factors, treatment with thrombolysis and statins, stroke etiology, National Institute of Health and Stroke Scale score and outcome (favorable when Rankin scale score 0–2). Blood samples were collected at baseline, at day 7 after stroke (n = 121) and at 3 months (n = 92). The EPC were measured by flow cytometry. Results We included 146 patients with a mean age of 70.8 ± 12.2 years. The circulating EPC levels were higher on day 7 than at baseline or at 3 months (P = 0.045). Pretreatment with statins (odds ratio [OR] 3.11, P = 0.008) and stroke etiology (P = 0.032) were predictive of EPC counts in the baseline sample. EPC counts were not associated with stroke severity or functional outcome in all the patients. However, using multivariate analyses, a better functional outcome was found in patients with higher EPC counts in large-artery atherosclerosis and small-vessel disease etiologic subtypes. Conclusions After acute ischemic stroke, circulating EPC counts peaked at day 7. Pretreatment with statins increased the levels of EPC. In patients with large-artery atherosclerosis and small-vessel disease subtypes, higher counts were related to better outcome at 3 months. PMID:24363968

  12. Ischemic Colitis in an Endurance Runner

    Directory of Open Access Journals (Sweden)

    Chase Grames

    2012-01-01

    Full Text Available A 20-year-old female running the Marine Corps Marathon developed diarrhea at mile 12. After finishing the race she noted that she was covered in bloody stool. A local emergency department suspected ischemic colitis. After discharge, her primary care physician instructed her to discontinue the use of all nonsteroidal anti-inflammatory drugs. Her symptoms resolved and she returned to running without any complications. This paper describes the pathophysiology, diagnostic approach, and management options.

  13. Resilience in Patients with Ischemic Heart Disease

    OpenAIRE

    Conceição Maria Martins de Lemos; David William Moraes; Lucia Campos Pellanda

    2016-01-01

    Background: Resilience is a psychosocial factor associated with clinical outcomes in chronic diseases. The relationship between this protective factor and certain diseases, such heart diseases, is still under-explored. Objective: The present study sought to investigate the frequency of resilience in individuals with ischemic heart disease. Method: This was a cross-sectional study with 133 patients of both genders, aged between 35 and 65 years, treated at Rio Grande do Sul Cardiology Institu...

  14. Recent Advances in Childhood Arterial Ischemic Stroke

    OpenAIRE

    Fox, Christine K.; Fullerton, Heather J.

    2010-01-01

    Although many underlying diseases have been reported in the setting of childhood arterial ischemic stroke, emerging research demonstrates that non-atherosclerotic intracerebral arteriopathies in otherwise healthy children are prevalent. Minor infections may play a role in arteriopathies that have no other apparent underlying cause. Although stroke in childhood differs in many aspects from adult stroke, few systematic studies specific to pediatrics are available to inform stroke management. Tr...

  15. Data considerations in ischemic stroke trials

    OpenAIRE

    Liebeskind, David S.; Feldmann, Edward

    2014-01-01

    Data drive the analyses of any ischemic stroke trial, culminating in the main results and potential next steps. The distinct purpose of a given trial, advancing a novel treatment or examining routine clinical practice, determines the nature of essential data elements. Information gathering for an effective trial depends on ample data, adequate infrastructure, and properly planned statistical analyses. This review highlights the fact that successful future trials will require appropriate exper...

  16. Gene Therapy For Ischemic Heart Disease

    OpenAIRE

    Lavu, Madhav; Gundewar, Susheel; Lefer, David J.

    2010-01-01

    Current pharmacologic therapy for ischemic heart disease suffers multiple limitations such as compliance issues and side effects of medications. Revascularization procedures often end with need for repeat procedures. Patients remain symptomatic despite maximal medical therapy. Gene therapy offers an attractive alternative to current pharmacologic therapies and may be beneficial in refractory disease. Gene therapy with isoforms of growth factors such as VEGF, FGF and HGF induces angiogenesis, ...

  17. Ischemic Stroke during Pregnancy and Puerperium

    OpenAIRE

    Del Zotto, Elisabetta; Giossi, Alessia; Volonghi, Irene; Costa, Paolo; Padovani, Alessandro; Pezzini, Alessandro

    2011-01-01

    Ischemic stroke during pregnancy and puerperium represents a rare occurrence but it could be a serious and stressful event for mothers, infants, and also families. Whenever it does occur, many concerns arise about the safety of the mother and the fetus in relation to common diagnostic tests and therapies leading to a more conservative approach. The physiological adaptations in the cardiovascular system and in the coagulability that accompany the pregnant state, which are more significant arou...

