WorldWideScience

Sample records for atoms li na

  1. Antiproton and proton collisions with the alkali-metal atoms Li, Na, and K

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2008-01-01

    Single-electron ionization and excitation cross sections as well as cross sections for excitation into the first excited p state of the alkali-metal atoms Li(2s), Na(3s), and K(4s) colliding with antiprotons and protons were calculated using a time-dependent channel-coupling approach....... For antiprotons an impact-energy range from 0.25 to 1000 keV and for protons from 2 to 1000 keV was considered. The target atoms are treated as effective one-electron systems using a model potential. The results are compared with theoretical and experimental data from literature and calculated cross sections...

  2. Interaction of antiprotons with Rb atoms and a comparison of antiproton stopping powers of the atoms H, Li, Na, K, and Rb

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Fischer, Nicolas; Saenz, Alejandro

    2009-01-01

    Ionization and excitation cross sections as well as electron-energy spectra and stopping powers of the alkali metal atoms Li, Na, K, and Rb colliding with antiprotons were calculated using a time-dependent channel-coupling approach. An impact-energy range from 0.25 to 4000 keV was considered....... The target atoms are treated as effective one-electron systems using a model potential. The results are compared with calculated cross sections for antiproton-hydrogen atom collisions....

  3. Shifts in the ESR spectra of alkali-metal atoms (Li, Na, K, Rb) on helium nanodroplets.

    Science.gov (United States)

    Hauser, Andreas W; Gruber, Thomas; Filatov, Michael; Ernst, Wolfgang E

    2013-03-18

    He-droplet-induced changes of the hyperfine structure constants of alkali-metal atoms are investigated by a combination of relativistically corrected ab initio methods with a simulation of the helium density distribution based on He density functional theory. Starting from an accurate description of the variation of the hyperfine structure constant in the M-He diatomic systems (M=Li, Na, K, Rb) as a function of the interatomic distance we simulate the shifts induced by droplets of up to 10,000 (4)He atoms. All theoretical predictions for the relative shifts in the isotropic hyperfine coupling constants of the alkali-metal atoms attached to helium droplets of different size are then tied to a single, experimentally derived parameter of Rb.

  4. Atomic scattering in the diffraction limit: electron transfer in keV Li+-Na(3s, 3p) collisions

    DEFF Research Database (Denmark)

    Poel, Mike van der; Nielsen, C.V.; Rybaltover, M.;

    2002-01-01

    . This setup yields a momentum resolution of 0.12 an, an order of magnitude better angular resolution than previous measurements on this system. This enables us to clearly resolve Fraunhofer-type diffraction patterns in the angle DCS. In particular, the angular width of the ring structure is given by the ratio...... of the de Broglie wavelength lambda(dB) = 150 fm at a velocity v = 0.20 au and the effective atomic diameter for electron capture 2R = 20 au. Parallel AO and MO semiclassical coupled-channel calculations of the Na(3s, 3p) --> Li(2s, 2p) state-to-state collision amplitudes have been performed, and quantum...

  5. Atomic Motions in Ionic Hydrides: MgH2, NaMg3H3, and LiBH4

    Science.gov (United States)

    Conradi, Mark

    2009-03-01

    In hydrogen storage, rapid hydrogen diffusion is a key component for rapid reaction rates of dehydriding and rehydriding. In metallic systems, the light interstitial H atoms typically do display rapid diffusion. However, recent interest has focused on ionic and complex hydrides of light metal-atoms because of their high weight fractions of reversible hydrogen. These ionic complex hydrides generally reveal slow hydrogen diffusion and resultingly slow reaction kinetics. We report here studies of H diffusion using NMR in several such hydrides. In MgH2, the rate φH of H hopping remains too slow to narrow the H NMR up to 400 ^oC. T1D measurements, however, can detect the motion and find an activation energy of 1.72 eV, the first reported direct measurement of diffusion in MgH2. In ball-milled (bm) material with Nb2O5 catalyst additive, a fraction of the resonance intensity is narrowed starting at 50 ^oC, with the narrow fraction growing to 30% by 400 ^oC. A model for continuous growth of the narrow line, based on a wide distribution of motion rates, is presented. Ball-milling also greatly increases the laboratory-frame relaxation rates, T1-1, from paramagnetic defects created by the mechanical process. In bm NaMgH3, an even larger fraction of the resonance is motionally-narrowed, growing to nearly 100% by 300 ^oC. Clearly, ball-milling has a much more profound effect on ionic hydrides than the simple reduction of grain sizes and diffusion distances. In coarse-grain LiBH4 (with 13.8 weight% reversible hydrogen), an orientationally disordered solid phase occurs above 110 ^oC. Above the transition, the rate of Li ion diffusion increases remarkably. H diffusion starts to narrow the H NMR line around 170 ^oC, continuing to narrow up to the melt near 280 ^oC. To distinguish diffusion of (already rapidly rotating) BH4 units from H exchange between neighboring BH4, the ^11B resonance was studied. The boron line central transition becomes much narrower (400 Hz) than the width

  6. First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications

    Science.gov (United States)

    Ri, Gum-Chol; Yu, Chol-Jun; Kim, Jin-Song; Hong, Song-Nam; Jong, Un-Gi; Ri, Mun-Hyok

    2016-08-01

    First-principles calculations were carried out to investigate the structural, energetic, and electronic properties of ternary graphite compounds cointercalated with alkali atoms (AM = Li, Na, and K) and normal alkylamine molecules (nCx; x = 1, 2, 3, 4), denoted as AM-nCx-GICs. From the optimization of the orthorhombic unit cells for the crystalline compounds, it was found that, with the increase in the atomic number of alkali atoms, the layer separations decrease in contrast to AM-GICs, while the bond lengths between alkali atoms and graphene layer, and nitrogen atom of alkylamine increase. The calculated formation energies and interlayer binding energies of AM-nC3-GICs indicate that the compounds is increasingly stabilized from Li to K, and the energy barriers for migration of alkali atoms suggest that alkali cation with larger ionic radius diffuses more smoothly in graphite, being similar to AM-GICs. Through the analysis of electronic properties, it was established that more extent of electronic charge is transferred from more electropositive alkali atom to the carbon ring of graphene layer, and the hybridization of valence electron orbitals between alkylamine molecules and graphene layer is occurred.

  7. Li Na Aces French Open

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Chinese tennis player becomes the first Asian to win a Grand Slam singles title Chinese tennis player Li Na beat defending champion Francesca Schiavone from Italy,6-4,7-6,on the clay court at Roland Garros,winning the 2011 French Open Tennis Tournament on June 4.She made history by becoming the first Chinese to win a grand slam singles title.

  8. (Super)alkali atoms interacting with the σ electron cloud: a novel interaction mode triggers large nonlinear optical response of M@P₄ and M@C₃H₆ (M=Li, Na, K and Li₃O).

    Science.gov (United States)

    Zhao, Xingang; Yu, Guangtao; Huang, Xuri; Chen, Wei; Niu, Min

    2013-12-01

    Under high-level ab initio calculations, the geometrical structures and nonlinear optical properties of M@P₄ (M=Li, Na, K and Li₃O) and M@C₃H₆ (M=Li and Li₃O) were investigated; all were found to exhibit considerable first hyperpolarizabilities (18110, 1440, 22490, 50487, 2757 and 31776 au, respectively). The computational results revealed that when doping the (super)alkali atom M into the tetrahedral P₄ molecule, the original dual spherical aromaticity of the P₄ moiety is broken and new σ electron cloud is formed on the face of P₄ part interacting with the M atom. It was found that interaction of the (super)alkali atom with the σ electron cloud is a novel mode to produce diffuse excess electrons effectively to achieve a considerable β₀ value. Further, beyond the alkali atom, employing the superalkali unit can be a more effective approach to significantly enhance the first hyperpolarizability of the systems, due to the much lower vertical ionization potential. These results were further supported by the case of the (super)alkali atom interacting with the cyclopropane C₃H₆ molecule with its typical σ aromatic electron cloud. Moreover, the β₀ values of the M@P₄ series are nonmonotonic dependent on alkali atomic number, namely, 1440 au (M = Na) alkali atom and the interacting surface with the σ electron cloud in P4 is a crucial geometrical factor in determining their first hyperpolarizabilities. These intriguing findings will be advantageous for promoting the design of novel high-performance nonlinear optical materials.

  9. Phonons in the ordered c(2 x 2) phases of Na and Li on Al(001)

    Energy Technology Data Exchange (ETDEWEB)

    Rusina, G G [Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk (Russian Federation); Eremeev, S V [Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk (Russian Federation); Borisova, S D [Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk (Russian Federation); Sklyadneva, I Yu [Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk (Russian Federation); Echenique, P M [Donostia International Physics Center (DIPC), 20018 San Sebastian/Donostia, Basque Country (Spain); Chulkov, E V [Donostia International Physics Center (DIPC), 20018 San Sebastian/Donostia, Basque Country (Spain)

    2007-07-04

    The vibrational properties of the Al(001)-c(2 x 2)-Na (Li) ordered phases formed by alkali atoms (Na and Li) on the Al(001) surface at low and room temperatures are presented. The equilibrium structural characteristics, phonon dispersions and polarization of vibrational modes as well as the local density of phonon states are calculated using the embedded-atom method. The obtained structural parameters are in close agreement with experimental data.

  10. Phonons in the ordered c(2 × 2) phases of Na and Li on Al(001)

    Science.gov (United States)

    Rusina, G. G.; Eremeev, S. V.; Borisova, S. D.; Sklyadneva, I. Yu; Echenique, P. M.; Chulkov, E. V.

    2007-07-01

    The vibrational properties of the Al(001)-c(2 × 2)-Na (Li) ordered phases formed by alkali atoms (Na and Li) on the Al(001) surface at low and room temperatures are presented. The equilibrium structural characteristics, phonon dispersions and polarization of vibrational modes as well as the local density of phonon states are calculated using the embedded-atom method. The obtained structural parameters are in close agreement with experimental data.

  11. Concentration dependence of Li+/Na+ diffusion in manganese hexacyanoferrates

    Science.gov (United States)

    Takachi, Masamitsu; Fukuzumi, Yuya; Moritomo, Yutaka

    2016-06-01

    Manganese hexacyanoferrates (Mn-HCFs) with a jungle-gym-type structure are promising cathode materials for Li+/Na+ secondary batteries (LIBs/SIBs). Here, we investigated the diffusion constants D Li/D Na of Li+/Na+ against the Li+/Na+ concentration x Na/x Li and temperature (T) of A 1.32Mn[Fe(CN)6]0.833.6H2O (A = Li and Na). We evaluated the activation energy E\\text{a}\\text{Li}/E\\text{a}\\text{Na} of D Li/D Na against x Na/x Li. We found that E\\text{a}\\text{Na} steeply increases with x Na from 0.41 eV at x Na = 0.69 to 0.7 eV at 1.1. The increase in E\\text{a}\\text{Na} is ascribed to the occupancy effect of the Na+ site. The increase in E\\text{a}\\text{Li} is suppressed, probably because the number of Li+ sites is three times that of Na+ sites.

  12. Endurance testing with Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Ong, E.T.; Remick, R.J.; Sishtla, C.I. [Institute of Gas Technology, Des Plaines, IL (United States)

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  13. Laser trapping of {sup 21}Na atoms

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zheng-Tian

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive {sup 21}Na (t{sub l/2} = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped {sup 21}Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of {sup 21}Na {yields} {sup 21}Ne + {Beta}{sup +} + v{sub e}, which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, {sup 21}Na atoms were produced by bombarding {sup 24}Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The {sup 21}Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined.

  14. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Ikeshoji, Tamio; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan)

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  15. Toward Triplet Ground State NaLi Molecules

    Science.gov (United States)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  16. Performance of new 10 kW class MCFC using Li/K and Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Mugikura, Yoshihiro; Yoshiba, Fumihiko; Izaki, Yoshiyuki; Watanabe, Takao [Central Research Institute of Electric Power Industry, Kanagawa-ken (Japan)] [and others

    1996-12-31

    The molten carbonate fuel cell (MCFC) uses generally mixture of lithium carbonate and potassium carbonate (Li/K) as the electrolyte. NiO cathode dissolution is one of serious problems for MCFC life. The NiO cathode has been found to dissolve into the electrolyte as Ni{sup 2+} ion which is reduced to metallic Ni by H{sub 2} in the fuel gas and bridges the anode and the cathode. The bridges short circuit and degrade cell performance and shorten cell life. Since solubility of NiO in mixture of lithium carbonate and sodium carbonate (Li/Na) is lower than in Li/K, it takes longer time to take place slowing by NiO cathode dissolution in Li/Na compared with in Li/K. The ionic conductivity of Li/Na is higher than of Li/K, however, oxygen solubility in Li/Na is lower 9 than in Li/K. A new 10 kW class MCFC stack composed of Li/K cells and Li/Na cells, was tested. Basic performance of the Li/K cells and Li/Na cells of the stack was reported.

  17. Quantum phase transition and entanglement in Li atom system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By use of the exact diagonalization method, the quantum phase transition and en- tanglement in a 6-Li atom system are studied. It is found that entanglement appears before the quantum phase transition and disappears after it in this exactly solvable quantum system. The present results show that the von Neumann entropy, as a measure of entanglement, may reveal the quantum phase transition in this model.

  18. Efimov Physics in a 6Li-133Cs Atomic Mixture

    Science.gov (United States)

    Johansen, Jacob; Feng, Lei; Parker, Colin; Chin, Cheng; Wang, Yujun

    2015-05-01

    We investigate Efimov physics based on three-body recombination in an atomic mixture of 6Li and 133Cs in the vicinity of interspecies Feshbach resonances at 843 and 889 G. This allows us to compare the loss spectra near different resonances and test the universality of Efimov states. Theoretically the Efimov spectrum near 889 G is expected to be similar to that near 843 G, except that the first resonance is absent near the former Feshbach resonance. This is due to the difference in the Cs-Cs scattering length near the two resonances: At 843 G it is negative, whereas at 889 G it is positive. Although it is primarily the Li-Cs interactions that lead to Efimov resonances, the Cs-Cs scattering length is expected to influence the spectrum. This work is supported by NSF and Chicago MRSEC.

  19. Theoretical study on the correlation between the nature of atomic Li intercalation and electrochemical reactivity in TiS2 and TiO2.

    Science.gov (United States)

    Kim, Yang-Soo; Kim, Hee-Jin; Jeon, Young-A; Kang, Yong-Mook

    2009-02-12

    The electronic structures of LiTiS(2) and LiTiO(2) (having alpha-NaFeO(2) structure) have been investigated using discrete variational Xalpha molecular orbital methods. The alpha-NaFeO(2) structure is the equilibrium structure for LiCoO(2), which is widely used as a commercial cathode material for lithium secondary batteries. This study especially focused on the charge state of Li ions and the magnitude of covalency around Li ions. When the average voltage of lithium intercalation was calculated using pseudopotential methods, the average intercalation voltage of LiTiO(2) (2.076 V) was higher than that of LiTiS(2) (1.958 V). This can be explained by the differences in Mulliken charge of lithium and the bond overlap population between the intercalated Li ions and anion in LiTiO(2) as well as LiTiS(2). The Mulliken charge, which is the ionicity of Li atom, was approximately 0.12 in LiTiS(2), and the bond overlap population (BOP) indicating the covalency between Ti and S was about 0.339. When compared with the BOP (0.6) of C-H, which is one of the most famous example of covalent bonding, the intercalated Li ions in LiTiS(2) tend to form a quite strong covalent bond with the host material. In contrast, the Mulliken charge of lithium was about 0.79, which means that Li is fully ionized and the BOP, the covalency between Ti and O, was 0.181 in LiTiO(2). Because of the high ionicity of Li and the weak covalency between Ti and the nearest anion, LiTiO(2) has a higher intercalation voltage than LiTiS(2).

  20. Increased erythrocyte permeability to Li and Na in the spontaneously hypertensive rat.

    Science.gov (United States)

    Friedman, S M; Nakashima, M; McIndoe, R A; Friedman, C L

    1976-04-15

    Red blood cells incubated in a physiological medium in which Li replaces Na (LiPSS) gain Li in exchange for Na and K. The rate of Li uptake is modestly but significantly increased in the spontaneously hypertensive rat (SHR) at 37 degrees C and at 22 degrees C. The slow rate of Na gain and K loss during cooling at 2 degrees C was about doubled in unmodified whole blood samples from the SHR.

  1. The interaction of atoms with LiF(001) revisited

    CERN Document Server

    Miraglia, J E

    2016-01-01

    Pairwise additive potentials for multielectronic atoms interacting with a LiF(001) surface are revisited by including an improved description of the electron density associated with the different lattice sites, as well as non-local electron density contributions. Within this model, the electron distribution around each ionic site of the crystal is described by means of an onion approach that accounts for the influence of the Madelung potential. From such densities, binary interatomic potentials are then derived by using well-known non-local functionals for the kinetic, exchange and correlation terms. Rumpling and long-range contributions due to projectile polarization and van der Waals forces are also included in an analogous fashion. We apply this pairwise additive approximation to evaluate the interaction potential between closed-shell - He, Ne, Ar, Kr, and Xe - and open-shell - N, S, and Cl - atoms and the LiF surface, analyzing the relative importance of the different contributions. The performance of the...

  2. Ground-state potential energy curves of LiHg, NaHg, and KHg revisited

    Science.gov (United States)

    Thiel, Linda; Hotop, Hartmut; Meyer, Wilfried

    2003-11-01

    We present the results of large-scale CCSD(T) calculations on the potential energy curves for the ground states of LiHg, NaHg, and KHg. In these calculations, the Hg20+ core is simulated by a pseudopotential which has been adjusted to reproduce experimental excitation and ionization energies of the Hg atom at the coupled-cluster level. Moreover, we apply a weighted multiproperty fitting procedure to determine reliable potentials for LiHg, NaHg, and KHg which reproduce the available experimental results. In the case of LiHg, this best-fit potential is based solely on experimental data and its agreement with our calculated potential supports our computational procedure. For NaHg and KHg the experimental data had to be complemented by theoretical results in order to fix a best-fit potential. Our potentials and those proposed previously are evaluated by comparing calculated scattering cross sections and vibrational energy levels with the available experimental data.

  3. Strong-Field Ionization of Laser Cooled Li Atoms

    Science.gov (United States)

    Sharma, Sachin; Romans, Kevin; Fischer, Daniel

    2016-05-01

    Recently, our understanding of few-body effects has been substantially boosted by the development of intense femto- and attosecond laser sources. Observing the momenta of the fragments of atoms and molecules ionized in these strong fields provided new and before inconceivable insights in molecular and electronic dynamics. Here, we report on a new experiment, where the target atoms (6 Li) are laser cooled and trapped using a magneto optical trap (MOT). Momentum vectors of the target fragments will be measured using a reaction microscope (ReMi). The exclusivity of this setup is a combination of MOT and ReMi, thus dubbed as MOTReMi. Here, the advantages over standard COLTRIMS systems are multifold: Firstly, an unprecedented recoil ion momentum resolution can be achieved, as the target can be prepared at significantly lower temperatures. Second, the atoms can be optically prepared in the ground or in polarized excited states. In a first experimental campaign, studies on single ionization of laser excited and polarized Lithium atoms will be performed with circularly polarized light. This experiment can provide insight into the helicity-dependence of the ionization dynamics as the differences among co- and counter rotating electron and laser field, if any, can be investigated.

  4. Hydrogen storage properties of Na-Li-Mg-Al-H complex hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Tang Xia [United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108 (United States)], E-mail: tangx@utrc.utc.com; Opalka, Susanne M.; Laube, Bruce L. [United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108 (United States); Wu Fengjung; Strickler, Jamie R. [Albemarle Corporation, Gulf States Road, Baton Rouge, LA 70805 (United States); Anton, Donald L. [Savannah River National Laboratory, 227 Gateway Dr., Aiken, SC 29808 (United States)

    2007-10-31

    Lightweight complex hydrides have attracted attention for their high storage hydrogen capacity. NaAlH{sub 4} has been widely studied as a hydrogen storage material for its favorable reversible operating temperature and pressure range for automotive fuel cell applications. The increased understanding of NaAlH{sub 4} has led to an expanded search for high capacity materials in mixed alkali and akali/alkaline earth alanates. In this study, promising candidates in the Na-Li-Mg-Al-H system were evaluated using a combination of experimental chemistry, atomic modeling, and thermodynamic modeling. New materials were synthesized using solid state and solution based processing methods. Their hydrogen storage properties were measured experimentally, and the test results were compared with theoretical modeling assessments.

  5. Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study

    Science.gov (United States)

    Mortazavi, Bohayra; Dianat, Arezoo; Rahaman, Obaidur; Cuniberti, Gianaurelio; Rabczuk, Timon

    2016-10-01

    Borophene, the boron atom analogue to graphene, being atomic thick have been just recently experimentally fabricated. In this work, we employ first-principles density functional theory calculations to investigate the interaction of Ca, Mg, Na or Li atoms with single-layer and free-standing borophene. We first identified the most stable binding sites and their corresponding binding energies as well and then we gradually increased the ions concentration. Our calculations predict strong binding energies of around 4.03 eV, 2.09 eV, 2.92 eV and 3.28 eV between the borophene substrate and Ca, Mg, Na or Li ions, respectively. We found that the binding energy generally decreases by increasing the ions content. Using the Bader charge analysis, we evaluate the charge transfer between the adatoms and the borophene sheet. Our investigation proposes the borophene as a 2D material with a remarkably high capacity of around 800 mA h/g, 1960 mA h/g, 1380 mA h/g and 1720 mA h/g for Ca, Mg, Na or Li ions storage, respectively. This study can be useful for the possible application of borophene for the rechargeable ion batteries.

  6. Computer Simulation of Ordering and Atom Clustering in Aging Binary Al-Li Alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-ling; CHEN Zheng; WANG Yong-xin; HU Ming-juan

    2004-01-01

    Ordering and atom clustering in aging binary Al-Li alloy has been investigated by computer simulation through calculating the long range order (lro.) parameter and composition deviation order parameter from single-site occupation probabilities of Li atom. The results show that when the alloy lies in metastable region in the phase diagram ordering and atom clustering occur simultaneously. As the composition of the alloy increases ordering occurs earlier than atom clustering gradually. When the alloy lies in instable region atom clustering takes place after the congruent ordering completes. It has also been found that the incubation period of the phase transformation is shortened as the composition increases.

  7. Computer Simulation of Ordering and Atom Clustering in Aging Binary AI-Li Alloy

    Institute of Scientific and Technical Information of China (English)

    LIXiao-ling; CHENZheng; WANGYong-xin; HUMing-juan

    2004-01-01

    Ordering and atom clustering in aging binary Al-Li alloy has been investigated by computer simulation through calculating the long range order (lro.) parameter and composition deviation order parameter from single-site occupation probabilities of Li atom. The results show that when the alloy lies in metastable region in the phase diagram ordering and atom clustering occur simultaneously. As the composition of the alloy increases ordering occurs earlier than atom clustering gradually. When the alloy lies in instable region atom clustering takes place after the congruent ordering completes. It has also been found that the incubation period of the phase transformation is shortened as the composition increases.

  8. Competition between Alkalide Characteristics and Nonlinear Optical Properties in OLi3-M-Li3O (M=Li, Na and K) Complexes

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    Alkalides possess enhanced nonlinear optical (NLO) responses due to localization of excess electrons on alkali metals. We have proposed a new class of alkalides by sandwiching alkali atoms (M) between two Li3O superalkali clusters at MP2/6-311++G(d,p) level. We notice a competition between alkalide characteristics and NLO properties in OLi3-M-Li3O (M=Li, Na and K) isomers. For instance, the atomic charge on M (qM) in D2h structure is -0.58e for M=Li and its first static mean hyperpolarizablity (\\b{eta}o) is 1 a.u., but in C2v structure, qM=-0.12e and \\b{eta}o= 3.4*103 a.u. More interestingly, the \\b{eta}o value for M=K (C2v) increases to 1.9*104 a.u. in which qM=0.24e. These findings may provide new insights into the design of alkalides, an unusual class of salts and consequently, lead to further researches in this direction.

  9. Synthèse et étude structrale de lyonsite-type (Na0,4,Li0,6(Fe,Li2(MoO43

    Directory of Open Access Journals (Sweden)

    Amira Souilem

    2015-06-01

    Full Text Available The new compound (Na0.4,Li0.6(Fe,Li2(MoO43 was synthesized by cooling from the melt. Its anionic framework is built up from two distinct MO6 octahedra, each containing disordered Li+ and Fe3+ ions in 0.6:0.4 and 0.7:0.3 ratios, and two MoO4 tetrahedra, which link by vertex-sharing of their O atoms. These tetrameric units are further linked by sharing edges between octahedra and by formation of M—O—Mo (M = Fe/Li bridges, forming ribbons propagating in the [100] direction. The ribbons are cross-linked in both the b- and c-axis directions, giving rise to a three-dimensional framework having [100] tunnels in which the monovalent Na+/Li+ cations (0.4:0.6 ratio lie. Bond-valence calculations are consistent with the disorder model for the cations. The structure of the title compound, which is isotypic with Li3Fe(MoO43 and Li3Ga(MoO43, is compared briefly with those of LiFeMo2O8 and Li1.6Mn2.2(MoO43.

  10. Hydrogen Desorption Properties of Bulk and Nanoconfined LiBH4-NaAlH4

    Directory of Open Access Journals (Sweden)

    Payam Javadian

    2016-06-01

    Full Text Available Nanoconfinement of 2LiBH4-NaAlH4 into a mesoporous carbon aerogel scaffold with a pore size, BET surface area and total pore volume of Dmax = 30 nm, SBET = 689 m2/g and Vtot = 1.21 mL/g, respectively is investigated. Nanoconfinement of 2LiBH4-NaAlH4 facilitates a reduction in the temperature of the hydrogen release by 132 °C, compared to that of bulk 2LiBH4-NaAlH4 and the onset of hydrogen release is below 100 °C. The reversible hydrogen storage capacity is also significantly improved for the nanoconfined sample, maintaining 83% of the initial hydrogen content after three cycles compared to 47% for that of the bulk sample. During nanoconfinement, LiBH4 and NaAlH4 reacts to form LiAlH4 and NaBH4 and the final dehydrogenation products, obtained at 481 °C are LiH, LiAl, AlB2 and Al. After rehydrogenation of the nanoconfined sample at T = 400 °C and p(H2 = 126 bar, amorphous NaBH4 is recovered along with unreacted LiH, AlB2 and Al and suggests that NaBH4 is the main compound that can reversibly release and uptake hydrogen.

  11. Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function

    Science.gov (United States)

    Chen, Lin; Wu, Wen-Bin; Liu, Pin-Yang; Xiao, Yun-Qing; Li, Guo-Peng; Liu, Yi-Ran; Jiang, Hao-Yu; Guo, Yan-Ling; Chen, Xi-Meng

    2016-08-01

    For Li+ and Na+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako-Newns (BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li+ and Na+ ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405078 and 11474140), the Fundamental Research Funds for the Central Universities, China (Grant Nos. lzujbky-2014-169 and lzujbky-2015-244), the Project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry, and the National Students’ Innovation and Entrepreneurship Training Program (Grant Nos. 201410730069 and 201510730078).

  12. On the nuclear $(n;t)-$reaction in the three-electron ${}^{6}$Li atom

    CERN Document Server

    Frolov, Alexei M

    2012-01-01

    The nuclear $(n;t)-$reaction of the three-electron ${}^{6}$Li atom with thermal/slow neutrons is considered. An effective method has been developed for determining the probabilities of formation of various atoms and ions in different bound states. We discuss a number of fundamental questions directly related to numerical computations of the final state atomic probabilities. A few appropriate variational expansions for atomic wave functions of the incident lithium atom and final helium atom and/or tritium negatively charged ion are discussed. It appears that the final ${}^4$He atom arising during the nuclear $(n,{}^{6}$Li; ${}^4$He$,t)$-reaction in the three-electron Li atom can also be created in its triplet states. The formation of the quasi-stable three-electron $e^{-}_3$ during the nuclear $(n; t)-$reaction at the Li atom is briefly discussed. Bremsstrahlung emitted by atomic electrons accelerated by the rapidly moving fragments from this reaction is analyzed. The frequency spectrum of the emitted radiatio...

  13. Li0.17Na5.83Mo11O36

    Directory of Open Access Journals (Sweden)

    Ines Ennajeh

    2012-12-01

    Full Text Available The title mixed-alkali-metal molybdenium oxide, hexakis(lithium/sodium undecamolybdate, was synthesized by solid-state reaction at 793 K. Its [Mo11O36]6− framework is built up from MoO6 octahedra and MoO5 pyramids linked together by edges and vertices. The framework delimits two types of intersecting tunnels running along [100] and [001], where the sodium and lithium ions are located. Two of the sodium ions and the lithium ion have fractional site occupancies. One of the Mo atoms has site symmetry 2, one sodium ion has site symmetry 2 and one has site symmetry -1, and the Li+ ion has site symmetry 2. Structural relationships between the title compound and the anatase and Na6Mo11O36 structures are discussed.

  14. Photocatalytic activity of ANbO3 (A=Li,Na,K)

    Institute of Scientific and Technical Information of China (English)

    陈启元; 杨亚辉; 尹周澜; 李洁; 梁胜

    2004-01-01

    The perovskite-photocatalysts ANbO3 (A= Li, Na, K) were prepared by solid-state reaction and characterized by power X-ray diffraction and UV-vis diffuse reflectance. The photocatalytic activity of ANbO3 (A= Li, Na,K) were investigated with methanol as electron donor and Pt as promoter catalyst under 400 nm UV irradiation. The difference of photocatalytic activity among the three ANbO3 (A=Li, Na, K) was also discussed, the individual rate spectively.

  15. LiF--NaF--KF体系的相图计算%Phase diagram calculations of the LiF--NaF--KF system

    Institute of Scientific and Technical Information of China (English)

    王坤; 程进辉; 张鹏; 左勇; 谢雷东

    2014-01-01

    基于CALPHAD技术首先评估了LiF-NaF和LiF-KF两个二元熔盐体系,液相和端际固溶体Halite相均采用Redlich-Kister多项式置换熔体模型描述,模型参数的优化选取实验相平衡数据和热化学数据以及本文根据第一性原理预测的数据。结合文献中已报道的NaF-KF体系的热力学参数,用Muggianu模型扩展至LiF-NaF-KF三元体系,根据三元共晶点的实验数据调整三元交互参数。最终的相图计算结果与绝大部分实验数据和第一原理计算数据吻合较好,由此获得了一套自洽且可靠的热力学参数,其能够准确描述LiF-NaF-KF体系的相平衡与热力学性质。%The LiF-NaF and LiF-KF binary molten salt systems were assessed initially based upon the CALPHAD approach. The liquid and solid solution Halite phases were thermodynamically modeled by the substitutional solution model with Redlich-Kister poly-nomial terms. The model parameters were optimized by selected experimental phase equilibria information, thermochemical data, and present predicted data from the first-principles calculation. Whereafter, the thermodynamic database of the LiF-NaF-KF ternary sys-tem was established from the present assessed LiF-NaF and LiF-KF systems combined with the reported NaF-KF system through the Muggianu model with ternary interacting parameters optimized by the measured ternary eutectic point. It is demonstrated that the calcu-lated results are well consistent with most of the experimental data and predicted data, which shows that the present thermodynamic pa-rameters are credible and self-consistent and can allow accurate description of the phase equilibria and thermodynamic properties.

  16. Improvement in dehydrogenation of MXH4 where M = Na, Li and X = Al, B confined in CNTs: a DFT investigation

    Science.gov (United States)

    Meenakshi; Agnihotri, Deepak; Jeet, Kiran; Sharma, Hitesh

    2016-11-01

    Nanoconfinement improves dehydrogenation kinetics of complex metal hydrides. The present paper reports effect of confinement of MXH4, where M = Na, Li and X = Al, B inside carbon nanotubes (CNTs) (n, 0) n = 9-11 chirality and diameter of 7.47 Å, 7.87 Å, 8.73 Å, respectively, using Density Functional calculations. The MXH4 interacts strongly with the surface atoms of CNT (11, 0) and is found to be the smallest stable system for confinement of MXH4 clusters. The Hydrogen release energy (E Hre) of NaAlH4 decreases sharply by 68.3 % , w.r.t. pure NaAlH4 cluster when confined inside CNT(11, 0). Similarly, in CNT (11, 0) E Hre decreases by 38.1 % for LiAlH4, 12.7 % for NaBH4 and 19.1 % for LiBH4. Thus, resulting confinement had a profound effect in improving the energetics of complex metal hydride nanoparticles without catalyst.

  17. Enhancement of the initial hydrogenation of Mg by ball milling with alkali metal amides MNH2 (M = Li or Na).

    Science.gov (United States)

    Chu, Hailiang; Qiu, Shujun; Sun, Lixian; Huot, Jacques

    2015-10-14

    The introduction of 4 wt% of MNH2 (M = Li, Na) and other additives (Li, MgH2, NaCl, and NaBr) into pure Mg by ball milling greatly enhances the first hydrogenation (activation). Under 2 MPa of H2 at 608 K, the best activation performance is achieved with the NaNH2 additive.

  18. Enhanced electrical transport and phase diagram of LiBr-NaBr mixed crystal system

    Energy Technology Data Exchange (ETDEWEB)

    Manoravi, P.; Shahi, K. (Dept. of Physics, Indian Inst. of Tech., Kanpur (India))

    1992-12-01

    The ionic conductivity and the phase diagram of LiBr-NaBr system has been studied. Maximum conductivity enhancement by factors of 2.8 and 2.3x10[sup 4] with respect to pure LiBr and NaBr, respectively are obtained at 400degC for Li[sub 0.7]Na[sub 0.3]Br solid solution. The demixing curve of the phase diagram which was constructed from the conductivity versus temperature studies, suggest that the LiBr-NaBr system forms complete solid solution only above 215degC. The conductivity enhancements and the activation energies are consistent with the melting curve of the phase diagram. (orig.).

  19. Low temperature diffusion of Li atoms into Si nanoparticles and surfaces

    Science.gov (United States)

    Nienhaus, Hermann; Karacuban, Hatice; Krix, David; Becker, Felix; Hagemann, Ulrich; Steeger, Doris; Bywalez, Robert; Schulz, Christof; Wiggers, Hartmut

    2013-07-01

    The diffusion of Li atoms deposited on hydrogen-passivated Si(001) surfaces, chemically oxidized Si(001) surfaces, Si nanoparticle films, and thick SiO2 layers is investigated with electron-beam induced Auger electron spectroscopy. The nanoparticles exhibit an average diameter of 24 nm. The Li metal film is evaporated at a sample temperature below 120 K. The reappearance of the Si substrate Auger signal as a function of time and temperature can be measured to study the Li diffusion into the bulk material. Values for the diffusion barrier of 0.5 eV for H:Si(001) and 0.3 eV for the ox-Si(001) and Si nanoparticle films are obtained. The diffusion of the Li atoms results in the disruption of the crystalline Si surfaces observed with atomic force microscopy. Contrasting to that, the Si nanoparticle films show less disruption by Li diffusion due to filling of the porous films detected with cross section electron microscopy. Silicon dioxide acts as a diffusion barrier for temperatures up to 300 K. However, the electron beam induces a reaction between Li and SiO2, leading to LiOx and elemental Si floating on the surface.

  20. Density functional theory studies on theelectronic, structural, phonon dynamicaland thermo-stability properties of bicarbonates MHCO3, M D Li, Na, K

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Zhang, Bo; Sorescu, Dan C.; Johnson, Karl; Majzoub, Eric H; Luebke, David R.

    2012-07-01

    The structural, electronic, phonon dispersion and thermodynamic properties of MHCO3 (M D Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO3 has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO3 using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy .FPH/ calculations predict that LiHCO3 will be stable under suitable conditions of temperature and partial pressures of CO2 and H2O. Our calculations indicate that the HCO 3 groups in LiHCO3 and NaHCO3 form an infinite chain structure through O H O hydrogen bonds. In contrast, the HCO 3 anions form dimers, .HCO 3 /2, connected through double hydrogen bonds in all phases of KHCO3. Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical–transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0–900 K, the FPH and the entropies (S) of MHCO3 (M D Li, Na, K) systems vary as FPH.LiHCO3/ > FPH.NaHCO3/ > FPH.KHCO3/ and S.KHCO3/ > S.NaHCO3/ > S.LiHCO3/, respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO2 capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO2 capture technology, in agreement with experiments.

  1. Synthesis, structure and electrochemical properties of LiNaCo0.5Fe0.5PO4F fluoride-phosphate

    Science.gov (United States)

    Fedotov, Stanislav S.; Kuzovchikov, Sergey M.; Khasanova, Nellie R.; Drozhzhin, Oleg A.; Filimonov, Dmitriy S.; Karakulina, Olesia M.; Hadermann, Joke; Abakumov, Artem M.; Antipov, Evgeny V.

    2016-10-01

    LiNaCo0.5Fe0.5PO4F fluoride-phosphate was synthesized via conventional solid-state and novel freeze-drying routes. The crystal structure was refined based on neutron powder diffraction (NPD) data and validated by electron diffraction (ED) and high-resolution transmission electron microscopy (HRTEM). The alkali ions are ordered in LiNaCo0.5Fe0.5PO4F and the transition metals jointly occupy the same crystallographic sites. The oxidation state and oxygen coordination environment of the Fe atoms were verified by 57Fe Mössbauer spectroscopy. Electrochemical tests of the LiNaCo0.5Fe0.5PO4F cathode material demonstrated a reversible activity of the Fe3+/Fe2+ redox couple at the electrode potential near 3.4 V and minor activity of the Co3+/Co2+ redox couple over 5 V vs Li/Li+. The material exhibited the discharge capacity of more than 82% (theo.) regarding Fe3+/Fe2+ in the 2.4÷4.6 V vs Li/Li+ potential range.

  2. Molecular dynamics simulations of LiCl association and NaCl association in water by means of ABEEM/MM

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Constrained molecular dynamics simulations have been used to investigate the LiCl and NaCl ionic association in water in terms of atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). The simulations make use of the seven-site fluctuating charge and flexible ABEEM-7P water model, based on which an ion-water interaction potential has been constructed. The mean force and the potential of mean force for LiCl and NaCl in water, the charge distributions, as well as the structural and dynamical properties of contact ion pair dissociation have been investigated. The results are reasonable and informative. For LiCl ion pair in water, the solvent-separated ion pair configurations are more stable than contact ion pair configurations. The calculated PMF for NaCl in water indicates that contact ion pair and solvent-separated ion pair configurations are of comparable stability.

  3. Local atomic structural investigations of precursory phenomenon of the hydrogen release from LiAlD4

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toyoto [ORNL; Tomiyasu, Dr. Keisuke [Tohoku University, Japan; Ikeda, Kazutaka [High Energy Accelerator Research Organization, KEK; Otomo, Toshiya [ORNL; Feygenson, Mikhail [ORNL; Neuefeind, Joerg C [ORNL; Yamada, Kazuyoshi [Institute for Materials Research, Tohoku University, Sendai, Japan; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai, Japan

    2013-01-01

    Local atomic structural investigations of LiAlD4, which is composed of Li+ and [AlD4], at 40 300 K were studied by total neutron scattering combined with pair distribution function (PDF) analysis for understanding of hydrogen release from LiAlD4. The results showed that the Al D pair distribution almost unchanged, while the Li D pair distribution clearly started to broaden and shrink above 200 250 K. The shrinking of the Li D pair distribution might lead to the local generation of LiD, which was speculated as the precursory phenomenon for the hydrogen release from LiAlD4.

  4. Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues

    Directory of Open Access Journals (Sweden)

    Yutaka Moritomo

    2013-01-01

    Full Text Available Prussian blue analogies (PBAs are promising cathode materials for lithium ion (LIB and sodium ion (SIB secondary batteries, reflecting their covalent and nanoporous host structure. With use of synchrotron-radiation (SR X-ray source, we investigated the structural and electronic responses of the host framework of PBAs against Li+ and Na+ intercalation by means of the X-ray powder diffraction (XRD and X-ray absorption spectroscopy (XAS. The structural investigation reveals a robust nature of the host framework against Li+ and Na+ intercalation, which is advantageous for the stability and lifetime of the batteries. The spectroscopic investigation identifies the redox processes in respective plateaus in the discharge curves. We further compare these characteristics with those of the conventional cathode materials, such as, LiCoO2, LiFePO4, and LiMn2O4.

