WorldWideScience

Sample records for atpase motifs ofhuman

  1. Disparate requirements for the Walker A and B ATPase motifs ofhuman RAD51D in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Hinz, John M.; Tebbs, Robert S.; Nham, Peter B.; Urbin, Salustra S.; Collins, David W.; Thompson, Larry H.; Schild, David

    2006-04-21

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C, and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks. Ectopic expression of wild type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  2. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: Structural and functional studies

    OpenAIRE

    Drakou, Christina E.; Malekkou, Anna; Hayes, Joseph M.; Carsten W Lederer; Leonidas, Demetres D.; Oikonomakos, Nikos G.; Lamond, Angus I.; Santama, Niovi; Zographos, Spyros E.

    2012-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. D...

  3. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: structural and functional studies.

    Science.gov (United States)

    Drakou, Christina E; Malekkou, Anna; Hayes, Joseph M; Lederer, Carsten W; Leonidas, Demetres D; Oikonomakos, Nikos G; Lamond, Angus I; Santama, Niovi; Zographos, Spyros E

    2012-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg(2+) ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg(2+) ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells. PMID:22038794

  4. Surface Display of Metal Fixation Motifs of Bacterial P1-Type ATPases Specifically Promotes Biosorption of Pb2+ by Saccharomyces cerevisiae▿

    OpenAIRE

    Kotrba, Pavel; Ruml, Tomas

    2010-01-01

    Biosorption of metal ions may take place by different passive metal-sequestering processes such as ion exchange, complexation, physical entrapment, and inorganic microprecipitation or by a combination of these. To improve the biosorption capacity of the potential yeast biosorbent, short metal-binding NP peptides (harboring the CXXEE metal fixation motif of the bacterial Pb2+-transporting P1-type ATPases) were efficiently displayed and covalently anchored to the cell wall of Saccharomyces cere...

  5. Vanadate inhibits the ATPase activity and DNA binding capability of bacterial MutS. A structural model for the vanadate–MutS interaction at the Walker A motif

    OpenAIRE

    Pezza, Roberto J.; Villarreal, Marcos A.; Montich, Guillermo G.; Argaraña, Carlos E.

    2002-01-01

    MutS, a member of the ABC ATPases superfamily, is a mismatch DNA-binding protein constituent of the DNA post-replicative mismatch repair system (MMRS). In this work, it is shown that the ATPase activity of Pseudomonas aeruginosa and Escherichia coli MutS is inhibited by ortho- and decavanadate. Structural comparison of the region involved in the ATP binding of E.coli MutS with the corresponding region of other ABC ATPases inhibited by vanadate, including the myosin– orthovanadate–Mg complex, ...

  6. Motif Statistics

    OpenAIRE

    Nicodème, Pierre; Salvy, Bruno; Flajolet, Philippe

    1999-01-01

    We present a complete analysis of the statistics of number of occurrences of a regular expression pattern in a random text. This covers «motifs» widely used in computational biology. Our approach is based on: (i) a constructive approach to classical results in theoretical computer science (automata and formal language theory), in particular, the rationality of generating functions of regular languages; (ii) analytic combinatorics that is used for deriving asymptotic properties from generating...

  7. A sulfur-based transport pathway in Cu+-ATPases

    DEFF Research Database (Denmark)

    Mattle, Daniel; Zhang, Limei; Sitsel, Oleg; Pedersen, Lotte Thue; Moncelli, Maria Rosa; Tadini-Buoninsegni, Francesco; Gourdon, Pontus Emanuel; Rees, Douglas C; Nissen, Poul; Meloni, Gabriele

    Legionella pneumophila Cu(+)-ATPase (LpCopA), we identify a sulfur-lined metal transport pathway. Structural analysis indicates that Cu(+) is bound at a high-affinity transmembrane-binding site in a trigonal-planar coordination with the Cys residues of the conserved CPC motif of transmembrane segment 4 (C382......Cells regulate copper levels tightly to balance the biogenesis and integrity of copper centers in vital enzymes against toxic levels of copper. PIB-type Cu(+)-ATPases play a central role in copper homeostasis by catalyzing the selective translocation of Cu(+) across cellular membranes. Crystal...... structures of a copper-free Cu(+)-ATPase are available, but the mechanism of Cu(+) recognition, binding, and translocation remains elusive. Through X-ray absorption spectroscopy, ATPase activity assays, and charge transfer measurements on solid-supported membranes using wild-type and mutant forms of the...

  8. P-type ATPases.

    Science.gov (United States)

    Palmgren, Michael G; Nissen, Poul

    2011-01-01

    P-type ATPases form a large superfamily of cation and lipid pumps. They are remarkably simple with only a single catalytic subunit and carry out large domain motions during transport. The atomic structure of P-type ATPases in different conformations, together with ample mutagenesis evidence, has provided detailed insights into the pumping mechanism by these biological nanomachines. Phylogenetically, P-type ATPases are divided into five subfamilies, P1-P5. These subfamilies differ with respect to transported ligands and the way they are regulated. PMID:21351879

  9. P4-ATPases

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Theorin, Lisa; Palmgren, Michael Broberg;

    2014-01-01

    Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other and thereby help generate membrane lipid asymmetry. Among these ATP-driven transporters, the P4 subfamily of P-type ATPases (P4-ATPases......) comprises lipid flippases that catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of cell membranes. While initially characterized as aminophospholipid translocases, recent studies of individual P4-ATPase family members from fungi, plants, and animals show that P4...... include the regulation of membrane traffic, cytoskeletal dynamics, cell division, lipid metabolism, and lipid signaling. In this review, we will summarize the basic features of P4-ATPases and the physiological implications of their lipid transport activity in the cell. © 2013 The Author(s)....

  10. The practice principle of"human small paradise"in the Taipingtianguo%太平天国“人间小天堂”的实践原则

    Institute of Scientific and Technical Information of China (English)

    王晓娟

    2013-01-01

      太平天国以建设“人间小天堂”作为现实斗争目标,汲取西方基督教教义和中国传统文化的精髓作为思想基石,并在均田同耕的土地原则,公有共享的物质资料分配原则,崇拜上帝的风俗教化原则,兵农合一、耕织结合的生产原则的指导下进行实践,虽最终失败,却留下了很多值得借鉴的经验和教训。%The Taipingtianguo takes the building of"human small paradise"as a realistic goal, draw the essence of Western Christianity and Chinese traditional culture as the ideological foundation, and practice under the guidance of the land principle of same land ploughed, principle of the material distribution of data sharing with the public, the custom enlightenment principles of worship God, farming production principles, although ultimately failed, but left many valuable experiences and lessons.

  11. Crystal structure of a copper-transporting PIB-type ATPase

    DEFF Research Database (Denmark)

    Gourdon, Pontus Emanuel; Liu, Xiang-Yu; Skjørringe, Tina; Morth, J Preben; Møller, Lisbeth Birk; Pedersen, Bjørn Panyella; Nissen, Poul

    2011-01-01

    Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu(+)-ATPase, in...... a copper-free form, as determined by X-ray crystallography at 3.2 Å resolution. The structure indicates a three-stage copper transport pathway involving several conserved residues. A PIB-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a...

  12. Mining Conditional Phosphorylation Motifs.

    Science.gov (United States)

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/. PMID:26356863

  13. Differential expression of P-type ATPases in intestinal epithelial cells: Identification of putative new atp1a1 splice-variant

    International Nuclear Information System (INIS)

    P-type ATPases are membrane proteins that couple ATP hydrolysis with cation transport across the membrane. Ten different subtypes have been described. In mammalia, 15 genes of P-type ATPases from subtypes II-A, II-B and II-C, that transport low-atomic-weight cations (Ca2+, Na+, K+ and H+), have been reported. They include reticulum and plasma-membrane Ca2+-ATPases, Na+/K+-ATPase and H+/K+-ATPases. Enterocytes and colonocytes show functional differences, which seem to be partially due to the differential expression of P-type ATPases. These enzymes have 9 structural motifs, being the phosphorylation (E) and the Mg2+ATP-binding (H) motifs the most preserved. These structural characteristics permitted developing a Multiplex-Nested-PCR (MN-PCR) for the simultaneous identification of different P-type ATPases. Thus, using MN-PCR, seven different cDNAs were cloned from enterocytes and colonocytes, including SERCA3, SERCA2, Na+/K+-ATPase α1-isoform, H+/K+-ATPase α2-isoform, PMCA1, PMCA4 and a cDNA-fragment that seems to be a new cassette-type splice-variant of the atp1a1 gen. PMCA4 in enterocytes and H+/K+-ATPase α2-isoform in colonocytes were differentially expressed. This cell-specific expression pattern is related with the distinctive enterocyte and colonocyte functions.

  14. Structural Basis for Metal Binding Specificity: the N-terminal Cadmium Binding Domain of the P1-type ATPase CadA

    OpenAIRE

    Banci, Lucia; Bertini, Ivano; Ciofi-Baffoni, Simone; Su, Xun-Cheng; Miras, Roger; Bal, Nathalie; Mintz, Elisabeth; Catty, Patrice; Shokes, Jacob E.; Scott, Robert A

    2005-01-01

    In bacteria, P1-type ATPases are responsible for resistance to di- and monovalent toxic heavy metals by taking them out of the cell. These ATPases have a cytoplasmic N terminus comprising metal binding domains defined by a βαββαβ fold and a CXXC metal binding motif. To check how the structural properties of the metal binding site in the N terminus can influence the metal specificity of the ATPase, the first structure of a Cd(II)-ATPase N terminus was determined by NMR and its coordination sph...

  15. The Motif Tracking Algorithm

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The search for patterns or motifs in data represents a problem area of key interest to finance and economic researchers. In this paper, we introduce the motif tracking algorithm (MTA), a novel immune inspired (IS) pattern identification tool that is able to identify unknown motifs of a non specified length which repeat within time series data. The power of the algorithm comes from the fact that it uses a small number of parameters with minimal assumptions regarding the data being examined or the underlying motifs. Our interest lies in applying the algorithm to financial time series data to identify unknown patterns that exist. The algorithm is tested using three separate data sets. Particular suitability to financial data is shown by applying it to oil price data. In all cases, the algorithm identifies the presence of a motif population in a fast and efficient manner due to the utilization of an intuitive symbolic representation.The resulting population of motifs is shown to have considerable potential value for other applications such as forecasting and algorithm seeding.

  16. The Motif Tracking Algorithm

    CERN Document Server

    Wilson, William; Aickelin, Uwe; 10.1007/s11633.008.0032.0

    2010-01-01

    The search for patterns or motifs in data represents a problem area of key interest to finance and economic researchers. In this paper we introduce the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs of a non specified length which repeat within time series data. The power of the algorithm comes from the fact that it uses a small number of parameters with minimal assumptions regarding the data being examined or the underlying motifs. Our interest lies in applying the algorithm to financial time series data to identify unknown patterns that exist. The algorithm is tested using three separate data sets. Particular suitability to financial data is shown by applying it to oil price data. In all cases the algorithm identifies the presence of a motif population in a fast and efficient manner due to the utilisation of an intuitive symbolic representation. The resulting population of motifs is shown to have considerable potential value for other ap...

  17. Identification of a Region of the Polypeptide Chain of Na,K-ATPase α-Subunit Interacting with 67-kDa Melittin-Like Protein.

    Science.gov (United States)

    Kamanina, Yu V; Klimanova, E A; Dergousova, E A; Petrushanko, I Yu; Lopina, O D

    2016-03-01

    It was shown earlier that a 67-kDa protein purified from mouse kidney using polyclonal antibodies against melittin (a peptide from bee venom) interacted with Na,K-ATPase from rabbit kidney. In this study, a 43-kDa proteolytic fragment of Na,K-ATPase α-subunit interacting with the 67-kDa melittin-like protein was found. The α-subunit was hydrolyzed by trypsin in the presence of 0.5 mM ouabain (E2-conformation of Na,K-ATPase). A proteolytic fragment interacting with the 67-kDa melittin-like protein that was identified by mass-spectrometry is a region of the cytoplasmic domain of Na,K-ATPase α-subunit located between amino acid residues 591 and 775. The fragment includes a conservative DPPRA motif that occurs in many P-type ATPases. It was shown earlier that this motif of H,K-ATPase from gastric mucosa binds to melittin. We suggest that namely this motif of P-type ATPases is able to interact with proteins containing melittin-like modules. PMID:27262194

  18. Visibility graph motifs

    CERN Document Server

    Iacovacci, Jacopo

    2015-01-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of visibility graph motifs, smaller substructures that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated to general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable to distinguish among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification a...

  19. [Personal motif in art].

    Science.gov (United States)

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy. PMID:26202617

  20. The MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole;

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets of...... peptides, and knowledge of their binding specificities is important for understanding differences in the immune response between individuals. Algorithms predicting which peptides bind a given MHC molecule have recently been developed with high prediction accuracy. The utility of these algorithms is...... binding motif for each MHC molecule is predicted using state-of-the-art, pan-specific peptide-MHC binding-prediction methods, and is visualized as a sequence logo, in a format that allows for a comprehensive interpretation of binding motif anchor positions and amino acid preferences....

  1. MHC motif viewer

    OpenAIRE

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole; Nielsen, Morten

    2008-01-01

    In vertebrates the major histocompatibility complex (MHC) presents peptides to the immune system. In humans MHCs are called human leukocyte antigens (HLAs), and some of the loci encoding them are the most polymorphic in the human genome. Different MHC molecules present different subsets of peptides, and knowledge of their binding specificities is important for understanding the differences in the immune response between individuals. Knowledge of motifs may be used to identify epitopes, unders...

  2. Mining protein sequences for motifs.

    Science.gov (United States)

    Narasimhan, Giri; Bu, Changsong; Gao, Yuan; Wang, Xuning; Xu, Ning; Mathee, Kalai

    2002-01-01

    We use methods from Data Mining and Knowledge Discovery to design an algorithm for detecting motifs in protein sequences. The algorithm assumes that a motif is constituted by the presence of a "good" combination of residues in appropriate locations of the motif. The algorithm attempts to compile such good combinations into a "pattern dictionary" by processing an aligned training set of protein sequences. The dictionary is subsequently used to detect motifs in new protein sequences. Statistical significance of the detection results are ensured by statistically determining the various parameters of the algorithm. Based on this approach, we have implemented a program called GYM. The Helix-Turn-Helix motif was used as a model system on which to test our program. The program was also extended to detect Homeodomain motifs. The detection results for the two motifs compare favorably with existing programs. In addition, the GYM program provides a lot of useful information about a given protein sequence. PMID:12487759

  3. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole;

    2008-01-01

    In vertebrates, the major histocompatibility complex (MHC) presents peptides to the immune system. In humans, MHCs are called human leukocyte antigens (HLAs), and some of the loci encoding them are the most polymorphic in the human genome. Different MHC molecules present different subsets of....... Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif...

  4. Membrane Structure of CtrA3, a Copper-transporting P-type-ATPase from Aquifex aeolicus

    OpenAIRE

    Chintalapati, Sivaram; Kurdi, Rana Al; Terwisscha Van Scheltinga, Anke C; Kühlbrandt, Werner

    2008-01-01

    We have produced and characterized two new copper-transporting ATPases, CtrA2 and CtrA3 from Aquifex aeolicus, that belong to the family of heavy metal ion-transporting PIB-type ATPases. CtrA2 has a CPC metal-binding sequence in TM6 and a CxxC metal-binding N-terminal domain, while CtrA3 has a CPH metal-binding motif in TM6 and a histidine-rich N-terminal metal-binding domain. We have cloned both copper pumps, expressed them in Escherichia coli and characterized them functionally. CtrA2 is ac...

  5. Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing.

    OpenAIRE

    Kim, S. H.; Lin, R J

    1996-01-01

    In addition to small nuclear RNAs and spliceosomal proteins, ATP hydrolysis is needed for nuclear pre-mRNA splicing. A number of RNA-dependent ATPases which are involved in several distinct ATP-dependent steps in splicing have been identified in Saccharomyces cerevisiae and mammals. These so-called DEAD/H ATPases contain conserved RNA helicase motifs, although RNA unwinding activity has not been demonstrated in purified proteins. Here we report the role of one such DEAH protein, PRP2 of S. ce...

  6. Structural alphabet motif discovery and a structural motif database.

    Science.gov (United States)

    Ku, Shih-Yen; Hu, Yuh-Jyh

    2012-01-01

    This study proposes a general framework for structural motif discovery. The framework is based on a modular design in which the system components can be modified or replaced independently to increase its applicability to various studies. It is a two-stage approach that first converts protein 3D structures into structural alphabet sequences, and then applies a sequence motif-finding tool to these sequences to detect conserved motifs. We named the structural motif database we built the SA-Motifbase, which provides the structural information conserved at different hierarchical levels in SCOP. For each motif, SA-Motifbase presents its 3D view; alphabet letter preference; alphabet letter frequency distribution; and the significance. SA-Motifbase is available at http://bioinfo.cis.nctu.edu.tw/samotifbase/. PMID:22099701

  7. Novel ATPase activity of the polyprotein intermediate, Viral Protein genome-linked-Nuclear Inclusion-a protease, of Pepper vein banding potyvirus

    International Nuclear Information System (INIS)

    Highlights: ► Pepper vein banding potyvirus VPg harbors Walker motifs. ► VPg exhibits ATPase activity in the presence of NIa-Pro. ► Plausible structural and functional interplay between VPg and NIa-Pro. ► Functional relevance of prolonged presence of VPg-Pro during infection. -- Abstract: Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, and the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity.

  8. Cloning, purification and crystallization of a Walker-type Pyrococcus abyssi ATPase family member

    International Nuclear Information System (INIS)

    The Walker-type ATPase PABY2304 of P. abyssi has been cloned, overexpressed, purified and crystallized. X-ray diffraction data from selenomethionine-derivative crystals have been collected to 2.6 Å. The structure has been solved by MAD techniques. Several ATPase proteins play essential roles in the initiation of chromosomal DNA replication in archaea. Walker-type ATPases are defined by their conserved Walker A and B motifs, which are associated with nucleotide binding and ATP hydrolysis. A family of 28 ATPase proteins with non-canonical Walker A sequences has been identified by a bioinformatics study of comparative genomics in Pyrococcus genomes. A high-throughput structural study on P. abyssi has been started in order to establish the structure of these proteins. 16 genes have been cloned and characterized. Six out of the seven soluble constructs were purified in Escherichia coli and one of them, PABY2304, has been crystallized. X-ray diffraction data were collected from selenomethionine-derivative crystals using synchrotron radiation. The crystals belong to the orthorhombic space group C2, with unit-cell parameters a = 79.41, b = 48.63, c = 108.77 Å, and diffract to beyond 2.6 Å resolution

  9. The emerging structure of vacuolar ATPases.

    Science.gov (United States)

    Drory, Omri; Nelson, Nathan

    2006-10-01

    Bioenergetics and physiology of primary pumps have been revitalized by new insights into the mechanism of energizing biomembranes. Structural information is becoming available, and the three-dimensional structure of F-ATPase is being resolved. The growing understanding of the fundamental mechanism of energy coupling may revolutionize our view of biological processes. The F- and V-ATPases (vacuolar-type ATPase) exhibit a common mechanical design in which nucleotide-binding on the catalytic sector, through a cycle of conformation changes, drives the transmembrane passage of protons by turning a membrane-embedded rotor. This motor can run in forward or reverse directions, hydrolyzing ATP as it pumps protons uphill or creating ATP as protons flow downhill. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as an ATP-dependent proton pump. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. V- and F-ATPases have similar structure and mechanism of action, and several of their subunits evolved from common ancestors. Electron microscopy studies of V-ATPase revealed its general structure at low resolution. Recently, several structures of V-ATPase subunits, solved by X-ray crystallography with atomic resolution, were published. This, together with electron microscopy low-resolution maps of the whole complex, and biochemistry cross-linking experiments, allows construction of a structural model for a part of the complex that may be used as a working hypothesis for future research. PMID:16990452

  10. Kinase-Mediated Regulation of P4-ATPases

    DEFF Research Database (Denmark)

    Frøsig, Merethe Mørch

    Abstract Kinase-Mediated Regulation of P4-ATPases Understanding kinase-mediated regulation and designing novel tools to study regulatory proteins of P4-ATPases P4-ATPases play a critical role in the biogenesis of transport vesicles in the secretory and endocytic pathways, and P4-ATPase activity...

  11. The Annotation of RNA Motifs

    Directory of Open Access Journals (Sweden)

    Eric Westhof

    2006-04-01

    Full Text Available The recent deluge of new RNA structures, including complete atomic-resolution views of both subunits of the ribosome, has on the one hand literally overwhelmed our individual abilities to comprehend the diversity of RNA structure, and on the other hand presented us with new opportunities for comprehensive use of RNA sequences for comparative genetic, evolutionary and phylogenetic studies. Two concepts are key to understanding RNA structure: hierarchical organization of global structure and isostericity of local interactions. Global structure changes extremely slowly, as it relies on conserved long-range tertiary interactions. Tertiary RNA–RNA and quaternary RNA–protein interactions are mediated by RNA motifs, defined as recurrent and ordered arrays of non-Watson–Crick base-pairs. A single RNA motif comprises a family of sequences, all of which can fold into the same three-dimensional structure and can mediate the same interaction(s. The chemistry and geometry of base pairing constrain the evolution of motifs in such a way that random mutations that occur within motifs are accepted or rejected insofar as they can mediate a similar ordered array of interactions. The steps involved in the analysis and annotation of RNA motifs in 3D structures are: (a decomposition of each motif into non-Watson–Crick base-pairs; (b geometric classification of each basepair; (c identification of isosteric substitutions for each basepair by comparison to isostericity matrices; (d alignment of homologous sequences using the isostericity matrices to identify corresponding positions in the crystal structure; (e acceptance or rejection of the null hypothesis that the motif is conserved.

  12. Sequential visibility-graph motifs

    Science.gov (United States)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-04-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.

  13. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness.

    Science.gov (United States)

    McGuire, Christina; Cotter, Kristina; Stransky, Laura; Forgac, Michael

    2016-08-01

    V-ATPases are ATP-driven proton pumps that function within both intracellular compartments and the plasma membrane in a wide array of normal physiological and pathophysiological processes. V-ATPases are composed of a peripheral V1 domain that hydrolyzes ATP and an integral V0 domain that transports protons. Regulated assembly of the V-ATPase represents an important mechanism of regulating V-ATPase activity in response to a number of environmental cues. Our laboratory has demonstrated that glucose-dependent assembly of the V-ATPase complex in yeast is controlled by the Ras/cAMP/PKA pathway. By contrast, increased assembly of the V-ATPase during dendritic cell maturation involves the PI-3 kinase and mTORC1 pathways. Recently, we have shown that amino acids regulate V-ATPase assembly in mammalian cells, possibly as a means to maintain adequate levels of amino acids upon nutrient starvation. V-ATPases have also been implicated in cancer cell survival and invasion. V-ATPases are targeted to different cellular membranes by isoforms of subunit a, with a3 targeting V-ATPases to the plasma membrane of osteoclasts. We have shown that highly invasive human breast cancer cell lines express higher levels of the a3 isoform than poorly invasive lines and that knockdown of a3 reduces both expression of V-ATPases at the plasma membrane and in vitro invasion of breast tumor cells. Moreover, overexpression of a3 in a non-invasive breast epithelial line increases both plasma membrane V-ATPases and in vitro invasion. Finally, specific ablation of plasma membrane V-ATPases in highly invasive human breast cancer cells using either an antibody or small molecule approach inhibits both in vitro invasion and migration. These results suggest that plasma membrane and a3-containing V-ATPases represent a novel and important target in the development of therapeutics to limit breast cancer metastasis. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics

  14. Main: SEF1MOTIF [PLACE

    Lifescience Database Archive (English)

    Full Text Available inding motif; sequence found in 5'-upstream region (-640; -765) of soybean beta-conglicinin (7S globulin) ge...ne; W=A/T; SOYBEAN; STORAGE PROTEIN; 7S; GLOBULIN; BETA-CONGLICININ; seed; soybean (Glycine max) ATATTTAWW ...

  15. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex

    Directory of Open Access Journals (Sweden)

    Novoa-Aponte Lorena

    2012-10-01

    Full Text Available Abstract Background P-type ATPases hydrolyze ATP and release energy that is used in the transport of ions against electrochemical gradients across plasma membranes, making these proteins essential for cell viability. Currently, the distribution and function of these ion transporters in mycobacteria are poorly understood. Results In this study, probabilistic profiles were constructed based on hidden Markov models to identify and classify P-type ATPases in the Mycobacterium tuberculosis complex (MTBC according to the type of ion transported across the plasma membrane. Topology, hydrophobicity profiles and conserved motifs were analyzed to correlate amino acid sequences of P-type ATPases and ion transport specificity. Twelve candidate P-type ATPases annotated in the M. tuberculosis H37Rv proteome were identified in all members of the MTBC, and probabilistic profiles classified them into one of the following three groups: heavy metal cation transporters, alkaline and alkaline earth metal cation transporters, and the beta subunit of a prokaryotic potassium pump. Interestingly, counterparts of the non-catalytic beta subunits of Hydrogen/Potassium and Sodium/Potassium P-type ATPases were not found. Conclusions The high content of heavy metal transporters found in the MTBC suggests that they could play an important role in the ability of M. tuberculosis to survive inside macrophages, where tubercle bacilli face high levels of toxic metals. Finally, the results obtained in this work provide a starting point for experimental studies that may elucidate the ion specificity of the MTBC P-type ATPases and their role in mycobacterial infections.

  16. Spa47 is an oligomerization-activated type three secretion system (T3SS) ATPase from Shigella flexneri.

    Science.gov (United States)

    Burgess, Jamie L; Jones, Heather B; Kumar, Prashant; Toth, Ronald T; Middaugh, C Russell; Antony, Edwin; Dickenson, Nicholas E

    2016-05-01

    Gram-negative pathogens often use conserved type three secretion systems (T3SS) for virulence. The Shigella type three secretion apparatus (T3SA) penetrates the host cell membrane and provides a unidirectional conduit for injection of effectors into host cells. The protein Spa47 localizes to the base of the apparatus and is speculated to be an ATPase that provides the energy for T3SA formation and secretion. Here, we developed an expression and purification protocol, producing active Spa47 and providing the first direct evidence that Spa47 is a bona fide ATPase. Additionally, size exclusion chromatography and analytical ultracentrifugation identified multiple oligomeric species of Spa47 with the largest greater than 8 fold more active for ATP hydrolysis than the monomer. An ATPase inactive Spa47 point mutant was then engineered by targeting a conserved Lysine within the predicted Walker A motif of Spa47. Interestingly, the mutant maintained a similar oligomerization pattern as active Spa47, but was unable to restore invasion phenotype when used to complement a spa47 null S. flexneri strain. Together, these results identify Spa47 as a Shigella T3SS ATPase and suggest that its activity is linked to oligomerization, perhaps as a regulatory mechanism as seen in some related pathogens. Additionally, Spa47 catalyzed ATP hydrolysis appears to be essential for host cell invasion, providing a strong platform for additional studies dissecting its role in virulence and providing an attractive target for anti-infective agents. PMID:26947936

  17. MODIS: an audio motif discovery software

    OpenAIRE

    Catanese, Laurence; Souviraà-Labastie, Nathan; Qu, Bingqing; Campion, Sébastien; Gravier, Guillaume; Vincent, Emmanuel; Bimbot, Frédéric

    2013-01-01

    International audience MODIS is a free speech and audio motif discovery software developed at IRISA Rennes. Motif discovery is the task of discovering and collecting occurrences of repeating patterns in the absence of prior knowledge, or training material. MODIS is based on a generic approach to mine repeating audio sequences, with tolerance to motif variability. The algorithm implementation allows to process large audio streams at a reasonable speed where motif discovery often requires hu...

  18. Obstacle Effects on One-Dimensional Translocation of ATPase

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-Ju; AI Bao-Quan; LIU Liang-Gang

    2002-01-01

    We apply a general random walk model to the study of the ATPase's one-dimensional translocation along obstacle biological environment, and show the effects of random obstacles on the ATPase translocation along single stranded DNA. We find that the obstacle environment can reduce the lifetime of ATPase lattice-bound state which results in the inhibition of ATPase activity. We also carry out the ranges of rate constant of ATPase unidirectonal translocation and bidirectional translocation. Our results are consistent with the experiments and relevant theoretical consideration, and can be used to explain some physiological phenomena.

  19. Copper transport and its defect in Wilson disease: characterization of the copper-binding domain of Wilson disease ATPase.

    Science.gov (United States)

    Sarkar, B

    2000-04-01

    Copper is an essential trace element which forms an integral component of many enzymes. While trace amounts of copper are needed to sustain life, excess copper is extremely toxic. An attempt is made here to present the current understanding of the normal transport of copper in relation to the absorption, intracellular transport and toxicity. Wilson disease is a genetic disorder of copper transport resulting in the accumulation of copper in organs such as liver and brain which leads to progressive hepatic and neurological damage. The gene responsible for Wilson disease (ATP7B) is predicted to encode a putative copper-transporting P-type ATPase. An important feature of this ATPase is the presence of a large N-terminal domain that contains six repeats of a copper-binding motif which is thought to be responsible for binding this metal prior to its transport across the membrane. We have cloned, expressed and purified the N-terminal domain (approximately 70 kD) of Wilson disease ATPase. Metal-binding properties of the domain showed the protein to bind several metals besides copper; however, copper has a higher affinity for the domain. The copper is bound to the domain in Cu(I) form with a copper: protein ratio of 6.5:1. X-ray absorption studies strongly suggest Cu(I) atoms are ligated to cysteine residues. Circular dichroism spectral analyses suggest both secondary and tertiary structural changes upon copper binding to the domain. Copper-binding studies suggest some degree of cooperativity in binding of copper. These studies as well as detailed structural information of the copper-binding domain will be crucial in determining the specific role played by the copper-transporting ATPase in the homeostatic control of copper in the body and how the transport of copper is interrupted by mutations in the ATPase gene. PMID:10830865

  20. rMotifGen: random motif generator for DNA and protein sequences

    Directory of Open Access Journals (Sweden)

    Hardin C Timothy

    2007-08-01

    Full Text Available Abstract Background Detection of short, subtle conserved motif regions within a set of related DNA or amino acid sequences can lead to discoveries about important regulatory domains such as transcription factor and DNA binding sites as well as conserved protein domains. In order to help assess motif detection algorithms on motifs with varying properties and levels of conservation, we have developed a computational tool, rMotifGen, with the sole purpose of generating a number of random DNA or protein sequences containing short sequence motifs. Each motif consensus can be user-defined, randomly generated, or created from a position-specific scoring matrix (PSSM. Insertions and mutations within these motifs are created according to user-defined parameters and substitution matrices. The resulting sequences can be helpful in mutational simulations and in testing the limits of motif detection algorithms. Results Two implementations of rMotifGen have been created, one providing a graphical user interface (GUI for random motif construction, and the other serving as a command line interface. The second implementation has the added advantages of platform independence and being able to be called in a batch mode. rMotifGen was used to construct sample sets of sequences containing DNA motifs and amino acid motifs that were then tested against the Gibbs sampler and MEME packages. Conclusion rMotifGen provides an efficient and convenient method for creating random DNA or amino acid sequences with a variable number of motifs, where the instance of each motif can be incorporated using a position-specific scoring matrix (PSSM or by creating an instance mutated from its corresponding consensus using an evolutionary model based on substitution matrices. rMotifGen is freely available at: http://bioinformatics.louisville.edu/brg/rMotifGen/.

  1. Structural and functional studies of heavy metal ATPases

    DEFF Research Database (Denmark)

    Sitsel, Oleg

    2015-01-01

    the bacterial proteins LpCopA and SsZntA, which represent Cu+- and Zn2+-ATPases, respectively. The thesis first compares the recent pioneering P1B-ATPase structure of LpCopA to that of the well-described Ca2+-ATPase SERCA, showing how Cu+-ATPases have managed to adapt the general P-type ATPase...... Zn2+ homeostasis that belong to the superfamily of P-type ATPases, transmembrane proteins which are present in virtually all lifeforms, with functions ranging from membrane potential generation to muscle relaxation. The goal of this thesis is to improve our understanding of P1B-ATPases by focusing on...... crystal structure of LpCopA in a new conformational state is then presented and studied using a variety of methods, showing that Cu+-ATPases use an ion release pathway unique for the P-type ATPase superfamily. The next section introduces the two pioneering crystal structures of a Zn2+-ATPase, Ss...

  2. Evolution of Plant P-Type ATPases

    OpenAIRE

    Pedersen, Christian N. S.; Kristian B. Axelsen; Harper, Jeffrey F.; Palmgren, Michael G.

    2012-01-01

    Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a non-vascular moss), Selaginella moellendorffii (a primitive vascular plant), and Arabidopsis thaliana (a model flowering plant). Each organism contained sequences for all five...

  3. Fingerprinting differential active site constraints of ATPases

    OpenAIRE

    Hacker, Stephan M.; Hardt, Norman; Buntru, Alexander; Pagliarini, Dana; Möckel, Martin; Mayer, Thomas U; Scheffner, Martin; Hauck, Christof R.; Marx, Andreas

    2013-01-01

    The free energy provided by adenosine triphosphate (ATP) hydrolysis is central to many cellular processes and, therefore, the number of enzymes utilizing ATP as a substrate is almost innumerable. Modified analogues of ATP are a valuable means to understand the biological function of ATPases. Although these enzymes have evolved towards binding to ATP, large differences in active site architectures were found. In order to systematically access the specific active site constraints of different A...

  4. Identifying motifs in folktales using topic models

    OpenAIRE

    Karsdorp, F.; Bosch, A.P.J. van den

    2013-01-01

    With the undertake of various folktale digitalization initiatives, the need for computational aids to explore these collections is increasing. In this paper we compare Labeled LDA (L-LDA) to a simple retrieval model on the task of identifying motifs in folktales. We show that both methods are well able to successfully discriminate between relevant and irrelevant motifs. L-LDA represents motifs as distributions over words. In a second experiment we compare the quality of these distributions to...

  5. Cadmium, ATPase-P, yeast. From transport to toxicity

    International Nuclear Information System (INIS)

    Two projects has been developed during my PhD. One consisting in the functional study of CadA, the Cd2+-ATPase from Listeria monocytogenes, the other one was focused on the toxicity of cadmium and the associated response of the yeast Saccharomyces cerevisiae. This two studies used a a phenotype of sensitivity to cadmium induced by CadA expression in yeast. This phenotype was used as a screening tool to identify essential amino acids of Cd transport by CadA and to study cadmium toxicity and the corresponding yeast cellular response. CadA actively transports Cd using ATP hydrolysis as energy source. Directed mutagenesis of the membranous polar, sulphur and charged amino-acids revealed that Cd transport pathway implied four transmembrane segments (Tm) and more precisely the cysteine C354, C356 and proline P355 of the CPC motif located in Tm6, aspartate D692 in Tm8, glutamate E164 in Tm4 and methionine M149 in Tm5. From our studies, 2 Cd ions would be translocated for each hydrolysis ATP. Expression of CadA in the yeast Saccharomyces cerevisiae induces an hypersensitivity to Cd. A wild type cell can grow up to 100 μm cadmium whereas CadA expressing yeast cannot grow with 1 μm cadmium in the culture medium. This cadmium sensitivity was due to the localisation of CadA in the endoplasmic reticulum membrane. Transport of cadmium in this compartment produces an accumulation of mis-folded proteins that induces the Unfolded Protein Response (UPR). As UPR also occurs in a wild type yeast exposed to low Cd concentration, one can point out endoplasmic reticulum as a extremely sensitive cellular compartment. UPR also appears as an early response to Cd as it happens far before any visible signs of toxicity. (author)

  6. Bridge and brick motifs in complex networks

    Science.gov (United States)

    Huang, Chung-Yuan; Sun, Chuen-Tsai; Cheng, Chia-Ying; Hsieh, Ji-Lung

    2007-04-01

    Acknowledging the expanding role of complex networks in numerous scientific contexts, we examine significant functional and topological differences between bridge and brick motifs for predicting network behaviors and functions. After observing similarities between social networks and their genetic, ecological, and engineering counterparts, we identify a larger number of brick motifs in social networks and bridge motifs in the other three types. We conclude that bridge and brick motif content analysis can assist researchers in understanding the small-world and clustering properties of network structures when investigating network functions and behaviors.

  7. Gapped alignment of protein sequence motifs through Monte Carlo optimization of a hidden Markov model

    Directory of Open Access Journals (Sweden)

    Liu Jun S

    2004-10-01

    Full Text Available Abstract Background Certain protein families are highly conserved across distantly related organisms and belong to large and functionally diverse superfamilies. The patterns of conservation present in these protein sequences presumably are due to selective constraints maintaining important but unknown structural mechanisms with some constraints specific to each family and others shared by a larger subset or by the entire superfamily. To exploit these patterns as a source of functional information, we recently devised a statistically based approach called contrast hierarchical alignment and interaction network (CHAIN analysis, which infers the strengths of various categories of selective constraints from co-conserved patterns in a multiple alignment. The power of this approach strongly depends on the quality of the multiple alignments, which thus motivated development of theoretical concepts and strategies to improve alignment of conserved motifs within large sets of distantly related sequences. Results Here we describe a hidden Markov model (HMM, an algebraic system, and Markov chain Monte Carlo (MCMC sampling strategies for alignment of multiple sequence motifs. The MCMC sampling strategies are useful both for alignment optimization and for adjusting position specific background amino acid frequencies for alignment uncertainties. Associated statistical formulations provide an objective measure of alignment quality as well as automatic gap penalty optimization. Improved alignments obtained in this way are compared with PSI-BLAST based alignments within the context of CHAIN analysis of three protein families: Giα subunits, prolyl oligopeptidases, and transitional endoplasmic reticulum (p97 AAA+ ATPases. Conclusion While not entirely replacing PSI-BLAST based alignments, which likewise may be optimized for CHAIN analysis using this approach, these motif-based methods often more accurately align very distantly related sequences and thus can

  8. Assessment of composite motif discovery methods

    Directory of Open Access Journals (Sweden)

    Johansen Jostein

    2008-02-01

    Full Text Available Abstract Background Computational discovery of regulatory elements is an important area of bioinformatics research and more than a hundred motif discovery methods have been published. Traditionally, most of these methods have addressed the problem of single motif discovery – discovering binding motifs for individual transcription factors. In higher organisms, however, transcription factors usually act in combination with nearby bound factors to induce specific regulatory behaviours. Hence, recent focus has shifted from single motifs to the discovery of sets of motifs bound by multiple cooperating transcription factors, so called composite motifs or cis-regulatory modules. Given the large number and diversity of methods available, independent assessment of methods becomes important. Although there have been several benchmark studies of single motif discovery, no similar studies have previously been conducted concerning composite motif discovery. Results We have developed a benchmarking framework for composite motif discovery and used it to evaluate the performance of eight published module discovery tools. Benchmark datasets were constructed based on real genomic sequences containing experimentally verified regulatory modules, and the module discovery programs were asked to predict both the locations of these modules and to specify the single motifs involved. To aid the programs in their search, we provided position weight matrices corresponding to the binding motifs of the transcription factors involved. In addition, selections of decoy matrices were mixed with the genuine matrices on one dataset to test the response of programs to varying levels of noise. Conclusion Although some of the methods tested tended to score somewhat better than others overall, there were still large variations between individual datasets and no single method performed consistently better than the rest in all situations. The variation in performance on individual

  9. Sampling Motif-Constrained Ensembles of Networks

    Science.gov (United States)

    Fischer, Rico; Leitão, Jorge C.; Peixoto, Tiago P.; Altmann, Eduardo G.

    2015-10-01

    The statistical significance of network properties is conditioned on null models which satisfy specified properties but that are otherwise random. Exponential random graph models are a principled theoretical framework to generate such constrained ensembles, but which often fail in practice, either due to model inconsistency or due to the impossibility to sample networks from them. These problems affect the important case of networks with prescribed clustering coefficient or number of small connected subgraphs (motifs). In this Letter we use the Wang-Landau method to obtain a multicanonical sampling that overcomes both these problems. We sample, in polynomial time, networks with arbitrary degree sequences from ensembles with imposed motifs counts. Applying this method to social networks, we investigate the relation between transitivity and homophily, and we quantify the correlation between different types of motifs, finding that single motifs can explain up to 60% of the variation of motif profiles.

  10. Sampling motif-constrained ensembles of networks

    CERN Document Server

    Fischer, Rico; Peixoto, Tiago P; Altmann, Eduardo G

    2015-01-01

    The statistical significance of network properties is conditioned on null models which satisfy spec- ified properties but that are otherwise random. Exponential random graph models are a principled theoretical framework to generate such constrained ensembles, but which often fail in practice, either due to model inconsistency, or due to the impossibility to sample networks from them. These problems affect the important case of networks with prescribed clustering coefficient or number of small connected subgraphs (motifs). In this paper we use the Wang-Landau method to obtain a multicanonical sampling that overcomes both these problems. We sample, in polynomial time, net- works with arbitrary degree sequences from ensembles with imposed motifs counts. Applying this method to social networks, we investigate the relation between transitivity and homophily, and we quantify the correlation between different types of motifs, finding that single motifs can explain up to 60% of the variation of motif profiles.

  11. Temporal motifs in time-dependent networks

    CERN Document Server

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2011-01-01

    Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as networks of telecommunication, neural signal processing, biochemical reactions and human social interactions. We introduce the general framework of temporal motifs to study the mesoscale spatio-temporal structure of these networks. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences and to colored directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network.

  12. Temporal motifs in time-dependent networks

    International Nuclear Information System (INIS)

    Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as telecommunication, neural signal processing, biochemical reaction and human social interaction networks. We introduce the framework of temporal motifs to study the mesoscale topological–temporal structure of temporal networks in which the events of nodes do not overlap in time. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences to coloured directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network

  13. MotifLab: a tools and data integration workbench for motif discovery and regulatory sequence analysis

    Directory of Open Access Journals (Sweden)

    Klepper Kjetil

    2013-01-01

    Full Text Available Abstract Background Traditional methods for computational motif discovery often suffer from poor performance. In particular, methods that search for sequence matches to known binding motifs tend to predict many non-functional binding sites because they fail to take into consideration the biological state of the cell. In recent years, genome-wide studies have generated a lot of data that has the potential to improve our ability to identify functional motifs and binding sites, such as information about chromatin accessibility and epigenetic states in different cell types. However, it is not always trivial to make use of this data in combination with existing motif discovery tools, especially for researchers who are not skilled in bioinformatics programming. Results Here we present MotifLab, a general workbench for analysing regulatory sequence regions and discovering transcription factor binding sites and cis-regulatory modules. MotifLab supports comprehensive motif discovery and analysis by allowing users to integrate several popular motif discovery tools as well as different kinds of additional information, including phylogenetic conservation, epigenetic marks, DNase hypersensitive sites, ChIP-Seq data, positional binding preferences of transcription factors, transcription factor interactions and gene expression. MotifLab offers several data-processing operations that can be used to create, manipulate and analyse data objects, and complete analysis workflows can be constructed and automatically executed within MotifLab, including graphical presentation of the results. Conclusions We have developed MotifLab as a flexible workbench for motif analysis in a genomic context. The flexibility and effectiveness of this workbench has been demonstrated on selected test cases, in particular two previously published benchmark data sets for single motifs and modules, and a realistic example of genes responding to treatment with forskolin. MotifLab is freely

  14. Trypsin-induced ATPase activity in potato mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Jung, D.W.; Laties, G.G.

    1976-04-01

    Potato mitochondria (Solanum tuberosum var. Russet Burbank), which readily phosphorylate ADP in oxidative phosphorylation, show low levels of ATPase activity which is stimulated neither by Mg/sup 2 +/, 2,4-dinitrophenol, incubation with respiratory substrates, nor disruption by sonication or treatment with Triton X-100, individually or in concert. Treatment of disrupted potato mitochondria with trypsin stimulates Mg/sup 2 +/-dependent, oligomycin-sensitive ATPase activity 10- to 15-fold, suggesting the presence of an ATPase inhibitor protein. Trypsin-induced ATPase activity was unaffected by uncoupler. Oligomycin-sensitive ATPase activity decreases as exposure to trypsin is increased. Incubation at alkaline pH or heating at 60/sup 0/C for 2 minutes also activates ATPase of sonicated potato mitochondria. Disruption of cauliflower (Brassica oleracea), red sweet potato (Ipomoea batatas), and carrot (Daucus carota) mitochondria increases ATPase activity, which is further enhanced by treatment with trypsin. The significance of the tight association of the inhibitor protein and ATPase in potato mitochondria is not clear.

  15. Detecting Motifs in System Call Sequences

    CERN Document Server

    Wilson, William O; Aickelin, Uwe

    2010-01-01

    The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs which repeat within time series data. The power of the algorithm is derived from its use of a small number of parameters with minimal assumptions. The algorithm searches from a completely neutral perspective that is independent of the data being analysed, and the underlying motifs. In this paper the motif tracking algorithm is applied to the search for patterns within sequences of low level system calls between the Linux kernel and the operating system's user space. The MTA is able to compress data found in large system call data sets to a limited number of motifs which summarise that data. The motifs provide a resource from which a profile of executed processes can be built. The potential for these profiles and new implications for security research are highlighted. A...

  16. Automated motif discovery from glycan array data.

    Science.gov (United States)

    Cholleti, Sharath R; Agravat, Sanjay; Morris, Tim; Saltz, Joel H; Song, Xuezheng; Cummings, Richard D; Smith, David F

    2012-10-01

    Assessing interactions of a glycan-binding protein (GBP) or lectin with glycans on a microarray generates large datasets, making it difficult to identify a glycan structural motif or determinant associated with the highest apparent binding strength of the GBP. We have developed a computational method, termed GlycanMotifMiner, that uses the relative binding of a GBP with glycans within a glycan microarray to automatically reveal the glycan structural motifs recognized by a GBP. We implemented the software with a web-based graphical interface for users to explore and visualize the discovered motifs. The utility of GlycanMotifMiner was determined using five plant lectins, SNA, HPA, PNA, Con A, and UEA-I. Data from the analyses of the lectins at different protein concentrations were processed to rank the glycans based on their relative binding strengths. The motifs, defined as glycan substructures that exist in a large number of the bound glycans and few non-bound glycans, were then discovered by our algorithm and displayed in a web-based graphical user interface ( http://glycanmotifminer.emory.edu ). The information is used in defining the glycan-binding specificity of GBPs. The results were compared to the known glycan specificities of these lectins generated by manual methods. A more complex analysis was also carried out using glycan microarray data obtained for a recombinant form of human galectin-8. Results for all of these lectins show that GlycanMotifMiner identified the major motifs known in the literature along with some unexpected novel binding motifs. PMID:22877213

  17. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.; Vazquez-Prada Baillet, Miguel

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed. © 2004 Elsevier B.V. All rights reserved....

  18. Engineering a prototypic P-type ATPase Listeria Monocytogenes Ca(2+)-ATPase 1 for single-molecule FRET studies

    DEFF Research Database (Denmark)

    Dyla, Mateusz; Andersen, Jacob; Kjaergaard, Magnus;

    2016-01-01

    Approximately 30% of the ATP generated in the living cell is utilized by P-type ATPase primary active transporters to generate and maintain electrochemical gradients across biological membranes. P-type ATPases undergo large conformational changes during their functional cycle to couple ATP hydrol...

  19. Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase

    DEFF Research Database (Denmark)

    Mahmmoud, Yasser Ahmed

    2008-01-01

    . Drawing on previous homology modeling studies of Na,K-ATPase to atomic models of sarcoplasmic reticulum Ca-ATPase and on kinetic data, we propose that CPZ uncouples an Na+ cycle from an Na+/K+ cycle in the pump. The Na+ cycle possibly involves transport through the recently characterized Na+-specific site...... regulatory communication with nucleotides takes place during turnover. Studies with lipid vesicles revealed that CPZ reduced ATP-dependent digitoxigenin-sensitive 22Na+ influx into K+ loaded vesicles only at saturating ATP concentrations. The drug apparently abolishes the regulatory effect of ATP on the pump....... A shift to such uncoupled mode is believed to produce pumps mediating uncoupled Na+ efflux by modifying the transport stoichiometry of single pump units. Udgivelsesdato: February 5...

  20. Detecting seeded motifs in DNA sequences

    OpenAIRE

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, compo...

  1. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data

    OpenAIRE

    Ngoc Tam L. Tran; Huang, Chun-Hsi

    2014-01-01

    Abstract ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs tha...

  2. Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase

    OpenAIRE

    Mahmmoud, Yasser A.

    2008-01-01

    Capsazepine (CPZ), a synthetic capsaicin analogue, inhibits ATP hydrolysis by Na,K-ATPase in the presence but not in the absence of K+. Studies with purified membranes revealed that CPZ reduced Na+-dependent phosphorylation by interference with Na+ binding from the intracellular side of the membrane. Kinetic analyses showed that CPZ stabilized an enzyme species that constitutively occluded K+. Low-affinity ATP interaction with the enzyme was strongly reduced after CPZ treatment; in contrast, ...

  3. Detecting seeded motifs in DNA sequences.

    Science.gov (United States)

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at http://telethon.bio.unipd.it/bioinfo/MOST. PMID:16141193

  4. Detecting seeded motifs in DNA sequences

    Science.gov (United States)

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at . PMID:16141193

  5. Regulation of vacuolar H+-ATPase in microglia by RANKL

    International Nuclear Information System (INIS)

    Vacuolar H+-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor κB-ligand (RANKL). We found that Receptor Activator of Nuclear Factor κB (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  6. Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase.

    Science.gov (United States)

    Mahmmoud, Yasser A

    2008-02-01

    Capsazepine (CPZ), a synthetic capsaicin analogue, inhibits ATP hydrolysis by Na,K-ATPase in the presence but not in the absence of K(+). Studies with purified membranes revealed that CPZ reduced Na(+)-dependent phosphorylation by interference with Na(+) binding from the intracellular side of the membrane. Kinetic analyses showed that CPZ stabilized an enzyme species that constitutively occluded K(+). Low-affinity ATP interaction with the enzyme was strongly reduced after CPZ treatment; in contrast, indirectly measured interaction with ADP was much increased, which suggests that composite regulatory communication with nucleotides takes place during turnover. Studies with lipid vesicles revealed that CPZ reduced ATP-dependent digitoxigenin-sensitive (22)Na(+) influx into K(+)-loaded vesicles only at saturating ATP concentrations. The drug apparently abolishes the regulatory effect of ATP on the pump. Drawing on previous homology modeling studies of Na,K-ATPase to atomic models of sarcoplasmic reticulum Ca-ATPase and on kinetic data, we propose that CPZ uncouples an Na(+) cycle from an Na(+)/K(+) cycle in the pump. The Na(+) cycle possibly involves transport through the recently characterized Na(+)-specific site. A shift to such an uncoupled mode is believed to produce pumps mediating uncoupled Na(+) efflux by modifying the transport stoichiometry of single pump units. PMID:18230728

  7. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    Science.gov (United States)

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  8. Radioprotector modifying influence upon the ion transport ATPase activities

    International Nuclear Information System (INIS)

    The effects of aminothiol and biogenic amine radioprotectors (β-mercaptoethylamine, AET, serotonin, dopamine, histamine) on the basic ion transport enzymes, such as Na, K-ATP ase and Mg, Ca-ATPase activities were investigated in the tissues of numerous organs, with different radiosensitivity in the wistar rats. Experimental results showed that intraperitoneal injection of the used radioprotectors caused preliminary inhibition of the Na, K-ATPase activity in tissues from organs with different radioresistance, but had no influence on the Mg, Ca-ATPase activity in membranes of erythrocytes and rat brain cells. (2 tabs.)

  9. Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase for anti-fungal therapy

    Directory of Open Access Journals (Sweden)

    Summer R. Hayek

    2014-01-01

    Full Text Available Vacuolar proton-translocating ATPase (V-ATPase is a membrane-bound, multi-subunit enzyme that uses the energy of ATP hydrolysis to pump protons across membranes. V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for generation of the membrane potential that drives secondary transporters and cellular metabolism. V-ATPase is highly conserved across species and is best characterized in the model fungus Saccharomyces cerevisiae (S. cerevisiae. However, recent studies in mammals have identified significant alterations from fungi, particularly in the isoform composition of the 14 subunits and in the regulation of complex disassembly. These differences could be exploited for selectivity between fungi and humans and highlight the potential for V-ATPase as an anti-fungal drug target. Candida albicans (C. albicans is a major human fungal pathogen and causes fatality in 35% of systemic infections, even with anti-fungal treatment. The pathogenicity of C. albicans correlates with environmental, vacuolar, and cytoplasmic pH regulation, and V-ATPase appears to play a fundamental role in each of these processes. Genetic loss of V-ATPase in pathogenic fungi leads to defective virulence, and a comprehensive picture of the mechanisms involved is emerging. Recent studies have explored the practical utility of V-ATPase as an anti-fungal drug target in C. albicans, including pharmacological inhibition, azole therapy, and targeting of downstream pathways. This overview will discuss these studies as well as hypothetical ways to target V-ATPase and novel high-throughput methods for use in future drug discovery screens.

  10. The Role of the N-Domain in the ATPase Activity of the Mammalian AAA ATPase p97/VCP*

    OpenAIRE

    Niwa, Hajime; Ewens, Caroline A.; Tsang, Chun; Yeung, Heidi O.; Zhang, Xiaodong; Freemont, Paul S.

    2012-01-01

    p97/valosin-containing protein (VCP) is a type II ATPase associated with various cellular activities that forms a homohexamer with each protomer containing an N-terminal domain (N-domain); two ATPase domains, D1 and D2; and a disordered C-terminal region. Little is known about the role of the N-domain or the C-terminal region in the p97 ATPase cycle. In the p97-associated human disease inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, the majority of m...

  11. Elucidating Functional Aspects of P-type ATPases

    DEFF Research Database (Denmark)

    Autzen, Henriette Elisabeth

    2015-01-01

    P-type ATPases are proteins that act to maintain ion homeostasis and electrochemical gradients through the translocation of cations across cell membranes. Underscoring their significance in humans, dysfunction of the ATPases can lead to crucial diseases. Dysfunction of the sarco(endo)plasmic reti......P-type ATPases are proteins that act to maintain ion homeostasis and electrochemical gradients through the translocation of cations across cell membranes. Underscoring their significance in humans, dysfunction of the ATPases can lead to crucial diseases. Dysfunction of the sarco...... the bacterial, anionic phospholipids, phosphatidylglycerol (PG) and cardiolipin (CL), have an increased propensity to bind to certain areas of the transmembrane domain. Further studies are required to infer whether these observations support specific lipid-protein interactions and what their...