  18. Hypercholesterolemia in patients of ischemic stroke

    International Nuclear Information System (INIS)

    Background: Stroke is a common neurological disease that results in significant mortality and morbidity globally. Several risk factors have been identified for stroke among which hyperlipidaemia is one of the modifiable risk factors. Recent clinical trials have shown a reduction in ischemic stroke for patients taking lipid lowering medications. Therefore, the aim of this study was to find out the frequency of hypercholesterolemia in patients of ischemic stroke in Hazara region. Method: This cross sectional study was carried out in the Medical Department of Ayub Teaching Hospital, Abbottabad. Ninety patients of stroke confirmed as ischemic by CT scan brain were enrolled in the study after informed consent. The frequency of hypercholesterolemia in patients was recorded. Results: There were 55 (61.1 percentage) males. The mean age of patients was 64.4±11.5 years. The mean serum cholesterol in all patients was 4.16±1.1 mmol/l. The mean serum cholesterol of male patients was 4.3±1.2 mmol/l and 4.0±10.9 mmol/l in the case of females. Conclusions: Hypercholesterolemia could not be established as a major risk factor for stroke in our setup through this study that allude to the fact that other risk factors might be contributing more to the incidence of cerebrovascular accident in our population. (author)

  19. Ischemic Retinal Vasculitis and Its Management

    Directory of Open Access Journals (Sweden)

    Lazha Talat

    2014-01-01

    Full Text Available Ischemic retinal vasculitis is an inflammation of retinal blood vessels associated with vascular occlusion and subsequent retinal hypoperfusion. It can cause visual loss secondary to macular ischemia, macular edema, and neovascularization leading to vitreous hemorrhage, fibrovascular proliferation, and tractional retinal detachment. Ischemic retinal vasculitis can be idiopathic or secondary to systemic disease such as in Behçet’s disease, sarcoidosis, tuberculosis, multiple sclerosis, and systemic lupus erythematosus. Corticosteroids with or without immunosuppressive medication are the mainstay treatment in retinal vasculitis together with laser photocoagulation of retinal ischemic areas. Intravitreal injections of bevacizumab are used to treat neovascularization secondary to systemic lupus erythematosus but should be timed with retinal laser photocoagulation to prevent further progression of retinal ischemia. Antitumor necrosis factor agents have shown promising results in controlling refractory retinal vasculitis excluding multiple sclerosis. Interferon has been useful to control inflammation and induce neovascular regression in retinal vasculitis secondary to Behçet’s disease and multiple sclerosis. The long term effect of these management strategies in preventing the progression of retinal ischemia and preserving vision is not well understood and needs to be further studied.

  20. Ischemic preconditioning—an unfulfilled promise

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Timothy M. [Ashford & St. Peter' s Hospitals NHS Foundation Trust, Guildford Road, Surrey, KT16 0PZ (United Kingdom); Waksman, Ron [Washington Hospital Centre, 110 Irving Street, Washington, DC 20010 (United States); De Silva, Kalpa; Jacques, Adam [Ashford & St. Peter' s Hospitals NHS Foundation Trust, Guildford Road, Surrey, KT16 0PZ (United Kingdom); Mahmoudi, Michael, E-mail: m.mahmoudi@surrey.ac.uk [Ashford & St. Peter' s Hospitals NHS Foundation Trust, Guildford Road, Surrey, KT16 0PZ (United Kingdom); University of Surrey, 13AY04, Surrey, GU2 7XH (United Kingdom)

    2015-03-15

    Myocardial reperfusion injury has been identified as a key determinant of myocardial infarct size in patients undergoing percutaneous or surgical interventions. Although the molecular mechanisms underpinning reperfusion injury have been elucidated, attempts at translating this understanding into clinical benefit for patients undergoing cardiac interventions have produced mixed results. Ischemic conditioning has been applied before, during, or after an ischemic insult to the myocardium and has taken the form of local induction of ischemia or ischemia of distant tissues. Clinical studies have confirmed the safety of differing conditioning techniques, but the benefit of such techniques in reducing hard clinical event rates has produced mixed results. The aim of this article is to review the role of ischemic conditioning in patients undergoing percutaneous and surgical coronary revascularization. - Highlights: • There are a multitude of techniques for conditioning. • Conditioning has been utilized in percutaneous coronary intervention and cardiac surgery. • There is a lack of consistency in the techniques utilized and outcomes that have been measured. • The results of studies to date lack a consistency in the benefits of conditioning.