  5. Estudio del sistema Li2SO4-Na2SO4. Diagrama de fases y caracterizacion del LiNaSO4

    OpenAIRE

    Mata Ramírez, Jorge Octavio; Solans, Xavier; Font Bardia, Ma. Mercedes

    2004-01-01

    Se presenta un estudio exhaustivo del diagrama de fase del sistema binario Li2SO4-Na2SO4. El diagrama de fases se determinó mediante termo-difractometría de rayos-X en muestras de polvo y calorimetría ATD. Se obtiene una nueva fase de fórmula Li2-xNaxSO4, con 1 ¿ x ¿ 1.22. La estructura cristalina de ß-LiNaSO4 se determinó por difracción de rayos-X sobre un monocristal. Este estudio muestra que los cristales usualmente se maclan cuando el crecimiento es por solución, lo cual explica la baja p...

  6. Phase diagrams of Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems

    Institute of Scientific and Technical Information of China (English)

    DING Yimin; HOU Na; CHEN Nianyi; XIA Yiben

    2006-01-01

    The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results showed that the compound Li2MoO4·6Na2MoO4 did not exist; however, it confirmed the existence of the compound Li2MoO4·3Na2MoO4 in the Li2MoO4-Na2MoO4 systems. With regard to the system of Na2MoO4-K2MoO4, we could not confirm the results reported by Bukhanova who claimed that the system was eutectic type with 1∶1 and 1∶2 intermediate compounds, refuting the statement of Amadori who thought there was an apparent phase boundary at high temperature in α-solid solution region of the Na2MoO4-K2MoO4 binary system. The revised phase diagrams of these systems are illustrated in this article. These experimental results are in agreement with the computerized prediction using the support vector machine-atomic parameter method for the assessment of phase diagrams.

  7. Narrow-linewidth cooling of $^{6}$Li atoms using the 2S-3P transition

    CERN Document Server

    Chen, Hao-Ze; Wu, Yu-Ping; Liu, Xiang-Pei; Wang, Xiao-Qiong; Chen, Yu-Ao; Pan, Jian-Wei

    2016-01-01

    We report on a narrow-linewidth cooling of $^{6}$Li atoms using the $2S_{1/2}\\to 3P_{3/2}$ transition in the ultraviolet (UV) wavelength regime. By combining the traditional red magneto-optical trap (MOT) at 671 nm and the UV MOT at 323 nm, we obtain a cold sample of $1.3\\times10^9$ atoms with a temperature of 58 $\\mu$K. Furthermore, we demonstrate a high efficiency magnetic transport for $^{6}$Li atoms with the help of the UV MOT. Finally, we obtain $8.1\\times10^8$ atoms with a temperature of 296 $\\mu$K at a magnetic gradient of 198 G/cm in the science chamber with a good vacuum environment and large optical access.

  8. Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate.

    Science.gov (United States)

    Xiao, Bo; Li, Yan-Chun; Yu, Xue-Fang; Cheng, Jian-Bo

    2016-12-28

    Recently, a new two-dimensional (2D) carbon allotrope named penta-graphene was theoretically proposed ( Zhang , S. ; et al. Proc. Natl. Acad. Sci. U.S.A. 2015 , 112 , 2372 ) and has been predicted to be the promising candidate for broad applications due to its intriguing properties. In this work, by using first-principles simulation, we have further extended the potential application of penta-graphene as the anode material for a Li/Na-ion battery. Our results show that the theoretical capacity of Li/Na ions on penta-graphene reaches up to 1489 mAh·g(-1), which is much higher than that of most of the previously reported 2D anode materials. Meanwhile, the calculated low open-circuit voltages (from 0.24 to 0.60 V), in combination with the low diffusion barriers (≤0.33 eV) and the high electronic conductivity during the whole Li/Na ions intercalation processes, further show the advantages of penta-graphene as the anode material. Particularly, molecular dynamics simulation (300 K) reveals that Li ion could freely diffuse on the surface of penta-graphene, and thus the ultrafast Li ion diffusivity is expected. Superior performance of penta-graphene is further confirmed by comparing with the other 2D anode materials. The light weight and unique atomic arrangement (with isotropic furrow paths on the surface) of penta-graphene are found to be mainly responsible for the high Li/Na ions storage capacity and fast diffusivity. In this regard, except penta-graphene, many other recently proposed 2D metal-free materials with pentagonal Cairo-tiled structures may be the potential candidates as the Li/Na-ion battery anodes.

  9. Synthesis and optoelectrical properties of ABO{sub 2} (A = Li, Na; B = Y, Yb)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ying; Natsume, Yuuki; Sawaguchi, Naoya; Sasaki, Makoto, E-mail: sasaki@mmm.muroran-it.ac.jp [Muroran Institute of Technology (Japan)

    2011-10-29

    The transparent electrically conductive composite materials ABO{sub 2} (A = Li, Na; B = Y, Yb) were synthesized under high temperature solid-state reactions from A{sub 2}O and B{sub 2}O{sub 3}. The synthesized compounds have been investigated by Rietveld analysis, giving the crystal (monoclinic, c12/c1, a = 611.6 pm) for LiYO2, (monoclinic, p121/c1, a = 999 pm) for NaYO{sub 2}, (trigonal, R3-bar m, a = 335.2 pm) for NaYbO{sub 2}, (tetragonal, I4{sub 1}/amd, a = 438.6 pm) for LiYbO{sub 2}. Optical properties of the four compounds were studied by UV-vis spectral measurements, results show each of the compounds has an optical band gap more than 3.3 eV which is the standard for transparent property. Electrical conductivities of the four compounds have been studied by two probe direct current electrical conductivity measurements. The results show with increasing heating temperature, an obvious increase in electrical conductivity was observed for each compound. Also, the crystal energy band structure of each compound has been studied by using density functional theory code CASTEP. The results show the solid-state compounds of NaYO{sub 2}, NaYbO{sub 2} and LiYbO{sub 2} are semiconductors with direct band gaps, LiYO{sub 2} is a semiconductor with an indirect band gap.

  10. Effects of Na-substitution on structural and electronic properties of Li2CoSiO4 cathode material

    Institute of Scientific and Technical Information of China (English)

    WU Shun-qing; ZHU Zi-zhong; YANG Yong; HOU Zhu-feng

    2009-01-01

    Na-substituted dilithium orthosilicate Li2CoSiO4 was investigated by performing density functional theory calculations within the GGA+U framework. The effects of Na-substitution on the electronic structures and structural properties of Li2CoSiO4 were presented. The results show that the Na-substitution on Li sites in Li2CoSiO4 induces a lowering of the conduction bands and a narrowing of the band gap, which could be helpful for enhancing the electronic conductivity. On the other hand, the Na-substitution on the Li ions in Li2CoSiO4 leads to the expansion of interlayer space of the adjacent corrugated layers. This lattice expansion effect would benefit the Li ion diffusion.

  11. Quantum Chemical Insight into the LiF Interlayer Effects in Organic Electronics: Reactions between Al Atom and LiF Clusters.

    Science.gov (United States)

    Wu, Shui-Xing; Kan, Yu-He; Li, Hai-Bin; Zhao, Liang; Wu, Yong; Su, Zhong-Min

    2015-08-06

    It is well known that the aluminum cathode performs dramatically better when a thin lithium fluoride (LiF) layer inserted in organic electronic devices. The doping effect induced by the librated Li atom via the chemical reactions producing AlF3 as byproduct was previously proposed as one of possible mechanisms. However, the underlying mechanism discussion is quite complicated and not fully understood so far, although the LiF interlayer is widely used. In this paper, we perform theoretical calculations to consider the reactions between an aluminum atom and distinct LiF clusters. The reaction pathways of the Al-(LiF)n (n = 2, 4, 16) systems were discovered and the energetics were theoretically evaluated. The release of Li atom and the formation of AlF3 were found in two different chemical reaction routes. The undissociated Al-(LiF)n systems have chances to change to some structures with loosely bound electrons. Our findings about the interacted Al-(LiF)n systems reveal new insights into the LiF interlayer effects in organic electronics applications.

  12. Calculation of Multiphoton Transition in Li Atoms via Chirped Microwave Pulse

    Institute of Scientific and Technical Information of China (English)

    JIA Guang-Rui; ZHANG Xian-Zhou; LIU Yu-Fang; YU Kun; ZHAO Yue-Jin

    2011-01-01

    The position and width of avoided crossings of Li atom energy levels in a static electric field is presented by using the B-spline basis set method combined with the model potential.Using the time-dependent multilevel approach,the population of Li atoms is transferred to the target state completely by one-photon,two-photon or a single multiphoton adiabatic rapid passage,which requires only a small frequency sweep.The calculation results agree well with the experiment and novel explanations are given to understand the experimental results.It is well known that adiabatic rapid passage (ARP) works perfectly in the population transfer of an atomic system.[1-3] Coherent population transfer via ARP in atoms through one-photon[2] or twophoton[4] transitions using chirped pulses has been demonstrated.If the frequency of an external field is swept through the resonance at a rate lower than the square of the Rabi frequency,the population can be transferred through many levels by sequential ARPs with approximately 100% efficiency.%The position and width of avoided crossings of Li atom energy levels in a static electric field is presented by using the B-spline basis set method combined with the model potential Using the time-dependent multilevel approach, the population of Li atoms is transferred to the target state completely by one-photon, two-photon or a single multiphoton adiabatic rapid passage, which requires only a small frequency sweep. The calculation results agree well with the experiment and novel explanations are given to understand the experimental results.

  13. Photoelectron spectroscopy and theoretical study of M(IO3)2- (M = H, Li, Na, K): Structural evolution, optical isomers, and hyperhalogen behavior

    Science.gov (United States)

    Hou, Gao-Lei; Wu, Miao Miao; Wen, Hui; Sun, Qiang; Wang, Xue-Bin; Zheng, Wei-Jun

    2013-07-01

    H(IO3)2- and M(IO3)2- (M = Li, Na, K) anions were successfully produced via electrospray ionization of their corresponding bulk salt solutions, and were characterized by combining negative ion photoelectron spectroscopy and quantum chemical calculations. The experimental vertical detachment energies (VDEs) of M(IO3)2- (M = H, Li, Na, K) are 6.25, 6.57, 6.60, and 6.51 eV, respectively, and they are much higher than that of IO3- (4.77 eV). The theoretical calculations show that each of these anions has two energetically degenerate optical isomers. It is found that the structure of H(IO3)2- can be written as IO3-(HIO3), in which the H atom is tightly bound to one of the IO3- groups and forms an iodic acid (HIO3) molecule; while the structures of M(IO3)2- can be written as (IO3-)M+(IO3-), in which the alkali metal atoms interact with the two IO3- groups almost equally and bridge the two IO3- groups via two O atoms of each IO3- with the two MOOI planes nearly perpendicular to each other. In addition, the high VDEs of M(IO3)2- (M = Li, Na, K) can be explained by the hyperhalogen behavior of their neutral counterparts.

  14. Dilithium disodium nickel(II) cyclo-hexa-phosphate dodeca-hydrate, Li(2)Na(2)NiP(6)O(18)·12H(2)O.

    Science.gov (United States)

    Abid, Sonia; Al-Deyab, Salem S; Rzaigui, Mohamed

    2012-08-01

    The crystal structure of Li(2)Na(2)NiP(6)O(18)·12H(2)O is characterized by the presence of six-membered P(6)O(18) (6-) phosphate ring anions (inter-nal symmetry -1) having a chair conformation and three different cations, viz. Li(+), Na(+) and Ni(2+), to counterbalance the anionic charge. All atoms are in general positions except for nickel, which lies on a special position with site symmetry 2. Lithium has a tetra-hedral environment (LiO(4)), and sodium and nickel have octa-hedral environments [NaO(6) and Ni(H(2)O)(6), respectively]. The P(6)O(18) rings are linked via corner sharing by NaO(6) octa-hedra and LiO(4) tetra-hedra to form a three-dimensional framework presenting tunnels running along [010] in which the six-coordinated Ni(2+) cations are located. The structure is stabilized by a network of O-H⋯O hydrogen bonds.

  15. Speciation study of chromium corrosion product in molten LiF-NaF-KF salt

    Institute of Scientific and Technical Information of China (English)

    邱杰; 邹杨; 俞国军; 何上明; 刘文冠; 贾彦彦; 李志军; 徐洪杰

    2015-01-01

    To investigate the corrosion products of Cr in molten FLiNaK salt (46.5 mol% LiF–11.5 mol% NaF–42 mol%KF), the corrosion test of the pure metal Cr was performed in molten FLiNaK salt at 700◦C for 200 h. The FLiNaK salt after the corrosion test was thoroughly investigated by X-ray absorption near-edge structure spectroscopy, a transmission electron microscope, and X-ray diffraction. The results demonstrate that the pre-dominant oxidation state of Cr in FLiNaK salt is Cr3+, and the main corrosion product in cooled FLiNaK salt is K2NaCrF6.

  16. Electrochemical behavior of boron in LiF-NaF-KF- melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakova, E.G.

    1996-01-01

    The electrochemical reduction of B(III) to B(0) in KBF4-LiF-NaF-KF melts has been studied by voltammetric and chronopotentiometric methods, Glassy carbon, Pt, and Ag were used as working electrode materials. Only in the case of Ag was the reduction not complicated by interaction between boron...

  17. Atomic Layer Deposition of SnO2 on MXene for Li-Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2017-02-24

    In this report, we show that oxide battery anodes can be grown on two-dimensional titanium carbide sheets (MXenes) by atomic layer deposition. Using this approach, we have fabricated a composite SnO2/MXene anode for Li-ion battery applications. The SnO2/MXene anode exploits the high Li-ion capacity offered by SnO2, while maintaining the structural and mechanical integrity by the conductive MXene platform. The atomic layer deposition (ALD) conditions used to deposit SnO2 on MXene terminated with oxygen, fluorine, and hydroxyl-groups were found to be critical for preventing MXene degradation during ALD. We demonstrate that SnO2/MXene electrodes exhibit excellent electrochemical performance as Li-ion battery anodes, where conductive MXene sheets act to buffer the volume changes associated with lithiation and delithiation of SnO2. The cyclic performance of the anodes is further improved by depositing a very thin passivation layer of HfO2, in the same ALD reactor, on the SnO2/MXene anode. This is shown by high-resolution transmission electron microscopy to also improve the structural integrity of SnO2 anode during cycling. The HfO2 coated SnO2/MXene electrodes demonstrate a stable specific capacity of 843 mAh/g when used as Li-ion battery anodes.

  18. New hydrogen titanium phosphate sulfate electrodes for Li-ion and Na-ion batteries

    Science.gov (United States)

    Zhao, Ran; Mieritz, Daniel; Seo, Dong-Kyun; Chan, Candace K.

    2017-03-01

    NASICON-type materials with general formula AxM2(PO4)3 (A = Li or Na, M = Ti, V, and Fe) are promising candidates for Li- and Na-ion batteries due to their open three-dimensional framework structure. Here we report the electrochemical properties of hydrogen titanium phosphate sulfate, H0.4Ti2(PO4)2.4(SO4)0.6 (HTPS), a new mixed polyanion material with NASICON structure. Micron-sized HTPS aggregates with crystallite grain size of ca. 23 nm are synthesized using a sol-gel synthesis in an acidic medium. The properties of the as-synthesized HTPS, ball-milled HTPS, and samples prepared as carbon composites using an in-situ glucose decomposition reaction are investigated. A capacity of 148 mAh g-1 corresponding to insertion of 2 Li+ per formula unit is observed in the ball-milled HTPS over the potential window of 1.5-3.4 V vs. Li/Li+. Lithiation at ca. 2.8 and 2.5 V is determined to occur through filling of the M1 and M2 sites, respectively. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) are used characterize the HTPS before and after cycling. Evaluation of the HTPS in a Na-ion cell is also performed. A discharge capacity of 93 mAh g-1 with sodiation at ca. 2.9 and 2.2 V vs. Na/Na+ is observed.

  19. Na sub 2 Li sub 3 CoO sub 4 , the first quaternary oxocobaltate(III) of the alkali metals. Na sub 2 Li sub 3 CoO sub 4 , das erste quaternaere Oxocobaltat(III) der Alkalimetalle

    Energy Technology Data Exchange (ETDEWEB)

    Birx, J.; Hoppe, R. (Inst. fuer Anorganische und Analytische Chemie, Giessen Univ. (Germany))

    1991-01-01

    For the first time we obtained Na{sub 2}Li{sub 3}CoO{sub 4} by annealing intimate mixtures of Co{sub 3}O{sub 4}, Na{sub 2}O{sub 2}, and Li{sub 2}O (Co:Na:Li = 1:2.2:10.1; 760degC; 21 d; Ag-tube) in form of transparent red single crystals. Structure Refinement (four-circle diffractometer data; AED2; MoK{alpha}-radiation; 1016 I{sub 0}(hkl); R = 2.6%; R{sub W} = 2.0%; space group Pnnm; Z = 4; a = 818.7(3), b = 799.4(2), c = 655.1(2) pm) confirms the isotypism to Na{sub 2}Li{sub 3}GaO{sub 4} (2) and Na{sub 2}Li{sub 3}FeO{sub 4} (3). Mean Fictive Ionic Radii, MEFIR, Effective Coordination Numbers, ECoN, and the Charge Distribution were calculated. The isotypism of Na{sub 2}Li{sub 3}CoO{sub 4} and Na{sub 2}Li{sub 3}GaO{sub 4} is compared graphically.

  20. The electronic structure and optical properties of ABP 2O 7 ( A = Na, Li) double phosphates

    Science.gov (United States)

    Hizhnyi, Yu. A.; Oliynyk, A.; Gomenyuk, O.; Nedilko, S. G.; Nagornyi, P.; Bojko, R.; Bojko, V.

    2008-01-01

    Partial densities of states and reflection spectra of NaAlP 2O 7, KAlP 2O 7 and LiInP 2O 7 double phosphate crystals are calculated by the full-potential linear-augmented-plane-wave (FLAPW) method. Experimental reflection spectra of KAlP 2O 7, CsAlP 2O 7 and NaInP 2O 7 are measured in the 4-20 eV energy range. The values of band gaps, Eg, are found from a comparison of experiment and calculations to be 6.0 eV for NaAlP 2O 7 and KAlP 2O 7, and 4.6 eV for LiInP 2O 7.

  1. High thermopower and potential thermoelectric properties of crystalline LiH and NaH

    Science.gov (United States)

    Zhao, Yinchang; Dai, Zhenhong; Zhang, Chao; Lian, Chao; Zeng, Shuming; Li, Geng; Meng, Sheng; Ni, Jun

    2017-01-01

    We use first-principles calculations combined with the Boltzmann transport equation and semiclassical analysis to investigate the thermal conductivity κ , electrical conductivity σ , and thermopower S of crystalline LiH and NaH. Remarkably, the calculated S is extraordinarily high while the lattice thermal conductivity κL is fairly low, which, as a result, leads to a much high thermoelectric power factor σ S2 and good thermoelectric properties, with the figure of merit z T even larger than 1.5 in the p -type doped NaH. Further analyses reveal that (i) the large band gap and the flat band around the Fermi level cause the high S and (ii) strong anharmonic phonon scatterings and relevant phonon group velocities result in the low κL in these light materials. Our results support that crystalline LiH and NaH may be potential materials for thermoelectric applications.

  2. Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses

    Science.gov (United States)

    Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.

    2015-08-01

    Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.

  3. Band gap opening in silicene on MgBr2(0001) induced by Li and Na

    KAUST Repository

    Zhu, Jiajie

    2014-11-12

    Silicene consists of a monolayer of Si atoms in a buckled honeycomb structure and is expected to be well compatible with the current Si-based technology. However, the band gap is strongly influenced by the substrate. In this context, the structural and electronic properties of silicene on MgBr2(0001) modified by Li and Na are investigated by first-principles calculations. Charge transfer from silicene (substrate) to substrate (silicene) is found for substitutional doping (intercalation). As compared to a band gap of 0.01 eV on the pristine substrate, strongly enhanced band gaps of 0.65 eV (substitutional doping) and 0.24 eV (intercalation) are achieved. The band gap increases with the dopant concentration.

  4. Surface diffusion and coverage effect of Li atom on graphene as studied by several density functional theory methods

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhi [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos (Mexico); Contreras-Torres, Flavio F., E-mail: flavioc@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, DF (Mexico); Jalbout, Abraham F.; Ramírez-Treviño, Alberto [Instituto Tecnológico de Estudios Superiores de Cajeme, Ciudad Obregon, Sonora (Mexico)

    2013-11-15

    The adsorption of Li atom on graphene is examined using density functional theory methods. Three different adsorption sites are considered, including the on top of a carbon atom (OT), on top of a C-C bond (Bri), and on top of a hexagon (Hol), as well as Li adsorbed at different coverage. The Hol site is found to be the most stable, followed by the Bri and OT sites. The order of stabilization is independent of coverage. The localization of Li–graphene interaction at all sites has reverse order with stabilization. The localization will cause different repulsive interaction between Li atoms which is believed to take responsibility for the difference between the charge transfer order and adsorption energy order of Li adsorption at all possible sites. Repulsive interaction also causes the decreasing of adsorption energies of Li at Hol site with increasing coverage, but the corresponding influence is bigger at low coverage range (0.020–0.056 monolayers) than that at high coverage range (0.056–0.250 monolayers). The trend of charge transfer and dipole moment with increasing coverage is also in agreement with that of adsorption energy. It is also found that the distance of Li above graphene will increase with increasing coverage, but a so-called “zigzag” curve appears, which exhibits an oscillatory behavior as a function of increasing coverage. The diffusion of Li atom on graphene is also studied. Li atom migrates from a Hol site to a neighboring Hol site through the Bri site between them is found to be the minimum energy path. Within the studied coverage range, the diffusion barrier decreases with increasing coverage which can be ascribed to the phenomenon of different repulsion interactions when Li atom adsorbs at different sites. The increasing coverage amplified the phenomenon.

  5. Structures, stabilities and spectral properties of borospherene B44‑ and metalloborospherenes MB440/‑ (M = Li, Na, and K)

    Science.gov (United States)

    Li, Shixiong; Zhang, Zhengping; Long, Zhengwen; Qin, Shuijie

    2017-01-01

    Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations are carried out to study the stabilities, photoelectron, infrared, Raman and electronic absorption spectra of borospherene B44‑ and metalloborospherenes MB440/‑ (M = Li, Na, and K). It is found that all atoms can form stable exohedral metalloborospherenes M&B440/‑, whereas only Na and K atoms can be stably encapsulated inside B440/‑ cage. In addition, relative energies of these metalloborospherenes suggest that Na and K atoms favor exohedral configuration. Importantly, doping of metal atom can modify the stabilities of B44 with different structures, which provides a possible route to produce stable boron clusters or metalloborospherenes. The calculated results suggest that B44 tends to get electrons from the doped metal. Metalloborospherenes MB44‑ are characterized as charge-transfer complexes (M2+B442‑), where B44 tends to get two electrons from the extra electron and the doped metal, resulting in similar features with anionic B442‑. In addition, doping of metal atom can change the spectral features, such as blueshift or redshift and weakening or strengthening of characteristic peaks, since the extra metal atom can modify the electronic structure. The calculated spectra are readily compared with future spectroscopy measurements and can be used as fingerprints to identify B44‑ and metalloborospherenes.

  6. Structures, stabilities and spectral properties of borospherene B44− and metalloborospherenes MB440/− (M = Li, Na, and K)

    Science.gov (United States)

    Li, Shixiong; Zhang, Zhengping; Long, Zhengwen; Qin, Shuijie

    2017-01-01

    Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations are carried out to study the stabilities, photoelectron, infrared, Raman and electronic absorption spectra of borospherene B44− and metalloborospherenes MB440/− (M = Li, Na, and K). It is found that all atoms can form stable exohedral metalloborospherenes M&B440/−, whereas only Na and K atoms can be stably encapsulated inside B440/− cage. In addition, relative energies of these metalloborospherenes suggest that Na and K atoms favor exohedral configuration. Importantly, doping of metal atom can modify the stabilities of B44 with different structures, which provides a possible route to produce stable boron clusters or metalloborospherenes. The calculated results suggest that B44 tends to get electrons from the doped metal. Metalloborospherenes MB44− are characterized as charge-transfer complexes (M2+B442−), where B44 tends to get two electrons from the extra electron and the doped metal, resulting in similar features with anionic B442−. In addition, doping of metal atom can change the spectral features, such as blueshift or redshift and weakening or strengthening of characteristic peaks, since the extra metal atom can modify the electronic structure. The calculated spectra are readily compared with future spectroscopy measurements and can be used as fingerprints to identify B44− and metalloborospherenes. PMID:28071694

  7. Structural and optical properties of the M@C59X cages (X=N, B and M=Li, Na)

    Indian Academy of Sciences (India)

    Mojtaba Yaghobi; Alireza Adabinezhad

    2016-01-01

    Using B3LYP/6-31G* density functional level of theory, the structural and optical properties of the C60 and M@C59X cages have been investigated. Results indicate that the charge on C atoms and band gap of C60 cage are changed dramatically with the substitution of one B or N atom at one of the C sites and the Li and Na atom encapsulations in the C60 cage. The Mulliken analyses show that the charge is transferred completely between the alkali atoms and the C59X cage. The substitutional and encapsulation doping (SED) reduce the optical gaps of the C60 cage. Also, the oscillator strengths of the absorption peaks are dependent on dopant types.

  8. Hugoniot Models for Na and LiF from LEOS

    Energy Technology Data Exchange (ETDEWEB)

    Whitley, Heather D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Christine J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-12

    In this document, we provide the Hugoniot for sodium from two models: LEOS table L110 and Lynx table 110. We also provide the Hugoniot for lithium fluoride from LEOS (L2240) and Lynx (2240). The Hugoniot pressures are supplied for temperatures between 338.0 and 1.16×109 Kelvin and densities between 0.968 and 11.5 g/cc. These LEOS models were developed by the quotidian EOS methodology, which is a widely used and robust method for producing tabular EOS data. Tables list the model data for LEOS 110, Lynx 110, LEOS 2240, and Lynx 2240. The Lynx models follow the same methodology as the LEOS models; however, the Purgatorio average-atom DFT code was used to compute the electron thermal part of the EOS. The models for Lynx are only listed at high compression due to known issues with the Lynx library at lower pressures.

  9. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: Experiment and Theory

    Energy Technology Data Exchange (ETDEWEB)

    Baggetto, Loic [ORNL; Ganesh, Panchapakesan [ORNL; Sun, Che Nan [ORNL; Meisner, Roberta Ann [ORNL; Zawodzinski, Thomas A [ORNL; Veith, Gabriel M [ORNL

    2013-01-01

    A detailed comparative study between electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and electrochemical properties has been carried out. For this purpose, a wide range of measurements using electrochemical (galvanostatic cycling, GITT, PITT), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) methods as well as density functional theory (DFT) based investigations have been undertaken. Assessment of the thermodynamics reveals that the reaction proceeds identically during the first and second cycles for Li whereas it differs between the first and subsequent cycles for Na. For Li the difference between the first and subsequent cycles is rooted in an improvement of the kinetics likely due to the decrease of Sb particle size whereas the reaction with Na proceeds through a different pathway from the first to subsequent cycles and is associated with the formation of amorphous NaxSb phases. For the first time we rationalize the amorphization of NaxSb phases by the long ranged strain propagation due to Na-vacancy compared to Li-Sb. At full discharge, our XRD results show for the first time that a minor fraction of hexagonal Li3Sb forms concomitantly with cubic Li3Sb. The XRD results confirm that Sb crystallizes into hexagonal Na3Sb at full sodiation. The kinetics of the reaction is assessed by rate performance tests which highlight that both Li and Na can diffuse rapidly throughout micron thick films at room temperature. However, it is found that the (de)insertion of Li provides lower overpotentials and larger storage capacities compared to Na. The difference in rate performance is complemented by diffusion coefficient determinations near the 0 V region where both materials are crystallized into M3Sb (M=Li, Na), and the results show that the apparent diffusion coefficients for Li are equivalent or one order of magnitude higher than those for Na. Interestingly, calculations show that the

  10. Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries

    Science.gov (United States)

    Luo, Chao

    To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit

  11. First-principles prediction of MgB2-like NaBC: A more promising high-temperature superconducting material than LiBC

    Science.gov (United States)

    Miao, Rende; Huang, Guiqin; Yang, Jun

    2016-05-01

    Crystal structure, lattice dynamics, and superconducting properties for sodium borocarbides NaB1+xC1-x are investigated with first-principles calculations. Based on crystal structure analysis by particle swarm optimization methodology, NaBC is predicted to crystallize in the layered P63 / mmc crystal structure as LiBC. However, it is different from LiBC, in that Na atoms are effectively ionized, with no longitudinal covalence exist between Na and B-C layers, just as in the case of MgB2. Therefore, Na1-xBC is more similar to MgB2 than Li1-xBC as a potential high-temperature superconductor. Further more, we suggest that the slight hole doping of NaBC through partial substitution of C by B atoms can also produce cause superconductivity. The phonon spectra for NaBC and NaB1.1C0.9 are obtained within the virtual-crystal approximation treatment. There is a remarkable softening of the in-plane B-C bond-stretching modes for NaB1.1C0.9 in certain regions of the Brillouin zone, while other phonon bands show no obvious softening behavior. This conspicuous softening of the in-plane B-C bond-stretching modes indicates a strong electron-phonon coupling for them. The obtained total electron-phonon coupling strength λ for NaB1.1C0.9 is 0.73, and superconducting transition temperature TC is predicted to be 35 K (μ* = 0.1). This indicates that NaB1+xC1-x is potentially high-temperature superconducting and hole doping of NaBC could produce high-temperature superconductivity. In addition, we conjecture that, to design a MgB2-like high TC superconducting material, the longitudinal covalent bonds between the metal cations and graphite-like layers need be excluded.

  12. Nano-glass ceramic cathodes for Li+/Na+ mixed-ion batteries

    Science.gov (United States)

    He, Wen; Zhang, Xudong; Jin, Chao; Wang, Yaoyao; Mossin, Susanne; Yue, Yuanzheng

    2017-02-01

    Electrode materials can display superior electrochemical performances and behavior via the nanoscale design. Here, the low-temperature synthesis of nano-glass ceramics (NGCs) is based on inheriting the network structure of yeast polyphosphate metabolism. The NGCs-3 sample synthesized with a molar ratio of Fe/V = 7:6 is composed of nano-domains of semiconducting oxide glass (Li2O-Na2O-Fe2O3-V2O5-P2O5, LNFVP), nanocrystalline particles (Li9Fe3P8O29, Li0.6V1.67O3.67 and VOPO4), and nanopores connected by interfaces. We have clarified the mixing ion transport mechanism and the electrochemical reactions, and the influences of molar ratio of Fe/V on the structure and electrochemical properties of NGCs. This nanoscale design offers a new possibility improved the electrochemical performances of Li+/Na+ mixed-ion batteries (LNMIBs). The NGCs-3 electrode exhibits a higher discharge capacity (145 mAh g-1) and energy storage density (525 Whkg-1) at 5C, and the capacity retention reaches 70% after 1000 cycles. More importantly, we have established a direct relationship between the electrochemical kinetics and nanostructure of NGC electrode materials.

  13. Theoretical Study on Cyclopeptides as the Nanocarriers for Li+, Na+, K+ and F−, Cl−, Br−

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2015-01-01

    Full Text Available The interaction process between a series of cyclopeptide compounds cyclo(Glyn  (n=4,6,8 and monovalent ions (Li+, Na+, K+, F−, Cl−, and Br− was studied using theoretical calculation. The mechanism of combination between the cyclo(Glyn and ions was discussed through binding energy, Mulliken electron population, and hydrogen bond. It was found that for the same cyclopeptide the binding energy has the order of cyclo(Glyn–Li+ > cyclo(Glyn–Na+ > cyclo(Glyn–K+ and cyclo(Glyn–F− > cyclo(Glyn–Br− > cyclo(Glyn–Cl−. The binding energy manifests the stable complex of cyclo(Glyn and ions can be formed, and the different energy shows the potential use of cyclo(Glyn as nanocarriers for metal ions or the extractant for ions separation.

  14. Franck-Condon factors for photodetachment from LiO(-), NaO(-), and KO(-)

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Pettersson, Lars G. M.

    1993-01-01

    The 1Sigma(+), 3Sigma(+), 1Pi, and 3Pi states of the negative ions and the 2Pi and 2Sigma(+) states of the neutral alkali oxides are studied at high levels of theory. The calculations show that ground state of the negative ions changes from 3Pi for LiO(-) to 1Sigma(+) for KO(-). Although the calculations give a 3Pi ground state for NaO(-), we cannot rule out the possibility that the very low-lying 1Sigma(+) state is the true ground state. The Franck-Condon factors for photodetachment of an electron from the 1Sigma(+) and/or 3Pi states of the negative ion are presented to help interpret photodetachment experiments. Our best results for the A 2Sigma(+) - X 2Pi separations in LiO and NaO are 2496 and 2061/cm, which are in excellent agreement with that deduced (2516 and 2018/cm) from experiment.

  15. Structure Refinement of Cs-rich Na-Li Beryl and Analysis of Its Typomorphic Characteristics of Configurations

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; DENG Jun; LI Guowu; SHI Guanghai

    2007-01-01

    The tabular beryl found in Huya Country, Sichuan Province is a rare and special member among beryls. Chemical analysis reveals that the beryl is a new type of Cs-rich Na-Li beryl, and the content of alkalis (Li2O, Na2O, K2O, Rb2O, Cs2O) is up to 2.41%. The CCD system on the SMART APEX four circle single crystal diffractometer was used in this experiment to determine the structure of the sample accurately. The beryl belongs to the hexagonal system; its space group is P6/mcc. The dimensions of the unit cell are as follows: a = 0.91961(3) nm, c = 0.91969(7) nm, c/a= 1.0000, V= 0.67357nm3, γ = 120°, a = 90°, β = 90°. The accurate atomic coordinates of alkali metal ions and other crystallographic parameters are also obtained: Z = 2, the calculated density D = 2.754 g/cm3 and final R ( Ⅰ> 2 σ (Ⅰ))= 0.046 for 5597 reflections. The crystal structure was described by coordination polyhedron. Based on the data gained, a three-dimensional graph of the crystal structure of tabular beryl was made with the ATOMS 6.0 software. The refinement of crystal structure indicates that there are two main reasons for the cause of the tabular configuration: (1) The substitution of Be by Li into the tetrahedral framework weakened the stacked six-sided rings [Si6O1s]12- of the tetrahedral Si; (2) Alkalis (mainly Na and Cs) are too large to substitute in four-fold or six-fold coordination within the structure and are accommodated in the vacant channel. The accommodation of these alkalis strengthened the structure of six-sided rings of the tetrahedral Si. And other alkali metal ions and free volatile molecules such as H2O and CO2 occupy variable positions in the channel. The equation of the electrovalence is Li++Na+→Be2+. According to structural and compositional differences, the monoclinic crystal of tabular beryl is considered to be a new member of the beryl group. Chemical constraints of the environment, namely, the bulk-rock chemistry and the fluid-phase composition and

  16. Hugoniot Models for Na and LiF from LEOS

    Energy Technology Data Exchange (ETDEWEB)

    Whitley, Heather D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Christine J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-12

    In this document, we provide the Hugoniot for sodium from two models: LEOS table L110 and Lynx table 110. We also provide the Hugoniot for lithium fluoride from LEOS (L2240) and Lynx (2240). The Hugoniot pressures are supplied for temperatures between 338.0 and 1.16×109 Kelvin and densities between 0.968 and 11.5 g/cc. These LEOS models were developed by the quotidian EOS methodology, which is a widely used and robust method for producing tabular EOS data.[1, 2] Table 1 lists the model data for LEOS 110, Table 2 contains Lynx 110, Table 3 contains LEOS 2240, and Table 4 contains Lynx 2240. The Lynx models follow the same methodology as the LEOS models, however the Purgatorio[3] average-atom DFT code was used to compute the electron ther- mal part of the EOS. The models for Lynx are only listed at high compression due to known issues with the Lynx library at lower pressures.

  17. The Electrochemical Behaviour of Uranium in LiF-NaF Molten Salt

    Institute of Scientific and Technical Information of China (English)

    WANG; Chang-shui; LIU; Yi

    2012-01-01

    <正>The reduction mechanism in molten LiF-NaF eutectic containing UF4 was investigated by cyclic voltammetry and chronopotentiometry in 1 073 K. Two redox peaks have been observed in the cyclic voltammograms and two platforms have also occurred in the chronopotentiogram which indicates that the reduction process of U4+ consists of two steps. The number of electrons exchanged at each step has been

  18. Calculation of the total electron excitation cross section in the Born approximation using Slater wave functions for the Li (2s yields 2p), Li (2s yields 3p), Na (3s yields 4p), Mg (3p yields 4s), Ca (4s yields 4p) and K (4s yields 4p) excitations. M.S. Thesis

    Science.gov (United States)

    Simsic, P. L.

    1974-01-01

    Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.

  19. On the crystal energy and structure of A2TinO2n+1 (A=Li, Na, K) titanates by DFT calculations and neutron diffraction

    Science.gov (United States)

    Catti, Michele; Pinus, Ilya; Scherillo, Antonella

    2013-09-01

    First-principles quantum-mechanical calculations (CRYSTAL09 code, B3LYP functional) were performed on alkali titanates A2TinO2n+1 with layered structure (n=3,4,6). Monoclinic structural types with unshifted (P21/m) and with shifted (C2/m) layers were considered. Crystal energies and full structural details were obtained for all Li, Na, and K phases. Neutron diffraction data were collected on powder samples of P21/m-Li2Ti3O7 (a=9.3146(3), b=3.7522(1), c=7.5447(3) Å, β=97.611(4)°) and C2/m-K2Ti4O9 (a=18.2578(8), b=3.79160(9), c=12.0242(4) Å, β=106.459(4)°) and their structures were Rietveld-refined. Computed energies show the P21/m arrangement as favoured over the C2/m one for n=3, and the opposite holds for n=6. In the n=4 case the P21/m configuration is predicted to be more stable for Li and Na, and the C2/m one for K titanates. Analysis of Li-O and K-O crystal-chemical environments from experiment and theory shows that the alkali atom bonding is stabilized/destabilized in the different phases consistently with the energy trend.

  20. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life

    OpenAIRE

    Dong, Xiaoli; Chen, Long; Liu, Jingyuan; Haller, Servane; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Current rechargeable batteries generally display limited cycle life and slow electrode kinetics and contain environmentally unfriendly components. Furthermore, their operation depends on the redox reactions of metal elements. We present an original battery system that depends on the redox of I−/I3 − couple in liquid cathode and the reversible enolization in polyimide anode, accompanied by Li+ (or Na+) diffusion between cathode and anode through a Li+/Na+ exchange polymer membrane. There are n...

  1. Na-doped LiMnPO$_4$ as an electrode material for enhanced lithium ion batteries

    Indian Academy of Sciences (India)

    K RAJAMMAL; D SIVAKUMAR; NAVANEETHAN DURAISAMY; K RAMESH; S RAMESH

    2017-02-01

    We report the influence of sodium (Na)-incorporated lithium manganese phosphate as an active material on its performance in electrochemical study for energy storage application. Li$_{1−x}$Na$_x$MnPO$_4$ with different mole ratios ($0.00 \\le x \\le 0.05$) of sodium is synthesized via a simple sol–gel method. The discharge capacity of Li$_{1−x}$Na$_x$MnPO$_4$ varies with respect to mole ratios of sodium incorporated. The maximum discharge capacityof 92.45 mAh g$^{−1}$ is observed in Li$_{0.97}$Na$_{0.03}$MnPO$_4$, which is higher than that of pristine LiMnPO$_4$ and other Na-incorporated LiMnPO$_4$. The maximum cyclic stability is found to be 84.15% up to 60 cycles. These results demonstrate that Li$_{0.97}$Na$_{0.03}$MnPO$_4$ plays a significant role in future energy storage application.

  2. Interaction between LiH molecule and Li atom from state-of-the-art electronic structure calculations

    CERN Document Server

    Skomorowski, Wojciech; Korona, Tatiana; Moszyński, Robert; Zuchowski, Piotr S \\; Hutson, Jeremy M

    2010-01-01

    State-of-the-art ab initio techniques have been applied to compute the potential energy surface for the lithium atom interacting with the lithium hydride molecule in the Born-Oppenheimer approximation. The interaction potential was obtained using a combination of the explicitly correlated unrestricted coupled-cluster method with single, double, and noniterative triple excitations [UCCSD(T)-F12] for the core-core and core-valence correlation and full configuration interaction for the valence-valence correlation. The potential energy surface has a global minimum 8743 cm^{-1} deep if the Li-H bond length is held fixed at the monomer equilibrium distance or 8825 cm^{-1} deep if it is allowed to vary. In order to evaluate the performance of the conventional CCSD(T) approach, calculations were carried out using correlation-consistent polarized valence X-tuple-zeta bases, with X ranging from 2 to 5. The contribution beyond the CCSD(T)-F12 model, obtained from full configuration interaction (FCI) calculations for the...