  12. MOTIFATOR : detection and characterization of regulatory motifs using prokaryote transcriptome data

    NARCIS (Netherlands)

    Blom, Evert-Jan; Roerdink, Jos B.T.M.; Kuipers, Oscar P.; Hijum, Sacha A.F.T. van

    2009-01-01

    Unraveling regulatory mechanisms (e.g. identification of motifs in cis-regulatory regions) remains a major challenge in the analysis of transcriptome experiments. Existing applications identify putative motifs from gene lists obtained at rather arbitrary cutoff and require additional manual processi

  13. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole; Nielsen, Morten

    2010-01-01

    hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences. The...

  14. Functional characterization of variations on regulatory motifs.

    Directory of Open Access Journals (Sweden)

    Michal Lapidot

    2008-03-01

    Full Text Available Transcription factors (TFs regulate gene expression through specific interactions with short promoter elements. The same regulatory protein may recognize a variety of related sequences. Moreover, once they are detected it is hard to predict whether highly similar sequence motifs will be recognized by the same TF and regulate similar gene expression patterns, or serve as binding sites for distinct regulatory factors. We developed computational measures to assess the functional implications of variations on regulatory motifs and to compare the functions of related sites. We have developed computational means for estimating the functional outcome of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. We predict the effects of nucleotide variations within motifs on gene expression patterns. In cases where such predictions could be compared to suitable published experimental evidence, we found very good agreement. We further accumulated statistics from multiple substitutions across various binding sites in an attempt to deduce general properties that characterize nucleotide substitutions that are more likely to alter expression. We found that substitutions involving Adenine are more likely to retain the expression pattern and that substitutions involving Guanine are more likely to alter expression compared to the rest of the substitutions. Our results should facilitate the prediction of the expression outcomes of binding site variations. One typical important implication is expected to be the ability to predict the phenotypic effect of variation in regulatory motifs in promoters.

  15. Sublinear Time Motif Discovery from Multiple Sequences

    Directory of Open Access Journals (Sweden)

    Yunhui Fu

    2013-10-01

    Full Text Available In this paper, a natural probabilistic model for motif discovery has been used to experimentally test the quality of motif discovery programs. In this model, there are k background sequences, and each character in a background sequence is a random character from an alphabet, Σ. A motif G = g1g2 ... gm is a string of m characters. In each background sequence is implanted a probabilistically-generated approximate copy of G. For a probabilistically-generated approximate copy b1b2 ... bm of G, every character, bi, is probabilistically generated, such that the probability for bi ≠ gi is at most α. We develop two new randomized algorithms and one new deterministic algorithm. They make advancements in the following aspects: (1 The algorithms are much faster than those before. Our algorithms can even run in sublinear time. (2 They can handle any motif pattern. (3 The restriction for the alphabet size is a lower bound of four. This gives them potential applications in practical problems, since gene sequences have an alphabet size of four. (4 All algorithms have rigorous proofs about their performances. The methods developed in this paper have been used in the software implementation. We observed some encouraging results that show improved performance for motif detection compared with other software.

  16. P-Glycoprotein-ATPase Modulation: The Molecular Mechanisms

    OpenAIRE

    Li-Blatter, Xiaochun; Beck, Andreas; Seelig, Anna

    2012-01-01

    P-glycoprotein-ATPase is an efflux transporter of broad specificity that counteracts passive allocrit influx. Understanding the rate of allocrit transport therefore matters. Generally, the rates of allocrit transport and ATP hydrolysis decrease exponentially with increasing allocrit affinity to the transporter. Here we report unexpectedly strong down-modulation of the P-glycoprotein-ATPase by certain detergents. To elucidate the underlying mechanism, we chose 34 electrically neutral and catio...

  17. Evolution of Copper Transporting ATPases in Eukaryotic Organisms

    OpenAIRE

    Gupta, Arnab; Lutsenko, Svetlana

    2012-01-01

    Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases i...

  18. Sequential motif profile of natural visibility graphs

    CERN Document Server

    Iacovacci, Jacopo

    2016-01-01

    The concept of sequential visibility graph motifs -subgraphs appearing with characteristic frequencies in the visibility graphs associated to time series- has been advanced recently along with a theoretical framework to compute analytically the motif profiles associated to Horizontal Visibility Graphs (HVGs). Here we develop a theory to compute the profile of sequential visibility graph motifs in the context of Natural Visibility Graphs (VGs). This theory gives exact results for deterministic aperiodic processes with a smooth invariant density or stochastic processes that fulfil the Markov property and have a continuous marginal distribution. The framework also allows for a linear time numerical estimation in the case of empirical time series. A comparison between the HVG and the VG case (including evaluation of their robustness for short series polluted with measurement noise) is also presented.

  19. The influence of repeated irradiation of rats on activity of Ca2+ - ATPase and Mg2+ -ATPase in plasma membrane of thymocytes

    International Nuclear Information System (INIS)

    Rats were daily irradiated at doses 0.5 Gy in period of two weeks. The activity of Ca2+-ATPase Mg2+-ATPase and the extent of lipid peroxidation in thymus were determined. Thee peculiarity of changing of enzymes activity demonstrates the dependence of Mg2+-ATPase on lipid peroxidation

  20. Rotating with the brakes on and other unresolved features of the vacuolar ATPase.

    Science.gov (United States)

    Rawson, Shaun; Harrison, Michael A; Muench, Stephen P

    2016-06-15

    The rotary ATPase family comprises the ATP synthase (F-ATPase), vacuolar ATPase (V-ATPase) and archaeal ATPase (A-ATPase). These either predominantly utilize a proton gradient for ATP synthesis or use ATP to produce a proton gradient, driving secondary transport and acidifying organelles. With advances in EM has come a significant increase in our understanding of the rotary ATPase family. Following the sub nm resolution reconstructions of both the F- and V-ATPases, the secondary structure organization of the elusive subunit a has now been resolved, revealing a novel helical arrangement. Despite these significant developments in our understanding of the rotary ATPases, there are still a number of unresolved questions about the mechanism, regulation and overall architecture, which this mini-review aims to highlight and discuss. PMID:27284051

  1. Rotating with the brakes on and other unresolved features of the vacuolar ATPase

    Science.gov (United States)

    Rawson, Shaun; Harrison, Michael A.; Muench, Stephen P.

    2016-01-01

    The rotary ATPase family comprises the ATP synthase (F-ATPase), vacuolar ATPase (V-ATPase) and archaeal ATPase (A-ATPase). These either predominantly utilize a proton gradient for ATP synthesis or use ATP to produce a proton gradient, driving secondary transport and acidifying organelles. With advances in EM has come a significant increase in our understanding of the rotary ATPase family. Following the sub nm resolution reconstructions of both the F- and V-ATPases, the secondary structure organization of the elusive subunit a has now been resolved, revealing a novel helical arrangement. Despite these significant developments in our understanding of the rotary ATPases, there are still a number of unresolved questions about the mechanism, regulation and overall architecture, which this mini-review aims to highlight and discuss. PMID:27284051

  2. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls

    Science.gov (United States)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly ( P P mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

  3. Antibodies to mammalian and plant V-ATPases cross react with the V-ATPase of insect cation-transporting plasma membranes.

    Science.gov (United States)

    Russell, V E; Klein, U; Reuveni, M; Spaeth, D D; Wolfersberger, M G; Harvey, W R

    1992-05-01

    In immunobiochemical blots, polyclonal antibodies against subunits of plant and mammalian vacuolar-type ATPases (V-ATPases) cross-react strongly with corresponding subunits of larval Manduca sexta midgut plasma membrane V-ATPase. Thus, rabbit antiserum against Kalanchoe daigremontiana tonoplast V-ATPase holoenzyme cross-reacts with the 67, 56, 40, 28 and 20 kDa subunits of midgut V-ATPase separated by SDS-PAGE. Antisera against bovine chromaffin granule 72 and 39 kDa V-ATPase subunits cross-react with the corresponding 67 and 43 kDa subunits of midgut V-ATPase. Antisera against the 57 kDa subunit of both beet root and oat root V-ATPase cross-react strongly with the midgut 56 kDa V-ATPase subunit. In immunocytochemical light micrographs, antiserum against the beet root 57 kDa V-ATPase subunit labels the goblet cell apical membrane of both posterior and anterior midgut in freeze-substituted and fixed sections. The plant antiserum also labels the apical brush-border plasma membrane of Malpighian tubules. The ability of antibodies against plant V-ATPase to label these insect membranes suggests a high sequence homology between V-ATPases from plants and insects. Both of the antibody-labelled insect membranes transport K+ and both membranes possess F1-like particles, portasomes, on their cytoplasmic surfaces. This immunolabelling by xenic V-ATPase antisera of two insect cation-transporting membranes suggests that the portasomes on these membranes may be V-ATPase particles, similar to those reported on V-ATPase-containing vacuolar membranes from various sources. PMID:1534830

  4. The Motif of Meeting in Digital Education

    Science.gov (United States)

    Sheail, Philippa

    2015-01-01

    This article draws on theoretical work which considers the composition of meetings, in order to think about the form of the meeting in digital environments for higher education. To explore the motif of meeting, I undertake a "compositional interpretation" (Rose, 2012) of the default interface offered by "Collaborate", an…

  5. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoît

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  6. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  7. Parallel motif extraction from very long sequences

    KAUST Repository

    Sahli, Majed

    2013-01-01

    Motifs are frequent patterns used to identify biological functionality in genomic sequences, periodicity in time series, or user trends in web logs. In contrast to a lot of existing work that focuses on collections of many short sequences, modern applications require mining of motifs in one very long sequence (i.e., in the order of several gigabytes). For this case, there exist statistical approaches that are fast but inaccurate; or combinatorial methods that are sound and complete. Unfortunately, existing combinatorial methods are serial and very slow. Consequently, they are limited to very short sequences (i.e., a few megabytes), small alphabets (typically 4 symbols for DNA sequences), and restricted types of motifs. This paper presents ACME, a combinatorial method for extracting motifs from a single very long sequence. ACME arranges the search space in contiguous blocks that take advantage of the cache hierarchy in modern architectures, and achieves almost an order of magnitude performance gain in serial execution. It also decomposes the search space in a smart way that allows scalability to thousands of processors with more than 90% speedup. ACME is the only method that: (i) scales to gigabyte-long sequences; (ii) handles large alphabets; (iii) supports interesting types of motifs with minimal additional cost; and (iv) is optimized for a variety of architectures such as multi-core systems, clusters in the cloud, and supercomputers. ACME reduces the extraction time for an exact-length query from 4 hours to 7 minutes on a typical workstation; handles 3 orders of magnitude longer sequences; and scales up to 16, 384 cores on a supercomputer. Copyright is held by the owner/author(s).

  8. Measuring In Vitro ATPase Activity for Enzymatic Characterization.

    Science.gov (United States)

    Rule, Chelsea S; Patrick, Marcella; Sandkvist, Maria

    2016-01-01

    Adenosine triphosphate-hydrolyzing enzymes, or ATPases, play a critical role in a diverse array of cellular functions. These dynamic proteins can generate energy for mechanical work, such as protein trafficking and degradation, solute transport, and cellular movements. The protocol described here is a basic assay for measuring the in vitro activity of purified ATPases for functional characterization. Proteins hydrolyze ATP in a reaction that results in inorganic phosphate release, and the amount of phosphate liberated is then quantitated using a colorimetric assay. This highly adaptable protocol can be adjusted to measure ATPase activity in kinetic or endpoint assays. A representative protocol is provided here based on the activity and requirements of EpsE, the AAA+ ATPase involved in Type II Secretion in the bacterium Vibrio cholerae. The amount of purified protein needed to measure activity, length of the assay and the timing and number of sampling intervals, buffer and salt composition, temperature, co-factors, stimulants (if any), etc. may vary from those described here, and thus some optimization may be necessary. This protocol provides a basic framework for characterizing ATPases and can be performed quickly and easily adjusted as necessary. PMID:27584824

  9. A method to measure hydrolytic activity of adenosinetriphosphatases (ATPases.

    Directory of Open Access Journals (Sweden)

    Gianluca Bartolommei

    Full Text Available The detection of small amounts (nanomoles of inorganic phosphate has a great interest in biochemistry. In particular, phosphate detection is useful to evaluate the rate of hydrolysis of phosphatases, that are enzymes able to remove phosphate from their substrate by hydrolytic cleavage. The hydrolysis rate is correlated to enzyme activity, an extremely important functional parameter. Among phosphatases there are the cation transporting adenosinetriphosphatases (ATPases, that produce inorganic phosphate by cleavage of the γ-phosphate of ATP. These membrane transporters have many fundamental physiological roles and are emerging as potential drug targets. ATPase hydrolytic activity is measured to test enzyme functionality, but it also provides useful information on possible inhibitory effects of molecules that interfere with the hydrolytic process. We have optimized a molybdenum-based protocol that makes use of potassium antimony (III oxide tartrate (originally employed for phosphate detection in environmental analysis to allow its use with phosphatase enzymes. In particular, the method was successfully applied to native and recombinant ATPases to demonstrate its reliability, validity, sensitivity and versatility. Our method introduces significant improvements to well-established experimental assays, which are currently employed for ATPase activity measurements. Therefore, it may be valuable in biochemical and biomedical investigations of ATPase enzymes, in combination with more specific tests, as well as in high throughput drug screening.

  10. The plant plasma membrane H+-ATPase

    DEFF Research Database (Denmark)

    Ekberg, Kira

    of plants and fungi to generate electrochemical proton gradients. A recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Together with biochemical and structural data presented in this thesis we are now able......  The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded H+-ATPases extrude protons from cells...... to describe the basic molecular components that allow the plasma membrane proton H+-ATPase to carry out proton transport against large membrane potentials. Moreover, a completely new paradigm for post-translational activation of these proteins is presented. The talk will focus on the following themes...

  11. Review: The HSP90 molecular chaperone-an enigmatic ATPase.

    Science.gov (United States)

    Pearl, Laurence H

    2016-08-01

    The HSP90 molecular chaperone is involved in the activation and cellular stabilization of a range of 'client' proteins, of which oncogenic protein kinases and nuclear steroid hormone receptors are of particular biomedical significance. Work over the last two decades has revealed a conformational cycle critical to the biological function of HSP90, coupled to an inherent ATPase activity that is regulated and manipulated by many of the co-chaperones proteins with which it collaborates. Pharmacological inhibition of HSP90 ATPase activity results in degradation of client proteins in vivo, and is a promising target for development of new cancer therapeutics. Despite this, the actual function that HSP90s conformationally-coupled ATPase activity provides in its biological role as a molecular chaperone remains obscure. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 594-607, 2016. PMID:26991466

  12. Identifying discriminative classification-based motifs in biological sequences

    OpenAIRE

    Vens, Celine; Rosso, Marie-Noëlle; Danchin, Etienne

    2011-01-01

    Motivation: Identification of conserved motifs in biological sequences is crucial to unveil common shared functions. Many tools exist for motif identification, including some that allow degenerate positions with multiple possible nucleotides or amino acids. Most efficient methods available today search conserved motifs in a set of sequences, but do not check for their specificity regarding to a set of negative sequences. Results: We present a tool to identify degenerate motifs, based on a giv...

  13. Ultracytochemical Localization and Functional Analysis of ATPase During the Endosperm Development in Oryza sativa L.

    Institute of Scientific and Technical Information of China (English)

    WEI Cun-xu; LAN Sheng-yin; XU Zhen-xiu

    2003-01-01

    Ultracytochemical localization of ATPase during development of rice endosperm was performed using a lead phosphate precipitation technique. The results indicated that, at the coenocyte and ceilularization stages, active ATPase was mainly distributed in an embryo sac wall, nucleus, and plasma membrane. At the early stage of development and differentiation, active ATPase was observed in the plasma membrane. At the grain filling stage, ATPase was highly active in the plasma membrane, intercellular space, and plasmodesmata in aleurone, moderately active on the plasma membrane in subaleurone. In starchy endosperm, ATPase was localized in the plasma membrane and degenerated nucleus. ATPase activity also appeared around vacuole and protein body in endosperm cell. The relationships between the ultracytochemical localization of ATPase and its function during the development of rice endosperm were discussed. Overall, ATPase was involved in the process of nutrition absorption and protein synthesis.

  14. The PCNA interaction protein box sequence in Rad54 is an integral part of its ATPase domain and is required for efficient DNA repair and recombination.

    Science.gov (United States)

    Burgess, Rebecca C; Sebesta, Marek; Sisakova, Alexandra; Marini, Victoria P; Lisby, Michael; Damborsky, Jiri; Klein, Hannah; Rothstein, Rodney; Krejci, Lumir

    2013-01-01

    Rad54 is an ATP-driven translocase involved in the genome maintenance pathway of homologous recombination (HR). Although its activity has been implicated in several steps of HR, its exact role(s) at each step are still not fully understood. We have identified a new interaction between Rad54 and the replicative DNA clamp, proliferating cell nuclear antigen (PCNA). This interaction was only mildly weakened by the mutation of two key hydrophobic residues in the highly-conserved PCNA interaction motif (PIP-box) of Rad54 (Rad54-AA). Intriguingly, the rad54-AA mutant cells displayed sensitivity to DNA damage and showed HR defects similar to the null mutant, despite retaining its ability to interact with HR proteins and to be recruited to HR foci in vivo. We therefore surmised that the PCNA interaction might be impaired in vivo and was unable to promote repair synthesis during HR. Indeed, the Rad54-AA mutant was defective in primer extension at the MAT locus as well as in vitro, but additional biochemical analysis revealed that this mutant also had diminished ATPase activity and an inability to promote D-loop formation. Further mutational analysis of the putative PIP-box uncovered that other phenotypically relevant mutants in this domain also resulted in a loss of ATPase activity. Therefore, we have found that although Rad54 interacts with PCNA, the PIP-box motif likely plays only a minor role in stabilizing the PCNA interaction, and rather, this conserved domain is probably an extension of the ATPase domain III. PMID:24376557

  15. XRCC3 ATPase activity is required for normal XRCC3-Rad51C complex dynamics and homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, N; Hinz, J; Kopf, V L; Segalle, K; Thompson, L

    2004-02-25

    Homologous recombinational repair is a major DNA repair pathway that preserves chromosomal integrity by removing double-strand breaks, crosslinks, and other DNA damage. In eukaryotic cells, the Rad51 paralogs (XRCC2, XRCC3, Rad51B, Rad51C, and Rad51D) are involved in this process, although their exact functions are largely undetermined. All five paralogs contain ATPase motifs, and XRCC3 appears to exist in a single complex with Rad51C. To begin to examine the function of this Rad51C-XRCC3 complex, we generated mammalian expression vectors that produce human wild-type XRCC3 or mutant XRCC3 with either a non-conservative mutation (K113A) or a conservative mutation (K113R) in the GKT Walker A box of the ATPase motif. The three vectors were independently transfected into Xrcc3-deficient irs1SF CHO cells. Wild-type XRCC3 complemented irs1SF cells, albeit to varying degrees, while ATPase mutants had no complementing activity, even when the mutant protein was expressed at comparable levels to that in wild-type-complemented clones. Because of the mutants' dysfunction, we propose that ATP binding and hydrolyzing activities of XRCC3 are essential. We tested in vitro complex formation by wild-type and mutant XRCC3 with His6-tagged Rad51C upon coexpression in bacteria, nickel affinity purification, and western blotting. Wild-type and K113A mutant XRCC3 formed stable complexes with Rad51C and co-purified with Rad51C, while the K113R mutant did not and was predominantly insoluble. Addition of 5 mM ATP, but not ADP, also abolished complex formation by the wild-type proteins. These results suggest that XRCC3 is likely to regulate the dissociation and formation of Rad51C-XRCC3 complex through ATP binding and hydrolysis, with both processes being essential for the complex's ability to participate in HRR.

  16. Crystal Structure of the Vanadate-Inhibited Ca2+-ATPase

    DEFF Research Database (Denmark)

    Clausen, Johannes D.; Bublitz, Maike; Arnou, Bertrand; Olesen, Claus; Andersen, Jens Peter; Møller, Jesper Vuust; Nissen, Poul

    2016-01-01

    catalytic site as a planar VO3− in complex with water and Mg2+ in a dephosphorylation transition-state-like conformation. Validating bound VO3− by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Cl− site near the dephosphorylation site. Crystallization......Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca2+-ATPase with bound vanadate in the absence of Ca2+. Vanadate is bound at the...

  17. F F1-ATPase as biosensor to detect single virus

    International Nuclear Information System (INIS)

    F F1-ATPase within chromatophore was constructed as a biosensor (immuno-rotary biosensor) for the purpose of capturing single virus. Capture of virus was based on antibody-antigen reaction. The detection of virus based on proton flux change driven by ATP-synthesis of F F1-ATPase, which was indicated by F1300, was directly observed by a fluorescence microscope. The results demonstrate that the biosensor loading of virus particles has remarkable signal-to-noise ratio (3.8:1) compared to its control at single molecular level, and will be convenient, quick, and even super-sensitive for detecting virus particles

  18. Crystal structure of the yeast vacuolar ATPase heterotrimeric EGChead peripheral stalk complex

    OpenAIRE

    Oot, Rebecca A; Huang, Li-Shar; Edward A. Berry; Wilkens, Stephan

    2012-01-01

    Vacuolar ATPases (V-ATPases) are multisubunit rotary motor proton pumps that function to acidify subcellular organelles in all eukaryotic organisms. V-ATPase is regulated by a unique mechanism that involves reversible dissociation into V1-ATPase and Vo proton channel, a process that involves breaking of protein interactions mediated by subunit C, the cytoplasmic domain of subunit 'a' and three 'peripheral stalks', each made of a heterodimer of E and G subunits. Here we present crystal structu...

  19. Vacuolar ATPase Regulates Surfactant Secretion in Rat Alveolar Type II Cells by Modulating Lamellar Body Calcium

    OpenAIRE

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveol...

  20. Multilayer motif analysis of brain networks

    OpenAIRE

    Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito

    2016-01-01

    In the last decade network science has shed new light on the anatomical connectivity and on correlations in the activity of different areas of the human brain. The study of brain networks has made possible in fact to detect the central areas of a neural system, and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on structural and functional networks as separate entities. The recently ...

  1. Motif-specific sampling of phosphoproteomes

    OpenAIRE

    Ruse, Cristian I.; McClatchy, Daniel B.; Lu, Bingwen; Cociorva, Daniel; Motoyama, Akira; Kyu Park, Sung; Yates, John R.

    2008-01-01

    Phosphoproteomics, the targeted study of a subfraction of the proteome which is modified by phosphorylation, has become an indispensable tool to study cell signaling dynamics. We described a methodology that linked phosphoproteome and proteome analysis based on Ba2+ binding properties of amino acids. This technology selected motif-specific phosphopeptides independent of the system under analysis. MudPIT (Multidimensional Identification Technology) identified 1037 precipitated phosphopeptides ...

  2. Social Network Analysis Based on Network Motifs

    OpenAIRE

    Xu Hong-lin; Yan Han-bing; Gao Cui-fang; Zhu Ping

    2014-01-01

    Based on the community structure characteristics, theory, and methods of frequent subgraph mining, network motifs findings are firstly introduced into social network analysis; the tendentiousness evaluation function and the importance evaluation function are proposed for effectiveness assessment. Compared with the traditional way based on nodes centrality degree, the new approach can be used to analyze the properties of social network more fully and judge the roles of the nodes effectively. I...

  3. Multilayer motif analysis of brain networks

    CERN Document Server

    Battiston, Federico; Chavez, Mario; Latora, Vito

    2016-01-01

    In the last decade network science has shed new light on the anatomical connectivity and on correlations in the activity of different areas of the human brain. The study of brain networks has made possible in fact to detect the central areas of a neural system, and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on structural and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows to perform a multiplex analysis of the human brain where the structural and functional layers are considered at the same time. In this work we describe how to classify subgraphs in multiplex networks, and we extend motif analysis to networks with many layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, respectively obtained from diffusion and functional magnetic resonance imaging. Results i...

  4. Dynamic motifs in socio-economic networks

    Science.gov (United States)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  5. Excess capacity of H+ ATPase and inverse respiratory control in Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Westerhoff, Hans V.; Michelsen, Ole

    1993-01-01

    the growth rate much less than proportionally; the H+-ATPase controlled growth rate by lt 10%. This lack of control reflected excess capacity: the rate of ATP synthesis per H+-ATPase (the turnover number) increased by 60% when the number of enzymes was decreased by 40%. At 15% H+-ATPase, the enzyme...

  6. Thapsigargin affinity purification of intracellular P(2A)-type Ca(2+) ATPases

    DEFF Research Database (Denmark)

    Vandecaetsbeek, Ilse; Christensen, Søren Brøgger; Liu, Huizhen; Van Veldhoven, Paul P; Waelkens, Etienne; Eggermont, Jan; Raeymaekers, Luc; Møller, Jesper V; Nissen, Poul; Wuytack, Frank; Vangheluwe, Peter

    2011-01-01

    The ubiquitous sarco(endo)plasmic reticulum (SR/ER) Ca(2+) ATPase (SERCA2b) and secretory-pathway Ca(2+) ATPase (SPCA1a) belong both to the P(2A)-type ATPase subgroup of Ca(2+) transporters and play a crucial role in the Ca(2+) homeostasis of respectively the ER and Golgi apparatus. They are...

  7. Towards defining the substrate of orphan P5A-ATPases

    DEFF Research Database (Denmark)

    Sørensen, Danny Mollerup; Holen, Henrik Waldal; Holemans, Tine;

    2015-01-01

    Background P-type ATPases are ubiquitous ion and lipid pumps found in cellular membranes. P5A-ATPases constitute a poorly characterized subfamily of P-type ATPases present in all eukaryotic organisms but for which a transported substrate remains to be identified. Scope of review This review aims ...

  8. Dynamics of network motifs in genetic regulatory networks

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Liu Zeng-Rong; Zhang Jian-Bao

    2007-01-01

    Network motifs hold a very important status in genetic regulatory networks. This paper aims to analyse the dynamical property of the network motifs in genetic regulatory networks. The main result we obtained is that the dynamical property of a single motif is very simple with only an asymptotically stable equilibrium point, but the combination of several motifs can make more complicated dynamical properties emerge such as limit cycles. The above-mentioned result shows that network motif is a stable substructure in genetic regulatory networks while their combinations make the genetic regulatory network more complicated.

  9. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps

    DEFF Research Database (Denmark)

    Morth, Jens Preben; Pedersen, Bjørn Panella; Buch-Pedersen, Morten Jeppe;

    2011-01-01

    Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary...... transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na...

  10. ET-Motif: Solving the Exact (l, d)-Planted Motif Problem Using Error Tree Structure.

    Science.gov (United States)

    Al-Okaily, Anas; Huang, Chun-Hsi

    2016-07-01

    Motif finding is an important and a challenging problem in many biological applications such as discovering promoters, enhancers, locus control regions, transcription factors, and more. The (l, d)-planted motif search, PMS, is one of several variations of the problem. In this problem, there are n given sequences over alphabets of size [Formula: see text], each of length m, and two given integers l and d. The problem is to find a motif m of length l, where in each sequence there is at least an l-mer at a Hamming distance of [Formula: see text] of m. In this article, we propose ET-Motif, an algorithm that can solve the PMS problem in [Formula: see text] time and [Formula: see text] space. The time bound can be further reduced by a factor of m with [Formula: see text] space. In case the suffix tree that is built for the input sequences is balanced, the problem can be solved in [Formula: see text] time and [Formula: see text] space. Similarly, the time bound can be reduced by a factor of m using [Formula: see text] space. Moreover, the variations of the problem, namely the edit distance PMS and edited PMS (Quorum), can be solved using ET-Motif with simple modifications but upper bands of space and time. For edit distance PMS, the time and space bounds will be increased by [Formula: see text], while for edited PMS the increase will be of [Formula: see text] in the time bound. PMID:27152692

  11. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design.

    Science.gov (United States)

    Zhang, Shaoqiang; Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html. PMID:27487245

  12. No tradeoff between versatility and robustness in gene circuit motifs

    Science.gov (United States)

    Payne, Joshua L.

    2016-05-01

    Circuit motifs are small directed subgraphs that appear in real-world networks significantly more often than in randomized networks. In the Boolean model of gene circuits, most motifs are realized by multiple circuit genotypes. Each of a motif's constituent circuit genotypes may have one or more functions, which are embodied in the expression patterns the circuit forms in response to specific initial conditions. Recent enumeration of a space of nearly 17 million three-gene circuit genotypes revealed that all circuit motifs have more than one function, with the number of functions per motif ranging from 12 to nearly 30,000. This indicates that some motifs are more functionally versatile than others. However, the individual circuit genotypes that constitute each motif are less robust to mutation if they have many functions, hinting that functionally versatile motifs may be less robust to mutation than motifs with few functions. Here, I explore the relationship between versatility and robustness in circuit motifs, demonstrating that functionally versatile motifs are robust to mutation despite the inherent tradeoff between versatility and robustness at the level of an individual circuit genotype.

  13. AISMOTIF-An Artificial Immune System for DNA Motif Discovery

    Directory of Open Access Journals (Sweden)

    Seeja K R

    2011-03-01

    Full Text Available Discovery of transcription factor binding sites is a much explored and still exploring area of research in functional genomics. Many computational tools have been developed for finding motifs and each of them has their own advantages as well as disadvantages. Most of these algorithms need prior knowledge about the data to construct background models. However there is not a single technique that can be considered as best for finding regulatory motifs. This paper proposes an artificial immune system based algorithm for finding the transcription factor binding sites or motifs and two new weighted scores for motif evaluation. The algorithm is enumerative, but sufficient pruning of the pattern search space has been incorporated using immune system concepts. The performance of AISMOTIF has been evaluated by comparing it with eight state of art composite motif discovery algorithms and found that AISMOTIF predicts known motifs as well as new motifs from the benchmark dataset without any prior knowledge about the data.

  14. AISMOTIF-An Artificial Immune System for DNA Motif Discovery

    CERN Document Server

    Seeja, K R

    2011-01-01

    Discovery of transcription factor binding sites is a much explored and still exploring area of research in functional genomics. Many computational tools have been developed for finding motifs and each of them has their own advantages as well as disadvantages. Most of these algorithms need prior knowledge about the data to construct background models. However there is not a single technique that can be considered as best for finding regulatory motifs. This paper proposes an artificial immune system based algorithm for finding the transcription factor binding sites or motifs and two new weighted scores for motif evaluation. The algorithm is enumerative, but sufficient pruning of the pattern search space has been incorporated using immune system concepts. The performance of AISMOTIF has been evaluated by comparing it with eight state of art composite motif discovery algorithms and found that AISMOTIF predicts known motifs as well as new motifs from the benchmark dataset without any prior knowledge about the data...

  15. Crystal Structure of the Vanadate-Inhibited Ca(2+)-ATPase.

    Science.gov (United States)

    Clausen, Johannes D; Bublitz, Maike; Arnou, Bertrand; Olesen, Claus; Andersen, Jens Peter; Møller, Jesper Vuust; Nissen, Poul

    2016-04-01

    Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca(2+)-ATPase with bound vanadate in the absence of Ca(2+). Vanadate is bound at the catalytic site as a planar VO3(-) in complex with water and Mg(2+) in a dephosphorylation transition-state-like conformation. Validating bound VO3(-) by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Cl(-) site near the dephosphorylation site. Crystallization was facilitated by trinitrophenyl (TNP)-derivatized nucleotides that bind with the TNP moiety occupying the binding pocket that normally accommodates the adenine of ATP, rationalizing their remarkably high affinity for E2P-like conformations of the Ca(2+)-ATPase. A comparison of the configurations of bound nucleotide analogs in the E2·VO3(-) structure with that in E2·BeF3(-) (E2P ground state analog) reveals multiple binding modes to the Ca(2+)-ATPase. PMID:27050689

  16. V-ATPase, ScNhxlp and Yeast Vacuole Fusion

    Institute of Scientific and Technical Information of China (English)

    Quan-Sheng Qiu

    2012-01-01

    Membrane fusion is the last step in trafficking pathways during which membrane vesicles fuse with target organelles to deliver cargos.It is a central cellular reaction that plays important roles in signal transduction,protein sorting and subcellular compartmentation.Recent progress in understanding the roles of ion transporters in vacuole fusion in yeast is summanzed in this article.It is becoming increasingly evident that the vacuolar proton pump V-ATPase and vacuolar Na+/H+ antiporter ScNhxlp are key components of the vacuole fusion machinery in yeast.Yeast ScNhxlp regulates vacuole fusion by controlling the luminal pH.V-ATPases serve a dual role in vacuolar integrity in which they regulate both vacuole fusion and fission reactions in yeast.Fission defects are epistatic to fusion defects.Vacuole fission depends on the proton translocation activity of the V-ATPase; by contrast,the fusion reaction does not need the transport activity but requires the physical presence of the proton pump.Vo,the membrane-integral sector of the V-ATPase,forms trans-complexes between the opposing vacuoles in the terminal phase of vacuole fusion where the Vo trans-complexes build a continuous proteolipid channel at the fusion site to mediate the bilayer fusion.

  17. Calcium-ATPases: Gene disorders and dysregulation in cancer.

    Science.gov (United States)

    Dang, Donna; Rao, Rajini

    2016-06-01

    Ca(2+)-ATPases belonging to the superfamily of P-type pumps play an important role in maintaining low, nanomolar cytoplasmic Ca(2+) levels at rest and priming organellar stores, including the endoplasmic reticulum, Golgi, and secretory vesicles with high levels of Ca(2+) for a wide range of signaling functions. In this review, we introduce the distinct subtypes of Ca(2+)-ATPases and their isoforms and splice variants and provide an overview of their specific cellular roles as they relate to genetic disorders and cancer, with a particular emphasis on recent findings on the secretory pathway Ca(2+)-ATPases (SPCA). Mutations in human ATP2A2, ATP2C1 genes, encoding housekeeping isoforms of the endoplasmic reticulum (SERCA2) and secretory pathway (SPCA1) pumps, respectively, confer autosomal dominant disorders of the skin, whereas mutations in other isoforms underlie various muscular, neurological, or developmental disorders. Emerging evidence points to an important function of dysregulated Ca(2+)-ATPase expression in cancers of the colon, lung, and breast where they may serve as markers of differentiation or novel targets for therapeutic intervention. We review the mechanisms underlying the link between calcium homeostasis and cancer and discuss the potential clinical relevance of these observations. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen. PMID:26608610

  18. Autoinhibitory Regulation of Plasma Membrane H+-ATPases

    DEFF Research Database (Denmark)

    Pedersen, Jesper Torbøl

    Electrochemical gradients across cell membranes are essential for nutrient uptake. In plant and fungal cells the electrochemical gradient across the plasma membrane (PM) can build much higher than in mammalian cells. The protein responsible for this gradient is the essential PM H+-ATPase that uses...

  19. Assessing the Exceptionality of Coloured Motifs in Networks

    Directory of Open Access Journals (Sweden)

    Lacroix Vincent

    2009-01-01

    Full Text Available Various methods have been recently employed to characterise the structure of biological networks. In particular, the concept of network motif and the related one of coloured motif have proven useful to model the notion of a functional/evolutionary building block. However, algorithms that enumerate all the motifs of a network may produce a very large output, and methods to decide which motifs should be selected for downstream analysis are needed. A widely used method is to assess if the motif is exceptional, that is, over- or under-represented with respect to a null hypothesis. Much effort has been put in the last thirty years to derive -values for the frequencies of topological motifs, that is, fixed subgraphs. They rely either on (compound Poisson and Gaussian approximations for the motif count distribution in Erdös-Rényi random graphs or on simulations in other models. We focus on a different definition of graph motifs that corresponds to coloured motifs. A coloured motif is a connected subgraph with fixed vertex colours but unspecified topology. Our work is the first analytical attempt to assess the exceptionality of coloured motifs in networks without any simulation. We first establish analytical formulae for the mean and the variance of the count of a coloured motif in an Erdös-Rényi random graph model. Using simulations under this model, we further show that a Pólya-Aeppli distribution better approximates the distribution of the motif count compared to Gaussian or Poisson distributions. The Pólya-Aeppli distribution, and more generally the compound Poisson distributions, are indeed well designed to model counts of clumping events. Altogether, these results enable to derive a -value for a coloured motif, without spending time on simulations.

  20. Trypsin digestion for determining orientation of ATPase in Halobacterium saccharovorum membrane vesicles

    Science.gov (United States)

    Kristjansson, H.; Hochstein, L. I.

    1986-01-01

    Membranes prepared by low pressure disruption of cells exhibited no ATPase activity in the absence of Triton X-100, although 43% of the total menadione reductase activity was detected. Trypsin digestion reduced menadione reductase activity by 45% whereas ATPase activity was not affected. Disruption of the membrane fraction at higher pressure solubilized about 45% of the ATPase activity. The soluble activity was still enhanced by Triton X-100, suggesting that the detergent, besides disrupting membrane vesicles, also activated the ATPase. The discrepancy in localization of menadione reductase and ATPase activities raised questions regarding the reliability of using a single marker enzyme as an indicator of vesicle orientation.

  1. Na+,K+-ATPase Na+ affinity in rat skeletal muscle fiber types

    DEFF Research Database (Denmark)

    Kristensen, Michael; Juel, Carsten

    2010-01-01

    Previous studies in expression systems have found different ion activation of the Na(+)/K(+)-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na(+),K(+)-ATPase activity, and the Na(+) affinity of Na(+),K(+)-ATPase......Previous studies in expression systems have found different ion activation of the Na(+)/K(+)-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na(+),K(+)-ATPase activity, and the Na(+) affinity of Na...

  2. Review: P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas

    DEFF Research Database (Denmark)

    Andersen, Jens P; Vestergaard, Anna L; Mikkelsen, Stine A;

    2016-01-01

    P4-ATPases comprise a family of P-type ATPases that actively transport or flip phospholipids across cell membranes. This generates and maintains membrane lipid asymmetry, a property essential for a wide variety of cellular processes such as vesicle budding and trafficking, cell signaling, blood...... focuses on properties of mammalian and yeast P4-ATPases for which most mechanistic insight is available. However, the structure, function and enigmas associated with mammalian and yeast P4-ATPases most likely extend to P4-ATPases of plants and other organisms....

  3. Epigallocatechin-3-Gallate Protects Erythrocyte Ca2+-ATPase and Na+/K+-ATPase Against Oxidative Induced Damage During Aging in Humans

    Directory of Open Access Journals (Sweden)

    Prabhanshu Kumar

    2014-10-01

    Full Text Available Purpose: The main purpose of this study was to investigate the protective role of epigallocatechin-3-gallate on tertiary butyl hydroperoxide induced oxidative damage in erythrocyte during aging in humans. Methods: Human erythrocyte membrane bound Ca2+-ATPase and Na+/K+-ATPase activities were determined as a function of human age. Protective role of epigallocatechin-3-gallate was evaluated by in vitro experiments by adding epigallocatechin-3-gallate in concentration dependent manner (final concentration range 10-7M to 10-4M to the enzyme assay medium. Oxidative stress was induced in vitro by incubating washed erythrocyte ghosts with tertiary butyl hydroperoxide (10-5 M final concentration. Results: We have reported concentration dependent effect of epigallocatechin-3-gallate on tertiary butyl hydroperoxide induced damage on activities of Ca2+-ATPase and Na+/K+-ATPase during aging in humans. We have detected a significant (p < 0.001 decreased activity of Ca2+-ATPase and Na+/K+ -ATPase as a function of human age. Epigallocatechin-3-gallate protected ATPases against tertiary butyl hydroperoxide induced damage in concentration dependent manner during aging in humans. Conclusion: Epigallocatechin-3-gallate is a powerful antioxidant that is capable of protecting erythrocyte Ca2+-ATPase and Na+/K+ -ATPase against oxidative stress during aging in humans. We may propose hypothesis that a high intake of catechin rich diet may provide some protection against development of aging and age related diseases.

  4. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance.

    Science.gov (United States)

    Schep, Daniel G; Zhao, Jianhua; Rubinstein, John L

    2016-03-22

    Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacteriumThermus thermophilusis similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined theT. thermophilusV/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of theT. thermophilusV/A-ATPase and eukaryotic V-ATPase fromSaccharomyces cerevisiaeallowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in theS. cerevisaeV-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases. PMID:26951669

  5. Sodium ions as substitutes for protons in the gastric H,K-ATPase

    International Nuclear Information System (INIS)

    In view of the striking homology among various ion-translocating ATPases including Na,K-ATPase, Ca-ATPase, and H,K-ATPase, and the recent evidence that protons can replace cytoplasmic sodium as well as potassium in the reaction mechanism of the Na,K-ATPase (Polvani, C., and Blostein, R. (1988) J. Biol. Chem. 263, 16757-16763), we studied the role of sodium as a substitute for protons in the H,K-ATPase reaction. Using hog gastric H,K-ATPase-rich inside-out membrane vesicles we observed 22Na+ influx which was stimulated by intravesicular potassium ions (K+i) at pH 8.5 but not at pH 7.1. This sodium influx was observed in medium containing ATP and was inhibited by vanadate and SCH28080, a selective inhibitor of the gastric H,K-ATPase. At least 2-fold accumulation of sodium was observed at pH 8.5. Experiments aimed to determine the sidedness of the alkaline pH requirement for K+i-dependent sodium influx showed that K+i-activated sodium influx depends on pHout and is unaffected by changes in pHin. These results support the conclusion that sodium ions substitute for protons in the H,K-ATPase reaction mechanism and provide evidence for a similarity in ion selectivity and/or binding domains of the Na,K-ATPase and the gastric H,K-ATPase enzymes

  6. Acidic/IQ Motif Regulator of Calmodulin*

    OpenAIRE

    Putkey, John A.; Waxham, M. Neal; Gaertner, Tara R.; Brewer, Kari J.; Goldsmith, Michael; Kubota, Yoshihisa; Kleerekoper, Quinn K.

    2007-01-01

    The small IQ motif proteins PEP-19 (62 amino acids) and RC3 (78 amino acids) greatly accelerate the rates of Ca2+ binding to sites III and IV in the C-domain of calmodulin (CaM). We show here that PEP-19 decreases the degree of cooperativity of Ca2+ binding to sites III and IV, and we present a model showing that this could increase Ca2+ binding rate constants. Comparative sequence analysis showed that residues 28 to 58 from PEP-19 are conserved in other proteins. This region includes the IQ ...

  7. RMOD: a tool for regulatory motif detection in signaling network.

    Science.gov (United States)

    Kim, Jinki; Yi, Gwan-Su

    2013-01-01

    Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod. PMID:23874612

  8. A combinatorial optimization approach for diverse motif finding applications

    Directory of Open Access Journals (Sweden)

    Singh Mona

    2006-08-01

    Full Text Available Abstract Background Discovering approximately repeated patterns, or motifs, in biological sequences is an important and widely-studied problem in computational molecular biology. Most frequently, motif finding applications arise when identifying shared regulatory signals within DNA sequences or shared functional and structural elements within protein sequences. Due to the diversity of contexts in which motif finding is applied, several variations of the problem are commonly studied. Results We introduce a versatile combinatorial optimization framework for motif finding that couples graph pruning techniques with a novel integer linear programming formulation. Our approach is flexible and robust enough to model several variants of the motif finding problem, including those incorporating substitution matrices and phylogenetic distances. Additionally, we give an approach for determining statistical significance of uncovered motifs. In testing on numerous DNA and protein datasets, we demonstrate that our approach typically identifies statistically significant motifs corresponding to either known motifs or other motifs of high conservation. Moreover, in most cases, our approach finds provably optimal solutions to the underlying optimization problem. Conclusion Our results demonstrate that a combined graph theoretic and mathematical programming approach can be the basis for effective and powerful techniques for diverse motif finding applications.

  9. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  10. Cross-disciplinary detection and analysis of network motifs.

    Science.gov (United States)

    Tran, Ngoc Tam L; DeLuccia, Luke; McDonald, Aidan F; Huang, Chun-Hsi

    2015-01-01

    The detection of network motifs has recently become an important part of network analysis across all disciplines. In this work, we detected and analyzed network motifs from undirected and directed networks of several different disciplines, including biological network, social network, ecological network, as well as other networks such as airlines, power grid, and co-purchase of political books networks. Our analysis revealed that undirected networks are similar at the basic three and four nodes, while the analysis of directed networks revealed the distinction between networks of different disciplines. The study showed that larger motifs contained the three-node motif as a subgraph. Topological analysis revealed that similar networks have similar small motifs, but as the motif size increases, differences arise. Pearson correlation coefficient showed strong positive relationship between some undirected networks but inverse relationship between some directed networks. The study suggests that the three-node motif is a building block of larger motifs. It also suggests that undirected networks share similar low-level structures. Moreover, similar networks share similar small motifs, but larger motifs define the unique structure of individuals. Pearson correlation coefficient suggests that protein structure networks, dolphin social network, and co-authorships in network science belong to a superfamily. In addition, yeast protein-protein interaction network, primary school contact network, Zachary's karate club network, and co-purchase of political books network can be classified into a superfamily. PMID:25983553

  11. Protein functional-group 3D motif and its applications

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Representing and recognizing protein active sites sequence motif (1D motif) and structural motif (3D motif) is an important topic for predicting and designing protein function. Prevalent methods for extracting and searching 3D motif always consider residue as the minimal unit, which have limited sensitivity. Here we present a new spatial representation of protein active sites, called "functional-group 3D motif ", based on the fact that the functional groups inside a residue contribute mostly to its function. Relevant algorithm and computer program are developed, which could be widely used in the function prediction and the study of structural-function relationship of proteins. As a test, we defined a functional-group 3D motif of the catalytic triad and oxyanion hole with the structure of porcine trypsin (PDB code: 1mct) as the template. With our motif-searching program, we successfully found similar sub-structures in trypsins, subtilisins and a/b hydrolases, which show distinct folds but share similar catalytic mechanism. Moreover, this motif can be used to elucidate the structural basis of other proteins with variant catalytic triads by comparing it to those proteins. Finally, we scanned this motif against a non-redundant protein structure database to find its matches, and the results demonstrated the potential application of functional group 3D motif in function prediction. Above all, compared with the other 3D-motif representations on residues, the functional group 3D motif achieves better representation of protein active region, which is more sensitive for protein function prediction.

  12. "Oxygen Sensing" by Na,K-ATPase: These Miraculous Thiols.

    Science.gov (United States)

    Bogdanova, Anna; Petrushanko, Irina Y; Hernansanz-Agustín, Pablo; Martínez-Ruiz, Antonio

    2016-01-01

    Control over the Na,K-ATPase function plays a central role in adaptation of the organisms to hypoxic and anoxic conditions. As the enzyme itself does not possess O2 binding sites its "oxygen-sensitivity" is mediated by a variety of redox-sensitive modifications including S-glutathionylation, S-nitrosylation, and redox-sensitive phosphorylation. This is an overview of the current knowledge on the plethora of molecular mechanisms tuning the activity of the ATP-consuming Na,K-ATPase to the cellular metabolic activity. Recent findings suggest that oxygen-derived free radicals and H2O2, NO, and oxidized glutathione are the signaling messengers that make the Na,K-ATPase "oxygen-sensitive." This very ancient signaling pathway targeting thiols of all three subunits of the Na,K-ATPase as well as redox-sensitive kinases sustains the enzyme activity at the "optimal" level avoiding terminal ATP depletion and maintaining the transmembrane ion gradients in cells of anoxia-tolerant species. We acknowledge the complexity of the underlying processes as we characterize the sources of reactive oxygen and nitrogen species production in hypoxic cells, and identify their targets, the reactive thiol groups which, upon modification, impact the enzyme activity. Structured accordingly, this review presents a summary on (i) the sources of free radical production in hypoxic cells, (ii) localization of regulatory thiols within the Na,K-ATPase and the role reversible thiol modifications play in responses of the enzyme to a variety of stimuli (hypoxia, receptors' activation) (iii) redox-sensitive regulatory phosphorylation, and (iv) the role of fine modulation of the Na,K-ATPase function in survival success under hypoxic conditions. The co-authors attempted to cover all the contradictions and standing hypotheses in the field and propose the possible future developments in this dynamic area of research, the importance of which is hard to overestimate. Better understanding of the processes

  13. Network Motifs: Simple Building Blocks of Complex Networks

    Science.gov (United States)

    Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U.

    2002-10-01

    Complex networks are studied across many fields of science. To uncover their structural design principles, we defined ``network motifs,'' patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks.

  14. Meisetz and the birth of the KRAB motif.

    Science.gov (United States)

    Birtle, Zoë; Ponting, Chris P

    2006-12-01

    The largest family of transcription factors in mammals is of Cys(2)His(2) zinc finger-proteins, each with an NH(2)-terminal KRAB motif. Extensive expansions of this family have occurred in separate mammalian lineages, with approximately 400 such genes known in the human genome. Despite their widespread occurrence, the evolutionary provenance of the KRAB motif is unclear since previously it has not been found outside of the tetrapod vertebrates. Here, we show that homologues of the histone methyltransferase Meisetz are present within the sea urchin (Strongylocentrotus purpuratus) genome. Sea urchin and mammalian Meisetz sequences each contain an N-terminal KRAB motif, which thereby establishes an early origin of the KRAB motif prior to the divergence of echinoderm and chordate lineages. Finally, we present evidence that KRAB motifs derive from a novel family of KRI (KRAB Interior) motifs that were present in the last common ancestor of animals, plants and fungi. PMID:17032681

  15. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    Energy Technology Data Exchange (ETDEWEB)

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.; Eisen,Michael B.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  16. Discriminative Motif Finding for Predicting Protein Subcellular Localization

    OpenAIRE

    Lin, Tien-ho; Murphy, Robert F.; Bar-Joseph, Ziv

    2011-01-01

    Many methods have been described to predict the subcellular location of proteins from sequence information. However, most of these methods either rely on global sequence properties or use a set of known protein targeting motifs to predict protein localization. Here we develop and test a novel method that identifies potential targeting motifs using a discriminative approach based on hidden Markov models (discriminative HMMs). These models search for motifs that are present in a compartment but...

  17. Sequence motif discovery with computational genome-wide analysis

    OpenAIRE

    Akashi, Hirofumi; Aoki, Fumio; Toyota, Minoru; Maruyama, Reo; Sasaki, Yasushi; Mita, Hiroaki; Tokura, Hajime; Imai, Kohzoh; Tatsumi, Haruyuki

    2006-01-01

    As a result of the human genome project and advancements in DNA sequencing technology, we can utilize a huge amount of nucleotide sequence data and can search DNA sequence motifs in whole human genome. However, searching motifs with the naked eye is an enormous task and searching throughout the whole genome is absolutely impossible. Therefore, we have developed a computational genome-wide analyzing system for detecting DNA sequence motifs with biological significance. We used a multi-parallel...

  18. A Comparative Study of Bases for Motif Inference

    OpenAIRE

    Pisanti, Nadia; Crochemore, Maxime; Grossi, Roberto; Sagot, Marie-France

    2005-01-01

    International audience Motif inference is at the heart of several time-demanding computational tasks, such as in molecular biology, data mining and identification of structured motifs in sequences, and in data compression, to name a few. In this scenario, a motif is a pattern that appears repeated at least a certain number of times (the quorum), to be of interest. The pattern can be approximated in that some of its characters can be left unspecified (the don't cares). Motif inference is not ...

  19. Differential effects of inhibitors and detergents on the Ca2+-ATPase and Mg2+-ATPase activities of the plasma membrane of a human oat cell carcinoma

    International Nuclear Information System (INIS)

    Plasma membranes of human oat cell carcinoma possess Mg2+- and Ca2+-dependent ATPase activities of similar magnitude. These activities exhibit the unusual characteristic of being inactiviated by prolonged incubation of the membrane with 1-2 mM dithiothreitol (DTT). Inactivation by DTT was prevented by lowering the incubation temperature, elevation of the membrane protein concentration, and addition of ATP. Fluorosulfonylbenzoyl adenosine (FSBA), an affinity ATP analog, also inactivates these activities. The Ca2+-ATPase activity appears to be more sensitive to both DTT and FSBA. The Ca2+-ATPase activity is more easily inactivated by Triton X-100, while the Mg2+-ATPase is preferentially activated by digitonin. These differential effects of inhibitors and detergents suggest that the Ca2+-ATPase and Mg2+-ATPase are separate enzymes. Incubation of oat cell carcinoma plasma membrane with [3H]FSBA resulted in the labeling of several proteins. A labelled 35,000 dalton protein corresponds to the molecular weight of the oat cell carcinoma plasma membrane Ca2+-ATPase previously purified in this laboratory. The identity of one or more of the other labelled proteins with the Mg2+-ATPase has not been demonstrated, but is presently under investigation

  20. Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals.