  1. TOWARD THE QUESTION OF ISCHEMIC MYOCARDIAL DYSFUNCTION

    Directory of Open Access Journals (Sweden)

    V. V. Kalyuzhin

    2015-12-01

    Full Text Available The authors of the review have analyzed papers published on the problem of ischemic myocardial dysfunction. They begin with a definition of the term “ischemia” (derived from two Greek words: ischō, meaning to hold back, and haima, meaning blood - a condition at which the arterial blood flow is insufficient to provide enough oxygen to prevent intracellular respiration from shifting from the aerobic to the anaerobic form. The poor rate of ATP generation from this process causes a decrease in cellular ATP, a concomitant rise in ADP, and ultimately, to depression inotropic (systolic and lusitropic (diastolic function of the affected segments of the myocardium. But with such simplicity of basic concepts, the consequences of ischemia so diverse. Influence of an ischemia on myocardial function so unequally at different patients, which is almost impossible to find two identical cases (as in the case of fingerprints. It depends on the infinite variety of lesions of coronary arteries, reperfusion (time and completeness of restoration of blood flow and reactions of a myocardium which, apparently, has considerable flexibility in its response. Ischemic myocardial dysfunction includes a number of discrete states, such as acute left ventricular failure in angina, acute myocardial infarction, ischemic cardiomyopathy, stunning, hibernation, pre- and postconditioning. There are widely differing underlying pathophysiologic states. The possibility exists that several of these states can coexist.

  2. Ischemic preconditioning—an unfulfilled promise

    International Nuclear Information System (INIS)

    Myocardial reperfusion injury has been identified as a key determinant of myocardial infarct size in patients undergoing percutaneous or surgical interventions. Although the molecular mechanisms underpinning reperfusion injury have been elucidated, attempts at translating this understanding into clinical benefit for patients undergoing cardiac interventions have produced mixed results. Ischemic conditioning has been applied before, during, or after an ischemic insult to the myocardium and has taken the form of local induction of ischemia or ischemia of distant tissues. Clinical studies have confirmed the safety of differing conditioning techniques, but the benefit of such techniques in reducing hard clinical event rates has produced mixed results. The aim of this article is to review the role of ischemic conditioning in patients undergoing percutaneous and surgical coronary revascularization. - Highlights: • There are a multitude of techniques for conditioning. • Conditioning has been utilized in percutaneous coronary intervention and cardiac surgery. • There is a lack of consistency in the techniques utilized and outcomes that have been measured. • The results of studies to date lack a consistency in the benefits of conditioning

  3. Obstructive sleep apnea in ischemic stroke patients

    Directory of Open Access Journals (Sweden)

    Aliye Tosun

    2008-01-01

    Full Text Available OBJECTIVE: To investigate the prevalence of obstructive sleep apnea in patients with ischemic stroke and to evaluate the effectiveness of nasal continuous positive airway pressure treatment. METHODS: Overnight polysomnography was performed by a computerized system in 19 subjects with ischemic stroke. Patients with an apnea-hypopnea index > 5 were considered to have obstructive sleep apnea. The appropriate level of continuous positive airway pressure for each patient was determined during an all-night continuous positive airway pressure determination study. Attended continuous positive airway pressure titration was performed with a continuous positive airway pressure auto-titrating device. RESULTS: Obstructive sleep apnea prevalence among patients with ischemic stroke was 73.7%. The minimum SaO2 was significantly lower, and the percent of total sleep time in the wake stage and stage 1 sleep was significantly longer in patients with obstructive sleep apnea. In two patients with severe obstructive sleep apnea, we observed a decrease in the apnea-hypopnea index, an increase in mean wake time, mean SaO2, and minimum SaO2, and alterations in sleep structures with continuous positive airway pressure treatment. CONCLUSION: As the diagnosis and treatment of obstructive sleep apnea is of particular importance in secondary stroke prevention, we suggest that the clinical assessment of obstructive sleep apnea be part of the evaluation of stroke patients in rehabilitation units, and early treatment should be started.

  4. Relaxin peptide hormones are protective during the early stages of ischemic stroke in male rats.

    Science.gov (United States)

    Bergeron, Lindsay H; Willcox, Jordan M; Alibhai, Faisal J; Connell, Barry J; Saleh, Tarek M; Wilson, Brian C; Summerlee, Alastair J S

    2015-02-01

    The pregnancy hormone relaxin protects tissue from ischemic damage. The ability of relaxin-3, a relaxin paralog, to do so has not been explored. The cerebral expression levels of these peptides and their receptors make them logical targets for study in the ischemic brain. We assessed relaxin peptide-mediated protection, relative relaxin family peptide receptor (RXFP) involvement, and protective mechanisms. Sprague-Dawley rats receiving permanent (pMCAO) or transient middle cerebral artery occlusions (tMCAO) were treated with relaxin peptides, and brains were collected for infarct analysis. Activation of the endothelial nitric oxide synthase pathway was evaluated as a potential protective mechanism. Primary cortical rat astrocytes were exposed to oxygen glucose deprivation and treated with relaxin peptides, and viability was examined. Recepto