  3. The influence of laser pulse on the photoabsorption spectra of Li atom in strong external field

    Institute of Scientific and Technical Information of China (English)

    WANG; Dehua; LIN; Shenglu

    2006-01-01

    Using the time-dependent perturbation theory and the calculation formula of the single- and double-pulse absorption spectra of the atom in strong external fields, we calculate the single- and double-pulse absorption spectra of Li atom in strong magnetic field for different pulse widths. The results show that a pulse of some width can reduce the contribution of the short period closed orbits and eliminate the contribution of the long period orbits. Compared with the single-pulse absorption spectra, we found that for some phase differences, the double-pulse laser absorption spectra are strengthened; while for others, they are reduced. Therefore, we can use the pulse laser to control the oscillation of the absorption spectra and obtain the optimization object.

  4. Polymer-like structures of LiSCN, NaSCN, KSCN, RbSCN, and CsSCN complexes with an armed monoaza-15-crown-5 ether bearing a 3',5'-difluoro-4'-hydroxybenzyl group.

    Science.gov (United States)

    Habata, Yoichi; Okazaki, Chizuko; Ogura, Kinuko; Akabori, Sadatoshi; Zhang, Xian X; Bradshaw, Jerald S

    2007-10-01

    Structures of LiSCN, NaSCN, KSCN, RbSCN, and CsSCN complexes with 3',5'-difluoro-4'-hydroxybenzyl-armed monoaza-15-crown-5 ether (5) were investigated. The Li+ and Na+ complexes are (1:1)n polymer-like complexes bridged by hydrogen bonding. On the other hand, the K+, Rb+, and Cs+ complexes are polymer-like complexes bridged by the fluorine atoms of the side arms. The titration calorimetry and 19F NMR titration experiments suggest that one or both fluorine atoms along with the oxygen atom of the phenolic OH group coordinate to the alkali metal ions incorporated in the crown part of a second armed ligand to give polymer-like complexes in solution. The FAB-MS data indicated that larger alkali metal ions form more stable polymer-like complexes.

  5. Atomic-Scale Observations of (010) LiFePO4 Surfaces Before and After Chemical Delithiation.

    Science.gov (United States)

    Kobayashi, Shunsuke; Fisher, Craig A J; Kato, Takeharu; Ukyo, Yoshio; Hirayama, Tsukasa; Ikuhara, Yuichi

    2016-09-14

    The ability to view directly the surface structures of battery materials with atomic resolution promises to dramatically improve our understanding of lithium (de)intercalation and related processes. Here we report the use of state-of-the-art scanning transmission electron microscopy techniques to probe the (010) surface of commercially important material LiFePO4 and compare the results with theoretical models. The surface structure is noticeably different depending on whether Li ions are present in the topmost surface layer or not. Li ions are also found to migrate back to surface regions from within the crystal relatively quickly after partial delithiation, demonstrating the facile nature of Li transport in the [010] direction. The results are consistent with phase transformation models involving metastable phase formation and relaxation, providing atomic-level insights into these fundamental processes.

  6. The use Na, Li, K cations for modification of ZSM-5 zewolite to control hydrocarbon cold-start emission

    Energy Technology Data Exchange (ETDEWEB)

    Golubeva V.; Rohatgi U.; Korableva, A.; Anischenko, O.; Kustov, L.; Nissenbaum, V; Viola, M.B.

    2012-08-29

    This paper addresses the problem of controlling hydrocarbon emissions from cold-start of engines by investigating the adsorbents which could adsorb the hydrocarbons at cold temperatures and hold them to 250-300 ?. The materials, that has been studied, are based on the modification of ZSM-5 (SiO{sub 2}/Al{sub 2}O{sub 3} = 35) zeolite with Li, K, Na cations. It has been shown that the introduction of Li, Na and K in an amount that is equivalent to the content of Al in zeolite results in occurrence of toluene temperature desorption peaks at high-temperatures. The toluene temperature desorption curves for 5%Li-ZSM-5 and 2.3%Na-ZSM-5 zeolites are identical and have peak toluene desorption rate between 200 to 400 ?. Upon analysis of toluene adsorption isotherms for 2.3%Na-ZSM-5 and 5%Li-ZSM-5, it was concluded that the toluene diffusion inside of the modified zeolites channels is extremely slow and the sorption capacity of 2.3%Na-ZSM-5 is higher than with 5%Li-ZSM-5. The 2.3%Na-ZSM-5 didn't change toluene temperature programmed desorption (TPD) rate of curve after the treatment in environment with 10% ?{sub 2}? at 750-800 ? for about 28 h. The 2.3%Na-ZSM-5 zeolite is very promising as adsorbent to control the cold-start hydrocarbon emissions.

  7. Structure factors and phonon dispersion in liquid Li0.61Na0.39 alloy

    Indian Academy of Sciences (India)

    Arun Pratap; Kirit N Lad; K G Raval

    2004-08-01

    The phonon spectra for liquid Li and Na have been computed through the phenomenological model of Bhatia and Singh for disordered systems like liquids and glasses and the obtained results have been compared with the available data obtained by inelastic neutron scattering (INS) and inelastic X-ray scattering (IXS) experiments. The effective pair potentials and their space derivatives are important ingredients in the computation of the dispersion curves. The pair potentials are obtained using the pseudo-potential theory. The empty core model proposed by Ashcroft is widely used for pseudo-potential calculations for alkali metals. But, it is thought to be unsuitable for Li because of its simple 1s electronic structure. However, it can be used with an additional term known as Born–Mayer (BM) core term. The influence of the BM core term on the phonon dispersion is discussed. The same pseudo-potential formalism has been employed to obtain the dispersion relation in liquid Li0.61Na0.39 alloy. Apart from the phonon spectra, the Ashcroft–Langreth structure factors in the alloy are derived in the Percus–Yevick approximation.

  8. Phase equilibria in system LiCl-NaCl-H2O at 308 and 348 K

    Science.gov (United States)

    Wang, Shi-qiang; Guo, Ya-fei; Liu, Dong-fang; Deng, Tian-long

    2016-12-01

    The solubilities and densities of the solutions in the ternary system LiCl-NaCl-H2O at 308 and 348 K were determined by the method of isothermal dissolution equilibrium. There are one invariant point, two univariant isotherm dissolution curves, and two crystallization regions corresponding to monohydrate (LiCl · H2O) and NaCl, respectively. This system at both temperatures belongs to hydrate type I, and neither double salt nor solid solution was found. A comparison of the phase diagram for the ternary system at 273-348 K shows that the area of crystallization region of LiCl · H2O is decreased with the increasing of temperature, while that of NaCl is increased obviously. The solution density of the ternary system at two temperatures changes regularly with the increasing of LiCl concentration.

  9. A further study of crystallization of lithium perchlorate from LiClO₄-NaCl-H₂O system

    Directory of Open Access Journals (Sweden)

    Goran Tadic

    2010-11-01

    Full Text Available The aim of this paper is to define feasible process pathways of fractional crystallization of NaCl and LiClO₄·3H₂0 from LiClO₄-NaCl-H₂O system using the information on the equilibrium of the LiClO₄-NaCl-H₂O system at different temperatures, as well as the information on the composition of the starting solution obtained by electrolysis and double exchange with LiCl. The paper also synthesizes a feasible process structure that can be applied for the process of fractional crystallization, and gives a simulation of the process by calculating the material balance of the process. The parameters of relevant process paths that were obtained prove that the process presented in this paper is feasible in practice and applicable in industry.

  10. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries

    Science.gov (United States)

    Zhu, Yujie; Xu, Yunhua; Liu, Yihang; Luo, Chao; Wang, Chunsheng

    2012-12-01

    Carbon-coated olivine NaFePO4 (C-NaFePO4) spherical particles with a uniform diameter of ~80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO4 (C-LiFePO4), which is synthesized by a solvothermal method. The C-NaFePO4 electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO4 except that Li ions in C-LiFePO4 are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO4 cathode in sodium-ion (Na-ion) batteries and C-LiFePO4 in lithium-ion (Li-ion) batteries. In this paper, the equilibrium potentials, reaction resistances, and diffusion coefficient of Na in C-NaFePO4 are systematically investigated by using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and compared to those of the well-known LiFePO4 cathodes in Li-ion batteries. Due to the lower diffusion coefficient of Na-ion and higher contact and charge transfer resistances in NaFePO4 cathodes, the rate performance of C-NaFePO4 in Na-ion batteries is much worse than that of C-LiFePO4 in Li-ion batteries. However, the cycling stability of C-NaFePO4 is almost comparable to C-LiFePO4 by retaining 90% of its capacity even after 100 charge-discharge cycles at a charge-discharge rate of 0.1 C.Carbon-coated olivine NaFePO4 (C-NaFePO4) spherical particles with a uniform diameter of ~80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO4 (C-LiFePO4), which is synthesized by a solvothermal method. The C-NaFePO4 electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO4 except that Li ions in C-LiFePO4 are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO4 cathode in

  11. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    Science.gov (United States)

    Dubreuil, B.; Harnafi, M.

    1989-07-01

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.

  12. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.

    Science.gov (United States)

    Zhu, Yujie; Xu, Yunhua; Liu, Yihang; Luo, Chao; Wang, Chunsheng

    2013-01-21

    Carbon-coated olivine NaFePO(4) (C-NaFePO(4)) spherical particles with a uniform diameter of ∼80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO(4) (C-LiFePO(4)), which is synthesized by a solvothermal method. The C-NaFePO(4) electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO(4) except that Li ions in C-LiFePO(4) are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO(4) cathode in sodium-ion (Na-ion) batteries and C-LiFePO(4) in lithium-ion (Li-ion) batteries. In this paper, the equilibrium potentials, reaction resistances, and diffusion coefficient of Na in C-NaFePO(4) are systematically investigated by using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and compared to those of the well-known LiFePO(4) cathodes in Li-ion batteries. Due to the lower diffusion coefficient of Na-ion and higher contact and charge transfer resistances in NaFePO(4) cathodes, the rate performance of C-NaFePO(4) in Na-ion batteries is much worse than that of C-LiFePO(4) in Li-ion batteries. However, the cycling stability of C-NaFePO(4) is almost comparable to C-LiFePO(4) by retaining 90% of its capacity even after 100 charge-discharge cycles at a charge-discharge rate of 0.1 C.

  13. Multiple Electron Capture Processes in Slow Collisions of Ar9+ Ions with Na Atoms

    Institute of Scientific and Technical Information of China (English)

    ZhuXiaolong; ShaShan; LiuHuiping; WeiBaoren; MaXinwen; WangZhengling; CaoShiping; QianDongbing; YangZhihu

    2003-01-01

    Slow collisions of highly charged ions with neutral atoms and molecules are of great importance in basic atomic collision physics, Recently, we built a new research facility for atomic physics at the Institute of Modern Physics. We report here the multiple electron transfer processes in collisions of Ar9+ with Na gas target at energy of 180 keV.

  14. M@B40 (M = Li, Na, K) serving as a potential promising novel NLO nanomaterial

    Science.gov (United States)

    Shakerzadeh, Ehsan; Biglari, Zeinab; Tahmasebi, Elham

    2016-06-01

    Density functional theory (DFT) calculations have carried out to investigate the nonlinear optical response of the B40 fullerene by interaction with the alkali metals (Li, Na, K). The results reveal that the interacted fullerenes are energetically favorable. The B40 electronic properties are strongly sensitive to the interaction with the alkali metals. Furthermore, the adsorption of the alkali metals over the B40 hexagonal ring remarkably enhances the first hyperpolarizability up to 23111.72 a.u. Therefore, the B40 fullerene interacted with the alkali metals could be introduced as a promising innovative nonlinear optical boron-based nanomaterial.

  15. Structure and stability of Li(I) and Na(I) - Carboxylate, sulfate and phosphate complexes

    NARCIS (Netherlands)

    Remko, Milan; Van Duijnen, Piet Th.; von der Lieth, Claus-Wilhelm

    2007-01-01

    DFT was used to investigate molecular structure and metal affinity of the systems CH3CO2M (1), CH3-O-SO3M (2), CH3-NH-SO3M (3), (CH3-O-PO3M)(-) (4) CH3-O-PO3M2 (5), CH3-O-(CH3)PO2M (6), and 1,4-DiOMe IdoA-2SM(2) (7; S-2(o) conformation) (M = Li+ and Na+), respectively. Interaction enthalpies, entrop

  16. Terahertz reflection spectroscopy of aqueous NaCl and LiCl solutions

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Merbold, Hannes

    2010-01-01

    We present spectroscopic measurements of the full dielectric function of aqueous solutions of sodium chloride and lithium chloride at concentrations approaching their solubility limits at room temperature. We find that the dielectric properties of the two salts are rather different at THz frequen...... frequencies. Whereas both the real and imaginary part of the permittivity of NaCl increases with concentration,we see that the imaginary part of the permittivity of LiCl (related to the absorption)decreases with increasing salt concentration. We relate these changes to the behavior...

  17. Highly accurate local pseudopotentials of Li, Na, and Mg for orbital free density functional theory

    Science.gov (United States)

    Legrain, Fleur; Manzhos, Sergei

    2015-02-01

    We present a method to make highly accurate pseudopotentials for use with orbital-free density functional theory (OF-DFT) with given exchange-correlation and kinetic energy functionals, which avoids the compounding of errors of Kohn-Sham DFT and OF-DFT. The pseudopotentials are fitted to reference (experimental or highly accurate quantum chemistry) values of interaction energies, geometries, and mechanical properties, using a genetic algorithm. This can enable routine large-scale ab initio simulations of many practically relevant materials. Pseudopotentials for Li, Na, and Mg resulting in accurate geometries and energies of different phases as well as of vacancy formation and bulk moduli are presented as examples.

  18. Adiabatic Channel Capture Theory Applied to Cold Atom-Molecule Reactions: Li + CaH -> LiH + Ca at 1 K

    CERN Document Server

    Tscherbul, Timur V

    2014-01-01

    We use quantum and classical adiabatic capture theories to study the chemical reaction Li + CaH -> LiH + Ca. Using a recently developed ab initio potential energy surface, which provides an accurate representation of long-range interactions in the entrance reaction channel, we calculate the adiabatic channel potentials by diagonalizing the atom-molecule Hamiltonian as a function of the atom-molecule separation. The resulting adiabatic channel potentials are used to calculate both the classical and quantum capture probabilities as a function of collision energy, as well as the temperature dependencies of the partial and total reaction rates. The calculated reaction rate agrees well with the measured value at 1 K [V. Singh et al., Phys. Rev. Lett. 108, 203201 (2012)], suggesting that the title reaction proceeds without an activation barrier. The calculated classical adiabatic capture rate agrees well with the quantum result in the multiple partial wave regime of relevance to the experiment. Significant differen...

  19. Local atomic structural investigations of precursory phenomenon of the hydrogen release from LiAlD{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toyoto, E-mail: toyoto@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan); Tomiyasu, Keisuke [Department of Physics, Tohoku University, 6-3 Aoba, Aoba-ku, Sendai 980-8578 (Japan); Ikeda, Kazutaka; Otomo, Toshiya [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Feygenson, Mikhail; Neuefeind, Jörg [Chemical and Engineering Materials Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Yamada, Kazuyoshi [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan); WPI-Advanced Institute for Materials Research, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan)

    2014-02-15

    Highlights: • Local atomic structural changes in LiAlD{sub 4} were investigated. • The Li–D pair distribution started to broaden and shrink above 200–250 K. • The Al–D pair distribution remained nearly constant below 300 K. -- Abstract: Local atomic structural investigations of LiAlD{sub 4}, which is composed of Li{sup +} and [AlD{sub 4}]{sup −}, at 40–300 K were studied by total neutron scattering combined with pair distribution function (PDF) analysis for understanding of hydrogen release from LiAlD{sub 4}. The results showed that the Al–D pair distribution almost unchanged, while the Li–D pair distribution clearly started to broaden and shrink above 200–250 K. The shrinking of the Li–D pair distribution might lead to the local generation of LiD, which was speculated as the precursory phenomenon for the hydrogen release from LiAlD{sub 4}.

  20. Observation of repulsive Fermi polarons in a resonant mixture of ultracold ${}^6$Li atoms

    CERN Document Server

    Scazza, F; Massignan, P; Recati, A; Amico, A; Burchianti, A; Fort, C; Inguscio, M; Zaccanti, M; Roati, G

    2016-01-01

    We employ radio-frequency spectroscopy to investigate a polarized spin-mixture of ultracold ${}^6$Li atoms close to a broad Feshbach scattering resonance. Focusing on the regime of strong repulsive interactions, we observe well-defined coherent quasiparticles even for unitarity-limited interactions. We characterize the many-body system by extracting the key properties of repulsive Fermi polarons: the energy $E_+$, the effective mass $m^*$, the residue $Z$ and the decay rate $\\Gamma$. Above a critical interaction, $E_+$ is found to exceed the Fermi energy of the bath while $m^*$ diverges and even turns negative. Such findings reveal that the paramagnetic Fermi liquid state becomes thermodynamically unstable towards an energetically favored ferromagnetic phase.

  1. Corrosion Behavior of Novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn Alloys in NaCl Aqueous Solution

    Science.gov (United States)

    Kumar, Vinod; Shekhar, Rajiv; Balani, Kantesh

    2015-10-01

    Corrosion behavior of two multiphase Mg-Li-Al-based alloys in 0.6 M NaCl aqueous solution is investigated by hydrogen gas evolution measurement and electrochemical test. This paper reports, for the first time, the comparison of hydrogen evolution and Tafel extrapolation results of Mg-Li-Al-based alloys. The corrosion rate of Mg-9Li-7Al-1Sn is observed to be reasonably higher when compared to that of Mg-9Li-5Al-3Sn-1Zn, and both the alloys have shown higher corrosion rate than that of Mg-3Al-1Zn alloy (AZ31B). The micro-galvanic corrosion of primary precipitates and hcp α-phase (Mg-rich) is not as severe as was observed in case of the secondary precipitates and bcc β-phase (Li-rich). Corrosion mechanism of multiphase Mg-Li-Al-based alloys in chloride solution, which has not been adequately reported in the literature, is lucidly articulated based on the early stages of corrosion, film morphology, and in situ hydrogen bubble study.

  2. The Ion Exchange Behavior of Na/Li for the Lithium Ion Conductor Li1.3Ti1.7Al0.3(PO4)3%Li1.3Ti1.7Al0.3(PO4)3与Na+的离子交换

    Institute of Scientific and Technical Information of China (English)

    娄太平; 李大纲; 戴厚晨; 唐书环; 徐铁伟; 高鸣

    2005-01-01

    锂离子传导材料Li1.3Ti1.7Al0.3(PO4)3是具有NASICON结构的功能材料,与Na+进行离子交换具有选择性高的特性.研究了在不同温度条件下NaCl和LiCl水溶液中Li1.3Ti1.7Al0.3(PO4)3上的Na/Li离子交换行为.实验结果表明,升高温度能显著提高Li1.3Ti1.7Al0.3(PO4).的Na/Li交换反应速率,提高LiCl中杂质Na的分离效果.

  3. β-Li0.37Na0.63Fe(MoO42

    Directory of Open Access Journals (Sweden)

    Amira Souilem

    2014-02-01

    Full Text Available The title compound, lithium/sodium iron(III bis[orthomolybdate(VI], was obtained by a solid-state reaction. The main structure units are an FeO6 octahedron, a distorted MoO6 octahedron and an MoO4 tetrahedron sharing corners. The crystal structure is composed of infinite double MoFeO11 chains along the b-axis direction linked by corner-sharing to MoO4 tetrahedra so as to form Fe2Mo3O19 ribbons. The cohesion between ribbons via mixed Mo—O—Fe bridges leads to layers arranged parallel to the bc plane. Adjacent layers are linked by corners shared between MoO4 tetrahedra of one layer and FeO6 octahedra of the other layer. The Na+ and Li+ ions partially occupy the same general position, with a site-occupancy ratio of 0.631 (9:0.369 (1. A comparison is made with AFe(MoO42 (A = Li, Na, K and Cs structures.

  4. Hydrogenation of Olefins Catalyzed by Highly Active Titanocene/NaH or n-BuLi Catalyst Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of the substituents on the cyclopentadienyl ring and the reducing agents on the catalytic activity and the stability of titanocene/NaH or n-BuLi systems for the hydrogenation of olefins were investigated. For the catalyst systems composed of titanocene/NaH or n-BuLi, the nature and the number of the substituents on the cyclopentadienyl ring control the catalytic behavior of those two systems. The effect of the reducing agent on the catalytic activity is relatively small. In addition, the characters of the hydrogenation of various olefins catalyzed respectively by Cp2TiCl2/NaH or n-BuLi systems were compared.

  5. A UPF0118 family protein with uncharacterized function from the moderate halophile Halobacillus andaensis represents a novel class of Na+(Li+)/H+ antiporter

    Science.gov (United States)

    Dong, Ping; Wang, Lidan; Song, Na; Yang, Lina; Chen, Jin; Yan, Mingxue; Chen, Huiwen; Zhang, Rui; Li, Jincheng; Abdel-motaal, Heba; Jiang, Juquan

    2017-01-01

    In this study, genomic DNA was screened from Halobacillus andaensis NEAU-ST10-40T by selection in Escherichia coli KNabc lacking three major Na+/H+ antiporters. One gene designated upf0118 exhibiting Na+(Li+)/H+ antiport activity was finally cloned. Protein alignment showed that UPF0118 shares the highest identity of 81.5% with an unannotated gene encoding a protein with uncharacterized protein function belonging to UPF0118 family from H. kuroshimensis, but shares no identity with all known specific Na+(Li+)/H+ antiporter genes or genes with Na+(Li+)/H+ antiport activity. Growth test, western blot and Na+(Li+)/H+ antiport assay revealed that UPF0118 as a transmembrane protein exhibits pH-dependent Na+(Li+)/H+ antiport activity. Phylogenetic analysis indicated that UPF0118 clustered with all its homologs belonging to UPF0118 family at a wide range of 22–82% identities with the bootstrap value of 92%, which was significantly distant with all known specific single-gene Na+(Li+)/H+ antiporters and single-gene proteins with the Na+(Li+)/H+ antiport activity. Taken together, we propose that UPF0118 should represent a novel class of Na+(Li+)/H+ antiporter. To the best of our knowledge, this is the first report on the functional analysis of a protein with uncharacterized protein function as a representative of UPF0118 family containing the domain of unknown function, DUF20. PMID:28374790

  6. Microstructural characterization of an Al-li-mg-cu alloy by correlative electron tomography and atom probe tomography.

    Science.gov (United States)

    Xiong, Xiangyuan; Weyland, Matthew

    2014-08-01

    Correlative electron tomography and atom probe tomography have been carried out successfully on the same region of a commercial 8090 aluminum alloy (Al-Li-Mg-Cu). The combination of the two techniques allows accurate geometric reconstruction of the atom probe tomography data verified by crystallographic information retrieved from the reconstruction. Quantitative analysis of the precipitate phase compositions and volume fractions of each phase have been obtained from the atom probe tomography and electron tomography at various scales, showing strong agreement between both techniques.

  7. Li1.3Zr1.7Al0.3(PO4)3的离子交换特性%Ion Exchange Behavior of Na/Li for the Li1.3Zr1.7Al0.3(PO4)3

    Institute of Scientific and Technical Information of China (English)

    娄太平; 李大纲; 王家良; 吕国志

    2005-01-01

    The effect of temperature on Na/Li ion exchange reaction and behavior for the Li1.3Zr1.7Al0.3(PO4)3 in sodium chloride and lithium chloride solution was investigated and no obvious effect was observed on the Na/Li ion exchange reaction for Li1.3Zr1.7Al0.3(PO4)3. The Na/Li ion exchange reaction process of Li1.3Zr1.7Al0.3(PO4)3 was studied by means of X-ray diffraction (XRD). The ion exchange kinetics of Na/Li for Li1.3Zr1.7Al0.3(PO4)3 is analyzed and discussed.

  8. Chemically modified STM tips for atomic-resolution imaging of ultrathin NaCI films

    Institute of Scientific and Technical Information of China (English)

    Zhe Li[1; Koen Schouteden[1; Violeta lancu[1; Ewald Janssens[1; Peter Lievens[1; Chris Van Haesendonck[1; Jorge I. Cerda[2

    2015-01-01

    Cl-functionalized scanning tunneling microscopy (STM) tips are fabricated by modifying a tungsten STM tip in situ on islands of ultrathin NaCI(100) films on Au(111) surfaces. The functionalized tips are used to achieve clear atomic- resolution imaging of NaCI(100) islands. In comparison with bare metal tips, the chemically modified tips yield drastically enhanced spatial resolution as well as contrast reversal in STM topographs, implying that Na atoms, rather than C1 atoms, are imaged as protrusions. STM simulations based on a Green's function formalism reveal that the experimentally observed contrast reversal in the STM topographs is due to the highly localized character of the Cl-pz states at the tip apex. An additional remarkable characteristic of the modified tips is that in dI/dV maps, a Na atom appears as a ring with a diameter that depends crucially on the tip-sample distance.

  9. Approach to chaos in ultracold atomic and molecular physics: Statistics of near-threshold bound states for Li+CaH and Li+CaF

    Science.gov (United States)

    Frye, Matthew D.; Morita, Masato; Vaillant, Christophe L.; Green, Dermot G.; Hutson, Jeremy M.

    2016-05-01

    We calculate near-threshold bound states and Feshbach resonance positions for atom-rigid-rotor models of the highly anisotropic systems Li+CaH and Li+CaF. We perform statistical analysis on the resonance positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum J =0 we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for J >0 we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF (J =0 ) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. This may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behavior.

  10. The Synthesis of Ternary Acetylides with Tellurium: Li2TeC2 and Na2TeC2

    OpenAIRE

    Nemeth, Karoly; Unni, Aditya K.; Kalnmals, Christopher; Segre, Carlo U.; Kaduk, James

    2015-01-01

    The synthesis of ternary acetylides Li2TeC2 and Na2TeC2 is presented as the first example of ternary acetylides with metalloid elements instead of transition metals. The synthesis was carried out by the direct reaction of the corresponding bialkali acetylides with tellurium powder in liquid ammonia. Alternatively, the synthesis of Na2TeC2 was also carried out by the direct reaction of tellurium powder and two equivalents of NaC2H in liquid ammonia leading to Na2TeC2 and acetylene gas through ...

  11. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    KAUST Repository

    Khushaim, Muna

    2015-05-19

    The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T 1 Al 2 CuLi / θ ′ Al 2 Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al 2 Cu equilibrium composition. Additionally, the Li distribution inside the θ ′ platelets was found to equal the same value as in the matrix. The equally thin T 1 platelet deviates from the formula (Al 2 CuLi) in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al 2 CuLi) stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T 1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T 1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  12. Magnetic control of ultra-cold $^6$Li and $^{174}$Yb($^3P_2$) atom mixtures with Feshbach resonances

    CERN Document Server

    Petrov, Alexander; Kotochigova, Svetlana

    2015-01-01

    We theoretically evaluate the feasibility to form magnetically-tunable Feshbach molecules in collisions between fermionic $^6$Li atoms and bosonic metastable $^{174}$Yb($^3$P$_2$) atoms. In contrast to the well-studied alkali-metal atom collisions, collisions with meta-stable atoms are highly anisotropic. Our first-principle coupled-channel calculation of these collisions reveals the existence of broad Feshbach resonances due to the combined effect of anisotropic-molecular and atomic-hyperfine interactions. In order to fit our predictions to the specific positions of experimentally-observed broad resonance structures \\cite{Deep2015} we optimized the shape of the short-range potentials by direct least-square fitting. This allowed us to identify the dominant resonance by its leading angular momentum quantum numbers and describe the role of collisional anisotropy in the creation and broadening of this and other resonances.

  13. Vanadium dioxide - Reduced graphene oxide composite as cathode materials for rechargeable Li and Na batteries

    Science.gov (United States)

    Mahadi, Nurulhuda Binti; Park, Jae-Sang; Park, Jae-Ho; Chung, Kyung Yoon; Yi, Su Youl; Sun, Yang-Kook; Myung, Seung-Taek

    2016-09-01

    In this study, a metastable form of vanadium dioxide, denoted as VO2(B), has been successfully synthesized under solvothermal condition. However, the as-received VO2(B) suffers from fast capacity fading and poor high-rate performance. In order to overcome these problems, the as-received VO2(B) is solvothermally treated with reduced graphene oxide (rGO) to produce VO2(B)/rGO composite. As a result, the resulting electric conductivity of the VO2(B)/rGO composite is improved to ∼10-4 cm S-1 (from ∼10-7 S cm-1 for the as-received VO2(B)). Electrochemical data of the VO2(B)/rGO composite, tested in both Li and Na cells, shows markedly enhanced electrochemical performance compared to bare VO2(B). The effect of electro-conducting rGO is more evident at high rates.

  14. Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser

    Science.gov (United States)

    Caird, John A.; Payne, Stephen A.; Staver, P. Randall; Ramponi, A. J.; Chase, L. L.

    1988-06-01

    Few of the existing Cr3+ vibronic lasers have achieved the slope efficiency and tuning range expected based on their known spectroscopic properties. To discover the cause of this behavior, the performance of chromium-doped gallium fluoride garnet, Na3Ga2Li3F12:Cr3+, as a laser material has been investigated experimentally. The data reported include absorption and emission spectra, emission rates, quantum efficiency, laser wavelength tuning range, laser output slope efficiencies, and excited-state absorption spectra. Similar properties of the alexandrite laser material were stuided for comparison. The results indicate that the performance of the gallium fluoride garnet laser is severely limited by Cr3+ excited-state absorption (ESA). A model is presented to account for the unexpected nature of the ESA, which appears to be a common problem for all Cr3+ vibronic lasers. Criteria are suggested for choosing Cr3+ hosts for which the effects of ESA will be minimized.

  15. Thermodynamic assessment of the LiF-NaF-ThF 4-UF 4 system

    Science.gov (United States)

    Beneš, O.; Beilmann, M.; Konings, R. J. M.

    2010-10-01

    A thermodynamic assessment of the LiF-NaF-ThF 4-UF 4 system is presented in this study. The binary phase diagrams are optimized based on the known experimental data and the excess Gibbs energies of liquid and solid solutions are described using a modified quasi chemical model and polynomial formalism respectively. The higher order systems are extrapolated according to asymmetric Toop mathematical formalism. Based on the developed thermodynamic database the fuel composition of the molten salt fast reactor is optimized. In total three different fuel compositions are identified. Properties of these fuel compositions such as melting point, vapour pressure and the boiling temperature are derived from the obtained thermodynamic assessment and are presented in this study.

  16. Molecular constants of LiCl(X1Σ+) and elastic collisions of two ground-state Cl and Li atoms at low and ultralow temperatures

    Institute of Scientific and Technical Information of China (English)

    Zhu Zun-Lue; Zhang Xiao-Niu; Kou Su-Hua; Shi De-Heng; Sun Jin-Feng

    2010-01-01

    Interaction potentials for LiCl(X1Σ+) are constructed by the highly accurate valence internally contracted multireference configuration interaction in combination with a number of large correlation-consistent basis sets,which are used to determine the spectroscopic parameters (Do,De,Re,ωe,ωeχe,Βe and αe).The potentials obtained at the basis sets,i.e.,aug-cc-pV5Z-JKFI for Cl and cc-pV5Z for Li,are selected to study the elastic collision properties of Li and Cl atoms at the impact energies from 1.0×10-12 to 1.0×10-4 a.u.The derived total elastic cross sections are very large and almost constant at ultralow temperatures,and their shapes are mainly dominated by the s-partial wave at very low impact energies.Only one shape resonance can be found in the total el.astic cross sections over the present collision energy regime,which is rather strong and obviously broadened by the overlap contributions of the abundant resonances coming from various partial waves.Abundant resonances exist for the elastic partial-wave cross sections until l = 22 partial waves.The vibrational manifolds of the LiCl(X1Σ+) molecule,which are predicted at the present level of theory and the basis sets cc-pV5Z for Li and the aug-cc-pV5Z-JKFI for Cl,should achieve much high accuracy due to the employment of the large correlation-consistent basis sets.

  17. The redox chemistry of niobium(V) fluoro and oxofluoro complexes in LiF-NaF-KF melts

    DEFF Research Database (Denmark)

    Matthiesen, Flemming; Christensen, Erik; Barner, Jens H. Von;

    1996-01-01

    The electrochemical behavior of niobium(V) fluoro and oxofluoro complexes in eutectic LiF-NaF-KF (FLINAK) melts at 700 degrees C has been studied by cyclic voltammetry. The fluoro complexes NbF72-, introduced into the melt by the addition of K2NbF7, can be reduced to niobium metal in two reversible...

  18. Structures and heats of formation of simple alkali metal compounds: hydrides, chlorides, fluorides, hydroxides, and oxides for Li, Na, and K.

    Science.gov (United States)

    Vasiliu, Monica; Li, Shenggang; Peterson, Kirk A; Feller, David; Gole, James L; Dixon, David A

    2010-04-01

    Geometry parameters, frequencies, heats of formation, and bond dissociation energies are predicted for simple alkali metal compounds (hydrides, chlorides, fluorides, hydroxides and oxides) of Li, Na, and K from coupled cluster theory [CCSD(T)] calculations including core-valence correlation with the aug-cc-pwCVnZ basis set (n = D, T, Q, and 5). To accurately calculate the heats of formation, the following additional correction were included: scalar relativistic effects, atomic spin-orbit effects, and vibrational zero-point energies. For calibration purposes, the properties of some of the lithium compounds were predicted with iterative triple and quadruple excitations via CCSDT and CCSDTQ. The calculated geometry parameters, frequencies, heats of formation, and bond dissociation energies were compared with all available experimental measurements and are in excellent agreement with high-quality experimental data. High-level calculations are required to correctly predict that K(2)O is linear and that the ground state of KO is (2)Sigma(+), not (2)Pi, as in LiO and NaO. This reliable and consistent set of calculated thermodynamic data is appropriate for use in combustion and atmospheric simulations.

  19. Adapted Gaussian basis sets for atoms from Li through Xe generated with the generator coordinate Hartree-Fock method

    Directory of Open Access Journals (Sweden)

    CASTRO EUSTÁQUIO V. R. DE

    2001-01-01

    Full Text Available The generator coordinate Hartree-Fock method is used to generate adapted Gaussian basis sets for the atoms from Li (Z=3 through Xe (Z=54. In this method the Griffin-Hill-Wheeler-Hartree-Fock equations are integrated through the integral discretization technique. The wave functions generated in this work are compared with the widely used Roothaan-Hartree-Fock wave functions of Clementi and Roetti (1974, and with other basis sets reported in the literature. For all atoms studied, the errors in our total energy values relatively to the numerical Hartree-Fock limits are always less than 7.426 mhartree.

  20. Electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF(NaCl) system electrolyte

    Institute of Scientific and Technical Information of China (English)

    KAN Hong-min; WANG Zhao-wen; BAN Yun-gang; SHI Zhong-ning; QIU Zhu-xian

    2007-01-01

    A PGSTAT 30 and a BOOSTER 20A were used to measure cell impedance. Electrical conductivity was gained by the Continuously Varying Cell Constant Technique. Electrical conductivity of KCl was measured for comparison. The results prove that the method is reliable and accurate. The electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF(NaCl) system was studied by this method. Activation energy of conductance was obtained based on the experiment results. The experiments show that electrical conductivity is increased greatly with NaCl and LiF added. Increasing 1%LiF(mass fraction) results in corresponding increase of 0.0276 S/cm for superheat condition of 15 ℃. For NaCl, it is 0.024 S/cm. Electrical conductivity is increased by 0.003 S/cm with 1℃ temperature increase. The electrical conductivity is lower than that predicted by the WANG Model and higher than that predicted by the Choudhary Model.

  1. Spectroscopic and Physical Properties of Mn2+ spin probe in ROP2O5-ZnO-Pb3O4 (R=Li, Na and K Glasses

    Directory of Open Access Journals (Sweden)

    S. Sreehari Sastry

    2015-04-01

    Full Text Available RO-P2O5-ZnO-Pb3O4 (R=Li, Na and K glasses containing 0.1concentrations of MnO have been prepared. The structural, optical and physical properties of prepared glasses are studied by XRD, UV-Visible, EPR and FTIR techniques. The nature of local symmetry and structural information of the neighboring atoms of dopant ions (Mn2+ in the host matrix have been understood by evaluating the crystal field strength (Dq and Racah (B & C parameters. The combined analysis of optical absorption and EPR spectroscopy has indicated that the manganese ions exist in Mn2+ (in octahedral local coordination sites. FTIR results showed that PO4 are the main structural unit of the glass system and the manganese ions are located in the glass matrix network.

  2. Efficient plasma-enhanced method for layered LiNi1/3Co1/3Mn1/3O2 cathodes with sulfur atom-scale modification for superior-performance Li-ion batteries.

    Science.gov (United States)

    Jiang, Qianqian; Chen, Ning; Liu, Dongdong; Wang, Shuangyin; Zhang, Han

    2016-06-01

    In order to improve the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 as a lithium insertion positive electrode material, atom-scale modification was realized to obtain the layered oxysulfide LiNi1/3Co1/3Mn1/3O2-xSx using a novel plasma-enhanced doping strategy. The structure and electrochemical performance of LiNi1/3Co1/3Mn1/3O2-xSx are investigated systematically, which confirms that the S doping can make the structure stable and benefit the electrochemical performance. The phys-chemical characterizations indicate that oxygen atoms in the initial LiNi1/3Co1/3Mn1/3O2 have been partially replaced by S atoms. It should be pointed out that the atom-scale modification does not significantly alter the intrinsic structure of the cathode. Compared to the pristine material, the LiNi1/3Co1/3Mn1/3O2-xSx shows a superior performance with a higher capacity (200.4 mA h g(-1)) and a significantly improved cycling stability (maintaining 94.46% of its initial discharge capacity after 100 cycles). Moreover, it has an excellent rate performance especially at elevated performance, which is probably due to the faster Li(+) transportation after S doping into the layered structure. All the results show that the atom-scale modification with sulfur atoms on LiNi1/3Co1/3Mn1/3O2, which significantly improved the electrochemical performance, offers a novel anionic doping strategy to realize the atom-scale modification of electrode materials to improve their electrochemical performance.

  3. Spectroelectrochemistry of EuCl 3 in Four Molten Salt Eutectics; 3 LiCl−NaCl, 3 LiCl−2 KCl, LiCl−RbCl, and 3 LiCl−2 CsCl; at 873 K

    Energy Technology Data Exchange (ETDEWEB)

    Schroll, Cynthia A. [Department of Chemistry, University of Cincinnati, Cincinnati OH 45221-0172; Chatterjee, Sayandev [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352; Levitskaia, Tatiana [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352; Heineman, William R. [Department of Chemistry, University of Cincinnati, Cincinnati OH 45221-0172; Bryan, Samuel A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352

    2016-05-17

    Key electrochemical properties affecting pyroprocessing of nuclear fuel were examined in four eutectic melts using using Eu3+/2+ as a representative probe. We report the electrochemical and spectroelectrochemical behavior of EuCl3 in four molten salt eutectics (3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl and 3 LiCl – 2 CsCl) at 873 K. Cyclic voltammetry was used to determine the redox potential for Eu3+/2+ and the applied potentials for spectroelectrochemistry. Single step chronoabsorptometry and thin-layer spectroelectrochemistry were used to obtain the number of electrons transferred, redox potentials and diffusion coefficients for Eu3+ in each eutectic melt. The redox potentials determined by thin-layer spectroelectrochemistry were extremely close to those obtained using cyclic voltammetry. The redox potential for Eu3+/2+ was most positive in the 3 LiCl - NaCl melt, showed a negative shift in the 3 LiCl - 2 KCl melt, and was the most negative in the LiCl - RbCl and 3 LiCl - 2 CsCl eutectics. The diffusion coefficient for Eu3+ followed this same trend; it was the largest in the 3 LiCl - NaCl melt and the smallest in the LiCl - RbCl and 3 LiCl - 2 CsCl melts. The basic one-electron reversible electron transfer for Eu3+/2+ was not changed by melt composition.