    Science.gov (United States)

    Parra, Karlett J; Chan, Chun-Yuan; Chen, Jun

    2014-06-01

    Vacuolar H(+)-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/protein kinase A (PKA) pathway, and phosphoinositides, but the mechanisms involved are elusive. The atomic- and pseudo-atomic-resolution structures of the V-ATPases are shedding light on the molecular dynamics that regulate V-ATPase assembly. Although all eukaryotic V-ATPases may be built with an inherent capacity to reversibly disassemble, not all do so. V-ATPase subunit isoforms and their interactions with membrane lipids and a V-ATPase-exclusive chaperone influence V-ATPase assembly. This minireview reports on the mechanisms governing reversible disassembly in the yeast Saccharomyces cerevisiae, keeping in perspective our present understanding of the V-ATPase architecture and its alignment with the cellular processes and signals involved. PMID:24706019

  1. Dietary selenium increases the antioxidant levels and ATPase activity in the arteries and veins of poultry.

    Science.gov (United States)

    Cao, Changyu; Zhao, Xia; Fan, Ruifeng; Zhao, Jinxin; Luan, Yilin; Zhang, Ziwei; Xu, Shiwen

    2016-07-01

    Selenium (Se) deficiency is associated with the pathogenesis of vascular diseases. It has been shown that oxidative levels and ATPase activity were involved in Se deficiency diseases in humans and mammals; however, the mechanism by how Se influences the oxidative levels and ATPase activity in the poultry vasculature is unclear. We assessed the effects of dietary Se deficiency on the oxidative stress parameters (superoxide dismutase, catalase, and hydroxyl radical) and ATPase (Na(+)K(+)-ATPase, Ca(++)-ATPase, Mg(++)-ATPase, and Ca(++)Mg(++)-ATPase) activity in broiler poultry. A total of 40 broilers (1-day old) were randomly divided into a Se-deficient group (L group, fed a Se-deficient diet containing 0.08 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.20 mg/kg Se). Then, arteries and veins were collected following euthanasia when typical symptoms of Se deficiency appeared. Antioxidant indexes and ATPase activity were evaluated using standard assays in arteries and veins. The results indicated that superoxide dismutase activity in the artery according to dietary Se deficiency was significantly lower (p < 0.05) compared with the C group. The catalase activity in the veins and hydroxyl radical inhibition in the arteries and veins by dietary Se deficiency were significantly higher (p < 0.05) compared with the C group. The Se-deficient group showed a significantly lower (p < 0.05) tendency in Na(+)K(+)-ATPase activity, Ca(++)-ATPase activity, and Ca(++)Mg(++)-ATPase activity. There were strong correlations between antioxidant indexes and Ca(++)-ATPase activity. Thus, these results indicate that antioxidant indexes and ATPases may have special roles in broiler artery and vein injuries under Se deficiency. PMID:26637493

  2. Mitochondrial ATPase: a target for paracetamol-induced hepatotoxicity.

    Science.gov (United States)

    Parmar, D V; Ahmed, G; Khandkar, M A; Katyare, S S

    1995-10-01

    We examined the effect of paracetamol treatment (650 mg/kg) on the function of ATPase from rat hepatic mitochondria. The drug treatment caused an overall 35% decrease in ATPase activity, with a complete loss of the high affinity component as determined by substrate kinetic studies. The Km for the intermediate and low affinity components decreased by about 30% without change in Vmax, which may represent a compensatory mechanism. The drug treatment also resulted in a dramatic decrease in the phase transition temperature by about 19 degrees C without affecting the energies of activation of the enzyme. Mitochondrial total phospholipid content increased significantly with a reciprocal decrease in the cholesterol content. The total phospholipid/cholesterol molar ration increased by 50% after paracetamol treatment. However, phospholipid composition (as % of total) of the mitochondria was unaltered. PMID:8666039

  3. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    Full Text Available Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are 'structural' (induced subgraphs and 'functional' (partial subgraphs. Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.

  4. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

    Directory of Open Access Journals (Sweden)

    Ya Hui Hung

    2013-08-01

    Full Text Available Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-Type ATPases (copper-ATPases, ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

  5. V-ATPase as an effective therapeutic target for sarcomas

    International Nuclear Information System (INIS)

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles and induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity

  6. V-ATPase as an effective therapeutic target for sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Perut, Francesca, E-mail: francesca.perut@ior.it [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Avnet, Sofia; Fotia, Caterina; Baglìo, Serena Rubina; Salerno, Manuela [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Hosogi, Shigekuni [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kusuzaki, Katsuyuki [Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Baldini, Nicola [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna (Italy)

    2014-01-01

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles and induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity.

  7. A structure filter for the Eukaryotic Linear Motif Resource

    Directory of Open Access Journals (Sweden)

    Gemünd Christine

    2009-10-01

    Full Text Available Abstract Background Many proteins are highly modular, being assembled from globular domains and segments of natively disordered polypeptides. Linear motifs, short sequence modules functioning independently of protein tertiary structure, are most abundant in natively disordered polypeptides but are also found in accessible parts of globular domains, such as exposed loops. The prediction of novel occurrences of known linear motifs attempts the difficult task of distinguishing functional matches from stochastically occurring non-functional matches. Although functionality can only be confirmed experimentally, confidence in a putative motif is increased if a motif exhibits attributes associated with functional instances such as occurrence in the correct taxonomic range, cellular compartment, conservation in homologues and accessibility to interacting partners. Several tools now use these attributes to classify putative motifs based on confidence of functionality. Results Current methods assessing motif accessibility do not consider much of the information available, either predicting accessibility from primary sequence or regarding any motif occurring in a globular region as low confidence. We present a method considering accessibility and secondary structural context derived from experimentally solved protein structures to rectify this situation. Putatively functional motif occurrences are mapped onto a representative domain, given that a high quality reference SCOP domain structure is available for the protein itself or a close relative. Candidate motifs can then be scored for solvent-accessibility and secondary structure context. The scores are calibrated on a benchmark set of experimentally verified motif instances compared with a set of random matches. A combined score yields 3-fold enrichment for functional motifs assigned to high confidence classifications and 2.5-fold enrichment for random motifs assigned to low confidence classifications

  8. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole;

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets of...... peptides, and knowledge of their binding specificities is important for understanding differences in the immune response between individuals. Algorithms predicting which peptides bind a given MHC molecule have recently been developed with high prediction accuracy. The utility of these algorithms is...... binding motif for each MHC molecule is predicted using state-of-the-art, pan-specific peptide-MHC binding-prediction methods, and is visualized as a sequence logo, in a format that allows for a comprehensive interpretation of binding motif anchor positions and amino acid preferences....

  9. The Role of the Plasma Membrane H+-ATPase in Plant-Microbe Interactions

    Institute of Scientific and Technical Information of China (English)

    James Mitch Elmore; Gitta Coaker

    2011-01-01

    T Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular membrane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes contribute to signaling events in response to diverse environmental stimuli. Here, we focus on the roles of the PM H+-ATPase during plantpathogen interactions. PM H+-ATPases are dynamically regulated during plant immune responses and recent quantitative proteomics studies suggest complex spatial and temporal modulation of PM H+-ATPase activity during early pathogen recognition events. Additional data indicate that PM H+-ATPases cooperate with the plant immune signaling protein RIN4 to regulate stomatal apertures during bacterial invasion of leaf tissue. Furthermore, pathogens have evolved mechanisms to manipulate PM H+-ATPase activity during infection. Thus, these ubiquitous plant enzymes contribute to plant immune responses and are targeted by pathogens to increase plant susceptibility.

  10. Influence of activating hormones on human platelet membrane Ca/sup 2 +/-ATPase activity

    Energy Technology Data Exchange (ETDEWEB)

    Resink, T.J.; Dimitrov, D.; Stucki, S.; Buehler, F.R.

    1986-07-16

    Intact platelets were pretreated with hormones and thereafter membranes were prepared and Ca/sup 2 +/-ATPase activity determined. Thrombin decreased the V/sub max/ of Ca/sup 2 +/-ATPase after pretreatment of intact platelets. Platelet activating factor, vasopressin and ADP also decreased Ca/sup 2 +/-ATPase activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) or A23187 or ionomycin alone had no effect, while the simultaneous pretreatment with TPA and Ca/sup 2 +/-ionophore decreased Ca/sup 2 +/-ATPase activity. cAMP elevating agents prostaglandin E/sub 1/ (PGE/sub 1/) and forskolin had no influence per se on Ca/sup 2 +/-ATPase, but antagonized the inhibitory effect of thrombin. The data suggest a close connection between phosphoinositide metabolism and the Ca/sup 2 +/-ATPase system.

  11. Brain Na+, K+-ATPase Activity In Aging and Disease

    Science.gov (United States)

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways

  12. Discovering large network motifs from a complex biological network

    International Nuclear Information System (INIS)

    Graph structures representing relationships between entries have been studied in statistical analysis, and the results of these studies have been applied to biological networks, whose nodes and edges represent proteins and the relationships between them, respectively. Most of the studies have focused on only graph structures such as scale-free properties and cliques, but the relationships between nodes are also important features since most of the proteins perform their functions by connecting to other proteins. In order to determine such relationships, the problem of network motif discovery has been addressed; network motifs are frequently appearing graph structures in a given graph. However, the methods for network motif discovery are highly restrictive for the application to biological network because they can only be used to find small network motifs or they do not consider noise and uncertainty in observations. In this study, we introduce a new index to measure network motifs called AR index and develop a novel algorithm called ARIANA for finding large motifs even when the network has noise. Experiments using a synthetic network verify that our method can find better network motifs than an existing algorithm. By applying ARIANA to a real complex biological network, we find network motifs associated with regulations of start time of cell functions and generation of cell energies and discover that the cell cycle proteins can be categorized into two different groups.

  13. The phenomenon of astral motifs on late mediaeval tombstones

    Science.gov (United States)

    Mijatović, V.; Ninković, S.; Vemić, D.

    2003-10-01

    The authors study astral motifs present on some mediaeval tombstones found in present-day Serbia and Montenegro and in the neighbouring countries (especially in Bosnia and Herzegovina). The authors discern some important astral motifs, explain them and present a short review concerning their frequency.

  14. Aztec, Incan and Mayan Motifs...Lead to Distinctive Designs.

    Science.gov (United States)

    Shields, Joanne

    2001-01-01

    Describes an art project for seventh-grade students in which they choose motifs based on Incan, Aztec, and Mayan Indian materials to incorporate into two-dimensional designs. Explains that the activity objective is to create a unified, balanced and pleasing composition using a minimum of three motifs. (CMK)

  15. Role of GxxxG Motifs in Transmembrane Domain Interactions.

    Science.gov (United States)

    Teese, Mark G; Langosch, Dieter

    2015-08-25

    Transmembrane (TM) helices of integral membrane proteins can facilitate strong and specific noncovalent protein-protein interactions. Mutagenesis and structural analyses have revealed numerous examples in which the interaction between TM helices of single-pass membrane proteins is dependent on a GxxxG or (small)xxx(small) motif. It is therefore tempting to use the presence of these simple motifs as an indicator of TM helix interactions. In this Current Topic review, we point out that these motifs are quite common, with more than 50% of single-pass TM domains containing a (small)xxx(small) motif. However, the actual interaction strength of motif-containing helices depends strongly on sequence context and membrane properties. In addition, recent studies have revealed several GxxxG-containing TM domains that interact via alternative interfaces involving hydrophobic, polar, aromatic, or even ionizable residues that do not form recognizable motifs. In multipass membrane proteins, GxxxG motifs can be important for protein folding, and not just oligomerization. Our current knowledge thus suggests that the presence of a GxxxG motif alone is a weak predictor of protein dimerization in the membrane. PMID:26244771

  16. Probing structural changes of self assembled i-motif DNA

    KAUST Repository

    Lee, Iljoon

    2015-01-01

    We report an i-motif structural probing system based on Thioflavin T (ThT) as a fluorescent sensor. This probe can discriminate the structural changes of RET and Rb i-motif sequences according to pH change. This journal is

  17. In vitro effect of isoschaftoside isolated from Syngonium podophyllum on pig kidney Na+, K+-ATPase

    OpenAIRE

    Anne Caroline Candido Gomes; Luzia da Silva Sampaio; Paulo André da Silva; Marcelo Einicker Lamas; Cassia Mônica Sakuragui; Cleber Bomfim Barreto Junior; Naomi Kato Simas; Ricardo Machado Kuster

    2014-01-01

    The present study aimed to investigate the in vitro effects of isoschaftoside isolated from Syngonium podophyllum on pig kidney Na+,K+-ATPase. The Na+, K+-ATPase activity was determined by colorimetric measurement of inorganic phosphate (Pi), resulting from ATP hydrolysis. Isoschaftoside significantly decreased the renal Na+, K+-ATPase activity at the highest concentration as well as at a lower concentration. Our work suggests that isoschaftoside is a promising compound for the treatment of h...

  18. Saccharomyces cerevisiae Vacuolar H+-ATPase Regulation by Disassembly and Reassembly: One Structure and Multiple Signals

    OpenAIRE

    Parra, Karlett J.; Chan, Chun-Yuan; Chen, Jun

    2014-01-01

    Vacuolar H+-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/prot...

  19. Positive Cooperativity of the p97 AAA ATPase Is Critical for Essential Functions*

    OpenAIRE

    Nishikori, Shingo; Esaki, Masatoshi; Yamanaka, Kunitoshi; Sugimoto, Shinya; Ogura, Teru

    2011-01-01

    p97 is composed of two conserved AAA (ATPases associated with diverse cellular activities) domains, which form a tandem hexameric ring. We characterized the ATP hydrolysis mechanism of CDC-48.1, a p97 homolog of Caenorhabditis elegans. The ATPase activity of the N-terminal AAA domain was very low at physiological temperature, whereas the C-terminal AAA domain showed high ATPase activity in a coordinated fashion with positive cooperativity. The cooperativity and coordination are generated by d...

  20. TOWARD UNDERSTANDING ALLOSTERIC SIGNALING MECHANISMS IN THE ATPASE DOMAIN OF MOLECULAR CHAPERONES

    OpenAIRE

    Liu, Ying; Bahar, Ivet

    2010-01-01

    The ATPase cycle of the heat shock protein 70 (HSP70) is largely dependent on the ability of its nucleotide binding domain (NBD), also called ATPase domain, to undergo structural changes between its open and closed conformations. We present here a combined study of the Hsp70 NBD sequence, structure and dynamic features to identify the residues that play a crucial role in mediating the allosteric signaling properties of the ATPase domain. Specifically, we identify the residues involved in the ...

  1. Oxidative stress (Glutathionylation) and Na,K-ATPase activity in rat skeletal muscle

    OpenAIRE

    Juel, Carsten

    2014-01-01

    Background Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation) on the Na,K-ATPase in rat skeletal muscle membranes. Results Immunoprecipitation with an anti-glutathione antibody and subsequent ...

  2. MotifCombinator: a web-based tool to search for combinations of cis-regulatory motifs

    Directory of Open Access Journals (Sweden)

    Tsunoda Tatsuhiko

    2007-03-01

    Full Text Available Abstract Background A combination of multiple types of transcription factors and cis-regulatory elements is often required for gene expression in eukaryotes, and the combinatorial regulation confers specific gene expression to tissues or environments. To reveal the combinatorial regulation, computational methods are developed that efficiently infer combinations of cis-regulatory motifs that are important for gene expression as measured by DNA microarrays. One promising type of computational method is to utilize regression analysis between expression levels and scores of motifs in input sequences. This type takes full advantage of information on expression levels because it does not require that the expression level of each gene be dichotomized according to whether or not it reaches a certain threshold level. However, there is no web-based tool that employs regression methods to systematically search for motif combinations and that practically handles combinations of more than two or three motifs. Results We here introduced MotifCombinator, an online tool with a user-friendly interface, to systematically search for combinations composed of any number of motifs based on regression methods. The tool utilizes well-known regression methods (the multivariate linear regression, the multivariate adaptive regression spline or MARS, and the multivariate logistic regression method for this purpose, and uses the genetic algorithm to search for combinations composed of any desired number of motifs. The visualization systems in this tool help users to intuitively grasp the process of the combination search, and the backup system allows users to easily stop and restart calculations that are expected to require large computational time. This tool also provides preparatory steps needed for systematic combination search – i.e., selecting single motifs to constitute combinations and cutting out redundant similar motifs based on clustering analysis. Conclusion

  3. Dynamic Motifs of Strategies in Prisoner's Dilemma Games

    CERN Document Server

    Kim, Young Jin; Jeong, Seon-Young; Son, Seung-Woo

    2014-01-01

    We investigate the win-lose relations between strategies of iterated prisoner's dilemma games by using a directed network concept to display the replicator dynamics results. In the giant strongly-connected component of the win/lose network, we find win-lose circulations similar to rock-paper-scissors and analyze the fixed point and its stability. Applying the network motif concept, we introduce dynamic motifs, which describe the population dynamics relations among the three strategies. Through exact enumeration, we find 22 dynamic motifs and display their phase portraits. Visualization using directed networks and motif analysis is a useful method to make complex dynamic behavior simple in order to understand it more intuitively. Dynamic motifs can be building blocks for dynamic behavior among strategies when they are applied to other types of games.

  4. An algorithm for motif-based network design

    CERN Document Server

    Mäki-Marttunen, Tuomo

    2016-01-01

    A determinant property of the structure of a biological network is the distribution of local connectivity patterns, i.e., network motifs. In this work, a method for creating directed, unweighted networks while promoting a certain combination of motifs is presented. This motif-based network algorithm starts with an empty graph and randomly connects the nodes by advancing or discouraging the formation of chosen motifs. The in- or out-degree distribution of the generated networks can be explicitly chosen. The algorithm is shown to perform well in producing networks with high occurrences of the targeted motifs, both ones consisting of 3 nodes as well as ones consisting of 4 nodes. Moreover, the algorithm can also be tuned to bring about global network characteristics found in many natural networks, such as small-worldness and modularity.

  5. Thyroid hormone stimulation in vitro of red blood cell Ca2+-ATPase activity: interspecies variation.

    Science.gov (United States)

    Davis, F B; Kite, J H; Davis, P J; Blas, S D

    1982-01-01

    In vitro susceptibility to thyroid hormone stimulation of membrane-associated Ca2+-ATPase activity has been examined in red blood cells from rat, rabbit, dog, monkey, and man. Monkey and human red cell Ca2+-ATPase activities responded comparably to 10(-10)M T4 or T3. Basal and thyroid hormone-stimulated Ca2+-ATPase activity in rabbit erythrocytes was four-fold higher than in primate red cells. Rat and dog red cell Ca2+-ATPase did not respond to iodothyronines in vitro. PMID:6459228

  6. Sub-chronic effect of neem based pesticide (Vepacide) on acetylcholinesterase and ATPases in rat.

    Science.gov (United States)

    Rahman, M F; Siddiqui, M K; Jamil, K

    1999-09-01

    Acetylcholinesterases (AChE), Na(+)-K+, Mg2+ and Ca(2+)-ATPases were monitored in rat brain when treated orally with 80, 160 and 320 mg/kg of Vepacide, an active ingredient from neem seed oil, daily for 90 days. Brain AChE, Na(+)-K+ and Ca(2+)-ATPases were inhibited whereas Mg(2+)-ATPase levels were enhanced in both the sexes after 45 and 90 days of treatment. The relative sensitivities of these ATPases to Vepacide indicated that Ca(2+)-ATPase being more sensitive than Na(+)-K(+)-ATPase in both the sexes. The magnitude of Ca(2+)-ATPase inhibited by this compound was higher than that of brain AChE. It appears to be sexual dimorphism in the alterations of brain AChE, Na(+)-K+ and Mg(2+)-ATPases by Vepacide with females being significant when compared with males. After 28 days of post treatment the alterations observed were approached to those of controls both in male and female rats showing reversal of the toxicity. These results indicated that the ATPases were potently inhibited by Vepacide and seemed to be its precise target among the enzyme studied. This can be used as biochemical marker of exposure to this neem derived product. PMID:10466107

  7. Excess capacity of H+ ATPase and inverse respiratory control in Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Westerhoff, Hans V.; Michelsen, Ole

    1993-01-01

    the growth rate much less than proportionally; the H+-ATPase controlled growth rate by lt 10%. This lack of control reflected excess capacity: the rate of ATP synthesis per H+-ATPase (the turnover number) increased by 60% when the number of enzymes was decreased by 40%. At 15% H+-ATPase, the enzyme became...... potential: respiration was increased showing that in E. coli, respiration and ATP synthesis are, in part, inversely coupled. Indeed, growth yield per O-2 decreased, suggesting significant leakage or slip at the high respiration rates and membrane potential found at low H+-ATPase concentrations...

  8. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  9. Evolution of the α-Subunit of Na/K-ATPase from Paramecium to Homo sapiens: Invariance of Transmembrane Helix Topology.

    Science.gov (United States)

    Morrill, Gene A; Kostellow, Adele B; Liu, Lijun; Gupta, Raj K; Askari, Amir

    2016-05-01

    Na/K-ATPase is a key plasma membrane enzyme involved in cell signaling, volume regulation, and maintenance of electrochemical gradients. The α-subunit, central to these functions, belongs to a large family of P-type ATPases. Differences in transmembrane (TM) helix topology, sequence homology, helix-helix contacts, cell signaling, and protein domains of Na/K-ATPase α-subunit were compared in fungi (Beauveria), unicellular organisms (Paramecia), primitive multicellular organisms (Hydra), and vertebrates (Xenopus, Homo sapiens), and correlated with evolution of physiological functions in the α-subunit. All α-subunits are of similar length, with groupings of four and six helices in the N- and C-terminal regions, respectively. Minimal homology was seen for protein domain patterns in Paramecium and Hydra, with high correlation between Hydra and vertebrates. Paramecium α-subunits display extensive disorder, with minimal helix contacts. Increases in helix contacts in Hydra approached vertebrates. Protein motifs known to be associated with membrane lipid rafts and cell signaling reveal significant positional shifts between Paramecium and Hydra vulgaris, indicating that regional membrane fluidity changes occur during evolution. Putative steroid binding sites overlapping TM-3 occurred in all species. Sites associated with G-protein-receptor stimulation occur both in vertebrates and amphibia but not in Hydra or Paramecia. The C-terminus moiety "KETYY," necessary for the Na(+) activation of pump phosphorylation, is not present in unicellular species indicating the absence of classical Na(+)/K(+)-pumps. The basic protein topology evolved earliest, followed by increases in protein domains and ordered helical arrays, correlated with appearance of α-subunit regions known to involve cell signaling, membrane recycling, and ion channel formation. PMID:26961431

  10. Structure of Na+,K+-ATPase at 11-A resolution: comparison with Ca2+-ATPase in E1 and E2 states.

    OpenAIRE

    Rice, W J; Young, H S; Martin, D W; Sachs, J R; Stokes, D.L.

    2001-01-01

    Na+,K+-ATPase is a heterodimer of alpha and beta subunits and a member of the P-type ATPase family of ion pumps. Here we present an 11-A structure of the heterodimer determined from electron micrographs of unstained frozen-hydrated tubular crystals. For this reconstruction, the enzyme was isolated from supraorbital glands of salt-adapted ducks and was crystallized within the native membranes. Crystallization conditions fixed Na+,K+-ATPase in the vanadate-inhibited E2 conformation, and the cry...

  11. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  12. Effects of phenol on ATPase activities in crude gill homogenates of rainbow trout (Salmo gairdneri Richardson)

    Energy Technology Data Exchange (ETDEWEB)

    Poston, T.M.

    1979-01-01

    The ATPase specific activities from crude gill homogenates of rainbow trout were lower than those from microsomal preparations reported in the literature. Sodium pump activity (ouabain sensitive NaK-ATPase) was demonstrable at 37/sup 0/C. An ouabain insensitive NaK-ATPase was demonstrable at temperatures below 30/sup 0/C and may represent a Na-ATPase activity reported by others. Energy of activation at 25/sup 0/C for total NaK-ATPase ws 10,500 cal.mole/sup -1/. Mg-baseline activity had an energy of activation at 25/sup 0/C of 15,600 cal.mole/sup -1/. Mg-baseline activity was thermally labile at temperatures in excess of 30/sup 0/C. Concentrations of Mg/sup +2/ in excess of 5 mM appeared to inhibit total NaK-ATPase activity. At 37/sup 0/C, Na/sup +/ and K/sup +/ exerted little, if any, stimulatory effect on ATPase activities, in spite of the fact that 37/sup 0/C was the only temperature at which sodium pump activity was demonstrable. MS-222 failed to produce any discernible changes in any of the demonstrable ATPase activities in crude gill homogenates. Total NaK-ATPase activities were more sensitive than Mg-baseline activities to in vitro inhibition by phenol. Concentrations of phenol which produce 50% inhibition in total NaK-ATPase produced only 35% inhibition in Mg-baseline activity. The nature of in vitro inhibition was uncompetitive. Sodium pump activity was unaffected by phenol at concentrations as high as 25 mM. An effort was made to demonstrate an in vivo effects of phenol on rainbow trout gill ATPase activites. An infestation of a parasite (Gyrodactilus) on the experimental fish precludes any definative assessment of in vivo effects.

  13. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Science.gov (United States)

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H(+) into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1), an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+) chelator, BAPTA-AM, the protein kinase C (PKC) inhibitor, staurosporine, and the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), KN-62. Baf A1 induced Ca(2+) release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+) pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+) mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion. PMID:20169059

  14. MISAE: a new approach for regulatory motif extraction.

    Science.gov (United States)

    Sun, Zhaohui; Yang, Jingyi; Deogun, Jitender S

    2004-01-01

    The recognition of regulatory motifs of co-regulated genes is essential for understanding the regulatory mechanisms. However, the automatic extraction of regulatory motifs from a given data set of the upstream non-coding DNA sequences of a family of co-regulated genes is difficult because regulatory motifs are often subtle and inexact. This problem is further complicated by the corruption of the data sets. In this paper, a new approach called Mismatch-allowed Probabilistic Suffix Tree Motif Extraction (MISAE) is proposed. It combines the mismatch-allowed probabilistic suffix tree that is a probabilistic model and local prediction for the extraction of regulatory motifs. The proposed approach is tested on 15 co-regulated gene families and compares favorably with other state-of-the-art approaches. Moreover, MISAE performs well on "corrupted" data sets. It is able to extract the motif from a "corrupted" data set with less than one fourth of the sequences containing the real motif. PMID:16448011

  15. BlockLogo: visualization of peptide and sequence motif conservation.

    Science.gov (United States)

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian; Sun, Jing; Schönbach, Christian; Reinherz, Ellis L; Zhang, Guang Lan; Brusic, Vladimir

    2013-12-31

    BlockLogo is a web-server application for the visualization of protein and nucleotide fragments, continuous protein sequence motifs, and discontinuous sequence motifs using calculation of block entropy from multiple sequence alignments. The user input consists of a multiple sequence alignment, selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine the specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms to enable on-the-fly prediction of MHC binding affinity to 15 common HLA class I and class II alleles as well as visual analysis of discontinuous epitopes from multiple sequence alignments. It enables the visualization and analysis of structural and functional motifs that are usually described as regular expressions. It provides a compact view of discontinuous motifs composed of distant positions within biological sequences. BlockLogo is available at: http://research4.dfci.harvard.edu/cvc/blocklogo/ and http://met-hilab.bu.edu/blocklogo/. PMID:24001880

  16. Computational analyses of synergism in small molecular network motifs.

    Directory of Open Access Journals (Sweden)

    Yili Zhang

    2014-03-01

    Full Text Available Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically to alter the responses of the motifs to stimuli. Synergism (or antagonism was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions.

  17. Torsional elasticity and energetics of F1-ATPase.

    Science.gov (United States)

    Czub, Jacek; Grubmüller, Helmut

    2011-05-01

    F(o)F(1)-ATPase is a rotary motor protein synthesizing ATP from ADP driven by a cross-membrane proton gradient. The proton flow through the membrane-embedded F(o) generates the rotary torque that drives the rotation of the asymmetric shaft of F(1). Mechanical energy of the rotating shaft is used by the F(1) catalytic subunit to synthesize ATP. It was suggested that elastic power transmission with transient storage of energy in some compliant part of the shaft is required for the observed high turnover rate. We used atomistic simulations to study the spatial distribution and structural determinants of the F(1) torsional elasticity at the molecular level and to comprehensively characterize the elastic properties of F(1)-ATPase. Our fluctuation analysis revealed an unexpected heterogeneity of the F(1) shaft elasticity. Further, we found that the measured overall torsional moduli of the shaft arise from two distinct contributions, the intrinsic elasticity and the effective potential imposed on the shaft by the catalytic subunit. Separation of these two contributions provided a quantitative description of the coupling between the rotor and the catalytic subunit. This description enabled us to propose a minimal quantitative model of the F(1) energetics along the rotary degrees of freedom near the resting state observed in the crystal structures. As opposed to the usually employed models where the motor mechanical progression is described by a single angular variable, our multidimensional treatment incorporates the spatially inhomogeneous nature of the shaft and its interactions with the stator and offers new insight into the mechanoenzymatics of F(1)-ATPase. PMID:21502534

  18. A speedup technique for (l, d-motif finding algorithms

    Directory of Open Access Journals (Sweden)

    Dinh Hieu

    2011-03-01

    Full Text Available Abstract Background The discovery of patterns in DNA, RNA, and protein sequences has led to the solution of many vital biological problems. For instance, the identification of patterns in nucleic acid sequences has resulted in the determination of open reading frames, identification of promoter elements of genes, identification of intron/exon splicing sites, identification of SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have proven to be extremely helpful in domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, etc. Motifs are important patterns that are helpful in finding transcriptional regulatory elements, transcription factor binding sites, functional genomics, drug design, etc. As a result, numerous papers have been written to solve the motif search problem. Results Three versions of the motif search problem have been proposed in the literature: Simple Motif Search (SMS, (l, d-motif search (or Planted Motif Search (PMS, and Edit-distance-based Motif Search (EMS. In this paper we focus on PMS. Two kinds of algorithms can be found in the literature for solving the PMS problem: exact and approximate. An exact algorithm identifies the motifs always and an approximate algorithm may fail to identify some or all of the motifs. The exact version of PMS problem has been shown to be NP-hard. Exact algorithms proposed in the literature for PMS take time that is exponential in some of the underlying parameters. In this paper we propose a generic technique that can be used to speedup PMS algorithms. Conclusions We present a speedup technique that can be used on any PMS algorithm. We have tested our speedup technique on a number of algorithms. These experimental results show that our speedup technique is indeed very

  19. Regulatory Mechanisms in the P4-ATPase Complex

    DEFF Research Database (Denmark)

    Costa, Sara

    Eukaryotic cell membranes are equipped with special proteins that actively translocate lipids from one leaflet to the other and thereby help generate membrane lipid asymmetry. Several relevant physiological processes depend on trans-bilayer phospholipid asymmetry, including vesiculation in the...... affordable alternative using a microscope-based cytometer. This system can simultaneously provide information on flippase activity and expression levels. Taken together, the findings described in this thesis provide new tools for P4-ATPase characterization and valuable insights into the regulation and the...

  20. Fluoride inhibition of proton-translocating ATPases of oral bacteria.

    OpenAIRE

    Sutton, S V; Bender, G R; Marquis, R E

    1987-01-01

    The ATPases of isolated membranes of lactic acid bacteria were found to be inhibited by fluoride in a complex manner. Among the enzymes tested, that of Streptococcus mutans GS-5 was the most sensitive to fluoride, and the initial rate of hydrolysis of ATP was reduced 50% by approximately 3 mM fluoride. The enzyme of Lactobacillus casei ATCC 4646 was the most resistant, and about 25 mM fluoride was required for 50% inhibition. The response to fluoride appeared to involve reversible, noncompeti...

  1. Efeito do colesterol na atividade da (Na+/K+) ATPase

    OpenAIRE

    Oliveira, Liliana Patrícia Alves

    2012-01-01

    O alumínio é o metal mais abundante na crosta terrestre sendo a sua exposição cada vez maior nas sociedades industrializadas. Numa sociedade cada vez mais envelhecida onde o número de casos de doenças neurodegenerativas tendem a aumentar, parece importante esclarecer os mecanismos celulares da neurotoxicidade do alumínio de forma a prevenir os seus efeitos. Estudos in vivo e in vitro indicam que a exposição a alumínio inibe a atividade da (Na+/K+)ATPase, proteína responsável...

  2. Substrate independent ATPase activity may complicate high throughput screening.

    Science.gov (United States)

    Tuntland, Micheal L; Fung, L W-M

    2016-10-01

    Inorganic phosphate release, [Pi], is often measured in an enzymatic reaction in a high throughput setting. Based on the published mechanism, we designed a protocol for our screening for inhibitors of SAICAR synthetase (PurC), and we found a gradual increase in [Pi] in positive control samples over the course of the day. Further investigation indicated that hydrolysis of ATP catalyzed by PurC, rather than substrate-related phosphate release, was responsible for a partial contribution to the signals in the control samples. Thus substrate-independent ATPase activity may complicate high throughput screening. PMID:27430931

  3. New ATPase regulators-p97 goes to the PUB

    DEFF Research Database (Denmark)

    Madsen, Louise; Seeger, Michael; Semple, Colin A; Hartmann-Petersen, Rasmus

    2009-01-01

    The conserved eukaryotic AAA-type ATPase complex, known as p97 or VCP in mammals and Cdc48 in yeast, is involved in a number of cellular pathways, including fusion of homotypic membranes, protein degradation, and activation of membrane-bound transcription factors. Most likely, p97 is directed to....... Recently, a small, conserved family of proteins, containing PUB domains, was found to function as p97 adaptors. Intriguingly, their association with p97 is regulated by tyrosine phosphorylation, suggesting that they act as a relay between signalling pathways and p97 functions. Here we give an overview of...

  4. Torsional elasticity and energetics of F-1-ATPase.

    OpenAIRE

    Czub, J.; Grubmüller, H.

    2011-01-01

    FoF1-ATPase is a rotary motor protein synthesizing ATP from ADP driven by a cross-membrane proton gradient. The proton flow through the membrane-embedded Fo generates the rotary torque that drives the rotation of the asymmetric shaft of F1. Mechanical energy of the rotating shaft is used by the F1 catalytic subunit to synthesize ATP. It was suggested that elastic power transmission with transient storage of energy in some compliant part of the shaft is required for the observed high turnover ...

  5. Identification of protein superfamily from structure- based sequence motif

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The structure-based sequence motif of the distant proteins in evolution, protein tyrosine phosphatases (PTP) Ⅰ and Ⅱ superfamilies, as an example, has been defined by the structural comparison, structure-based sequence alignment and analyses on substitution patterns of residues in common sequence conserved regions. And the phosphatases Ⅰ and Ⅱ can be correctly identified together by the structure-based PTP sequence motif from SWISS-PROT and TrEBML databases. The results show that the correct rates of identification are over 98%. This is the first time to identify PTP Ⅰ and Ⅱ together by this motif.

  6. Coherent feedforward transcriptional regulatory motifs enhance drug resistance

    Science.gov (United States)

    Charlebois, Daniel A.; Balázsi, Gábor; Kærn, Mads

    2014-05-01

    Fluctuations in gene expression give identical cells access to a spectrum of phenotypes that can serve as a transient, nongenetic basis for natural selection by temporarily increasing drug resistance. In this study, we demonstrate using mathematical modeling and simulation that certain gene regulatory network motifs, specifically coherent feedforward loop motifs, can facilitate the development of nongenetic resistance by increasing cell-to-cell variability and the time scale at which beneficial phenotypic states can be maintained. Our results highlight how regulatory network motifs enabling transient, nongenetic inheritance play an important role in defining reproductive fitness in adverse environments and provide a selective advantage subject to evolutionary pressure.

  7. A Novel Alignment-Free Method for Comparing Transcription Factor Binding Site Motifs

    OpenAIRE

    Minli Xu; Zhengchang Su

    2010-01-01

    BACKGROUND: Transcription factor binding site (TFBS) motifs can be accurately represented by position frequency matrices (PFM) or other equivalent forms. We often need to compare TFBS motifs using their PFMs in order to search for similar motifs in a motif database, or cluster motifs according to their binding preference. The majority of current methods for motif comparison involve a similarity metric for column-to-column comparison and a method to find the optimal position alignment between ...

  8. Relationship between serum adiponectin level and ATPase activity of erythrocyte membrance in patients with 2-type diabetes

    International Nuclear Information System (INIS)

    Objective: To explore the possible mechanism of development nephrosis as related to changes of serum adiponectin levels and alteration of activities of Na+·K+-ATPase and Ca+2·Mg+2-ATPase of erythrocyte membrance in patients with 2-type diabetes. Methods: Serum adiponectin levels (with RIA) and erythrocyte membrance (prepared with Reilnila method) Na+·K+- ATPase and Ca+2·Mg+2-ATPase activity were determined in 45 DM2 patients without nephropathy, 31 DM2 patients with nephropathy and 30 controls. Results: Serum adiponectin levels in the diabetic patients were significantly lower than those in controls (P+·K+-ATPase and Ca+2·Mg+2-ATPase activities were also significantly lower than those in controls (P+·K+-ATPase and Ca+2·Mg+2-ATPase activities of erythrocyte membrance. (authors)

  9. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour

    NARCIS (Netherlands)

    W. Verweij; C. Spelt; G.-P. di Sansebastiano; J. Vermeer; L. Reale; F. Ferranti; R. Koes; F. Quattrocchio

    2008-01-01

    The regulation of pH in cellular compartments is crucial for intracellular trafficking of vesicles and proteins and the transport of small molecules, including hormones. In endomembrane compartments, pH is regulated by vacuolar H+-ATPase1 (V-ATPase), which, in plants, act together with H+-pyrophosph

  10. Membrane-bound ATPase contributes to hop resistance of Lactobacillus brevis

    NARCIS (Netherlands)

    Sakamoto, K; van Veen, HW; Saito, H; Kobayashi, H; Konings, WN

    2002-01-01

    The activity of the membrane-bound H+-ATPase of the beer spoilage bacterium Lactobacillus brevis ABBC45 increased upon adaptation to bacteriostatic hop compounds. The ATPase activity was optimal around pH 5.6 and increased up to fourfold when L. brevis was exposed to 666 muM hop compounds. The exten

  11. Cation Transport Coupled to ATP Hydrolysis by the (Na, K)-ATPase: An Integrated, Animated Model

    Science.gov (United States)

    Leone, Francisco A.; Furriel, Rosa P. M.; McNamara, John C.; Horisberger, Jean D.; Borin, Ivana A.

    2010-01-01

    An Adobe[R] animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na[superscript +] and K[superscript +] translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P[subscript 2c]-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also…

  12. Phosphorylation of plant plasma membrane H+-ATPase by the heterologous host S.cerevisiae

    DEFF Research Database (Denmark)

    L. Rudashevskaya, Elena; Ye, Juanying; Jensen, Ole Nørregaard;

     It is known, that phosphorylation of both plant and yeast plasma membrane H+-ATPase results in enzyme activation or inhibition. Several sites at the regulatory C-terminus of the enzyme have been found to undergo phosphorylation in vivo in both plant and yeast. The C-termini of plant H+-ATPases are...

  13. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps

    DEFF Research Database (Denmark)

    Morth, Jens Preben; Pedersen, Bjørn Panella; Buch-Pedersen, Morten Jeppe;

    2011-01-01

    transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na......(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps....

  14. Structure and mechanism of Zn2+-transporting P-type ATPases

    DEFF Research Database (Denmark)

    Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele; Autzen, Henriette Elisabeth; Andersson, Magnus; Klymchuk, Tetyana; Nielsen, Anna Marie; Rees, Douglas C; Nissen, Poul; Gourdon, Pontus

    2014-01-01

    , respectively. The structures reveal a similar fold to Cu+-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn2+ ions by the transporter. The E2P...... extracellular release pathway that resemble PII-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase4, 5 (SERCA) and Na+, K+-ATPase6. These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine.......Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes, Zn2+-transporting P-type ATPases of class IB (Znt...

  15. Nitric oxide and Na,K-ATPase activity in rat skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten

    2016-01-01

    Aim: It has been suggested that nitric oxide (NO) stimulates the Na,K-ATPase in cardiac myocytes. Therefore, the aims of this study were to investigate whether NO increases Na,K-ATPase activity in skeletal muscle and, if that is the case, to identify the underlying mechanism. Method: The study used...... isolated rat muscle, muscle homogenates and purified membranes as model systems. Na,K-ATPase activity was quantified from phosphate release due to ATP hydrolysis. Results: Exposure to the NO donor spermine NONOate (10 μm) increased the maximal Na,K-ATPase activity by 27% in isolated glycolytic muscles...... activity was depressed by oxidized glutathione. Conclusion: NO and cGMP stimulate the Na,K-ATPase in glycolytic skeletal muscle. Direct S-nitrosylation and interference with S-glutathionylation seem to be excluded. In addition, phosphorylation of phospholemman at serine 68 is not involved. Most likely...

  16. Review article: The mountain motif in the plot of Matthew

    Directory of Open Access Journals (Sweden)

    Gert J. Volschenk

    2010-02-01

    Full Text Available This article reviewed T.L. Donaldson’s book, Jesus on the mountain: A study in Matthean theology, published in 1985 by JSOT Press, Sheffield, and focused on the mountain motif in the structure and plot of the Gospel of Matthew, in addition to the work of Donaldson on the mountain motif as a literary motif and as theological symbol. The mountain is a primary theological setting for Jesus’ ministry and thus is an important setting, serving as one of the literary devices by which Matthew structured and progressed his narrative. The Zion theological and eschatological significance and Second Temple Judaism serve as the historical and theological background for the mountain motif. The last mountain setting (Mt 28:16–20 is the culmination of the three theological themes in the plot of Matthew, namely Christology, ecclesiology and salvation history.

  17. BayesMD: flexible biological modeling for motif discovery

    DEFF Research Database (Denmark)

    Tang, Man-Hung Eric; Krogh, Anders; Winther, Ole

    2008-01-01

    and the marginal probabilities can be used directly to assess the significance of the findings. The framework is benchmarked against other methods on a number of real and artificial data sets. The accompanying prediction server, documentation, software, models and data are available from http://bayesmd.binf.ku.dk/.......We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained...... sampling results are achieved using the advanced sampling method parallel tempering. In a post-analysis step candidate motifs with high marginal probability are found by searching among those motifs that contain sites that occur frequently. Thereby, maximum a posteriori inference for the motifs is avoided...

  18. Automatic Network Fingerprinting through Single-Node Motifs

    CERN Document Server

    Echtermeyer, Christoph; Rodrigues, Francisco A; Kaiser, Marcus; 10.1371/journal.pone.0015765

    2011-01-01

    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs---a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes...

  19. BlockLogo: Visualization of peptide and sequence motif conservation

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian;

    2013-01-01

    , selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes...... and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine the specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms to...... enable on-the-fly prediction of MHC binding affinity to 15 common HLA class I and class II alleles as well as visual analysis of discontinuous epitopes from multiple sequence alignments. It enables the visualization and analysis of structural and functional motifs that are usually described as regular...

  20. Oxidative stress (glutathionylation and Na,K-ATPase activity in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carsten Juel

    Full Text Available Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation on the Na,K-ATPase in rat skeletal muscle membranes.Immunoprecipitation with an anti-glutathione antibody and subsequent immunodetection of Na,K-ATPase protein subunits demonstrated 9.0±1.3% and 4.1±1.0% glutathionylation of the α isoforms in oxidative and glycolytic skeletal muscle, respectively. In oxidative muscle, 20.0±6.1% of the β1 units were glutathionylated, whereas 14.8±2.8% of the β2-subunits appear to be glutathionylated in glycolytic muscle. Treatment with the reducing agent dithiothreitol (DTT, 1 mM increased the in vitro maximal Na,K-ATPase activity by 19% (P<0.05 in membranes from glycolytic muscle. Oxidized glutathione (GSSG, 0-10 mM increased the in vitro glutathionylation level detected with antibodies, and decreased the in vitro maximal Na,K-ATPase activity in a dose-dependent manner, and with a larger effect in oxidative compared to glycolytic skeletal muscle.This study demonstrates the existence of basal glutathionylation of both the α and the β units of rat skeletal muscle Na,K-ATPase. In addition, the study suggests a negative correlation between glutathionylation levels and maximal Na,K-ATPase activity.Glutathionylation likely contributes to the complex regulation of Na,K-ATPase function in skeletal muscle. Especially, glutathionylation induced by oxidative stress may have a role in Na,K-ATPase regulation during prolonged muscle activity.

  1. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  2. Retrieval of the vacuolar H-ATPase from phagosomes revealed by live cell imaging.

    Directory of Open Access Journals (Sweden)

    Margaret Clarke

    Full Text Available BACKGROUND: The vacuolar H+-ATPase, or V-ATPase, is a highly-conserved multi-subunit enzyme that transports protons across membranes at the expense of ATP. The resulting proton gradient serves many essential functions, among them energizing transport of small molecules such as neurotransmitters, and acidifying organelles such as endosomes. The enzyme is not present in the plasma membrane from which a phagosome is formed, but is rapidly delivered by fusion with endosomes that already bear the V-ATPase in their membranes. Similarly, the enzyme is thought to be retrieved from phagosome membranes prior to exocytosis of indigestible material, although that process has not been directly visualized. METHODOLOGY: To monitor trafficking of the V-ATPase in the phagocytic pathway of Dictyostelium discoideum, we fed the cells yeast, large particles that maintain their shape during trafficking. To track pH changes, we conjugated the yeast with fluorescein isothiocyanate. Cells were labeled with VatM-GFP, a fluorescently-tagged transmembrane subunit of the V-ATPase, in parallel with stage-specific endosomal markers or in combination with mRFP-tagged cytoskeletal proteins. PRINCIPAL FINDINGS: We find that the V-ATPase is commonly retrieved from the phagosome membrane by vesiculation shortly before exocytosis. However, if the cells are kept in confined spaces, a bulky phagosome may be exocytosed prematurely. In this event, a large V-ATPase-rich vacuole coated with actin typically separates from the acidic phagosome shortly before exocytosis. This vacuole is propelled by an actin tail and soon acquires the properties of an early endosome, revealing an unexpected mechanism for rapid recycling of the V-ATPase. Any V-ATPase that reaches the plasma membrane is also promptly retrieved. CONCLUSIONS/SIGNIFICANCE: Thus, live cell microscopy has revealed both a usual route and alternative means of recycling the V-ATPase in the endocytic pathway.

  3. Antioxidation and ATPase activity in the gill of mud crab Scylla serrata under cold stress

    Institute of Scientific and Technical Information of China (English)

    KONG Xianghui; WANG Guizhong; LI Shaojing

    2007-01-01

    Mud crab (Scylla serrata) is an important commercial crustacean in China. An experiment was designed to study the effect of cold stress on S. serrata. After a one-week adaptation at 28 ℃, the temperature is suddenly reduced to 4 ℃. The crabs were sampled every 2 h for 10 h and dissected immediately to measure the enzyme activity. The crabs at room temperature (28 ℃) were used as the control group. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), the content of malondialdehyde (MDA) and the activity of 4 ATPases (Na+, K+-ATPase;Mg2+-ATPase; Ca2+-ATPase; Ca2+, Mg2+-ATPase) were measured biochemically. In contrast to the control group, the SOD activity increased significantly from 2 to 6 h after the cold stress, and then decreased. The CAT and GPX activities increased in 2 h, and then decreased gradually. The content of MDA increased gradually in 4 h. The activity ofNa+, K+-ATPase decreased in 2 h, increased up to the top value at Hour 6,then decreased again. The activities of Mg2+-ATPase, Ca2+-ATPase and Ca2+, Mg2+-ATPase increased significantly in 6 h, insignificantly in any other hours. Under cold stress, the activity of antioxidative enzymes in S. serrata was reduced at first then stabilized, ROS-scavenging weakened, and MDA accumulated gradually in the gill after 6 h. The activity of the 4 ATPases in the crab decreased after 6 h,suggesting that the ability to regulate ion concentration has been paralyzed. Therefore, the maximum period to sustain healthy meat in the crab under cold stress is 6 hours.

  4. Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs

    Science.gov (United States)

    Xu, Feng-Dan; Liu, Zeng-Rong; Zhang, Zhi-Yong; Shen, Jian-Wei

    2009-02-01

    We integrate transcriptional and post-transcriptional regulation into microRNA-mediated incoherent feedforward motifs and analyse their dynamical behaviour and functions. The analysis show that the behaviour of the system is almost uninfluenced by the varying input in certain ranges and by introducing of delay and noise. The results indicate that microRNA-mediated incoherent feedforward motifs greatly enhance the robustness of gene regulation.

  5. Cross-Disciplinary Detection and Analysis of Network Motifs

    OpenAIRE

    Ngoc Tam L. Tran; Luke DeLuccia; McDonald, Aidan F; Chun-Hsi Huang

    2015-01-01

    The detection of network motifs has recently become an important part of network analysis across all disciplines. In this work, we detected and analyzed network motifs from undirected and directed networks of several different disciplines, including biological network, social network, ecological network, as well as other networks such as airlines, power grid, and co-purchase of political books networks. Our analysis revealed that undirected networks are similar at the basic three and four nod...

  6. Mining Tertiary Structural Motifs for Assessment of Designability

    OpenAIRE

    Zhang, Jian; Grigoryan, Gevorg

    2013-01-01

    The observation of a limited secondary-structural alphabet in native proteins, with significant sequence preferences, has profoundly influenced the fields of protein design and structure prediction (Simons et al., 1997; Verschueren et al., 2011). In the era of structural genomics, as the size of the structural dataset continues to grow rapidly, it is becoming possible to extend this analysis to tertiary structural motifs and their sequences. For a hypothetical tertiary motif, the rate of its ...

  7. Temporal Analysis of Motif Mixtures using Dirichlet Processes

    OpenAIRE

    Emonet, Rémi; Varadarajan, J.; Odobez, Jean-Marc

    2014-01-01

    International audience In this paper, we present a new model for unsupervised discovery of recurrent temporal patterns (or motifs) in time series (or documents). The model is designed to handle the difficult case of multivariate time series obtained from a mixture of activities, that is, our observations are caused by the superposition of multiple phenomena occurring concurrently and with no synchronization. The model uses nonparametric Bayesian methods to describe both the motifs and thei...

  8. Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs

    Institute of Scientific and Technical Information of China (English)

    XU Feng-Dan; LIU Zeng-Rong; ZHANG Zhi-Yong; SHEN Jian-Wei

    2009-01-01

    We integrate transcriptional and post-transcriptional regulation into microRNA-mediated incoherent feedforward motifs and analyse their dynamical behaviour and functions. The analysis show that the behaviour of the system is almost uninfluenced by the varying input in certain ranges and by introducing of delay and noise. The results indicate that microRNA-mediated incoherent feedforward motifs greatly enhance the robustness of gene regulation.

  9. Triplex-induced recombination and repair in the pyrimidine motif

    OpenAIRE

    Kalish, Jennifer M.; Seidman, Michael M.; Weeks, Daniel L.; Glazer, Peter M.

    2005-01-01

    Triplex-forming oligonucleotides (TFOs) bind DNA in a sequence-specific manner at polypurine/polypyrimidine sites and mediate targeted genome modification. Triplexes are formed by either pyrimidine TFOs, which bind parallel to the purine strand of the duplex (pyrimidine, parallel motif), or purine TFOs, which bind in an anti-parallel orientation (purine, anti-parallel motif). Both purine and pyrimidine TFOs, when linked to psoralen, have been shown to direct psoralen adduct formation in cells...

  10. Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs

    International Nuclear Information System (INIS)

    We integrate transcriptional and post-transcriptional regulation into microRNA-mediated incoherent feedforward motifs and analyse their dynamical behaviour and functions. The analysis show that the behaviour of the system is almost uninfluenced by the varying input in certain ranges and by introducing of delay and noise. The results indicate that microRNA-mediated incoherent feedforward motifs greatly enhance the robustness of gene regulation

  11. Interpretation of Konya Seljuk Carpet Motifs in Exlibrises

    OpenAIRE

    SÜRMELİ, Kader

    2013-01-01

    Traditional Turkish carpets’ technical characteristics with strong motifs and knotting technique, have been its greatest support in regular and continuing development which carry on to survive today. The discovery of Gordes - Turkish knotting technique was born from the need of a nomadic tribe to find a thicker and warmer floor material. Located in Konya, the center of the Anatolian Seljuks, Seljuk carpets with their rich color tones and motifs were the ones where this technique was applied ...

  12. Motif depletion in bacteriophages infecting hosts with CRISPR systems

    OpenAIRE

    Kupczok, Anne; Bollback, Jonathan P

    2014-01-01

    Background CRISPR is a microbial immune system likely to be involved in host-parasite coevolution. It functions using target sequences encoded by the bacterial genome, which interfere with invading nucleic acids using a homology-dependent system. The system also requires protospacer associated motifs (PAMs), short motifs close to the target sequence that are required for interference in CRISPR types I and II. Here, we investigate whether PAMs are depleted in phage genomes due to selection pre...

  13. Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs

    OpenAIRE

    Lin, Tien-ho; Bar-Joseph, Ziv; Murphy, Robert F.

    2011-01-01

    Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to m...

  14. AN INTEGRATED, ANIMATED MODEL OF THE (NA, K-ATPase HYDROLYTIC CYCLE

    Directory of Open Access Journals (Sweden)

    F.A. Leone

    2006-07-01

    Full Text Available The  (Na,  K-ATPase,  or  sodium  pump,  is  the  principal,  active  transport  system  that  establishes  sodium  and potassium  gradients  across  the  plasma  membranes  of  all  animal  cells.  Such  gradients  are  critical  to  sustaining important cellular functions like osmotic equilibrium, cell volume and pH homeostasis, among many others (Ann Rev Physiol 65: 817, 2003; Physiol 19: 377, 2004. This transport protein is a heterodimer that consists of a 110-kDa  -subunit  and  a  55-kDa,  glycosylated  -subunit.  A  group  of  seven  small  proteins,  known  as  FXYD  proteins  from  the sequence  of  a  conserved  motif  has  been  identified  recently,  and  one  of  these,  FXYD2,  constitutes  the  (Na,  K-ATPase  -subunit.  Our  model  is  based  on  conformational  changes  occurring  between  the  E1  and  E2  forms  of  the enzyme, which initiates its hydrolytic cycle at a high ATP/ADP ratio. While all steps are reversible, the model does not include  the reverse  reactions that can  take  place under appropriate conditions. The  E1 state  corresponds to that of the SERCA, recently crystallized (Science 304; 1672, 2004; Nature 430: 529, 2004. The animation was developed in Macromedia  Flash  8.0® and  illustrates  the  principle  of  an  alternating-access  model  of  an  ion  pump.  The  protein  is embedded  in  the  membrane  with  the  extracellular  face  uppermost  and  the  cytoplasmic  face  at  the  bottom.  Access from  the  cytoplasmic  or  extracellular  faces  to  the  cation-binding  sites,  located  in  the  transmembrane  moiety,  are controlled  by  two  gates  (moving  horizontal  bars,  and  conformations  showing  the  two  gates  closed  correspond  to states with occluded Na+ and K+ sites. Changes in cation-binding site structure entail

  15. An extended nomenclature for mammalian V-ATPase subunit genes and splice variants.

    Directory of Open Access Journals (Sweden)

    Kevin C Miranda

    Full Text Available The vacuolar-type H(+-ATPase (V-ATPase is a multisubunit proton pump that is involved in both intra- and extracellular acidification processes throughout the body. Multiple homologs and splice variants of V-ATPase subunits are thought to explain its varied spatial and temporal expression pattern in different cell types. Recently subunit nomenclature was standardized with a total of 22 subunit variants identified. However this standardization did not accommodate the existence of splice variants and is therefore incomplete. Thus, we propose here an extension of subunit nomenclature along with a literature and sequence database scan for additional V-ATPase subunits. An additional 17 variants were pulled from a literature search while 4 uncharacterized potential subunit variants were found in sequence databases. These findings have been integrated with the current V-ATPase knowledge base to create a new V-ATPase subunit catalogue. It is envisioned this catalogue will form a new platform on which future studies into tissue- and organelle-specific V-ATPase expression, localization and function can be based.