  4. Nature of sodium atoms/(Na(+), e(-)) contact pairs in liquid tetrahydrofuran.

    Science.gov (United States)

    Glover, William J; Larsen, Ross E; Schwartz, Benjamin J

    2010-09-09

    With no internal vibrational or rotational degrees of freedom, atomic solutes serve as the simplest possible probe of a condensed-phase environment's influence on solute electronic structure. Of the various atomic species that can be formed in solution, the quasi-one-electron alkali atoms in ether solvents have been the most widely studied experimentally, primarily due to the convenient location of their absorption spectra at visible wavelengths. The nature of solvated alkali atoms, however, remains controversial: the consensus view is that solvated alkali atoms exist as (Na(+), e(-)) tight-contact pairs (TCPs), species in which the alkali valence electron is significantly displaced from the alkali nucleus and confined primarily by the first solvent shell. Thus, to shed light on the nature of alkali atoms in solution and to further our understanding of condensed-phase effects on solutes' electronic structure, we have performed mixed quantum/classical molecular dynamics simulations of sodium atoms in liquid tetrahydrofuran (Na(0)/THF). Our interest in this particular system stems from recent pump-probe experiments in our group, which found that the rate at which this species is solvated depends on how it was created ( Science 2008 , 321 , 1817 ); in other words, the solvation dynamics of this system do not obey linear response. Our simulations reproduce the experimental spectroscopy of this system and clearly indicate that neutral Na atoms exist as (Na(+), e(-)) TCPs in solution. We find that the driving force for the displacement of sodium's valence electron is the formation of a tight solvation shell around the partially exposed Na(+). On average, four THF oxygens coordinate the cation end of the TCP; however, we also observe fluctuations to other solvent coordination numbers. Furthermore, we find that species with different solvent coordination numbers have unique absorption spectra and that interconversion between species with different solvent coordination

  5. Thermal Decomposition of Anhydrous Alkali Metal Dodecaborates M2B12H12 (M = Li, Na, K

    Directory of Open Access Journals (Sweden)

    Liqing He

    2015-11-01

    Full Text Available Metal dodecaborates M2/nB12H12 are regarded as the dehydrogenation intermediates of metal borohydrides M(BH4n that are expected to be high density hydrogen storage materials. In this work, thermal decomposition processes of anhydrous alkali metal dodecaborates M2B12H12 (M = Li, Na, K synthesized by sintering of MBH4 (M = Li, Na, K and B10H14 have been systematically investigated in order to understand its role in the dehydrogenation of M(BH4n. Thermal decomposition of M2B12H12 indicates multistep pathways accompanying the formation of H-deficient monomers M2B12H12−x containing the icosahedral B12 skeletons and is followed by the formation of (M2B12Hzn polymers. The decomposition behaviors are different with the in situ formed M2B12H12 during the dehydrogenation of metal borohydrides.

  6. Fluor-ferro-leakeite, NaNa2(FC2+2Fe3+2Li)Si8O22F2, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.

    Science.gov (United States)

    Hawthorne, F.C.; Oberti, R.; Ungaretti, L.; Ottolini, L.; Grice, Joel D.; Czamanske, G.K.

    1996-01-01

    Fluor-ferro-leakeite is a new amphibole species from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.; it occurs in association with quartz, alkali feldspar, acmite, ilmenite, and zircon. It forms as anhedral bluish black crystals elongated along c and up to 1 mm long. It is brittle, H = 6, Dmeas = 3.37 g/cm3, Dcalc = 3.34 g/cm3. In plane-polarized light, it is strongly pleochroic, X = very dark indigo blue, Y = gray blue, Z = yellow green; X ??? c = 10?? (in ??obtuse), Y = b, Z ??? a = 4?? (in ?? obtuse), with absorption X > Y > Z. Fluor-ferro-leakeite is biaxial positive, ?? = 1.675(2), ??= 1.683(2), ?? = 1.694(1); 2V = 87(2)??; dispersion is not visible because of the strong absorption. Fluor-ferro-leakeite is monoclinic, space group C2/m, a = 9.792(1), b = 17.938(1), c = 5.3133(4) A??, ??= 103.87(7)??, V = 906.0(1) A??3, Z = 2. The ten strongest X-ray diffraction lines in the powder pattern are [d(I,hkl)]: 2.710(100,151), 2.536(92,202), 3.404(57,131), 4.481(54,040), 8.426(45,110), 2.985(38,241), 2.585(38,061), 3.122(29,310), 2.165(26,261), and 1.586(25,403). Analysis by a combination of electron microprobe, ion microprobe, and crystal-structure refinement (Hawthorne et al. 1993) gives SiO2 51.12, Al2O3 1.13, TiO2 0.68, Fe2O3 16.73, FeO 8.87, MgO 2.02, MnO 4.51, ZnO 0.57, CaO 0.15, Na2O 9.22, K2O 1.19, Li2O 0.99, F 2.87, H2Ocalc 0.60, sum 99.44 wt%. The formula unit, calculated on the basis of 23 O atoms, is (K0.23Na0.76)(Na1.97Ca0.03)(Mg 0.46Fe2+1.4Mn2+0.59Zn0.07Fe3+1.93-Ti 0.08Al0.02Li0.61])(Si7.81Al 0.19)O22(F1.39OH0.61). A previous crystal-structure refinement (Hawthorne et al. 1993) shows Li to be completely ordered at the M3 site. Fluor-ferro-leakeite, ideally NaNa2(Fe2+2Fe3+2Li)Si8O22F2, is related to leakeite, NaNa2(Mg2Fe3+3Li)Si 8O22(OH)2, by the substitutions Fe2+ ??? Mg and F ??? OH.

  7. Investigation of electrochemical kinetics of Li-ion in Na2Li2Ti6O14 anode for lithium ion batteries%锂离子电池负极材料Na2Li2Ti6O14的嵌脱锂过程动力学研究

    Institute of Scientific and Technical Information of China (English)

    李震春; 邓健秋; 王仲民; 姚青荣

    2012-01-01

    In order to investigate the electrochemical kinetics of Li-ion in Na2Li!Ti5Ou materials for lithium ion batteries. Na; L12 Tij On anode materials have been synthesized by sol gel method in this work. The sample was characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM). The electrochemical performance and kinetics of Na;Li2 Tis Oh were investigated by galvanostatic charge-discharge test, cyclic voltammetry(CV) and gal-vanostatic intermittent titration technique(GITT). The results show that the pure and crystallized Na2Li2Ti$On delivers good cycle performance. The D. and D, of diffusion coefficients of Li-ion in NazLi2Ti6Oj4 are 7. 3X 10"" cmVsand 7. 8X 10~n cm2/s in oxidation and reduction peaks respectively by CV,and the diffusion coefficients of Li-ion in Na2Li2Tit0n are in the range of 10~11-10"> craVs by GITT method.%为了研究钛酸钠锂(Na2Li2Ti6O14)负极材料嵌脱锂的动力学行为,用溶胶-凝胶法合成Na2Li2Ti6Oi4负极材料,采用X射线衍射法(XRD)和电子显微镜(SEM)分别对材料进行物相分析和微观形貌的观察.采用恒流充放电测试、循环伏安法(CV)和恒电流间歇滴定法(GITT)研究了Na2Li2Ti6O14的电化学性能和嵌脱锂过程动力学.研究结果表明,制备的Na2Li2Ti6O14材料纯度高,结晶度良好,循环稳定性好;由不同扫描速率的循环伏安法测出的Na2Li2Ti6O14中锂离子在氧化、还原峰对应的化学扩散系数Da和Dc分别为7.3×10-11和7.8×10-11 cm2/s;由恒电流间歇滴定技术测得的锂离子在Na2Li2Ti6O14电极中的扩散系数为10-11~10-8 cm2/s.

  8. Cation effects on rotational dynamics of anions and water molecules in alkali (Li+, Na+, K+, Cs+) thiocyanate (SCN-) aqueous solutions.

    Science.gov (United States)

    Bian, Hongtao; Chen, Hailong; Zhang, Qiang; Li, Jiebo; Wen, Xiewen; Zhuang, Wei; Zheng, Junrong

    2013-07-03

    Waiting time dependent rotational anisotropies of SCN(-) anions and water molecules in alkali thiocyanate (XSCN, X = Li, Na, K, Cs) aqueous solutions at various concentrations were measured with ultrafast infrared spectroscopy. It was found that cations can significantly affect the reorientational motions of both water molecules and SCN(-) anions. The dynamics are slower in a solution with a smaller cation. The reorientational time constants follow the order of Li(+) > Na(+) > K(+) ~/= Cs(+). The changes of rotational time constants of SCN(-) at various concentrations scale almost linearly with the changes of solution viscosity, but those of water molecules do not. In addition, the concentration-dependent amplitudes of dynamical changes are much more significant in the Li(+) and Na(+) solutions than those in the K(+) and Cs(+) solutions. Further investigations on the systems with the ultrafast vibrational energy exchange method and molecular dynamics simulations provide an explanation for the observations: the observed rotational dynamics are the balanced results of ion clustering and cation/anion/water direct interactions. In all the solutions at high concentrations (>5 M), substantial amounts of ions form clusters. The structural inhomogeneity in the solutions leads to distinct rotational dynamics of water and anions. The strong interactions of Li(+) and Na(+) because of their relatively large charge densities with water molecules and SCN(-) anions, in addition to the likely geometric confinements because of ion clustering, substantially slow down the rotations of SCN(-) anions and water molecules inside the ion clusters. The interactions of K(+) and Cs(+) with water or SCN(-) are much weaker. The rotations of water molecules inside ion clusters of K(+) and Cs(+) solutions are not significantly different from those of other water species so that the experimentally observed rotational relaxation dynamics are only slightly affected by the ion concentrations.

  9. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.

    Science.gov (United States)

    Dong, Xiaoli; Chen, Long; Liu, Jingyuan; Haller, Servane; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Current rechargeable batteries generally display limited cycle life and slow electrode kinetics and contain environmentally unfriendly components. Furthermore, their operation depends on the redox reactions of metal elements. We present an original battery system that depends on the redox of I(-)/I3 (-) couple in liquid cathode and the reversible enolization in polyimide anode, accompanied by Li(+) (or Na(+)) diffusion between cathode and anode through a Li(+)/Na(+) exchange polymer membrane. There are no metal element-based redox reactions in this battery, and Li(+) (or Na(+)) is only used for charge transfer. Moreover, the components (electrolyte/electrode) of this system are environment-friendly. Both electrodes are demonstrated to have very fast kinetics, which gives the battery a supercapacitor-like high power. It can even be cycled 50,000 times when operated within the electrochemical window of 0 to 1.6 V. Such a system might shed light on the design of high-safety and low-cost batteries for grid-scale energy storage.

  10. Electronic structure ‘engineering’ in the development of materials for Li-ion and Na-ion batteries

    Science.gov (United States)

    Molenda, Janina

    2017-03-01

    Transition metal oxides with a general formula A x M a O b (A  =  Li, Na, M  =  transition metal) constitute a group of potential electrode materials for a new generation of alkaline batteries. This application is related to the fact that these compounds can reversibly intercalate high amounts of alkaline ions (1 or more moles per mole of M a O b ) already at room temperature, without significant changes in their crystallographic structure. The author of this work basing on her own investigations of A x M a O b (A  =  Li, Na; M  =  3d, 4d, 5d) has demonstrated that the electronic structure of these materials plays an important role in the intercalation process. Electronic model of intercalation process is presented. Author’s studies show that electronic structure ‘engineering’ is an excellent method of controlling properties of the cathode materials for Li-ion and Na-ion batteries, changing their unfavorable character of the discharge curve, from step-like to monotonic, through modification and control density of states function of a cathode material. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8–12 November 2016, Ha Long City, Vietnam.

  11. Doping Li and K into Na2ZrO3 Sorbent to Improve Its CO2 Capture Capability

    Science.gov (United States)

    Duan, Yuhua

    Carbon dioxide is one of the major combustion products which once released into the air can contribute to global climate change. Solid sorbents have been reported in several previous studies to be promising candidates for CO2 sorbent applications due to their high CO2 absorption capacities at moderate working temperatures. However, at a given CO2 pressure, the turnover temperature (Tt) of an individual solid capture CO2 reaction is fixed and may be outside the operating temperature range (ΔTo) for a particularly capture technology. In order to shift such Tt for a solid into the range of ΔTo, its corresponding thermodynamic property must be changed by changing its structure by reacting (mixing) with other materials or doping with other elements. As an example, by combining thermodynamic database searching with ab initio thermodynamics calculations, in this work, we explored the Li- and K-doping effects on the Tt shifts of Na2ZrO3 at different doping levels. The obtained results showed that compared to pure Na2ZrO3, the Li- and K-doped mixtures Na2-αMαZrO3 (M =Li, K) have lower Tt and higher CO2 capture capacities.

  12. Theoretical Analysis of Time-Dependent Wave-Packet Dynamics:Proton Impact Excitation (2s- 2p) with Li Atom

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-Hao; WANG Feng; LI Jia-Ming

    2004-01-01

    Introducing a theoretical method to treat time-dependent wave-packet dynamics for atom collisions, we calculate the cross sections of proton impact excitation (2s - 2p) with a Li atom by directly numerically integrating the time-dependent Schrodinger equation on a three-dimensional Cartesian mesh. Our calculated results are in good agreement with the available experimental measurements.

  13. Effects of Li and Na intercalation on electronic, bonding and thermoelectric transport properties of MX{sub 2} (M = Ta; X = S or Se) dichalcogenides – Ab initio investigation

    Energy Technology Data Exchange (ETDEWEB)

    Meziane, Souheyr; Feraoun, Houda [Unité de Recherche Matériaux et Energies Renouvelables – URMER, Université de Tlemcen (Algeria); Ouahrani, Tarik [Laboratoire de Physique Théorique, Ecole Préparatoire en Sciences et Techniques, B.P. 230, 13000 Tlemcen (Algeria); Esling, Claude, E-mail: claude.esling@univ-lorraine.fr [Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux, LEM3 UMR CNRS 7239, Université de Lorraine UL, Metz 57045 (France); Laboratoire d’Excellence “DAMAS”: Design of Metal Alloys for low-mAss Structures, Université de Lorraine – Metz, Ile du Saulcy, 57045 Metz Cedex 01 (France)

    2013-12-25

    Highlights: •Topological method is used to analyze the chemical bonding in Li(Na)TaX{sub 2} dichalcogenide compounds. •For the first time, Seebeck coefficient, electrical resistivity and thermal conductivity were estimated. •The best figure of merit is established for 2H-LiTaS{sub 2}. •Some new thermoelectric compounds are found. -- Abstract: Using the pseudo-potential method and semi-classical Boltzmann theory, electronic, chemical bonding and thermoelectric transport properties of sample and Li or Na intercalated Ta(S, Se){sub 2} dichalcogenides have been reported. The chemical bonding is studied using the Quantum Theory of Atoms in Molecules (QTAIM). Then, the Seebeck coefficient, electrical resistivity, electrical conductivity, thermal conductivity and figure of merit have been calculated in the temperature range 100–700 K. It was shown that the thermoelectric transport properties strongly depend on the Alkali metals doping and the two main structures 1T- or 2H- as well as the temperature. 2H-LiTaS{sub 2} have been selected as the best candidate for thermoelectrical applications with zT = 1.1.

  14. Calorimetric measurements on Li{sub 4}C{sub 60} and Na{sub 4}C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Akira; Miyazaki, Yuji [Research Center for Structural Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Michałowski, Paweł P.; Gracia-Espino, Eduardo; Wågberg, Thomas, E-mail: Thomas.wagberg@physics.umu.se [Department of Physics, Umeå University, S-90187 Umeå (Sweden); Sundqvist, Bertil [Department of Physics, Umeå University, S-90187 Umeå (Sweden); State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012 (China)

    2015-04-28

    We show specific heat data for Na{sub 4}C{sub 60} and Li{sub 4}C{sub 60} in the range 0.4-350 K for samples characterized by Raman spectroscopy and X-ray diffraction. At high temperatures, the two different polymer structures have very similar specific heats both in absolute values and in general trend. The specific heat data are compared with data for undoped polymeric and pristine C{sub 60}. At high temperatures, a difference in specific heat between the intercalated and undoped C{sub 60} polymers of 100 J K{sup −1} mol{sup −1} is observed, in agreement with the Dulong-Petit law. At low temperatures, the specific heat data for Li{sub 4}C{sub 60} and Na{sub 4}C{sub 60} are modified by the stiffening of vibrational and librational molecular motion induced by the polymer bonds. The covalent twin bonds in Li{sub 4}C{sub 60} affect these motions to a somewhat higher degree than the single intermolecular bonds in Na{sub 4}C{sub 60}. Below 1 K, the specific heats of both materials become linear in temperature, as expected from the effective dimensionality of the structure. The contribution to the total specific heat from the inserted metal ions can be well described by Einstein functions with T{sub E} = 386 K for Li{sub 4}C{sub 60} and T{sub E} = 120 K for Na{sub 4}C{sub 60}, but for both materials we also observe a Schottky-type contribution corresponding to a first approximation to a two-level system with ΔE = 9.3 meV for Li{sub 4}C{sub 60} and 3.1 meV for Na{sub 4}C{sub 60}, probably associated with jumps between closely spaced energy levels inside “octahedral-type” ionic sites. Static magnetic fields up to 9 T had very small effects on the specific heat below 10 K.

  15. Nature of the chemical bond in complex hydrides, NaAlH{sub 4}, LiAlH{sub 4}, LiBH{sub 4} and LiNH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, M. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan)]. E-mail: yoshino@silky.numse.nagoya-u.ac.jp; Komiya, K. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan); Takahashi, Y. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan); Shinzato, Y. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan); Yukawa, H. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan); Morinaga, M. [Department of Materials Science and Engineering, Graduate School of Engineering, Institute for Advanced Research, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan)

    2005-12-08

    The most stable crystal structures of complex hydrides, MXH{sub n} (NaAlH{sub 4}, LiAlH{sub 4}, LiBH{sub 4} and LiNH{sub 2}) were simulated by the plane-wave pseudopotential method. The local chemical bonds between constituent ions were simulated using the DV-X{alpha} molecular orbital method. As a result, it was found that the covalent interaction is operating between X and H ions to form a XH{sub n} ion in MXH{sub n}. In addition, the ionic interaction is operating between M and XH{sub n} ions through the charge transfer from M to XH{sub n} ions. On the basis of this understanding of the nature of the chemical bond between ions, a phase stability diagram of complex hydrides was proposed using two parameters. One is the bond energy of XH diatomic molecules and the other is electronegativity difference, {delta}{phi}{sub X-M}, between M and X ions. The calculated stability change by doping into NaAlH{sub 4} could by explained qualitatively following this diagram. This diagram will provide us a clue to the modification of hydrides to lower the hydrogen decomposition temperature.

  16. Zr对Li1.3 Ti1.7Al0.3(PO4)3传导材料中Na/Li离子交换反应的影响%Effect of Zr on Na/Li ion exchange behavior of Li1.3Ti1.7Al0.3 (PO4)3

    Institute of Scientific and Technical Information of China (English)

    娄太平; 李大纲; 吕国志; 刘营; 许健

    2004-01-01

    Li13Ti17Al0.3(PO4)3是具有Nasicon骨架的锂离子传导材料,其中的Li+很容易被溶液中的Na+置换.研究了在Li1.3Ti1.7Al0.3(PO4)3结构中掺入Zr来替代Ti,以提高Na/Li离子交换速度.结果表明:增加Zr元素比例可显著提高Li1.3Ti1.7-xZrxAl0.3(PO4)3材料中Na/Li离子交换反应速度.Li1.3Ti1.7-xZrxAl0.3(PO4)3材料中的Na/Li离子交换反应动力学过程可近似由JMAK方程描述.

  17. Unusual phase behavior in the piezoelectric perovskite system, Li(x)Na(1-x)NbO3.

    Science.gov (United States)

    Peel, Martin D; Ashbrook, Sharon E; Lightfoot, Philip

    2013-08-05

    The system Li(x)Na(1-x)NbO3 has been studied by using a combination of X-ray and neutron powder diffraction and (23)Na solid-state NMR spectroscopy. For x = 0.05 we confirm a single polar orthorhombic phase. For 0.08 ≤ x ≤ 0.20 phase mixtures of this orthorhombic phase, together with a rhombohedral phase, isostructural with the low-temperature ferroelectric polymorph of NaNbO3, are observed. The relative fractions of these two phases are shown to be critically dependent on synthetic conditions: the rhombohedral phase is favored by higher annealing temperatures and rapid cooling. We also observe that the orthorhombic phase transforms slowly to the rhombohedral phase on standing in air at ambient temperature. For 0.25 ≤ x ≤ 0.90 two rhombohedral phases coexist, one Na-rich and the other Li-rich. In this region the phase behavior is independent of reaction conditions.

  18. Characterization of charge-exchange collisions between ultracold $\\rm{^6Li}$ atoms and $\\rm{^{40}Ca^+}$ ions

    CERN Document Server

    Saito, R; Sasakawa, M; Nakai, R; Raoult, M; Silva, H Da; Dulieu, O; Mukaiyama, T

    2016-01-01

    We investigate the energy dependence and the internal-state dependence of the charge-exchange collision cross sections in a mixture of $^6$Li atoms and $^{40}$Ca$^+$ ions in the collision energy range from 0.2 mK to 1 K. Deliberately excited ion micromotion is used to control the collision energy of atoms and ions. The energy dependence of the charge-exchange collision cross section obeys the Langevin model in the temperature range of the current experiment, and the measured magnitude of the cross section is correlated to the internal state of the $^{40}$Ca$^+$ ions. Revealing the relationship between the charge-exchange collision cross sections and the interaction potentials is an important step toward the realization of the full quantum control of the chemical reactions at an ultralow temperature regime.

  19. Analysis of the optical conductivity for A2IrO3 (A =Na, Li ) from first principles

    Science.gov (United States)

    Li, Ying; Foyevtsova, Kateryna; Jeschke, Harald O.; Valentí, Roser

    2015-04-01

    We present results for the optical conductivity of Na2IrO3 within density functional theory by including spin-orbit and correlation effects as implemented in the generalized gradient approximation. We identify the various interband transitions and show that the underlying quasimolecular-orbital nature of the electronic structure in Na2IrO3 translates into distinct features in the optical conductivity. Most importantly, the parity of the quasimolecular orbitals appears to be the main factor in determining strong and weak optical transitions. We also present optical conductivity calculations for α -Li2IrO3 and discuss the similarities and differences with Na2IrO3 .

  20. An FeF(3)·0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries.

    Science.gov (United States)

    Li, Chilin; Yin, Congling; Gu, Lin; Dinnebier, Robert E; Mu, Xiaoke; van Aken, Peter A; Maier, Joachim

    2013-08-07

    To improve the energy/power density of energy storage materials, numerous efforts have focused on the exploration of new structure prototypes, in particular metal-organic fameworks, Prussian blue analogues, open-framework oxides, and polyanion salts. Here we report a novel pyrochlore phase that appears to be useful as a high-capacity cathode for Li and Na batteries. It is an iron fluoride polymorph characterized by an intersecting tunnel structure, providing the space for accommodation and transport of Li and Na ions. It is prepared using hydrolyzable ionic liquids, which serve as reaction educts and structure-directing agents not only as far as the chemical structure is concerned but also in terms of morphology (shape, defect structure, electrode network structure). A capacity higher than 220 mA h g(-1) (for Li and Na storage) and a lifetime of at least 300 cycles (for Li storage) are demonstrated.

  1. A Comparative Structural and Electrochemical Study of Monoclinic Li3V2(PO4)3/C and Rhombohedral Li2.5Na0.5V2(PO4)3/C%Li3V2(PO4)3/C和Li2.5Na0.5V2(PO4)3/C的结构和电化学性能的比较研究

    Institute of Scientific and Technical Information of China (English)

    王文辉; 陈振宇; 戴长松; 纪大龙; 李佳杰; 魏杰

    2012-01-01

    A lithium-ion battery cathode material,Li2.5Na0.5V2(PO4)3/C,was prepared by the sol-gel method and characterized by X-ray diffraction (XRD),cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).As a control,Li3V2(PO4)3/C (LVP/C) was also prepared and studied.The effect of sodium-ion doping on the structure and electrochemical properties was studied.The XRD pattern of Li2.5Na0.5V2(PO4)3/C indicates that the monoclinic structure of Li3-xNaxV2(PO4)3 has transformed into a rhombohedral structure because of large amount of sodium-ion doping.For Li25Na0.5V2(PO4)3/C,a specific discharge capacity of 118 mAh·g-1 is achieved at a 0.5 C charge rate and 1 C discharge rate,and a 92.4% retention rate of the initial capacity is obtained after 50 cycles.Different from monoclinic LVP,there is only one discharge plateau at 3.7 V in the charge/discharge voltage profile of Li2.5Na0.5V2(PO4)3/C.%采用溶胶-凝胶法合成了锂离子正极材料Li3V2(PO4)JC(LVP/C)及Li2.5Na0.5V2(PO4)3/C,并用XRD、循环伏安及交流阻抗等方法,研究了大量Na+掺杂对材料结构和电化学性能影响.结果表明,大量钠离子的掺杂会使LVP结构由单斜向菱方转变.掺杂化合物Li2.5Na0.5V2(PO4)/C在0.5 C充电1C放电时,首次放电容量为118 mAh·g-1,50次循环后容量保持率为92.4%,并发现与单斜LVP存在多个放电平台不同,Li2.5Na0.5V2(PO4)3/C仅在3.7 V处有一个放电平台.

  2. Hydrogen storage of type MBH{sub 4}(H{sub 2})n M = Li, Na, K, Rb, Cs; Almacenadores de hidrogeno del tipo MBH{sub 4}(H{sub 2})n M = Li, Na, K, Rb, Cs

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Castro, Maria Esther [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Saltillo, Ramos Arizpe, Coahuila (Mexico)] e-mail: esther.sanchez@cinvestav.edu.mx; Sanchez-Vazquez, Mario [Centro de Investigacion en Materiales Avanzados, S.C., Apodaca, Nuevo Leon (Mexico)

    2009-09-15

    Interest has recently been increasing in finding new sources of energy other than fossil fuels. Hydrogen has potential with respect to oil, it does not contaminate the environment or produce greenhouse gases. Nevertheless, finding materials capable of storing hydrogen is not trivial, since certain aspects must be addressed, such as reversible hydrogen storage with high gravimetric and volumetric density, manipulated at moderate temperatures and pressures. To contribute to the search for new materials, we are interested in studying the structures of type MBH{sub 4}, which have a boron atom and a M metal. The boron has a lighter mass and is surrounded by four hydrogen atoms. LiBH{sub 4}, for example, is already being used as a source of hydrogen by disassociating the B-H bonds. On the other hand, the M atom is positive and can house molecular hydrogen in its coordination sphere. Our studies, using mp{sup 2}/def2-TZVP computational methods, show that this type of structures (MBH4) can coordinate in the M atom from three (when M = Li) to nine (when M = Cs) hydrogen molecules. [Spanish] Recientemente, el interes por encontrar nuevas fuentes de energia diferentes al combustible fosil ha ido en aumento. El hidrogeno tiene un potencial con respecto al petroleo, no contamina el medio ambiente ni produce gases invernadero. Sin embargo, encontrar materiales capaces de almacenar hidrogeno no es trivial, ya que se deben cuidar aspectos como: almacenar reversiblemente hidrogeno con alta densidad gravimetrica y volumetrica, y manipularlos a temperaturas y presiones moderadas. A fin de contribuir con la busqueda de nuevos materiales, es de nuestro interes estudiar a las estructuras del tipo MBH4. Estas estructuras tienen la caracteristica de tener un atomo de boro y un metal M. El boro es de masa ligera y esta rodeado de cuatro atomos de hidrogeno. El LiBH{sub 4} por ejemplo ya se esta utilizando como fuente de hidrogenos al disociar los enlaces B-H. Por otra parte, el atomo M es

  3. Synthesis, crystal structure, characterization and electrochemical properties of a new cyclohexaphosphate: Li2Na2CoP6O18·12H2O

    Science.gov (United States)

    Sleymi, Samira; Kahlaoui, Massoud; Dkhili, Samiha; Besbes-Hentati, Salma; Abid, Sonia

    2017-01-01

    A new cyclohexaphosphate with the Li2Na2CoP6O18·12H2O (LNCP) composition was prepared via a simple process at room temperature. This compound was characterized using X-ray diffraction (XRD), Infrared and UV-visible spectroscopy, Thermal analysis (TG), Cyclic voltammetry and Impedance spectroscopy. The results show that the LNCP was phased with a monoclinic structure and C2/c space group. The crystal structure was solved by using 3893 independent reflections with a final R value of 0.055. The P6O18 ring is centrosymmetrical. Its main geometrical features are those commonly observed in the atomic arrangements of cyclohexaphosphate. The atomic arrangement of this compound can be described by an organization in a three-dimensional framework, formed by the anions (P6O18)6- and polyhedra of lithium and sodium. This structure has channels where octahedral cobalt is housed. By means of a cyclic voltammetry study, it is shown that this substrate undergoes a multistep anodic oxidation, leading to a thin and compact electroactive deposit. The electrical conductivity was studied using two-probe impedance spectroscopy and results showed that the conductivity of LNCP at 518 K was equal to 1.74 × 10-4 Scm-1.

  4. Signatures of intrinsic Li depletion and Li-Na anti-correlation in the metal-poor globular cluster NGC6397

    CERN Document Server

    Lind, K; Charbonnel, C; Grundahl, F; Asplund, M

    2009-01-01

    To alleviate the discrepancy between the prediction of the primordial lithium abundance in the universe and the abundances observed in Pop II dwarfs and subgiant stars, it has been suggested that the stars observable today have undergone photospheric depletion of Li. To constrain the nature of such depletion, we conduct a homogeneous analysis of a very large sample of stars in the metal-poor globular cluster NGC6397, covering well all evolutionary phases from below the main sequence turn-off to high up the red giant branch. Non-LTE Li abundances or abundance upper limits are obtained for all stars, and for a size-able sub-set of the targets also Na abundances are obtained. The sodium abundances are used to distinguish stars formed out of pristine material from stars formed out of material affected by pollution from a previous generation of more massive stars. The dwarfs, turn-off, and early subgiant stars form a thin abundance plateau, disrupted in the middle of the subgiant branch by the lithium dilution cau...

  5. Dielectric and piezoelectric properties of (Li, Ce) modified NaBi5Ti5O18composite ceramics

    Institute of Scientific and Technical Information of China (English)

    MA Lei; ZHAO Kun; LI Jixia; WU Qi; ZHAO Minglei; WANG Chunlei

    2009-01-01

    Nominal (Li0.5Ce0.5)x(Na0.5Bi0.5)(1-x)Na0.5Bi4.5Ti5O18 composite ceramics were fabricated using conventional solid-state reaction method. The coexistence of bismuth layer-structured phase and perovskite phase was determined in these ceramics using XRD technique. At room temperature, the x=0.11 sample showed the largest piezoelectric constant, d33, of about 26.5 pC/N and the largest electromechanical coupling factor, kt, of about 30%. Even after annealing at 500 ℃, the value of d33 was still about 19 pC/N, in x=0.08-0.11 samples. Moreover, these composite ceramics showed low temperature coefficients of dielectric constant and high electrical resistivity in the temperature region of 450-550 ℃. These results indicated that (Li, Ce) modified NaBi5Ti5O18 composite ceramics were promising piezoelectric materials for high-temperature applications.

  6. Ternary LiBH4-MgH2-NaAlH4 hydride confined into nanoporous carbon host for reversible hydrogen storage

    Science.gov (United States)

    Plerdsranoy, Praphatsorn; Utke, Rapee

    2016-03-01

    Ternary hydride of LiBH4-MgH2-NaAlH4 confined into carbo n aerogel scaffold (CAS) via melt infiltration for reversible hydrogen storage is proposed. Nanoconfinement of hydrides into CAS is obtained together with surface occupation of some phases, such as Al and/or LiH. Regarding nanoconfinement, not only multiple-step decomposition of LiBH4-MgH2-NaAlH4 hydride reduces to about single step, but also reduction of dehydrogenation temperature is significantly observed, for example, ∆T up to 70 °C regarding last dehydrogenation step. Moreover, decomposition of NaBH4 in nanoconfined sample can be done at 360 °C (dehydrogenation temperature in this study), which is 115 and 180 °C lower than that of NaBH4 in milled LiBH4-MgH2-NaAlH4 and bulk NaBH4, respectively. The reaction of LiBH4+NaAlH4→LiAlH4+NaBH4 takes place during nanoconfinement and the decomposition of LiAlH4 is observed, resulting deficient hydrogen content liberated. However, hydrogen content released (1st cycle) and reproduced (2nd-4th cycles) from this ternary hydride enhances up to 11% and 22% of full hydrogen storage capacity due to nanoconfinement. After rehydrogenation (T=360 °C and P(H2)=50 bar H2 for 12 h), NaBH4, MgH2, and Li3AlH6 are reversible, whereas Li3AlH6 and NaBH4 in milled sample cannot be recovered due to deficient hydrogen pressure (T=360 °C and P(H2)=80 bar) and probably evaporation of molten sodium during dehydrogenation, respectively. The latter results in inferior hydrogen content reproduced from milled sample to nanoconfined sample.

  7. Calculation of inelastic helium atom scattering from H2/ NaCl(001)

    DEFF Research Database (Denmark)

    Bruch, L.W.; Hansen, Flemming Yssing; Traeger, F.

    2011-01-01

    The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determi......The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 me...

  8. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  9. Electrochemical preparation of carbon films with a Mo2C interlayer in LiCl-NaCl-Na2CO3 melts

    Science.gov (United States)

    Ge, Jianbang; Wang, Shuai; Zhang, Feng; Zhang, Long; Jiao, Handong; Zhu, Hongmin; Jiao, Shuqiang

    2015-08-01

    The electrodeposition of carbon films with a Mo2C interlayer was investigated in LiCl-NaCl-Na2CO3 melts at 900 °C. Cyclic voltammetry was applied to study the electrochemical reaction mechanism on Mo and Pt electrodes, indicating that, two reduction reactions including carbon deposition and carbon monoxide evolution, may take place on the two electrodes simultaneously during the cathodic sweep. Carbon films with a continuous Mo2C interlayer were prepared by constant voltage electrolysis, showing a good adhesion between Mo substrate and carbon films. The carbon films with a Mo2C interlayer were characterized using X-ray diffraction measurement, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The results reveal that carbon materials deposited on the electrodes are mainly composed of graphite and carbon diffusion in Mo (or Mo2C) leads to the formation and growth of Mo2C interlayer.

  10. True atomic-scale imaging of a spinel Li{sub 4}Ti{sub 5}O{sub 12}(111) surface in aqueous solution by frequency-modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kitta, Mitsunori, E-mail: m-kitta@aist.go.jp; Kohyama, Masanori [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-09-15

    Spinel-type lithium titanium oxide (LTO; Li{sub 4}Ti{sub 5}O{sub 12}) is a negative electrode material for lithium-ion batteries. Revealing the atomic-scale surface structure of LTO in liquid is highly necessary to investigate its surface properties in practical environments. Here, we reveal an atomic-scale image of the LTO(111) surface in LiCl aqueous solution using frequency-modulation atomic force microscopy. Atomically flat terraces and single steps having heights of multiples of 0.5 nm were observed in the aqueous solution. Hexagonal bright spots separated by 0.6 nm were also observed on the flat terrace part, corresponding to the atomistic contrast observed in the ultrahigh vacuum condition, which suggests that the basic atomic structure of the LTO(111) surface is retained without dramatic reconstruction even in the aqueous solution.

  11. Optimization and Calculation of TbCl3-ACl (A=Li, Na, K, Rb, Cs) Phase Diagrams

    Institute of Scientific and Technical Information of China (English)

    Sun Yimin; Zhang Jing; Guan Mingyun; Qiao Zhiyu

    2005-01-01

    By using CALPHAD (Calculation of Phase Diagram) technique the optimization and calculation of the binary systems of TbCl3-ACl (A= Li, Na, K, Rb, Cs) were carried out. For describing the Gibbs free energy of liquid phase in these systems the new modified quasichemical model in the pair-approximation for short-range ordering was used. From measured phase equilibria data and experimental integral properties the TbCl3-ACl phase diagrams were optimized and calculated. A set of thermodynamic functions was optimized based on an interactive computer-assisted analysis. The calculated phase diagrams and thermodynamic data are self-consistent.

  12. Hydrogen storage in LiH: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Banger, Suman, E-mail: sumanphy28@gmail.com; Nayak, Vikas, E-mail: sumanphy28@gmail.com; Verma, U. P., E-mail: sumanphy28@gmail.com [School of Studies in Physics, Jiwaji University, Gwalior-474011 (India)

    2014-04-24

    First principles calculations have been performed on the Lithium hydride (LiH) using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory. We have extended our calculations for LiH+2H and LiH+6H in NaCl structure. The structural stability of three compounds have been studied. It is found that LiH with 6 added Hydrogen atoms is most stable. The obtained results for LiH are in good agreement with reported experimental data. Electronic structures of three compounds are also studied. Out of three the energy band gap in LiH is ∼3.0 eV and LiH+2H and LiH+6H are metallic.

  13. Unique atom hyper-kagome order in Na4Ir3O8 and in low-symmetry spinel modifications.

    Science.gov (United States)

    Talanov, V M; Shirokov, V B; Talanov, M V

    2015-05-01

    Group-theoretical and thermodynamic methods of the Landau theory of phase transitions are used to investigate the hyper-kagome atomic order in structures of ordered spinels and a spinel-like Na4Ir3O8 crystal. The formation of an atom hyper-kagome sublattice in Na4Ir3O8 is described theoretically on the basis of the archetype (hypothetical parent structure/phase) concept. The archetype structure of Na4Ir3O8 has a spinel-like structure (space group Fd\\bar 3m) and composition [Na1/2Ir3/2](16d)[Na3/2](16c)O(32e)4. The critical order parameter which induces hypothetical phase transition has been stated. It is shown that the derived structure of Na4Ir3O8 is formed as a result of the displacements of Na, Ir and O atoms, and ordering of Na, Ir and O atoms, ordering dxy, dxz, dyz orbitals as well. Ordering of all atoms takes place according to the type 1:3. Ir and Na atoms form an intriguing atom order: a network of corner-shared Ir triangles called a hyper-kagome lattice. The Ir atoms form nanoclusters which are named decagons. The existence of hyper-kagome lattices in six types of ordered spinel structures is predicted theoretically. The structure mechanisms of the formation of the predicted hyper-kagome atom order in some ordered spinel phases are established. For a number of cases typical diagrams of possible crystal phase states are built in the framework of the Landau theory of phase transitions. Thermodynamical conditions of hyper-kagome order formation are discussed by means of these diagrams. The proposed theory is in accordance with experimental data.

  14. First principles study of hydrogen storage material NaBH4 and LiAlH4 compounds: electronic structure and optical properties

    Science.gov (United States)

    Ghellab, T.; Charifi, Z.; Baaziz, H.; Uğur, Ş.; Uğur, G.; Soyalp, F.

    2016-04-01

    A comprehensive study of structure, phase stability, optical and electronic properties of LiAlH4 and NaBH4 light-metal hydrides is presented. The calculations are carried out within density functional theory using the full potential linear augmented plane wave method. The exchange-correlation potential is treated within the local density approximation and the generalized gradient approximation (GGA) to calculate the total energy. Furthermore, the Engel-Vosko GGA approach is employed to compute electronic and optical properties such as reflectivity spectra. The phases α, β and γ of LiAlH4 and NaBH4 hydrides are investigated, the phase transition from the β to the high-pressure γ phase is determined for NaBH4 and is accompanied by a 1% volume decrease. For LiAlH4, no phase transition is detected. The materials under consideration are classified as wide band gap compounds. From the analysis of the structures at different phases, it is deduced that the hydrides show strong covalent interaction between B (Al) and H in the [BH4]- ([AlH4]-) anions and ionic bonding character between [BH4]- and Na+ for NaBH4, and [AlH4]- and Li+ for LiAlH4. The complex dielectric function, absorption coefficient and the reflectivity spectra are also computed and analyzed in different phases.

  15. Preparation and properties of (K0.5Na0.5)NbO3-LiNbO3 ceramics

    Institute of Scientific and Technical Information of China (English)

    TANG Fu-sheng; DU Hong-liang; LI Zhi-min; ZHOU Wan-cheng; QU Shao-bo; PEI Zhi-bin

    2006-01-01

    The lead-free piezoelectric ceramics (1-x)(K0.5Na0.5)NbO3-xLiNbO3(abbreviated as KNLN) were synthesized by a traditional solid state reaction. The effects of Li+ on the sintering characteristic,the phase structure and piezoelectric properties of KNLN ceramics were investigated. The sintering temperature of KNN-based ceramics is decreased by doping Li+ and the range of the sintering temperature is narrow. The KNLN ceramics exhibit an enhanced piezoelectric properties with the piezoelectric constant d33 value of 180-200 pC/N,The electromechanical coupling coefficients kp is 35%-40%. The results show that (1-x)(K0.5Na0.5)- NbO3-xLiNbO3 (x=0.05,0.06) is a promising high-temperature lead free piezoelectric ceramic.

  16. Charge-transfer energy in closed-shell ion-atom interactions. [for H and Li ions in He

    Science.gov (United States)

    Alvarez-Rizzatti, M.; Mason, E. A.

    1975-01-01

    The importance of charge-transfer energy in the interactions between closed-shell ions and atoms is investigated. Ab initio calculations on H(plus)-He and Li(plus)-He are used as a guide for the construction of approximate methods for the estimation of the charge-transfer energy for more complicated systems. For many alkali ion-rate gas systems the charge-transfer energy is comparable to the induction energy in the region of the potential minimum, although for doubly charged alkaline-earth ions in rare gases the induction energy always dominates. Surprisingly, an empirical combination of repulsion energy plus asymptotic induction energy plus asymptotic dispersion energy seems to give a fair representation of the total interaction, especially if the repulsion energy is parameterized, despite the omission of any explicit charge-transfer contribution. More refined interaction models should consider the charge-transfer energy contribution.

  17. Effect of Strong Basic Oxide (Li2O, Na2O, K2O and BaO) on Property of CaO-Based Flux

    Institute of Scientific and Technical Information of China (English)

    LI Gui-rong

    2003-01-01

    It is found that strong basic oxides including Li2O, Na2O, K2O and BaO, which are used to replace a part of CaO in CaO-based fluxes, can lower the melting point and the viscosity and enhance the dephosphorizing ability. The mechanism was analysed and the addition of Li2O to CaO-based fluxes was recommended.

  18. Aluminaless composite solid electrolytes. Pt. 1. Enhanced electrical transport in. beta. -Li sub 2 SO sub 4 -Na sub 2 SO sub 4 system

    Energy Technology Data Exchange (ETDEWEB)

    Chaklanobis, S.; Shahi, K. (Dept. of Physics, Indian Inst. of Tech., Kanpur (India)); Syal, R.K. (Dept. of Chemistry, Christ Church Coll., Kanpur (India))

    1990-12-01

    {beta}-Li{sub 2}SO{sub 4}-Na{sub 2}SO{sub 4} composites have been prepared by quenching the melt and characerized by DTA and complex impedance analysis to obtain dc electrical conductivity ({sigma}{sub dc}). The samples containing upto 50 m/o Na{sub 2}SO{sub 4} are actually mixtures of {beta}-Li{sub 2}SO{sub 4} and LiNaSO{sub 4} and those containing 50 to 100 m/o Na{sub 2}SO{sub 4} are essentially mixtures of Na{sub 2}SO{sub 4} and LiNaSO{sub 4}. Both the mixtures exhibit enhanced {sigma} by 1 to 2 orders of magnitude. The mechanism of enhancement in these mixtures appears to be similar to that in Al{sub 2}O{sub 3}-dispersed solid electrolytes, better known as ''composite solid electrolytes''. Thus there is enormous scope of further studies on the so-called aluminaless composite solid electrolytes, and possibility of even developing them into commercial solid electrolytes. (orig.).

  19. Ferromagnetism in 4H-GaN polytype doped by non-magnetic light elements Li, Be, B, C, O, F, Ne, Na, and Mg: Ab-initio study

    Science.gov (United States)

    Torrichi, M.; Ferhat, M.; Bouhafs, B.

    2016-09-01

    Using density-functional theory within the generalized-gradient approximation, we explore the magnetic behavior induced by nonmagnetic impurity X atoms, such as Li, Be, B, C, O, F, Ne, Na, and Mg on cation site in 4H-GaN polytype. The results reveal that Ne doped 4H-GaN has the highest magnetic moment of 3μB, whereas Mg doped 4H-GaN has the lowest magnetic moment of 0.75μB. Among the systems studied 4H-GaN doped Ne has been found to be half-metallic, whereas 4H-GaN doped F and Na are found to be nearly half-metallic. The partial density of states evidence that magnetism is achieved through a p-p like coupling between the impurity and the host 2p states. Furthermore, we inspect whether there exists a relationship between the spin-polarization and the local structure around the doping X atoms. It is found that for all the compounds studied, the total magnetic moment increases with increasing the X-N bond lengths. Interestingly, 4H-GaN:Be becomes ferromagnetic with increasing the Be-N bond length, whereas 4H-GaN:Na and 4H-GaN:F become half-metallic with increasing Na-N and F-N bond lengths.

  20. Density of Na2O-Li2O-SiO2-B2O3 Molten Slag at 1 803-1 873 K

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang

    2004-01-01

    The density of three kinds of molten slags was measured by modified sessile drop method at 1 803-1 873 K. The density of molten slag is found to decrease with increasing temperature. The temperature coefficients of Na2O-Li2O-SiO2 and Li2O-SiO2-B2O3 slag are smaller than that of Na2O-B2O3 slag. The molar volume of slags increases with increasing temperature.

  1. The prospects of sympathetic cooling of NH molecules with Li atoms

    CERN Document Server

    Wallis, Alisdair O G; Zuchowski, Piotr S \\; Hutson, Jeremy M

    2010-01-01

    We calculate the quartet potential energy surface for Li+NH and use it to calculate elastic and spin-relaxation cross sections for collisions in magnetically trappable spin-stretched states. The potential is strongly anisotropic but spin-relaxation collisions are still suppressed by centrifugal barriers when both species are in spin-stretched states. In the ultracold regime, both the elastic and inelastic cross sections fluctuate dramatically as the potential is varied because of Feshbach resonances. The potential-dependence is considerably reduced at higher energies. The major effect of using an unconverged basis set in the scattering calculations is to shift the resonances without changing their general behaviour. We have calculated the ratio of elastic and spin-relaxation cross sections, as a function of collision energy and magnetic field, for a variety of potential energy surfaces. Most of the surfaces produce ratios that are favorable for sympathetic cooling, at temperatures below about 20 mK.

  2. Electronic processes near kinematic threshold for grazing scattering of fast hydrogen atoms from a LiF(0 0 1) surface

    CERN Document Server

    Lederer, S; Winter, H; Aumayr, F; Winter, H P; Staemmler, V

    2003-01-01

    In coincident studies on projectile energy loss and number distributions of emitted electrons for scattering of hydrogen atoms from an atomically clean and flat LiF(0 0 1) surface we derive probabilities for emission of electrons and production of surface excitons near their respective kinematic thresholds. We analyze our data in terms of electron transfer in binary atomic collisions with one collision partner being embedded at the anion site of an ionic crystal and derive information on the energy defects in these collisions.

  3. Accessing a low-lying bound electronic state of the alkali oxides, LiO and NaO, using laser induced fluorescence

    Science.gov (United States)

    Pugh, J. V.; Shen, K. K.; Winstead, C. B.; Gole, J. L.

    1996-01-01

    The first laser based probe for the sodium and lithium monoxides is established. The Li(Na)+N 2O reactions studied in a multiple collision entrainment mode produce the LiO and NaO ground X 2Π and low-lying monoxide excited states. In contrast to the alkali halides, laser induced excitation spectroscopy confirms that the LiO and NaO B 2Π states, counter to recent predictions, are located at energies well below the ground state dissociation asymptote and, as predicted, possess significant binding energies. An assignment of the laser induced excitation spectra (LIF) for the B 2Π-X 2Π transitions of LiO in the region 3940-4300 Å is based on a direct correlation with the observed chemiluminescence (CL) from the lowest level of the LiO B 2Π state ( ˜4000-7000 Å) and high quality ab initio calculations for the ground state. The self-consistent assignment of the observed LIF and CL spectra makes use of the complimentary extended progressions in the X 2Π (CL) and B 2Π (LIF) vibrational level structure which results from the significant shift of the B 2Π excited state potential relative to that of the ground state. The experimental data are consistent with an excited state vibrational frequency separation of order 130 cm -1, and T e( B2Π) ≈ 26078 ± 800 cm-1. The latter value, in correlation with the ground state dissociation energy of LiO, suggests a B 2Π excited state dissociation energy well in excess of 2000 cm -1. The radiative lifetimes of the lowest levels of the LiO B 2Π state, isoergic with the highest levels of the LiO ground state, are determined to be in excess of 600 ns. The corresponding NaO excitation spectra in the range 6680-7250 Å also correlate well with ab initio calculations for the ground electronic state of NaO. Within this study, we provide optical signatures which one might consider to monitor LiO or NaO in process streams. In correlation with the observed chemiluminescence from B 2Π states of the higher alkali oxides KO, RbO, and

  4. Effect of glass network modifier R2O (R=Li, Na and K) on upconversion luminescence in Er3+/Yb3+ co-doped NaYF4 oxyfluoride glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    高源; 胡曰博; 任鹏; 周大成; 邱建备

    2015-01-01

    The effect of glass network modifier R2O (R=Li, Na, K) on upconversion luminescence in Er3+/Yb3+ co-doped NaYF4 oxyfluoride glass-ceramics was investigated. NaYF4 nanocrystals with different sizes were studied under glass network modifier alkali mental oxide. The nanocrystals size in NaYF4 of Li2O modified samples was 11 nm, whereas in the Na2O and K2O modi-fied sample, the crystal size was 25 and 43 nm, respectively. It was found that red, yellow and green upconversions were observed in SAL, SAN, SAK glass ceramics. The reported results would deepen the understanding of size effects on the lanthanide upcon-version in nanocrystals.

  5. Semiclassical Calculation of Recurrence Spectra of Li Rydberg Atom in Crossed Electric and Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; DING Shi-Liang

    2003-01-01

    Closed-orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external fields. Using the closed-orbit theory and classical perturbation theory, we calculate the scaled recurrence spectra of Lithium atom in magnetic field plus a weak perpendicular electric field. The results show when the crossed electric field is added, the recurrence spectra are weakened greatly. As the scaled electric field f increases, the peaks of the recurrence spectra lose strength. Some recurrences are very sensitive and fall off rapidly as f increases; others persist till much higher f . As the electric field is stronger, some of the peaks revive. This phenomenon, caused by the interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.

  6. Semiclassical Calculation of Recurrence Spectra of Li Rydberg Atom in Crossed Electric and Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANGDe-Hua; DINGShi-Liang

    2003-01-01

    Closed-orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external fields. Using the dosed-orblt theory and classical perturbation theory, we calculate the scaled recurrence spectra of Lithium atom in magnetic field plus a weak perpendicular electric field. The results show when the crossed electric field is added, the recurrence spectra are weakened greatly. As the scaled electric field f increases, the peaks of the recurrence spectra lose strength. Some recurrences are very sensitive and fall off rapidly as f increases, others persist till much higher f. As the electric field is stronger, some of the peaks revive. This phenomenon, caused by the interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.

  7. Surface Passivation of MoO₃ Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes.

    Science.gov (United States)

    Ahmed, B; Shahid, Muhammad; Nagaraju, D H; Anjum, D H; Hedhili, Mohamed N; Alshareef, H N

    2015-06-24

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.

  8. Thermodynamic assessment of the LiF-NaF-ThF{sub 4}-UF{sub 4} system

    Energy Technology Data Exchange (ETDEWEB)

    Benes, O., E-mail: ondrej.benes@ec.europa.e [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Beilmann, M.; Konings, R.J.M. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2010-10-15

    A thermodynamic assessment of the LiF-NaF-ThF{sub 4}-UF{sub 4} system is presented in this study. The binary phase diagrams are optimized based on the known experimental data and the excess Gibbs energies of liquid and solid solutions are described using a modified quasi chemical model and polynomial formalism respectively. The higher order systems are extrapolated according to asymmetric Toop mathematical formalism. Based on the developed thermodynamic database the fuel composition of the molten salt fast reactor is optimized. In total three different fuel compositions are identified. Properties of these fuel compositions such as melting point, vapour pressure and the boiling temperature are derived from the obtained thermodynamic assessment and are presented in this study.

  9. Charge-exchange, ionization and excitation in low-energy Li$^{+}-$ Ar, K$^{+}-$ Ar, and Na$^{+}-$He collisions

    CERN Document Server

    Lomsadze, Ramaz A; Kezerashvili, RomanYa; Schulz, Michael

    2016-01-01

    Absolute cross sections are measured for charge-exchange, ionization, and excitation within the same experimental setup for the Li$^{+}-$Ar, K$^{+}-$ Ar, and Na$^{+}-$ He collisions in the ion energy range $0.5-10$ keV. Results of our measurements along with existing experimental data and the schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. The experimental results show that the charge-exchange processes are realized with high probabilities and electrons are predominately captured in ground states. The cross section ratio for charge exchange, ionization and excitation processes roughly attains the value $10:2:1$, respectively. The contributions of various partial inelastic channels to the total ionization cross sections are estimated and a primary mechanism for the process is defined. The energy-loss spectrum, in addition, is applied to estimate the relative contribution of different inelastic channels and to determine the mechanisms for the ionization and f...

  10. Particle shapes and surface structures of olivine NaFePO₄ in comparison to LiFePO₄.

    Science.gov (United States)

    Whiteside, Alexander; Fisher, Craig A J; Parker, Stephen C; Islam, M Saiful

    2014-10-21

    The expansion of batteries into electric vehicle and grid storage applications has driven the development of new battery materials and chemistries, such as olivine phosphate cathodes and sodium-ion batteries. Here we present atomistic simulations of the surfaces of olivine-structured NaFePO4 as a sodium-ion battery cathode, and discuss differences in its morphology compared to the lithium analogue LiFePO4. The calculated equilibrium morphology is mostly isometric in appearance, with (010), (201) and (011) faces dominant. Exposure of the (010) surface is vital because it is normal to the one-dimensional ion-conduction pathway. Platelet and cube-like shapes observed by previous microscopy studies are reproduced by adjusting surface energies. The results indicate that a variety of (nano)particle morphologies can be achieved by tuning surface stabilities, which depend on synthesis methods and solvent conditions, and will be important in optimising electrochemical performance.

  11. Alkali-metal ion coordination in uranyl(VI) poly-peroxo complexes in solution, inorganic analogues to crown-ethers. Part 2. Complex formation in the tetramethyl ammonium-, Li(+)-, Na(+)- and K(+)-uranyl(VI)-peroxide-carbonate systems.

    Science.gov (United States)

    Zanonato, Pier Luigi; Szabó, Zoltán; Vallet, Valerie; Di Bernardo, Plinio; Grenthe, Ingmar

    2015-10-01

    The constitution and equilibrium constants of ternary uranyl(vi) peroxide carbonate complexes [(UO2)p(O2)q(CO3)r](2(p-q-r)) have been determined at 0 °C in 0.50 M MNO3, M = Li, K, and TMA (tetramethyl ammonium), ionic media using potentiometric and spectrophotometric data; (17)O NMR data were used to determine the number of complexes present. The formation of cyclic oligomers, "[(UO2)(O2)(CO3)]n", n = 4, 5, 6, with different stoichiometries depending on the ionic medium used, suggests that Li(+), Na(+), K(+) and TMA ions act as templates for the formation of uranyl peroxide rings where the uranyl-units are linked by μ-η(2)-η(2) bridged peroxide-ions. The templating effect is due to the coordination of the M(+)-ions to the uranyl oxygen atoms, where the coordination of Li(+) results in the formation of Li[(UO2)(O2)(CO3)]4(7-), Na(+) and K(+) in the formation of Na/K[(UO2)(O2)(CO3)]5(9-) complexes, while the large tetramethyl ammonium ion promotes the formation of two oligomers, TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-). The NMR spectra demonstrate that the coordination of Na(+) in the five- and six-membered oligomers is significantly stronger than that of TMA(+); these observations suggest that the templating effect is similar to the one observed in the synthesis of crown-ethers. The NMR experiments also demonstrate that the exchange between TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-) is slow on the (17)O chemical shift time-scale, while the exchange between TMA[(UO2)(O2)(CO3)]6(11-) and Na[(UO2)(O2)(CO3)]6(11-) is fast. There was no indication of the presence of large clusters of the type identified by Burns and Nyman (M. Nyman and P. C. Burns, Chem. Soc. Rev., 2012, 41, 7314-7367) and possible reasons for this and the implications for the synthesis of large clusters are briefly discussed.

  12. Phase Stability and Ionic Conductivity of NASICON-Like Phases in ScPO4-Na3PO4-Li3PO4 Ternary System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Phase formation in ternary system of complex Sc, Na and Li phosphates was studied at 950 ℃ and synthesis of new phases of definite composition was carried out. Obtained specimens were investigated with X-ray powder diffraction, infrared and impedance spectroscopy. Compositions of fields of homogeneity with NASICON-like structure were discovered. Temperature dependency of ionic conductivity was measured.

  13. Controllable Preparation of Square Nickel Chalcogenide (NiS and NiSe2) Nanoplates for Superior Li/Na Ion Storage Properties.

    Science.gov (United States)

    Fan, Haosen; Yu, Hong; Wu, Xinglong; Zhang, Yu; Luo, Zhongzhen; Wang, Huanwen; Guo, Yuanyuan; Madhavi, Srinivasan; Yan, Qingyu

    2016-09-28

    A facile and bottom-up approach has been presented to prepare 2D Ni-MOFs based on cyanide-bridged hybrid coordination polymers. After thermally induced sulfurization and selenization processes, Ni-MOFs were successfully converted into NiS and NiSe2 nanoplates with carbon coating due to the decomposition of its organic parts. When evaluated as anodes of Li-ion batteries (LIBs) and Na-ion batteries (NIBs), NiS and NiSe2 nanoplates show high specific capacities, excellent rate capabilities, and stable cycling stability. The NiS plates show good Li storage properties, while NiSe2 plates show good Na storage properties as anode materials. The study of the diffusivity of Li(+) in NiS and Na(+) in NiSe2 shows consistent results with their Li/Na storage properties. The 2D MOFs-derived NiS and NiSe2 nanoplates reported in this work explore a new approach for the large-scale synthesis of 2D metal sulfides or selenides with potential applications for advanced energy storage.

  14. Synthesis and photoluminescence characterization of Ce3+ and Dy3+ activated ALa(WO4)2(A = Na and Li) novel phosphors

    Indian Academy of Sciences (India)

    Parag Nimishe; S J Dhoble

    2011-08-01

    In this paper, we report the synthesis of Ce3+ and Dy3+ activated alkali lanthanide tungstates, ALa(WO4)2(where A = Na and Li), prepared by solid state reaction method. The prepared phosphors were characterized by X-ray diffraction and photoluminescence techniques. The NaLa(WO4)2:Dy3+ and LiLa(WO4)2:Dy3+ phosphors show two emission peaks at around 574 and 486 nm (exc = 354 nm). NaLa(WO4)2:Ce3+ and LiLa(WO4)2:Ce3+ show two emission peaks at around 378 and 425 nm (exc = 350 nm). Excitation wavelengths of Ce3+ and Dy3+ activated alkali lanthanide tungstates are in near UV region i.e. Hg free excitation. These characterizations of phosphors are applicable for solid state lighting. Accordingly, Ce3+ and Dy3+ activated NaLa(WO4)2 and LiLa(WO4)2 may be the promising materials for solid state lighting applications.

  15. Diagnosing, Optimizing and Designing Ni & Mn based Layered Oxides as Cathode Materials for Next Generation Li-ion Batteries and Na-ion Batteries

    Science.gov (United States)

    Liu, Haodong

    The progressive advancements in communication and transportation has changed human daily life to a great extent. While important advancements in battery technology has come since its first demonstration, the high energy demands needed to electrify the automotive industry have not yet been met with the current technology. One considerable bottleneck is the cathode energy density, the Li-rich layered oxide compounds xLi2MnO3.(1-x)LiMO 2 (M= Ni, Mn, Co) (0.5= Co) (0.5=discharge capacities greater than 280 mAh g-1 (almost twice the practical capacity of LiCoO 2). In this work, neutron diffraction under operando battery cycling is developed to study the lithium and oxygen dynamics of Li-rich compounds that exhibits oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show movement of oxygen and lattice contractions during the high voltage plateau until the end of charge. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer and transition metal layer are related to the different charge and discharge characteristics. In the second part, a combination of multi-modality surface sensitive tools was applied in an attempt to obtain a complete picture to understand the role of NH4F and Al2O3 surface co-modification on Li-rich. The enhanced discharge capacity of the modified material can be primary assigned to three aspects: decreased irreversible oxygen loss, the activation of cathode material was facilitated with pre-activated Mn3+ on the surface, and stabilization of the Ni redox pair. These insights will provide guidance for the surface modification in high voltage cathode battery materials of the future. In the last part, the idea of Li-rich has transferred to the Na-ion battery cathode. A new O3 - Na0.78Li0.18Ni0.25Mn 0.583Ow is prepared as the cathode material for Na-ion batteries, delivering exceptionally high

  16. Interaction potentials for multi-electron atoms in front of a LiF (0 0 1) surface from rainbow scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, C1428EGA Buenos Aires (Argentina); Miraglia, J.E., E-mail: miraglia@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, C1428EGA Buenos Aires (Argentina); Schüller, A.; Winter, H. [Institut für Physik, Humboldt Universität zu Berlin, Newtonstrasse 15, D-12489 Berlin-Adlershof (Germany)

    2013-12-15

    Pairwise interaction potentials for multi-electron atoms moving in front of a LiF (0 0 1) surface are investigated theoretically and experimentally. From angular distributions of fast He, N, S, Cl and Kr atoms grazingly scattered under axial surface channeling conditions, rainbow angles are experimentally determined for a wide range of energies for the motion normal to the surface plane. These angles are used as a benchmark to probe the pairwise potential model. In the simulations the scattering process is described by means of the surface eikonal approximation, while the atom–surface interaction is derived by adding binary interatomic potentials that include the proper asymptotic limit.

  17. What can we learn from ionic conductivity measurements in polymer electrolytes? A case study on poly(ethylene oxide) (PEO)-NaI and PEO-LiTFSI.

    Science.gov (United States)

    Stolwijk, Nicolaas A; Wiencierz, Manfred; Heddier, Christian; Kösters, Johannes

    2012-03-15

    We explore in detail what information on ionic diffusivity and ion pairing can be exclusively gained from combining accurate direct-current conductivity data in polymer electrolytes with a novel evaluation model. The study was performed on two prototype systems based on poly(ethylene oxide) (PEO) with known disparate ion-association properties, which are due to the dissimilar salt components being either sodium iodide (NaI) or lithium bis(trifluoromethane-sulfonyl)imide (LiN(CF(3)SO(2))(2) or LiTFSI). The temperature dependence of the conductivity can be described by an extended Vogel-Tammann-Fulcher (VTF) equation, which involves a Boltzmann factor containing the pair-formation enthalpy ΔH(p). We find a distinct increase of the positive ΔH(p) values with decreasing salt concentration and similarly clear trends for the pertinent VTF parameters. The analysis further reveals that PEO-NaI combines a high pair fraction with a high diffusivity of the I(-) ion. By contrast, PEO-LiTFSI appears to be characterized by a low ion-pairing tendency and a relatively low mobility of the bulky TFSI(-) ion. The observed marked differences between PEO-NaI and PEO-LiTFSI complexes of homologous composition are most pronounced at high temperatures and low salt concentrations.

  18. In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO2 Cathode in a Working All-Solid-State Battery.

    Science.gov (United States)

    Gong, Yue; Zhang, Jienan; Jiang, Liwei; Shi, Jin-An; Zhang, Qinghua; Yang, Zhenzhong; Zou, Dongli; Wang, Jiangyong; Yu, Xiqian; Xiao, Ruijuan; Hu, Yong-Sheng; Gu, Lin; Li, Hong; Chen, Liquan

    2017-03-29

    We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.

  19. Unexpected high power performance of atomic layer deposition coated Li[Ni1/3Mn1/3Co1/3]O2 cathodes

    Science.gov (United States)

    Kim, Ji Woo; Travis, Jonathan J.; Hu, Enyuan; Nam, Kyung-Wan; Kim, Seul Cham; Kang, Chan Soon; Woo, Jae-Ha; Yang, Xiao-Qing; George, Steven M.; Oh, Kyu Hwan; Cho, Sung-Jin; Lee, Se-Hee

    2014-05-01

    Electric-powered transportation requires an efficient, low-cost, and safe energy storage system with high energy density and power capability. Despite its high specific capacity, the current commercially available cathode material for today's state-of-art Li-ion batteries, lithium nickel-manganese-cobalt oxide Li[Ni1/3 Mn1/3Co1/3]O2 (NMC), suffers from poor cycle life for high temperature operation and marginal rate capability resulting from irreversible degradation of the cathode material upon cycling. Using an atomic-scale surface engineering, the performance of Li[Ni1/3Mn1/3Co1/3]O2 in terms of rate capability and high temperature cycle-life is significantly improved. The Al2O3 coating deposited by atomic layer deposition (ALD) dramatically reduces the degradation in cell conductivity and reaction kinetics. This durable ultra-thin Al2O3-ALD coating layer also improves stability for the NMC at an elevated temperature (55 °C). The experimental results suggest that a highly durable and safe cathode material enabled by atomic-scale surface modification could meet the demanding performance and safety requirements of next-generation electric vehicles.

  20. Application of potential harmonic expansion method to BEC: Thermodynamic properties of trapped 23Na atoms

    Indian Academy of Sciences (India)

    Anasuya Kundu; Barnali Chakrabarti; Tapan Kumar Das

    2005-07-01

    We adopt the potential harmonics expansion method for an ab initio solution of the many-body system in a Bose condensate containing interacting bosons. Unlike commonly adopted mean-field theories, our method is capable of handling two-body correlation properly. We disregard three- and higher-body correlations. This simplification is ideally suited to dilute Bose Einstein condensates, whose number density is required to be so small that the interparticle separation is much larger than the range of two-body interaction to avoid three- and higher-body collisions, leading to the formation of molecules and consequent instability of the condensate. In our method we can incorporate realistic finite range interactions. We calculate energies of low-lying states of a condensate containing 23Na atoms and some thermodynamical properties of the condensate.

  1. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  2. The approach to chaos in ultracold atomic and molecular physics: statistics of near-threshold bound states for Li+CaH and Li+CaF

    CERN Document Server

    Frye, Matthew D; Vaillant, Christophe L; Green, Dermot G; Hutson, Jeremy M

    2015-01-01

    We calculate near-threshold bound states for the highly anisotropic systems Li+CaH and Li+CaF and perform statistical analysis on the resulting level positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum $J=0$ we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for $J>0$ we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF ($J=0$) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. We suggest this may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behaviour.

  3. Ferroelectric and Piezoelectric Characterization of Porous (K,Na,Li)(Nb,Ta,Sb)O{sub 3}; Respuesta Ferro-Piezoelectrica de (K,Na,Li)(Nb,Ta,Sb)O{sub 3} Poroso

    Energy Technology Data Exchange (ETDEWEB)

    Barolin, S. A.; Rubia, M. A. de la; Terny, S.; Rubio-Marcos, F.; Sanctis, O. de; Alonso, R. E.; Fernandez Lozano, J. F.; Frutos, J. de

    2014-02-01

    KNL-NTS powder with (K{sub 0}.44Na{sub 0}.52Li{sub 0}.04)(Nb{sub 0}.86Ta{sub 0}.10Sb{sub 0}.04)O{sub 3} stoichiometry was prepared following the conventional ceramic method of mixing carbonates and oxides. KNL-NTS powder synthesis is carried out in solid state at 700 degree centigrade for 3h. To obtain ceramic samples with different porosity the sintering of pellets is carried out in air at different temperatures between 1088 and 1125 degree centigrade for 2h. Structural and microstructural characterizations are performed by XRD and SEM and the degree and type of porosity is determined by mercury intrusion porosimetry. The influence of sintering temperature on the porosity and its consequence on both the ferroelectric hysteresis loops and the piezoelectric response was evaluated. The maximum densification is achieved at 1125 degree centigrade and the best ferroelectric response is achieved in sintered pellets at 1125 degree centigrade. Meanwhile, it was observed that pellets sintered in a lower temperature range (1094-1100 degree centigrade) where porosity reaches values up to 15 % have good ferroelectric piezoelectric response, similar to that found in the sintered pellets to 1125 degree centigrade. (Author)

  4. Thermal analysis and phase diagrams of the LiF BiF{sub 3} e NaF BiF{sub 3} systems; Analise termica e diagramas de fase dos sistemas LiF-BiF{sub 3} e NaF-BiF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Gerson Hiroshi de Godoy

    2013-07-01

    Investigations of the binary systems LiF-BiF{sub 3} and NaF-BiF{sub 3} were performed with the objective of clarifying the thermal behavior and phase equilibria of these systems and their intermediary phases, an important requisite for high-quality crystal growth. Several samples in the entire range of compositions (0 to 100 mol% BiF{sub 3}) of both systems were subjected to experiments of differential thermal analysis (DTA) and thermogravimetry (TG), and also of differential scanning calorimetry (DSC). A few specific compositions were selected for X-ray diffraction to supplement the experimental data. Due to the high vulnerability of BiF{sub 3} to oxygen contamination, its volatility and propensity to destroy metal parts upon heating, it was necessary to determine the optimal conditions for thermal analysis before investigating the systems themselves. Phase relations in the system LiF-BiF{sub 3} were completely clarified and a phase diagram was calculated and evaluated via the commercial software Factsage. The diagram itself consists in a simple peritectic system in which the only intermediary compound, LiBiF{sub 4}, decomposes into LiF and a liquid phase. The NaF-BiF{sub 3} system could not be completely elucidated and the phase relations in the NaF poor side (> 50% BiF{sub 3}) are still unknown. In the NaF rich side, however, the possible peritectoid decomposition of the compound NaBiF{sub 4} was identified. In both systems X-ray diffraction yielded crystal structures discrepant with the literature for the intermediary phases, LiBiF{sub 4}, NaBiF{sub 4} and a solid solution of NaF and BiF{sub 3} called {sup I.} The observed structures remain unknown and explanations for the discrepancies were proposed. (author)

  5. O3-type NaNi0·33Li0·11Ti0·56O2-based electrode for symmetric sodium ion cell

    Science.gov (United States)

    Zhang, Shuming; Liu, Yu; Zhang, Na; Zhao, Kuan; Yang, Jianhua; He, Shiyang

    2016-10-01

    Layered materials Na0.67+3xNi0.33LixTi0.67-xO2 with Li-substitution as x = 0, 0.05 and 0.11 have been synthesized and investigated as "bi-functional" electrodes for symmetric sodium ion cells. The samples with lithium substitution up to 0.11 are confirmed to be a single phase without impurities and introducing lithium into the transition metal layer increases the interlayer space of the layered materials. It is found that O3-type NaNi0·33Li0·11Ti0·56O2 exhibits two electrochemical working windows, 0.4-0.8 V and 3.1-3.75 V, for sodium ion storage. The as-proposed material thus can be employed as both positive and negative electrodes. As positive electrode, it shows a high working voltage of ca. 3.75 V versus Na+/Na and an initial capacity of 91 mAh g-1 with 19% capacity loss after 100 cycles. When utilized as negative electrode, it delivers a low average voltage of ca. 0.65 V versus Na+/Na, along with a reversible capacity of 125 mAh g-1 and 76% capacity retention after 200 cycles. A symmetric full cell based on the O3-type NaNi0·33Li0·11Ti0·56O2 "bi-functional" electrode has been developed. The cell exhibits a high voltage of 3.1 V and an energy density of 100 W h kg-1 based on the total mass of active electrode materials.

  6. Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition Towards High Rate Durable Li Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2015-06-03

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in Lithium (Li) ion batteries at high rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2 coated MoO3 electrodes is 68% higher than bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2 coated MoO3 electrodes exhibited specific capacity of 657 mAh/g, on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2 coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li–ions through the passivation layer to the active material. Furthermore, ex–situ HRTEM, X–ray photoelectron spectroscopy (XPS), Raman spectroscopy and X–ray diffraction was carried out to explain the capacity retention mechanism after HfO2 coating.

  7. On the crystal energy and structure of A{sub 2}Ti{sub n}O{sub 2n+1} (A=Li, Na, K) titanates by DFT calculations and neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Catti, Michele, E-mail: catti@mater.unimib.it [Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Pinus, Ilya [Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Scherillo, Antonella [ISIS Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom)

    2013-09-15

    First-principles quantum-mechanical calculations (CRYSTAL09 code, B3LYP functional) were performed on alkali titanates A{sub 2}Ti{sub n}O{sub 2n+1} with layered structure (n=3,4,6). Monoclinic structural types with unshifted (P2{sub 1}/m) and with shifted (C2/m) layers were considered. Crystal energies and full structural details were obtained for all Li, Na, and K phases. Neutron diffraction data were collected on powder samples of P2{sub 1}/m-Li{sub 2}Ti{sub 3}O{sub 7} (a=9.3146(3), b=3.7522(1), c=7.5447(3) Å, β=97.611(4)°) and C2/m-K{sub 2}Ti{sub 4}O{sub 9} (a=18.2578(8), b=3.79160(9), c=12.0242(4) Å, β=106.459(4)°) and their structures were Rietveld-refined. Computed energies show the P2{sub 1}/m arrangement as favoured over the C2/m one for n=3, and the opposite holds for n=6. In the n=4 case the P2{sub 1}/m configuration is predicted to be more stable for Li and Na, and the C2/m one for K titanates. Analysis of Li–O and K–O crystal-chemical environments from experiment and theory shows that the alkali atom bonding is stabilized/destabilized in the different phases consistently with the energy trend. - Graphical abstract: Display Omitted - Highlights: • The P2{sub 1}/m structure-type is found to be more stable for A{sub 2}Ti{sub 3}O{sub 7} layer titanates. • The C2/m structure-type is found to be more stable for A{sub 2}Ti{sub 6}O{sub 13} layer titanates. • Tetratitanates are predicted to prefer the P2{sub 1}/m (Li and Na) or C2/m (K) structure. • Li–O and K–O bond distances follow a trend consistent with computed phase energies.

  8. Preparation and Luminescence Properties of MZrO3:Eu3+, A (M=Ca2+, Ba2+; A=Li+, Na+, K+) Phosphors with Perovskite Structure

    Institute of Scientific and Technical Information of China (English)

    MAR B; CEMBRERO-COCA P; SINGH K C; KAUSHIK R D; OM Hari

    2013-01-01

    Calcium and barium zirconate powders based upon CaZrO3:Eu3+, A and BaZrO3:Eu3+, A (A=Li+, Na+, K+) were prepared by combustion synthesis method and heating to ~1000 °C to improve crystal inity. The structure and morphology of materials were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results showed that CaZrO3:Eu3 +, A and BaZrO3:Eu3 +, A (A=Li +, Na +, K +) perovskites possessed orthorhombic and cubic structures, respectively. The morphologies of al powders were very similar consisting of smal , coagulated, cubical particles with narrow size distributions and smooth and regular surfaces. The characteristic luminescences of Eu3+ ions in CaZrO3:Eu3+, A (A=Li+, Na+, K+) lattices were present with strong emissions at 614 and 625 nm for 5D0→7F2 transitions with other weaker emissions observed at 575, 592, 655, and 701 nm corresponding to 5D0→7Fn transitions (where n=0, 1, 3, 4, respectively). In BaZrO3:Eu3 + both the 5D0→7F1 and 5D0→7F2 transitions at 595 and 613 nm were strong. Photoluminescence intensities of CaZrO3:Eu3+ samples were higher than those of BaZrO3:Eu3+ lattices. This remarkable increase of photoluminescence intensity (corresponding to 5D0→7Fn transitions) was observed in CaZrO3:Eu3 + and BaZrO3:Eu3 + if co-doped with Li + ions. An additional broad band composed of many peaks between 440 to 575 nm was observed in BaZrO3:Eu3 +, A samples. The intensity of this band was greatest in Li+ co-doped samples and lowest for K+ doped samples.

  9. Lithium Insertion in LiCr3O8, NaCr3O8, and KCr3O8 at Room Temperature and at 125°C

    DEFF Research Database (Denmark)

    Koksbang, R.; Fauteux, D.; Norby, P.;

    1989-01-01

    at high temperature. At both temperatures,LiCr3O8 inserts chemically and electrochemically ca. 4 and 5 Li per formula unit, respectively. Experimental data revealthat the reaction involves major structural changes. Insertion of only small amounts of Li leads to irreversible structuralbreakdown...... is close to 4Li/NaCr3O8 and 1.3Li/KCr3O8.Lithium ion diffusion coefficients are similar for the two compounds in the comparable composition range.Thermally, the fully lithiated compounds appear to be as stable as the pristine materials.......Lithium insertion and deinsertion reactions have been carried out with LiCr3O8, NaCr3O8, and KCr3O8 chemically andelectrochemically at room temperature and at 125°C. The electrochemical experiments were performed with a nonaqueousliquid electrolyte at room temperature and with a polymer electrolyte...

  10. Synthesis and Performance of LiMnO2 as Cathodes for Li-ion Batteries

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shi-xi; LIU Han-xing; OUYANG Shi-xi; LI Qiang

    2003-01-01

    Two structure types of LiMnO2 were synthesized by sol-gel method and ion-exchange method respectively.The results indicate that orthorhombic phase LiMnO2 is more stable than layered LiMnO2,o-LiMnO2 can be synthesized directly by sol-gel methods followed by heat-treated in argon,but layered LiMnO2 was obtained only by indirect methods such as ion-exchange method.In this paper,we first synthesized layered NaMnO2 by the sol-gel method,and then obtained layered LiMnO2 by the ion-exchange method.The phase constitution,chemical composition,and images of the products were tested by XRD,AAS (atomic absorption spectroscopy) and SEM.The electrochemical performances of the two structural types of LiMnO2 are obviously different during the initial few cycles,but later they both have a good capacity-retaining ability.The capacity of layered structure LiMnO2 is higher than that of o-LiMnO2.

  11. The atom-surface interaction potential for He-NaCl: A model based on pairwise additivity

    Science.gov (United States)

    Hutson, Jeremy M.; Fowler, P. W.

    1986-08-01

    The recently developed semi-empirical model of Fowler and Hutson is applied to the He-NaCl atom-surface interaction potential. Ab initio self-consistent field calculations of the repulsive interactions between He atoms and in-crystal Cl - and Na + ions are performed. Dispersion coefficients involving in-crystal ions are also calculated. The atom-surface potential is constructed using a model based on pairwise additivity of atom-ion forces. With a small adjustment of the repulsive part, this potential gives good agreement with the experimental bound state energies obtained from selective adsorption resonances in low-energy atom scattering experiments. Close-coupling calculations of the resonant scattering are performed, and good agreement with the experimental peak positions and intensity patterns is obtained. It is concluded that there are no bound states deeper than those observed in the selective adsorption experiments, and that the well depth of the He-NaCl potential is 6.0 ± 0.2 meV.

  12. Superconducting instabilities and quasipartical interference in the LiFeAs and Co-doped NaFeAs iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Altenfeld, Dustin; Ahn, Felix; Eremin, Ilya [Institut fuer Theoretische Physik III, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Borisenko, Sergey [Leibniz-Institute for Solid State Research, IFW-Dresden, D-01171 Dresden (Germany)

    2015-07-01

    We analyze and compare the structure of the pairing interaction and superconducting gaps in LiFeAs and Co-doped NaFeAs by using the ten-orbital tight-binding model, derived from ab initio LDA calculations with hopping parameters extracted from the fit to ARPES experiments. We discuss the phase diagram and experimental probes to determine the structure of the superconducting gap in these systems with special emphasis on the quasiparticle interference, computed using the T-matrix approximation. In particular, we analyze how the superconducting state with opposite sign of the gaps on the two inner hole pockets in LiFeAs evolve upon changing the parameters towards NaFeAs compound.