  16. Structure and function of the latent F0-F1-ATPase complex of Micrococcus lysodeikticus

    International Nuclear Information System (INIS)

    The latent F0F1-ATPase from Micrococcus luteus (lysodeikticus) has been purified to homogeneity, and nine distinct subunit bands were observed on SDS-PAGE. Five of nine bands corresponded to the F1 subunits and the other four bands are likely to be subunits a, a', b, and c of the F0 segment of the complex. The subunit designated as a' probably arises from proteolytic cleavage of the 25,5000 Mr subunit a. The F0F1-ATPase complex has a molecular weight of approximately 1,060,000, as determined by Fast Protein Liquid Chromatography (FPLC). It is assumed that the F0F1-ATPase peak obtained by FPLC was a dimer and that molecular weight of the F0F1-ATPase monomer was accordingly 530,000. The stoichiometry of the subunits was determined with 14C-labeled F0F1-ATPase prepared from cells grown on medium containing 14C-amino acids. Antibodies to the native and SDS-denatured F1 and F0F1-ATPase as well as to individual SDS-dissociated subunits have been generated for immunochemical analysis. The arrangement of the subunits in F1 and F0F1-ATPase have been investigated using bifunctional chemical cross-linking agents

  17. Regulation of vacuolar H{sup +}-ATPase in microglia by RANKL

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Ochotny, Noelle [Department of Pharmacology, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Manolson, Morris F. [Faculty of Dentistry, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Holliday, L. Shannon, E-mail: sholliday@dental.ufl.edu [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610 (United States)

    2009-11-06

    Vacuolar H{sup +}-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor {kappa}B-ligand (RANKL). We found that Receptor Activator of Nuclear Factor {kappa}B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  18. Tight coupling of Na+/K+-ATPase with glycolysis demonstrated in permeabilized rat cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Mervi Sepp

    Full Text Available The effective integrated organization of processes in cardiac cells is achieved, in part, by the functional compartmentation of energy transfer processes. Earlier, using permeabilized cardiomyocytes, we demonstrated the existence of tight coupling between some of cardiomyocyte ATPases and glycolysis in rat. In this work, we studied contribution of two membrane ATPases and whether they are coupled to glycolysis--sarcoplasmic reticulum Ca2+ ATPase (SERCA and plasmalemma Na+/K+-ATPase (NKA. While SERCA activity was minor in this preparation in the absence of calcium, major role of NKA was revealed accounting to ∼30% of the total ATPase activity which demonstrates that permeabilized cell preparation can be used to study this pump. To elucidate the contribution of NKA in the pool of ATPases, a series of kinetic measurements was performed in cells where NKA had been inhibited by 2 mM ouabain. In these cells, we recorded: ADP- and ATP-kinetics of respiration, competition for ADP between mitochondria and pyruvate kinase (PK, ADP-kinetics of endogenous PK, and ATP-kinetics of total ATPases. The experimental data was analyzed using a series of mathematical models with varying compartmentation levels. The results show that NKA is tightly coupled to glycolysis with undetectable flux of ATP between mitochondria and NKA. Such tight coupling of NKA to PK is in line with its increased importance in the pathological states of the heart when the substrate preference shifts to glucose.

  19. Quantitative measurement of membrane Na+-K+ ATPase activity using thallium-201: comparison with rubidium-86

    International Nuclear Information System (INIS)

    Na+-K+ ATPase activity has been estimated by the degree of inhibition of cation transport by cardiac glycosides (ouabain) using Rb-86 as a substrate. The biological characteristics of Tl-201 is known to be similar to those of potassium as a transport substrate in the presence of glucose, insulin or phobol myristate acetate (PMA). The purpose of this study was to measure ouabain sensitive Na+-K+ ATPase activity using Tl-201 and compare with that using Rb-86. Smooth muscle cells isolated from rat aorta or human placental umbilical artery were cultured, and used to measure cellular Na+-K+ ATPase activity. Na+-K+ ATPase activity was measured as a percentage decrease in cellular uptake of Tl-201 or Rb-86 by ouabain under the presence of glucose, insulin or PMA in media. Na+-K+ ATPase activity measured with Tl-201, as a transport substrate, was not different from those measured with Rb-86 in rat or human smooth muscle cell preparation. Incubation with high concentration glucose resulted in about 30% decrease in enzyme activity. In contrast, insulin or PMA resulted in 50-70% or 28% increase from baseline activity, respectively. These results suggests that Tl-201 could replace Rb-86 in measurement of ouabain sensitive Na+-K+ ATPase activity in vitro. High level of glucose concentration decreased cellular Na+-K+ ATPase activity, but insulin or PMA increased it

  20. Assessing the effects of symmetry on motif discovery and modeling.

    Directory of Open Access Journals (Sweden)

    Lala M Motlhabi

    Full Text Available BACKGROUND: Identifying the DNA binding sites for transcription factors is a key task in modeling the gene regulatory network of a cell. Predicting DNA binding sites computationally suffers from high false positives and false negatives due to various contributing factors, including the inaccurate models for transcription factor specificity. One source of inaccuracy in the specificity models is the assumption of asymmetry for symmetric models. METHODOLOGY/PRINCIPAL FINDINGS: Using simulation studies, so that the correct binding site model is known and various parameters of the process can be systematically controlled, we test different motif finding algorithms on both symmetric and asymmetric binding site data. We show that if the true binding site is asymmetric the results are unambiguous and the asymmetric model is clearly superior to the symmetric model. But if the true binding specificity is symmetric commonly used methods can infer, incorrectly, that the motif is asymmetric. The resulting inaccurate motifs lead to lower sensitivity and specificity than would the correct, symmetric models. We also show how the correct model can be obtained by the use of appropriate measures of statistical significance. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that the most commonly used motif-finding approaches usually model symmetric motifs incorrectly, which leads to higher than necessary false prediction errors. It also demonstrates how alternative motif-finding methods can correct the problem, providing more accurate motif models and reducing the errors. Furthermore, it provides criteria for determining whether a symmetric or asymmetric model is the most appropriate for any experimental dataset.

  1. In vivo analysis of Caenorhabditis elegans noncoding RNA promoter motifs

    Directory of Open Access Journals (Sweden)

    Zheng Haixia

    2008-08-01

    Full Text Available Abstract Background Noncoding RNAs (ncRNAs play important roles in a variety of cellular processes. Characterizing the transcriptional activity of ncRNA promoters is therefore a critical step toward understanding the complex cellular roles of ncRNAs. Results Here we present an in vivo transcriptional analysis of three C. elegans ncRNA upstream motifs (UM1-3. Transcriptional activity of all three motifs has been demonstrated, and mutational analysis revealed differential contributions of different parts of each motif. We showed that upstream motif 1 (UM1 can drive the expression of green fluorescent protein (GFP, and utilized this for detailed analysis of temporal and spatial expression patterns of 5 SL2 RNAs. Upstream motifs 2 and 3 do not drive GFP expression, and termination at consecutive T runs suggests transcription by RNA polymerase III. The UM2 sequence resembles the tRNA promoter, and is actually embedded within its own short-lived, primary transcript. This is a structure which is also found at a few plant and yeast loci, and may indicate an evolutionarily very old dicistronic transcription pattern in which a tRNA serves as a promoter for an adjacent snoRNA. Conclusion The study has demonstrated that the three upstream motifs UM1-3 have promoter activity. The UM1 sequence can drive expression of GFP, which allows for the use of UM1::GFP fusion constructs to study temporal-spatial expression patterns of UM1 ncRNA loci. The UM1 loci appear to act in concert with other upstream sequences, whereas the transcriptional activities of the UM2 and UM3 are confined to the motifs themselves.

  2. Modulation of P-glycoprotein ATPase activity by some phytoconstituents.

    Science.gov (United States)

    Najar, I A; Sachin, B S; Sharma, S C; Satti, N K; Suri, K A; Johri, R K

    2010-03-01

    In the present investigation 16 phytoconstituents, which are active moieties found in several medicinal herbs, have been evaluated for their P-glycoprotein (P-gp) stimulation/inhibition profiles using a P-gp-dependent ATPase assay in rat jejunal membrane (in vitro). Acteoside, agnuside, catechin, chlorogenic acid, picroside -II and santonin showed an inhibitory effect. Negundoside, picroside -I and oleanolic acid caused a stimulatory effect. Andrographolide, apocyanin, berberine, glycyrrhizin, magniferin and piperine produced a biphasic response (stimulation at low concentration and inhibition at high concentration). The results suggested that a possible interaction of these phytoconstituents at the level of P-gp, could be an important parameter in determining their role in several key pharmacodynamic events. PMID:19653312

  3. Computational approaches for classification and prediction of P-type ATPase substrate specificity in Arabidopsis.

    Science.gov (United States)

    Zinati, Zahra; Alemzadeh, Abbas; KayvanJoo, Amir Hossein

    2016-01-01

    As an extended gamut of integral membrane (extrinsic) proteins, and based on their transporting specificities, P-type ATPases include five subfamilies in Arabidopsis, inter alia, P4ATPases (phospholipid-transporting ATPase), P3AATPases (plasma membrane H(+) pumps), P2A and P2BATPases (Ca(2+) pumps) and P1B ATPases (heavy metal pumps). Although, many different computational methods have been developed to predict substrate specificity of unknown proteins, further investigation needs to improve the efficiency and performance of the predicators. In this study, various attribute weighting and supervised clustering algorithms were employed to identify the main amino acid composition attributes, which can influence the substrate specificity of ATPase pumps, classify protein pumps and predict the substrate specificity of uncharacterized ATPase pumps. The results of this study indicate that both non-reduced coefficients pertaining to absorption and Cys extinction within 280 nm, the frequencies of hydrogen, Ala, Val, carbon, hydrophilic residues, the counts of Val, Asn, Ser, Arg, Phe, Tyr, hydrophilic residues, Phe-Phe, Ala-Ile, Phe-Leu, Val-Ala and length are specified as the most important amino acid attributes through applying the whole attribute weighting models. Here, learning algorithms engineered in a predictive machine (Naive Bays) is proposed to foresee the Q9LVV1 and O22180 substrate specificities (P-type ATPase like proteins) with 100 % prediction confidence. For the first time, our analysis demonstrated promising application of bioinformatics algorithms in classifying ATPases pumps. Moreover, we suggest the predictive systems that can assist towards the prediction of the substrate specificity of any new ATPase pumps with the maximum possible prediction confidence. PMID:27186030

  4. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation1[OPEN

    Science.gov (United States)

    Okumura, Masaki; Inoue, Shin-ichiro; Kuwata, Keiko

    2016-01-01

    Plant plasma membrane H+-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H+-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha. However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H+-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H+-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H+-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H+-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H+-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H+-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H+-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  5. Membrane Targeting of P-type ATPases in Plant Cells

    International Nuclear Information System (INIS)

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems

  6. The evolutionary history of sarco(endoplasmic calcium ATPase (SERCA.

    Directory of Open Access Journals (Sweden)

    Ianina Altshuler

    Full Text Available Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na(+/K(+ transporters, H(+/K(+ transporters, and plasma membrane Ca(2+ pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endoplasmic reticulum calcium ATPase (SERCA, which maintains calcium homeostasis in the cell by actively pumping Ca(2+ into the sarco(endoplasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain.

  7. Activity of H(+)-ATPase in ruminal bacteria with special reference to acid tolerance.

    OpenAIRE

    Miwa, T.; Esaki, H; Umemori, J; Hino, T.

    1997-01-01

    Batch culture experiments showed that permeabilized cells and membranes of Ruminococcus albus and Fibrobacter succinogenes, acid-intolerant celluloytic bacteria, have only one-fourth to one-fifth as much H(+)-ATPase as Megasphaera elsdenii and Streptococcus bovis, which are relatively acid tolerant. Even in the cells grown in continuous culture at pH 7.0, the acid-intolerant bacteria contained less than half as much H(+)-ATPase as the acid-tolerant bacteria. The amounts of H(+)-ATPase in the ...

  8. Na,K-ATPase: a molecular target for Leptospira interrogans endotoxin

    Directory of Open Access Journals (Sweden)

    Younes-Ibrahim M.

    1997-01-01

    Full Text Available On the basis of our report that a glycolipoprotein fraction (GLP extracted from Leptospira interrogans contains a potent inhibitor of renal Na,K-ATPase, we proposed that GLP-induced inhibition of Na,K-ATPase might be the primary cellular defect in the physiopathology of leptospirosis. The present study was designed to test this hypothesis by determining whether or not 1 GLP inhibits all the isoforms of Na,K-ATPase which are expressed in the tissues affected by leptospirosis, 2 Na,K-ATPase from leptospirosis-resistant species, such as the rat, is sensitive to GLP, 3 GLP inhibits Na,K-ATPase from intact cells, and 4 GLP inhibits ouabain-sensitive H,K-ATPase. The results indicate that in the rabbit, a leptospirosis-sensitive species, GLP inhibits with similar efficiency (apparent IC50: 120-220 µg protein GLP/ml all isoforms of Na,K-ATPase known to be expressed in target tissues for the disease. Na,K-ATPase from rat kidney displays a sensitivity to GLP similar to that of the rabbit kidney enzyme (apparent IC50: 25-80 and 50-150 µg protein GLP/ml for rat and rabbit, respectively, indicating that resistance to the disease does not result from the resistance of Na,K-ATPase to GLP. GLP also reduces ouabain-sensitive rubidium uptake in rat thick ascending limbs (pmol mm-1 min-1 ± SEM; control: 23.8 ± 1.8; GLP, 88 µg protein/ml: 8.2 ± 0.9, demonstrating that it is active in intact cells. Finally, GLP had no demonstrable effect on renal H,K-ATPase activity, even on the ouabain-sensitive form, indicating that the active principle of GLP is more specific for Na,K-ATPase than ouabain itself. Although the hypothesis remains to be demonstrated in vivo, the present findings are compatible with the putative role of GLP-induced inhibition of Na,K-ATPase as an initial mechanism in the physiopathology of leptospirosis

  9. Na+,K+-ATPase concentration in rodent and human heart and skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Bjerregaard, P; Richter, Erik; Thomsen, P E; Nørgaard, A

    1988-01-01

    rats, cardiomyopathic hamsters, and human subjects. These methods have earlier been shown to quantify the Na+,K+-ATPase concentration in muscle tissue with high accuracy. When rats were swim trained for six weeks the heart ventricular muscle Na+,K+-ATPase concentration was increased by 20% (p less than...... increased by up to 46% (p less than 0.001) and decreased by up to 30% (p less than 0.005) after training and immobilisation respectively. Cardiomyopathic hamsters showed a reduction of 33% (p less than 0.005) in the heart ventricular Na+,K+-ATPase concentration compared with normal hamsters. This decrease...

  10. Characterization of the PIB-Type ATPases Present in Thermus thermophilus

    OpenAIRE

    Schurig-Briccio, Lici A.; Gennis, Robert B.

    2012-01-01

    PIB-type ATPases transport heavy metals (Cu2+, Cu+, Ag+, Zn2+, Cd2+, Co2+) across biomembranes, playing a key role in homeostasis and in the mechanisms of biotolerance of these metals. Three genes coding for putative PIB-type ATPases are present in the genome of Thermus thermophilus (HB8 and HB27): the TTC1358, TTC1371, and TTC0354 genes; these genes are annotated, respectively, as two copper transporter (CopA and CopB) genes and a zinc-cadmium transporter (Zn2+/Cd2+-ATPase) gene. We cloned a...

  11. Mining tertiary structural motifs for assessment of designability.

    Science.gov (United States)

    Zhang, Jian; Grigoryan, Gevorg

    2013-01-01

    The observation of a limited secondary-structural alphabet in native proteins, with significant sequence preferences, has profoundly influenced the fields of protein design and structure prediction (Simons, Kooperberg, Huang, & Baker, 1997; Verschueren et al., 2011). In the era of structural genomics, as the size of the structural dataset continues to grow rapidly, it is becoming possible to extend this analysis to tertiary structural motifs and their sequences. For a hypothetical tertiary motif, the rate of its utilization in natural proteins may be used to assess its designability-the ease with which the motif can be realized with natural amino acids. This requires a structural similarity search methodology, which rather than looking for global topological agreement (more appropriate for categorization of full proteins or domains), identifies detailed geometric matches. In this chapter, we introduce such a method, called MaDCaT, and demonstrate its use by assessing the designability landscapes of two tertiary structural motifs. We also show that such analysis can establish structure/sequence links by providing the sequence constraints necessary to encode designable motifs. As logical extension of their secondary-structure counterparts, tertiary structural preferences will likely prove extremely useful in de novo protein design and structure prediction. PMID:23422424

  12. D-MATRIX: A web tool for constructing weight matrix of conserved DNA motifs

    OpenAIRE

    Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok

    2009-01-01

    Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based o...

  13. Motifs in Triadic Random Graphs based on Steiner Triple Systems

    CERN Document Server

    Winkler, Marco

    2013-01-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade the overabundance of certain sub-network patterns, so called motifs, has attracted high attention. It has been hypothesized, these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graphs (ERGMs) to define novel models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obst...

  14. Robustness to noise in synchronization of network motifs: Experimental results

    Science.gov (United States)

    Buscarino, Arturo; Fortuna, Luigi; Frasca, Mattia; Iachello, Marco; Pham, Viet-Thanh

    2012-12-01

    In this work, we experimentally investigate the robustness to noise of synchronization in all the four-nodes network motifs. The experimental setup consists of four Chua's circuits diffusively coupled in order to implement the six different undirected network motifs that can be obtained with four nodes. In this experimental setup, synchronization in the presence of noise injected in one of the network nodes is investigated and network motifs are compared in terms of the synchronization error obtained. The analysis has been then extended to some selected case studies of networks with five and six nodes. Numerical simulations have been also performed and results in agreement with experiments have been obtained. A correlation between node degree and robustness to noise has been found also in these networks.

  15. How pathogens use linear motifs to perturb host cell networks

    KAUST Repository

    Via, Allegra

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.

  16. Specific RNA self-assembly with minimal paranemic motifs

    Science.gov (United States)

    Afonin, Kirill A.; Cieply, Dennis J.; Leontis, Neocles B.

    2016-01-01

    The paranemic crossover (PX) is a motif for assembling two nucleic acid molecules using Watson-Crick (WC) basepairing without unfolding pre-formed secondary structure in the individual molecules. Once formed, the paranemic assembly motif comprises adjacent parallel double helices that cross over at every possible point over the length of the motif. The interaction is reversible as it does not require denaturation of basepairs internal to each interacting molecular unit. Paranemic assembly has been demonstrated for DNA but not for RNA, and only for motifs with four or more cross-over points and lengths of five or more helical half-turns. Here we report the design of RNA molecules that paranemically assemble with the minimum number of two cross-overs spanning the major groove to form paranemic motifs with a length of three half-turns (3HT). Dissociation constants (Kds) were measured for series of molecules in which the number of basepairs between the cross-over points was varied from five to eight basepairs. The paranemic 3HT complex with six basepairs (3HT_6M) was found to be the most stable with Kd = 1×10−8 M. The half-time for kinetic exchange of the 3HT_6M complex was determined to be ~100 minutes, from which we calculated association and dissociation rate constants ka = 5.11×103 M−1sec−1 and kd = 5.11×10−5 sec−1. RNA paranemic assembly of 3HT and 5HT complexes is blocked by single-base substitutions that disrupt individual inter-molecular Watson-Crick basepairs and is restored by compensatory substitutions that restore those basepairs. The 3HT motif appears suitable for specific, programmable, and reversible tecto-RNA self-assembly for constructing artificial RNA molecular machines. PMID:18072767

  17. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  18. Cloning of plasma membrane H+-ATPase gene in Populus euphratica Oliv.

    Institute of Scientific and Technical Information of China (English)

    Ning De-juan; Hou Pei-chen; Hu Zan-min; Shen Xin; Chen Shao-liang

    2006-01-01

    For this paper, the plasma membrane (PM) H+-ATPase gene has been cloned from Populus euphratica Oliv. through a homology based strategy. The isolated 3,210 bp cDNA contains a single 2,862 bp open reading frame (ORF) which encodes a putative H+-ATPase protein of 953 amino acid residues, with a significant homology to plasma membrane H+-ATPase of Prunus persica,Phaseolus vulgaris, Sesbania rostrata and Daucus carota. The predicted protein has a molecular weight of 104,553 Da. The copy number analysis revealed multiple copies of the PM H+-ATPase in the P. euphratica genome after digestion of their genomic DNA by the restriction enzymes EcoRⅠ, NdeⅠ, FbaⅠ and BglⅡ, and Southern blot.

  19. Copper-transporting P-type ATPases use a unique ion-release pathway

    DEFF Research Database (Denmark)

    Andersson, Magnus; Mattle, Daniel; Sitsel, Oleg; Klymchuk, Tetyana; Nielsen, Anna Marie; Møller, Lisbeth Birk; White, Stephen H; Nissen, Poul; Gourdon, Pontus

    2014-01-01

    Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by molecular dynamics simulations that...... extracellular water solvated the transmembrane (TM) domain, results indicative of a Cu(+)-release pathway. Furthermore, a new LpCopA crystal structure determined at 2.8-Å resolution, trapped in the preceding E2P state, delineated the same passage, and site-directed-mutagenesis activity assays support a...... functional role for the conduit. The structural similarities between the TM domains of the two conformations suggest that Cu(+)-ATPases couple dephosphorylation and ion extrusion differently than do the well-characterized PII-type ATPases. The ion pathway explains why certain Menkes' and Wilson's disease...

  20. Some results on more flexible versions of Graph Motif

    CERN Document Server

    Rizzi, Romeo

    2012-01-01

    The problems studied in this paper originate from Graph Motif, a problem introduced in 2006 in the context of biological networks. Informally speaking, it consists in deciding if a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Due to the high rate of noise in the biological data, more flexible definitions of the problem have been outlined. We present in this paper two inapproximability results for two different optimization variants of Graph Motif. We also study another definition of the problem, when the connectivity constraint is replaced by modularity. While the problem stays NP-complete, it allows algorithms in FPT for biologically relevant parameterizations.

  1. Osmotic Stress and Viscous Retardation of the Na,K-ATPase Ion Pump

    Science.gov (United States)

    Esmann, Mikael; Fedosova, Natalya U.; Marsh, Derek

    2008-01-01

    The transport function of the Na pump (Na,K-ATPase) in cellular ion homeostasis involves both nucleotide binding reactions in the cytoplasm and alternating aqueous exposure of inward- and outward-facing ion binding sites. An osmotically active, nonpenetrating polymer (poly(ethyleneglycol); PEG) and a modifier of the aqueous viscosity (glycerol) were used to probe the overall and partial enzymatic reactions of membranous Na,K-ATPase from shark salt glands. Both inhibit the steady-state Na,K-ATPase as well as Na-ATPase activity, whereas the K+-dependent phosphatase activity is little affected by up to 50% of either. Both Na,K-ATPase and Na-ATPase activities are inversely proportional to the viscosity of glycerol solutions in which the membranes are suspended, in accordance with Kramers' theory for strong coupling of fluctuations at the active site to solvent mobility in the aqueous environment. PEG decreases the affinity for Tl+ (a congener for K+), whereas glycerol increases that for the nucleotides ATP and ADP in the presence of NaCl but has little effect on the affinity for Tl+. From the dependence on osmotic stress induced by PEG, the aqueous activation volume for the Na,K-ATPase reaction is estimated to be ∼5–6 nm3 (i.e., ∼180 water molecules), approximately half this for Na-ATPase, and essentially zero for p-nitrophenol phosphatase. The change in aqueous hydrated volume associated with the binding of Tl+ is in the region of 9 nm3. Analysis of 15 crystal structures of the homologous Ca-ATPase reveals an increase in PEG-inaccessible water space of ∼22 nm3 between the E1-nucleotide bound forms and the E2-thapsigargin forms, showing that the experimental activation volumes for Na,K-ATPase are of a magnitude comparable to the overall change in hydration between the major E1 and E2 conformations of the Ca-ATPase. PMID:18055532

  2. Action of erythropoietin in vitro on rabbit reticulocyte membrane Ca2+-ATPase activity.

    OpenAIRE

    Lawrence, W D; Davis, P J; Blas, S D

    1987-01-01

    The mechanism of action of erythropoietin is thought to require specific interaction with the target cell surface and involve alteration of cellular calcium metabolism. Using the rabbit reticulocyte membrane as a model of the immature red cell membrane, we investigated the effects of human recombinant erythropoietin on membrane Ca2+-ATPase (calcium pump) activity in vitro. Erythropoietin in a concentration range of 0.025 to 3.0 U/ml progressively decreased membrane Ca2+-ATPase activity by up ...

  3. A Systematic Study on Structure and Function of ATPase of Wuchereria bancrofti

    OpenAIRE

    Islam, Md Saiful; Patwary, Noman Ibna Amin; Muzahid, Nazmul Hasan; Shahik, Shah Md.; Sohel, Md.; Hasan, Md Anayet

    2014-01-01

    Background: Analyzing the structures and functions of different proteins of Wuchereria bancrofti is very important because till date no effective drug or vaccine has been discovered to treat lymphatic filariasis (LF). ATPase is one of the most important proteins of Wuchereria bancrofti. Adenosine triphosphate (ATP) converts into adenosine diphosphate (ADP) and a free phosphate ion by the action of these ATPase enzymes. Energy releases from these dephosphorylation reactions drive the other che...

  4. V-ATPase regulates communication between microvascular endothelial cells and metastatic cells.

    Science.gov (United States)

    Sennoune, S R; Arutunyan, A; del Rosario, C; Castro-Marin, R; Hussain, F; Martinez-Zaguilan, R

    2014-01-01

    To metastasize distant organs, tumor cells and endothelial cells lining the blood vessels must crosstalk. The nature of this communication that allows metastatic cells to intravasate and travel through the circulation and to extravasate to colonize different organs is poorly understood. In this study, we evaluated one of the first steps in this process—the proximity and physical interaction of endothelial and metastatic cells. To do this, we developed a cell separator chamber that allows endothelial and metastatic cells to grow side by side. We have shown in our previous studies that V-ATPases at the cell surface (pmV-ATPase) are involved in angiogenesis and metastasis. Therefore, we hypothesized that the physical proximity/interaction between endothelial and metastatic cells expressing pmV-ATPase will increase its activity in both cell types, and such activity in turn will increase pmV-ATPase expression on the membranes of both cell types. To determine pmV-ATPase activity we measured the proton fluxes (JH+) across the cell membrane. Our data indicated that interaction between endothelial and metastatic cells elicited a significant increase of JH+ via pmV-ATPase in both cell types. Bafilomycin, a V-ATPase inhibitor, significantly decrease JH+. In contrast, JH+ of the non-metastatic cells were not affected by the endothelial cells and vice-versa. Altogether, our data reveal that one of the early consequences of endothelial and metastatic cell interaction is an increase in pmV-ATPase that helps to acidify the extracellular medium and favors protease activity. These data emphasize the significance of the acidic tumor microenvironment enhancing a metastatic and invasive phenotype. PMID:24606724

  5. The role of Na(+), K(+)-ATPase in the hypoxic vasoconstriction in isolated rat basilar artery.

    Science.gov (United States)

    Shen, Haitao; Liang, Peng; Qiu, Suhua; Zhang, Bo; Wang, Yongli; Lv, Ping

    2016-06-01

    Hypoxia-induced cerebrovascular dysfunction is a key factor in the occurrence and the development of cerebral ischemia. Na(+), K(+)-ATPase affects the regulation of intracellular Ca(2+) concentration and plays an important role in vascular smooth muscle function. However, the potential role of Na(+), K(+)-ATPase in hypoxia-induced cerebrovascular dysfunction is unknown. In this study, we found that the KCl-induced contraction under hypoxia in rat endothelium-intact basilar arteries is similar to that of denuded arteries, suggesting that hypoxia may cause smooth muscle cell (SMC)-dependent vasoconstriction in the basilar artery. The Na(+), K(+)-ATPase activity of the isolated basilar artery with or without endothelium significantly reduced with prolonged hypoxia. Blocking the Na(+)-Ca(2+) exchanger with Ni(2+) (10(-3)M) or the L-type Ca(2+) channel with nimodipine (10(-8)M) dramatically attenuated KCl-induced contraction under hypoxia. Furthermore, prolonged hypoxia significantly reduced Na(+), K(+)-ATPase activity and increased [Ca(2+)]i in cultured rat basilar artery SMCs. Hypoxia reduced the protein and mRNA expression of the α2 isoform of Na(+), K(+)-ATPase in SMCs in vitro. We used a low concentration of the Na(+), K(+)-ATPase inhibitor ouabain, which possesses a high affinity for the α2 isoform. The contractile response in the rat basilar artery under hypoxia was partly inhibited by ouabain pretreatment. The decreased Na(+), K(+)-ATPase activity in isolated basilar artery and the increased [Ca(2+)]i in SMCs induced by hypoxia were partly inhibited by pretreatment with a low concentration of ouabain. These results suggest that hypoxia may educe Na(+), K(+)-ATPase activity in SMCs through the α2 isoform contributing to vasoconstriction in the rat basilar artery. PMID:26924456

  6. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function

    OpenAIRE

    Raimunda, Daniel; González-Guerrero, Manuel; Leeber, Blaise W.; Argüello, José M.

    2011-01-01

    Cu+-ATPases play a key role in bacterial Cu+ homeostasis by participating in Cu+ detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P1B-1 type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combi...

  7. Response of membrane-bound ATPase of Micrococcus luteus to heat and ultraviolet light

    International Nuclear Information System (INIS)

    It is shown that the properties of ATPase (EC 3.6.1.3) of Micrococcus luteus depend only to some extent on the state of the membrane to which it is attached. Its interaction with the membrane appears to be largely controlled by polar forces. It is shown, however, that the UV-sensitivity of the membrane-bound ATPase is also significantly influenced by the state of membrane lipids. (orig.)

  8. Leishmania amazonensis: effects of heat shock on ecto-ATPase activity.

    Science.gov (United States)

    Peres-Sampaio, Carlos Eduardo; de Almeida-Amaral, Elmo Eduardo; Giarola, Naira Ligia Lima; Meyer-Fernandes, José Roberto

    2008-05-01

    In this work we demonstrated that promastigotes of Leishmania amazonensis exhibit an Mg-dependent ecto-ATPase activity, which is stimulated by heat shock. The Mg-dependent ATPase activity of cells grown at 22 and 28 degrees C was 41.0+/-5.2 nmol Pi/h x 10(7)cells and 184.2+/-21.0 nmol Pi/h x 10(7)cells, respectively. When both promastigotes were pre-incubated at 37 degrees C for 2h, the ATPase activity of cells grown at 22 degrees C was increased to 136.4+/-10.6 nmol Pi/h x 10(7) whereas that the ATPase activity of cells grown at 28 degrees C was not modified by the heat shock (189.8+/-10.3 nmol Pi/h x 10(7)cells). It was observed that Km of the enzyme from cells grown at 22 degrees C (Km=980.2+/-88.6 microM) was the same to the enzyme from cells grown at 28 degrees C (Km=901.4+/-91.9 microM). In addition, DIDS (4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid) and suramin, two inhibitors of ecto-ATPases, also inhibited similarly the ATPase activities from promastigotes grown at 22 and 28 degrees C. We also observed that cells grown at 22 degrees C exhibit the same ecto-phosphatase and ecto 3'- and 5'-nucleotidase activities than cells grown at 28 degrees C. Interestingly, cycloheximide, an inhibitor of protein synthesis, suppressed the heat-shock effect on ecto-ATPase activity of cells grown at 22 degrees C were exposed at 37 degrees C for 2h. A comparison between the stimulation of the Mg-dependent ecto-ATPase activity of virulent and avirulent promastigotes by the heat shock showed that avirulent promastigotes had a higher stimulation than virulent promastigotes after heat stress. PMID:18295760

  9. lmmunocytochemical localization of the vacuolar H+-ATPase pump in the kidney

    OpenAIRE

    Bastani, B

    1997-01-01

    In this article we review immunocytochemical localization studies using a monoclonal antibody raised against the 31 kD subunit of bovine H+- ATPase, and indirect immunofluorescent staining. In the proximal tubules there is intense H+-ATPase staining along the brush borders of S1 and S2, and linear subvillar invagination staining in SI, S2, and S3 segments. In the thick ascending limb of the loop of Henle there is a mild to moderate degree apical cytoplasmic...

  10. Protonation-dependent inactivation of Na,K-ATPase by hydrostatic pressure developed at high-speed centrifugation.

    Science.gov (United States)

    Esmann, M; Fedosova, N U; Maunsbach, A B

    2000-09-29

    Irreversible inactivation of membranous Na,K-ATPase by high-speed centrifugation in dilute aqueous solutions depends markedly on the protonation state of the protein. Pig kidney Na,K-ATPase is irreversibly inactivated at pH 5 but is fully protected at pH 7 and above. Shark rectal gland Na,K-ATPase is irreversibly inactivated at neutral or acidic pH and partially protected at an alkaline pH. The overall Na,K-ATPase activity and the K-dependent pNPPase activity were denatured in parallel. Cryoprotectants such as glycerol or sucrose at concentrations of 25-30% fully protect both enzymes against inactivation. The specific ligands NaCl and KCl protect the Na,K-ATPase activity partially and the pNPPase activity fully at concentrations of 0.2-0.3 M. Electron microscope analysis of the centrifuged Na,K-ATPase membranes revealed that the ultrastructure of the native membranes is preserved upon inactivation. It was also observed that the sarcoplasmic reticulum Ca-ATPase and hog gastric H, K-ATPase are susceptible to inactivation by high-speed centrifugation in a pH-dependent fashion. H,K-ATPase is protected at alkaline pH, whereas Ca-ATPase is protected only in the neutral pH range. PMID:11018676

  11. Influence of a protein hydrolysate from green algae on the activity of some ATPase systems in frog skeletal muscle.

    Science.gov (United States)

    Ivanov, R; Georgieva, B; Naumova, P; Mileva, K; Radicheva, N

    1999-06-01

    The present study investigated the effect of a protein hydrolysate from green algae cultured in the Bulgarian region of Rupy, on the enzyme activity of frog skeletal muscle. The activity of pure Mg(2+)-ATPase, Mg2+,Ca(2+)-ATPase, NaHCO3-stimulated Mg(2+)-ATPase and the latter in the presence of the inhibitors NaSCN and NaN3 in mitochondrial (B-3) and membrane (B-12) fractions were determined before and after treatment with the protein hydrolysate from green algae (30 and 300 micrograms/ml). The differences between ATPase activity of mitochondrial and membrane fractions were described and it was established that in the B-3 fraction, the activity of the NaHCO3-stimulated Mg(2+)-ATPase and Ca(2+)-dependent Mg(2+)-ATPase were accelerated by increasing concentrations of the algae protein hydrolysate. Irrespective of the different (equal or inverse) dose-dependent effects, the protein hydrolysate stimulated Mg(2+)-ATPase and that inhibited by NaSCN an NaN3 bicarbonate-stimulated Mg(2+)-ATPase activity. In most of the probes, the protein hydrolysate produced some increase in enzyme activity of NaHCO3-stimulated Mg(2+)-ATPase and Ca(2+)-dependent Mg(2+)-ATPase in B-12 fractions. The observed properties of the algae protein hydrolysate suggest that it is capable of stimulating enzyme processes in addition to having some antitoxic effect in skeletal muscle. PMID:10420389

  12. Crystal structure of the yeast vacuolar ATPase heterotrimeric EGC(head) peripheral stalk complex.

    Science.gov (United States)

    Oot, Rebecca A; Huang, Li-Shar; Berry, Edward A; Wilkens, Stephan

    2012-11-01

    Vacuolar ATPases (V-ATPases) are multisubunit rotary motor proton pumps that function to acidify subcellular organelles in all eukaryotic organisms. V-ATPase is regulated by a unique mechanism that involves reversible dissociation into V₁-ATPase and V₀ proton channel, a process that involves breaking of protein interactions mediated by subunit C, the cytoplasmic domain of subunit "a" and three "peripheral stalks," each made of a heterodimer of E and G subunits. Here, we present crystal structures of a yeast V-ATPase heterotrimeric complex composed of EG heterodimer and the head domain of subunit C (C(head)). The structures show EG heterodimer folded in a noncanonical coiled coil that is stabilized at its N-terminal ends by binding to C(head). The coiled coil is disrupted by a bulge of partially unfolded secondary structure in subunit G and we speculate that this unique feature in the eukaryotic V-ATPase peripheral stalk may play an important role in enzyme structure and regulation by reversible dissociation. PMID:23000382

  13. Purification, characterization and crystallization of the F-ATPase from Paracoccus denitrificans

    Science.gov (United States)

    Morales-Rios, Edgar; Watt, Ian N.; Zhang, Qifeng; Ding, Shujing; Fearnley, Ian M.; Montgomery, Martin G.; Wakelam, Michael J. O.; Walker, John E.

    2015-01-01

    The structures of F-ATPases have been determined predominantly with mitochondrial enzymes, but hitherto no F-ATPase has been crystallized intact. A high-resolution model of the bovine enzyme built up from separate sub-structures determined by X-ray crystallography contains about 85% of the entire complex, but it lacks a crucial region that provides a transmembrane proton pathway involved in the generation of the rotary mechanism that drives the synthesis of ATP. Here the isolation, characterization and crystallization of an integral F-ATPase complex from the α-proteobacterium Paracoccus denitrificans are described. Unlike many eubacterial F-ATPases, which can both synthesize and hydrolyse ATP, the P. denitrificans enzyme can only carry out the synthetic reaction. The mechanism of inhibition of its ATP hydrolytic activity involves a ζ inhibitor protein, which binds to the catalytic F1-domain of the enzyme. The complex that has been crystallized, and the crystals themselves, contain the nine core proteins of the complete F-ATPase complex plus the ζ inhibitor protein. The formation of crystals depends upon the presence of bound bacterial cardiolipin and phospholipid molecules; when they were removed, the complex failed to crystallize. The experiments open the way to an atomic structure of an F-ATPase complex. PMID:26423580

  14. Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection

    Energy Technology Data Exchange (ETDEWEB)

    Kohio, Hinissan P.; Adamson, Amy L., E-mail: aladamso@uncg.edu

    2013-09-15

    As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transport activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection. - Highlights: • Increased glucose levels increase Influenza A viral infection of MDCK cells. • Inhibition of the glycolytic enzyme hexokinase inhibited Influenza A viral infection. • Inhibition of hexokinase induced disassembly the V-ATPase. • Disassembly of the V-ATPase and Influenza A infection was bypassed with ATP. • The state of V-ATPase assembly correlated with Influenza A infection of cells.

  15. Molecular Characterization of Subunit G of the Vacuolar ATPase in Pathogen Dermatophyte Trichophyton rubrum

    Directory of Open Access Journals (Sweden)

    S Rezaie

    2006-06-01

    Full Text Available Trichophyton rubrum is an anthropophilic fungus causing up to 90% of chronic cases of dermatophytosis. Several properties of this fungus have been investigated so far. However, a few studies were carried out in the field of molecular biology of this fungus. In the present study, we tried to identify the subunit G of its vacuolar ATPase (V-ATPase. Pairs of 21 nt primers were designed from highly conserved regions of the V-ATPase subunit G genes in other fungi. Mentioned primers were utilized in PCR using isolated genomic DNA template as well as cytoplasmic RNA of T.rubrum and the PCR and RT-PCR fragments were then sequenced. About 469 nucleotides were sequenced which encoded a polypeptide with 119 amino acids. Nucleotide sequence comparison in gene data banks (NCBI, NIH for both the DNA and its deduced amino acid sequence revealed significant homology with V-ATPase subunit G genes and proteins of other eukaryotic cells. The amino acid sequence of the encoded protein was about 84% identical to the sequence of V-ATPase subunit G from other fungi. In summary, we have cloned the first V-ATPase subunit G of dermatophytes and characterized it as a member of this gene family in other eukaryotic cells.

  16. Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection

    International Nuclear Information System (INIS)

    As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transport activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection. - Highlights: • Increased glucose levels increase Influenza A viral infection of MDCK cells. • Inhibition of the glycolytic enzyme hexokinase inhibited Influenza A viral infection. • Inhibition of hexokinase induced disassembly the V-ATPase. • Disassembly of the V-ATPase and Influenza A infection was bypassed with ATP. • The state of V-ATPase assembly correlated with Influenza A infection of cells

  17. Stabilisation of Na,K-ATPase structure by the cardiotonic steroid ouabain

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Andrew J. [Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX (United Kingdom); Fedosova, Natalya U. [Department of Biomedicine, Aarhus University, DK-8000 Aarhus (Denmark); Hoffmann, Søren V. [ISA, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus (Denmark); Wallace, B.A. [Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX (United Kingdom); Esmann, Mikael, E-mail: me@biophys.au.dk [Department of Biomedicine, Aarhus University, DK-8000 Aarhus (Denmark)

    2013-05-31

    Highlights: •Ouabain binding to pig and shark Na,K-ATPase enhances thermal stability. •Ouabain stabilises both membrane-bound and solubilised Na,K-ATPase. •Synchrotron radiation circular dichroism is used for structure determination. •Secondary structure in general is not affected by ouabain binding. •Stabilisation is due to re-arrangement of tertiary structure. -- Abstract: Cardiotonic steroids such as ouabain bind with high affinity to the membrane-bound cation-transporting P-type Na,K-ATPase, leading to complete inhibition of the enzyme. Using synchrotron radiation circular dichroism spectroscopy we show that the enzyme-ouabain complex is less susceptible to thermal denaturation (unfolding) than the ouabain-free enzyme, and this protection is observed with Na,K-ATPase purified from pig kidney as well as from shark rectal glands. It is also shown that detergent-solubilised preparations of Na,K-ATPase are stabilised by ouabain, which could account for the successful crystallisation of Na,K-ATPase in the ouabain-bound form. The secondary structure is not significantly affected by the binding of ouabain. Ouabain appears however, to induce a reorganization of the tertiary structure towards a more compact protein structure which is less prone to unfolding; recent crystal structures of the two enzymes are consistent with this interpretation. These circular dichroism spectroscopic studies in solution therefore provide complementary information to that provided by crystallography.

  18. Changes of Plasma Membrane H+-ATPase Activities of Glycine max Seeds by PEG Treatment

    Institute of Scientific and Technical Information of China (English)

    Yang Yong-qing; Wang Xiao-feng

    2005-01-01

    The soybean (Glycine max) Heihe No. 23 is sensitive to imbibitional chilling injury. Polyethylene glycol (PEG)treatment can improve chilling tolerance of soybean seeds to a certain extent. The changes of hydrolytic ATPase in plasma membranes and H+-pumping responses in soybean seeds were investigated during PEG treatments. Effects of exogenous calcium and exogenous ABA on the hydrolytic ATPase were also examined in order to understand the mechanism of chilling resistance. Highly purified plasma membranes were isolated by 6.0% aqueous two-phase partitioning from soybean seeds, as judged by the sensitivity of hydrolytic ATPase to sodium vanadate. PEG treatment resulted in a slight increase of the hydrolytic ATPase activity in 12 h. Then the activity decreased gradually, but still higher than the control. The H+-pumping activity increased steadily during PEG treatment.Exogenous calcium had both activating and inhibiting effects on the hydrolytic ATPase, but the activity was inhibited in soybean seeds treated with exogenous ABA. Results suggested that PEG treatment, not the exogenous calcium and ABA, up-regulated H+-ATPase activities in soybean seeds.

  19. Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity.

    Science.gov (United States)

    Almeida-Amaral, Elmo Eduardo de; Caruso-Neves, Celso; Lara, Lucienne Silva; Pinheiro, Carla Mônica; Meyer-Fernandes, José Roberto

    2007-08-01

    The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite. PMID:17475255

  20. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  1. How curved membranes recruit amphipathic helices and protein anchoring motifs

    DEFF Research Database (Denmark)

    Hatzakis, Nikos; Bhatia, Vikram Kjøller; Larsen, Jannik;

    2009-01-01

    : membrane-anchored proteins. The fact that unrelated structural motifs such as alpha-helices and alkyl chains sense MC led us to propose that MC sensing is a generic property of curved membranes rather than a property of the anchoring molecules. We therefore anticipate that MC will promote the...... redistribution of proteins that are anchored in membranes through other types of hydrophobic moieties....

  2. Na,K-ATPase regulation in skeletal muscle.

    Science.gov (United States)

    Pirkmajer, Sergej; Chibalin, Alexander V

    2016-07-01

    Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted. PMID:27166285

  3. Review: Structure and mechanism of the dynein motor ATPase.

    Science.gov (United States)

    Schmidt, Helgo; Carter, Andrew P

    2016-08-01

    Dyneins are multiprotein complexes that move cargo along microtubules in the minus end direction. The largest individual component of the dynein complex is the heavy chain. Its C-terminal 3500 amino-acid residues form the motor domain, which hydrolyses ATP in its ring of AAA+ (ATPases associated with diverse cellular activities) domains to generate the force for movement. The production of force is synchronized with cycles of microtubule binding and release, another important prerequisite for efficient motility along the microtubule. Although the large scale conformational changes that lead to force production and microtubule affinity regulation are well established, it has been largely enigmatic how ATP-hydrolysis in the AAA+ ring causes these rearrangements. The past five years have seen a surge of high resolution information on the dynein motor domain that finally allowed unprecedented insights into this important open question. This review, part of the "ATP and GTP hydrolysis in Biology" special issue, will summarize our current understanding of the dynein motor mechanism with a special emphasis on the recently obtained crystal and EM structures. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 557-567, 2016. PMID:27062277

  4. Curcumin modulation of Na,K-ATPase: phosphoenzyme accumulation, decreased K+ occlusion, and inhibition of hydrolytic activity

    DEFF Research Database (Denmark)

    Mahmmoud, Yasser Ahmed

    2005-01-01

    Curcumin, the major constitute of tumeric, is an important nutraceutical that has been shown to be useful in the treatment of many diseases. As an inhibitor of the sarcoplasmic reticulum Ca2+-ATPase, curcumin was shown to correct cystic fibrosis (CF) defects in some model systems, whereas others...... have reported no or little effects on CF after curcumin treatment, suggesting that curcumin effect is not due to simple inhibition of the Ca2+-ATPase. We tested the hypothesis that curcumin may modulate other members of the P2-type ATPase superfamily by studying the effects of curcumin on the activity...... and kinetic properties of the Na,K-ATPase. Curcumin treatment inhibited Na,K-ATPase activity in a dose-dependent manner (K0.514.6 M). Curcumin decreased the apparent affinity of Na,K-ATPase for K+ and increased it for Na+ and ATP. Kinetic analyses indicated that curcumin induces a three-fold reduction...

  5. Predicting conserved protein motifs with Sub-HMMs

    Directory of Open Access Journals (Sweden)

    Girke Thomas

    2010-04-01

    Full Text Available Abstract Background Profile HMMs (hidden Markov models provide effective methods for modeling the conserved regions of protein families. A limitation of the resulting domain models is the difficulty to pinpoint their much shorter functional sub-features, such as catalytically relevant sequence motifs in enzymes or ligand binding signatures of receptor proteins. Results To identify these conserved motifs efficiently, we propose a method for extracting the most information-rich regions in protein families from their profile HMMs. The method was used here to predict a comprehensive set of sub-HMMs from the Pfam domain database. Cross-validations with the PROSITE and CSA databases confirmed the efficiency of the method in predicting most of the known functionally relevant motifs and residues. At the same time, 46,768 novel conserved regions could be predicted. The data set also allowed us to link at least 461 Pfam domains of known and unknown function by their common sub-HMMs. Finally, the sub-HMM method showed very promising results as an alternative search method for identifying proteins that share only short sequence similarities. Conclusions Sub-HMMs extend the application spectrum of profile HMMs to motif discovery. Their most interesting utility is the identification of the functionally relevant residues in proteins of known and unknown function. Additionally, sub-HMMs can be used for highly localized sequence similarity searches that focus on shorter conserved features rather than entire domains or global similarities. The motif data generated by this study is a valuable knowledge resource for characterizing protein functions in the future.

  6. Purinergic effects on Na,K-ATPase activity differ in rat and human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carsten Juel

    Full Text Available P2Y receptor activation may link the effect of purines to increased maximal in vitro activity of the Na,K-ATPase in rat muscle. The hypothesis that a similar mechanism is present in human skeletal muscle was investigated with membranes from rat and human skeletal muscle.Membranes purified from rat and human muscles were used in the Na,K-ATPase assay. Incubation with ADP, the stable ADP analogue MeS-ADP and UDP increased the Na+ dependent Na,K-ATPase activity in rat muscle membranes, whereas similar treatments of human muscle membranes lowered the Na,K-ATPase activity. UTP incubation resulted in unchanged Na,K-ATPase activity in humans, but pre-incubation with the antagonist suramin resulted in inhibition with UTP, suggesting that P2Y receptors are involved. The Na,K-ATPase in membranes from both rat and human could be stimulated by protein kinase A and C activation. Thus, protein kinase A and C activation can increase Na,K-ATPase activity in human muscle but not via P2Y receptor stimulation.The inhibitory effects of most purines (with the exception of UTP in human muscle membranes are probably due to mass law inhibition of ATP hydrolysis. This inhibition could be blurred in rat due to receptor mediated activation of the Na,K-ATPase. The different effects could be related to a high density of ADP sensitive P2Y1 and P2Y13 receptors in rat, whereas the UTP sensitive P2Y11 could be more abundant in human. Alternatively, rat could possesses a mechanism for protein-protein interaction between P2Y receptors and the Na,K-ATPase, and this mechanism could be absent in human skeletal muscle (perhaps with the exception of the UTP sensitive P2Y11 receptor.Rat muscle is not a reliable model for purinergic effects on Na,K-ATPase in human skeletal muscle.

  7. H,K-ATPase and carbonic anhydrase response to chronic systemic rat gastric hypoxia

    Directory of Open Access Journals (Sweden)

    Ulfah Lutfiah

    2015-11-01

    Full Text Available Background: Hypoxia may induce gastric ulcer associated with excessive hidrogen chloride (HCl secretion. Synthesis of HCl involves 2 enzymes, H,K-ATPase and carbonic anhydrase (CA. This study aimed to clarify the underlying cause of gastric ulcer in chronic hypoxic condition, by investigating the H,K-ATPase and CA9 response in rats.Methods: This study was an in vivo experiment, to know the relationship between hypoxia to expression of H,K-ATPase and CA9 mRNA, and H,K-ATPase and total CA specific activity of chronic systemic rat gastric hypoxia. The result was compared to control. Data was analyzed by SPSS. If the data distribution was normal and homogeneous, ANOVA and LSD post-hoc test were used. However, if the distribution was not normal and not homogeneous, and still as such after transformation, data was treated in non-parametric using Kruskal-Wallis and Mann Whitney test. Twenty five male Sprague-Dawley rats were divided into 5 groups: rats undergoing hypoxia for 1, 3, 5, and 7 days placed in hypoxia chamber (10% O2, 90% N2, and one control group. Following this treatment, stomach of the rats was extracted and homogenized. Expression of H,K-ATPase and CA9 mRNA was measured using real time RT-PCR. Specific activity of H,K-ATPase was measured using phosphate standard solution, and specific activity of total CA was measured using p-nitrophenol solution.Results: The expression of H,K-ATPase mRNA was higher in the first day (2.159, and drastically lowered from the third to seventh day (0.289; 0.108; 0.062. Specific activities of H,K-ATPase was slightly higher in the first day (0.765, then was lowered in the third (0.685 and fifth day (0.655, and was higher in the seventh day (0.884. The expression of CA9 mRNA was lowered progressively from the first to seventh day (0.84; 0.766; 0.736; 0.343. Specific activities of total CA was low in the first day (0.083, and was higher from the third to seventh day (0.111; 0.136; 0.144.Conclusion: In hypoxia

  8. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase

    DEFF Research Database (Denmark)

    Jahn, T.; Fuglsang, A.T.; Olsson, A.;

    1997-01-01

    Accumulating evidence suggests that 14-3-3 proteins are involved in the regulation of plant plasma membrane H(+)-ATPase activity. However, it is not known whether the 14-3-3 protein interacts directly or indirectly with the H(+)-ATPase. In this study, detergent-solubilized plasma membrane H...... plasma membrane H(+)-ATPase. We propose that the 14-3-3 protein is a natural ligand of the plasma membrane H(+)-ATPase, regulating proton pumping by displacing the C-terminal autoinhibitory domain of the H(+)-ATPase.......(+)-ATPase isolated from fusicoccin-treated maize shoots was copurified with the 14-3-3 protein (as determined by protein gel blotting), and the H(+)-ATPase was recovered in an activated state. In the absence of fusicoccin treatment, H(+)-ATPase and the 14-3-3 protein were well separated, and the H(+)-ATPase was...

  9. Motivated Proteins: A web application for studying small three-dimensional protein motifs

    Directory of Open Access Journals (Sweden)

    Milner-White E James

    2009-02-01

    Full Text Available Abstract Background Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are αβ-motifs, asx-motifs, asx-turns, β-bulges, β-bulge loops, β-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns. We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. Description The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (XHTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. Conclusion Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schema.

  10. Characterization of calcium, nucleotide, phosphate, and vanadate bound states by derivatization of sarcoplasmic reticulum ATPase with ThioGlo1.

    OpenAIRE

    Hua, S; Fabris, D.; Inesi, G

    1999-01-01

    Sarcoplasmic reticulum vesicles were incubated with the maleimide-directed probe ThioGlo1, resulting in ATPase inactivation. Reacted ThioGlo1, revealed by its enhanced fluorescence, was found to be associated with the cytosolic but not with the membrane-bound region of the ATPase. The dependence of inactivation on ThioGlo1 concentration suggests derivatization of approximately four residues per ATPase, of which Cys(364), Cys(498), and Cys(636) were identified in prominently fluorescent peptid...