  13. 建平钠化与锂化膨润土的性能对比%Property Comparison of Na-bentonite and Li-bentonite from Jianping

    Institute of Scientific and Technical Information of China (English)

    林涛; 任建晓; 殷学风; 李雪; 李杰

    2013-01-01

    对建平膨润土进行了钠化和锂化实验研究,对比了改性前后膨润土的理化性能参数,并用X射线衍射对样品进行了表征,最后探讨了建平膨润土比较理想的改性方式.%The Na-bentonite and Li-bentonite from Jianping was experimentally studied.The properties of raw bentonite and Na-and Li-modified bentonite were contrasted.The XRD was used to characterize the properties of samples.The better method used in modification of the area were discussed.

  14. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser Assisted Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Rich; Janssen, Yuri; Kalifah, Peter; Meng, Ying S.

    2015-01-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative accuracy of atom probe tomography (APT) examinations of LiFePO4 (LFP) are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted APT of LFP has revealed distinctly different behaviors. With the use of UV laser the major issue was identified as the preferential loss of oxygen (up to 10 at. %) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ increased the observed oxygen concentration to near its correct stoichiometry and was well correlated with systematically higher concentrations of 16O2+ ions. This observation supports the premise that lower laser energies lead to a higher probability of oxygen molecule ionization. Conversely, at higher laser energies the resultant lower effective electric field reduces the probability of oxygen molecule ionization. Green laser assisted field evaporation led to the selective loss of Li (~50% deficiency) and correct ratios of the remaining elements, including the oxygen concentration. The loss of Li is explained by selective dc evaporation of lithium between laser pulses and relatively negligible oxygen loss as neutrals during green-laser pulsing. Lastly, plotting of multihit events on a Saxey plot for the straight-flight path data (green laser only) revealed a surprising dynamic recombination process for some molecular ions mid-flight.

  15. Corrosion behavior of 2195 and 1420 Al-Li alloys in neutral 3.5% NaCl solution under tensile stress

    Institute of Scientific and Technical Information of China (English)

    LI Jin-feng; CHEN Wen-jing; ZHAO Xu-shan; REN Wen-da; ZHENG Zi-qiao

    2006-01-01

    The corrosion behaviors of 1420 and 2195 Al-Li alloys under 308 and 490 MPa tensile stress respectively in neutral 3.5% NaCl solution were investigated using electrochemical impedance spectroscopy(EIS) and scanning electron microscope(SEM). It is found that the unstressed 1420 alloy is featured with large and discrete pits, while general corrosion and localized corrosion including intergranular corrosion and pitting corrosion occur on the unstressed 2195 alloy. As stress is applied to 1420 alloy, the pit becomes denser and its size is decreased. While, for the stressed 2195 alloy, intergranular corrosion is greatly aggravated and severe general corrosion is developed from connected pits. The EIS analysis shows that more severe general corrosion and localized corrosion occur on the stressed 2195 Al-Li alloy than on 1420 Al-Li alloy. It is suggested that tensile stress has greater effect on the corrosion of 2195 Al-Li alloy than on 1420 Al-Li alloy.

  16. Theoretical Study on the Structure and Stability of Si5X (X = Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl) Clusters

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Density functional theory B3LYP/6-311G* method was used in the geometry optimization and frequency calculation on Si5X (X = Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl) clusters. The influence of the doped second and third period element impurities on the structure and stability of Si5X clusters with C2v symmetry has been investigated, and the thermal stability and dynamic activity have also been discussed.

  17. Lattice dynamics and electronic structure of energetic solids LiN3 and NaN3: A first principles study

    OpenAIRE

    Babu, K Ramesh; Vaitheeswaran, G.

    2013-01-01

    We report density functional theory calculations on the crystal structure, elastic, lattice dynamics and electronic properties of iso-structural layered monoclinic alkali azides, LiN3 and NaN3. The effect of van der Waals interactions on the ground- state structural properties is studied by using various dispersion corrected density functionals. Based on the equilibrium crystal structure, the elastic constants, phonon dispersion and phonon density of states of the compounds are calculated. Th...

  18. The compressibility mechanism of Li3Na3In2F12 garnet

    DEFF Research Database (Denmark)

    Grzechnik, Andrzej; Balic Zunic, Tonci; Makovicky, Emil

    2006-01-01

    The high pressure behaviour of Li3Na3In2F12 garnet (Ia¯3d, Z = 8) is studied up to 9.2 GPa at room temperature in diamond anvil cells using xray diffraction. Its equation of state to 9.2 GPa and the pressure dependences of the structural parameters to 4.07 GPa are determined from synchrotron angl...

  19. NaIO4/LiBr-mediated diastereoselective dihydroxylation of olefins: a catalytic approach to the Prevost-Woodward reaction.

    Science.gov (United States)

    Emmanuvel, Lourdusamy; Shaikh, Tanveer Mahammad Ali; Sudalai, Arumugam

    2005-10-27

    [reaction: see text] LiBr catalyzes efficiently the dihydroxylation of alkenes to afford syn and anti diols with excellent diastereoselectivity depending upon the use of NaIO(4) (30 mol %) or PhI(OAc)(2) (1 equiv), respectively, as the oxidants. The oxidation of non-benzylic halides has been achieved for the first time to afford the corresponding diols in excellent yields.

  20. Effects of Er{sup 3+} and Yb{sup 3+} doping on structural and non-linear optical properties of LiNaSO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Palmero, I.C. [Departamento de Fisica Basica, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Gonzalez-Silgo, C. [Departamento de Fisica Fundamental II, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Torres, M.E. [Departamento de Fisica Basica, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Marrero-Lopez, D. [Departamento de Quimica Inorganica, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Rivera-Lopez, Fernando [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain)], E-mail: frivera@ull.es; Haro-Gonzalez, P. [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Solans, X. [Departament de Cristallografia, Universitat de Barcelona, E-08028, Barcelona (Spain)

    2008-05-15

    We have characterized LiNaSO{sub 4} crystals doped with rare earth (RE) (Er{sup 3+} and Yb{sup 3+}) to give new insights about their structural properties relations. The samples were analyzed by X-ray single crystal diffraction and differential thermal analysis. The non-centrosymmetry was confirmed second-harmonic generation. Inductively coupled plasma (ICP) and emission experiments confirmed the nominal concentrations of the REs. Crystallographic data and two empirical models were employed to understand the structural modifications by substitution of the Na site which reduces, monotonically, the non-linear optical coefficients and the temperature of the phase transition in these crystals.

  1. Structural transformation during Li/Na insertion and theoretical cyclic voltammetry of the δ-NH4V4O10 electrode: a first-principles study.

    Science.gov (United States)

    Sarkar, Tanmay; Kumar, Parveen; Bharadwaj, Mridula Dixit; Waghmare, Umesh

    2016-04-14

    A double layer δ-NH4V4O10, due to its high energy storage capacity and excellent rate capability, is a very promising cathode material for Li-ion and Na-ion batteries for large-scale renewable energy storage in transportation and smart grids. While it possesses better stability, and higher ionic and electronic conductivity than the most widely explored V2O5, the mechanisms of its cyclability are yet to be understood. Here, we present a theoretical cyclic voltammetry as a tool based on first-principles calculations, and uncover structural transformations that occur during Li(+)/Na(+) insertion (x) into (Lix/Nax)NH4V4O10. Structural distortions associated with single-phase and multi-phase structural changes during the insertion of Li(+)/Na(+), identified through the analysis of voltage profile and theoretical cyclic voltammetry are in agreement with the reported experimental electrochemical measurements on δ-NH4V4O10. We obtain an insight into its electronic structure with a lower band gap that is responsible for the high rate capability of (Lix/Nax) δ-NH4V4O10. The scheme of theoretical cyclic voltammetry presented here will be useful for addressing issues of cyclability and energy rate in other electrode materials.

  2. Study of Interfacial Tension between Molten Steel and Na2O-Li2O-SiO2-B2O3 Slag

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The interfacial tension at the Na2O-Li2O-SiO2-B2O3 slag-steel boundary has been determined in the temperature range of 1 803-1 873K by sessile drop method with the transmission X-ray technique. It was found that the variation of interfacial tension with temperature in the system of molten steel/Na2O-Li2O-SiO2-B2O3 slag in the temperature range of 1 803-1 873K is pretty little. The interfacial tension remarkably decreases with increasing the oxygen and/or sulfur content in molten steel. It suggesed that the oxygen and sulfur dissolved in molten steel act as a surface-active solute at the slag-steel interface. Consequently, the interfacial tension depends, in most part, on the oxygen content in molten steel, but the composition of the slag has a minor effect on the interfacial tension. In order to clear the effect of slag composition on the interfacial tension, the experimental results are discussed. The interfacial tension is observed to increase with increasing Na2O and Li2O contents, and decrease with increasing silica content in slag. The influence of B2O3 on the interfacial tension is pretty little.

  3. Scintillation and Luminescence Properties of Undoped and Cerium-doped LiGdCl4 and NaGdCl4

    Energy Technology Data Exchange (ETDEWEB)

    Porter-Chapman, Yetta D.; Bourret-Courchesne, Edith D.; Bizarri, Gregory; Weber, Marvin J.; Derenzo, Stephen E.

    2008-10-05

    We report the scintillation properties of the undoped and cerium-doped variations of LiGdCl4 and NaGdCl4. Powder samples of these materials exhibit significant scintillation under X-rays. The samples were synthesized by solid-state methods from a 1:1 molar ratio of lithium or sodium chloride and gadolinium chloride. Cerium trichloride was used as the dopant. The physical, optical, and scintillation properties of these materials were analyzed by powder X-ray diffraction, photoluminescence, X-ray excited luminescence, and pulsed X-ray luminosity measurements. Increases in light yields are observed as the concentration of cerium increases. The highest light yields occurred at 20 percent cerium doping for both compounds. At larger concentrations neither compound formed, indicating a breakdown of the lattice with the addition of large amounts of cerium cations. At 20 percent cerium, LiGdCl4 and NaGdCl4 display scintillation light 3.6 times and 2.2 times the light yield of the reference material, YAlO3:Ce3+, respectively. Both emit in the ranges of 340 ? 350 nm and 365 - 370 nm and display multiexponential decays with cerium-like decay components at 33 ns (LiGdCl4:Ce) and 26 ns (NaGdCl4:Ce).

  4. Enhancement of green emission by the codoping A+ (A = Li, Na, K) in Ca2BO3Cl∶Tb3+ phosphor

    Institute of Scientific and Technical Information of China (English)

    Li Pan-Lai; Xu Zheng; Zhao Su-Ling; Zhang Fu-Jun; Wang Yong-Sheng

    2013-01-01

    Tb3+-doped Ca2BO3Cl compounds with different charge compensation approaches are synthesized by a high-temperature solid-state reaction method,and the luminescent properties and Commission Internationale de l'Eclairage (CIE) chromaticity coordinates are systematically characterized.Ca2BO3Cl∶Tb3+ can produce green emission under 376 nm radiation excitation.With codoped A+ (A =Li,Na,K) as charge compensators,the relative emission intensities of Ca2BO3Cl∶Tb3+ are enhanced by about 1.61,1.97,and 1.81 times compared with those of the direct charge balance,which is considered to be due to the effect of the difference in ion radius on the crystal field.The CIE chromaticity coordinates of Ca2BO3Cl∶Tb3+,A+ (A =Li,Na,K) are (0.335,0.584),(0.335,0.585),and (0.335,0.585),corresponding to the hues of green.Therefore,A+ (A =Li,Na,K) may be the optimal charge compensator for Ca2BO3Cl∶Tb3+.

  5. Laser-induced reversion of $\\delta^{'}$ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    CERN Document Server

    Khushaim, Muna; Al-Kassab, Talaat

    2015-01-01

    The influence of tuning the laser energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction and composition of $\\delta^{'}$ precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser energy of 100 pJ was in fairly good agreement with reported range of $\\delta^{'}$ solvus temperature, suggesting a result of reversion upon heating due to laser pulsing.

  6. Packing Transitions in Nanosized Li Clusters

    CERN Document Server

    Sung, M W; Weare, J H; Sung, Ming Wen; Kawai, Ryoichi; Weare, John H.

    1994-01-01

    Packing transitions in the lowest energy structures of Li clusters as a function of size have been identified via simulated annealing. For N>21, the large $p$ character of Li leads to unexpected ionic structures. At N~25, a packing pattern based on interpenetrating 13-atom icosahedra and similar to that of Na and K appears. This pattern persists until at N=55, where another transition to a structure based on a Mackay icosahedron occurs. For clusters of size 55 and 147, the optimized FCC structure representative of the bulk is still slightly higher in energy than the optimal MIC. (RK-94-03)

  7. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Vidal, Judith C.; Tirawat, Robert

    2016-12-01

    Next-generation solar power conversion systems in concentrating solar power (CSP) applications require high-temperature advanced fluids in the range of 600-800 degrees C. Current commercial CSP plants use molten nitrate salt mixtures as the heat transfer fluid and the thermal energy storage (TES) media while operating with multiple hours of energy capacity and at temperatures lower than 565 degrees C. At higher temperatures, the nitrates cannot be used because they decompose. Molten chloride salts are candidates for CSP applications because of their high decomposition temperatures and good thermal properties; but they can be corrosive to common alloys used in vessels, heat exchangers, and piping at these elevated temperatures. In this article, we present the results of the corrosion evaluations of several alloys in eutectic 34.42 wt% NaCl - 65.58 wt% LiCl at 650-700 degrees C in nitrogen atmosphere. Electrochemical evaluations were performed using open-circuit potential followed by a potentiodynamic polarization sweep. Corrosion rates were determined using Tafel slopes and Faraday's law. A temperature increase of as little as 50 degrees C more than doubled the corrosion rate of AISI stainless steel 310 and Incoloy 800H compared to the initial 650 degrees C test. These alloys exhibited localized corrosion. Inconel 625 was the most corrosion-resistant alloy with a corrosion rate of 2.80+/-0.38 mm/year. For TES applications, corrosion rates with magnitudes of a few millimeters per year are not acceptable because of economic considerations. Additionally, localized corrosion (intergranular or pitting) can be catastrophic. Thus, corrosion-mitigation approaches are required for advanced CSP plants to be commercially viable.

  8. Effect of sintering temperature on the piezoelectric and ferroelectric characteristics of CuO doped 0.95(Na{sub 0.5}K{sub 0.5})NbO{sub 3}-0.05LiTaO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, M.-R. [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Hong, C.-S. [Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung 811, Taiwan (China); Tsai, C.-C. [Department of Electronics Engineering and Computer Science, Tung-Fang Institute of Technology, Kaohsiung 829, Taiwan (China); Chu, S.-Y., E-mail: chusy@mail.ncku.edu.t [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China)

    2009-11-20

    In this paper, lead-free (Na{sub 0.5}K{sub 0.5})NbO{sub 3} ceramics doped with 5 mol% LiTaO{sub 3} and 2 mol% CuO were prepared using the conventional mixed-oxide method. The samples were characterized by X-ray diffraction analysis, scanning electron microscopy, and atomic force microscopy measurements. The effect of sintering temperature on the bulk density, piezoelectric and ferroelectric properties was investigated. The results show that an increase of CuO very effectively lowers the sintering temperature and improves the electric properties of (Na{sub 0.5}K{sub 0.5})NbO{sub 3}-LiTaO{sub 3} ceramics. High piezoelectric properties of k{sub p} = 37.8%, k{sub t} = 50.7%, and k{sub 33} = 58.9% and ferroelectric properties E{sub c} = 34.6 kV/cm and P{sub r} = 22.6 were obtained for the specimen containing 2 mol% CuO sintered at a suitable temperature. Cu{sup 2+} ions acted as a hardener, which increased the E{sub c}, P{sub r}, and Q{sub m} values of (Na{sub 0.5}K{sub 0.5})NbO{sub 3}-LiTaO{sub 3} ceramics.

  9. Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zheng, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lv, Dongping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wei, Yi [Peking Univ., Beijing (China); Zheng, Jiaxin [Peking Univ., Beijing (China); Wang, Zhiguo [Univ. of Electronic Science and Technology of China, Chengdu (China); Kuppan, Saravanan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Jianguo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luo, Langli [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Danny J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olszta, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amine, Khalil [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Jun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xiao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pan, Feng [Peking Univ., Beijing (China); Chen, Guoying [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Jiguang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Chong M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-06

    Capacity and voltage fading of layer structured cathode based on lithium transition metal oxide is closely related to the lattice position and migration behavior of the transition metal ions. However, it is scarcely clear about the behavior of each of these transition metal ions. We report direct atomic resolution visualization of interatomic layer mixing of transition metal (Ni, Co, Mn) and lithium ions in layer structured oxide cathodes for lithium ion batteries. Using chemical imaging with aberration corrected scanning transmission electron microscope (STEM) and DFT calculations, we discovered that in the layered cathodes, Mn and Co tend to reside almost exclusively at the lattice site of transition metal (TM) layer in the structure or little interlayer mixing with Li. In contrast, Ni shows high degree of interlayer mixing with Li. The fraction of Ni ions reside in the Li layer followed a near linear dependence on total Ni concentration before reaching saturation. The observed distinctively different behavior of Ni with respect to Co and Mn provides new insights on both capacity and voltage fade in this class of cathode materials based on lithium and TM oxides, therefore providing scientific basis for selective tailoring of oxide cathode materials for enhanced performance.

  10. High temperature phase stability in Li0.12Na0.88NbO3: A combined powder X-ray and neutron diffraction study

    Science.gov (United States)

    Mishra, S. K.; Krishna, P. S. R.; Shinde, A. B.; Jayakrishnan, V. B.; Mittal, R.; Sastry, P. U.; Chaplot, S. L.

    2015-09-01

    The phase stabilities of ecofriendly piezoelectric material of lithium doped sodium niobate for composition Li0.12Na0.88NbO3 (LNN12) have been investigated by a combination of powder X-ray and neutron diffraction techniques in the temperature range of 300-1100 K. We observed interesting changes with appearance or disappearance of the super-lattice reflections in the powder diffraction patterns. Unambiguous experimental evidence is shown for coexistence of paraelectric and ferroelectric orthorhombic phases in the temperature range of 525 K to 675 K. We identified the correct crystal structure of LNN12 with temperature and correlated it with observed anomaly in the physical properties. Identification of crystal structure also helps in the mode assignments in Raman and infrared spectroscopies. We argued that application of chemical pressure as a result of Li substitution in NaNbO3 matrix favors the freezing of zone centre phonons in contrast to the freezing of zone boundary phonons in pure NaNbO3 with the variation of temperature.

  11. Enhance luminescence by introducing alkali metal ions (R+ = Li+, Na+ and K+) in SrAl2O4:Eu3+ phosphor by solid-state reaction method

    Science.gov (United States)

    Prasad Sahu, Ishwar

    2016-05-01

    In the present article, the role of charge compensator ions (R+ = Li+, Na+ and K+) in europium-doped strontium aluminate (SrAl2O4:Eu3+) phosphors was synthesized by the high-temperature, solid-state reaction method. The crystal structures of sintered phosphors were in a monoclinic phase with space group P21. The trap parameters which are mainly activation energy (E), frequency factor (s) and order of the kinetics (b) were evaluated by using the peak shape method. The calculated trap depths are in the range from 0.76 to 0.84 eV. Photoluminescence measurements showed that the phosphor exhibited emission peak with good intensity at 595 nm, corresponding to 5D0-7F1 (514 nm) orange emission and weak 5D0-7F2 (614 nm) red emission. The excitation spectra monitored at 595 nm show a broad band from 220 to 320 nm ascribed to O-Eu charge-transfer state transition and the other peaks in the range of 350-500 nm originated from f-f transitions of Eu3+ ions. The strongest band at 394 nm can be assigned to 7F0-5L6 transition of Eu3+ ions due to the typical f-f transitions within Eu3+ of 4f6 configuration. The latter lies in near ultraviolet (350-500 nm) emission of UV LED. CIE color chromaticity diagram and thermoluminescence spectra confirm that the synthesized phosphors would emit an orange-red color. Incorporating R+ = Li+, Na+ and K+ as the compensator charge, the emission intensity of SrAl2O4:Eu3+ phosphor can be obviously enhanced and the emission intensity of SrAl2O4:Eu3+ doping Li+ is higher than that of Na+ or K+ ions.

  12. Lições de dança na mídia = Dance lessons at the media = Lecciones de danza en los medios

    Directory of Open Access Journals (Sweden)

    Santos, Airton Ricardo Tomazzoni dos

    2015-01-01

    Full Text Available Este artigo busca sintetizar aspectos desenvolvidos na tese Lições de dança no baile da pós-modernidade – corpos (desgovernados na mídia, expondo delineamentos pedagógicos no cenário midiático contemporâneo. A perspectiva dos Estudos Culturais em seu cruzamento com a Educação inspirou as opções teorico-metodológicas que pemitiram avançar na articulação do conceito de midiatização e de como este possibilita a operação de estratégias de construção de sujeitos e de seu governamento. Para tal entendimento foi fundamental a contribuição dos conceitos de poder e dispositivo trazidos por Michael Foucault e Gilles Deleuze. O estudo debruçou-se sobre um corpus composto por filmes, videoclipes, sites da internet, revistas, jornais, brinquedos eletrônicos, programas de televisão, entre outros. A análise permitiu perceber dez lições que se esboçam de maneira recorrente na mídia, operando na configuração de sujeitos dançantes, em políticas de gestão da vida, tanto promovendo o gerenciamento de singularidades, como a potencialização de novos modos de ser e estar no mundo contemporâneo

  13. Automatic Tuning Matching Cycler (ATMC) In Situ NMR Spectroscopy as a Novel Approach for Real-Time Investigations of Li- and Na-Ion Batteries

    OpenAIRE

    2016-01-01

    This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jmr.2016.02.008 We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., sign...

  14. Electrochemical reduction and electrocrystallization process of B(Ⅲ) in the LiF-NaF-KF-KBF4 molten salt

    Institute of Scientific and Technical Information of China (English)

    LI Jun; LI Bing

    2007-01-01

    The mechanisms of the electrochemical reduction and nucleation process of B(Ⅲ) on the platinum electrode in the LiF-NaF-KF-KBF4 molten salt at 700℃ were first investigated using cyclic voltammetry and chronoamperometry techniques.It was found that the electrochemical reduction of B(Ⅲ) occurs in single-step charge transfer: B(Ⅲ) + 3e → B,and the cathode process is reversible.The electrocrystallization process of B(Ⅲ) is instantaneous.

  15. A first principles study of structural stability, electronic structure and mechanical properties of ABeH{sub 3} (A = Li, Na)

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, M.; Rajeswarapalanichamy, R.; Priyanga, G. Sudha; Murugan, A. [Department of Physics, N.M.S.S.V.N college, Madurai, Tamilnadu-625019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu 628 003 (India); Iyakutti, K. [Department of physics and Nanotechnology, SRM University, Chennai, Tamilnadu-603203 (India)

    2015-06-24

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of ABeH{sub 3} (A = Li, Na) for three different crystal structures, namely orthorhombic (Pnma), monoclinic (P2{sub 1}/c) and triclinic (P-1) phase. Among the considered structures monoclinic (P2{sub 1}/c) phase is found to be the most stable one for all the three hydrides at ambient condition. The electronic structure reveals that these materials are wide band gap semiconductors. The calculated elastic constants indicate that these materials are mechanically stable at ambient condition.

  16. Scintillation and Luminescence Properties of Undoped and Cerium-doped LiGdCl4 and NaGdCl4

    OpenAIRE

    Porter-Chapman, Yetta D.

    2008-01-01

    We report the scintillation properties of the undoped and cerium-doped variations of LiGdCl4 and NaGdCl4. Powder samples of these materials exhibit significant scintillation under X-rays. The samples were synthesized by solid-state methods from a 1:1 molar ratio of lithium or sodium chloride and gadolinium chloride. Cerium trichloride was used as the dopant. The physical, optical, and scintillation properties of these materials were analyzed by powder X-ray diffraction, photoluminescence, X-r...

  17. Wettability of Molten Steel/Na2O-Li2O-SiO2-B2O3 Slag System

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang

    2004-01-01

    The wettability of the molten steel/Na2O-Li2O-SiO2-B2O3 slag system was studied by a sessile drop method. It was found that the variation of the interfacial tension with the temperature in the molten steel/slag system is pretty little in the temperature range of 1 803-1 873 K. The interfacial tension remarkably decreases with increasing the oxygen content and/or sulfur content in molten steel. The contact angle for the molten steel/slag system is 153°-173°.

  18. The synthesis of ternary acetylides with tellurium: Li 2 TeC 2 and Na 2 TeC 2

    Energy Technology Data Exchange (ETDEWEB)

    Németh, Károly; Unni, Aditya K.; Kalnmals, Christopher; Segre, Carlo U.; Kaduk, James; Bloom, Ira D.; Maroni, Victor A.

    2015-01-01

    The synthesis of ternary acetylides Li2TeC2 and Na2TeC2 is presented as the first example of ternary acetylides with metalloid elements instead of transition metals. The synthesis was carried out by the direct reaction of the corresponding bialkali acetylides with tellurium powder in liquid ammonia. Alternatively, the synthesis of Na2TeC2 was also carried out by the direct reaction of tellurium powder and two equivalents of NaC2H in liquid ammonia leading to Na2TeC2 and acetylene gas through an equilibrium containing the assumed NaTeC2H molecules besides the reactants and the products. The resulting disordered crystalline materials were characterized by X-ray diffraction and Raman spectroscopy. Implications of these new syntheses on the synthesis of other ternary acetylides with metalloid elements and transition metals are also discussed.

  19. Hydrogen storage of a novel combined system of LiNH2-NaMgH3: synergistic effects of in situ formed alkali and alkaline-earth metal hydrides.

    Science.gov (United States)

    Li, Yongtao; Fang, Fang; Song, Yun; Li, Yuesheng; Sun, Dalin; Zheng, Shiyou; Bendersky, Leonid A; Zhang, Qingan; Ouyang, Liuzhang; Zhu, Min

    2013-02-07

    Bimetallic hydride NaMgH(3) is used for the first time as a vehicle to enhance hydrogen release and uptake from LiNH(2). The combination of NaMgH(3) with LiNH(2) at a molar ratio of 1 : 2 can release about 4.0 wt% of hydrogen without detectable NH(3) emission in the temperature range of 45 °C to 325 °C and exhibiting superior dehydrogenation as compared to individual NaH and/or MgH(2) combined with LiNH(2). A high capacity retention of about 75% resulting from the introduction of NaMgH(3) is also achieved in LiNH(2) as well as re-hydrogenation under milder conditions of 180 °C and 5 MPa H(2) pressure. These significant improvements are attributed to synergistic effects of in situ formed NaH and MgH(2)via the decomposition of NaMgH(3) where a succession of competing reactions from the cyclic consumption/recovery of NaH are involved and serve as a "carrier" for the ultra-rapid conveyance of the N-containing species between the [NH(2)](-) amide and the resulting [NH](2-) imide complexes.

  20. Collisional stability of localized Yb(${}^3\\mathrm{P}_2$) atoms immersed in a Fermi sea of Li

    CERN Document Server

    Konishi, Hideki; Ueda, Shinya; Takahashi, Yoshiro

    2016-01-01

    We establish an experimental method for a detailed investigation of inelastic collisional properties between ytterbium (Yb) in the metastable ${}^3\\mathrm{P}_2$ state and ground state lithium (Li). By combining an optical lattice and a direct excitation to the ${}^3\\mathrm{P}_2$ state we achieve high selectivity on the collisional partners. Using this method we determine inelastic loss coefficients in collisions between $^{174}$Yb(${}^3\\mathrm{P}_2$) with magnetic sublevels of $m_J=0$ and $-2$ and ground state $^6$Li to be $(4.4\\pm0.3)\\times10^{-11}~\\mathrm{cm}^3/\\mathrm{s}$ and $(4.7\\pm0.8)\\times10^{-11}~\\mathrm{cm}^3/\\mathrm{s}$, respectively. Absence of spin changing processes in Yb(${}^3\\mathrm{P}_2$)-Li inelastic collisions at low magnetic fields is confirmed by inelastic loss measurements on the $m_J=0$ state. We also demonstrate that our method allows us to look into loss processes in few-body systems separately.

  1. Corrosion behavior of as-cast Mg-8Li-3Al+ xCe alloy in 3.5wt% NaCl solution

    Science.gov (United States)

    Manivannan, S.; Dinesh, P.; Mahemaa, R.; MariyaPillai, Nandhakumaran; Kumaresh Babu, S. P.; Sundarrajan, Srinivasan

    2016-10-01

    Mg-8Li-3Al+ xCe alloys ( x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg-8Li-3Al+ xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B-117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg-8Li-3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.

  2. First-principles study of the magnetic and electronic properties of AMnAs (A=Li, Na, K, Rb, Cs)

    Science.gov (United States)

    Zhou, Wenqi; Wu, Shuxiang; Li, Shuwei

    2016-12-01

    Recent studies have demonstrated that antiferromagnetic (AFM) semiconductors are promising alternative materials for spintronic applications. In this work, we report a detailed investigation of the magnetic and electronic properties of AMnAs (A=Li, Na, K, Rb, Cs) using density functional theory. It is found that all studied compounds are ordered antiferromagnetically in the MnAs ab plane, however, along the c axis, NaMnAs is ordered ferromagnetically which is different from the AFM coupling of other materials. These results on magnetic structures are in good agreement with observed facts. Furthermore, our calculations predict that all materials have a semiconducting band structure, which indicates the potential of device applications.

  3. Efficient emission of positronium atoms from an Na-coated polycrystalline tungsten surface

    Science.gov (United States)

    Terabe, H.; Iida, S.; Wada, K.; Hyodo, T.; Yagishita, A.; Nagashima, Y.

    2013-06-01

    Time-of-flight spectra for the ortho-positronium emitted from clean and Na-coated tungsten surfaces have been measured using the pulsed slow positron beam at KEK-IMSS slow positron facility. Emission efficiency of positronium from the Na-coated sample was found to be several times greater than that from uncoated tungsten surfaces.

  4. Experimental search for the permanent electric dipole moment of an Na atom using special capacitor in the shape of Dewar flask

    CERN Document Server

    You, Pei-Lin

    2010-01-01

    Since the time of Rutherford it was commonly believed that with no electric field, the nucleus of an atom is at the centre of the electron cloud, so that all kinds of atoms do not have permanent electric dipole moment (EDM). In the fact, the idea is untested hypothesis. Using two special capacitors containing Sodium vapor we find the electric susceptibility Xe of Na atoms is directly proportional to its density N, and inversely to the absolute temperature T, as polar molecules. Xe=A+B/T, where A is approximately to zero, B=126.6 (K) and N=1.49*1020 m-3. A ground state neutral Na atom has a large permanent EDM: d( Na)=1.28*10-8e.cm. The non-zero observation of EDM in any non-degenerate system will be a direct proof of time-reversal violation in nature, and new example of CP violation occurred in Na atoms. We work out the most linear Stark shift of Na atoms is only 0.0033nm, and so its linear Stark effect has not been observed till now! The experimental Na material with purity 0.9995 is supplied by Strem Chemic...

  5. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries.

    Science.gov (United States)

    Liu, Jun; Yu, Litao; Wu, Chao; Wen, Yuren; Yin, Kuibo; Chiang, Fu-Kuo; Hu, Renzong; Liu, Jiangwen; Sun, Litao; Gu, Lin; Maier, Joachim; Yu, Yan; Zhu, Min

    2017-02-16

    In the current research project, we have prepared a novel Sb@C nanosphere anode with biomimetic yolk-shell structure for Li/Na-ion batteries via a nanoconfined galvanic replacement route. The yolk-shell microstructure consists of Sb hollow yolk completely protected by a well-conductive carbon thin shell. The substantial void space in the these hollow Sb@C yolk-shell particles allows for the full volume expansion of inner Sb while maintaining the framework of the Sb@C anode and developing a stable SEI film on the outside carbon shell. As for Li-ion battery anode, they displayed a large specific capacity (634 mAh g(-1)), high rate capability (specific capabilities of 622, 557, 496, 439, and 384 mAh g(-1) at 100, 200, 500, 1000, and 2000 mA g(-1), respectively) and stable cycling performance (a specific capacity of 405 mAh g(-1) after long 300 cycles at 1000 mA g(-1)). As for Na-ion storage, these yolk-shell Sb@C particles also maintained a reversible capacity of approximate 280 mAh g(-1) at 1000 mA g(-1) after 200 cycles.

  6. A3V2(PO4)3 (A = Na or Li) probed by in situ X-ray absorption spectroscopy

    Science.gov (United States)

    Pivko, Maja; Arcon, Iztok; Bele, Marjan; Dominko, Robert; Gaberscek, Miran

    2012-10-01

    Two stable modifications of A3V2(PO4)3 (A = Na or Li) were synthesized by citric acid assisted modified sol-gel synthesis. The obtained samples were phase pure Li3V2(PO4)3 and Na3V2(PO4)3 materials embedded in a carbon matrix. The samples were tested as half cells against lithium or sodium metal. Both samples delivered about 90 mAh g-1 at a C/10 cycling rate. The change of vanadium oxidation state and changes in the local environment of redox center for both materials were probed by in-situ X-ray absorption spectroscopy. Oxidation state of vanadium was determined by energy shift of the absorption edge. The reversible change of valence from trivalent to tetravalent oxidation state was determined in the potential window used in our experiments. Small reversible changes in the interatomic distances due to the relaxation of the structure in the process of alkali metal extraction and insertion were observed. Local environment (vanadium-oxygen bond distances) after 1st cycle were found to be the same as in the starting material. Both structures have been found very rigid without significant changes during alkali metal extraction.

  7. β-Xenophyllite-type Na4Li0.62Co5.67Al0.71(AsO46

    Directory of Open Access Journals (Sweden)

    Riadh Marzouki

    2013-10-01

    Full Text Available The title compound, tetrasodium lithium cobalt aluminium hexa(orthoarsenate, was synthesized by a solid state reaction route. In the crystal structure, Co2+ ions are partially substituted by Al3+ in an octahedral environment [M1 with site symmetry 2/m; occupancy ratio Co:Al = 0.286 (10:0.714 (10]. The charge compensation is ensured by Li+ cations sharing a tetrahedral site with Co2+ ions [M2 with site symmetry 2; occupancy ratio Co:Li = 0.690 (5:0.310 (5]. The anionic unit is formed by two octahedra and three tetrahedra linked only by corners. The CoM1M2As2O19 units associate to an open three-dimensional framework containing tunnels propagating along the a-axis direction. One Na+ cation is located in the periphery of the tunnels while the other two are situated in the centres: all Na+ cations exhibit half-occupancy. The structure of the studied material is compared with those of various related minerals reported in the literature.

  8. Synthesis, Crystal Structure, and Electrical Properties of a New Molybdylarsenate LiNa5K3Mo11As3O45

    Directory of Open Access Journals (Sweden)

    Hamadi Hamza

    2014-01-01

    Full Text Available LiNa5K3Mo11As3O45 is a new inorganic compound. It was synthesized by a solid state method. The crystal structure has been studied by single crystal X-ray analysis. The R-values reached 2.8%. The title compound crystallizes in the triclinic system, space group P-1, with a = 10.550 (2 Å, b = 11.723 (2 Å, c = 17.469 (3 Å, α = 102.35 (3°, β = 87.61 (2°, and γ = 111.03 (3°. The anionic unit [Mo11As3O45]9− is formed by nine MoO6 octahedra, two MoO5 trigonal bipyramids, and three AsO4 tetrahedra. The association of [Mo11As3O45]9− units, running along [010], leads to a one-dimensional framework. Li, K, and Na are located in the space surrounding the anionic ribbons. This material was characterized by SEM microscopy, IR spectroscopy, and powder X-ray diffraction. The electrical conductivity was investigated from 528 K to 673 K by impedance complex followed by DSC spectroscopy.

  9. Estimation of thermodynamic properties of the ternary molten salt system, LiF-NaF-BeF2, by the modified Peng-Robinson equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dalin; QIU Suizheng; SU Guanghui; JIA Dounan

    2007-01-01

    The molten salt reactor (MSR), which is one of the generation IV reactors, can meet the demand of transmutation and breeding. The thermodynamic properties of the molten salt system like LiF-NaF-BeF2 influence the design and construction of the fuel salt and coolant in the MSR for the new generation. In this paper, the equation of state of the ternary system 15%LiF-58%NaF-27%BeF2, over the temperature range from 873.15 to 1 073.15 K at one atmosphere pressure, is described using a modified Peng-Robinson (PR) equation. The densities of the ternary system and its components are estimated by this equation directly, and compared with the experimental data. Based on the equation of state, the other thermodynamic properties such as the enthalpy, entropyand heat capacity at constant pressure are estimated by the residual function method and the fugacity coefficient method respectively. The densities calculated by PR equation are highly in agr eement with the experimental data, and the enthalpy, entropy and heat capacity evaluated by the two different methods are consistent with each other. It can be concluded that the modified PR equation can be applied to evaluate the density of the molten salt system, and it is recommended that it be used as the basis to estimate the enthalpy, entropy and heat capacity of the molten salt system.

  10. 李娜法网夺冠原因探索%Comments on the Reasons Why Li Na Won the Championship in the French Open

    Institute of Scientific and Technical Information of China (English)

    张旋

    2011-01-01

    With the video observation,mathematical statistics,this paper explores the reasons why Na Li won the championship in the French Open from the perspective of organization, training and psychology. It points out that Li Na is becoming more skillful than 2010. Her strategy is more rational and energetic, and her mentality is more stable. She needs to break the bondage of the traditional theory,and better blend herself into the professionalization tennis.%采用录像观察法和逻辑分析法等研究方法,从制度因素、训练学因素和心理因素3个角度对李娜法网夺冠的原因进行探究. 结果表明与2010年澳网时相比,李娜的技术更加全面,战术运用更为合理,体能更加充沛,心态更加稳定. 在未来的训练比赛中李娜需进一步打破传统的思维束缚,更好地融入职业化网坛.

  11. Effect of charge compensator ions (R+ = Li+, Na+ and K+) on Sr2MgSi2O7:Dy3+ phosphors by solid-state reaction method

    Science.gov (United States)

    Sahu, Ishwar Prasad

    2016-09-01

    The Sr2MgSi2O7:Dy3+ and Sr2MgSi2O7:Dy3+, R+ (R+ = Li+, Na+ and K+) phosphors were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The prepared phosphors were excited at 350 nm, and their corresponding emission spectrum were recorded at blue (482 nm) and yellow (575 nm) region due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions, respectively, of Dy3+ ions. Commission Internationale de L'Eclairage coordinates have been calculated for each sample and its value exhibited that overall emission is near white light. The possible mechanisms of discussed white light emitting phosphors were also investigated. In order to investigate the suitability of the samples as white color light sources for industrial uses, color purity, correlated color temperature (CCT) and color rendering index (CRI) were calculated. Values of color purity, CCT and CRI were found well within the defined acceptable range. With incorporating (R+ = Li+, Na+ and K+) as charge compensator ions, the emission intensity of Sr2MgSi2O7:Dy3+ can be obviously enhanced. The results indicate that prepared phosphors may be a potential application in display devices.

  12. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin

    2016-06-14

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ\\' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ\\' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  13. Laser-induced reversion of δ' precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe.

    Science.gov (United States)

    Khushaim, Muna; Gemma, Ryota; Al-Kassab, Talaat

    2016-08-01

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of  δ' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. Microsc. Res. Tech. 79:727-737, 2016. © 2016 Wiley Periodicals, Inc.

  14. SnO2 anode surface passivation by atomic layer deposited HfO2 improves li-ion battery performance

    KAUST Repository

    Yesibolati, Nulati

    2014-03-14

    For the first time, it is demonstrated that nanoscale HfO2 surface passivation layers formed by atomic layer deposition (ALD) significantly improve the performance of Li ion batteries with SnO2-based anodes. Specifically, the measured battery capacity at a current density of 150 mAg -1 after 100 cycles is 548 and 853 mAhg-1 for the uncoated and HfO2-coated anodes, respectively. Material analysis reveals that the HfO2 layers are amorphous in nature and conformably coat the SnO2-based anodes. In addition, the analysis reveals that ALD HfO2 not only protects the SnO2-based anodes from irreversible reactions with the electrolyte and buffers its volume change, but also chemically interacts with the SnO2 anodes to increase battery capacity, despite the fact that HfO2 is itself electrochemically inactive. The amorphous nature of HfO2 is an important factor in explaining its behavior, as it still allows sufficient Li diffusion for an efficient anode lithiation/delithiation process to occur, leading to higher battery capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electronic Structure, Phonon Dynamical Properties, and CO2 Capture Capability of Na2 -xMxZr O3 (M =Li ,K): Density-Functional Calculations and Experimental Validations

    Science.gov (United States)

    Duan, Yuhua; Lekse, Jonathan; Wang, Xianfeng; Li, Bingyun; Alcántar-Vázquez, Brenda; Pfeiffer, Heriberto; Halley, J. W.

    2015-04-01

    The electronic structural and phonon properties of Na2 -αMαZr O3 (M =Li ,K, α =0.0 ,0.5,1.0,1.5,2.0) are investigated by first-principles density-functional theory and phonon dynamics. The thermodynamic properties of CO2 absorption and desorption in these materials are also analyzed. With increasing doping level α , the binding energies of Na2 -αLiαZr O3 are increased while the binding energies of Na2 -αKαZrO3 are decreased to destabilize the structures. The calculated band structures and density of states also show that, at the same doping level, the doping sites play a significant role in the electronic properties. The phonon dispersion results show that few soft modes are found in several doped configurations, which indicates that these structures are less stable than other configurations with different doping levels. From the calculated relationships among the chemical-potential change, the CO2 pressure, and the temperature of the CO2 capture reactions by Na2 -αMαZr O3 , and from thermogravimetric-analysis experimental measurements, the Li- and K-doped mixtures Na2 -αMαZr O3 have lower turnover temperatures (Tt ) and higher CO2 capture capacities, compared to pure Na2Zr O3 . The Li-doped systems have a larger Tt decrease than the K-doped systems. When increasing the Li-doping level α , the Tt of the corresponding mixture Na2 -αLiαZr O3 decreases further to a low-temperature range. However, in the case of K-doped systems Na2 -αKαZr O3 , although doping K into Na2Zr O3 initially shifts its Tt to lower temperatures, further increases of the K-doping level α causes Tt to increase. Therefore, doping Li into Na2Zr O3 has a larger influence on its CO2 capture performance than the K-doped Na2Zr O3 . Compared with pure solids M2Zr O3 , after doping with other elements, these doped systems' CO2 capture performances are improved.

  16. Two-stage magneto-optical trapping and narrow-line cooling of $^6$Li atoms to high phase-space density

    CERN Document Server

    Sebastian, Jimmy; Li, Ke; Gan, Huat Chai Jaren; Li, Wenhui; Dieckmann, Kai

    2014-01-01

    We report an experimental study of peak and phase-space density of a two-stage magneto-optical trap (MOT) of 6-Li atoms, which exploits the narrower $2S_{1/2}\\rightarrow 3P_{3/2}$ ultra-violet (UV) transition at 323 nm following trapping and cooling on the more common D2 transition at 671 nm. The UV MOT is loaded from a red MOT and is compressed to give a high phase-space density up to $3\\times 10^{-4}$. Temperatures as low as 33 $\\mu$K are achieved on the UV transition. We study the density limiting factors and in particular find a value for the light-assisted collisional loss coefficient of $1.3 \\pm0.4\\times10^{-10}\\,\\textrm{cm}^3/\\textrm{s}$ for low repumping intensity.

  17. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    Science.gov (United States)

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  18. A high numerical aperture (NA = 0.92) objective lens for imaging and addressing of cold atoms

    CERN Document Server

    Robens, Carsten; Alt, Wolfgang; Kleißler, Felix; Meschede, Dieter; Moon, Geol; Ramola, Gautam; Alberti, Andrea

    2016-01-01

    We have designed, built, and characterized a high-resolution objective lens that is compatible with an ultra-high vacuum environment. The lens system exploits the principle of the Weierstrass-sphere solid immersion lens to reach a numerical aperture (NA) of 0.92. Tailored to the requirements of optical lattice experiments, the objective lens features a relatively long working distance of 150 micrometers. Our two-lens design is remarkably insensitive to mechanical tolerances in spite of the large NA. Additionally, we demonstrate the application of a tapered optical fiber tip, as used in scanning near-field optical microscopy, to measure the point spread function of a high NA optical system. From the point spread function, we infer the wavefront aberration for the entire field of view of about 75 micrometers. Pushing the NA of an optical system to its ultimate limit enables novel applications in quantum technologies such as quantum control of atoms in optical microtraps with an unprecedented spatial resolution ...

  19. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of 21Na with improved laser trapping techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mary Anderson [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive 21Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88 in. cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of 21Na to the experiment. Efficient manipulation of the 21Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of 21Na. She measured the 3S1/2(F=1,m=0)-3S1/2(F=2,m=0) atomic level splitting of 21Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  20. LiMPO4 and derived NaMPO4 (M = Mn, Fe, Mg) with excellent electrochemical properties for lithium/sodium ion batteries

    Science.gov (United States)

    Zou, Bang-Kun; Shao, Yu; Qiang, Zi-Yue; Liao, Jia-Ying; Tang, Zhong-Feng; Chen, Chun-Hua

    2016-12-01

    A simple two-step solid-state-reaction process is adopted to synthesize carbon-coated Mg-doped Li(Mn,Fe)PO4 (LMMFP) nano-particles. As positive electrode materials for lithium-ion batteries, the carbon-coated LMMFP samples show excellent electrochemical properties in a temperature range from -20 to 55 °C. For example, LiMn0.48Fe0.5Mg0.02PO4 can deliver a capacity of 146.2 mAh g-1 at 3C rate and retain 95.3% after 450 cycles at 25 °C. It can also deliver 160.7 mAh g-1 at 1C and retain 97.7% after 100 cycles at 55 °C. Even at -20 °C, it gives a capacity of 109.5 mAh g-1 with an average discharge voltage of 3.37 V at 0.2C. In Na/LMMFP cells, the LMMFP electrodes can be electrochemically converted into Mg-doped Na(Mn,Fe)PO4 (NMMFP) electrodes for sodium-ion batteries (SIBs). Ex-situ XRD proves that the derived NMMFP have an olivine-type structure and can reversibly extract and insert sodium ions. For example, NaMn0.48Fe0.5Mg0.02PO4 can deliver a reversible specific capacity of 126.9 mAh g-1 after 30 cycles at 0.1C with an average discharge voltage of 3.1 V. This study opens up a new direction on exploring olivine-type SIB cathodes.

  1. Comparative study of A-site order in the lead-free bismuth titanates M{sub 1/2}Bi{sub 1/2}TiO{sub 3} (M=Li, Na, K, Rb, Cs, Ag, Tl) from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Gröting, Melanie, E-mail: groeting@mm.tu-darmstadt.de; Albe, Karsten, E-mail: albe@mm.tu-darmstadt.de

    2014-05-01

    We investigate the possibility of enhancing chemical order in the relaxor ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} upon substitution of Na{sup +} by other monovalent cations M{sup +} using total energy calculations based on density functional theory. All chemically available monovalent cations M{sup +}, which are Li, Na, Ag, K, Tl, Rb and Cs, are considered and an analysis of the structurally relaxed structures in terms of symmetry-adapted distortion modes is given in order to quantify the chemically induced structural distortions. We demonstrate that the replacement of Na{sup +} by other monovalent cations can hardly alter the tendency of chemical order with respect to Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}. Only Tl{sub 1/2}Bi{sub 1/2}TiO{sub 3} and Ag{sub 1/2}Bi{sub 1/2}TiO{sub 3} show enhanced tendency for chemical ordering. Both heavy metals behave similar to the light alkali metals in terms of structural relaxations and relative stabilities of the ordered configurations. Although a comparison of the Goldschmidt factors of components (M TiO{sub 3}){sup −} reveals for Tl a value above the upper stability limit for perovskites, the additional lone-pair effect of Tl{sup +} stabilizes the ordered structure. - Graphical abstract: Amplitudes of chemically induced distortion modes in different ordered perovskites M{sub 1/2}Bi{sub 1/2}TiO{sub 3} and visualisation of atomic displacements associated with distortion mode X{sup +}{sub 1} in the 001-ordered compounds Li{sub 1/2}Bi{sub 1/2}TiO{sub 3} and Cs{sub 1/2}Bi{sub 1/2}TiO{sub 3}. Due to a substantial size mismatch between bismuth (green) and caesium (dark blue), incorporation of the latter leads to enhanced displacements of oxygen atoms (red) and suppresses displacements of titanium (silver) as compared to lithium (light blue) or other smaller monovalent cations. - Highlights: • Lead-free A-site mixed bismuth titanates M{sub 1/2}Bi{sub 1/2}TiO{sub 3} are studied by first-principles calculations. • Investigation

  2. Role of Hard-Acid/Hard-Base Interaction on Structural and Dielectric Behavior of Solid Polymer Electrolytes Based on Chitosan-XCF3SO3 (X = Li+, Na+, Ag+

    Directory of Open Access Journals (Sweden)

    Shujahadeen B. Aziz

    2014-01-01

    Full Text Available Solid films of pure chitosan, chitosan-LiCF3SO3, chitosan-NaCF3SO3, and chitosan-AgCF3SO3 were prepared using solution cast technique. The influence of cation size on the chitosan structure has been investigated by X-ray diffraction technique. The interaction between the alkali metal ions and the donor atoms of chitosan polymer is a strong hard-acid/hard-base interaction. It was found that the intensity of crystalline peaks of chitosan decreases with increase of cation size. The impedance analysis shows that ionic transport is high for the high amorphous system. The second semicircle in Z′′-Z′ plots and the surface plasmonic resonance (SPR peaks in chitosan-AgCF3SO3 sample system reveal the formations of silver metal nanoparticles. It was found that the high amorphous sample exhibits the high dielectric constant and dielectric loss values. The increase of dielectric constant and dielectric loss with temperature for chitosan-salt membranes indicated an increase of charge carrier concentration.

  3. Electrochemical investigation on the redox chemistry of niobium in LiCl-KCl-KF-Na2O melts

    DEFF Research Database (Denmark)

    Gillesberg, Bo; Bjerrum, Niels; Barner, Jens H. Von

    1997-01-01

    The system LiCl-KCl-KF-1 mole percent K2NbF7 (molar ration F-/Nb = 8) has been investigated in-the temperature range 370 to 725 degrees C by cyclic and square wave voltammetry. In the temperature range from 370 to 520 degrees C Nb(V) was reduced to Nb(III) in two reversible steps: Nb(V) --> Nb(IV...

  4. MV3O8 (M =Li + , Na + , NH4+) as Novel Intercalated Materials for Li-Ion Batteries%锂离子电池用新型MV3O8(M=Li+,Na+,NH4+)嵌锂材料

    Institute of Scientific and Technical Information of China (English)

    王海燕; 唐有根; 周东慧; 刘素琴; 张辉

    2013-01-01

    Research progress of MV3O8 (M =Li +,Na +,NH4 +) as lithium intercalated materials for lithium ion batteries in recent years are reviewed,especially with emphasis on their crystal structures,charge-discharge mechanisms,synthesis methods and electrochemical properties.The advantage and disadvantage of the involved three kinds of vanadium-related materials are well compared on the basis of our group' s research.Till now,LiV3O8 has been widely studied and large progress has been made via employing the novel preparation strategies,effective doping or modification methods.However,the intrinsic inferior structure has become a big challenge for its further study and applications.Due to the relatively stable layered structure,NaV3O8 has good cycling stability and excellent rate capability,thus it exhibits a great potential to be used as a high-power and long-cycling life cathode material for non-aqueous lithium ion battery,as well as high performance anode material for aqueous lithium ion battery.In comparison with LiV3O8,NH4V3O8 shows comparable capacity,much easier preparation and better cycling stability probably due to its formation of intra molecular H-bond.It is believed that NH4V3O8 could become a new research topic in vanadates as intercalated materials for lithium ion batteries.%本文详细综述了近年来国内外关于锂离子电池三钒酸盐嵌锂电极材料的研究进展,重点对钒酸锂、钒酸钠和钒酸铵材料的晶体结构、充放电机制、合成及电化学性能研究等进行了介绍,并结合我们课题组的研究情况,对比分析了上述三种材料的优劣.钒酸锂是目前研究的热点,近年来随着新型制备工艺的引入以及包括掺杂包覆改性手段的应用,材料的循环性能得到明显改善,但是相对较差的结构属性限制了其进一步的研究与应用;钒酸钠有较稳定的层状结构,体现了优秀的循环稳定性能和倍率性能,在高功率长寿命有机电解液锂电池正

  5. The role of impurities on the morphology of NaCl crystals : an atomic scale view

    NARCIS (Netherlands)

    Radenovic, N.

    2005-01-01

    It is well known that crystal growth and morphology are largely influenced by the presence of impurities in the growth solution. However, little is known about the actual process of impurity interaction with the growing crystal surface. In this thesis we study this influence in detail using the NaCl

  6. Dielectric and piezoelectric properties of Bi0.5(Na0.82K0.18)0.5 TiO3–LiSbO3 lead-free piezoelectric ceramics

    Indian Academy of Sciences (India)

    Zhou Chong-Rong; Chai Li-Yuan

    2011-07-01

    The (1–)Bi0.5(Na0.82K0.18)0.5TiO3–LiSbO3 ( = 0−0.03) lead-free piezoelectric ceramics were fabricated by a conventional solid-state reaction method and the effect of LiSbO3 addition on microstructure and electrical properties of the ceramics was investigated. The results of XRD measurement show that Li+ and Sb5+ diffuse into the Bi0.5(Na0.82K0.18)0.5TiO3 lattices to form a solid solution with a pure perovskite structure. The LiSbO3 addition has no remarkable effect on the crystal structure. However, a significant change in grain size took place. Simultaneously, with increasing amount of LiSbO3, the temperature for a antiferroelectric to paraelectric phase transition clearly increases. The piezoelectric constant 33 and the electromechanical coupling factor p show an obvious improvement by adding small amount of LiSbO3, which shows optimum values of 33 = 175 pC/N and p = 0.36 at = 0.01.

  7. Preparation and characterization of phosphate glass system A2MnMP2O10 (A = Li, Na, K and (M = W, Mo

    Directory of Open Access Journals (Sweden)

    Moutataouia M.

    2013-09-01

    Full Text Available New materials based glassy phosphates and transition elements A2MnMP2O10 (A = Li, Na, K and (M = Mo, W were prepared by direct fusion of the mixture of the reactants followed by quenching in the air. Analysis by X-ray diffraction showed that the obtained materials are amorphous. Differential scanning calorimetry DSC was used to determine the glass transition (Tg and crystallization (Tc temperatures. The thermal stability of tungsten glasses is higher than that of molybdenum ones. Tungsten plays, certainly, a role of cross-linking polyphosphate groups by creating more covalent new bonds P-O-W and W-O-W. Moreover, it has been shown that lithium glasses are more stable than sodium and potassium, probably due to the potassium hygroscopy. Raman analysis confirms that the studied glasses have similar structures and the predominant structural units are PO4, P2O7 and MO6 polyhedra (M = W, Mo, Mn.

  8. Local structure characterization and thermal properties of P2O5sbnd MgOsbnd Na2Osbnd Li2O glasses doped with SiO2

    Science.gov (United States)

    Wu, Fengnian; Li, Sheng; Chang, Ziyuan; Liu, Hongting; Huang, Sanxi; Yue, Yunlong

    2016-08-01

    Pure and SiO2 doped P2O5sbnd MgOsbnd Na2Osbnd Li2O glass has been prepared by the traditional melt quenching and heat treatment techniques. Via X-ray diffraction (XRD) patterns, all the samples are proved to be amorphous. Field emission scanning electron microscopy (FESEM) and macroscopic observation show that all the samples are homogeneous glasses and no phase splitting phenomenon. Fourier transform infrared (FTIR) spectrum shows that the amount of non-bridging oxygen decreases and the polymerization degree of the glass network structure increases after introducing SiO2 into glasses. Meanwhile, density and molar volume gradually decline with the increasing of SiO2. The glass transition (Tg) and the first crystallization temperature (Tc) indicates thermal stability increases in SiO2 added glasses.

  9. Calculation of the spectral, structural, and electronic properties of NaCrSi2O6 and LiCrSi2O6 crystals

    Science.gov (United States)

    Brik, M. G.; Avram, N. M.; Gruia, A. S.

    2013-08-01

    Spectral, structural and electronic properties of two Cr3+-bearing systems (NaCrSi2O6, LiCrSi2O6) have been theoretically modeled using two different approaches: semi-empirical model of crystal field, in the framework of the Exchange Charge Model and two ab initio DFT-based calculations, as implemented in the CASTEP module [1] of Materials Studio package [2] and, for reliability, CRYSTAL09 code [3]. The first one allows for calculations of the electronic levels of sixfold coordinated Cr3+ ions in a crystal field of host's ligands and direct comparison with experimental absorption spectra [4]. The latter two allow for the analysis of the band structure and density of states (DOS), after optimization of the crystal lattice structures of these materials. In particular, a special attention was paid to the energetic position of the Cr3+ 3d states. All obtained results are compared with corresponding experimental values and discussed.

  10. ESTUDIO DEL EFECTO DE ISOTÓPO DE HIDRÓGENO EN LOS COMPLEJOS M–H•••H–F (M=Li, Na

    Directory of Open Access Journals (Sweden)

    Andrés Reyes

    2009-06-01

    Full Text Available Se estudió teóricamente el efecto de isotópo de hidrógeno sobre la geometría, la distribución de carga electrónica, la estabilidad relativa y la energía de formación de complejos lineales tipo M–X···Y–F y todos sus isotopólogos de hidrógeno (M=Li, Na; X, Y= H, D, T. Estos estudios fueron realizados con el paquete computacional APMO a un nivel de teoría Hartree-Fock electrónico y nuclear. Los resultados obtenidos están de acuerdo con resultados reportados por otros autores que usan métodos de estructura electrónica convencional.  

  11. Spectroscopic investigations of Cu2+ in Li2O–Na2O–B2O3–Bi2O3 glasses

    Indian Academy of Sciences (India)

    N Srinivasa Rao; M Purnima; Shashidhar Bale; K Siva Kumar; Syed Rahman

    2006-08-01

    Pure and copper doped glasses with composition, Li2O–(40–)Na2O–50B2O3–10Bi2O3, have been prepared over the range 0 < < 40. The electron paramagnetic resonance (EPR) spectra of Cu2+ ions of these glasses have been recorded in the X-band at room temperature. Spin Hamiltonian parameters have been calculated. The molecular bonding coefficients, 2 and 2, have been calculated by recording the optical absorption spectra in the wavelength range 200–1200 nm. It has been observed that the site symmetry around Cu2+ ions is tetragonally distorted octahedral. The density and glass transition temperature variation with alkali content shows non-linear behaviour. The IR studies show that the glassy system contains BO3 and BO4 units in the disordered manner.

  12. Synthesis, conversion, and comparison of the photocatalytic and electrochemical properties of Na{sub 2}Ti{sub 6}O{sub 13} and Li{sub 2}Ti{sub 6}O{sub 13} nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.K., E-mail: zhangxianke77@163.com; Yuan, J.J.; Yu, H.J.; Zhu, X.R.; Yin, Z.; Shen, H.; Xie, Y.M.

    2015-05-15

    Graphical abstract: The SEM images of Li{sub 2}Ti{sub 6}O{sub 13} nanobelts (a) and galvanostatic charge and discharge cycling performance of Li{sub 2}Ti{sub 6}O{sub 13} nanobelts (b) at a constant current density of 12.5 mA g{sup −1} in the voltage range between 1.0 and 3.0 V at 25 °C. - Highlights: • Li{sub 2}Ti{sub 6}O{sub 13} nanobelts have been prepared via a self-template process for the first time. • The electrochemical properties of Na{sub 2}Ti{sub 6}O{sub 13} and Li{sub 2}Ti{sub 6}O{sub 13} nanobelts are investigated and compared. • The photocatalytic activities of nanobelts and counterpart bulks are investigated and compared. • The reversible discharge capacity of nanobelts is slightly less than that of counterpart bulks. - Abstract: Single-crystalline Li{sub 2}Ti{sub 6}O{sub 13} nanobelts have been prepared from Na{sub 2}Ti{sub 6}O{sub 13} nanobelts as the precursor templates via sodium/lithium ion-exchange in molten LiNO{sub 3} at 400 °C for 10 h for the first time. Both Na{sub 2}Ti{sub 6}O{sub 13} and Li{sub 2}Ti{sub 6}O{sub 13} nanobelts are also characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM). Our experiments show that Na{sub 2}Ti{sub 6}O{sub 13} and Li{sub 2}Ti{sub 6}O{sub 13} nanobelts exhibit higher photocatalytic efficiency than their bulk counterparts for the degradation of Rhodamine B (RhB) under ultraviolet light (UV) irradiation. In comparison to Na{sub 2}Ti{sub 6}O{sub 13} nanobelts, Li{sub 2}Ti{sub 6}O{sub 13} nanobelts exhibit lower photocatalytic efficiency, which may result from the expansion of tunnel space in Li{sub 2}Ti{sub 6}O{sub 13}. However, the electrochemical Li insertion–extraction experiments reveal that the stable reversible discharge capacity of Li{sub 2}Ti{sub 6}O{sub 13} nanobelts is higher than that of Na{sub 2}Ti{sub 6}O{sub 13

  13. Push-pull electron effects of the complexant in a Li atom doped molecule with electride character: a new strategy to enhance the first hyperpolarizability.

    Science.gov (United States)

    Liu, Zhen-Bo; Zhou, Zhong-Jun; Li, Ying; Li, Zhi-Ru; Wang, Rong; Li, Qing-Zhong; Li, Yang; Jia, Feng-Yan; Wang, Yin-Feng; Li, Zong-Jun; Cheng, Jian-Bo; Sun, Chia-Chung

    2010-09-21

    Differing from the reported strategy of push or pull electron effects of the complexant, a new strategy of the combination effects of both push and pull electrons of the complexant to enhance the first hyperpolarizability is performed with two Li atom doped complexants with a pair of difluorophenyl subunit rings. Large variance of the static first hyperpolarizabilities (beta(0)) are exhibited at the MP2/6-311++G(d,p) level. The order of the beta(0) values is 2.9 x10(2) (complexant UD) push-pull electronic effect of the complexant has the largest beta(0). The edge-type push-pull electronic effect brings a 2700 times increase in the beta(0) from the UD to H(F)-L(F) structure. It shows that the push-pull electronic effect is a highly effective strategy to enhance the beta(0) value. The beta(0) (7.8 x 10(5) a.u.) of the H(F)-L(F) is considerable, due to the small DeltaE and the very large Delta mu (18.085 a.u.), which comes from the corresponding long-range charge transfer transition. It is interesting that a pair of subunit rings of the complexant may have different electronic effects. In H-L and H(F)-L(F), the left ring with a longer distance between Li and the subunit ring exhibits a push electronic effect, while the right ring with the shorter distance exhibits a pull electronic effect. This work may contribute to the development of potential high-performance nonlinear optical materials.

  14. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithiumion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of similar to 190 mAh g(-1) in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distributionfunction (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2(M)nSiO(4) nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (beta) Li2MnSiO4 crystalline phase (space group Pmn2(1)) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures. (C) 2014 Elsevier B.V. All rights reserved.

  15. Band gap modification and ferroelectric properties of Bi{sub 0.5}(Na,K){sub 0.5}TiO{sub 3}-based by Li substitution

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Ngo Duc [Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet road, Ha Noi (Viet Nam); International Training Institute for Materials Science, Hanoi University of Science and Technology, 1 Dai Co Viet road, Hanoi (Viet Nam); Hung, Vu Ngoc [International Training Institute for Materials Science, Hanoi University of Science and Technology, 1 Dai Co Viet road, Hanoi (Viet Nam); Quyet, Nguyen Van [Hanautech Co., Ltd., 832, Tamnip-dong, Yuseong-gu, Daejeon (Korea, Republic of); Chung, Hoang Vu [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Hanoi (Viet Nam); Dung, Dang Duc, E-mail: dung.dangduc@hust.edu.vn [Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet road, Ha Noi (Viet Nam)

    2014-01-15

    We report on the reduction of band gap in Bi{sub 0.5}(Na{sub 0.82-x}Li{sub x}K{sub 0.18}){sub 0.5}(Ti{sub 0.95}Sn{sub 0.05})O{sub 3} from 2.99 eV to 2.84 eV due to the substitutions of Li{sup +} ions to Na{sup +} sites. In addition, the lithium substitution samples exhibit an increasing of the maximal polarizations from 21.8 to 25.7 μC/cm{sup 2}. The polarization enhancement of ferroelectric and reduction of the band gaps are strongly related to the Li substitution concentration as evaluated via the electronegative between A-site and oxygen and tolerance factor. The results are promising for photovoltaic and photocatalytic applications.

  16. Study of the nuclear graphite contact with the eutectic liquid (ZrF{sub 4} - NaF-LiF) and its protection by the vitreous carbon; Etude du contact du graphite nucleaire avec le liquide eutectique (ZrF{sub 4} -NaF-LiF) et sa protection par le carbone vitreux

    Energy Technology Data Exchange (ETDEWEB)

    Bernardet, V.; Duclaux, L. [Universite de Savoie, LCME, Polytech Savoie, 73 - Le Bourget du Lac (France); Renaudin, G.; Dubois, M.; Guerin, K.; Avignant, D. [LMI, CNRS, 63 - Aubiere (France); Renaudin, S.; Delpeux, S. [CRMD, CNRS, 45 - Orleans (France)

    2008-07-01

    In the reactors of fourth generation called molten slats reactors, the graphite core is on contact with liquid fluoride salts used as fuel and coolant. The aim of the study is to better understand the interaction between the graphite and the molten salt and to determine methods to protect the graphite to limit its corrosion by the fuel. The molten salts of this study is composed of NaF and LiF and ZrF{sub 4}. The fluoride salts reactivity and diffusion have been characterized for the nuclear graphite. Microscopy and spectroscopy Raman have been used to characterize the adhesion. (A.L.B.)

  17. One-Step Catalytic Synthesis of CuO/Cu2O in a Graphitized Porous C Matrix Derived from the Cu-Based Metal-Organic Framework for Li- and Na-Ion Batteries.

    Science.gov (United States)

    Kim, A-Young; Kim, Min Kyu; Cho, Keumnam; Woo, Jae-Young; Lee, Yongho; Han, Sung-Hwan; Byun, Dongjin; Choi, Wonchang; Lee, Joong Kee

    2016-08-03

    The hybrid composite electrode comprising CuO and Cu2O micronanoparticles in a highly graphitized porous C matrix (CuO/Cu2O-GPC) has a rational design and is a favorable approach to increasing the rate capability and reversible capacity of metal oxide negative materials for Li- and Na-ion batteries. CuO/Cu2O-GPC is synthesized through a Cu-based metal-organic framework via a one-step thermal transformation process. The electrochemical performances of the CuO/Cu2O-GPC negative electrode in Li- and Na-ion batteries are systematically studied and exhibit excellent capacities of 887.3 mAh g(-1) at 60 mA g(-1) after 200 cycles in a Li-ion battery and 302.9 mAh g(-1) at 50 mA g(-1) after 200 cycles in a Na-ion battery. The high electrochemical stability was obtained via the rational strategy, mainly owing to the synergy effect of the CuO and Cu2O micronanoparticles and highly graphitized porous C formed by catalytic graphitization of Cu nanoparticles. Owing to the simple one-step thermal transformation process and resulting high electrochemical performance, CuO/Cu2O-GPC is one of the prospective negative active materials for rechargeable Li- and Na-ion batteries.

  18. Rate capability for Na-doped Li{sub 1.167}Ni{sub 0.18}Mn{sub 0.548}Co{sub 0.105}O{sub 2} cathode material and characterization of Li-ion diffusion using galvanostatic intermittent titration technique

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Nam; Seo, Jung Yoon [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Jung, Dae Soo [Eco-Composite Materials Team, Korea Institute of Ceramic Engineering and Technology (KICET), Seoul 153-801 (Korea, Republic of); Ahn, Wook [Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Song, Hoon Sub [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1 (Canada); Yeon, Sun-Hwa, E-mail: ys93@kier.re.kr [Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Park, Seung Bin, E-mail: SeungBinPark@kaist.ac.kr [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2015-02-25

    Highlights: • Spherical Na-doped Li-rich cathode material prepared by spray pyrolysis. • Na-doped samples show better rate capability than that of bare sample. • Na-doped sample has higher D{sub Li+} value at 4 V compared with that of the bare sample. • The cycle performance was enhanced from 83% to 92%. - Abstract: Spherical Li{sub 1.167−x}Na{sub x}Ni{sub 0.18}Mn{sub 0.548}Co{sub 0.105}O{sub 2} (0 ⩽ x ⩽ 0.1) particles were prepared by spray pyrolysis, and subjected to electrochemical characterization for lithium battery applications. It was confirmed that Na doping enhances the charge/discharge rate capability. The structure of prepared samples was characterized by XRD: the c-axis lattice parameter increases with increase in the amount of Na ions (parameterized by x, above). The Na-doped sample with x = 0.05 shows capacities of 208 and 184 mA h g{sup −1} at high current densities of 1.0 C and 2.0 C, respectively. These values are enhanced, compared to values of 189 and 167 mA h g{sup −1} for the bare sample. The ratio of the capacity at 1.0 C to that at 0.1 C is enhanced from 77% for the bare sample to 84% for the Na-doped sample with x = 0.05. The Li diffusion coefficients obtained from the galvanostatic intermittent titration technique (GITT) are higher for Na-doped samples than for the bare sample. In particular, the Na-doped sample (x = 0.05), in the potential range around 4 V, has a higher D{sub Li+} value of 3.34 × 10{sup −9} cm{sup 2} s{sup −1}, compared with 1.35 × 10{sup −9} cm{sup 2} s{sup −1} for the bare sample. The Na-doped samples (0 < x < 0.075) show high capacity retention: the Na-doped sample (x = 0.05) shows a capacity retention of 92% compared to 83% for the bare sample.

  19. Phase development, densification and dielectric properties of (0.95-xNa0.5K0.5NbO3 - 0.05LiTaO3 - x LiSbO3 lead-free piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Pornsuda Bomlai

    2008-08-01

    Full Text Available Lead-free piezoelectric ceramics in the system (0.95-x Na0.5K0.5NbO3 - 0.05LiTaO3 - x LiSbO3, x = 0-0.1, were synthesized by a reaction-sintering method. The effects of the content of LiSbO3, and the sintering temperature on phase-development, microstructure and dielectric properties of the samples were investigated. Additions of LiSbO3 produced a change in crystal system from orthorhombic to tetragonal. The additive reduced the temperature at which secondary recrystallisation occurred, and also affected average grain size and dielectric constant. A sintering temperature of 1050oC (for 2 h was the optimum for this system in order to achieve a high density and high dielectric constant. A maximum dielectric constant of 1510 was recorded for the x = 0.04 composition.

  20. CO Oxidation and Subsequent CO2 Chemisorption on Alkaline Zirconates: Li2 ZrO3 and Na2 ZrO3

    Energy Technology Data Exchange (ETDEWEB)

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    2016-09-21

    Here, two different alkaline zirconates (Li2ZrO3 and Na2ZrO3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li2ZrO3 and Na2ZrO3, under different O2 partial flows. We found results clearly showed that Na2ZrO3 possesses much better catalytic properties than Li2ZrO3. After the CO-O2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na2ZrO3 ceramic. The results confirmed that Na2ZrO3 is able to work as a bifunctional material (CO oxidation and subsequent CO2 chemisorption), although the kinetic CO2 capture process was not the best one under the physicochemical condition used in this case. For Na2ZrO3, the best CO conversions were found between 445 and 580 °C (100%), while Li2ZrO3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na2ZrO3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.

  1. Novel Alkali-Metal Coordination in Phenoxides: Powder Diffraction Results on C(6)H(5)OM (M = Li, Na, K, Rb, Cs).

    Science.gov (United States)

    Dinnebier, R. E.; Pink, Maren; Sieler, J.; Stephens, P. W.

    1997-07-30

    We report the ab initio structure solutions of C(6)H(5)OM (M = K, Rb, Cs) by high-resolution powder X-ray diffraction. The compounds, which are of interest for reactions of the Kolbe-Schmitt type, are isostructural. The crystal structures are orthorhombic, space group Pna2(1), Z = 12, with lattice parameters (a, b, c in Å) 14.1003(1), 17.9121(1), and 7.16475(1) for the K compound, 14.4166(2), 18.2028(2), and 7.4009(1) for the Rb compound, and 14.8448(2), 18.5070(2), and 7.6306(1) for the Cs compound. They have a chain structure [M([6])] along the crystallographic c axis. This is a very unusual arrangement in which two different alkali-metal coordination spheres are observed: a distorted octahedron and a 3-fold oxygen coordination. In the latter, the 3-fold-coordinated unsaturated alkali metals additionally show weak interactions with phenyl rings. We also give powder patterns for the compounds with M = Li, Na. The former crystallizes in the monoclinic space group P2(1)/a with lattice parameters a = 22.594 Å, b = 4.7459 Å, c= 10.053 Å, and beta = 97.82 degrees with Z = 8, but no structure solution was possible. The powder pattern for the Na phenolate is in agreement with the earlier single-crystal structure.

  2. Photoionisation of Be-like and Li-like atomic oxygen{\\it K}-shell photoionisation of O$^{4+}$ and O$^{5+}$ ions : experiment and theory

    CERN Document Server

    McLaughlin, B M; Cubaynes, D; Guilbaud, S; Douix, S; Shorman, M M Al; Ghazaly, M O A El; Sakho, I; Gharaibeh, M F

    2016-01-01

    Absolute cross sections for the {\\it K}-shell photoionisation of Be-like (O$^{4+}$) and Li-like (O$^{5+}$) atomic oxygen ions were measured for the first time (in their respective {\\it K}-shell regions) by employing the ion-photon merged-beam technique at the SOLEIL synchrotron-radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/$\\Delta$E $\\approx$ 3200 ($\\approx$ 170 meV, FWHM)was achieved with photon energy from 550 eV up to 670 eV. Rich resonance structure observed in the experimental spectra is analysed using the R-matrix with pseudo-states (RMPS) method. Results are also compared with the screening constant by unit nuclear charge (SCUNC) calculations. We characterise and identify the strong $\\rm 1s \\rightarrow 2p$ resonances for both ions and the weaker $\\rm 1s \\rightarrow np$ resonances ($ n \\ge 3$) observed in the {\\it K}-shell spectra of O$^{4+}$.

  3. Electronic structure, X-ray spectra and magnetic properties of nonstoichiometric LiCoO sub 2 sub - subdelta and Na sub x CoO sub 2 oxides

    CERN Document Server

    Galakhov, V R; Karelina, V V; Kellerman, D G; Gorshkov, V S; Nojmann, M

    2002-01-01

    One studied magnetic susceptibility, X-ray photoelectron and X-ray emission spectra of LiCoO sub 2 sub - subdelta and Na sub x CoO sub 2 nonstoichiometric oxides. One analyzed structures of LiCoO sub 2 valent band. Ob the basis of O K alpha-spectra of emission measuring one determined hole concentration in LiNiO sub 2 and LiCoO sub 2 oxygen 2p-band. Measurements of Co 2p- and Co 3s-photoelectron spectra have shown that Co sup 3 sup + ions are in S = 0 low-spin state. In LiCoO sub 2 sub - subdelta reduced oxides oxygen deficit causes formation of cobalt bivalent ions. Deficit of alkali metal in Na sub x CoO sub 2 results in hole formation in oxygen 2p-band not varying d sup 6 electron configuration of ground state of cobalt ions

  4. NASICON-Type Mg0.5Ti2(PO4)3 Negative Electrode Material Exhibits Different Electrochemical Energy Storage Mechanisms in Na-Ion and Li-Ion Batteries.

    Science.gov (United States)

    Zhao, Yingying; Wei, Zhixuan; Pang, Qiang; Wei, Yingjin; Cai, Yongmao; Fu, Qiang; Du, Fei; Sarapulova, Angelina; Ehrenberg, Helmut; Liu, Bingbing; Chen, Gang

    2017-02-08

    A carbon-coated Mg0.5Ti2(PO4)3 polyanion material was prepared by the sol-gel method and then studied as the negative electrode materials for lithium-ion and sodium-ion batteries. The material showed a specific capacity of 268.6 mAh g(-1) in the voltage window of 0.01-3.0 V vs Na(+)/Na(0). Due to the fast diffusion of Na(+) in the NASICON framework, the material exhibited superior rate capability with a specific capacity of 94.4 mAh g(-1) at a current density of 5A g(-1). Additionally, 99.1% capacity retention was achieved after 300 cycles, demonstrating excellent cycle stability. By comparison, Mg0.5Ti2(PO4)3 delivered 629.2 mAh g(-1) in 0.01-3.0 V vs Li(+)/Li(0), much higher than that of the sodium-ion cells. During the first discharge, the material decomposed to Ti/Mg nanoparticles, which were encapsulated in an amorphous SEI and Li3PO4 matrix. Li(+) ions were stored in the Li3PO4 matrix and the SEI film formed/decomposed in subsequent cycles, contributing to the large Li(+) capacity of Mg0.5Ti2(PO4)3. However, the lithium-ion cells exhibited inferior rate capability and cycle stability compared to the sodium-ion cells due to the sluggish electrochemical kinetics of the electrode.

  5. Hyperfine-induced quadrupole moments of alkali-metal atom ground states and their implications for atomic clocks

    CERN Document Server

    Derevianko, Andrei

    2016-01-01

    Spherically-symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to non-vanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for $^{133}$Cs atomic clocks, the spatial gradients of electric fields must be smaller than $30 \\, \\mathrm{V}/\\mathrm{cm}^2$ to guarantee fractional inaccuracies below $10^{-16}$.

  6. Prediction of Setschenow constants of N-heteroaromatics in NaCl solutions based on the partial charge on the heterocyclic nitrogen atom.

    Science.gov (United States)

    Yang, Bin; Li, Zhongjian; Lei, Lecheng; Sun, Feifei; Zhu, Jingke

    2016-02-01

    The solubilities of 19 different kinds of N-heteroaromatic compounds in aqueous solutions with different concentrations of NaCl were determined at 298.15 K with a UV-vis spectrophotometry and titration method, respectively. Setschenow constants, Ks, were employed to describe the solubility behavior, and it is found that the higher ring numbers of N-heteroaromatics gave rise to the lower values of Ks. Moreover, Ks showed a good linear relationship with the partial charge on the nitrogen atom (QN) for either QN > 0 or QN coefficient (Kow). The heterocyclic N in N-heteroaromatics may interact with Na(+) ions in NaCl solution for QN 0.

  7. New examples of metalloaromatic Al-clusters: (Al4M4)Fe(CO)3 (M=Li, Na and K) and (Al4M4)2Ni: Rationalization for possible synthesis

    CERN Document Server

    Datta, A; Datta, Ayan; Pati, Swapan K.

    2005-01-01

    Ab-initio calculations reveal that all-metal antiaromatic molecules like Al4M4 (M=Li, Na and K) can be stabilized in half-sandwich complex: (Al4M4)Fe(CO)3 and full-sandwich complexes of the type: (Al4M4)2Ni. The formation of the full-sandwich complex [(Al4M4)2Ni] from its organometallic precursor depends on the stability of the organic-inorganic hybrid (C4H4) Ni (Al4Li4).

  8. Atomic layer deposited cobalt oxide: An efficient catalyst for NaBH{sub 4} hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Dip K.; Manna, Joydev; Dhara, Arpan; Sharma, Pratibha; Sarkar, Shaibal K., E-mail: shaibal.sarkar@iitb.ac.in [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-01-15

    Thin films of cobalt oxide are deposited by atomic layer deposition using dicobalt octacarbonyl [Co{sub 2}(CO){sub 8}] and ozone (O{sub 3}) at 50 °C on microscope glass substrates and polished Si(111) wafers. Self-saturated growth mechanism is verified by x-ray reflectivity measurements. As-deposited films consist of both the crystalline phases; CoO and Co{sub 3}O{sub 4} that gets converted to pure cubic-Co{sub 3}O{sub 4} phase upon annealing at 500 °C under ambient condition. Elemental composition and uniformity of the films is examined by x-ray photoelectron spectroscopy and secondary ion-mass spectroscopy. Both as-deposited and the annealed films have been successfully tested as a catalyst for hydrogen evolution from sodium borohydride hydrolysis. The activation energy of the hydrolysis reaction in the presence of the as-grown catalyst is found to be ca. 38 kJ mol{sup −1}. Further implementation of multiwalled carbon nanotube, as a scaffold layer, improves the hydrogen generation rate by providing higher surface area of the deposited catalyst.