  11. Composite motifs integrating multiple protein structures increase sensitivity for function prediction.

    Science.gov (United States)

    Chen, Brian Y; Bryant, Drew H; Cruess, Amanda E; Bylund, Joseph H; Fofanov, Viacheslav Y; Kristensen, David M; Kimmel, Marek; Lichtarge, Olivier; Kavraki, Lydia E

    2007-01-01

    The study of disease often hinges on the biological function of proteins, but determining protein function is a difficult experimental process. To minimize duplicated effort, algorithms for function prediction seek characteristics indicative of possible protein function. One approach is to identify substructural matches of geometric and chemical similarity between motifs representing known active sites and target protein structures with unknown function. In earlier work, statistically significant matches of certain effective motifs have identified functionally related active sites. Effective motifs must be carefully designed to maintain similarity to functionally related sites (sensitivity) and avoid incidental similarities to functionally unrelated protein geometry (specificity). Existing motif design techniques use the geometry of a single protein structure. Poor selection of this structure can limit motif effectiveness if the selected functional site lacks similarity to functionally related sites. To address this problem, this paper presents composite motifs, which combine structures of functionally related active sites to potentially increase sensitivity. Our experimentation compares the effectiveness of composite motifs with simple motifs designed from single protein structures. On six distinct families of functionally related proteins, leave-one-out testing showed that composite motifs had sensitivity comparable to the most sensitive of all simple motifs and specificity comparable to the average simple motif. On our data set, we observed that composite motifs simultaneously capture variations in active site conformation, diminish the problem of selecting motif structures, and enable the fusion of protein structures from diverse data sources. PMID:17951837

  12. Review: The ATPase mechanism of myosin and actomyosin.

    Science.gov (United States)

    Geeves, Michael A

    2016-08-01

    Myosins are a large family of molecular motors that use the common P-loop, Switch 1 and Switch 2 nucleotide binding motifs to recognize ATP, to create a catalytic site than can efficiently hydrolyze ATP and to communicate the state of the nucleotide pocket to other allosteric binding sites on myosin. The energy of ATP hydrolysis is used to do work against an external load. In this short review I will outline current thinking on the mechanism of ATP hydrolysis and how the energy of ATP hydrolysis is coupled to a series of protein conformational changes that allow a myosin, with the cytoskeleton track actin, to operate as a molecular motor of distinct types; fast movers, processive motors or strain sensors. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 483-491, 2016. PMID:27061920

  13. CrATP as a new inhibitor of ecto-ATPases of trypanosomatids.

    Science.gov (United States)

    Moreira, O C; Rios, P F; Esteves, F F; Meyer-Fernandes, J R; Barrabin, H

    2009-01-01

    Trypanosomatid protozoa include heteroxenic species some of them pathogenic for men, animals and plants. Parasite membrane contains ecto-enzymes whose active sites face the external medium rather than the cytoplasm. Herpetomonas sp. displayed a Mg2+-dependent ecto-ATPase activity, a Mg-independent ecto-ADPase and an ecto-phosphatase activity. Both, the ecto-ADPase and phosphatase activities were insensitive to CrATP (chromium(III) adenosine 5'-triphosphate complex). Ecto-ATPase activity was reversibly inhibited. At 2 mm ATP the apparent Ki was 4 x 7+/-1 x 0 microm but a fraction of about 40-50% was insensitive to CrATP. Remarkably, at low substrate concentration (0 x 2 mm) more than 90% of the ecto-ATPase was inhibited with Ki=0 x 33+/-0 x 10 microm. These parameter dependences are interpreted as the presence of 2 ecto-ATPases activities, one of them with high ATP apparent affinity and sensitivity to CrATP. DIDS (4,4 diisothiocyanatostilbene 2,2' disulfonic acid), suramin and ADP were also effective as inhibitors. Only ADP presented no additive inhibition with CrATP. The pattern of partial inhibition by CrATP was also observed for the ecto-ATPase activities of Leishmania amazonensis, Trypanosoma cruzi and Trypanosoma rangeli. CrATP emerges as a new inhibitor of ecto-ATPases and as a tool for a better understanding of properties and role of ecto-ATPases in the biology of parasites. PMID:19126268

  14. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    OpenAIRE

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-01-01

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) ...

  15. A tomato ER-type Ca2+-ATPase, LCA1, has a low thapsigargin-sensitivity and can transport manganese

    DEFF Research Database (Denmark)

    Johnson, Neil A.; Liu, F; Weeks, P. D.;

    2008-01-01

    Recombinant Ca(2+)-ATPase from tomato (i.e. LCA1 for Lycopersicon esculentum [Since the identification and naming of LCA1, the scientific name for the tomato has been changed to Solanum lycopersicum.] Ca-ATPase) was heterologously expressed in yeast for structure-function characterization. We...... investigate the differences between plant and animal Ca pumps utilizing comparisons between chicken and rabbit SERCA-type pumps with Arabidopsis (ECA1) and tomato plant (LCA1) Ca(2+)-ATPases. Enzyme function was confirmed by the ability of each Ca(2+)-ATPase to rescue K616 growth on EGTA-containing agar and...

  16. α3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in zebrafish

    DEFF Research Database (Denmark)

    Doganli, Canan; Beck, Hans Christian; Ribera, Angeles B;

    2013-01-01

    Na+/K+-ATPases are transmembrane ion pumps that maintain ion gradients across the basolateral plasma membrane in all animal cells to facilitate essential biological functions. Mutations in the Na+/K+-ATPase α3 subunit gene (ATP1A3) cause rapid-onset dystonia-parkinsonism, a rare movement disorder...... knockdown of Atp1a3a or Atp1a3b. Our data thus strongly support the role of α3Na+/K+-ATPase in zebrafish motility and brain development, associating for the first time the α3Na+/K+-ATPase deficiency with brain ventricle dilation....

  17. Mechanism and significance of P4 ATPase-catalyzed lipid transport: lessons from a Na+/K+-pump.

    Science.gov (United States)

    Puts, Catheleyne F; Holthuis, Joost C M

    2009-07-01

    Members of the P(4) subfamily of P-type ATPases are believed to catalyze phospholipid transport across membrane bilayers, a process influencing a host of cellular functions. Atomic structures and functional analysis of P-type ATPases that pump small cations and metal ions revealed a transport mechanism that appears to be conserved throughout the family. A challenging problem is to understand how this mechanism is adapted in P(4) ATPases to flip phospholipids. P(4) ATPases form oligomeric complexes with members of the CDC50 protein family. While formation of these complexes is required for P(4) ATPase export from the endoplasmic reticulum, little is known about the functional role of the CDC50 subunits. The Na(+)/K(+)-ATPase and closely-related H(+)/K(+)-ATPase are the only other P-type pumps that are oligomeric, comprising mandatory beta-subunits that are strikingly reminiscent of CDC50 proteins. Besides serving a role in the functional maturation of the catalytic alpha-subunit, the beta-subunit also contributes specifically to intrinsic transport properties of the Na(+)/K(+) pump. As beta-subunits and CDC50 proteins likely adopted similar structures to accomplish analogous tasks, current knowledge of the Na(+)/K(+)-ATPase provides a useful guide for understanding the inner workings of the P(4) ATPase class of lipid pumps. PMID:19233312

  18. Stabilization of membrane bound ATPases and lipid peroxidation by carotenoids from Chlorococcum humicola in Benzo(a)pyrene induced toxicity

    Institute of Scientific and Technical Information of China (English)

    Bhagavathy S; Sumathi P

    2012-01-01

    Objective: To identify the alteration of the membrane potential and the effect of carotenoid extracts from Chlorococcum humicola (C. humicola) on membrane bound ATPases and lipid peroxidation. Methods: The total carotenoids were extracted from C. humicola. Four groups of Swiss albino mice were treated as control, Benzo(a)pyrene [B(a)P], total carotenoids, B(a)P +total carotenoids respectively for a period of 60 days. Membrane lipid peroxidation and ATPases (Total ATPases, Ca2+- ATPases, Mg2+ - ATPases, Na+K+ - ATPase) were determined in lung, liver and erythrocyte samples. Results: The activity of total ATPase was found to be significantly increased in the B(a)P treated liver and lung tissue. Erythrocyte membrane also showed higher ATPase activity which was significantly reverted on total carotenoid treatment. Conclusions:It can be concluded that the changes in membrane potential favour the functional deterioration of physiological system. The overall findings demonstrates that the animals post treated with carotenoid extract from C. humicola may maintains the alterations in membrane bound ATPase and lipid peroxidation in tissues against the carcinogenic chemical and hence aid in establishing the membrane potential action. Therefore C. humicola can be further extended to exploits its possible application for various health benefits as neutraceuticals and food additives.

  19. SPIC: A novel similarity metric for comparing transcription factor binding site motifs based on information contents

    OpenAIRE

    Zhang, Shaoqiang; Zhou, Xiguo; Du, Chuanbin; Su, Zhengchang

    2013-01-01

    Background Discovering transcription factor binding sites (TFBS) is one of primary challenges to decipher complex gene regulatory networks encrypted in a genome. A set of short DNA sequences identified by a transcription factor (TF) is known as a motif, which can be expressed accurately in matrix form such as a position-specific scoring matrix (PSSM) and a position frequency matrix. Very frequently, we need to query a motif in a database of motifs by seeking its similar motifs, merge similar ...

  20. RNAMotifScanX: a graph alignment approach for RNA structural motif identification

    OpenAIRE

    Zhong, Cuncong; Zhang, Shaojie

    2015-01-01

    RNA structural motifs are recurrent three-dimensional (3D) components found in the RNA architecture. These RNA structural motifs play important structural or functional roles and usually exhibit highly conserved 3D geometries and base-interaction patterns. Analysis of the RNA 3D structures and elucidation of their molecular functions heavily rely on efficient and accurate identification of these motifs. However, efficient RNA structural motif search tools are lacking due to the high complexit...

  1. Functional characterization of transcription factor motifs using cross-species comparison across large evolutionary distances

    OpenAIRE

    Jaebum Kim; Ryan Cunningham; Brian James; Stefan Wyder; Gibson, Joshua D.; Oliver Niehuis; Zdobnov, Evgeny M.; Hugh M Robertson; Robinson, Gene E.; Werren, John H; Saurabh Sinha

    2010-01-01

    We address the problem of finding statistically significant associations between cis-regulatory motifs and functional gene sets, in order to understand the biological roles of transcription factors. We develop a computational framework for this task, whose features include a new statistical score for motif scanning, the use of different scores for predicting targets of different motifs, and new ways to deal with redundancies among significant motif-function associations. This framework is app...

  2. Selection against spurious promoter motifs correlates with translational efficiency across bacteria

    OpenAIRE

    Froula, Jeffrey L.; M. Pilar Francino

    2008-01-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the sigma(70) subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory s...

  3. The Kdp-ATPase system and its regulation

    Indian Academy of Sciences (India)

    Anand Ballal; Bhakti Basu; Shree Kumar Apte

    2007-04-01

    K+, the dominant intracellular cation, is required for various physiological processes like turgor homeostasis, pH regulation etc. Bacterial cells have evolved many diverse K+ transporters to maintain the desired concentration of internal K+. In E. coli, the KdpATPase (comprising of the KdpFABC complex), encoded by the kdpFABC operon, is an inducible high-affinity K+ transporter that is synthesised under conditions of severe K+ limitation or osmotic upshift. The E. coli kdp expression is transcriptionally regulated by the KdpD and KdpE proteins, which together constitute a typical bacterial two-component signal transduction system. The Kdp system is widely dispersed among the different classes of bacteria including the cyanobacteria. The ordering of the kdpA, kdpB and kdpC is relatively fixed but the kdpD/E genes show different arrangements in distantly related bacteria. Our studies have shown that the cyanobacterium Anabaena sp. strain L-31 possesses two kdp operons, kdp1 and kdp2, of which, the later is expressed under K+ deficiency and desiccation. Among the regulatory genes, the kdpD ORF of Anabaena L-31 is truncated when compared to the kdpD of other bacteria, while a kdpE-like gene is absent. The extremely radio-resistant bacterium, Deinococcus radiodurans strain R1, also shows the presence of a naturally short kdpD ORF similar to Anabaena in its kdp operon. The review elaborates the expression of bacterial kdp operons in response to various environmental stress conditions, with special emphasis on Anabaena. The possible mechanism(s) of regulation of the unique kdp operons from Anabaena and Deinococcus are also discussed.

  4. ATPase and morphologic changes induced by UVB on Langerhans cells in guinea pigs

    International Nuclear Information System (INIS)

    The authors have devised, in guinea pigs, an improved ATPase technique which enables one to proceed from light to electron microscope study while preserving, on the ultrastructural level, the various membranous structures, in particular the Langerhans cell (LC) granules. Using this method, they have been able to confirm the action of acute, low-dose UVB on the surface enzymatic marker, ATPase. Moreover, this study has shown that the ATPase-negative LC contain abnormal LC granules or, more often, are deficient in LC granules. In a previous work, the authors have shown that, after epicutaneous application of a hapten, one successively observes an extensive adsorptive pinocytosis process, the disappearance of the membranous ATPase system, and the appearance of LC granules in the cytoplasm. Therefore, the authors may suppose that, after UVB irradiation, the disappearance of the ATPase system and/or the possible alteration of the adsorptive pinocytosis process interrupts or alters the formation of LC granules. These successive events might play a vital role in the formation of the hapten--carrier protein-Ia antigen complex. In their absence in a large number of LC, following UV irradiation, epicutaneous application of a hapten would lead to the development of a state of immune tolerance

  5. Peroxynitrite induced decrease in Na+, K+-ATPase activity is restored by taurine

    Institute of Scientific and Technical Information of China (English)

    Necla Kocak-Toker; Murat Giris; Feti Tülübas; Müjdat Uysal; Gülcin Aykac-Toker

    2005-01-01

    AIM: Peroxynitrite (ONOO-) is a powerful oxidant shown to damage membranes. In the present study, the effect of taurine on changes of liver plasma membrane Na+, K+-ATPase induced by ONOO- was investigated. METHODS: Liver plasma membrane was exposed toONOO-with or without taurine. Na+, K+-ATPase activity and lipid peroxidation as thiobarbituric acid reactive substances (TBARS) levels were measured.RESULTS: Different concentrations of ONOO- (100, 200,500, and 1 000 μmol/L) were found to decrease liver plasma membrane Na+, K+-ATPase activity significantly. The depletion of enzyme activity was not concentration dependent. Effects of different concentrations of taurine on liver plasma membrane Na+, K+-ATPase activity were also measured. Taurine did not cause any increase in enzyme activity. When plasma membranes were treated with 200 μmol/L ONOO- with different concentrations of taurine, a restoring effect of taurine on enzyme activity was observed. TBARS levels were also measured and taurine was found to decrease the elevated values. CONCLUSION: Taurine is observed to act as an antioxidant of ONOO-to decrease lipid peroxidation and thus affect liver plasma membrane Na+, K+-ATPase by restoring its activity.

  6. Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2-MSH6 complex.

    Science.gov (United States)

    Banerjee, Sreeparna; Flores-Rozas, Hernan

    2005-01-01

    Cadmium (Cd2+) is a known carcinogen that inactivates the DNA mismatch repair (MMR) pathway. In this study, we have tested the effect of Cd2+ exposure on the enzymatic activity of the mismatch binding complex MSH2-MSH6. Our results indicate that Cd2+ is highly inhibitory to the ATP binding and hydrolysis activities of MSH2-MSH6, and less inhibitory to its DNA mismatch binding activity. The inhibition of the ATPase activity appears to be dose and exposure time dependent. However, the inhibition of the ATPase activity by Cd2+ is prevented by cysteine and histidine, suggesting that these residues are essential for the ATPase activity and are targeted by Cd2+. A comparison of the mechanism of inhibition with N-ethyl maleimide, a sulfhydryl group inhibitor, indicates that this inhibition does not occur through direct inactivation of sulfhydryl groups. Zinc (Zn2+) does not overcome the direct inhibitory effect of Cd2+ on the MSH2-MSH6 ATPase activity in vitro. However, the increase in the mutator phenotype of yeast cells exposed to Cd2+ was prevented by excess Zn2+, probably by blocking the entry of Cd2+ into the cell. We conclude that the inhibition of MMR by Cd2+ is through the inactivation of the ATPase activity of the MSH2-MSH6 heterodimer, resulting in a dominant negative effect and causing a mutator phenotype. PMID:15746000

  7. Effects of Na/K-ATPase and its ligands on bone marrow stromal cell differentiation

    Directory of Open Access Journals (Sweden)

    Moustafa Sayed

    2014-07-01

    Full Text Available Endogenous ligands of Na/K-ATPase have been demonstrated to increase in kidney dysfunction and heart failure. It is also reported that Na/K-ATPase signaling function effects stem cell differentiation. This study evaluated whether Na/K-ATPase activation through its ligands and associated signaling functions affect bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells differentiation capacity. BMSCs were isolated from male Sprague–Dawley rats and cultured in minimal essential medium alpha (MEM-α supplemented with 15% Fetal Bovine serum (FBS. The results showed that marinobufagenin (MBG, a specific Na/K-ATPase ligand, potentiated rosiglitazone-induced adipogenesis in these BMSCs. Meanwhile, it attenuated BMSC osteogenesis. Mechanistically, MBG increased CCAAT/enhancer binding protein alpha (C/EBPα protein expression through activation of an extracellular regulated kinase (ERK signaling pathway, which leads to enhanced rosiglitazone-induced adipogenesis. Inhibition of ERK activation by U0126 blocks the effect of MBG on C/EBPα expression and on rosiglitazone-induced adipogenesis. Reciprocally, MBG reduced runt-related transcription factor 2 (RunX2 expression, which resulted in the inhibition of osteogenesis induced by β-glycerophosphate/ascorbic acid. MBG also potentiated rosiglitazone-induced adipogenesis in 3T3-L1 cells and in mouse BMSCs. These results suggest that Na/K-ATPase and its signaling functions are involved in the regulation of BMSCs differentiation.

  8. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification.

    Science.gov (United States)

    Li, Yanbang; Provenzano, Sofia; Bliek, Mattijs; Spelt, Cornelis; Appelhagen, Ingo; Machado de Faria, Laura; Verweij, Walter; Schubert, Andrea; Sagasser, Martin; Seidel, Thorsten; Weisshaar, Bernd; Koes, Ronald; Quattrocchio, Francesca

    2016-08-01

    Petunia mutants (Petunia hybrida) with blue flowers defined a novel vacuolar proton pump consisting of two interacting P-ATPases, PH1 and PH5, that hyper-acidify the vacuoles of petal cells. PH5 is similar to plasma membrane H(+) P3A -ATPase, whereas PH1 is the only known eukaryoticP3B -ATPase. As there were no indications that this tonoplast pump is widespread in plants, we investigated the distribution and evolution of PH1 and PH5. We combined database mining and phylogenetic and synteny analyses of PH1- and PH5-like proteins from all kingdoms with functional analyses (mutant complementation and intracellular localization) of homologs from diverse angiosperms. We identified functional PH1 and PH5 homologs in divergent angiosperms. PH5 homologs evolved from plasma membrane P3A -ATPases, acquiring an N-terminal tonoplast-sorting sequence and new cellular function before angiosperms appeared. PH1 is widespread among seed plants and related proteins are found in some groups of bacteria and fungi and in one moss, but is absent in most algae, suggesting that its evolution involved several cases of gene loss and possibly horizontal transfer events. The distribution of PH1 and PH5 in the plant kingdom suggests that vacuolar acidification by P-ATPases appeared in gymnosperms before flowers. This implies that, next to flower color determination, vacuolar hyper-acidification is required for yet unknown processes. PMID:27214749

  9. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  10. WildSpan: mining structured motifs from protein sequences

    Directory of Open Access Journals (Sweden)

    Chen Chien-Yu

    2011-03-01

    Full Text Available Abstract Background Automatic extraction of motifs from biological sequences is an important research problem in study of molecular biology. For proteins, it is desired to discover sequence motifs containing a large number of wildcard symbols, as the residues associated with functional sites are usually largely separated in sequences. Discovering such patterns is time-consuming because abundant combinations exist when long gaps (a gap consists of one or more successive wildcards are considered. Mining algorithms often employ constraints to narrow down the search space in order to increase efficiency. However, improper constraint models might degrade the sensitivity and specificity of the motifs discovered by computational methods. We previously proposed a new constraint model to handle large wildcard regions for discovering functional motifs of proteins. The patterns that satisfy the proposed constraint model are called W-patterns. A W-pattern is a structured motif that groups motif symbols into pattern blocks interleaved with large irregular gaps. Considering large gaps reflects the fact that functional residues are not always from a single region of protein sequences, and restricting motif symbols into clusters corresponds to the observation that short motifs are frequently present within protein families. To efficiently discover W-patterns for large-scale sequence annotation and function prediction, this paper first formally introduces the problem to solve and proposes an algorithm named WildSpan (sequential pattern mining across large wildcard regions that incorporates several pruning strategies to largely reduce the mining cost. Results WildSpan is shown to efficiently find W-patterns containing conserved residues that are far separated in sequences. We conducted experiments with two mining strategies, protein-based and family-based mining, to evaluate the usefulness of W-patterns and performance of WildSpan. The protein-based mining mode

  11. A new motif for inhibitors of geranylgeranyl diphosphate synthase.

    Science.gov (United States)

    Foust, Benjamin J; Allen, Cheryl; Holstein, Sarah A; Wiemer, David F

    2016-08-15

    The enzyme geranylgeranyl diphosphate synthase (GGDPS) is believed to receive the substrate farnesyl diphosphate through one lipophilic channel and release the product geranylgeranyl diphosphate through another. Bisphosphonates with two isoprenoid chains positioned on the α-carbon have proven to be effective inhibitors of this enzyme. Now a new motif has been prepared with one isoprenoid chain on the α-carbon, a second included as a phosphonate ester, and the potential for a third at the α-carbon. The pivaloyloxymethyl prodrugs of several compounds based on this motif have been prepared and the resulting compounds have been tested for their ability to disrupt protein geranylgeranylation and induce cytotoxicity in myeloma cells. The initial biological studies reveal activity consistent with GGDPS inhibition, and demonstrate a structure-function relationship which is dependent on the nature of the alkyl group at the α-carbon. PMID:27338660

  12. Discovering sequence motifs in quantitative and qualitative pepetide data

    DEFF Research Database (Denmark)

    Andreatta, Massimo

    analyze and interpret such data. The first paper in this thesis presents a new, publicly available method based on artificial neural networks that allows custom analysis of quantitative peptide data. The online NNAlign web-server provides a simple yet powerful tool for the discovery of sequence motifs in...... thousands of interactions in a single experiment, with virtually unlimited choice of potential targets and variants of these targets. However, the amount and complexity of data produced by high-throughput techniques poses serious challenges to researchers of limited bioinformatics expertise who need to...... this thesis deals with the presence of multiple motifs, due to the experimental setup or the actual poly-specificity of the receptor, in peptide data. A new algorithm, based on Gibbs sampling, identifies multiple specificities by performing two tasks simultaneously: alignment and clustering of peptide...

  13. Nephila clavipes Flagelliform Silk-like GGX Motifs Contribute to Extensibility and Spacer Motifs Contribute to Strength in Synthetic Spider Silk Fibers

    OpenAIRE

    Adrianos, Sherry L.; Teulé, Florence; Hinman, Michael B.; Jones, Justin A.; Weber, Warner S.; Yarger, Jeffery L.; Lewis, Randolph V.

    2013-01-01

    Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are: GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of t...

  14. Nature-inspired design of motif-specific antibody scaffolds

    OpenAIRE

    Koerber, James T.; Thomsen, Nathan D.; Hannigan, Brett T.; DeGrado, William F.; Wells, James A.

    2013-01-01

    Aberrant changes in post-translational modifications (PTMs) such as phosphorylation underlie a majority of human diseases. However, detection and quantification of PTMs for diagnostic or biomarker applications often requires monoclonal PTM-specific antibodies, which are challenging to generate using traditional antibody-generation platforms. Here we outline a general strategy for producing synthetic PTM-specific antibodies by engineering a motif-specific ‘hot spot’ into an antibody scaffold. ...

  15. Defense-Inducing Volatiles: In Search of the Active Motif

    OpenAIRE

    Heil, Martin; Lion, Ulrich; Boland, Wilhelm

    2008-01-01

    Herbivore-induced volatile organic compounds (VOCs) are widely appreciated as an indirect defense mechanism since carnivorous arthropods use VOCs as cues for host localization and then attack herbivores. Another function of VOCs is plant–plant signaling. That VOCs elicit defensive responses in neighboring plants has been reported from various species, and different compounds have been found to be active. In order to search for a structural motif that characterizes active VOCs, we used lima be...

  16. Graph animals, subgraph sampling, and motif search in large networks

    Science.gov (United States)

    Baskerville, Kim; Grassberger, Peter; Paczuski, Maya

    2007-09-01

    We generalize a sampling algorithm for lattice animals (connected clusters on a regular lattice) to a Monte Carlo algorithm for “graph animals,” i.e., connected subgraphs in arbitrary networks. As with the algorithm in [N. Kashtan , Bioinformatics 20, 1746 (2004)], it provides a weighted sample, but the computation of the weights is much faster (linear in the size of subgraphs, instead of superexponential). This allows subgraphs with up to ten or more nodes to be sampled with very high statistics, from arbitrarily large networks. Using this together with a heuristic algorithm for rapidly classifying isomorphic graphs, we present results for two protein interaction networks obtained using the tandem affinity purification (TAP) method: one of Escherichia coli with 230 nodes and 695 links, and one for yeast (Saccharomyces cerevisiae) with roughly ten times more nodes and links. We find in both cases that most connected subgraphs are strong motifs ( Z scores >10 ) or antimotifs ( Z scores <-10 ) when the null model is the ensemble of networks with fixed degree sequence. Strong differences appear between the two networks, with dominant motifs in E. coli being (nearly) bipartite graphs and having many pairs of nodes that connect to the same neighbors, while dominant motifs in yeast tend towards completeness or contain large cliques. We also explore a number of methods that do not rely on measurements of Z scores or comparisons with null models. For instance, we discuss the influence of specific complexes like the 26S proteasome in yeast, where a small number of complexes dominate the k cores with large k and have a decisive effect on the strongest motifs with 6-8 nodes. We also present Zipf plots of counts versus rank. They show broad distributions that are not power laws, in contrast to the case when disconnected subgraphs are included.

  17. Exon silencing by UAGG motifs in response to neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Ping An

    2007-02-01

    Full Text Available Alternative pre-mRNA splicing plays fundamental roles in neurons by generating functional diversity in proteins associated with the communication and connectivity of the synapse. The CI cassette of the NMDA R1 receptor is one of a variety of exons that show an increase in exon skipping in response to cell excitation, but the molecular nature of this splicing responsiveness is not yet understood. Here we investigate the molecular basis for the induced changes in splicing of the CI cassette exon in primary rat cortical cultures in response to KCl-induced depolarization using an expression assay with a tight neuron-specific readout. In this system, exon silencing in response to neuronal excitation was mediated by multiple UAGG-type silencing motifs, and transfer of the motifs to a constitutive exon conferred a similar responsiveness by gain of function. Biochemical analysis of protein binding to UAGG motifs in extracts prepared from treated and mock-treated cortical cultures showed an increase in nuclear hnRNP A1-RNA binding activity in parallel with excitation. Evidence for the role of the NMDA receptor and calcium signaling in the induced splicing response was shown by the use of specific antagonists, as well as cell-permeable inhibitors of signaling pathways. Finally, a wider role for exon-skipping responsiveness is shown to involve additional exons with UAGG-related silencing motifs, and transcripts involved in synaptic functions. These results suggest that, at the post-transcriptional level, excitable exons such as the CI cassette may be involved in strategies by which neurons mount adaptive responses to hyperstimulation.

  18. Tools and resources for identifying protein families, domains and motifs

    OpenAIRE

    Mulder, Nicola J.; Apweiler, Rolf

    2001-01-01

    With the large influx of raw sequence data from genome sequencing projects, there is a need for reliable automatic methods for protein sequence analysis and classification. The most useful tools use various methods for identifying motifs or domains found in previously characterized protein families. This article reviews the tools and resources available on the web for identifying signatures within proteins and discusses how they may be used in the analysis of new or unknown protein sequences.

  19. Tricksters Trot to America: Areal Distribution of Folklore Motifs

    OpenAIRE

    Yuri Berezkin

    2010-01-01

    The folklore Trickster is usually considered a universally known combination of features intrinsic to human nature. However, there are strong anomalies in the areal distribution of such a figure. Sub-Saharan Africa, North America (except for the Arctic), Northeast Asia and South American Chaco not only are the preferred zones of tricksters’ activity but also share some peculiar trickster motifs unknown in most of the other regions. The range of animals which play the role of tricksters is als...

  20. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    OpenAIRE

    Kelwick, Richard; Desanlis, Ines; Wheeler, Grant N.; Edwards, Dylan R

    2015-01-01

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAM...

  1. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs

    Directory of Open Access Journals (Sweden)

    Seitzer Phillip

    2012-11-01

    Full Text Available Abstract Background Discovery of functionally significant short, statistically overrepresented subsequence patterns (motifs in a set of sequences is a challenging problem in bioinformatics. Oftentimes, not all sequences in the set contain a motif. These non-motif-containing sequences complicate the algorithmic discovery of motifs. Filtering the non-motif-containing sequences from the larger set of sequences while simultaneously determining the identity of the motif is, therefore, desirable and a non-trivial problem in motif discovery research. Results We describe MotifCatcher, a framework that extends the sensitivity of existing motif-finding tools by employing random sampling to effectively remove non-motif-containing sequences from the motif search. We developed two implementations of our algorithm; each built around a commonly used motif-finding tool, and applied our algorithm to three diverse chromatin immunoprecipitation (ChIP data sets. In each case, the motif finder with the MotifCatcher extension demonstrated improved sensitivity over the motif finder alone. Our approach organizes candidate functionally significant discovered motifs into a tree, which allowed us to make additional insights. In all cases, we were able to support our findings with experimental work from the literature. Conclusions Our framework demonstrates that additional processing at the sequence entry level can significantly improve the performance of existing motif-finding tools. For each biological data set tested, we were able to propose novel biological hypotheses supported by experimental work from the literature. Specifically, in Escherichia coli, we suggested binding site motifs for 6 non-traditional LexA protein binding sites; in Saccharomyces cerevisiae, we hypothesize 2 disparate mechanisms for novel binding sites of the Cse4p protein; and in Halobacterium sp. NRC-1, we discoverd subtle differences in a general transcription factor (GTF binding site motif

  2. Interlinking motifs and entropy landscapes of statistically interacting particles

    Directory of Open Access Journals (Sweden)

    P. Lu

    2012-03-01

    Full Text Available The s=1/2 Ising chain with uniform nearest-neighbor and next-nearest-neighbor coupling is used to construct a system of floating particles characterized by motifs of up to six consecutive local spins. The spin couplings cause the assembly of particles which, in turn, remain free of interaction energies even at high density. All microstates are configurations of particles from one of three different sets, excited from pseudo-vacua associated with ground states of periodicities one, two, and four. The motifs of particles and elements of pseudo-vacuum interlink in two shared site variables. The statistical interaction between particles is encoded in a generalized Pauli principle, describing how the placement of one particle modifies the options for placing further particles. In the statistical mechanical analysis arbitrary energies can be assigned to all particle species. The entropy is a function of the particle populations. The statistical interaction specifications are transparently built into that expression. The energies and structures of the particles alone govern the ordering at low temperature. Under special circumstances the particles can be replaced by more fundamental particles with shorter motifs that interlink in only one shared site variable. Structures emerge from interactions on two levels: particles with shapes from coupled spins and long-range ordering tendencies from statistically interacting particles with shapes.

  3. Event Networks and the Identification of Crime Pattern Motifs.

    Directory of Open Access Journals (Sweden)

    Toby Davies

    Full Text Available In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible.

  4. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  5. Event Networks and the Identification of Crime Pattern Motifs.

    Science.gov (United States)

    Davies, Toby; Marchione, Elio

    2015-01-01

    In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible. PMID:26605544

  6. GxxxG motifs hold the TIM23 complex together.

    Science.gov (United States)

    Demishtein-Zohary, Keren; Marom, Milit; Neupert, Walter; Mokranjac, Dejana; Azem, Abdussalam

    2015-06-01

    Approximately 99% of the mitochondrial proteome is nucleus-encoded, synthesized in the cytosol, and subsequently imported into and sorted to the correct compartment in the organelle. The translocase of the inner mitochondrial membrane 23 (TIM23) complex is the major protein translocase of the inner membrane, and is responsible for translocation of proteins across the inner membrane and their insertion into the inner membrane. Tim23 is the central component of the complex that forms the import channel. A high-resolution structure of the import channel is still missing, and structural elements important for its function are unknown. In the present study, we analyzed the importance of the highly abundant GxxxG motifs in the transmembrane segments of Tim23 for the structural integrity of the TIM23 complex. Of 10 glycines present in the GxxxG motifs in the first, second and third transmembrane segments of Tim23, mutations of three of them in transmembrane segments 1 and 2 resulted in a lethal phenotype, and mutations of three others in a temperature-sensitive phenotype. The remaining four caused no obvious growth phenotype. Importantly, none of the mutations impaired the import and membrane integration of Tim23 precursor into mitochondria. However, the severity of growth impairment correlated with the destabilization of the TIM23 complex. We conclude that the GxxxG motifs found in the first and second transmembrane segments of Tim23 are necessary for the structural integrity of the TIM23 complex. PMID:25765297

  7. QuateXelero: an accelerated exact network motif detection algorithm.

    Science.gov (United States)

    Khakabimamaghani, Sahand; Sharafuddin, Iman; Dichter, Norbert; Koch, Ina; Masoudi-Nejad, Ali

    2013-01-01

    Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain more knowledge about these networks' structure and function. However, this task is very computationally demanding, because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the algorithm from scratch based on the input network. PMID:23874498

  8. Expression of gill vacuolar-type H+-ATPase B subunit, and Na+, K+-ATPase alpha- and beta- subunit messenger RNAs in smolting Salmo salar

    DEFF Research Database (Denmark)

    Seidelin, Michel; Madsen, Steffen; Cutler, Christopher P; Cramb, Gordon

    2001-01-01

    seawater challenge test (35 ppt). Gill Na+,K+-ATPase alpha (1) and beta (1) subunit mRNA levels were regulated at a constant ratio during smoltification. Both transcripts were elevated during the build-up of gill Na+,K+-ATPase activity, underlining the importance of increased mRNA levels for increased...

  9. The expression of ABCG4, V-ATPase and clinic significance of their correlation with NSCLC

    Directory of Open Access Journals (Sweden)

    Zhipei ZHANTG

    2008-10-01

    Full Text Available Background and objective It has been proven that the multiple drug resistance is main reason for failure of chemotherapy in lung cancers and ABC transporter play a main role for chemoresistance in mediating drug efflux. So searching for new drug resistant protein of the ABC family and elucidating its resistant mechanism is very important. ABCG4 is one of ABC family and is expected to be candidate drug resistant protein; and the drug resistance probably correlated with pH value around cancer cell, while, V-ATPase play key role in modulating the pH. So our aim is to investigate the expressions of ABCG4, V-ATPase proteins in non small cell lung cancer (NSCLC, and analyze relationship of ABCG4, V-ATPase protein expressional rate in these cancers with the cancers' pathological grade and TNM stages. Methods To detect the expression rates of ABCG4, V-ATPase protein in NSCLC with immunohistochemical method and immuno- fluorescent method, and to observe the location, the collocation of the proteins under light microscope and confocal laser scanning microscope; the differences of the protein expression and their correlations wereanalyzed by statistics. Results ABCG4 protein was high expressed in squamous cell lung cancer, lung adenocarcinoma respectively, and between the two kinds of the cancers there was a significant difference (P =0.001 for their comparison;there were significant differences between pathological grade ⅡandⅡ-Ⅲ of squamous cell lung cancer, between different differentiated lung adenocarcinoma. V-ATPase protein were also high expressed in these two kinds of cancers, and there was significant difference for their comparison; there were significant differences between pathological grade ⅡandⅡ-Ⅲ of squamous cell lung cancer, between different differentiated lung adenocarcinoma; there were no significantdifferences among the squamous cell lung cancer and lung adenocarcinoma for TNM stages respectively. The P values of

  10. Increased calcium deposits and decreased Ca2+ -ATPase in erythrocytes of ascitic broiler chickens.

    Science.gov (United States)

    Li, Kai; Zhao, Lihong; Geng, Guangrui; Ma, Liqin; Dong, Shishan; Xu, Tong; Wang, Jianlin; Wang, Huiyu; Tian, Yong; Qiao, Jian

    2011-06-01

    The decrease of erythrocyte deformability may be one of the predisposing factors for pulmonary hypertension and ascites in broiler chickens. In mammals, the cytoplasmic calcium is a major regulator of erythrocyte deformability. In this study, the erythrocyte deformability was measured, and the precise locations of Ca2+ and Ca2+ -ATPase in the erythrocytes were investigated in chickens with ascites syndrome induced by low ambient temperature. The results showed that ascitic broilers had higher filtration index of erythrocyte compared with control groups, indicating a decrease in erythrocyte deformability in ascitic broilers. The more calcium deposits were observed in the erythrocytes of ascitic broilers compared with those of the age-matched control birds. The Ca2+ -ATPase reactive grains were significantly decreased on the erythrocyte membranes of ascitic broilers. Our data suggest that accumulation of intracellular calcium and inhibition of Ca2+ -ATPase might be important factors for the reduced deformability of the erythrocytes of ascitic broilers. PMID:20728193

  11. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Hanke, S.; Hinsby, A. M.; Friis, Carsten; Brunak, Søren; Mann, M.; Blom, Nikolaj

    Advances in mass spectrometry-based proteomics have yielded a substantial mapping of the tyrosine phosphoproteome and thus provided an important step toward a systematic analysis of intracellular signaling networks in higher eukaryotes. In this study we decomposed an uncharacterized proteomics data...... set of 481 unique phosphotyrosine (Tyr(P)) peptides by sequence similarity to known ligands of the Src homology 2 (SH2) and the phosphotyrosine binding (PTB) domains. From 20 clusters we extracted 16 known and four new interaction motifs. Using quantitative mass spectrometry we pulled down Tyr...... and validated as a binding motif for the SH2 domain-containing inositol phosphatase SHIP2. Our decomposition of the in vivo Tyr(P) proteome furthermore suggests that two-thirds of the Tyr(P) sites mediate interaction, whereas the remaining third govern processes such as enzyme activation and nucleic...

  12. Versatile roles of V-ATPases accessory subunit Ac45 in osteoclast formation and function.

    Directory of Open Access Journals (Sweden)

    An Qin

    Full Text Available Vacuolar-type H(+-ATPases (V-ATPases are macromolecular proton pumps that acidify intracellular cargos and deliver protons across the plasma membrane of a variety of specialized cells, including bone-resorbing osteoclasts. Extracellular acidification is crucial for osteoclastic bone resorption, a process that initiates the dissolution of mineralized bone matrix. While the importance of V-ATPases in osteoclastic resorptive function is well-defined, whether V-ATPases facilitate additional aspects of osteoclast function and/or formation remains largely obscure. Here we report that the V-ATPase accessory subunit Ac45 participates in both osteoclast formation and function. Using a siRNA-based approach, we show that targeted suppression of Ac45 impairs intracellular acidification and endocytosis, both are prerequisite for osteoclastic bone resorptive function in vitro. Interestingly, we find that knockdown of Ac45 also attenuates osteoclastogenesis owing to a reduced fusion capacity of osteoclastic precursor cells. Finally, in an effort to gain more detailed insights into the functional role of Ac45 in osteoclasts, we attempted to generate osteoclast-specific Ac45 conditional knockout mice using a Cathepsin K-Cre-LoxP system. Surprisingly, however, insertion of the neomycin cassette in the Ac45-Flox(Neo mice resulted in marked disturbances in CNS development and ensuing embryonic lethality thus precluding functional assessment of Ac45 in osteoclasts and peripheral bone tissues. Based on these unexpected findings we propose that, in addition to its canonical function in V-ATPase-mediated acidification, Ac45 plays versatile roles during osteoclast formation and function.

  13. Characterization of detergent-solubilized sarcoplasmic reticulum Ca2+-ATPase by high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Sarcoplasmic reticulum Ca2+-ATPase solubilized by the nonionic detergent octaethylene glycol monododecyl ether was studied by molecular sieve high-performance liquid chromatography (HPLC) and analytical ultracentrifugation. Significant irreversible aggregation of soluble Ca2+-ATPase occurred within a few hours in the presence of ≤ 50 μM Ca2+. The aggregates were inactive and were primarily held together by hydrophobic forces. In the absence of reducing agent, secondary formation of disulfide bonds occurred. The stability of the inactive dimer upon dilution permitted unambiguous assignment of its elution position and sedimentation coefficient. At high 45Ca2+ concentration (500 μM), monomeric Ca2+-ATPase was stable for several house. Reversible self-association induced by variation in protein, detergent, and lipid concentrations was studied by large-zone HPLC. The association constant for dimerization of active Ca2+-ATPase was found to be 105-106 M-1 depending on the detergent concentration. More detergent was bound to monomeric than to dimeric Ca2+-ATPase, even above the critical micellar concentration of the detergent. Binding of Ca2+ and 48V vanadate as well as ATP-dependent phosphorylation was studied in monomeric and in reversibly associated dimeric preparations. In both forms, two high-affinity Ca2+ binding sites per phosphorylation site existed. The delipidated monomer purified by HPLC was able to form ADP-insensitive phosphoenzyme and to bind ATP and vanadate simultaneously. The results suggest that formation of Ca2+-ATPase oligomers in the membrane is governed by nonspecific forces (low affinity) and that each polypeptide chain constitutes a functional unit

  14. Contrasting effects of Na+, K+-ATPase activation on seizure activity in acute versus chronic models.

    Science.gov (United States)

    Funck, V R; Ribeiro, L R; Pereira, L M; de Oliveira, C V; Grigoletto, J; Della-Pace, I D; Fighera, M R; Royes, L F F; Furian, A F; Larrick, J W; Oliveira, M S

    2015-07-01

    Epilepsy is a life-shortening brain disorder affecting approximately 1% of the worldwide population. Most epilepsy patients are refractory to currently available antiepileptic drugs (AEDs). Knowledge about the mechanisms underlying seizure activity and probing for new AEDs is fundamental to the discovery of new therapeutic strategies. Brain Na(+), K(+)-ATPase activity contributes to the maintenance of the electrochemical gradients underlying neuronal resting and action potentials as well as the uptake and release of neurotransmitters. Accordingly, a decrease of Na(+), K(+)-ATPase increases neuronal excitability and may predispose to appearing of seizure activity. In the present study, we tested the hypothesis that activation of Na(+), K(+)-ATPase activity with a specific antibody (DRRSAb) raised against a regulatory site in the α subunit would decrease seizure susceptibility. We found that incubation of hippocampal homogenates with DRRSAb (1 μM) increased total and α1 Na(+), K(+)-ATPase activities. A higher concentration (3 μM) increased total, α1 and α2/α3 Na(+), K(+)-ATPase activities. Intrahippocampal injection of DRRSAb decreased the susceptibility of post status epilepticus animals to pentylenetetrazol (PTZ)-induced myoclonic seizures. In contrast, administration of DRRSAb into the hippocampus of naïve animals facilitated the appearance of PTZ-induced seizures. Quantitative analysis of hippocampal electroencephalography (EEG) recordings revealed that DRRSAb increased the percentage of total power contributed by the delta frequency band (0-3 Hz) to a large irregular amplitude pattern of hippocampal EEG. On the other hand, we found no DRRSAb-induced changes regarding the theta functional state. Further studies are necessary to define the potential of Na(+), K(+)-ATPase activation as a new therapeutic approach for seizure disorders. PMID:25907445

  15. Active plasma membrane p-type H+-ATPase reconstituted into nanodiscs is a monomer

    DEFF Research Database (Denmark)

    Justesen, Bo Højen; Hansen, Randi Westh; Martens, Helle Juel; Theorin, Lisa; Palmgren, Michael Broberg; Martinez, Karen Laurence; Günther-Pomorski, Thomas; Fuglsang, Anja Thoe

    2013-01-01

    Background: The plasma membrane H+-ATPase generates electrochemical gradients in plants and fungi. The minimal subunit organization required for activity is not known. Results: We developed a protocol for reconstitution of active H+-ATPase in nanodiscs. Conclusion: The minimal functional unit of...

  16. Mechanism and significance of P4 ATPase-catalyzed lipid transport: lessons from a Na+/K+-pump

    NARCIS (Netherlands)

    Puts, C.F.; Holthuis, J.C.M.

    2009-01-01

    Members of the P4 subfamily of P-type ATPases are believed to catalyze phospholipid transport across membrane bilayers, a process influencing a host of cellular functions. Atomic structures and functional analysis of P-type ATPases that pump small cations and metal ions revealed a transport mechanis

  17. Cdc50p plays a vital role in the ATPase reaction cycle of the putative aminophospholipid transporter Drs2p

    NARCIS (Netherlands)

    Lenoir, G.F.; WIlliamson, P.L.; Puts, C.F.; Holthuis, J.C.M.

    2009-01-01

    Members of the P4 subfamily of P-type ATPases are believed to catalyze transport of phospholipids across cellular bilayers. However, most P-type ATPases pump small cations or metal ions, and atomic structures revealed a transport mechanism that is conserved throughout the family. Hence, a challengin

  18. Oryza sativa H+-ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice.

    Science.gov (United States)

    Toda, Yosuke; Wang, Yin; Takahashi, Akira; Kawai, Yuya; Tada, Yasuomi; Yamaji, Naoki; Feng Ma, Jian; Ashikari, Motoyuki; Kinoshita, Toshinori

    2016-06-01

    The stomatal apparatus consists of a pair of guard cells and regulates gas exchange between the leaf and atmosphere. In guard cells, blue light (BL) activates H(+)-ATPase in the plasma membrane through the phosphorylation of its penultimate threonine, mediating stomatal opening. Although this regulation is thought to be widely adopted among kidney-shaped guard cells in dicots, the molecular basis underlying that of dumbbell-shaped guard cells in monocots remains unclear. Here, we show that H(+)-ATPases are involved in the regulation of dumbbell-shaped guard cells. Stomatal opening of rice was promoted by the H(+)-ATPase activator fusicoccin and by BL, and the latter was suppressed by the H(+)-ATPase inhibitor vanadate. Using H(+)-ATPase antibodies, we showed the presence of phosphoregulation of the penultimate threonine in Oryza sativa H(+)-ATPases (OSAs) and localization of OSAs in the plasma membrane of guard cells. Interestingly, we identified one H(+)-ATPase isoform, OSA7, that is preferentially expressed among the OSA genes in guard cells, and found that loss of function of OSA7 resulted in partial insensitivity to BL. We conclude that H(+)-ATPase is involved in BL-induced stomatal opening of dumbbell-shaped guard cells in monocotyledon species. PMID:27048369

  19. ALKYLTIN INHIBITION OF ATPASE ACTIVITIES IN TISSUE HOMOGENATES AND SUBCELLULAR FRACTIONS FROM ADULT AND NEONATAL RATS (JOURNAL VERSION)

    Science.gov (United States)

    Inhibition of ATPase activities by triethyltin (TET), diethyltin (DET), monoethyltin (MET) and trimethyltin (TMT) was studied in homogenates of brain and liver from adult rats. MET did not produce significant inhibition. ATPase activities in brain and liver homogenates from TET-t...

  20. Relationship between serum leptin levels, ATPase activity of erythrocyte membrance and development of diabetic nephropathy in patients with DM2

    International Nuclear Information System (INIS)

    Objective: To study the possible mechanism of development of nephrosis affected by changes of serum leptin levels and alteration of activities of Na+K+-ATPase and Ca2+Mg2+-ATPase of erythrocyte membrane in patients with type 2 diabetes(DM2). Methods: Serum leptin levels (with RIA) and erythrocyte membrane Na+K+-ATPase and Ca2+Mg2+-ATPase activitities (with Reinila method) were determined in 40 DM2 patients without nephropathy, 32 DM2 patients with nephropathy and 35 controls. Results Serum leptin levels were significantly higher in the diabetics as a whole than those in controls (P+K+-ATPase and Ca2+Mg2+-ATPase activities were significantly lower (P<0.01). Among the diabetic patients, the serum leptin levels in patients without nephrosis (P<0.05), but the RBC membrance ATPase activities were significantly lower(P<0.05). Conclusion: Development of type 2 diabetes nephrosis might be correlated with the high serum leptin level and decreased ATPase activities of erythrocite membrane. (authors)

  1. Amino Acids in the TM4-TM5 loop of Na,K-ATPase Are Important for Biosynthesis

    DEFF Research Database (Denmark)

    Jørgensen, Jesper Roland; Houghton-Larsen, Jens; Jacobsen, Mette Dorph; Pedersen, Per Amstrup

    2003-01-01

    in the endoplasmic reticulum quality control, as the same loop is responsible for the a-ß-associations required to leave this compartment. On the basis of the Ca-ATPase crystal structure and the presented data, we propose a model to account for the role of the TM4-TM5 loop in Na,K-ATPase biosynthesis....

  2. Clusterin and COMMD1 Independently Regulate Degradation of the Mammalian Copper ATPases ATP7A and ATP7B

    NARCIS (Netherlands)

    Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon

    2012-01-01

    ATP7A and ATP7B are copper-transporting P-1B-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and C

  3. A Novel Alignment-Free Method for Comparing Transcription Factor Binding Site Motifs

    Science.gov (United States)

    Xu, Minli; Su, Zhengchang

    2010-01-01

    Background Transcription factor binding site (TFBS) motifs can be accurately represented by position frequency matrices (PFM) or other equivalent forms. We often need to compare TFBS motifs using their PFMs in order to search for similar motifs in a motif database, or cluster motifs according to their binding preference. The majority of current methods for motif comparison involve a similarity metric for column-to-column comparison and a method to find the optimal position alignment between the two compared motifs. In some applications, alignment-free methods might be preferred; however, few such methods with high accuracy have been described. Methodology/Principal Findings Here we describe a novel alignment-free method for quantifying the similarity of motifs using their PFMs by converting PFMs into k-mer vectors. The motifs could then be compared by measuring the similarity among their corresponding k-mer vectors. Conclusions/Significance We demonstrate that our method in general achieves similar performance or outperforms the existing methods for clustering motifs according to their binding preference and identifying similar motifs of transcription factors of the same family. PMID:20098703

  4. A novel alignment-free method for comparing transcription factor binding site motifs.

    Directory of Open Access Journals (Sweden)

    Minli Xu

    Full Text Available BACKGROUND: Transcription factor binding site (TFBS motifs can be accurately represented by position frequency matrices (PFM or other equivalent forms. We often need to compare TFBS motifs using their PFMs in order to search for similar motifs in a motif database, or cluster motifs according to their binding preference. The majority of current methods for motif comparison involve a similarity metric for column-to-column comparison and a method to find the optimal position alignment between the two compared motifs. In some applications, alignment-free methods might be preferred; however, few such methods with high accuracy have been described. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a novel alignment-free method for quantifying the similarity of motifs using their PFMs by converting PFMs into k-mer vectors. The motifs could then be compared by measuring the similarity among their corresponding k-mer vectors. CONCLUSIONS/SIGNIFICANCE: We demonstrate that our method in general achieves similar performance or outperforms the existing methods for clustering motifs according to their binding preference and identifying similar motifs of transcription factors of the same family.

  5. Pump currents generated by the purified Na+K+-ATPase from kidney on black lipid membranes.

    OpenAIRE

    Fendler, K; Grell, E; Haubs, M; Bamberg, E

    1985-01-01

    The transport activity of purified Na+K+-ATPase was investigated by measuring the electrical pump current induced on black lipid membranes. Discs containing purified Na+K+-ATPase from pig kidney were attached to planar lipid bilayers in a sandwich-like structure. After the addition of only microM concentrations of an inactive photolabile ATP derivative [P3-1-(2-nitro)phenylethyladenosine 5'-triphosphate, caged ATP] ATP was released after illumination with u.v.-light, which led to a transient ...

  6. ATP-ase positive cells in human oral mucosa transplanted to nude mice

    DEFF Research Database (Denmark)

    Dabelsteen, E; Kirkeby, S

    1981-01-01

    , identified as ATP-ase positive dendritic cells, have almost disappeared from the transplanted epithelium whereas at day 21 after transplantation such cells were abundant. It is suggested that the ATP-ase positive cells which reappear in the transplanted epithelium are of mouse origin.......A model to study the differentiation of human oral epithelium in vivo utilizing transplantation of human tissue to nude mice has been described. Previous studies have described the epithelial cells in this model. In this study we demonstrate that 8 d after transplantation, Langerhans cells...

  7. Crystal Structure of the Vanadate-Inhibited Ca2+-ATPase

    DEFF Research Database (Denmark)

    Clausen, Johannes D.; Bublitz, Maike; Arnou, Bertrand Jean-Paul; Olesen, Claus; Andersen, Jens Peter; Møller, Jesper Vuust; Nissen, Poul

    2016-01-01

    catalytic site as a planar VO3− in complex with water and Mg2+ in a dephosphorylation transition-state-like conformation. Validating bound VO3− by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Cl− site near the dephosphorylation site. Crystallization......Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca2+-ATPase with bound vanadate in the absence of Ca2+. Vanadate is bound at the...

  8. Control analysis of the dependence of Escherichia coli physiology on the H(+)-ATPase.

    OpenAIRE

    Jensen, P. R.; Michelsen, O; Westerhoff, H.V.

    1993-01-01

    The H(+)-ATPase plays a central role in Escherichia coli free-energy transduction and hence in E. coli physiology. We here investigate the extent to which this enzyme also controls the growth rate, growth yield, and respiratory rate of E. coli. We modulate the expression of the atp operon and determine the effect on said properties. When quantified in terms of control coefficients, we find that, in the wild-type cell growing on glucose in minimal medium, this key enzyme (H(+)-ATPase) exerts v...

  9. Effect of TGFβ on Na{sup +}/K{sup +} ATPase activity in megakaryocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, Zohreh; Schmid, Evi; Shumilina, Ekaterina [Department of Physiology, University of Tübingen (Germany); Laufer, Stefan [Pharmaceutical Chemistry, University of Tübingen (Germany); Borst, Oliver; Gawaz, Meinrad [Cardiology and Cardiovascular Medicine, University of Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen (Germany)

    2014-09-26

    Highlights: • TGFß1 markedly up-regulates Na{sup +}/K{sup +} ATPase in megakaryocytes. • The effect is abrogated by p38-MAP kinase inhibitor skepinone. • The effect is abrogated by SGK inhibitor EMD638683. • The effect is abrogated by NF-κB inhibitor wogonin. - Abstract: The Na{sup +}/K{sup +} ATPase generates the Na{sup +} and K{sup +} concentration gradients across the plasma membrane and is thus essential for cellular electrolyte homeostasis, cell membrane potential and cell volume maintenance. A powerful regulator of Na{sup +}/K{sup +} ATPase is the serum- and glucocorticoid-inducible kinase 1 (SGK1). The most powerful known regulator of SGK1 expression is TGFß1, which is pivotal in the regulation of megakaryocyte maturation and platelet formation. Signaling involved in the upregulation of SGK1 by TGFß1 includes p38 mitogen activated protein (MAP) kinase. SGK1 in turn phosphorylates the IκB kinase (IKKα/β), which phosphorylates the inhibitor protein IκBα thus triggering nuclear translocation of nuclear factor kappa B (NF-κB). The present study explored whether TGFβ influences Na{sup +}/K{sup +} ATPase activity in megakaryocytes, and if so, whether the effect of TGß1 requires p38 MAP kinase, SGK1 and/or NF-κB. To this end, murine megakaryocytes were treated with TGFß1 and Na{sup +}/K{sup +} ATPase activity determined from K{sup +} induced current utilizing whole cell patch clamp. The pump current (I{sub pump}) was determined in the absence and presence of Na{sup +}/K{sup +} ATPase inhibitor ouabain (100 μM). TGFß1 (60 ng/ml) was added in the absence or presence of p38 MAP kinase inhibitor skepinone-L (1 μM), SGK1 inhibitor EMD638683 (50 μM) or NF-κB inhibitor wogonin (50 nM). As a result, the I{sub pump} was significantly increased by pretreatment of the megakaryocytes with TGFß1, an effect reaching statistical significance within 16 and 24 h and virtually abrogated in the presence of skepinone-L, EMD638683 or wogonin. In conclusion

  10. Structure function relationship in P-type ATPases : a biophysical approach

    OpenAIRE

    Apell, Hans-Jürgen

    2003-01-01

    P-type ATPases are a large family of membrane proteins that perform active ion transport across biological membranes. In these proteins the energy-providing ATP hydrolysis is coupled to ion-transport that builds up or maintains the electrochemical potential gradients of one or two ion species across the membrane. P-type ATPases are found in virtually all eukaryotic cells and also in bacteria, and they are transporters of a broad variety of ions. So far, a crystal structure with atomic resolut...

  11. ATPase activity measurement of DNA replicative helicase from Bacillus stearothermophilus by malachite green method.

    Science.gov (United States)

    Yang, Mu; Wang, Ganggang

    2016-09-15

    The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors. PMID:27372608

  12. Expression and characterization of P-type ATPases for structural studies

    OpenAIRE

    Chintalapati, Sivaram Chandra

    2007-01-01

    Two types of proteins transport ions across the membrane – ion channels and ion pumps. Ion pumps transport ions against their electrochemical gradient by co-transporting another ion or a substrate molecule through a concentration gradient or by coupling this process to an energy source like ATP. Those that couple ATP hydrolysis to ion transport are called ion motive ATPases and can be classified as ‘V’, ‘F’ and ‘P’ types. In this thesis, two sub-classes of P-type ATPases, PIIIA and PIB were s...

  13. Regulation of plant plasma membrane H+- and Ca2+-ATPases by terminal domains

    DEFF Research Database (Denmark)

    Bækgaard, Lone; Fuglsang, Anja Thoe; Palmgren, Michael Gjedde

    2005-01-01

    In the last few years, major progress has been made to elucidate the structure, function, and regulation of P-type plasma membrane H(+)-and Ca(2+)-ATPases. Even though a number of regulatory proteins have been identified, many pieces are still lacking in order to understand the complete regulatory...... mechanisms of these pumps. In plant plasma membrane H(+)- and Ca(2+)-ATPases, autoinhibitory domains are situated in the C- and N-terminal domains, respectively. A model for a common mechanism of autoinhibition is discussed....

  14. Autoradiographic localization of Na+-K+-ATPase with 3H-ouabain

    International Nuclear Information System (INIS)

    Using 3H-ouabain as an inhibitor, the site of the Na+-K+-ATPase system in cells was determined autoradiographically. Experiments were performed woth guinea pig's kidney tissue. The application of light microscopical autoradiography to freeze-dried tissue showed that especially the distal tubule, and to a smaller extent the proximal tubule and the collecting tubule have Na+-K+-ATPase. Electron microscopical autoradiography showed that this activity is restricted to the baso-lateral plasmamembranes. The quantity of specific bound ouabain turns out to be correlated to the quantity of baso-lateral plasmamembrane's surface

  15. Cdc50p Plays a Vital Role in the ATPase Reaction Cycle of the Putative Aminophospholipid Transporter Drs2p*♦

    OpenAIRE

    Lenoir, Guillaume; Williamson, Patrick; Puts, Catheleyne F.; Holthuis, Joost C.M.

    2009-01-01

    Members of the P4 subfamily of P-type ATPases are believed to catalyze transport of phospholipids across cellular bilayers. However, most P-type ATPases pump small cations or metal ions, and atomic structures revealed a transport mechanism that is conserved throughout the family. Hence, a challenging problem is to understand how this mechanism is adapted in P4-ATPases to flip phospholipids. P4-ATPases form heteromeric complexes with Cdc50 proteins. The primary role of these additional polypep...

  16. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane

    DEFF Research Database (Denmark)

    Geisler, C; Dietrich, J; Nielsen, B L;

    1998-01-01

    amino acid, is constitutively active. In this study, we have investigated how the spacing relative to the plasma membrane affects the function of both types of leucine-based motifs. For phosphorylation-dependent leucine-based motifs, a minimal spacing of 7 residues between the plasma membrane and the...... phospho-acceptor was required for phosphorylation and thereby activation of the motifs. For constitutively active leucine-based motifs, a minimal spacing of 6 residues between the plasma membrane and the acidic residue was required for optimal activity of the motifs. In addition, we found that the acidic......Many integral membrane proteins contain leucine-based motifs within their cytoplasmic domains that mediate internalization and intracellular sorting. Two types of leucine-based motifs have been identified. One type is dependent on phosphorylation, whereas the other type, which includes an acidic...

  17. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome.

    Science.gov (United States)

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners. PMID:19653995

  18. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    International Nuclear Information System (INIS)

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.

  19. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Friedrich [Department of Structural Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried (Germany); Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco (United States); Lasker, Keren [Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco (United States); Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv (Israel); Beck, Florian; Nickell, Stephan [Department of Structural Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried (Germany); Sali, Andrej [Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco (United States); Baumeister, Wolfgang, E-mail: baumeist@biochem.mpg.de [Department of Structural Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried (Germany)

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.

  20. The effect of inhibitors of plasma membrane H+ - ATPase and oxidoreductases on NH4+ uptake by Pisum arvense roots

    Directory of Open Access Journals (Sweden)

    Genowefa Kubik-Dobosz

    2014-02-01

    Full Text Available The effect of inhibitors of plasma membrane oxidoreductases (quinacrine and dicumarol and H+-ATPase (dicyclohexylcarbodiimide and orthovanadate on ammonium uptake by Pisum arvense seedlings and the activities of H+-ATPase and NADH-ferricyanide oxidoreductase was investigated. The uptake solution contained 50 µM NH4+. In I h experiments, quinacrine and dicumarol depressed strongly and irreversibly the rate of NH4+ uptake and markedly inhibited the activity of NADH-ferri-cyanide oxidoreductase in the plasma membrane vesicles prepared from root cells. Simultaneously, sodium orthovanadate inhibited the activity of plasma membrane H+-ATPase increased the rate of NH4+ uptake. Dicyclohexylcarbodiimide inhibited H+-ATPase activity and increased efflux of NH4+ from roots to ambient solution. The results indicate on the lack of direct connection between uptake rate of 50 µM NH4+ and H+-ATPase activity, and suggest that membrane redox systems play a predominant role in this process.

  1. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang; Nixon, B.Tracy; (IIT); (Penn)

    2009-10-06

    Except for apyrases, ATPases generally target only the {gamma}-phosphate of a nucleotide. Some non-apyrase ATPases from thermophilic microorganisms are reported to hydrolyze ADP as well as ATP, which has been described as a novel property of the ATPases from extreme thermophiles. Here, we describe an apparent ADP hydrolysis by highly purified preparations of the AAA+ ATPase NtrC1 from an extremely thermophilic bacterium, Aquifex aeolicus. This activity is actually a combination of the activities of the ATPase and contaminating adenylate kinase (AK) from Escherichia coli, which is present at 1/10 000 of the level of the ATPase. AK catalyzes conversion of two molecules of ADP into AMP and ATP, the latter being a substrate for the ATPase. We raise concern that the observed thermotolerance of E. coli AK and its copurification with thermostable proteins by commonly used methods may confound studies of enzymes that specifically catalyze hydrolysis of nucleoside diphosphates or triphosphates. For example, contamination with E. coli AK may be responsible for reported ADPase activities of the ATPase chaperonins from Pyrococcus furiosus, Pyrococcus horikoshii, Methanococcus jannaschii and Thermoplasma acidophilum; the ATP/ADP-dependent DNA ligases from Aeropyrum pernix K1 and Staphylothermus marinus; or the reported ATP-dependent activities of ADP-dependent phosphofructokinase of P. furiosus. Purification methods developed to separate NtrC1 ATPase from AK also revealed two distinct forms of the ATPase. One is tightly bound to ADP or GDP and able to bind to Q but not S ion exchange matrixes. The other is nucleotide-free and binds to both Q and S ion exchange matrixes.

  2. Na,K-ATPase biostimulation by low-energy laser irradiation: comparative effects in membrane, solubilized and proteoliposomes enzyme

    International Nuclear Information System (INIS)

    Full text: The mechanism of laser irradiation action on living cells is not yet understood. The role of membrane ATPases as possible targets has been analyzed. In our group we have been working with Na,K-ATPase. This enzyme is a member of the P-type family of active cation transport proteins. Thus, the aim of the present work was to investigate the effect of low-energy laser irradiation (685 nm, 35 mW) on the ATPase activity of different forms of the Na,K-ATPase. Membrane-bound and solubilized (ab)2 form of Na,K-ATPase was obtained from the rabbit kidney and DPPC:DPPE-proteoliposomes were prepared by the co-solubilization method. Irradiations were carried out at 685 nm. The ATPase activity of the membrane fraction was not altered with exposition to irradiation doses between 4 and 24 J/c m2. With irradiation doses ranging from 32 to 40 J/c m2, a 28% increase on the ATPase activity was observed while when using up to 50 J/c m2 no additional enhancement was observed. When bio stimulation was done using the purified or the reconstituted enzyme, an increase of about 36-40% on the ATPase activity was observed using only 4-8 J/c m2. With irradiation above these values (24 J/c m2) no additional increase in the activity appeared. These studies revealed that the bio stimulation of ATPase activity from different forms of the Na,K -ATPase is dose dependent in different ranges of irradiation exposure. The stimulation promoted by visible laser doses was modulated and the process was reverted after 2 h for the enzyme present in the membrane and after about 5 h for the solubilized or the reconstituted in DPPC:DPPE-liposomes

  3. Identification of imine reductase-specific sequence motifs.

    Science.gov (United States)

    Fademrecht, Silvia; Scheller, Philipp N; Nestl, Bettina M; Hauer, Bernhard; Pleiss, Jürgen

    2016-05-01

    Chiral amines are valuable building blocks for the production of a variety of pharmaceuticals, agrochemicals and other specialty chemicals. Only recently, imine reductases (IREDs) were discovered which catalyze the stereoselective reduction of imines to chiral amines. Although several IREDs were biochemically characterized in the last few years, knowledge of the reaction mechanism and the molecular basis of substrate specificity and stereoselectivity is limited. To gain further insights into the sequence-function relationships, the Imine Reductase Engineering Database (www.IRED.BioCatNet.de) was established and a systematic analysis of 530 putative IREDs was performed. A standard numbering scheme based on R-IRED-Sk was introduced to facilitate the identification and communication of structurally equivalent positions in different proteins. A conservation analysis revealed a highly conserved cofactor binding region and a predominantly hydrophobic substrate binding cleft. Two IRED-specific motifs were identified, the cofactor binding motif GLGxMGx5 [ATS]x4 Gx4 [VIL]WNR[TS]x2 [KR] and the active site motif Gx[DE]x[GDA]x[APS]x3 {K}x[ASL]x[LMVIAG]. Our results indicate a preference toward NADPH for all IREDs and explain why, despite their sequence similarity to β-hydroxyacid dehydrogenases (β-HADs), no conversion of β-hydroxyacids has been observed. Superfamily-specific conservations were investigated to explore the molecular basis of their stereopreference. Based on our analysis and previous experimental results on IRED mutants, an exclusive role of standard position 187 for stereoselectivity is excluded. Alternatively, two standard positions 139 and 194 were identified which are superfamily-specifically conserved and differ in R- and S-selective enzymes. Proteins 2016; 84:600-610. © 2016 Wiley Periodicals, Inc. PMID:26857686

  4. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    Energy Technology Data Exchange (ETDEWEB)

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by

  5. Tricksters Trot to America: Areal Distribution of Folklore Motifs

    Directory of Open Access Journals (Sweden)

    Yuri Berezkin

    2010-12-01

    Full Text Available The folklore Trickster is usually considered a universally known combination of features intrinsic to human nature. However, there are strong anomalies in the areal distribution of such a figure. Sub-Saharan Africa, North America (except for the Arctic, Northeast Asia and South American Chaco not only are the preferred zones of tricksters’ activity but also share some peculiar trickster motifs unknown in most of the other regions. The range of animals which play the role of tricksters is also restricted and not always easily explained, E.g. the Hare and Spider, known in both Africa and North America, are neither “mediators” between life and death (suggested by C. Lévi-Strauss for Coyote nor “really tricky” (“materialistic” hypothesis of M. Harris. The set of trickster motifs and the zoo- or anthropomorphic impersonations of the Trickster are independentvariables. The same episodes are easily linked to different tricksters while every trickster usually attracts episodes characteristic of a particular region. Though the original emergence of Trickster as a mental construct can indeed be rooted in human psychology (and where else?, the distribution of tricksters in folklore is discretionary and depends of many uncertain, i.e. chance, factors. The wide spread or lack of tricksters in certain cultural areas hardly reflect any fundamental differences in the psychology of inhabitants of these regions. The study of trickster motifs, just as of any other folklore motifs, helps us reconstruct possible historic links between populations. The African – North American links remain enigmatic (independent emergence is possible but slight historicallinks cannot be completely excluded but the parallels between (Western and Northeast Siberian – North American tricksters are almost certainly due to former cultural ties across Northern Asia. Another interesting case is the proliferation of tricksters with different zoomorphic and other identities

  6. Do short, frequent DNA sequence motifs mould the epigenome?

    Science.gov (United States)

    Quante, Timo; Bird, Adrian

    2016-04-01

    'Epigenome' refers to the panoply of chemical modifications borne by DNA and its associated proteins that locally affect genome function. Epigenomic patterns are thought to be determined by external constraints resulting from development, disease and the environment, but DNA sequence is also a potential influence. We propose that domains of relatively uniform DNA base composition may modulate the epigenome through cell type-specific proteins that recognize short, frequent sequence motifs. Differential recruitment of epigenomic modifiers may adjust gene expression in multigene blocks as an alternative to tuning the activity of each gene separately, thus simplifying gene expression programming. PMID:26837845

  7. Motif Discovery in Tissue-Specific Regulatory Sequences Using Directed Information

    Directory of Open Access Journals (Sweden)

    James Douglas Engel

    2007-12-01

    Full Text Available Motif discovery for the identification of functional regulatory elements underlying gene expression is a challenging problem. Sequence inspection often leads to discovery of novel motifs (including transcription factor sites with previously uncharacterized function in gene expression. Coupled with the complexity underlying tissue-specific gene expression, there are several motifs that are putatively responsible for expression in a certain cell type. This has important implications in understanding fundamental biological processes such as development and disease progression. In this work, we present an approach to the identification of motifs (not necessarily transcription factor sites and examine its application to some questions in current bioinformatics research. These motifs are seen to discriminate tissue-specific gene promoter or regulatory regions from those that are not tissue-specific. There are two main contributions of this work. Firstly, we propose the use of directed information for such classification constrained motif discovery, and then use the selected features with a support vector machine (SVM classifier to find the tissue specificity of any sequence of interest. Such analysis yields several novel interesting motifs that merit further experimental characterization. Furthermore, this approach leads to a principled framework for the prospective examination of any chosen motif to be discriminatory motif for a group of coexpressed/coregulated genes, thereby integrating sequence and expression perspectives. We hypothesize that the discovery of these motifs would enable the large-scale investigation for the tissue-specific regulatory role of any conserved sequence element identified from genome-wide studies.

  8. Motif Discovery in Tissue-Specific Regulatory Sequences Using Directed Information

    Directory of Open Access Journals (Sweden)

    States David

    2007-01-01

    Full Text Available Motif discovery for the identification of functional regulatory elements underlying gene expression is a challenging problem. Sequence inspection often leads to discovery of novel motifs (including transcription factor sites with previously uncharacterized function in gene expression. Coupled with the complexity underlying tissue-specific gene expression, there are several motifs that are putatively responsible for expression in a certain cell type. This has important implications in understanding fundamental biological processes such as development and disease progression. In this work, we present an approach to the identification of motifs (not necessarily transcription factor sites and examine its application to some questions in current bioinformatics research. These motifs are seen to discriminate tissue-specific gene promoter or regulatory regions from those that are not tissue-specific. There are two main contributions of this work. Firstly, we propose the use of directed information for such classification constrained motif discovery, and then use the selected features with a support vector machine (SVM classifier to find the tissue specificity of any sequence of interest. Such analysis yields several novel interesting motifs that merit further experimental characterization. Furthermore, this approach leads to a principled framework for the prospective examination of any chosen motif to be discriminatory motif for a group of coexpressed/coregulated genes, thereby integrating sequence and expression perspectives. We hypothesize that the discovery of these motifs would enable the large-scale investigation for the tissue-specific regulatory role of any conserved sequence element identified from genome-wide studies.

  9. Automated protein motif generation in the structure-based protein function prediction tool ProMOL.

    Science.gov (United States)

    Osipovitch, Mikhail; Lambrecht, Mitchell; Baker, Cameron; Madha, Shariq; Mills, Jeffrey L; Craig, Paul A; Bernstein, Herbert J

    2015-12-01

    ProMOL, a plugin for the PyMOL molecular graphics system, is a structure-based protein function prediction tool. ProMOL includes a set of routines for building motif templates that are used for screening query structures for enzyme active sites. Previously, each motif template was generated manually and required supervision in the optimization of parameters for sensitivity and selectivity. We developed an algorithm and workflow for the automation of motif building and testing routines in ProMOL. The algorithm uses a set of empirically derived parameters for optimization and requires little user intervention. The automated motif generation algorithm was first tested in a performance comparison with a set of manually generated motifs based on identical active sites from the same 112 PDB entries. The two sets of motifs were equally effective in identifying alignments with homologs and in rejecting alignments with unrelated structures. A second set of 296 active site motifs were generated automatically, based on Catalytic Site Atlas entries with literature citations, as an expansion of the library of existing manually generated motif templates. The new motif templates exhibited comparable performance to the existing ones in terms of hit rates against native structures, homologs with the same EC and Pfam designations, and randomly selected unrelated structures with a different EC designation at the first EC digit, as well as in terms of RMSD values obtained from local structural alignments of motifs and query structures. This research is supported by NIH grant GM078077. PMID:26573864

  10. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-25

    Leucine-aspartic acid (LD) motifs are short helical protein-protein interaction motifs involved in cell motility, survival and communication. LD motif interactions are also implicated in cancer metastasis and are targeted by several viruses. LD motifs are notoriously difficult to detect because sequence pattern searches lead to an excessively high number of false positives. Hence, despite 20 years of research, only six LD motif–containing proteins are known in humans, three of which are close homologues of the paxillin family. To enable the proteome-wide discovery of LD motifs, we developed LD Motif Finder (LDMF), a web tool based on machine learning that combines sequence information with structural predictions to detect LD motifs with high accuracy. LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  11. Structure of mitochondrial F1-ATPase studied by electron microscopy and image processing

    NARCIS (Netherlands)

    Boekema, Egbert J.; Berden, Jan A.; Heel, Marin G. van

    1986-01-01

    The structure of soluble F1-ATPase (EC 3.6.1.3) has been investigated by computer analysis of individual molecular images extracted from electron micrographs of negatively stained particles. A total of 1241 images was interactively selected from several digitized micrographs and these images were su

  12. Effects of Aluminum on ATPase Activity and Lipid Composition of Plasma Membranes from Wheat Roots

    Institute of Scientific and Technical Information of China (English)

    HE Long-fei; LIU You-liang; SHEN Zhen-guo; WANG Ai-qin

    2002-01-01

    The effects of aluminum on ATPase activity and lipid composition of the plasma membranes isolated from root tips of Al-tolerant (Altas 66) or Al-sensitive (Scout 66) cultivar of Triticum aestivum L.was assayed. The results showed that both cultivars had similar changes in H+ -ATPase and Ca2+ -ATPase activities after aluminum treatment. Exposure of both cultivars to 20 and 100 (mol/L aluminum for 5 d significantly decreased the activities of Ca2+ -ATPase of plasma membranes. The activities of H+-ATPasc in plasma membrane increased under 20 μmol/L aluminum and decreased at 100 μmol/L aluminum. With aluminum treatment, the PL content of plasma membrane decreased, but GL content increased. The ratio of PL to GL decreased more distinctly in Scout 66 than that in Altas 66. Treated with 20 and 100 μmol/L aluminum, linolenic acid content and the index of unsaturated fatty acids decreaced greatly in Scout 66, but the index of unsaturated fatty acids in Altas 66 increased slightly.

  13. Experimental determination of control by the H+-ATPase in Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole; Westerhoff, H. V.

    1995-01-01

    Strains carrying deletions in the atp genes, encoding the H+-ATPase, were unable to grow on nonfermentable substrates such as succinate, whereas with glucose as the substrate the growth rate of an atp deletion mutant was surprisingly high (some 75-80% of wild-type growth rate). The rate of glucos...

  14. Neurological disease mutations compromise a C-terminal ion pathway in the Na(+)/K(+)-ATPase

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Khandelia, Himanshu; Morth, J Preben;

    2010-01-01

    severe neurological diseases. This novel model for ion transport by the Na(+)/K(+)-ATPase is established by electrophysiological studies of C-terminal mutations in familial hemiplegic migraine 2 (FHM2) and is further substantiated by molecular dynamics simulations. A similar ion regulation is likely to...

  15. Raman Spectroscopy of Conformational Changes in Membrane-Bound Sodium Potassium ATPase

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Abdali, Salim; Lundbæk, Jens August; Cornelius, Flemming

    2007-01-01

    In this investigation we assess the potential of Raman spectroscopy as a tool for probing conformational changes in membrane-spanning proteins — in this case, the sodium potassium adenosine triphosphatase (Na+,K+-ATPase). Spectral analysis of protein-lipid complexes is complicated by the presence...

  16. Na(+), K(+)-ATPase dysfunction causes cerebrovascular endothelial cell degeneration in rat prefrontal cortex slice cultures.

    Science.gov (United States)

    Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Katsuki, Hiroshi

    2016-08-01

    Cerebrovascular endothelial cell dysfunction resulting in imbalance of cerebral blood flow contributes to the onset of psychiatric disorders such as depression, schizophrenia and bipolar disorder. Although decrease in Na(+), K(+)-ATPase activity has been reported in the patients with schizophrenia and bipolar disorder, the contribution of Na(+), K(+)-ATPase to endothelial cell dysfunction remains poorly understood. Here, by using rat neonatal prefrontal cortex slice cultures, we demonstrated that pharmacological inhibition of Na(+), K(+)-ATPase by ouabain induced endothelial cell injury. Treatment with ouabain significantly decreased immunoreactive area of rat endothelial cell antigen-1 (RECA-1), a marker of endothelial cells, in a time-dependent manner. Ouabain also decreased Bcl-2/Bax ratio and phosphorylation level of glycogen synthase kinase 3β (GSK3β) (Ser9), which were prevented by lithium carbonate. On the other hand, ouabain-induced endothelial cell injury was exacerbated by concomitant treatment with LY294002, an inhibitor of phosphoinositide 3- (PI3-) kinase. We also found that xestospongin C, an inhibitor of inositol triphosphate (IP3) receptor, but not SEA0400, an inhibitor of Na(+), Ca(2+) exchanger (NCX), protected endothelial cells from cytotoxicity of ouabain. These results suggest that cerebrovascular endothelial cell degeneration induced by Na(+), K(+)-ATPase inhibition resulting in Ca(2+) release from endoplasmic reticulum (ER) and activation of GSK3β signaling underlies pathogenesis of these psychiatric disorders. PMID:27208492

  17. Renal Na,K-ATPase during experimental NO-deficient hypertension in young and adults rats

    Czech Academy of Sciences Publication Activity Database

    Javorková, V.; Vlkovičová, J.; Kuneš, Jaroslav; Pecháňová, Olga; Zicha, Josef; Vrbjar, N.

    Bratislava : Advent- Orion , 2007 - (Pecháňová, O.), s. 246-251 ISBN 978-80-8071-094-1 R&D Projects: GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : maturation of rats * Na,K-ATPase * NO-deficient hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  18. The plant P4-ATPase ALA2 is involved in flipping of phosphatidylserine analogues

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    The plant P4-ATPase ALA2 is involved in flipping of phosphatidylserine analogues Rosa Laura López-Marqués1, Lisbeth Rosager Poulsen1, Katharina Meffert2, Thomas Pomorski2, Michael Gjedde Palmgren1 1Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation...

  19. A pivotal role of vacuolar H(+)-ATPase in regulation of lipid production in Phaeodactylum tricornutum.

    Science.gov (United States)

    Zhang, Huiying; Zeng, Rensen; Chen, Daoyi; Liu, Jian

    2016-01-01

    Microalgal lipids have been considered as a promising source for biodiesel production. Alkaline pH can induce neutral lipid accumulation in microalgae cells. However, whether and how proton pumps, especially vacuolar H(+)-ATPase (V-ATPase), function in these processes is not well known. In this study, we treated Phaeodactylum tricornutum with V-ATPase specific inhibitor bafilomycin A1 (BFA1) to determine its role in lipid production. Firstly, V-ATPase activity was increased in the latter phase of microalgae growth. BFA1 treatment decreased the cell density and lipid contents. Further analysis showed that BFA1 treatment reduced the number and size of oil bodies. GC-MS analysis showed that lipid components were not affected by BFA1 treatment. Intracellular pH was decreased and nitrogen depletion was delayed after BFA1 treatment. RNA-Seq analysis showed that expression of genes involved in calcium signaling, sulfur metabolism, cell cycle, glycolysis, pentose phosphate pathway, porphyrin, chlorophyll metabolism and lipid catabolic metabolism were upregulated, while expression of genes involved in ion transmembrane transport, ubiquitin mediated proteolysis, SNARE interactions in vesicular transport, fatty acid biosynthesis were downregulated under BFA1 treatment. Our findings provided insights into the molecular mechanisms underlying lipid accumulation and the key genes involved in lipid metabolism in Phaeodactylum tricornutum in response to BFA1. PMID:27499168

  20. A pivotal role of vacuolar H+-ATPase in regulation of lipid production in Phaeodactylum tricornutum

    Science.gov (United States)

    Zhang, Huiying; Zeng, Rensen; Chen, Daoyi; Liu, Jian

    2016-01-01

    Microalgal lipids have been considered as a promising source for biodiesel production. Alkaline pH can induce neutral lipid accumulation in microalgae cells. However, whether and how proton pumps, especially vacuolar H+-ATPase (V-ATPase), function in these processes is not well known. In this study, we treated Phaeodactylum tricornutum with V-ATPase specific inhibitor bafilomycin A1 (BFA1) to determine its role in lipid production. Firstly, V-ATPase activity was increased in the latter phase of microalgae growth. BFA1 treatment decreased the cell density and lipid contents. Further analysis showed that BFA1 treatment reduced the number and size of oil bodies. GC-MS analysis showed that lipid components were not affected by BFA1 treatment. Intracellular pH was decreased and nitrogen depletion was delayed after BFA1 treatment. RNA-Seq analysis showed that expression of genes involved in calcium signaling, sulfur metabolism, cell cycle, glycolysis, pentose phosphate pathway, porphyrin, chlorophyll metabolism and lipid catabolic metabolism were upregulated, while expression of genes involved in ion transmembrane transport, ubiquitin mediated proteolysis, SNARE interactions in vesicular transport, fatty acid biosynthesis were downregulated under BFA1 treatment. Our findings provided insights into the molecular mechanisms underlying lipid accumulation and the key genes involved in lipid metabolism in Phaeodactylum tricornutum in response to BFA1. PMID:27499168

  1. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P +K+-ATPase, Mg2+-ATPase and Ca2+-ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  2. Purinergic effects on Na,K-ATPase activity differ in rat and human skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten; Nordsborg, Nikolai Baastrup; Bangsbo, Jens

    2014-01-01

    P2Y receptor activation may link the effect of purines to increased maximal in vitro activity of the Na,K-ATPase in rat muscle. The hypothesis that a similar mechanism is present in human skeletal muscle was investigated with membranes from rat and human skeletal muscle....

  3. Critical findings on the activation cascade of yeast plasma membrane H+-ATPase

    Czech Academy of Sciences Publication Activity Database

    Kotyk, Arnošt; Lapathitis, Georgios; Horák, Jaroslav

    2003-01-01

    Roč. 226, č. 1 (2003), s. 175-180. ISSN 0378-1097 R&D Projects: GA ČR GA204/02/1240 Institutional research plan: CEZ:AV0Z5045916; CEZ:AV0Z5011922 Keywords : H+-ATPase * yeast plasma membrane * activation Subject RIV: CE - Biochemistry Impact factor: 1.932, year: 2003

  4. Plant P4-ATPases: lipid translocators with a role in membrane traficking

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    The secretory pathway is involved in several vital cellular processes, including host-pathogen interactions, nutrient and gravity sensing, and protein sorting [1-3]. In the past years, a subfamily of P-type ATPases has been suggested to be involved in vesicle formation. P-type ATPases comprise a ...... lipid translocation, our results suggest that the different transport features of these proteins might be related to their physiological function at the membrane where they are located.......The secretory pathway is involved in several vital cellular processes, including host-pathogen interactions, nutrient and gravity sensing, and protein sorting [1-3]. In the past years, a subfamily of P-type ATPases has been suggested to be involved in vesicle formation. P-type ATPases comprise a...... large family of membrane proteins involved in pumping different physiologically-relevant substrates across biological membranes [4]. The members of the P4 subfamily (also known as flippases) catalyze the energy-driven translocation of lipids necessary for establishing transbilayer lipid asymmetry [5], a...

  5. ATPase 8/6 GENE BASED GENETIC DIVERSITY ASSESSMENT OF SNAKEHEAD MURREL, Channa striata (Perciformes, Channidae).

    Science.gov (United States)

    Baisvar, V S; Kumar, R; Singh, M; Singh, A K; Chauhan, U K; Nagpure, N S; Kushwaha, B

    2015-10-01

    The mitochondrial DNA (mtDNA) ATPase 8/6 gene has been used in phylogenetic as well as in phylogeographic studies along with other mtDNA markers. In this study, ATPase gene sequences were used to assess the genetic structuring and phylogeographic patterns in Channa striata. Out of 884 nucleotide positions generated in ATPase 8/6 genes, 76 were polymorphic. The study suggested 23 unique haplotypes from 67 individuals of nine populations collected from different riverine systems of India. The ATPase 8/6 sequence revealed highest haplotype as well as nucleotide diversities in Imphal River population and lowest diversities in Tapti River population. The pattern of genetic diversity and haplotype network indicated distinct mitochondrial lineages for Chaliyar population, whereas mismatch distribution strongly suggested a population expansion in mid pleistocene epoch (0.4 Mya) with distinct genetic structuring in C. striata. The baseline information on genetic variation and the population sub-structuring would facilitate conservation and management of this important snakehead murrel. PMID:27169232

  6. Identification of Na+/K+-ATPase inhibitors in bovine plasma as fatty acids and hydrocarbons

    DEFF Research Database (Denmark)

    Tal, D M; Yanuck, M D; Van Hall, Gerrit;

    1989-01-01

    A preparative purification of endogenous inhibitors of the Na+/K+-ATPase has been carried out from bovine blood. Dried plasma was deproteinized, hexane-extracted and desalted, followed by further purification through a series of reverse-phase HPLC fractionations. Fractions active in inhibiting Na...

  7. FXYD1 negatively regulates Na(+)/K(+)-ATPase activity in lung alveolar epithelial cells.

    Science.gov (United States)

    Wujak, Łukasz A; Blume, Anna; Baloğlu, Emel; Wygrecka, Małgorzata; Wygowski, Jegor; Herold, Susanne; Mayer, Konstantin; Vadász, István; Besuch, Petra; Mairbäurl, Heimo; Seeger, Werner; Morty, Rory E

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is clinical syndrome characterized by decreased lung fluid reabsorption, causing alveolar edema. Defective alveolar ion transport undertaken in part by the Na(+)/K(+)-ATPase underlies this compromised fluid balance, although the molecular mechanisms at play are not understood. We describe here increased expression of FXYD1, FXYD3 and FXYD5, three regulatory subunits of the Na(+)/K(+)-ATPase, in the lungs of ARDS patients. Transforming growth factor (TGF)-β, a pathogenic mediator of ARDS, drove increased FXYD1 expression in A549 human lung alveolar epithelial cells, suggesting that pathogenic TGF-β signaling altered Na(+)/K(+)-ATPase activity in affected lungs. Lentivirus-mediated delivery of FXYD1 and FXYD3 allowed for overexpression of both regulatory subunits in polarized H441 cell monolayers on an air/liquid interface. FXYD1 but not FXYD3 overexpression inhibited amphotericin B-sensitive equivalent short-circuit current in Ussing chamber studies. Thus, we speculate that FXYD1 overexpression in ARDS patient lungs may limit Na(+)/K(+)-ATPase activity, and contribute to edema persistence. PMID:26410457

  8. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    Science.gov (United States)

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators. PMID:27226582

  9. NaCl effects on root plasma membrane ATPase of salt tolerant wheat

    NARCIS (Netherlands)

    Mansour, MMF; van Hasselt, PR; Kuiper, PJC

    2000-01-01

    Wheat seedlings of a salt tolerant cultivar were grown hydroponically in presence and absence of 100 mM NaCl. Roots were harvested, and the plasma membrane (PM) fraction was purified. PM ATPase required a divalent cations for activity (Mg > Mn > Ca > Co > Zn > Ni > Cu), and it was further stimulated

  10. Golgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagy.

    Science.gov (United States)

    Gao, Ying; Liu, Yajun; Hong, Liang; Yang, Zuolong; Cai, Xinran; Chen, Xiaoyun; Fu, Yuanyuan; Lin, Yujie; Wen, Weijie; Li, Sitong; Liu, Xingguo; Huang, Heqing; Vogt, Andreas; Liu, Peiqing; Yin, Xiao-Ming; Li, Min

    2016-01-01

    Autophagy is an evolutionarily conserved catabolic process by which cells degrade intracellular proteins and organelles in the lysosomes. Canonical autophagy requires all autophagy proteins (ATGs), whereas noncanonical autophagy is activated by diverse agents in which some of the essential autophagy proteins are dispensable. How noncanonical autophagy is induced and/or inhibited is still largely unclear. In this study, we demonstrated that AMDE-1, a recently identified chemical that can induce canonical autophagy, was able to elicit noncanonical autophagy that is independent of the ULK1 (unc-51-like kinase 1) complex and the Beclin1 complex. AMDE-1-induced noncanonical autophagy could be specifically suppressed by various V-ATPase (vacuolar-type H(+)-ATPase) inhibitors, but not by disturbance of the lysosome function or the intracellular ion redistribution. Similar findings were applicable to a diverse group of stimuli that can induce noncanonical autophagy in a FIP200-independent manner. AMDE-1-induced LC3 lipidation was colocalized with the Golgi complex, and was inhibited by the disturbance of Golgi complex. The integrity of the Golgi complex was also required for multiple other agents to stimulate noncanonical LC3 lipidation. These results suggest that the Golgi complex may serve as a membrane platform for noncanonical autophagy where V-ATPase is a key player. V-ATPase inhibitors could be useful tools for studying noncanonical autophagy. PMID:27512951

  11. Gill Na+, K+-ATPase activity in largemouth bass (Micropterus salmoides) inhabiting reservoirs contaminated with mercury

    International Nuclear Information System (INIS)

    Active transport of Na+ and K+ for osmoregulation in fish involves gill Na+, K+-ATPase, a membrane-bound enzyme powered by hydrolysis of ATP. Na+, K+-ATPase is inhibited by many dissolved metals including Al, Cd, Cu and Hg, resulting in ionoregulatory dysfunction. However, dissolved Hg concentrations are quite low in most aquatic systems, and dietary sources are the most important contributors to Hg burdens in fish. One recent study demonstrated relationships between muscle Hg concentration and gill Na+, K+-ATPase in a marine fish, suggesting that Hg accumulated via diet can affect osmoregulation. The authors tested for such a relationship in several age-classes of a freshwater fish (Micropterus salmoides) collected from three reservoirs. Fish from Par Pond and L Lake, on the USDOE Savannah River Site in South Carolina had relatively high Hg content: for Par Pond, muscle and liver ranged from 1.58--12.01 and 1.46--23.22 microg Hg/g dry mass, respectively, and for L Lake muscle and liver ranged from 3.11--5.16 and 1.28--12.59 microg Hg/g dry mass, respectively. Bass from an offsite location, Thurmond Lake, had significantly (P +, K+-ATPase activity was not evident

  12. A SNX10/V-ATPase pathway regulates ciliogenesis in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Yanaun Chen; Shuo Lin; Xiaodong Shu; Duanqing Pei; Bin Wu; Liangliang Xu; Huapeng Li; Jianhong Xia; Wenguang Yin; Zhuo Li; Dawei Shi; Song Li

    2012-01-01

    Sorting nexins (SNXs) are phosphoinositide-binding proteins implicated in the sorting of various membrane proteins in vitro,but the in vivo functions of them remain largely unknown.We reported previously that SNX10 is a unique member of the SNX family genes in that it has vacuolation activity in cells.We investigate the biological function of SNX10 by loss-of-function assay in this study and demonstrate that SNX10 is required for the formation of primary cilia in cultured cells.In zebrafish,SNX10 is involved in ciliogenesis in the Kupffer's vesicle and essential for left-right patterning of visceral organs.Mechanistically,SNX10 interacts with V-ATPase complex and targets it to the centrosome where ciliogenesis is initiated.Like SNX10,V-ATPase regulates ciliogenesis in vitro and in vivo and does so synergistically with SNX10.We further discover that SNX10 and V-ATPase regulate the ciliary trafficking of Rab8a,which is a critical regulator of ciliary membrane extension.These results identify an SNX10/V-ATPaseregulated vesicular trafficking pathway that is crucial for ciliogenesis,and reveal that SNX10/V-ATPase,through the regulation of cilia formation in various organs,play an essential role during early embryonic development.

  13. Leishmania amazonensis: characterization of an ouabain-insensitive Na+-ATPase activity.

    Science.gov (United States)

    de Almeida-Amaral, Elmo Eduardo; Caruso-Neves, Celso; Pires, Vanessa Maria Pereira; Meyer-Fernandes, José Roberto

    2008-02-01

    We characterized ouabain-insensitive Na+-ATPase activity present in the plasma membrane of Leishmania amazonensis and investigated its possible role in the growth of the parasite. An increase in Na+ concentration in the presence of 1mM ouabain, increased the ATPase activity with a V(max) of 154.1+/-13.5nmol Pi x h(-1) x mg(-1) and a K0.5 of 28.9+/-7.7mM. Furosemide and sodium orthovanadate inhibited the Na+-stimulated ATPase activity with an IC(50) of 270microM and 0.10microM, respectively. Furosemide inhibited the growth of L. amazonensis after 48h incubation, with maximal effect after 96h. The IC50 for furosemide was 840. On the other hand, ouabain (1mM) did not change the growth of the parasite. Taken together, these results show that L. amazonensis expresses a P-type, ouabain-insensitive Na+-ATPase that could be involved with the growth of the parasite. PMID:17825292

  14. Transduction motif analysis of gastric cancer based on a human signaling network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Li, D.Z.; Jiang, C.S.; Wang, W. [Fuzhou General Hospital of Nanjing Command, Department of Gastroenterology, Fuzhou, China, Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, Fuzhou (China)

    2014-04-04

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  15. Transduction motif analysis of gastric cancer based on a human signaling network

    International Nuclear Information System (INIS)

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs

  16. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Hanke, S.; Hinsby, A. M.; Friis, Carsten; Brunak, Søren; Mann, M.; Blom, Nikolaj

    Advances in mass spectrometry-based proteomics have yielded a substantial mapping of the tyrosine phosphoproteome and thus provided an important step toward a systematic analysis of intracellular signaling networks in higher eukaryotes. In this study we decomposed an uncharacterized proteomics data...... and validated as a binding motif for the SH2 domain-containing inositol phosphatase SHIP2. Our decomposition of the in vivo Tyr(P) proteome furthermore suggests that two-thirds of the Tyr(P) sites mediate interaction, whereas the remaining third govern processes such as enzyme activation and nucleic...

  17. Prevalent RNA recognition motif duplication in the human genome.

    Science.gov (United States)

    Tsai, Yihsuan S; Gomez, Shawn M; Wang, Zefeng

    2014-05-01

    The sequence-specific recognition of RNA by proteins is mediated through various RNA binding domains, with the RNA recognition motif (RRM) being the most frequent and present in >50% of RNA-binding proteins (RBPs). Many RBPs contain multiple RRMs, and it is unclear how each RRM contributes to the binding specificity of the entire protein. We found that RRMs within the same RBP (i.e., sibling RRMs) tend to have significantly higher similarity than expected by chance. Sibling RRM pairs from RBPs shared by multiple species tend to have lower similarity than those found only in a single species, suggesting that multiple RRMs within the same protein might arise from domain duplication followed by divergence through random mutations. This finding is exemplified by a recent RRM domain duplication in DAZ proteins and an ancient duplication in PABP proteins. Additionally, we found that different similarities between sibling RRMs are associated with distinct functions of an RBP and that the RBPs tend to contain repetitive sequences with low complexity. Taken together, this study suggests that the number of RBPs with multiple RRMs has expanded in mammals and that the multiple sibling RRMs may recognize similar target motifs in a cooperative manner. PMID:24667216

  18. The Origin of Motif Families in Food Webs

    CERN Document Server

    Klaise, Janis

    2016-01-01

    Food webs have been found to exhibit remarkable motif profiles, patterns in the relative prevalences of all possible three-species sub-graphs, and this has been related to ecosystem properties such as stability and robustness. Analysing 46 food webs of various kinds, we find that most food webs fall into one of two distinct motif families. The separation between the families is well predicted by a global measure of hierarchical order in directed networks - trophic coherence. We find that trophic coherence is also a good predictor for the extent of omnivory, defined as the tendency of species to feed on multiple trophic levels. We compare our results to a network assembly model that admits tunable trophic coherence via a single free parameter. The model is able to generate food webs in either of the two families by varying this parameter, and correctly classifies almost all the food webs in our database. This establishes a link between global order and local preying patterns in food webs.

  19. Proline Rich Motifs as Drug Targets in Immune Mediated Disorders

    Directory of Open Access Journals (Sweden)

    Mythily Srinivasan

    2012-01-01

    Full Text Available The current version of the human immunome network consists of nearly 1400 interactions involving approximately 600 proteins. Intermolecular interactions mediated by proline-rich motifs (PRMs are observed in many facets of the immune response. The proline-rich regions are known to preferentially adopt a polyproline type II helical conformation, an extended structure that facilitates transient intermolecular interactions such as signal transduction, antigen recognition, cell-cell communication and cytoskeletal organization. The propensity of both the side chain and the backbone carbonyls of the polyproline type II helix to participate in the interface interaction makes it an excellent recognition motif. An advantage of such distinct chemical features is that the interactions can be discriminatory even in the absence of high affinities. Indeed, the immune response is mediated by well-orchestrated low-affinity short-duration intermolecular interactions. The proline-rich regions are predominantly localized in the solvent-exposed regions such as the loops, intrinsically disordered regions, or between domains that constitute the intermolecular interface. Peptide mimics of the PRM have been suggested as potential antagonists of intermolecular interactions. In this paper, we discuss novel PRM-mediated interactions in the human immunome that potentially serve as attractive targets for immunomodulation and drug development for inflammatory and autoimmune pathologies.

  20. Graph animals, subgraph sampling and motif search in large networks

    CERN Document Server

    Baskerville, Kim; Paczuski, Maya

    2007-01-01

    We generalize a sampling algorithm for lattice animals (connected clusters on a regular lattice) to a Monte Carlo algorithm for `graph animals', i.e. connected subgraphs in arbitrary networks. As with the algorithm in [N. Kashtan et al., Bioinformatics 20, 1746 (2004)], it provides a weighted sample, but the computation of the weights is much faster (linear in the size of subgraphs, instead of super-exponential). This allows subgraphs with up to ten or more nodes to be sampled with very high statistics, from arbitrarily large networks. Using this together with a heuristic algorithm for rapidly classifying isomorphic graphs, we present results for two protein interaction networks obtained using the TAP high throughput method: one of Escherichia coli with 230 nodes and 695 links, and one for yeast (Saccharomyces cerevisiae) with roughly ten times more nodes and links. We find in both cases that most connected subgraphs are strong motifs (Z-scores >10) or anti-motifs (Z-scores <-10) when the null model is the...

  1. A motif for reversible nitric oxide interactions in metalloenzymes.

    Science.gov (United States)

    Zhang, Shiyu; Melzer, Marie M; Sen, S Nermin; Çelebi-Ölçüm, Nihan; Warren, Timothy H

    2016-07-01

    Nitric oxide (NO) participates in numerous biological processes, such as signalling in the respiratory system and vasodilation in the cardiovascular system. Many metal-mediated processes involve direct reaction of NO to form a metal-nitrosyl (M-NO), as occurs at the Fe(2+) centres of soluble guanylate cyclase or cytochrome c oxidase. However, some copper electron-transfer proteins that bear a type 1 Cu site (His2Cu-Cys) reversibly bind NO by an unknown motif. Here, we use model complexes of type 1 Cu sites based on tris(pyrazolyl)borate copper thiolates [Cu(II)]-SR to unravel the factors involved in NO reactivity. Addition of NO provides the fully characterized S-nitrosothiol adduct [Cu(I)](κ(1)-N(O)SR), which reversibly loses NO on purging with an inert gas. Computational analysis outlines a low-barrier pathway for the capture and release of NO. These findings suggest a new motif for reversible binding of NO at bioinorganic metal centres that can interconvert NO and RSNO molecular signals at copper sites. PMID:27325092

  2. Decreased Erythrocyte NA+,K+-ATPase Activity and Increased Plasma TBARS in Prehypertensive Patients

    Directory of Open Access Journals (Sweden)

    Carlos Ricardo Maneck Malfatti

    2012-01-01

    Full Text Available The essential hypertension has been associated with membrane cell damage. The aim of the present study is investigate the relationship between erythrocyte Na+,K+-ATPase and lipoperoxidation in prehypertensive patients compared to normotensive status. The present study involved the prehypertensive patients (systolic: 136±7 mmHg; diastolic: 86.8±6.3 mmHg; n=8 and healthy men with normal blood pressure (systolic: 110±6.4 mmHg; diastolic: 76.1±4.2 mmHg; n=8 who were matched for age (35±4 years old. The venous blood samples of antecubital vein (5 mL were collected into a tube containing sodium heparin as anticoagulant (1000 UI, and erythrocyte ghosts were prepared for quantifying Na+,K+-ATPase activity. The extent of the thiobarbituric acid reactive substances (TBARS was determined in plasma. The statistical analysis was carried out by Student’s t-test and Pearson’s correlation coefficient. A P<0.05 was considered significant. The Na+,K+-ATPase activity was lower in prehypertensive patients compared with normotensive subjects (4.9 versus 8.0 nmol Pi/mg protein/min; P<0.05. The Na+,K+-ATPase activity correlated negatively with TBARS content (r=-0.6; P<0.05 and diastolic blood pressure (r=-0.84; P<0.05. The present study suggests that Na+,K+-ATPase activity reduction and elevation of the TBARS content may underlie the pathophysiological aspects linked to the prehypertensive status.

  3. Cdc50p plays a vital role in the ATPase reaction cycle of the putative aminophospholipid transporter Drs2p.

    Science.gov (United States)

    Lenoir, Guillaume; Williamson, Patrick; Puts, Catheleyne F; Holthuis, Joost C M

    2009-07-01

    Members of the P(4) subfamily of P-type ATPases are believed to catalyze transport of phospholipids across cellular bilayers. However, most P-type ATPases pump small cations or metal ions, and atomic structures revealed a transport mechanism that is conserved throughout the family. Hence, a challenging problem is to understand how this mechanism is adapted in P(4)-ATPases to flip phospholipids. P(4)-ATPases form heteromeric complexes with Cdc50 proteins. The primary role of these additional polypeptides is unknown. Here, we show that the affinity of yeast P(4)-ATPase Drs2p for its Cdc50-binding partner fluctuates during the transport cycle, with the strongest interaction occurring at a point where the enzyme is loaded with phospholipid ligand. We also find that specific interactions with Cdc50p are required to render the ATPase competent for phosphorylation at the catalytically important aspartate residue. Our data indicate that Cdc50 proteins are integral components of the P(4)-ATPase transport machinery. Thus, acquisition of these subunits may have been a crucial step in the evolution of flippases from a family of cation pumps. PMID:19411703

  4. Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching.

    Science.gov (United States)

    Parkesh, Raman; Childs-Disney, Jessica L; Nakamori, Masayuki; Kumar, Amit; Wang, Eric; Wang, Thomas; Hoskins, Jason; Tran, Tuan; Housman, David; Thornton, Charles A; Disney, Matthew D

    2012-03-14

    Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3'-untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5'CUG/3'GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specific chloride ion channel, sarco(endo)plasmic reticulum Ca(2+) ATPase 1, and cardiac troponin T. Based on these observations, the development of small-molecule ligands that target specifically expanded DM1 repeats could be of use as therapeutics. In the present study, chemical similarity searching was employed to improve the efficacy of pentamidine and Hoechst 33258 ligands that have been shown previously to target the DM1 triplet repeat. A series of in vitro inhibitors of the RNA-protein complex were identified with low micromolar IC(50)'s, which are >20-fold more potent than the query compounds. Importantly, a bis-benzimidazole identified from the Hoechst query improves DM1-associated pre-mRNA splicing defects in cell and mouse models of DM1 (when dosed with 1 mM and 100 mg/kg, respectively). Since Hoechst 33258 was identified as a DM1 binder through analysis of an RNA motif-ligand database, these studies suggest that lead ligands targeting RNA with improved biological activity can be identified by using a synergistic approach that combines analysis of known RNA-ligand interactions with chemical similarity searching. PMID:22300544

  5. Correlation between uncoupled ATP hydrolysis and heat production by the sarcoplasmic reticulum Ca2+-ATPase: coupling effect of fluoride.

    Science.gov (United States)

    Reis, M; Farage, M; de Souza, A C; de Meis, L

    2001-11-16

    The sarcoplasmic reticulum Ca(2+)-ATPase transports Ca(2+) using the chemical energy derived from ATP hydrolysis. Part of the chemical energy is used to translocate Ca(2+) through the membrane (work) and part is dissipated as heat. The amount of heat produced during catalysis increases after formation of the Ca(2+) gradient across the vesicle membrane. In the absence of gradient (leaky vesicles) the amount of heat produced/mol of ATP cleaved is half of that measured in the presence of the gradient. After formation of the gradient, part of the ATPase activity is not coupled to Ca(2+) transport. We now show that NaF can impair the uncoupled ATPase activity with discrete effect on the ATPase activity coupled to Ca(2+) transport. For the control vesicles not treated with NaF, after formation of the gradient only 20% of the ATP cleaved is coupled to Ca(2+) transport, and the caloric yield of the total ATPase activity (coupled plus uncoupled) is 22.8 kcal released/mol of ATP cleaved. In contrast, the vesicles treated with NaF consume only the ATP needed to maintain the gradient, and the caloric yield of ATP hydrolysis is 3.1 kcal/mol of ATP. The slow ATPase activity measured in vesicles treated with NaF has the same Ca(2+) dependence as the control vesicles. This demonstrates unambiguously that the uncoupled activity is an actual pathway of the Ca(2+)-ATPase rather than a contaminating phosphatase. We conclude that when ATP hydrolysis occurs without coupled biological work most of the chemical energy is dissipated as heat. Thus, uncoupled ATPase activity appears to be the mechanistic feature underlying the ability of the Ca(2+)-ATPase to modulated heat production. PMID:11544263

  6. Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman.

    Directory of Open Access Journals (Sweden)

    Alexander V Chibalin

    Full Text Available Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV while the activity of the α1 isoform decreased (-4.4 mV. Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM, measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63 and Ser(68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.

  7. Over-represented localized sequence motifs in ribosomal protein gene promoters of basal metazoans.

    Science.gov (United States)

    Perina, Drago; Korolija, Marina; Roller, Maša; Harcet, Matija; Jeličić, Branka; Mikoč, Andreja; Cetković, Helena

    2011-07-01

    Equimolecular presence of ribosomal proteins (RPs) in the cell is needed for ribosome assembly and is achieved by synchronized expression of ribosomal protein genes (RPGs) with promoters of similar strengths. Over-represented motifs of RPG promoter regions are identified as targets for specific transcription factors. Unlike RPs, those motifs are not conserved between mammals, drosophila, and yeast. We analyzed RPGs proximal promoter regions of three basal metazoans with sequenced genomes: sponge, cnidarian, and placozoan and found common features, such as 5'-terminal oligopyrimidine tracts and TATA-boxes. Furthermore, we identified over-represented motifs, some of which displayed the highest similarity to motifs abundant in human RPG promoters and not present in Drosophila or yeast. Our results indicate that humans over-represented motifs, as well as corresponding domains of transcription factors, were established very early in metazoan evolution. The fast evolving nature of RPGs regulatory network leads to formation of other, lineage specific, over-represented motifs. PMID:21457775

  8. Characterization of Branchial Na,K-ATPase from Three Freshwater Fish Species (Oreochromis niloticus, Cyprinus carpio, and Oncorhynchus mykiss)

    OpenAIRE

    Atli, Gülüzar; CANLI, Mustafa

    2008-01-01

    Branchial Na,K-ATPase activity was characterized in 3 freshwater fish species (Oncorhynchus mykiss, Oreochromis niloticus, and Cyprinus carpio) with different ecological needs. Na+, K+, and Cl- concentrations in the gills were also measured. The maximal Na,K-ATPase activity was observed at 100 mM Na+, 20-40 mM K+, 3-4 mM Mg2+, and 1 mM ouabain. The maximal velocity (Vmax) of Na,K-ATPase isolated from O. mykiss (1.07 µmol Pi/mg prot/h) was lower than that isolated from O. niloticus (7.25 µmol ...

  9. Effect of ionizing radiation on regulation of Na,K-ATPase activity in kidneys by univalent cations

    International Nuclear Information System (INIS)

    The effect of ionizing radiation of 0.206 C/kg on the kinetics of activation of rat kidney Na,K-ATPase preparation by Na and K ions was studied as an index of possible qualitative and quantitative changes in the properties of the enzyme. Ionizing radiation was shown not only to increase the enzyme activity but also to change the optimal rate of ATP hydrolysis by Na,K-ATPase and to induce some differences in the shape of the curve for Na,K-ATPase dependence upon Na-sodium//potassium ion ratio in the incubation medium

  10. Solubilization of Na,K-ATPase from rabbit kidney outer medulla using only C12E8

    OpenAIRE

    H.L. Santos; R.P. Lamas; P Ciancaglini

    2002-01-01

    SDS, C12E8, CHAPS or CHAPSO or a combination of two of these detergents is generally used for the solubilization of Na,K-ATPase and other ATPases. Our method using only C12E8 has the advantage of considerable reduction of the time for enzyme purification, with rapid solubilization and purification in a single chromatographic step. Na,K-ATPase-rich membrane fragments of rabbit kidney outer medulla were obtained without adding SDS. Optimum conditions for solubilization were obtained at 4ºC afte...

  11. Absence of influence of strong permanent magnetic field on isolated membrane preparations of Na, K-dependent ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Savich, M.L.; Nazarova, N.M.; Raykhman, L.M.; Kuznetsov, A.N.

    A study is made of the effect of a permanent magnetic field with an induction of 10 T on isolated membrane preparations of Na, K-dependent ox brain ATPase. The 10 T field was not found to have any influence on the Na, K-ATPase activity under any of the conditions tested. The insensitivity of isolated Na, K-ATPase preparations to permanent magnetic field even at great field strength may result from insufficient size of cooperative areas of membrane lipids in small lipoprotein vesicles. The data obtained can therefore only be extended with caution to larger membrane formations functioning in vivo. 5 references, 1 figure.

  12. The ATPase activity of saponin-treated rat erythrocytes: regulation by monovalent cations, calcium, ouabain, and furosemide.

    Science.gov (United States)

    Petrunyaka, V V; Panyushkina, E A; Severina, E P; Orlov, S N

    1990-12-14

    The ATPase activities were studied in rat erythrocytes permeabilized with saponin. The concentrations of calcium and magnesium ions were varied within the range of 0.1-60 microM and 50-370 microM, respectively, by using EGTA-citrate buffer. The maximal activity of Ca2(+)-ATPase of permeabilized erythrocytes was by one order of magnitude higher, whereas the Ca2(+)-binding affinity was 1.5-2 times higher than that in erythrocyte ghosts washed an isotonic solution containing EGTA. Addition of the hemolysate restored the kinetic parameters of ghost Ca2(+)-ATPase practically completely, whereas in the presence of exogenous calmodulin only part of Ca2(+)-ATPase activity was recovered. Neither calmodulin nor R24571, a highly potent specific inhibitor of calmodulin-dependent reactions, influenced the Ca2(+)-ATPase activity of permeabilized erythrocytes. At Ca2+ concentrations below 0.7 microM, ouabain (0.5-1 mM) activated whereas at higher Ca2+ concentrations it inhibited the Ca2(+)-ATPase activity. Taking this observation into account the Na+/K(+)-ATPase was determined as the difference of between the ATPase activities in the presence of Na+ and K+ and in the presence of K+ alone. At physiological concentration of Mg2+ (370 microM), the addition of 0.3-1 microM Ca2+ increased Na+/K(+)-ATPase activity by 1.5-3-fold. Higher concentrations of this cation inhibited the enzyme. At low Mg2+ concentration (e.g., 50 microM) only Na+/K(+)-ATPase inhibition by Ca2+ was seen. It was found that at [NaCl] less than 20 mM furosemide was increased ouabain-inhibited component of ATPase in Ca2(+)-free media. This activating effect of furosemide was enhanced with a diminution of [Na+] upto 2 mM and did not reach the saturation level unless the 2 mM of drug was used. The activating effect of furosemide on Na+/K(+)-ATPase activity confirmed by experiments in which the ouabain-inhibited component was measured by the 86Rb+ influx into intact erythrocytes. PMID:2175654

  13. Effects of Calcium on ATPase Activity and Lipid Composition of Plasma Membranes from Wheat Roots Under Aluminum Stress

    Institute of Scientific and Technical Information of China (English)

    HE Long-fei; SHEN Zhen-guo; LIU You-liang

    2003-01-01

    Effects of calcium on ATPase activities, lipid contents, and fatty acid compositions of plasma membrane from wheat roots were assayed under aluminum stress. The results showed that the increase of calcium concentration in the nutrient solution increased the activity of H+-ATPase and the phospholipid content, decreased the activity of Ca2+-ATPase and the galactolipid of plasma membrane. Owing to the decrease of linolenic acid content, the index of unsaturated fatty acid (IUFA) and index of double bond (DBI) decreased in Altas66. The IUFA and DBI of plasma membrane from Scout66 roots increased because its linolenic acid content increased obviously and its palmitic acid content decreased apparently.

  14. ATPase8-6基因研究杂交多倍体鱼线粒体母性遗传%Evidence for maternal inheritance of mitochondrial DNA in polyploid fish of crosses by ATPase8 and ATPase6 genes

    Institute of Scientific and Technical Information of China (English)

    郭新红; 刘少军; 刘筠

    2004-01-01

    异源四倍体鲫鲤是世界上首例人工培育的两性可育并形成群体的且能自然繁殖的四倍体鱼.本文采用质粒克隆测序法测定了红鲫、异源四倍体鲫鲤、三倍体湘云鲫和三倍体湘云鲤的ATPase8和ATPase6基因全序列,结合鲤鱼、日本白鲫和斑马鱼的同源序列,对不同倍性水平鲤科鱼类的ATPase8和ATPase6基因进行了比较,分析了碱基组成、变异情况以及核苷酸和氨基酸序列差异.红鲫、鲤鱼、异源四倍体鲫鲤、日本白鲫、三倍体湘云鲫和三倍体湘云鲤之间的序列差异为0.0%-13.4%,它们与外群斑马鱼之间的序列差异为27.9%-31.0%.用MEGA软件中的MP法、ME法、NJ法和UPGMA法构建分子系统树,得到了相似的拓扑结构.结果分析表明,人工杂交多倍体异源四倍体鲫鲤、三倍体湘云鲫和三倍体湘云鲤在线粒体ATPase8和ATPase6基因上具有严格的母性遗传特征.值得注意的是,异源四倍体鲫鲤经过11代的繁育后,与其原始母本红鲫仍然保持了非常高的同源性,说明了新的异源四倍体基因库在线粒体ATPase8和ATPase6基因上拥有稳定的遗传特性.对不同倍性鲤科鱼类线粒体ATPase8和ATPase6基因的研究表明,ATPase8和ATPase6基因是杂交鱼后代遗传变异研究的一个很好的分子标记[动物学报50(3):408-413,2004].%The entire sequences of the mitochondrial ATPase8 and ATPase6 genes for the red crucian carp, allotetraploid fish, triploid crucian carp, and triploid common carp were isolated and completely sequenced. The nucleotide divergences of the ATPase8 and ATPase6 genes were 0.0% to 13.4% among ingroup samples (red crucian carp, common carp, allotetraploid fish, Japanese crucian carp, triploid crucian carp, and triploid common carp) and 27.9 % to 31.0 % between the ingroup samples and outgroup zebrafish. Most nucleotide substitutions among all samples occurred at the third codon positions of the ATPase8 and ATPase6 genes and

  15. SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data

    OpenAIRE

    DING, JUN; Hu, Haiyan; Li, Xiaoman

    2013-01-01

    The identification of transcription factor binding motifs is important for the study of gene transcriptional regulation. The chromatin immunoprecipitation (ChIP), followed by massive parallel sequencing (ChIP-seq) experiments, provides an unprecedented opportunity to discover binding motifs. Computational methods have been developed to identify motifs from ChIP-seq data, while at the same time encountering several problems. For example, existing methods are often not scalable to the large num...

  16. Phosphopeptide interactions with BRCA1 BRCT domains: More than just a motif

    OpenAIRE

    Wu, Qian; Jubb, Harry; Blundell, Tom L.

    2015-01-01

    BRCA1 BRCT domains function as phosphoprotein-binding modules for recognition of the phosphory-lated protein-sequence motif pSXXF. While the motif interaction interface provides strong anchor points for binding, protein regions outside the motif have recently been found to be important for binding affinity. In this review, we compare the available structural data for BRCA1 BRCT domains in complex with phosphopeptides in order to gain a more complete understanding of the interaction betw...

  17. An analysis of the positional distribution of DNA motifs in promoter regions and its biological relevance

    OpenAIRE

    Vinga Susana; Casimiro Ana C; Freitas Ana T; Oliveira Arlindo L

    2008-01-01

    Abstract Background Motif finding algorithms have developed in their ability to use computationally efficient methods to detect patterns in biological sequences. However the posterior classification of the output still suffers from some limitations, which makes it difficult to assess the biological significance of the motifs found. Previous work has highlighted the existence of positional bias of motifs in the DNA sequences, which might indicate not only that the pattern is important, but als...

  18. Vampirism today : the change of the vampire motif from the gothic novel to today's fantasy literature

    OpenAIRE

    2009-01-01

    This thesis examins the change of the vampire motif throughout time. How have vampires and their clichés changed and why? Starting with a brief examination of the 'classical' litarary vampire, I mainly focus on contemporary fantasy literature by discussing recent works of vampire fiction. The adaptation of the vampire motif in role-playing games will as well be discussed as the effects the vampire film had on the motif.

  19. Combinatorial analysis for sequence and spatial motif discovery in short sequence fragments

    OpenAIRE

    Jackups, Ronald; Liang, Jie

    2010-01-01

    Motifs are over-represented sequence or spatial patterns appearing in proteins. They often play important roles in maintaining protein stability and in facilitating protein function. When motifs are located in short sequence fragments, as in transmembrane domains that are only 6–20 residues in length, and when there is only very limited data, it is difficult to identify motifs. In this study, we introduce combinatorial models based on permutation for assessing statistically significant sequen...

  20. Combinatorial analysis for sequence and spatial motif discovery in short sequence fragments

    OpenAIRE

    Jackups, Ronald; Liang, Jie

    2006-01-01

    Motifs are over-represented sequence or spatial patterns appearing in proteins. They often play important roles in maintaining protein stability and in facilitating protein function. When motifs are located in short sequence fragments, as in transmembrane domains that are only 6–20 residues in length, and when there is only very limited data, it is difficult to identify motifs. In this study, we introduce combinatorial models based on permutation for assessing statistically significant sequen...

  1. SALAD database: a motif-based database of protein annotations for plant comparative genomics

    OpenAIRE

    Mihara, Motohiro; Itoh, Takeshi; Izawa, Takeshi

    2009-01-01

    Proteins often have several motifs with distinct evolutionary histories. Proteins with similar motifs have similar biochemical properties and thus related biological functions. We constructed a unique comparative genomics database termed the SALAD database (http://salad.dna.affrc.go.jp/salad/) from plant-genome-based proteome data sets. We extracted evolutionarily conserved motifs by MEME software from 209 529 protein-sequence annotation groups selected by BLASTP from the proteome data sets o...

  2. Belief-propagation algorithm and the Ising model on networks with arbitrary distributions of motifs

    OpenAIRE

    Yoon, S; Goltsev, A. V.; Dorogovtsev, S. N.; Mendes, J. F. F.

    2011-01-01

    We generalize the belief-propagation algorithm to sparse random networks with arbitrary distributions of motifs (triangles, loops, etc.). Each vertex in these networks belongs to a given set of motifs (generalization of the configuration model). These networks can be treated as sparse uncorrelated hypergraphs in which hyperedges represent motifs. Here a hypergraph is a generalization of a graph, where a hyperedge can connect any number of vertices. These uncorrelated hypergraphs are tree-like...

  3. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2011-06-01

    Full Text Available Abstract Background One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Results Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet, which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i ubiquitous motifs, shared by several superfamilies and (ii superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P and SAH/SAM. Conclusions Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.

  4. Transition from winnerless competition to synchronization in time-delayed neuronal motifs

    Science.gov (United States)

    Zhang, X.; Li, P. J.; Wu, F. P.; Wu, W. J.; Jiang, M.; Chen, L.; Qi, G. X.; Huang, H. B.

    2012-03-01

    The dynamics of brain functional motifs are studied. It is shown that different rhythms can occur in the motifs when time delay is taken into account. These rhythms include synchronization, winnerless competition (WLC) and "two plus one" (TPO). The main discovery is that the transition from WLC to synchronization can be induced simply by time delay. It is also concluded that some medium time delay is needed to achieve WLC in the realistic case. The motifs composed of heterogeneous neurons are also considered.

  5. A structural-alphabet-based strategy for finding structural motifs across protein families.

    Science.gov (United States)

    Wu, Chih Yuan; Chen, Yao Chi; Lim, Carmay

    2010-08-01

    Proteins with insignificant sequence and overall structure similarity may still share locally conserved contiguous structural segments; i.e. structural/3D motifs. Most methods for finding 3D motifs require a known motif to search for other similar structures or functionally/structurally crucial residues. Here, without requiring a query motif or essential residues, a fully automated method for discovering 3D motifs of various sizes across protein families with different folds based on a 16-letter structural alphabet is presented. It was applied to structurally non-redundant proteins bound to DNA, RNA, obligate/non-obligate proteins as well as free DNA-binding proteins (DBPs) and proteins with known structures but unknown function. Its usefulness was illustrated by analyzing the 3D motifs found in DBPs. A non-specific motif was found with a 'corner' architecture that confers a stable scaffold and enables diverse interactions, making it suitable for binding not only DNA but also RNA and proteins. Furthermore, DNA-specific motifs present 'only' in DBPs were discovered. The motifs found can provide useful guidelines in detecting binding sites and computational protein redesign. PMID:20525797

  6. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    Directory of Open Access Journals (Sweden)

    Nathália Rocco-Machado

    Full Text Available Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2 generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.

  7. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    Science.gov (United States)

    Rocco-Machado, Nathália; Cosentino-Gomes, Daniela; Meyer-Fernandes, José Roberto

    2015-01-01

    Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2) generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite. PMID:26070143

  8. Sequential dynamics in the motif of excitatory coupled elements

    Science.gov (United States)

    Korotkov, Alexander G.; Kazakov, Alexey O.; Osipov, Grigory V.

    2015-11-01

    In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka-Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka-Volterra model.

  9. μXRF analysis of decoration motifs on Majolica pottery

    International Nuclear Information System (INIS)

    μXRF analysis of decoration motifs on Majolica pottery in fragments corresponding to several Majolica types was carried out using an spectrometer comprising a low power Mo X-ray tube and a elliptic-shape concentration lens with a 60 um spot. Both surface scanning and spot measurements were carried a out, allowing the qualitative identification of the inorganic pigments used for the surface painting decoration and the quantitative analysis of the main glaze composition. The absence of interference signal arising from the excitation on the underlying paste when analysing thin-lead glazing was evaluated, allowing ensuring the suitable of the analytical procedures. A distinction was found between different types of majolica by the composition of the lead tin glaze enamel and by the presence of other elements in the blue, black and orange decoration

  10. RNA Sociology: Group Behavioral Motifs of RNA Consortia

    Directory of Open Access Journals (Sweden)

    Guenther Witzany

    2014-11-01

    Full Text Available RNA sociology investigates the behavioral motifs of RNA consortia from the social science perspective. Besides the self-folding of RNAs into single stem loop structures, group building of such stem loops results in a variety of essential agents that are highly active in regulatory processes in cellular and non-cellular life. RNA stem loop self-folding and group building do not depend solely on sequence syntax; more important are their contextual (functional needs. Also, evolutionary processes seem to occur through RNA stem loop consortia that may act as a complement. This means the whole entity functions only if all participating parts are coordinated, although the complementary building parts originally evolved for different functions. If complementary groups, such as rRNAs and tRNAs, are placed together in selective pressure contexts, new evolutionary features may emerge. Evolution initiated by competent agents in natural genome editing clearly contrasts with statistical error replication narratives.

  11. Study on online community user motif using web usage mining

    Science.gov (United States)

    Alphy, Meera; Sharma, Ajay

    2016-04-01

    The Web usage mining is the application of data mining, which is used to extract useful information from the online community. The World Wide Web contains at least 4.73 billion pages according to Indexed Web and it contains at least 228.52 million pages according Dutch Indexed web on 6th august 2015, Thursday. It’s difficult to get needed data from these billions of web pages in World Wide Web. Here is the importance of web usage mining. Personalizing the search engine helps the web user to identify the most used data in an easy way. It reduces the time consumption; automatic site search and automatic restore the useful sites. This study represents the old techniques to latest techniques used in pattern discovery and analysis in web usage mining from 1996 to 2015. Analyzing user motif helps in the improvement of business, e-commerce, personalisation and improvement of websites.

  12. Viroid Intercellular Trafficking: RNA Motifs, Cellular Factors and Broad Impacts

    Directory of Open Access Journals (Sweden)

    Ryuta Takeda

    2009-09-01

    Full Text Available Viroids are noncoding RNAs that infect plants. In order to establish systemic infection, these RNAs must traffic from an initially infected host cell into neighboring cells and ultimately throughout a whole plant. Recent studies have identified structural motifs in a viroid that are required for trafficking, enabling further studies on the mechanisms of their function. Some cellular proteins interact with viroids in vivo and may play a role in viroid trafficking, which can now be directly tested by using a virus-induced gene silencing system that functions efficiently in plant species from which these factors were identified. This review discusses these recent advances, unanswered questions and the use of viroid infection as an highly productive model to elucidate mechanisms of RNA trafficking that is of broad biological significance.

  13. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack

    DEFF Research Database (Denmark)

    Liu, Jun; Elmore, James M.; Fuglsang, Anja Thoe;

    2009-01-01

    purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H+-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines......Abstract Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4- mediated immune signal transduction, we...... exhibit differential PM H+-ATPase activity. PM H+-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H+-ATPase activity and, importantly, its...

  14. Dependence of myosin-ATPase on structure bound creatine kinase in cardiac myfibrils from rainbow trout and freshwater turtle

    DEFF Research Database (Denmark)

    Haagensen, L.; Jensen, D.H.; Gesser, Hans

    2008-01-01

    The influence of myofibrillar creatine kinase on the myosin-ATPase activity was examined in cardiac ventricular myofibrils isolated from rainbow trout (Oncorhynchus mykiss) and freshwater turtle (Trachemys scripta). The ATPase rate was assessed by recording the rephosphorylation of ADP by the...... pyruvate kinase reaction alone or together with the amount of creatine formed, when myofibrillar bound creatine kinase was activated with phosphocreatine. The steady-state concentration of ADP in the solution was varied through the activity of pyruvate kinase added to the solution. For rainbow trout...... myofibrils at a high pyruvate kinase activity, creatine kinase competed for ADP but did not influence the total ATPase activity. When the ADP concentration was elevated within the physiological range by lowering the pyruvate kinase activity, creatine kinase competed efficiently and increased the ATPase...

  15. Alteration of alpha 1 Na+,K(+)-ATPase 86Rb+ influx by a single amino acid substitution

    International Nuclear Information System (INIS)

    The sodium- and potassium-dependent adenosine triphosphatase (Na+,K(+)-ATPase) maintains the transmembrane Na+ gradient to which is coupled all active cellular transport systems. The R and S alleles of the gene encoding the Na+,K(+)-ATPase alpha 1 subunit isoform were identified in Dahl salt-resistant (DR) and Dahl salt-sensitive (DS) rats, respectively. Characterization of the S allele-specific Na+,K(+)-ATPase alpha 1 complementary DNA identified a leucine substitution of glutamine at position 276. This mutation alters the hydropathy profile of a region in proximity to T3(Na), the trypsin-sensitive site that is only detected in the presence of Na+. This mutation causes a decrease in the rubidium-86 influx of S allele-specific sodium pumps, thus marking a domain in the Na+,K(+)-ATPase alpha subunit important for K+ transport, and supporting the hypothesis of a putative role of these pumps in hypertension

  16. Structural fragment clustering reveals novel structural and functional motifs in α-helical transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Vassilev Boris

    2010-04-01

    Full Text Available Abstract Background A large proportion of an organism's genome encodes for membrane proteins. Membrane proteins are important for many cellular processes, and several diseases can be linked to mutations in them. With the tremendous growth of sequence data, there is an increasing need to reliably identify membrane proteins from sequence, to functionally annotate them, and to correctly predict their topology. Results We introduce a technique called structural fragment clustering, which learns sequential motifs from 3D structural fragments. From over 500,000 fragments, we obtain 213 statistically significant, non-redundant, and novel motifs that are highly specific to α-helical transmembrane proteins. From these 213 motifs, 58 of them were assigned to function and checked in the scientific literature for a biological assessment. Seventy percent of the motifs are found in co-factor, ligand, and ion binding sites, 30% at protein interaction interfaces, and 12% bind specific lipids such as glycerol or cardiolipins. The vast majority of motifs (94% appear across evolutionarily unrelated families, highlighting the modularity of functional design in membrane proteins. We describe three novel motifs in detail: (1 a dimer interface motif found in voltage-gated chloride channels, (2 a proton transfer motif found in heme-copper oxidases, and (3 a convergently evolved interface helix motif found in an aspartate symporter, a serine protease, and cytochrome b. Conclusions Our findings suggest that functional modules exist in membrane proteins, and that they occur in completely different evolutionary contexts and cover different binding sites. Structural fragment clustering allows us to link sequence motifs to function through clusters of structural fragments. The sequence motifs can be applied to identify and characterize membrane proteins in novel genomes.

  17. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene.

    Directory of Open Access Journals (Sweden)

    Nidhi Thakur

    Full Text Available BACKGROUND: Expression of double strand RNA (dsRNA designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi, thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci upon oral feeding. The v-ATPase subunit A (v-ATPaseA coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. CONCLUSIONS/SIGNIFICANCE: Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.

  18. Curcumin modulation of Na,K-ATPase: phosphoenzyme accumulation, decreased K+ occlusion, and inhibition of hydrolytic activity

    OpenAIRE

    Mahmmoud, Yasser A.

    2005-01-01

    Curcumin, the major constitute of tumeric, is an important nutraceutical that has been shown to be useful in the treatment of many diseases. As an inhibitor of the sarcoplasmic reticulum Ca2+-ATPase, curcumin was shown to correct cystic fibrosis (CF) defects in some model systems, whereas others have reported no or little effects on CF after curcumin treatment, suggesting that curcumin effect is not due to simple inhibition of the Ca2+-ATPase.We tested the hypothesis that curcumin may modulat...

  19. NO Metabolites Levels in Human Red Blood Cells are Affected by Palytoxin, an Inhibitor of Na+/K+-ATPase Pump

    OpenAIRE

    Carelli-Alinovi, Cristiana; Tellone, Ester; Russo, Anna Maria; Ficarra, Silvana; Pirolli, Davide; Galtieri, Antonio; Giardina, Bruno; Misiti, Francesco

    2014-01-01

    Palytoxin (PTX), a marine toxin, represents an increasing hazard for human health. Despite its high toxicity for biological systems, the mechanisms triggered by PTX, are not well understood. The high affinity of PTX for erythrocyte Na+/K+-ATPase pump is largely known, and it indicates PTX as a sensitive tool to characterize the signal transducer role for Na+/K+-ATPase pump. Previously, it has been reported that in red blood cells (RBC), probably via a signal transduction generated by the form...

  20. Interaction of Spin-Labeled Inhibitors of the Vacuolar H+-ATPase with the Transmembrane Vo-Sector

    Science.gov (United States)

    Dixon, Neil; Páli, Tibor; Kee, Terence P.; Ball, Stephen; Harrison, Michael A.; Findlay, John B. C.; Nyman, Jonas; Väänänen, Kalervo; Finbow, Malcolm E.; Marsh, Derek

    2008-01-01

    The osteoclast variant of the vacuolar H+-ATPase (V-ATPase) is a potential therapeutic target for combating the excessive bone resorption that is involved in osteoporosis. The most potent in a series of synthetic inhibitors based on 5-(5,6-dichloro-2-indolyl)-2-methoxy-2,4-pentadienamide (INDOL0) has demonstrated specificity for the osteoclast enzyme, over other V-ATPases. Interaction of two nitroxide spin-labeled derivatives (INDOL6 and INDOL5) with the V-ATPase is studied here by using the transport-active 16-kDa proteolipid analog of subunit c from the hepatopancreas of Nephrops norvegicus, in conjunction with electron paramagnetic resonance (EPR) spectroscopy. Analogous experiments are also performed with vacuolar membranes from Saccharomyces cerevisiae, in which subunit c of the V-ATPase is replaced functionally by the Nephrops 16-kDa proteolipid. The INDOL5 derivative is designed to optimize detection of interaction with the V-ATPase by EPR. In membranous preparations of the Nephrops 16-kDa proteolipid, the EPR spectra of INDOL5 contain a motionally restricted component that arises from direct association of the indolyl inhibitor with the transmembrane domain of the proteolipid subunit c. A similar, but considerably smaller, motionally restricted population is detected in the EPR spectra of the INDOL6 derivative in vacuolar membranes, in addition to the larger population from INDOL6 in the fluid bilayer regions of the membrane. The potent classical V-ATPase inhibitor concanamycin A at high concentrations induces motional restriction of INDOL5, which masks the spectral effects of displacement at lower concentrations of concanamycin A. The INDOL6 derivative, which is closest to the parent INDOL0 inhibitor, displays limited subtype specificity for the osteoclast V-ATPase, with an IC50 in the 10-nanomolar range. PMID:17872954

  1. Calmodulin and the target size of the (Ca2+ + Mg2+)-ATPase of human red-cell ghosts.

    Science.gov (United States)

    Cavieres, J D

    1984-04-11

    An average target size of 251 kDa has been obtained for the (Ca2+ + Mg2+)-ATPase of calmodulin-depleted erythrocyte ghosts by radiation inactivation with 16 MeV electrons. This is close to twice the size of the purified calcium-pump polypeptide. When calmodulin was included during the ATPase assay, a component of about 1 MDa appeared in addition to the activated dimer. PMID:6142728

  2. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps

    DEFF Research Database (Denmark)

    Møller, Annette; Asp, Torben; Holm, Preben Bach;

    2008-01-01

    Eukaryotes encompass a remarkable variety of organisms and unresolved lineages. Different phylogenetic analyses have lead to conflicting conclusions as to the origin and associations between lineages and species. In this work, we investigated evolutionary relationship of a family of cation pumps...... far, while P5B ATPases appear to be lost in three eukaryotic lineages; excavates, entamoebas and land plants. A lineage-specific gene expansion of up to four different P5B ATPases is seen in animals....

  3. CD36 and Na/K-ATPase-α1 Form a Pro-inflammatory Signaling Loop in Kidney

    OpenAIRE

    Kennedy, David J.; Chen, Yiliang; Huang, Wenxin; Viterna, Jamie; Liu, Jiang; Westfall, Kristen; Tian, Jian; Bartlett, David J.; Wilson Tang, W. H.; Xie, Zi-jian; Shapiro, Joseph I; Silverstein, Roy L.

    2012-01-01

    Pro-atherogenic, hyperlipidemic states demonstrate increases in circulating ligands for scavenger receptor CD36 (e.g. oxidized LDL (oxLDL)) and the Na/K-ATPase (e.g. cardiotonic steroids). These factors increase inflammation, oxidative stress, and progression of chronic kidney disease. We hypothesized that diet-induced obesity and hyperlipidemia potentiate a CD36/ Na/K-ATPase -dependent inflammatory paracrine loop between proximal tubule cells (PTC) and their associated macrophages and thereb...

  4. Pantothenate is required in Neurospora crassa for assembly of subunit peptides of cytochrome c oxidase and ATPase/ATP synthase.

    OpenAIRE

    Brambl, R; Plesofsky-Vig, N

    1986-01-01

    One polypeptide subunit of cytochrome c oxidase (EC 1.9.3.1) and two subunits of the ATPase/ATP synthase (EC 3.6.1.34) in mitochondria of Neurospora crassa are covalently modified with a derivative of pantothenic acid. In asexual spores of a pantothenate auxotroph of Neurospora, deprivation of pantothenic acid blocked the increase of the specific activities of cytochrome c oxidase and the ATPase above the basal activities in the dormant spores. Under cellular panthothenate deprivation, all th...

  5. Solubilization of Na,K-ATPase from rabbit kidney outer medulla using only C12E8

    Directory of Open Access Journals (Sweden)

    H.L. Santos

    2002-03-01

    Full Text Available SDS, C12E8, CHAPS or CHAPSO or a combination of two of these detergents is generally used for the solubilization of Na,K-ATPase and other ATPases. Our method using only C12E8 has the advantage of considerable reduction of the time for enzyme purification, with rapid solubilization and purification in a single chromatographic step. Na,K-ATPase-rich membrane fragments of rabbit kidney outer medulla were obtained without adding SDS. Optimum conditions for solubilization were obtained at 4ºC after rapid mixing of 1 mg of membrane Na,K-ATPase with 1 mg of C12E8/ml, yielding 98% recovery of the activity. The solubilized enzyme was purified by gel filtration on a Sepharose 6B column at 4ºC. Non-denaturing PAGE revealed a single protein band with phosphomonohydrolase activity. The molecular mass of the purified enzyme estimated by gel filtration chromatography was 320 kDa. The optimum apparent pH obtained for the purified enzyme was 7.5 for both PNPP and ATP. The dependence of ATPase activity on ATP concentration showed high (K0.5 = 4.0 µM and low (K0.5 = 1.4 mM affinity sites for ATP, with negative cooperativity. Ouabain (5 mM, oligomycin (1 µg/ml and sodium vanadate (3 µM inhibited the ATPase activity of C12E8-solubilized and purified Na,K-ATPase by 99, 81 and 98.5%, respectively. We have shown that Na,K-ATPase solubilized only with C12E8 can be purified and retains its activity. The activity is consistent with the form of (alphaß2 association.

  6. The effect of inhibitors of plasma membrane H+ - ATPase and oxidoreductases on NH4+ uptake by Pisum arvense roots

    OpenAIRE

    Genowefa Kubik-Dobosz; Aleksandra Turska; Halina Lekacz; Waldemar Karcz; Józef Buczek

    2014-01-01

    The effect of inhibitors of plasma membrane oxidoreductases (quinacrine and dicumarol) and H+-ATPase (dicyclohexylcarbodiimide and orthovanadate) on ammonium uptake by Pisum arvense seedlings and the activities of H+-ATPase and NADH-ferricyanide oxidoreductase was investigated. The uptake solution contained 50 µM NH4+. In I h experiments, quinacrine and dicumarol depressed strongly and irreversibly the rate of NH4+ uptake and markedly inhibited the activity of NADH-ferri-cyanide oxidoreductas...

  7. Quantitative Calculation of the role of the Na+,K+-ATPase in thermogenesis

    OpenAIRE

    Clarke, Ronald J.; Catauro, Michelina; Rasmussen, Helge H.; Apell, Hans-Jürgen

    2013-01-01

    The Na+,K+-ATPase is accepted as an important source of heat generation (thermogenesis) in animals. Based on information gained on the kinetics of the enzyme's partial reactions we consider via computer simulation whether modifications to the function of the combined Na+,K+-ATPase/plasma membrane complex system could lead to an increased body temperature, either through the course of evolution or during an individual's lifespan. The enzyme's kinetics must be considered because it is the rate ...

  8. Molecular determinants of ATP-sensitive potassium channel MgATPase activity: diabetes risk variants and diazoxide sensitivity.

    Science.gov (United States)

    Fatehi, Mohammad; Carter, Chris R J; Youssef, Nermeen; Hunter, Beth E; Holt, Andrew; Light, Peter E

    2015-01-01

    ATP-sensitive K(+) (KATP) channels play an important role in insulin secretion. KATP channels possess intrinsic MgATPase activity that is important in regulating channel activity in response to metabolic changes, although the precise structural determinants are not clearly understood. Furthermore, the sulfonylurea receptor 1 (SUR1) S1369A diabetes risk variant increases MgATPase activity, but the molecular mechanisms remain to be determined. Therefore, we hypothesized that residue-residue interactions between 1369 and 1372, predicted from in silico modelling, influence MgATPase activity, as well as sensitivity to the clinically used drug diazoxide that is known to increase MgATPase activity. We employed a point mutagenic approach with patch-clamp and direct biochemical assays to determine interaction between residues 1369 and 1372. Mutations in residues 1369 and 1372 predicted to decrease the residue interaction elicited a significant increase in MgATPase activity, whereas mutations predicted to possess similar residue interactions to wild-type (WT) channels elicited no alterations in MgATPase activity. In contrast, mutations that were predicted to increase residue interactions resulted in significant decreases in MgATPase activity. We also determined that a single S1369K substitution in SUR1 caused MgATPase activity and diazoxide pharmacological profiles to resemble those of channels containing the SUR2A subunit isoform. Our results provide evidence, at the single residue level, for a molecular mechanism that may underlie the association of the S1369A variant with type 2 diabetes. We also show a single amino acid difference can account for the markedly different diazoxide sensitivities between channels containing either the SUR1 or SUR2A subunit isoforms. PMID:26181369

  9. The role of individual domains and the significance of shedding of ATP6AP2/(prorenin receptor in vacuolar H(+-ATPase biogenesis.

    Directory of Open Access Journals (Sweden)

    Kenichiro Kinouchi

    Full Text Available The ATPase 6 accessory protein 2 (ATP6AP2/(prorenin receptor (PRR is essential for the biogenesis of active vacuolar H(+-ATPase (V-ATPase. Genetic deletion of ATP6AP2/PRR causes V-ATPase dysfunction and compromises vesicular acidification. Here, we characterized the domains of ATP6AP2/PRR involved in active V-ATPase biogenesis. Three forms of ATP6AP2/PRR were found intracellularly: full-length protein and the N- and C-terminal fragments of furin cleavage products, with the N-terminal fragment secreted extracellularly. Genetic deletion of ATP6AP2/PRR did not affect the protein stability of V-ATPase subunits. The extracellular domain (ECD and transmembrane domain (TM of ATP6AP2/PRR were indispensable for the biogenesis of active V-ATPase. A deletion mutant of ATP6AP2/PRR, which lacks exon 4-encoded amino acids inside the ECD (Δ4M and causes X-linked mental retardation Hedera type (MRXSH and X-linked parkinsonism with spasticity (XPDS in humans, was defective as a V-ATPase-associated protein. Prorenin had no effect on the biogenesis of active V-ATPase. The cleavage of ATP6AP2/PRR by furin seemed also dispensable for the biogenesis of active V-ATPase. We conclude that the N-terminal ECD of ATP6AP2/PRR, which is also involved in binding to prorenin or renin, is required for the biogenesis of active V-ATPase. The V-ATPase assembly occurs prior to its delivery to the trans-Golgi network and hence shedding of ATP6AP2/PRR would not affect the biogenesis of active V-ATPase.

  10. Coassembly of Photosystem II and ATPase as Artificial Chloroplast for Light-Driven ATP Synthesis.

    Science.gov (United States)

    Feng, Xiyun; Jia, Yi; Cai, Peng; Fei, Jinbo; Li, Junbai

    2016-01-26

    Adenosine triphosphate (ATP) is one of the most important energy sources in living cells, which can drive serial key biochemical processes. However, generation of a proton gradient for ATP production in an artificial way poses a great challenge. In nature, photophosphorylation occurring in chloroplasts is an ideal prototype of ATP production. In this paper we imitate the light-to-ATP conversion process occurring in the thylakoid membrane by construction of FoF1-ATPase proteoliposome-coated PSII-based microspheres with well-defined core@shell structures using molecular assembly. Under light illumination, PSII can split water into protons, oxygen, and electrons and can generate a proton gradient for ATPase to produce ATP. Thus, an artificially designed chloroplast for PSII-driven ATP synthesis is realized. This biomimetic system will help to understand the photophosphorylation process and may facilitate the development of ATP-driven devices by remote light control. PMID:26615669

  11. Involvement of Plasma Membrane H+-ATPase in Adaption of Rice to Ammonium Nutrient

    Institute of Scientific and Technical Information of China (English)

    ZHU Yi-yong; LIAN Juan; ZENG Hou-qing; LIU GAN; DI Ting-jun; SHEN Qi-rong; XU Guo-hua

    2011-01-01

    The preference of paddy rice for NH4+ rather than NO3- is associated with its tolerance to low pH since a rhizosphere acidification occurs during NH4+ absorption.However,the adaptation of rice root to low pH has not been fully elucidated.The plasma membrane H+-ATPase is a universal electronic H+ pump,which uses ATP as energy source to pump H+ across the plasma membranes into the apoplast.The key function of this enzyme is to keep pH homeostasis of plant cells and generate a H+ electrochemical gradient,thereby providing the driving force for the active influx and efflux of ions and metabolites across the plasma membrane.This study investigated the acclimation of plasma membrane H+-ATPase of rice root to low pH.This mechanism might be partly responsible for the preference of rice plants to NH4+ nutrition.

  12. P4-ATPases on the spotlight: lessons from a green world

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    flippases, play an essential role in this transport process. We have recently characterized several members of the P4 subfamily of P-type ATPases as prime candidate lipid flippases in the secretory pathway of several eukaryotic cells. Our studies in yeast, plants and mammalian cells uncovered that these......A fundamental feature of eukaryotic cells is the presence of distinct organelles surrounded by lipid bilayers. Assembly and maintenance of the various organellar membranes requires translocation of lipids from one leaflet of the bilayer to the other. Specific membrane proteins, termed lipid...... pumps, in coordination with their ß-subunits, serve important functions in vesicular trafficing, their activities being required to support vesicle formation in the secretory and endocytic pathways. We are now aiming at determining the mechanism by which these ATPases function in vesicle biogenesis. The...

  13. Direct observation of proton pumping by a eukaryotic P-type ATPase.

    Science.gov (United States)

    Veshaguri, Salome; Christensen, Sune M; Kemmer, Gerdi C; Ghale, Garima; Møller, Mads P; Lohr, Christina; Christensen, Andreas L; Justesen, Bo H; Jørgensen, Ida L; Schiller, Jürgen; Hatzakis, Nikos S; Grabe, Michael; Pomorski, Thomas Günther; Stamou, Dimitrios

    2016-03-25

    In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters. PMID:27013734

  14. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Galuska, Dana; Kotova, Olga; Barres, Romain;

    2009-01-01

    . Skeletal muscle insulin resistance was observed after 12 wk of HFD. Na(+)-K(+)-ATPase alpha(1)-subunit protein expression was increased 1.6-fold (P <0.05), whereas alpha(2)- and beta(1)-subunits and protein expression were decreased twofold (P <0.01) in parallel with decrease in plasma membrane Na......) and alpha(1) mRNA expression were increased after HFD and restored by ET. DNA binding activity of Sp-1, a transcription factor involved in the regulation of alpha(2)- and beta(1)-subunit expression, was decreased after HFD. ET increased phosphorylation of the Na(+)-K(+)-ATPase regulatory protein...... phospholemman. Phospholemman mRNA and protein expression were increased after HFD and restored to control levels after ET. Insulin-stimulated translocation of the alpha(2)-subunit to plasma membrane was impaired by HFD, whereas alpha(1)-subunit translocation remained unchanged. Alterations in sodium pump...

  15. VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy.

    Science.gov (United States)

    Ramachandran, Nivetha; Munteanu, Iulia; Wang, Peixiang; Ruggieri, Alessandra; Rilstone, Jennifer J; Israelian, Nyrie; Naranian, Taline; Paroutis, Paul; Guo, Ray; Ren, Zhi-Ping; Nishino, Ichizo; Chabrol, Brigitte; Pellissier, Jean-Francois; Minetti, Carlo; Udd, Bjarne; Fardeau, Michel; Tailor, Chetankumar S; Mahuran, Don J; Kissel, John T; Kalimo, Hannu; Levy, Nicolas; Manolson, Morris F; Ackerley, Cameron A; Minassian, Berge A

    2013-03-01

    X-linked Myopathy with Excessive Autophagy (XMEA) is a childhood onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p, VMA21 is an essential assembly chaperone of the vacuolar ATPase (V-ATPase), the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH which reduces lysosomal degradative ability and blocks autophagy. This reduces cellular free amino acids which leads to downregulation of the mTORC1 pathway, and consequent increased macroautophagy resulting in proliferation of large and ineffective autolysosomes that engulf sections of cytoplasm, merge, and vacuolate the cell. Our results uncover a novel mechanism of disease, namely macroautophagic overcompensation leading to cell vacuolation and tissue atrophy. PMID:23315026

  16. Transient Expression of P-type ATPases in Tobacco Epidermal Cells.

    Science.gov (United States)

    Poulsen, Lisbeth R; Palmgren, Michael G; López-Marqués, Rosa L

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellular space between leaf epidermal cells, which results in DNA transfer from the bacteria to the plant and expression of the corresponding proteins. By injecting mixes of Agrobacterium strains, this system offers the possibility to co-express a number of target proteins simultaneously, thus allowing for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits. PMID:26695049

  17. Oxidized LDL-bound CD36 recruits a Na+/K+-ATPase-Lyn complex in macrophages that promotes atherosclerosis

    Science.gov (United States)

    Chen, Yiliang; Kennedy, David J.; Ramakrishnan, Devi Prasadh; Yang, Moua; Huang, Wenxin; Li, Zhichuan; Xie, Zijian; Chadwick, Alexandra C.; Sahoo, Daisy; Silverstein, Roy L.

    2016-01-01

    One characteristic of atherosclerosis is the accumulation of lipid-laden macrophage foam cells in the arterial wall. We have previously shown that the binding of oxidized LDL (oxLDL) to the scavenger receptor CD36 activates the kinase Lyn, initiating a cascade that inhibits macrophage migration and is necessary for foam cell generation. Here, we identified the plasma membrane ion transporter Na/K-ATPase as a key component in the macrophage oxLDL-CD36 signaling axis. Using peritoneal macrophages isolated from Atp1a1 heterozygous or Cd36 null mice, we demonstrated that CD36 recruited a Na/K-ATPase-Lyn complex for Lyn activation in response to oxLDL. Macrophages deficient in the α1 Na/K-ATPase catalytic subunit did not respond to activation of CD36, showing attenuated oxLDL uptake and foam cell formation, and oxLDL failed to inhibit migration of these macrophages. Furthermore, Apoe-null mice, which are a model of atherosclerosis, were protected from diet-induced atherosclerosis by global deletion of a single allele encoding the α1 Na+/K+-ATPase subunit or reconstitution with macrophages that lacked an allele encoding the α1 Na+/K+-ATPase subunit.. These findings identify Na/K-ATPase as a potential target for preventing or treating anti-atherosclerotic therapy. PMID:26350901

  18. Analysis of the Inhibitory Effect of Gypenoside on Na+,K+-ATPase in Rats' Heart and Brain and Its Kinetics

    Institute of Scientific and Technical Information of China (English)

    HAN Xiao-yan; WEI Hong-bo; ZHANG Fu-cheng

    2007-01-01

    ObjectiYe: To study the effects of gypenoside (Gyp) on the activity of microsomal Na+,K+-ATPase in rat's heart and brain in vitro. Methods: The microsomal Na+, K+-ATPase was prepared from rat's heart and brain by differential centrifugation. The activity of microsomal Na+, K+-ATPase was assayed by colorimetric technique. Enzyme kinetic analysis method was used to analyze the effect of Gyp on the microsomal Na+, K+-ATPase of rats. Results: Gyp reversibly inhibited the brain and heart's microsomal Na+, K+-ATPase in a concentration-dependent manner, and showed a more potent effect on enzyme in the brain. The IC50 of Gyp for the heart and brain were 58.79± 8.05 mg/L and 52.07 ±6.25 mg/L, respectively. The inhibition was enhanced by lowering the Na+, or K+ concentrations or increasing the ATP concentration. Enzyme kinetic studies indicated that the inhibitory effect of Gyp on the enzyme is like that of competitive antagonist of Na+, the counter-competitive inhibitor for the substrate ATP, and the mixed-type inhibitor for K+. Conclusion: Gyp displays its cardiotonic and central inhibitory effects by way of inhibiting heart and brain's microsomal Na+, K+-ATPase activities in rats.

  19. Separation and purification of the tonoplast ATPase and pyrophosphatase from plants with constitutive and inducible Crassulacean acid metabolism.

    Science.gov (United States)

    Bremberger, C; Haschke, H P; Lüttge, U

    1988-10-01

    Tonoplast vesicles were isolated from Kalanchoe daigremontiana Hamet et Pierrer de la Bâthie and Mesembryanthemum crystallinum L., exhibiting constitutive and inducible crassulacean acid metabolism (CAM), respectively. Membrane-bound proteins were detergent-solubilized with 2% of Triton X-100. During CAM induction in M. crystallinum, ATPase activity increases four-fold, whereas pyrophosphatase activity decreases somewhat. With all plants, ATPase and pyrophosphatase could be separated by size-exclusion chromatography (SEC, Sephacryl S 400), and the ATPase was further purified by diethylaminoethyl-ion-exchange chromatography. Sodium-dodecyl-sulfate electrophoresis of the SEC fractions from K. daigremontiana containing maximum ATPase activity separates several protein bands, indicating subunits of 72, 56, 48, 42, 28, and 16 kDa. Purified ATPase from M. crystallinum in the C3 and CAM states shows a somewhat different protein pattern. With M. crystallinum, an increase in ATP-hydrolysis and changes in the subunit composition of the native enzyme indicate that the change from the C3 to the CAM state is accompanied by de-novo synthesis and by structural changes of the tonoplast ATPase. PMID:24221927

  20. An α2-Na/K ATPase/α-adducin complex in astrocytes triggers non–cell autonomous neurodegeneration

    Science.gov (United States)

    Gallardo, Gilbert; Barowski, Jessica; Ravits, John; Siddique, Teepu; Lingrel, Jerry B; Robertson, Janice; Steen, Hanno; Bonni, Azad

    2015-01-01

    Perturbations of astrocytes trigger neurodegeneration in several diseases, but the glial cell–intrinsic mechanisms that induce neurodegeneration remain poorly understood. We found that a protein complex of α2-Na/K ATPase and α-adducin was enriched in astrocytes expressing mutant superoxide dismutase 1 (SOD1), which causes familial amyotrophic lateral sclerosis (ALS). Knockdown of α2-Na/K ATPase or α-adducin in mutant SOD1 astrocytes protected motor neurons from degeneration, including in mutant SOD1 mice in vivo. Heterozygous disruption of the α2-Na/K ATPase gene suppressed degeneration in vivo and increased the lifespan of mutant SOD1 mice. The pharmacological agent digoxin, which inhibits Na/K ATPase activity, protected motor neurons from mutant SOD1 astrocyte–induced degeneration. Notably, α2-Na/K ATPase and α-adducin were upregulated in spinal cord of sporadic and familial ALS patients. Collectively, our findings define chronic activation of the α2-Na/K ATPase/α-adducin complex as a critical glial cell–intrinsic mechanism of non–cell autonomous neurodegeneration, with implications for potential therapies for neurodegenerative diseases. PMID:25344630

  1. Monoclonal antibody localization of Na+-K+-ATPase in the exocrine pancreas and parotid of the dog

    International Nuclear Information System (INIS)

    A monoclonal antibody specific to the β-subunit of the canine 125I-labeled-Na+-K+-ATPase has been characterized and used to directly localize the enzyme in thin frozen sections of dog pancreas and parotid. The antibody, 7-2M, recognizes only the β-subunit of the sodium pump as determined by immunoprecipitation and immunoblot and is not directed against an oligosaccharide determinant. 7-2M immunolocalizes to the same cellular and subcellular domains of renal tubular cells as do other, previously characterized, antibodies directed to the α-subunit of the sodium pump. In the pancreas the preponderance of the Na+-K+-ATPase is found on the basolateral membranes of centroacinar and intralobular duct cells. Interlobular duct cells also express a large component of basolaterally located enzyme, although comparatively little pump is seen on acinar cells. In the parotid a large amount of Na+-K+-ATPase is seen on the striated cut cells, with high levels also noted on cells of the intercalated ducts and serous demilunes. Again the acinar cells show comparatively low levels of Na+-K+-ATPase. In no instance is Na+-K+-ATPase found on the apical membranes of pancreas or parotid cells. These data suggest that Na+-K+-ATPase, located on the basolateral plasmalemma of duct-derived cells, may be involved in water and electrolyte secretion from the pancreas and parotid

  2. Construction of a Three-Dimensional Motif Dictionary for Protein Structural Data Mining

    Science.gov (United States)

    Hiroaki, Kato; Tadokoro, Tetsuo; Miyata, Hiroyuki; Chikamatsu, Shin-Ichi; Takahashi, Yoshimasa; Abe, Hidetsugu

    With the rapidly increasing number of proteins of which three-dimensional (3D) structures are known, the protein structure database is one of the key elements in many attempts being made to derive the knowledge of structure-function relationships of proteins. In this work, the authors have developed a software tool to assist in constructing the 3D protein motif dictionary that is closely related to the PROSITE sequence motif database. In the PROSITE, a structural feature called motif is described by a sequence pattern of amino acid residues with the regular expression defined in the database. The present system allows us to automatically find the related sites for all the 3D protein structures taken from a protein structure database such as the Protein Data Bank (PDB), and to make a dictionary of the 3D motifs related to the PROSITE sequence motif patterns. A computational trial was carried out for a subset of the PDB's structure data file. The structural feature analysis resulted with the tool showed that there are many different 3D motif patterns but having a particular PROSITE sequence pattern. For this reason, the authors also tried to classify the 3D motif patterns into several groups on the basis of distance similarity matrix, and to determine a representative pattern for each group in preparing the dictionary. The usefulness of the additional approach for preparing the 3D motif dictionary is also discussed with an illustrative example.

  3. Stabilization of i-motif structures by 2′-β-fluorination of DNA

    Science.gov (United States)

    Assi, Hala Abou; Harkness, Robert W.; Martin-Pintado, Nerea; Wilds, Christopher J.; Campos-Olivas, Ramón; Mittermaier, Anthony K.; González, Carlos; Damha, Masad J.

    2016-01-01

    i-Motifs are four-stranded DNA structures consisting of two parallel DNA duplexes held together by hemi-protonated and intercalated cytosine base pairs (C:CH+). They have attracted considerable research interest for their potential role in gene regulation and their use as pH responsive switches and building blocks in macromolecular assemblies. At neutral and basic pH values, the cytosine bases deprotonate and the structure unfolds into single strands. To avoid this limitation and expand the range of environmental conditions supporting i-motif folding, we replaced the sugar in DNA by 2-deoxy-2-fluoroarabinose. We demonstrate that such a modification significantly stabilizes i-motif formation over a wide pH range, including pH 7. Nuclear magnetic resonance experiments reveal that 2-deoxy-2-fluoroarabinose adopts a C2′-endo conformation, instead of the C3′-endo conformation usually found in unmodified i-motifs. Nevertheless, this substitution does not alter the overall i-motif structure. This conformational change, together with the changes in charge distribution in the sugar caused by the electronegative fluorine atoms, leads to a number of favorable sequential and inter-strand electrostatic interactions. The availability of folded i-motifs at neutral pH will aid investigations into the biological function of i-motifs in vitro, and will expand i-motif applications in nanotechnology. PMID:27166371

  4. Dynamic consequences of mutating the typical HPGG motif of apocytochrome b5 revealed by computer simulation

    Institute of Scientific and Technical Information of China (English)

    Ying Wu Lin; Tian Lei Ying; Li Fu Liao

    2009-01-01

    Apecytochrome b5 with a typical heme-binding motif of HPGC,and its variants with mutated motifs,GPGG,GPGH,HVGG,and HPGP,have been subjected to molecular dynamics simulation.Comparison of the dynamic consequences has revealed the crucial role of HPGG in assembling the heme group of cytochrome b5 and in modulating protein structure,property and function.

  5. MOMFER: A Search Engine of Thompson's Motif-Index of Folk Literature

    NARCIS (Netherlands)

    Karsdorp, F.; Meulen, M. van der; Meder, Th.; Bosch, A.P.J. van den

    2015-01-01

    More than fifty years after the first edition of Thompson's seminal Motif-Indexof Folk Literature, we present an online search engine tailored to fully disclose the index digitally. This search engine, called MOMFER, greatly enhances the searchability of the Motif-Index and provides exciting new way

  6. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  7. Genome adaptations of a tripartite motif protein for retroviral defense in cattle and sheep

    Science.gov (United States)

    Tripartite motif (TRIM) genes encode proteins composed of RING, B-box, and coiled coil motif domains. Primate TRIM5' has been shown to be a primary determinant of retroviral host cell range restriction in primates. TRIM5 restriction was originally thought to be a primate-specific defense mechanism...

  8. A Cadmium-transporting P1B-type ATPase in Yeast Saccharomyces cerevisiae*

    OpenAIRE

    Adle, David J.; Sinani, Devis; Kim, Heejeong; Lee, Jaekwon

    2006-01-01

    Detoxification and homeostatic acquisition of metal ions are vital for all living organisms. We have identified PCA1 in yeast Saccharomyces cerevisiae as an overexpression suppressor of copper toxicity. PCA1 possesses signatures of a P1B-type heavy metal-transporting ATPase that is widely distributed from bacteria to humans. Copper resistance conferred by PCA1 is not dependent on catalytic activity, but it appears that a cysteine-rich region located in the N terminus sequesters copper. Unexpe...

  9. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy

    OpenAIRE

    Fais Stefano; Citro Gennaro; Spugnini Enrico P

    2010-01-01

    Abstract The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through th...

  10. Lead reduces tension development and the myosin ATPase activity of the rat right ventricular myocardium

    Directory of Open Access Journals (Sweden)

    D.V. Vassallo

    2008-09-01

    Full Text Available Lead (Pb2+ poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 µM to the bath. Changes in rate of stimulation (0.1-1.5 Hz, relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM, and the effect of isoproterenol (20 ng/mL were determined before and after the addition of 100 µM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 µM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 µM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 µM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 µM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.

  11. Optimisation of recombinant production of active human cardiac SERCA2a ATPase

    OpenAIRE

    Antaloae, Ana V.; Cédric Montigny; Marc le Maire; Watson, Kimberly A.; Thomas L-M Sørensen

    2013-01-01

    Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca(2+) translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain...

  12. The SWI/SNF ATPase Brm Is a Gatekeeper of Proliferative Control in Prostate Cancer

    OpenAIRE

    Shen, Hui; Powers, Nathan; Saini, Nitin; Comstock, Clay E.S.; Sharma, Ankur; Weaver, Katherine; Revelo, Monica P.; Gerald, William; Williams, Erin; Jessen, Walter J.; Aronow, Bruce J; Rosson, Gary; Weissman, Bernard; Muchardt, Christian; Yaniv, Moshe

    2008-01-01

    Factors that drive prostate cancer progression remain poorly defined, thus hindering the development of new therapeutic strategies. Disseminated tumors are treated through regimens that ablate androgen signaling, as prostate cancer cells require androgen for growth and survival. However, recurrent, incurable tumors that have bypassed the androgen requirement ultimately arise. This study reveals that the Brm ATPase, a component of selected SWI/SNF complexes, has significant antiproliferative f...

  13. Stimulation of Na+/K+ ATPase activity and Na+ coupled glucose transport by β-catenin

    International Nuclear Information System (INIS)

    Research highlights: → The oncogenic transcription factor β-catenin stimulates the Na+/K+-ATPase. → β-Catenin stimulates SGLT1 dependent Na+, glucose cotransport. → The effects are independent of transcription. → β-Catenin sensitive transport may contribute to properties of proliferating cells. -- Abstract: β-Catenin is a multifunctional protein stimulating as oncogenic transcription factor several genes important for cell proliferation. β-Catenin-regulated genes include the serum- and glucocorticoid-inducible kinase SGK1, which is known to stimulate a variety of transport systems. The present study explored the possibility that β-catenin influences membrane transport. To this end, β-catenin was expressed in Xenopus oocytes with or without SGLT1 and electrogenic transport determined by dual electrode voltage clamp. As a result, expression of β-catenin significantly enhanced the ouabain-sensitive current of the endogeneous Na+/K+-ATPase. Inhibition of vesicle trafficking by brefeldin A revealed that the stimulatory effect of β-catenin on the endogenous Na+/K+-ATPase was not due to enhanced stability of the pump protein in the cell membrane. Expression of β-catenin further enhanced glucose-induced current (Ig) in SGLT1-expressing oocytes. In the absence of SGLT1 Ig was negligible irrespective of β-catenin expression. The stimulating effect of β-catenin on both Na+/K+ ATPase and SGLT1 activity was observed even in the presence of actinomycin D, an inhibitor of transcription. The experiments disclose a completely novel function of β-catenin, i.e. the regulation of transport.

  14. In vitro antioxidant and H + , K + -ATPase inhibition activities of Acalypha wilkesiana foliage extract

    OpenAIRE

    Rajesh Kashi Prakash Gupta; Pradeepa,; Manjunatha Hanumanthappa

    2013-01-01

    Aims: The aim of this study was to evaluate the antioxidant activty and anti-acid property of Acalypha wilkesiana foliage extract. Materials and Methods: Hot and cold aqueous extracts were prepared from healthy leaves of A. wilkesiana. Free radical scavenging activity and H + , K + -ATPase inhibition activities of aqueous foliage extracts was screened by in vitro models. Statistical Analysis Used: All experiments were performed in triplicate and results are expressed as mean ± SEM. Results: A...

  15. Pretranslational regulation of Na-K-ATPase in cultured canine kidney cells by low K+

    International Nuclear Information System (INIS)

    Long-term upregulation of the sodium pump [Na-K-adenosine triphosphatase (Na-K-ATPase)] entails an increase in the number of enzyme molecules. The authors incubated Madin-Darby canine kidney (MDCK) cells in low K+ medium and studied the time course and magnitude of change in the relative abundance of the two Na-K-ATPase subunits (α and β), in the synthesis rate of the subunits, and in the relative abundance of α- and β-mRNA. When cells were incubated in medium containing 0.25 mM K+, intracellular Na+ increased. The relative abundance of Na-K-ATPase subunits, measured with [125I]-labelled immunoblots of cell homogenates, increases such that after 24 h α was 1.71 +/- 0.33 and β was 1.67 +/- 0.22 times control. After 8 h of K+ depletion, α-synthesis rate, measured by immunoprecipitation of pulse-labelled cells, increased to 2.30 +/- 0.50 and beta increased to 2.07 +/- 0.42 times control. The α- and β-subunit mRNA abundance, measured by hybridizing α- and β-cDNA probes to total RNA, increased within 30 min to 1.93 +/- 0.24 and 2.29 +/- 0.64 times control, respectively. They conclude that regulatory adjustments of Na-K-ATPase abundance involve an increase in translation after a rapid and coordinate increase in the concentrations of α- and β-subunit mRNA

  16. Synchronous In Situ ATPase Activity, Mechanics, and Ca2+ Sensitivity of Human and Porcine Myocardium

    Czech Academy of Sciences Publication Activity Database

    Griffiths, P. J.; Isackson, H.; Pelc, Radek; Redwood, C.S.; Funari, S.S.; Watkins, H.; Ashley, C. C.

    2009-01-01

    Roč. 97, č. 9 (2009), s. 2503-2512. ISSN 0006-3495 R&D Projects: GA MŠk(CZ) LC06063 Grant ostatní: EC(XE) RII3-CT-2004-506008 Institutional research plan: CEZ:AV0Z50110509 Keywords : myocardium * actomyosin-ATPase * synchrotron-radiation Subject RIV: ED - Physiology Impact factor: 4.390, year: 2009

  17. Maternal inheritance in polyploid fish inferred from mitochondrial ATPase genes analysis

    Institute of Scientific and Technical Information of China (English)

    Jinpeng Yan; Xinhong Guo; Shaojun Liu; Jun Xiao; Zhen Liu; Yubao Chen; Yun Liu

    2009-01-01

    The sequences of the ATPase8/6 genes for the triploid, tetraploid and pentaploid hybrids as well as for their male parent blunt snout bream were determined. In order to examine mitochondrial maternal inheritance, the sequences were subjected to a comparative sequence analysis with the homologous sequences of red crucian carp, their female parent, and zebrafish as the outgroup. Base compo-sition and variation as well as the divergences based on nucleotide sequences and deduced amino acid sequences were calculated. Phy-logenetic trees were also constructed with maximum parsimony (MP), minimum evolution (ME), neighbor joining (NJ) and the unweighted pair group method with arithmetic mean (UPGMA) algorithms in MEGA 3.1. The results showed that most nucleotide sub-stitutions occurred at the third codon position of the two genes and thus represented synonymous mutations. The nucleotide sequence divergences of the ATPase8/6 genes ranged from 0.0% to 21.6% among ingroup samples (three types of polyploids and their parents), and 27.0-28.2% between their ingroup and the outgroup samples. All the polyploids were considerably closer in sequence relationship to the female parent red crucian carp (0.0-3.3%) compared to their male parent blunt snout bream (21.0-21.6%). The phylogenetic trees also showed a similar result. In conclusion, the mitochondrial ATPase8/6 genes of artificial polyploid fish stringently indicated maternal inheritance. Our results also suggested that the ATPase8/6 genes are valuable genetic markers to track genealogies and variations in the progenies of the hybrids.

  18. Mitochondrial ultrastructural and atpase changes during the life cycle of Ascaris Suum

    OpenAIRE

    Rodrick, G E; S. D. Long; W. A. Sodeman Junior; Smith, D. L.

    1982-01-01

    Ultrastructural morphology and ATPase specific activities of mitochondria isolated from 1-celled fertilized egg, 10-day embryo, 21-day infective larvae and adult body wall muscle of Ascaris suum and rat liver were determined and compared. Although cristae of both muscle and egg mitochondria contained numerous elementary particles with head pieces of conventional diameter (85 A), each muscle mitochondrion contained relatively few, short cristae with a diminished frequency of elementary particl...

  19. Alteration in expression of the rat mitochondrial ATPase 6 gene during Pneumocystis carinii infection

    Directory of Open Access Journals (Sweden)

    Bartlett Marilyn S

    2001-06-01

    Full Text Available Abstract Background Pneumocystis carinii causes pneumonia in immunocompromised patients with a high morbidity and mortality rate, but the interaction between this organism and the host cell is not well understood. The purpose of this research was to study the response of host cells to P. carinii infection on a molecular level. Results The technique of mRNA differential display was used to detect genes whose expression may be affected by P. carinii infection. The nucleotide sequence of one differentially displayed DNA fragment was found to be identical to that of the rat mitochondrial ATPase 6 gene, which is a subunit of the F0F1-ATP synthase complex. A four-fold increase in expression of this gene was verified by Northern blot analysis of total RNA extracted from P. carinii-infected rat lung versus that from mock-infected rat lung. Localization of the cells containing ATPase 6 mRNA was accomplished by in situ hybridization. In sections of non-infected rat lung, these cells were found lining the distal parts of the respiratory tree and in apical areas of the alveoli. Histological location of these cells suggested that they were Clara cells and type II pneumocytes. This hypothesis was confirmed by co-localizing the mRNAs for ATPase 6 and surfactant protein B (SP-B to the same cells by two-color fluorescent in situ hybridization. Conclusions The ATPase 6 gene is over expressed during P. carinii infection, and type II pneumocytes and Clara cells are the cell types responsible for this over-expression.

  20. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.

    Science.gov (United States)

    Raimunda, Daniel; González-Guerrero, Manuel; Leeber, Blaise W; Argüello, José M

    2011-06-01

    Cu(+)-ATPases play a key role in bacterial Cu(+) homeostasis by participating in Cu(+) detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P(1B-1) type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu(+) with high affinity in a trigonal planar geometry. The cytoplasmic Cu(+) chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu(+) is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu(+)-ATPases drive cytoplasmic Cu(+) efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu(+)-efflux pumps responsible for Cu(+) tolerance, like the Escherichia coli CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments. PMID:21210186

  1. Reaction sequence and molecular mass of a Cl(-)-translocating P-type ATPase.

    OpenAIRE

    Gerencser, G A; Zelezna, B

    1993-01-01

    The basolateral membranes of Aplysia californica foregut absorptive cells contain both Cl(-)-stimulated ATPase and ATP-dependent Cl- transport activities, and each was inhibited by orthovanadate. Both of these orthovanadate-sensitive activities were reconstituted into proteoliposomes. The reaction sequence kinetics were determined by [gamma-32P]ATP-induced phosphorylation of the reconstituted Cl- pump. Rapid phosphorylation and dephosphorylation kinetics of acyl phosphate bonding were confirm...

  2. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity.

    Science.gov (United States)

    Ledoux, Sarah; Guthrie, Christine

    2016-06-01

    Brr2 is an RNA-dependent ATPase required to unwind the U4/U6 snRNA duplex during spliceosome assembly. Mutations within the ratchet helix of the Brr2 RNA binding channel result in a form of degenerative human blindness known as retinitis pigmentosa (RP). The biochemical consequences of these mutations on Brr2's RNA binding, helicase, and ATPase activity have not yet been characterized. Therefore, we identified the largest construct of Brr2 that is soluble in vitro, which truncates the first 247 amino acids of the N terminus (Δ247-Brr2), to characterize the effects of the RP mutations on Brr2 activity. The Δ247-Brr2 RP mutants exhibit a gradient of severity of weakened RNA binding, reduced helicase activity, and reduced ATPase activity compared with wild type Δ247-Brr2. The globular C-terminal Jab1/Mpn1-like domain of Prp8 increases the ability of Δ247-Brr2 to bind the U4/U6 snRNA duplex at high pH and increases Δ247-Brr2's RNA-dependent ATPase activity and the extent of RNA unwinding. However, this domain of Prp8 does not differentially affect the Δ247-Brr2 RP mutants compared with the wild type Δ247-Brr2. When stimulated by Prp8, wild type Δ247-Brr2 is able to unwind long stable duplexes in vitro, and even the RP mutants capable of binding RNA with tight affinity are incapable of fully unwinding short duplex RNAs. Our data suggest that the RP mutations within the ratchet helix impair Brr2 translocation through RNA helices. PMID:27072132

  3. Vanadate and phosphotransferases with special emphasis on ouabain/Na, K-ATPase interaction

    International Nuclear Information System (INIS)

    A short introduction to the chemistry and possible physiological or toxicological role of vanadium is given. The +5 oxidation state, vanadate, is a very efficient inhibitor of several phosphotransferases and for that reason a prosperous tool in the study of such enzymes. Special emphasis is placed on studies with vanadate on the sodium pump. Vanadate appears to supplement ouabain as high affinity inhibitor of Na,K-ATPase. They are also complementary to one another since vanadate binds to the cytoplasmic aspect and ouabain to the extracellular side of the cell membrane, and moreover, they potentiate the binding of one another. The hypothesis that vanadate may act as a transition state analogue of phosphate seems supported by the observation that vanadate, like phosphate, is able to induce ouabain binding to Na,K-ATPase. The vanadate affinity is much higher than that of phosphate, however, and vanadate remains bound in a rather stable enzyme-vanadate-ouabain complex. Fluorescene studies indicate that different subspecies of an E2-conformation of the enzyme is obtained with vanadate and with ouabain. In molecular studies on Na,K-ATPase, e.g. in studies on the protein folding through the plasma-membrane, one can imagine that the simultaneous binding of an extracellular marker, ouabain, and of the intracellular marker, vanadate, may be most helpful tools. A proposed physiological regulatory role of vanadium on the pump activity seems less likely considering the simultaneous acceleration of K+-uptake which is probably due to adenylate cyclase activation. Vanadate seems more likely to have a pharmacological role as a cofactor for digitals binding to Na,K-ATPase. Finally, the vasoconstriction evoked by vanadate could indicate a pathophysiological role of the ion and vanadate could then become useful tool in experimental hypertension and uremia. (author)

  4. Carnosine prevents necrotic and apoptotic death of rat thymocytes via ouabain sensitive Na/K-ATPase

    OpenAIRE

    Smolyaninova, Larisa V.; Dergalev, Alexander A.; Kulebyakin, Konstantin Y.; Carpenter, David O.; Boldyrev, Alexander A.

    2012-01-01

    It is known that ouabain, a selective inhibitor of Na/K-ATPase, can cause not only activation of signal cascades, which regulate the cell viability, but also can cause free radical accumulation, which can evoke the oxidative stress. We have shown that nanomolar concentrations of ouabain result in the temporary increase in the level of intracellular free radicals but the millimolar concentration of ouabain induces a stable intracellular accumulation of free radicals in rat thymocytes. The incr...

  5. [Changes of sarcolemma Na+/K+ ATPase and sarcoplasmic reticulum membrane Ca2+ ATPase activity after stem cell transplantation in chronic heart failure].

    Science.gov (United States)

    Fan, Zhongcai; Chen, Mao; Deng, Juelin; Liu, Xiaojing; Zhang, Li; Rao, Li; Yang, Qing; Huang, Dejia

    2007-02-01

    To assess the changes of sarcolemma Na+/K+ ATPase (CMNKA) and sarcoplasmic reticulum membrane Ca2+ ATPase (SERCA) activities after stem cells transplantation in heart failure. Rabbit was used as heart failure model by intravenously injecting adriamycin. Autologous bone marrow mononuclear cells (BMCs), bone marrow mesenchymal stem cells (MSCs) or skeletal myoblasts (SMs) were introduced into coronary arteies through the root of aorta when two balloons occluding just above sinus of Valsalva. After 4 weeks, left ventricular ejection fraction (LVEF)was evaluated by echocardiography, and the activities of CMNKA and SERCA were measured by colorimeter. In BMCs (n=8)and MSCs (n=8) group, LVEF were significantly improved (P SMs group (n=6) compared to sham group (n=8). The CMNKA activity in all stem cells groups was significantly increased compared to sham group (P < 0.05). Meanwhile, in comparison with sham group, the incremental tendencies of SERCA activity were seen in stem cells groups. In conclusion, stem cells transplantation could increase the activities of CMNKA and SERCA in heart failure, a possible mechanism to improve heart function. PMID:17333908

  6. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  7. Nanosized free-energy transducer F1-ATPase achieves 100% efficiency at finite time operation

    CERN Document Server

    Toyabe, Shoichi

    2012-01-01

    The free-energy transduction at 100% efficiency is not prohibited by thermodynamic laws. However, it is usually reached only at the quasi-static limit such as the macroscopic piston pulled or pushed at the infinitely slow velocity. If we operate the piston quickly, turbulence is inevitable and irreversible heat dissipates through the microscopic degrees of freedom. Here, we evaluated the work performed by the nano-sized biological free-energy transducer F1-ATPase by single-molecule experiments on the basis of nonequilibrium theory. We show that the F1-ATPase achieves a nearly 100% free-energy conversion efficiency even far from quasistatic process for both the mechanical-to-chemical and chemical-to-mechanical transductions. Such a high efficiency at a finite-time operation is not expected for macroscopic engines and highlights a remarkable property of the nano-sized engines working in the energy scale of k_{B}T. Some of the microscopic degrees of freedom may not be hidden but accessible to the F1-ATPase. Henc...

  8. Mitotic phosphorylation of VCIP135 blocks p97ATPase-mediated Golgi membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Totsukawa, Go; Matsuo, Ayaka; Kubota, Ayano; Taguchi, Yuya; Kondo, Hisao, E-mail: hk228@med.kyushu-u.ac.jp

    2013-04-05

    Highlights: •VCIP135 is mitotically phosphorylated on Threonine-760 and Serine-767 by Cdc2. •Phosphorylated VCIP135 does not bind to p97ATPase. •The phosphorylation of VCIP135 inhibits p97ATPase-mediated Golgi membrane fusion. -- Abstract: In mammals, the Golgi apparatus is disassembled early mitosis and reassembled at the end of mitosis. For Golgi disassembly, membrane fusion needs to be blocked. Golgi biogenesis requires two distinct p97ATPase-mediated membrane fusion, the p97/p47 and p97/p37 pathways. We previously reported that p47 phosphorylation on Serine-140 and p37 phosphorylation on Serine-56 and Threonine-59 result in mitotic inhibition of the p97/p47 and the p97/p37 pathways, respectively [11,14]. In this study, we show another mechanism of mitotic inhibition of p97-mediated Golgi membrane fusion. We clarified that VCIP135, an essential factor in both p97 membrane fusion pathways, is phosphorylated on Threonine-760 and Serine-767 by Cdc2 at mitosis and that this phosphorylated VCIP135 does not bind to p97. An in vitro Golgi reassembly assay revealed that VCIP135(T760E, S767E), which mimics mitotic phosphorylation, caused no cisternal regrowth. Our results indicate that the phosphorylation of VCIP135 on Threonine-760 and Serine-767 inhibits p97-mediated Golgi membrane fusion at mitosis.

  9. Subcellular localization of calcium and Ca-ATPase activity during nuclear maturation in Bufo arenarum oocytes.

    Science.gov (United States)

    Ramos, Inés; Cisint, Susana B; Crespo, Claudia A; Medina, Marcela F; Fernández, Silvia N

    2009-08-01

    The localization of calcium and Ca-ATPase activity in Bufo arenarum oocytes was investigated by ultracytochemical techniques during progesterone-induced nuclear maturation, under in vitro conditions. No Ca2+ deposits were detected in either control oocytes or progesterone-treated ones for 1-2 h. At the time when nuclear migration started, electron dense deposits of Ca2+ were visible in vesicles, endoplasmic reticulum cisternae and in the space between the annulate lamellae membranes. Furthermore, Ca-ATPase activity was also detected in these membrane structures. As maturation progressed, the cation deposits were observed in the cytomembrane structures, which underwent an important reorganization and redistribution. Thus, they moved from the subcortex and became located predominantly in the oocyte cortex area when nuclear maturation ended. Ca2+ stores were observed in vesicles surrounding or between the cortical granules, which are aligned close to the plasma membrane. The positive Ca-ATPase reaction in these membrane structures could indicate that the calcium deposit is an ATP-dependent process. Our results suggest that during oocyte maturation calcium would be stored in membrane structures where it remains available for release at the time of fertilization. Data obtained under our experimental conditions indicate that calcium from the extracellular medium would be important for the oocyte maturation process. PMID:19397840

  10. Identification of Yeast V-ATPase Mutants by Western Blots Analysis of Whole Cell Lysates

    Science.gov (United States)

    Parra-Belky, Karlett

    2002-11-01

    A biochemistry laboratory was designed for an undergraduate course to help students better understand the link between molecular engineering and biochemistry. Students identified unknown yeast strains with high specificity using SDS-PAGE and Western blot analysis of whole cell lysates. This problem-solving exercise is a common application of biochemistry in biotechnology research. Three different strains were used: a wild-type and two mutants for the proton pump vacuolar ATPase (V-ATPase). V-ATPases are multisubunit enzymes and the mutants used were deletion mutants; each lacked one structural gene of the complex. After three, three-hour labs, mutant strains were easily identified by the students and distinguished from wild-type cells analyzing the pattern of SDS-PAGE distribution of proteins. Identifying different subunits of one multimeric protein allowed for discussion of the structure and function of this metabolic enzyme, which captured the interest of the students. The experiment can be adapted to other multimeric protein complexes and shows improvement of the described methodology over previous reports, perhaps because the problem and its solution are representative of the type of techniques currently used in research labs.

  11. Proton pumping kinetics and origin of nitrate inhibition of tonoplast-type H+-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Tu, S.I.; Nagahashi, G.; Brouillette, J.N.

    1987-08-01

    A tonoplast-type vesicle preparation, substantially free from other subcellular membranes, was obtained from corn roots by equilibrium sucrose density gradient centrifugation. At pH 6.5 and in the presence of chloride ions, the tonoplast-type ATPase activity as measured by Pi release, was inhibited by nitrate ions. The ATPase activity was insensitive to molybdate and vanadate, indicating a minimum nonspecific phosphatase and plasma membrane contamination. The vesicles exhibited an ATP hydrolysis-supported proton uptake which was measured by the absorption change of acridine orange. The ATP hydrolysis supported uptake and the subsequent perturbant-induced release of protons (decay) was described by a kinetic model which was previously developed to evaluate the coupling between proton pumping and the primary energy yielding process for other biomembranes. The proton pumping activity was more sensitive to nitrate ions then was ATP hydrolysis. The differential effect and the kinetic analysis of nitrate inhibition led us to suggest that (i) the coupling between Pi release and proton pumping was indirect in nature and (ii) the primary inhibitory effect of nitrate ion was originated from an interaction with a protogenic protein domain which is functionally linked to the ATPase in the tonoplast-type membrane.

  12. Characterization of a DEAD box ATPase/RNA helicase protein of Arabidopsis thaliana.

    Science.gov (United States)

    Okanami, M; Meshi, T; Iwabuchi, M

    1998-06-01

    We have isolated cDNAs encoding a novel member of the DEAD box RNA helicase family from Arabidopsis. The protein, named AtDRH1, is composed of 619 amino acids and the central portion has high similarity with the helicase core region of a prototypic RNA helicase, the human nuclear protein p68. The N- and C-terminal regions are considerably diverged from the animal and yeast p68 homologs at the amino acid sequence level, but like the p68 subfamily members, an RGG box-like domain is present near the C-terminus. RNA blot analysis showed that the AtDRH1 transcript accumulates at a high level and almost equally in every part of the Arabidopsis plant. The purified, recombinant AtDRH1 was capable of unwinding double-stranded RNA in the presence of ATP or dATP and of hydrolyzing ATP. The ATPase activity was stimulated by some single-stranded RNAs and DNAs, including poly(A) and poly(dT), but not by poly(dA). The ability of the polynucleotides to stimulate the ATPase activity was largely consistent with their affinity for AtDRH1. These results show that AtDRH1 is a novel type of ATP/dATP-dependent RNA helicase and polynucleotide-dependent ATPase. PMID:9592148

  13. The Marine Natural Product Manzamine A Targets Vacuolar ATPases and Inhibits Autophagy in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amy E. Wright

    2013-09-01

    Full Text Available Manzamine A, a member of the manzamine alkaloids, was originally isolated from marine sponges of the genus Haliclona. It was recently shown to have activity against pancreatic cancer cells, but the precise mechanism of action remained unclear. To further our understanding of the mechanism of action of manzamine A, chemogenomic profiling in the yeast S. cerevisiae was performed, suggesting that manzamine A is an uncoupler of vacuolar ATPases. Fluorescence microscopy confirmed this effect on yeast vacuoles, where manzamine A produced a phenotype very similar to that of the established v-ATPase inhibitor bafilomycin A1. In pancreatic cancer cells, 10 µM manzamine A affected vacuolar ATPase activity and significantly increased the level of autophagosome marker LC3-II and p62/SQSTM1 as observed by western blot analysis. Treatment with manzamine A in combination with bafilomycin A1 (inhibitor of autophagosome-lysosome fusion did not change the levels of LC3-II when compared to cells treated with bafilomycin A1 alone, suggesting that manzamine A is a potential inhibitor of autophagy by preventing autophagosome turnover. As autophagy is essential for pancreatic tumor growth, blocking this pathway with manzamine A suggests a promising strategy for the treatment of pancreatic cancer.

  14. Increased calcium deposits and decreased Ca2+-ATPase in right ventricular myocardium of ascitic broiler chickens.

    Science.gov (United States)

    Li, K; Qiao, J; Zhao, L; Dong, S; Ou, D; Wang, J; Wang, H; Xu, T

    2006-11-01

    Right ventricular hypertrophy and failure is an important step in the development of ascites syndrome (AS) in broiler chickens. Cytoplasmic calcium concentration is a major regulator of cardiac contractile function and various physiological processes in cardiac muscle cells. The purpose of this study was to measure the right ventricular pressure and investigate the precise ultrastructural location of Ca(2+) and Ca(2+)-ATPase in the right ventricular myocardium of chickens with AS induced by low ambient temperature. The results showed that the right ventricular diastolic pressure of ascitic broilers was significantly higher than that of control broilers (P ascitic broilers was significantly lower than that of the controls (P ascitic broilers, whereas in the age-matched control broilers, calcium deposits were much less. The Ca(2+)-ATPase reactive products were obviously found on the sarcoplasmic reticulum and mitochondrial membrane of the control right ventricular myocardium, but rarely observed in the ascitic broilers. The data suggest that in ascitic broilers there is the right ventricular diastolic dysfunction, in which the overload of intracellular calcium and the decreased Ca(2+)-ATPase activity might be the important factors. PMID:17054481

  15. Identification of the mitochondrially encoded subunit 6 of F1FO ATPase in Trypanosoma brucei.

    Science.gov (United States)

    Škodová-Sveráková, Ingrid; Horváth, Anton; Maslov, Dmitri A

    2015-06-01

    Kinetoplast maxicircle DNA of trypanosomatids encodes eighteen proteins. RNA editing is required to confer translatability to mRNA for twelve of these. Sequence conservation of the predicted hydrophobic polypeptides indicates that they represent functional components of the respiratory chain. Yet, so far only two of those, cytochrome c oxidase subunit I and apocytochrome b of cytochrome c reductase, have been identified with biochemical methods. Here we report on identification of A6 subunit of F1FO ATPase encoded by a pan-edited mRNA in Trypanosoma brucei. The polypeptide was present among the (35)S-labeled mitochondrial translation products characterized by anomalous migration in denaturing 2D gels. It was identified as an ATPase subunit by co-migration with this complex in Blue Native 2D gels. A partial N-terminal sequence of the corresponding polypeptide present in the gel-purified ATPase complex from Leishmania tarentolae was consistent with the predicted A6 sequence. PMID:26276057

  16. MOTIFSIM: A web tool for detecting similarity in multiple DNA motif datasets.

    Science.gov (United States)

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2015-07-01

    Currently, there are a number of motif detection tools available that possess unique functionality. These tools often report different motifs, and therefore use of multiple tools is generally advised since common motifs reported by multiple tools are more likely to be biologically significant. However, results produced by these different tools need to be compared and existing similarity detection tools only allow comparison between two data sets. Here, we describe a motif similarity detection tool (MOTIFSIM) possessing a web-based, user-friendly interface that is capable of detecting similarity from multiple DNA motif data sets concurrently. Results can either be viewed online or downloaded. Users may also download and run MOTIFSIM as a command-line tool in stand-alone mode. The web tool, along with its command-line version, user manuals, and source codes, are freely available at http://biogrid-head.engr.uconn.edu/motifsim/. PMID:26156781

  17. A generalized profile syntax for biomolecular sequence motifs and its function in automatic sequence interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, P. [Swiss Institute for Experimental Cancer Research, Lausanne (Switzerland); Bairoch, A. [Centre Medical Universitaire, Geneva (Switzerland)

    1994-12-31

    A general syntax for expressing bimolecular sequence motifs is described, which will be used in future releases of the PROSITE data bank and in a similar collection of nucleic acid sequence motifs currently under development. The central part of the syntax is a regular structure which can be viewed as a generalization of the profiles introduced by Gribskov and coworkers. Accessory features implement specific motif search strategies and provide information helpful for the interpretation of predicted matches. Two contrasting examples, representing E. coli promoters and SH3 domains respectively, are shown to demonstrate the versatility of the syntax, and its compatibility with diverse motif search methods. It is argued, that a comprehensive machine-readable motif collection based on the new syntax, in conjunction with a standard search program, can serve as a general-purpose sequence interpretation and function prediction tool.

  18. RSAT::Plants: Motif Discovery Within Clusters of Upstream Sequences in Plant Genomes.

    Science.gov (United States)

    Contreras-Moreira, Bruno; Castro-Mondragon, Jaime A; Rioualen, Claire; Cantalapiedra, Carlos P; van Helden, Jacques

    2016-01-01

    The plant-dedicated mirror of the Regulatory Sequence Analysis Tools (RSAT, http://plants.rsat.eu ) offers specialized options for researchers dealing with plant transcriptional regulation. The website contains whole-sequenced genomes from species regularly updated from Ensembl Plants and other sources (currently 40), and supports an array of tasks frequently required for the analysis of regulatory sequences, such as retrieving upstream sequences, motif discovery, motif comparison, and pattern matching. RSAT::Plants also integrates the footprintDB collection of DNA motifs. This protocol explains step-by-step how to discover DNA motifs in regulatory regions of clusters of co-expressed genes in plants. It also explains how to empirically control the significance of the result, and how to associate the discovered motifs with putative binding factors. PMID:27557774

  19. Distance-based identification of structure motifs in proteins using constrained frequent subgraph mining.

    Science.gov (United States)

    Huan, Jun; Bandyopadhyay, Deepak; Prins, Jan; Snoeyink, Jack; Tropsha, Alexander; Wang, Wei

    2006-01-01

    Structure motifs are amino acid packing patterns that occur frequently within a set of protein structures. We define a labeled graph representation of protein structure in which vertices correspond to amino acid residues and edges connect pairs of residues and are labeled by (1) the Euclidian distance between the C(alpha) atoms of the two residues and (2) a boolean indicating whether the two residues are in physical/chemical contact. Using this representation, a structure motif corresponds to a labeled clique that occurs frequently among the graphs representing the protein structures. The pairwise distance constraints on each edge in a clique serve to limit the variation in geometry among different occurrences of a structure motif. We present an efficient constrained subgraph mining algorithm to discover structure motifs in this setting. Compared with contact graph representations, the number of spurious structure motifs is greatly reduced. Using this algorithm, structure motifs were located for several SCOP families including the Eukaryotic Serine Proteases, Nuclear Binding Domains, Papain-like Cysteine Proteases, and FAD/NAD-linked Reductases. For each family, we typically obtain a handful of motifs within seconds of processing time. The occurrences of these motifs throughout the PDB were strongly associated with the original SCOP family, as measured using a hyper-geometric distribution. The motifs were found to cover functionally important sites like the catalytic triad for Serine Proteases and co-factor binding sites for Nuclear Binding Domains. The fact that many motifs are highly family-specific can be used to classify new proteins or to provide functional annotation in Structural Genomics Projects. PMID:17369641

  20. Bioinformatics Study of Cancer-Related Mutations within p53 Phosphorylation Site Motifs

    Directory of Open Access Journals (Sweden)

    Xiaona Ji

    2014-07-01

    Full Text Available p53 protein has about thirty phosphorylation sites located at the N- and C-termini and in the core domain. The phosphorylation sites are relatively less mutated than other residues in p53. To understand why and how p53 phosphorylation sites are rarely mutated in human cancer, using a bioinformatics approaches, we examined the phosphorylation site and its nearby flanking residues, focusing on the consensus phosphorylation motif pattern, amino-acid correlations within the phosphorylation motifs, the propensity of structural disorder of the phosphorylation motifs, and cancer mutations observed within the phosphorylation motifs. Many p53 phosphorylation sites are targets for several kinases. The phosphorylation sites match 17 consensus sequence motifs out of the 29 classified. In addition to proline, which is common in kinase specificity-determining sites, we found high propensity of acidic residues to be adjacent to phosphorylation sites. Analysis of human cancer mutations in the phosphorylation motifs revealed that motifs with adjacent acidic residues generally have fewer mutations, in contrast to phosphorylation sites near proline residues. p53 phosphorylation motifs are mostly disordered. However, human cancer mutations within phosphorylation motifs tend to decrease the disorder propensity. Our results suggest that combination of acidic residues Asp and Glu with phosphorylation sites provide charge redundancy which may safe guard against loss-of-function mutations, and that the natively disordered nature of p53 phosphorylation motifs may help reduce mutational damage. Our results further suggest that engineering acidic amino acids adjacent to potential phosphorylation sites could be a p53 gene therapy strategy.

  1. Relationship between changes of plasma endothelin (ET) level, ATPase activity of erythrocyte membrane and development of nephropathy in patients with pregnancy induced hypertension

    International Nuclear Information System (INIS)

    Objective: To investigate the possible role played by alteration of plasma ET levels and activities of Na+- K+-APT ase and Ca2+-Mg2+-ATPase of erythrocyte membrane in patients with nephropathy pregnancy induced hypertension. Methods: The concentrations of plasma ET was detected with RIA and erythrocyte membrane ATPase activities were determined with Reilni method in 32 pregnant women with PIH complicated with nephropathy and 70 women with PIH but no nephropathy and 35 normal pregnant women as controls. Results: The plasma ET levels in patients with PHI (both with and without nephropathy) were significantly higher than those in normal preganat women (P+-K+-ATPase and Ca2+-Mg2+-ATPase levels were significantly de- creased (P+-K+-ATPase and Ca2+-Mg2+-ATPase activity of erythrocyte membrane. (authors)

  2. Energy-sensitive regulation of Na+/K+-ATPase by Janus kinase 2.

    Science.gov (United States)

    Bhavsar, Shefalee K; Hosseinzadeh, Zohreh; Brenner, Dirk; Honisch, Sabina; Jilani, Kashif; Liu, Guoxing; Szteyn, Kalina; Sopjani, Mentor; Mak, Tak W; Shumilina, Ekaterina; Lang, Florian

    2014-02-15

    Janus kinase 2 (JAK2) contributes to intracellular signaling of leptin and erythropoietin, hormones protecting cells during energy depletion. The present study explores whether JAK2 is activated by energy depletion and regulates Na(+)/K(+)-ATPase, the major energy-consuming pump. In Jurkat cells, JAK2 activity was determined by radioactive kinase assay, phosphorylated JAK2 detected by Western blotting, ATP levels measured by luciferase assay, as well as Na(+)/K(+)-ATPase α1-subunit transcript and protein abundance determined by real-time PCR and Western blotting, respectively. Ouabain-sensitive K(+)-induced currents (Ipump) were measured by whole cell patch clamp. Ipump was further determined by dual-electrode voltage clamp in Xenopus oocytes injected with cRNA-encoding JAK2, active (V617F)JAK2, or inactive (K882E)JAK2. As a result, in Jurkat T cells, JAK2 activity significantly increased following energy depletion by sodium azide (NaN3) or 2,4- dinitro phenol (DNP). DNP- and NaN3-induced decrease of cellular ATP was significantly augmented by JAK2 inhibitor AG490 and blunted by Na(+)/K(+)-ATPase inhibitor ouabain. DNP decreased and AG490 enhanced Ipump as well as Na(+)/K(+)-ATPase α1-subunit transcript and protein abundance. The α1-subunit transcript levels were also enhanced by signal transducer and activator of transcription-5 inhibitor CAS 285986-31-4. In Xenopus oocytes, Ipump was significantly decreased by expression of JAK2 and (V617F)JAK2 but not of (K882E)JAK2, effects again reversed by AG490. In (V617F)JAK2-expressing Xenopus oocytes, neither DNP nor NaN3 resulted in further decline of Ipump. In Xenopus oocytes, the effect of (V617F)JAK2 on Ipump was not prevented by inhibition of transcription with actinomycin. In conclusion, JAK2 is a novel energy-sensing kinase that curtails energy consumption by downregulating Na(+)/K(+)-ATPase expression and activity. PMID:24304834

  3. Leishmania amazonensis: Increase in ecto-ATPase activity and parasite burden of vinblastine-resistant protozoa.

    Science.gov (United States)

    Giarola, Naira Lígia Lima; Silveira, Thaís Souza; Inacio, Job Domingos Filho; Vieira, Lisvane Paes; Almeida-Amaral, Elmo Eduardo; Meyer-Fernandes, José Roberto

    2014-11-01

    Leishmania amazonensis is a protozoan parasite that induces mucocutaneous and diffuse cutaneous lesions upon infection. An important component in treatment failure is the emergence of drug-resistant parasites. It is necessary to clarify the mechanism of resistance that occurs in these parasites to develop effective drugs for leishmaniasis treatment. Promastigote forms of L. amazonensis were selected by gradually increasing concentrations of vinblastine and were maintained under continuous drug pressure (resistant cells). Vinblastine-resistant L. amazonensis proliferated similarly to control parasites. However, resistant cells showed changes in the cell shape, irregular flagella and a decrease in rhodamine 123 accumulation, which are factors associated with the development of resistance, suggesting the MDR phenotype. The Mg-dependent-ecto-ATPase, an enzyme located on cell surface of Leishmania parasites, is involved in the acquisition of purine and participates in the adhesion and infectivity process. We compared control and resistant L. amazonensis ecto-enzymatic activities. The control and resistant Leishmania ecto-ATPase activities were 16.0 ± 1.5 nmol Pi × h(-1) × 10(-7) cells and 40.0 ± 4.4 nmol Pi × h(-1) × 10(-7)cells, respectively. Interestingly, the activity of other ecto-enzymes present on the L. amazonensis cell surface, the ecto-5' and 3'-nucleotidases and ecto-phosphatase, did not increase. The level of ecto-ATPase modulation is related to the degree of resistance of the cell. Cells resistant to 10 μM and 60 μM of vinblastine have ecto-ATPase activities of 22.7 ± 0.4 nmol Pi × h(-1) × 10(-7) cells and 33.8 ± 0.8 nmol Pi × h(-1) × 10(-7)cells, respectively. In vivo experiments showed that both lesion size and parasite burden in mice infected with resistant parasites are greater than those of L. amazonensis control cells. Furthermore, our data established a relationship between the increase in ecto-ATPase activity and greater infectivity and

  4. Feeding induces translocation of vacuolar proton ATPase and pendrin to the membrane of leopard shark (Triakis semifasciata) mitochondrion-rich gill cells

    OpenAIRE

    Roa, JN; Munévar, CL; Tresguerres, M.

    2014-01-01

    In this study we characterized mitochondrion-rich (MR) cells and regulation of acid/base (A/B) relevant ion-transporting proteins in leopard shark (Triakis semifasciata) gills. Immunohistochemistry revealed that leopard shark gills posses two separate cell populations that abundantly express either Na+/K+-ATPase (NKA) or V-H+-ATPase (VHA), but not both ATPases together. Co-immunolocalization with mitochondrial Complex IV demonstrated, for the first time in shark gills, that both NKA- and VHA-...

  5. Na+/K+-ATPase α1 mRNA expression in the gill and rectal gland of the Atlantic stingray, Dasyatis sabina, following acclimation to increased salinity

    OpenAIRE

    Evans, Andrew N.; Lambert, Faith N

    2015-01-01

    Background The salt-secreting rectal gland plays a major role in elasmobranch osmoregulation, facilitating ion balance in hyperosmotic environments in a manner analogous to the teleost gill. Several studies have examined the central role of the sodium pump Na+/K+-ATPase in osmoregulatory tissues of euryhaline elasmobranch species, including regulation of Na+/K+-ATPase activity and abundance in response to salinity acclimation. However, while the transcriptional regulation of Na+/K+-ATPase in ...

  6. Motif mediated protein-protein interactions as drug targets.

    Science.gov (United States)

    Corbi-Verge, Carles; Kim, Philip M

    2016-01-01

    Protein-protein interactions (PPI) are involved in virtually every cellular process and thus represent an attractive target for therapeutic interventions. A significant number of protein interactions are frequently formed between globular domains and short linear peptide motifs (DMI). Targeting these DMIs has proven challenging and classical approaches to inhibiting such interactions with small molecules have had limited success. However, recent new approaches have led to the discovery of potent inhibitors, some of them, such as Obatoclax, ABT-199, AEG-40826 and SAH-p53-8 are likely to become approved drugs. These novel inhibitors belong to a wide range of different molecule classes, ranging from small molecules to peptidomimetics and biologicals. This article reviews the main reasons for limited success in targeting PPIs, discusses how successful approaches overcome these obstacles to discovery promising inhibitors for human protein double minute 2 (HDM2), B-cell lymphoma 2 (Bcl-2), X-linked inhibitor of apoptosis protein (XIAP), and provides a summary of the promising approaches currently in development that indicate the future potential of PPI inhibitors in drug discovery. PMID:26936767

  7. The bridge: suggestions about the meaning of a pictorial motif

    Directory of Open Access Journals (Sweden)

    Omar Calabrese

    2011-12-01

    Full Text Available Developing research begun at the Warburg Institute in 1983, this paper reflects on the construction of meaning in a work of art, through the analysis of the bridge’s function in painting. It tries to reply to some objections the author received there from Gombrich, about the chance of finding a stable content in the configuration of the bridge. Hence, the study reconsiders the concept of ‘motif’ applied to this structure. In a semiotic perspective a motif is partially independent as regards to a single textual organization, because it has a mobile and migrant feature. However, it is also partially flexible as it depends upon the same organization. The inquiry shows that bridge’s internal structure corresponds to the category of a ‘junction’, with two opposite items, ‘conjunction’ and ‘disjunction’. The development of this theoretical object can be carried out also by figures that are not ‘bridges’, in the natural sense of the word. Furthermore, its meaning does not depend upon the number of examples we can find but only upon their relevance for constructing a ‘grammar of cases’. Differently from the traditional iconographical approach, but also from panofskian iconology, the analysis moves not only towards the simple or complex content of a figure but also towards its description.

  8. Metagenome fragment classification based on multiple motif-occurrence profiles

    Directory of Open Access Journals (Sweden)

    Naoki Matsushita

    2014-09-01

    Full Text Available A vast amount of metagenomic data has been obtained by extracting multiple genomes simultaneously from microbial communities, including genomes from uncultivable microbes. By analyzing these metagenomic data, novel microbes are discovered and new microbial functions are elucidated. The first step in analyzing these data is sequenced-read classification into reference genomes from which each read can be derived. The Naïve Bayes Classifier is a method for this classification. To identify the derivation of the reads, this method calculates a score based on the occurrence of a DNA sequence motif in each reference genome. However, large differences in the sizes of the reference genomes can bias the scoring of the reads. This bias might cause erroneous classification and decrease the classification accuracy. To address this issue, we have updated the Naïve Bayes Classifier method using multiple sets of occurrence profiles for each reference genome by normalizing the genome sizes, dividing each genome sequence into a set of subsequences of similar length and generating profiles for each subsequence. This multiple profile strategy improves the accuracy of the results generated by the Naïve Bayes Classifier method for simulated and Sargasso Sea datasets.

  9. Sulfur-induced structural motifs on copper and gold surfaces

    Science.gov (United States)

    Walen, Holly

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. We choose very specific conditions: very low temperature (5 K), and very low sulfur coverage (≤ 0.1 monolayer). In this region of temperature-coverage space, which has not been examined previously for these adsorbate-metal systems, the effects of individual interactions between metals and sulfur are most apparent and can be assessed extensively with the aid of theory and modeling. Furthermore, at this temperature diffusion is minimal and relatively-mobile species can be isolated, and at low coverage the structures observed are not consumed by an extended reconstruction. The primary experimental technique is scanning tunneling microscopy (STM). The experimental observations presented here---made under identical conditions---together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  10. Network motifs that stabilize the hybrid epithelial/mesenchymal phenotype

    Science.gov (United States)

    Jolly, Mohit Kumar; Jia, Dongya; Tripathi, Satyendra; Hanash, Samir; Mani, Sendurai; Ben-Jacob, Eshel; Levine, Herbert

    Epithelial to Mesenchymal Transition (EMT) and its reverse - MET - are hallmarks of cancer metastasis. While transitioning between E and M phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) phenotype that enables collective cell migration as a cluster of Circulating Tumor Cells (CTCs). These clusters can form 50-times more tumors than individually migrating CTCs, underlining their importance in metastasis. However, this hybrid E/M phenotype has been hypothesized to be only a transient one that is attained en route EMT. Here, via mathematically modeling, we identify certain `phenotypic stability factors' that couple with the core three-way decision-making circuit (miR-200/ZEB) and can maintain or stabilize the hybrid E/M phenotype. Further, we show experimentally that this phenotype can be maintained stably at a single-cell level, and knockdown of these factors impairs collective cell migration. We also show that these factors enable the association of hybrid E/M with high stemness or tumor-initiating potential. Finally, based on these factors, we deduce specific network motifs that can maintain the E/M phenotype. Our framework can be used to elucidate the effect of other players in regulating cellular plasticity during metastasis. This work was supported by NSF PHY-1427654 (Center for Theoretical Biological Physics) and the CPRIT Scholar in Cancer Research of the State of Texas at Rice University.

  11. Tyrosine motifs are required for prestin basolateral membrane targeting

    Directory of Open Access Journals (Sweden)

    Yifan Zhang

    2015-01-01

    Full Text Available Prestin is targeted to the lateral wall of outer hair cells (OHCs where its electromotility is critical for cochlear amplification. Using MDCK cells as a model system for polarized epithelial sorting, we demonstrate that prestin uses tyrosine residues, in a YXXΦ motif, to target the basolateral surface. Both Y520 and Y667 are important for basolateral targeting of prestin. Mutation of these residues to glutamine or alanine resulted in retention within the Golgi and delayed egress from the Golgi in Y667Q. Basolateral targeting is restored upon mutation to phenylalanine suggesting the importance of a phenol ring in the tyrosine side chain. We also demonstrate that prestin targeting to the basolateral surface is dependent on AP1B (μ1B, and that prestin uses transferrin containing early endosomes in its passage from the Golgi to the basolateral plasma membrane. The presence of AP1B (μ1B in OHCs, and parallels between prestin targeting to the basolateral surface of OHCs and polarized epithelial cells suggest that outer hair cells resemble polarized epithelia rather than neurons in this important phenotypic measure.

  12. Changes of mitochondrial structure, ATPase and Ca2+ concentration in spermatogenic cells of mouse testes induced by low dose radiation

    International Nuclear Information System (INIS)

    Objective: To observe the ultrastructure, ATPase activity and Ca2+ concentration ([Ca2+]i) of mitochondria in the sperematogenic cells of mouse testes 3-24 h after low dose radiation with 0.025-0.200 Gy X-rays, and illuminate the effects of mitochondrion structure and relative biological function on apoptosis. Methods: The ultrastructure changes of mitochondria in the spermatogenic cells were observed with transmission electron microscope; the ATPase activity was measured with protein enzymic method; [Ca2+]i was measured indirectly by flow cytometry with Fluo-3 probes. Results: The mitochondria swelled and vacuolizated, and their cristae were broken in the spermatogonia and spermatocytes 12 h after irradiation, and their nuclei were karyopyknosis, the acrosomal vesicle structure was ambiguity, the membrane structure was unclear, and the mitochondria in spermatids were vacuolization. The activities of Na+-K+-ATPase in mouse testis tissue 12 h after irradiated with 0.025-0.200 Gy decreased compared with those with 0 Gy, the Na+-K+-ATPase activities of the cells irradiated with 0.05-0.200 Gy decreased significantly compared with those with 0 Gy (P2+-ATPase of the cells irradiated with 0.025-0.200 Gy decreased significantly compared with those with 0 Gy (P2+]i in mouse testis spermatogenic cells had similar dose-response relationship, [Ca2+]i after irradiated with 0.075 Gy decreased compared with those with 0 Gy (P+-K+-ATPase in mouse testis tissues decreased obviously compared with those at 0 h (P2+-ATPase in mouse testis tissues increased slightly at 3 h, then decreased at 6-24 h compared with those at 0 h (P2+]i in mouse testis spermatogenic cells had similar time course-response relationship, [Ca2+]i at 12 h decreased significantly compared with at 0 h (P2+]i induced by low dose radiation. (authors)

  13. D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs

    International Nuclear Information System (INIS)

    Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatin exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na+, K+-ATPase and Ca2+-ATPase activities in the ampullary tissue with a good dose-response relationship but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na+, K+-ATPase and Ca2+-ATPase activities of the ampullary tissue. D-Methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea pig vestibular labyrinths. D-Methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property

  14. Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity

    DEFF Research Database (Denmark)

    Juel, Carsten

    2008-01-01

    It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber...... type-specific changes in Na(+)-K(+)-ATPase activity in sarcolemmal membranes and in total membranes obtained from control rats and after 30 min of treadmill running. ATPase activity was measured at Na(+) concentrations of 0-80 mM and K(+) concentrations of 0-10 mM. K(m) and V(max) values were obtained...

  15. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.

    Science.gov (United States)

    Sarver, Michael; Zirbel, Craig L; Stombaugh, Jesse; Mokdad, Ali; Leontis, Neocles B

    2008-01-01

    New methods are described for finding recurrent three-dimensional (3D) motifs in RNA atomic-resolution structures. Recurrent RNA 3D motifs are sets of RNA nucleotides with similar spatial arrangements. They can be local or composite. Local motifs comprise nucleotides that occur in the same hairpin or internal loop. Composite motifs comprise nucleotides belonging to three or more different RNA strand segments or molecules. We use a base-centered approach to construct efficient, yet exhaustive search procedures using geometric, symbolic, or mixed representations of RNA structure that we implement in a suite of MATLAB programs, "Find RNA 3D" (FR3D). The first modules of FR3D preprocess structure files to classify base-pair and -stacking interactions. Each base is represented geometrically by the position of its glycosidic nitrogen in 3D space and by the rotation matrix that describes its orientation with respect to a common frame. Base-pairing and base-stacking interactions are calculated from the base geometries and are represented symbolically according to the Leontis/Westhof basepairing classification, extended to include base-stacking. These data are stored and used to organize motif searches. For geometric searches, the user supplies the 3D structure of a query motif which FR3D uses to find and score geometrically similar candidate motifs, without regard to the sequential position of their nucleotides in the RNA chain or the identity of their bases. To score and rank candidate motifs, FR3D calculates a geometric discrepancy by rigidly rotating candidates to align optimally with the query motif and then comparing the relative orientations of the corresponding bases in the query and candidate motifs. Given the growing size of the RNA structure database, it is impossible to explicitly compute the discrepancy for all conceivable candidate motifs, even for motifs with less than ten nucleotides. The screening algorithm that we describe finds all candidate motifs whose

  16. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    Science.gov (United States)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  17. Bioinformatic analysis ofhuman nuclear receptornr5a2(hblf) genomic sequence

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We have cloned the cDNA of human nuclear receptor nrSa2(hb1f) gene and obtained its whole genomic sequence previously. In this work we carried out in-depth bioinformatic analysis on the genomic sequence of nrSa2(hb1f) gene. Sequence comparison and prediction algorithms implicated that there might be additional coding regions in the 210 kb genomic sequence besides known exons,especially in the two largest introns. Comparison of the structures of nr5a loci in different species revealed distinguishable conservation and apparent gene duplication during evolution. The remarkable conservation among promoters of zebrafish, mouse and human nr5a2 genes suggested that they would be regulated by the same transcription factors.

  18. Recurrent motifs as resonant attractor states in the narrative field: a testable model of archetype.

    Science.gov (United States)

    Goodwyn, Erik

    2013-06-01

    At the most basic level, archetypes represented Jung's attempt to explain the phenomenon of recurrent myths and folktale motifs (Jung 1956, 1959, para. 99). But the archetype remains controversial as an explanation of recurrent motifs, as the existence of recurrent motifs does not prove that archetypes exist. Thus, the challenge for contemporary archetype theory is not merely to demonstrate that recurrent motifs exist, since that is not disputed, but to demonstrate that archetypes exist and cause recurrent motifs. The present paper proposes a new model which is unlike others in that it postulates how the archetype creates resonant motifs. This model necessarily clarifies and adapts some of Jung's seminal ideas on archetype in order to provide a working framework grounded in contemporary practice and methodologies. For the first time, a model of archetype is proposed that can be validated on empirical, rather than theoretical grounds. This is achieved by linking the archetype to the hard data of recurrent motifs rather than academic trends in other fields. PMID:23750942

  19. MODA: an efficient algorithm for network motif discovery in biological networks.

    Science.gov (United States)

    Omidi, Saeed; Schreiber, Falk; Masoudi-Nejad, Ali

    2009-10-01

    In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/ PMID:20154426

  20. Comparative Analysis of Regulatory Motif Discovery Tools for Transcription Factor Binding Sites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the post-genomic era, identification of specific regulatory motifs or transcription factor binding sites (TFBSs) in non-coding DNA sequences, which is essential to elucidate transcriptional regulatory networks, has emerged as an obstacle that frustrates many researchers. Consequently, numerous motif discovery tools and correlated databases have been applied to solving this problem. However, these existing methods, based on different computational algorithms, show diverse motif prediction efficiency in non-coding DNA sequences. Therefore, understanding the similarities and differences of computational algorithms and enriching the motif discovery literatures are important for users to choose the most appropriate one among the online available tools. Moreover, there still lacks credible criterion to assess motif discovery tools and instructions for researchers to choose the best according to their own projects. Thus integration of the related resources might be a good approach to improve accuracy of the application. Recent studies integrate regulatory motif discovery tools with experimental methods to offer a complementary approach for researchers, and also provide a much-needed model for current researches on transcriptional regulatory networks. Here we present a comparative analysis of regulatory motif discovery tools for TFBSs.