  9. LiDy(PO34

    Directory of Open Access Journals (Sweden)

    Fathia Chehimi-Moumen

    2008-07-01

    Full Text Available Single crystals of lithium dysprosium polyphosphate, LiDy(PO34, were prepared by the flux method. The atomic arrangement is built up by infinite (PO3n chains extending along the b axis. Dy3+ and Li+ cations alternate in the middle of four such chains, with Dy...Li distances of 3.54 (1 and 3.48 (1 Å. The DyO8 dodecahedra and LiO4 tetrahedra deviate significantly from the ideal geometry. Both Dy and Li occupy special positions (Wyckoff position 4e, site symmetry 2.

  10. Positron-alkali atom scattering

    Science.gov (United States)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  11. CATHODIC BEHAVIORS OF CAO IN MOLTEN SALTS CaCl2 AND EQUIMOLAR CaCl2-X(X=NaCl,BaCl2,LiCl)%CaO在CaCl2和等摩尔CaCl2-X(X=NaCl,BaCl2,LiCl)熔盐中的阴极行为

    Institute of Scientific and Technical Information of China (English)

    王淑兰; 王伟; 王川华; 张丽君

    2008-01-01

    采用循环伏安方法研究了1173 K时CaCl2-0.5%CaO(摩尔分数)和等摩尔CaCl2-X-0.5%CaO(X=NaCl,BaCl2,LiCl)熔盐中CaO在Mo电极上的阴极行为.研究结果表明,CaCl2与CaO电离的Ca计具有不同的离子结构和还原电势,在1173 K时其还原峰电势分别为-2.15和-1.51 V.等摩尔混合熔盐CaCl2-x-0.5%CaO(x=NaCl,BaCl2)中,CaO诱发电解质产生低电位沉积,降低了混合熔盐的电化学稳定性.通过阴极扫描电流峰密度与扫描速率的关系,计算出1173 K时CaO电离的Ca2+在CaCl2-0.5%CaO,等摩尔的CaCl2-NaCl-0.5%CaO,CaCl2-BaCl2-0.5%CaO和CaCl2-LiCl-0.5%CaO熔盐中的扩散系数,分别为6.42×10-5,1.56×10-5,1.20×10-5和6.79×10-5 cm2/s.

  12. Prediction and characterization of a chalcogen-hydride interaction with metal hybrids as an electron donor in F2CS-HM and F2CSe-HM (M = Li, Na, BeH, MgH, MgCH3) complexes.

    Science.gov (United States)

    Li, Qing-Zhong; Qi, Hui; Li, Ran; Liu, Xiao-Feng; Li, Wen-Zuo; Cheng, Jian-Bo

    2012-03-07

    A novel type of σ-hole bonding has been predicted and characterized in F(2)CS-HM and F(2)CSe-HM (M = Li, Na, BeH, MgH) complexes at the MP2/aug-cc-pVTZ level. This interaction, termed a chalcogen-hydride interaction, was analyzed in terms of geometric, energetic and spectroscopic features of the complexes. It exhibits similar properties to hydrogen bonding and halogen bonding. The methyl group in metal hydrides makes a positive contribution to the formation of chalcogen-hydride bonded complexes. In the F(2)CSe-HLi-OH(2) complex, the chalcogen-hydride bonding shows synergetic effects with lithium bonding. These complexes have been analyzed with the atoms in molecules (AIM) theory and symmetry adapted perturbation theory (SAPT) method. The results show that the chalcogen-hydride bonding is dominated with an electrostatic interaction.

  13. New acceptor-bridge-donor strategy for enhancing NLO response with long-range excess electron transfer from the NH2...M/M3O donor (M = Li, Na, K) to inside the electron hole cage C20F19 acceptor through the unusual σ chain bridge (CH2)4.

    Science.gov (United States)

    Bai, Yang; Zhou, Zhong-Jun; Wang, Jia-Jun; Li, Ying; Wu, Di; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung

    2013-04-01

    Using the strong electron hole cage C20F19 acceptor, the NH2...M/M3O (M = Li, Na, and K) complicated donors with excess electron, and the unusual σ chain (CH2)4 bridge, we construct a new kind of electride molecular salt e(-)@C20F19-(CH2)4-NH2...M(+)/M3O(+) (M = Li, Na, and K) with excess electron anion inside the hole cage (to be encapsulated excess electron-hole pair) serving as a new A-B-D strategy for enhancing nonlinear optical (NLO) response. An interesting push-pull mechanism of excess electron generation and its long-range transfer is exhibited. The excess electron is pushed out from the (super)alkali atom M/M3O by the lone pair of NH2 in the donor and further pulled inside the hole cage C20F19 acceptor through the efficient long σ chain (CH2)4 bridge. Owing to the long-range electron transfer, the new designed electride molecular salts with the excess electron-hole pair exhibit large NLO response. For the e(-)@C20F19-(CH2)4-NH2...Na(+), its large first hyperpolarizability (β0) reaches up to 9.5 × 10(6) au, which is about 2.4 × 10(4) times the 400 au for the relative e(-)@C20F20...Na(+) without the extended chain (CH2)4-NH2. It is shown that the new strategy is considerably efficient in enhancing the NLO response for the salts. In addition, the effects of different bridges and alkali atomic number on β0 are also exhibited. Further, three modulating factors are found for enhancing NLO response. They are the σ chain bridge, bridge-end group with lone pair, and (super)alkali atom. The new knowledge may be significant for designing new NLO materials and electronic devices with electrons inside the cages. They may also be the basis of establishing potential organic chemistry with electron-hole pair.

  14. O Papagaio Ilustrado - lição e exemplo na ficção barroca

    OpenAIRE

    Augusto,Sara

    2005-01-01

    Aves Ilustradas, de Soror Maria do Céu, obra impressa em 1734, é constituída por um conjunto de discursos, em que catorze aves pronunciam avisos para as religiosas que se ocupavam dos respectivos ofícios nos seus mosteiros. A obra representa um dos melhores exemplos na literatura portuguesa da utilização da fábula com intuito didáctico, no âmbito da tradição alegórica, recuperada da literatura clássica e da literatura medieval pela literatura alegórica barroca, num contexto de reiteração do b...

  15. Elaboration par procédé sol-gel de fluorures de type ALnF4 (A=Li, Na et Ln=Y, Gd) et de composites SiO2/LiGdF4 dopés par les ions de terres rares pour applications optiques

    OpenAIRE

    Lepoutre, Sophie

    2007-01-01

    This work is devoted to the development by the sol-gel process of ALnF4 (A=Li, Na and Ln=Y, Gd) fluorides and SiO2/LiGdF4 composites activated by Eu3+ ions. This synthesis process by a soft chemistry route, involving a sol as an intermediary step, enables the achievement of powders and coatings. The use of molecular precursors induces a homogeneous distribution of doping ions into the fluoride matrix avoiding any clustering effect. Several experimental tools (XRD, IR, Raman, EXAFS, NMR, EPR, ...

  16. Comparison of Anion Reorientational Dynamics in MCB9H10 and M2B10H10 (M = Li, Na) via Nuclear Magnetic Resonance and Quasielastic Neutron Scattering Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloninin, Alexei V.; Dimitrievska, Mirjana; Skoryunov, Roman V.; Babanova, Olga A.; Skripov, Alexander V.; Tang, Wan Si; Stavila, Vitalie; Orimo, Shin-ichi; Udovic, Terrence J.

    2016-12-13

    The disordered phases of the 1-carba-closo-decaborates LiCB9H10 and NaCB9H10 exhibit the best solid-state ionic conductivities to date among all known polycrystalline competitors, likely facilitated in part by the highly orientationally mobile CB9H10- anions. We have undertaken both NMR and quasielastic neutron scattering (QENS) measurements to help characterize the monovalent anion reorientational mobilities and mechanisms associated with these two compounds and to compare their anion reorientational behaviors with those for the divalent B10H102- anions in the related Li2B10H10 and Na2B10H10 compounds. NMR data show that the transition from the low-T ordered to the high-T disordered phase for both LiCB9H10 and NaCB9H10 is accompanied by a nearly two-orders-of-magnitude increase in the reorientational jump rate of CB9H10- anions. QENS measurements of the various disordered compounds indicate anion jump correlation frequencies on the order of 1010-1011 s-1 and confirm that NaCB9H10 displays jump frequencies about 60% to 120% higher than those for LiCB9H10 and Na2B10H10 at comparable temperatures. The Q-dependent quasielastic scattering suggests similar small-angular-jump reorientational mechanisms for the different disordered anions, changing from more uniaxial in character at lower temperatures to more multidimensional at higher temperatures, although still falling short of full three-dimensional rotational diffusion below 500 K within the nanosecond neutron window.

  17. Inner-shell promotions in low-energy Li+-Al collisions at clean and alkali-covered Al(100) surfaces

    Science.gov (United States)

    German, K. A. H.; Weare, C. B.; Yarmoff, J. A.

    1994-11-01

    Spectra of scattered ions and ion-induced electron emissions are used to investigate the electronic processes that occur during 0.4-5.0-keV Li+ bombardment of clean and alkali-atom-covered Al(100). The results show that Li 1s electrons are promoted during hard Li-Al collisions, but not during Li-K or Li-Na collisions. Consequences of the inner-shell electron promotions are evident in the inelastic loss, neutralization behavior, and electron emissions of the scattered Li particles. Spectra of scattered Li+ ions exhibit discrete-loss features, which are resistant to the usual increase in resonant neutralization that accompanies the deposition of alkali atoms on the surface. The loss features are due to Li 1s excitation via electron promotion, while the production of ions away from the surface via autoionization is responsible for their lack of response to alkali-atom adsorption. Spectra of ion-induced electron emissions confirm that Li*(1s2s2) is produced and that it undergoes autoionization.

  18. Study of NaCl:Mn{sup 2+} nanostructures in the Suzuki phase by optical spectroscopy and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mejía-Uriarte, E.V., E-mail: elsi.mejia@ccadet.unam.mx [Laboratorio de Fotónica de Microondas, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, AP 70-186, C.P. 04510, D.F. México (Mexico); Kolokoltsev, O. [Laboratorio de Fotónica de Microondas, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, AP 70-186, C.P. 04510, D.F. México (Mexico); Navarrete Montesinos, M. [Instituto de Ingeniería, Universidad Nacional Autónoma de México, D.F. México (Mexico); Camarillo, E.; Hernández A, J.; Murrieta S, H. [Instituto de Física, Universidad Nacional Autónoma de México, AP 20-364, C.P. 01000, D.F. México (Mexico)

    2015-04-15

    NaCl:Mn{sup 2+} nanostructures in the Suzuki phase have been studied by fluorescence (emission and excitation) spectroscopy and atomic force microscopy (AFM) as a function of temperature. The “as-grown” samples give rise to two broad emission bands that peak at 508 (green emission) and 610 nm (red emission). The excitation spectrum shows peaks at 227 nm and 232 nm for emission wavelengths at 508 nm and 610 nm, respectively. When the samples are heated continuously from room temperature up to 220 °C, the green emission (associated to the excitation peak at 227 nm) disappears at a temperature close to 120 °C, whilst only the red emission remains, which is characteristic of manganese ions. AFM images on the (0 0 1) surface (freshly cleaved) show several conformations of nanostructures, such as disks of 20–50 nm in diameter. Particularly, the images also reveal nanostructures with rectangular shape of ~280×160 nm{sup 2} and ~6 nm height; these are present only in samples with green emission associated to the Suzuki phase. Then, the evidence suggests that this topographic configuration might be related to the interaction with the first neighbors and the next neighbors, according to the configuration that has been suggested for the Suzuki phase. - Highlights: • NaCl:Mn{sup 2+} single crystals in the Suzuki phase contain rectangular nanostructures. • Double emission of manganese ions: green (508 nm) and red (610 nm) bands. • The excitation peak at 227 nm is attributed to rectangular nanostructures. • The green emission band associated to Suzuki phase is extinguished at 120 °C.

  19. Rules on intrapair and interpair correlation energy for Cl,Cl~- and MCl(M=H,Li,Na,K)

    Institute of Scientific and Technical Information of China (English)

    韦吉崇; 禚淑苹; 居冠之

    2001-01-01

    According to the calculation results of the intrapair and interpair correlation energy for the title systems, it has been found that the intrapair correlation energy of K shell of Cl is almost a constant and both the intrashell and intershell correlation energy of K and L shell changes little. It has also been found that in MCI series compounds the value of Cl correlation energy contribution depends on the ionicity of MCI compounds, i.e., the Cl correlation energy contribution increases with the increase of the ionic bond strength of the compound and this value is always less than the correlation energy of Cl" anion but always larger than that of Cl atom. These rules are helpful for the estimation of the correlation energy of ionic compounds and the energy changes of chemical reactions.

  20. Rules on intrapair and interpair correlation energy for Cl, Cl- and MCl (M=H, Li, Na, K)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    According to the calculation results of the intrapair and interpair correlation energy for the title systems, it has been found that the intrapair correlation energy of K shell of Cl is almost a constant and both the intrashell and intershell correlation energy of K and L shell changes little. It has also been found that in MCl series compounds the value of Cl correlation energy contribution depends on the ionicity of MCl compounds, i.e., the Cl correlation energy contribution increases with the increase of the ionic bond strength of the compound and this value is always less than the correlation energy of Cl- anion but always larger than that of Cl atom. These rules are helpful for the estimation of the correlation energy of ionic compounds and the energy changes of chemical reactions.

  1. A density functional theory study on size-dependent structures, stabilities, and electronic properties of bimetallic MnAgm (M=Na, Li; n + m ≤ 7) clusters

    Institute of Scientific and Technical Information of China (English)

    Sun Hao-Ran; Kuang Xiao-Yu; Li Yan-Fang; Shao Peng; Zhao Ya-Ru

    2012-01-01

    The equilibrium geometries,relative stabilities,and electronic properties of MnAgm(M=-Na,Li; n +-m ≤ 7) as well as pure Agn,Nan,Lin (n ≤ 7) clusters are systematically investigated by means of the density functional theory.The optimized geometries reveal that for 2 ≤ n ≤ 7,there are significant similarities in geometry among pure Agn,Nan,and Lin clusters,and the transitions from planar to three-dimensional configurations occur at n =7,7,and 6,respectively.In contrast,the first three-dimensional (3D) structures are observed at n + m =5 for both NanAgm and LinAgm clusters.When n + m ≥ 5,a striking feature is that the trigonal bipyramid becomes the main subunit of LinAgm.Furthermore,dramatic odd-even alternative behaviours are obtained in the fragmentation energies,secondorder difference energies,highest occupied and lowest unoccupied molecular orbital energy gaps,and chemical hardness for both pure and doped clusters.The analytic results exhibit that clusters with an even electronic configuration (2,4,6) possess the weakest chemical reactivity and more enhanced stability.

  2. Calculating models of mass action concentrations for NaBr(aq), LiNO3(aq),HNO3(aq), and KF(aq) binary solutions

    Institute of Scientific and Technical Information of China (English)

    Hanjie Guo; Weijie Zhao; Xuemin Yang

    2007-01-01

    The calculating models of mass action concentrations for electrolyte aqueous solutions NaBr-H2O, LiNO3-H2O, HNO3-H2O,and KF-H2O have been developed at 298.15 K and their molalities ranging from 0.1 mol/kg to saturation according to the ion and molecule coexistence theory as well as mass action law. The calculated mass action concentration is based on pure species as the standard state and the mole fraction as the concentration unit, and the reported activities are usually based on infinite dilution as the standard state and molality as the concentration unit. Hence, the calculated mass action concentration must be transformed to the same standard state and concentration unit. The transformation coefficients between calculated mass action concentrations and reported activities of the same component fluctuate in a very narrow range. Thus, the transformed mass action concentrations not only agree well with reported activities, but also strictly obey mass action law. The calculated results show that the new developed models can embody the intrinsic structure of investigated four electrolyte aqueous solutions. The results also indicate that mass action law has its widespread applicability to electrolyte binary aqueous solutions.

  3. Prediction of thermodynamically reversible hydrogen storage reactions utilizing Ca-M(M = Li, Na, K)-B-H systems: a first-principles study.

    Science.gov (United States)

    Guo, Yajuan; Ren, Ying; Wu, Haishun; Jia, Jianfeng

    2013-12-01

    Calcium borohydride is a potential candidate for onboard hydrogen storage because it has a high gravimetric capacity (11.5 wt.%) and a high volumetric hydrogen content (∼130 kg m(-3)). Unfortunately, calcium borohydride suffers from the drawback of having very strongly bound hydrogen. In this study, Ca(BH₄)₂ was predicted to form a destabilized system when it was mixed with LiBH₄, NaBH₄, or KBH₄. The release of hydrogen from Ca(BH₄)₂ was predicted to proceed via two competing reaction pathways (leading to CaB₆ and CaH₂ or CaB₁₂H₁₂ and CaH₂) that were found to have almost equal free energies. Using a set of recently developed theoretical methods derived from first principles, we predicted five new hydrogen storage reactions that are among the most attractive of those presently known. These combine high gravimetric densities (>6.0 wt.% H₂) with have low enthalpies [approximately 35 kJ/(mol(-1) H₂)] and are thermodynamically reversible at low pressure within the target window for onboard storage that is actively being considered for hydrogen storage applications. Thus, the first-principles theoretical design of new materials for energy storage in future research appears to be possible.

  4. First-principles study of the double perovskites Sr$_2$XOsO$_6$ (X = Li, Na, Ca) for spintronics applications

    Indian Academy of Sciences (India)

    M FAIZAN; G MURTAZA; S H KHAN; A KHAN; ASIF MEHMOOD; R KHENATA; S HUSSAIN

    2016-10-01

    We investigated double perovskite compounds of the form Sr$_2$XOsO$_6$ (X = Li, Na, Ca) using the fullpotential linearized augmented plane wave (FP-LAPW) method. For the exchange-correlation energy, Wu andCohen generalized gradient approximation (WC-GGA), Perdew, Burke and Ernzerhof GGA (PBE-GGA), Engel and Vosko GGA (EV-GGA), and GGA plus Hubbard U-parameter (GGA $+$ U) were used. The calculated structuralparameters are in good agreement with the existing experimental results. Calculation of different elastic constants and elastic moduli reveals that these compounds are elastically stable and possess ductile nature. The GGA $+$ Uapproach yields quite accurate results of the bandgap as compared with the simple GGA schemes. The density of states plot shows that Sr-4d, Os-5d and O-2p states predominantly contribute to the conduction and valence bands.Further, our results regarding to the magnetic properties of these compounds reveal their ferromagnetic nature. In addition, these compounds seem to possess half-metallic properties, making them useful candidates for applicationsin spintronics devices.

  5. Remote Control Effect of Li+, Na+, K+ Ions on the Super Energy Transfer Process in ZnMoO4:Eu3+, Bi3+ Phosphors

    Science.gov (United States)

    Ran, Weiguang; Wang, Lili; Tan, Lingling; Qu, Dan; Shi, Jinsheng

    2016-06-01

    Luminescent properties are affected by lattice environment of luminescence centers. The lattice environment of emission centers can be effectively changed due to the diversity of lattice environment in multiple site structure. But how precisely control the doped ions enter into different sites is still very difficult. Here we proposed an example to demonstrate how to control the doped ions into the target site for the first time. Alkali metal ions doped ZnMoO4:Bi3+, Eu3+ phosphors were prepared by the conventional high temperature solid state reaction method. The influence of alkali metal ions as charge compensators and remote control devices were respectively observed. Li+ and K+ ions occupy the Zn(2) sites, which impede Eu and Bi enter the adjacent Zn(2) sites. However, Na+ ions lie in Zn(1) sites, which greatly promoted the Bi and Eu into the adjacent Zn(2) sites. The Bi3+ and Eu3+ ions which lie in the immediate vicinity Zn(2) sites set off intense exchange interaction due to their short relative distance. This mechanism provides a mode how to use remote control device to enhance the energy transfer efficiency which expected to be used to design efficient luminescent materials.

  6. Binding S0.6 Se0.4 in 1D Carbon Nanofiber with CS Bonding for High-Performance Flexible Li-S Batteries and Na-S Batteries.

    Science.gov (United States)

    Yao, Yu; Zeng, Linchao; Hu, Shuhe; Jiang, Yu; Yuan, Beibei; Yu, Yan

    2017-03-29

    A one-step synthesis procedure is developed to prepare flexible S0.6 Se0.4 @carbon nanofibers (CNFs) electrode by coheating S0.6 Se0.4 powder with electrospun polyacrylonitrile nanofiber papers at 600 °C. The obtained S0.6 Se0.4 @CNFs film can be used as cathode material for high-performance Li-S batteries and room temperature (RT) Na-S batteries directly. The superior lithium/sodium storage performance derives from its rational structure design, such as the chemical bonding between Se and S, the chemical bonding between S0.6 Se0.4 and CNFs matrix, and the 3D CNFs network. This easy one-step synthesis procedure provides a feasible route to prepare electrode materials for high-performance Li-S and RT Na-S batteries.

  7. Synthesis and X-ray Powder Diffraction Characterization of A New Niobate Crystal NaBa2 Li0.6 Nb4.8 Zn0.2 O15

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new niobate compound was synthesized for the first time in Na2 O-BaO-Li2 O-ZnO-Nb2 O5 system by solid state reaction.The new compound was studied by X- ray diffraction, electron probe, X- ray microanalysis, chemical analysis and SEM.The result of X-ray powder diffraction shows that NaBa2 Li0.6 Nb4.8 Zn0.2 O15 belongs to orthorhombic tungsten bronze structure, with .space group Pba2 ( 32 ) and lattice parameters a =12.6115(2)(A), b = 12.4981 (2)(A), C = 3.9479(3)(A).The X-ray powder diffraction lines of the compound were well indexed.

  8. Oscillation Frequencies for Simultaneous Trapping of Heteronuclear Alkali Atoms

    CERN Document Server

    Kaur, Kiranpreet; Arora, Bindiya

    2016-01-01

    We investigate oscillation frequencies for simultaneous trapping of more than one type of alkali atoms in a common optical lattice. For this purpose, we present numerical results for magic trapping conditions, where the oscillation frequencies for two different kind of alkali atoms using laser lights in the wavelength range 500-1200 nm are same. These wavelengths will be of immense interest for studying static and dynamic properties of boson-boson, boson-fermion, fermion-fermion, and boson-boson-boson mixtures involving different isotopes of Li, Na, K, Rb, Cs and Fr alkali atoms. In addition to this, we were also able to locate a magic wavelength around 808.1 nm where all the three Li, K, and Rb atoms are found to be suitable for oscillating at the same frequency in a common optical trap.

  9. Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh PA 15261 USA; Gu, Meng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Haiyan [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 China; Luo, Langli [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Shao, Yuyan [Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Gao, Fei [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor MI 48109 USA; Du, Yingge [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Mao, Scott X. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh PA 15261 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2016-04-13

    Reversible insertion and extraction of ionic species into a host lattice governs the basic operating principle for both rechargeable battery (such as lithium batteries) and electrochromic devices (such as ANA Boeing 787-8 Dreamliner electrochromic window). Intercalation and/or conversion are two fundamental chemical processes for some materials in response to the ion insertion. The interplay between these two chemical processes has never been established. It is speculated that the conversion reaction is initiated by ion intercalation. However, experimental evidence of intercalation and subsequent conversion remains unexplored. Here, using in situ HRTEM and spectroscopy, we captured the atomistic conversion reaction processes during lithium, sodium and calcium ion insertion into tungsten trioxide (WO3) single crystal model electrodes. An intercalation step right prior to conversion is explicitly revealed at atomic scale for the first time for these three ion species. Combining nanoscale diffraction and ab initio molecular dynamics simulations, it is found that, beyond intercalation, the inserted ion-oxygen bonding formation destabilized the transition-metal framework which gradually shrunk, distorted and finally collapsed to a pseudo-amorphous structure. This study provides a full atomistic picture on the transition from intercalation to conversion, which is of essential for material applications in both secondary ion batteries and electrochromic devices.

  10. Preparation and Characterization of Lead-Free (K0.5Na0.5NbO3-LiNbO3 and (K0.5Na0.5NbO3-LiTaO3 Ferroelectric Single Crystals

    Directory of Open Access Journals (Sweden)

    Tao Chu

    2014-07-01

    Full Text Available Lead-free (K0.5Na0.5NbO3-LiNbO3 (KNN-LN and (K0.5Na0.5NbO3-LiTaO3 (KNN-LT ferroelectric single crystals, with the dimensions of 11 ´ 11 ´ 5 mm3 and 5 ´ 5 ´ 3 mm3, were grown successfully using the top-seeded solution growth (TSSG method, respectively. The crystal structures were analyzed by means of X-ray diffraction, showing orthorhombic symmetry for KNN-LN single crystals and coexistence of orthorhombic and tetragonal symmetry for KNN-LT single crystals at room temperature. The orthorhombic-tetragonal (TO-T and tetragonal-cubic (TC phase transition temperatures are 195 °C and 420 °C for the KNN-LN single crystals, and 130 °C and 280 °C for KNN-LT single crystals, respectively. The remnant polarization (Pr is 27.8 μC/cm2 with a coercive field (Ec of 17 kV/cm for KNN-LT single crystals. The two single crystals showed 90° domains with layers in (parallel straight lines, while KNN-LT single crystals have a larger domain region. The actual stoichiometry deviates easily from the original composition in the process of crystal growth, thus, an appropriate nominal composition and optimized crystal growth method is desired to get high-quality crystals in the future.

  11. Inosina extracelular como intermediária na silnalização do TNF-alfa em células de sertóli em cultura

    OpenAIRE

    Luiz Fernando de Souza

    2004-01-01

    As purinas extracelulares ATP e adenosina têm sido extensivamente estudadas em diferentes modelos e tipos celulares na modulação de várias respostas fisiológicas e patológicas. No entanto, a inosina extracelular, produto da degradação da adenosina pela Adenosina Deaminase (ADA), foi considerada por muito tempo um simples metabólito inativo. Recentemente, diversos trabalho têm demonstrado que este nucleosídeo possui importante papel na regulação de inúmeros processos. As células de Sertóli são...

  12. The spectroscopic studies of gel-derived glasses and glass-ceramics in the Na 2O (Li 2O)-B 2O 3-P 2O 5-SiO 2 system

    Science.gov (United States)

    Adamczyk, A.; Handke, M.

    2001-09-01

    The gel-derived borophosphosilicate materials containing Na + and Li + cations by FTIR spectroscopy and X-ray diffraction methods were studied. The results obtained enabled one to define the structure of samples containing up to 10% mol. BPO 4. The alkali ions, Na + and Li + can be treated as borate and phosphate network depolymerisators. There is also no evidence of boron coordination changes, from trigonal to tetrahedral caused by Na 2O and Li 2O oxide addition to pure borophosphosilicate materials. Concurrently, the silicate network is left unchanged. The bands due to the B-O bond vibrations are not observed in the IR spectra of the crystalline materials, obtained by heating samples of composition analogous to amorphous ones. Such bands are present in the spectra of crystalline alkali-free samples of the same BPO 4 content. The amorphous and crystalline alkali-containing samples by the EDX microprobe were also studied. The results obtained showed that the heating of alkali borophosphosilicate samples caused the volatilisation of boron, phosphorus and alkali compounds from the structures studied. Such a process does not take place in case of alkali-free samples.

  13. Spin dimer and classical spin analyses of the ordered magnetic structures of alkali iron pyrophosphates NaFeP(2)O(7) and LiFeP(2)O(7).

    Science.gov (United States)

    Whangbo, Myung-Hwan; Dai, Dadi; Koo, Hyun-Joo

    2004-10-07

    The magnetic oxides NaFeP(2)O(7) and LiFeP(2)O(7), made up of FeO(6) octahedra containing high-spin Fe(3+)(d(5)) ions, undergo a three-dimensional antiferromagnetic ordering at low temperatures. The strengths of various Fe-O...O-Fe super-superexchange interactions of NaFeP(2)O(7) and LiFeP(2)O(7) were estimated on the basis of spin dimer analysis to probe the nature of their ordered magnetic structures. It is found that the critical factor governing the strength of a Fe-O...O-Fe super-superexchange interaction is not the Fe...Fe distance but the O...O distance. Using the spin exchange parameters thus obtained, the total spin exchange interaction energies were calculated for various ordered spin arrangements of NaFeP(2)O(7) and LiFeP(2)O(7) on the basis of classical spin analysis to confirm that the observed magnetic structures are the magnetic ground states.

  14. Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O{sub 3} lead-free piezoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Marcos, F., E-mail: fernando.rubio-marcos@unilim.fr [Laboratoire de Science des Procedes Ceramiques et de Traitements de Surface, UMR 6638 CNRS, Universite de Limoges, Centre Europeen de la Ceramique, 12, rue Atlantis, 87068 Limoges Cedex (France); Marchet, P. [Laboratoire de Science des Procedes Ceramiques et de Traitements de Surface, UMR 6638 CNRS, Universite de Limoges, Centre Europeen de la Ceramique, 12, rue Atlantis, 87068 Limoges Cedex (France); Vendrell, X. [Grup de Quimica de l' Estat Solid, Departament de Quimica Inorganica, Universitat de Barcelona, 08028 Barcelona (Spain); Romero, J.J. [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Remondiere, F. [Laboratoire de Science des Procedes Ceramiques et de Traitements de Surface, UMR 6638 CNRS, Universite de Limoges, Centre Europeen de la Ceramique, 12, rue Atlantis, 87068 Limoges Cedex (France); Mestres, L. [Grup de Quimica de l' Estat Solid, Departament de Quimica Inorganica, Universitat de Barcelona, 08028 Barcelona (Spain); Fernandez, J.F. [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain)

    2011-09-01

    Highlights: {center_dot} MnO doping effects on structure and properties of (K,Na,Li)(Nb,Ta,Sb)O{sub 3} piezoceramics. {center_dot} The structure changes towards an orthorhombic symmetry for higher MnO concentrations. {center_dot} High doping levels induce a tetragonal tungsten-bronze secondary phase. {center_dot} Mn{sup 2+} doping modifies the phase transition temperature and the piezoelectric properties. {center_dot} Manganese doping increases the mechanical quality factor Q{sub m}. - Abstract: Mn{sup 2+}-doped (K,Na,Li)(Nb,Ta,Sb)O{sub 3} lead-free piezoelectric ceramics have been prepared by a conventional sintering technique. The effects of Mn{sup 2+} doping on the phase structure, microstructure and ferro-piezoelectric properties of the ceramics have been evaluated. MnO doping modifies the (K,Na,Li)(Nb,Ta,Sb)O{sub 3} structure, giving rise to the appearance of a TTB-like secondary phase and to changes on the orthorhombic to tetragonal phase transition temperature. The modification of this temperature induces a reduction of the piezoelectric constants, which is accompanied by an increase on the mechanical quality factor. Mn{sup 2+} ions incorporate into the perovskite structure in different off ways depending on their concentration.

  15. Actinide burner fuel: Potential compositions based on the thermodynamic evaluation of MF-PuF 3 (M = Li, Na, K, Rb, Cs) and LaF 3-PuF 3 systems

    Science.gov (United States)

    Beneš, O.; Konings, R. J. M.

    2008-07-01

    In previous studies a thermodynamic description of the LiF-NaF-KF-RbF-CsF-LaF 3 system was presented. In order to add PuF 3 to this system the assessments of LiF-PuF 3, NaF-PuF 3, KF-PuF 3, RbF-PuF 3, CsF-PuF 3 and LaF 3-PuF 3 binary phase diagrams have been made. In case of the LiF-PuF 3 and NaF-PuF 3 the assessments have been based on known experimental data. The other binary systems have not been measured yet and the thermodynamic description has been made using the excess parameters from the previously assessed binaries containing LaF 3, which is considered as a proxy compound for PuF 3. The main aim of this study is to analyze potential compositions for a molten salt fast burner fuel.

  16. A literatura na formação de futuros cientistas: lição de Frankenstein

    Directory of Open Access Journals (Sweden)

    Valdir Reginato

    Full Text Available Resumo Os educadores voltados para a formação universitária na área da saúde, que, desde o início do século passado até o presente momento, priorizaram o caráter técnico profissionalizante, têm, mais recentemente, chamado a atenção para a necessidade de propostas educacionais que possam oferecer um ensino que contemple uma abordagem mais ampla do ser humano e suas relações sociais. A esse respeito, particular interesse se apresenta quando da formação de alunos que desenvolverão suas atividades como futuros cientistas. Com esse enfoque, empreendemos um estudo com a implantação de uma metodologia – desenvolvida por um centro de humanidades acadêmico – que privilegia a literatura como fonte de educação. Realizado a partir da disciplina de filosofia, o método foi aplicado aos estudantes de primeiro ano do curso de ciências biomédicas de uma universidade pública do Estado de São Paulo. Frankenstein , de Mary Shelley, foi a obra escolhida para cumprir o objetivo de estabelecer um ponto de reflexão pelo qual se pudesse ampliar o foco exclusivamente técnico-profissional. O material para análise foi extraído de relatos feitos em aula e relatórios dos estudantes, mais anotações dos cadernos de campo do professor e monitor examinados de acordo com análise da hermenêutica fenomenológica. O resultado obtido refletiu questões e inquietações vivenciadas no cotidiano dos estudantes, apontando para a identificação dos seguintes tópicos: impacto da metodologia; reflexão pessoal e compartilhada; noção ampliada do conceito de ciência ; despertar da responsabilidade individual e social que o cientista deve ter. Em conclusão, a metodologia empregada teve seus objetivos cumpridos e os resultados deverão servir de base para novos estudos.

  17. Corrosion of atomized Fe40Al based intermetallics in molten Na{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, M.A. [Instituto Mexicano del Petroleo, Eje Lazaro Cardenaz 135, Mexico D.F. (Mexico); Carbajal De la Torre, G.; Martinez-Villafane, A.; Chacon-Nava, J.G. [CIMAV, Miguel de Cervantes 120, 31109, Chihuahua (Mexico); Porcayo-Calderon, J. [IIE, Av. Reforma 113, Temixco, Mor. (Mexico); Casales, M. [UNAM, Centro de Ciencias Fisicas, Av. Universidad s/n, Cuernavaca, Mor. (Mexico); Gonzalez-Rodriguez, J.G. [UAEM, FCQI-CIICAP, Av. Universidad 1001, 31109, Chihuahua (Mexico)

    2003-05-01

    The hot corrosion resistance of sprayed and atomized Fe-40at.%Al, Fe40Al+0.1B and Fe40Al+0.1B+10Al{sub 2}O{sub 3} intermetallic materials have been evaluated in molten Na{sub 2}SO{sub 4} at 900 and 1000 C using polarization curves and polarization resistance measurements. The results are supported by electron microscopy and microchemical studies. The tests lasted 5 days. At 900 C the Fe40Al material had the lowest corrosion rate (0.03 mA/cm{sup 2}), and the Fe40Al+0.1B+10Al{sub 2}O{sub 3} exhibited the highest. At 1000 C, the Fe40Al+0.1B material, was the material that had the best corrosion resistance with less than 0.02 mA/cm{sup 2} in the first 50 hours, whereas the Fe40Al presented the worst corrosion resistance with 0.20 mA/cm{sup 2}. The results are discussed in terms of the establishment of an Al{sub 2}O{sub 3} layer that gives corrosion resistance to the materials and promotes an Al depletion in the FeAl matrix which allows the sulfides formation. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Die Hochtemperaturkorrosionsbestaendigkeit von pulververduesten intermetallischen Verbindungen der Zusammensetzung Fe-40at.%Al, Fe40Al+0.1B und Fe40Al+0.1B+10Al{sub 2}O{sub 3} wurde in geschmolzenem Na{sub 2}SO{sub 4} bei 900 und 1000 C anhand von Polarisationskurven und Messungen des Polarisationswiderstandes charakterisiert. Die Ergebnisse werden durch elektronenmikroskopische und mikrochemische Untersuchungen unterstuetzt. Die Untersuchungen dauerten fuenf Tage. Bei 900 C hatte die Fe40Al Verbindung die geringste Korrosionsrate (0,03 mA/cm{sup 2}), und die Fe40Al+0.1B+10Al{sub 2}O{sub 3} Verbindung die hoechste. Bei 1000 C war die Fe40Al+0.1B Verbindung mit weniger als 0,02 mA/cm{sup 2} waehrend der ersten 50 Stunden diejenige mit der hoechsten Korrosionsbestaendigkeit, wohingegen die Fe40Al Verbindung mit 0,20 mA/cm{sup 2} die schlechteste Korrosionsbestaendigkeit hatte. Die Ergebnisse werden anhand der Bildung einer Al{sub 2}O{sub 3} Schicht

  18. Properties of atomic intercalated boron nitride K4 type crystals

    OpenAIRE

    Itoh, Masahiro; Takami, Seiichi; Kawazoe, Yoshiyuki; Adschiri, Tadafumi

    2010-01-01

    The stability of atomic intercalated boron nitride K4 crystal structures, XBN (X=H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ga, Ge, As, Se, Br, Rb or Sr) is evaluated by the geometric optimization and frozen phonon calculations based on the first principles calculations. NaBN, MgBN, GaBN, FBN and ClBN are found to be stable. NaBN, GaBN, FBN and ClBN are metallic, whereas MgBN is semiconducting.

  19. Properties of atomic intercalated carbon K4 crystals

    OpenAIRE

    Itoh, Masahiro; Takami, Seiichi; Kawazoe, Yoshiyuki; Adschiri, Tadafumi

    2009-01-01

    The stability of atomic intercalated carbon $K_{4}$ crystals, XC$_{2}$ (X=H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ga, Ge, As, Se, Br, Rb or Sr) is evaluated by geometry optimization and frozen phonon analysis based on first principles calculations. Although C $K_{4}$ is unstable, NaC$_{2}$ and MgC$_{2}$ are found to be stable. It is shown that NaC$_{2}$ and MgC$_{2}$ are metallic and semi conducting, respectively.

  20. 铝锂合金中原子簇聚和有序化的计算机模拟研究%Investigations on Ordering and Atom Clustering in Al-Li Alloy by Computer Simulation

    Institute of Scientific and Technical Information of China (English)

    李晓玲; 陈铮; 王永欣; 胡明娟

    2006-01-01

    通过计算机模拟对铝锂合金时效过程中的有序化和原子簇聚进行了研究.长程序参数和成分偏离序参数通过锂原子格点占位几率计算得出.结果表明:随合金成分由相图上的亚稳区向失稳区转变,有序化与原子簇聚过程相比逐渐加快,而相变孕育期逐渐缩短.%Investigations on the ordering and atom clustering in aged binary Al-Li alloy have been carried out by computer simulation. The long range order parameter (lro.) and composition deviation order parameter were calculated from single-site occupation probabilities of Li atom. The results show that as the composition of the alloy increases from metastable region to instable region in the phase diagram ordering occurs faster than atom clustering gradually and the incubation period of the phase transformation is shortened.

  1. Vibronic Transitions in the X-Sr Series (X=Li, Na, K, Rb): on the Accuracy of Nuclear Wavefunctions Derived from Quantum Chemistry

    Science.gov (United States)

    Meyer, Ralf; Pototschnig, Johann V.; Hauser, Andreas W.; Ernst, Wolfgang E.

    2016-06-01

    Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. The preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. On the theoretical side, highly accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. Particularly problematic is the correct description of potential features at large intermolecular distances. Franck-Condon overlap integrals for nuclear wavefunctions in barely bound vibrational states are extremely sensitive to inaccuracies of the potential at long range. In this study, we compare the predictions of common, wavefunction-based ab initio techniques for a known de-excitation mechanism in alkali-alkaline earth dimers. It is the aim to analyze the predictive power of these methods for a preliminary evaluation of potential cooling mechanisms in heteronuclear open shell systems which offer the experimentalist an electric as well as a magnetic handle for manipulation. The series of X-Sr molecules, with X = Li, Na, K and Rb, has been chosen for a direct comparison. Quantum degenerate mixtures of Rb and Sr have already been produced, making this combination very promising for the production of ultracold molecules. B. Pasquiou, A. Bayerle, S. M. Tzanova, S. Stellmer, J. Szczepkowski, M. Parigger, R. Grimm, and F. Schreck, Phys. Rev. A, 2013, 88, 023601

  2. Implementing quantum electrodynamics with ultracold atomic systems

    CERN Document Server

    Kasper, V; Jendrzejewski, F; Oberthaler, M K; Berges, J

    2016-01-01

    We discuss the experimental engineering of model systems for the description of QED in one spatial dimension via a mixture of bosonic $^{23}$Na and fermionic $^6$Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson-fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose-Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system's parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using function...

  3. Modification of thermal and electronic properties of bilayer graphene by using slow Na+ ions

    Science.gov (United States)

    Ryu, Mintae; Lee, Paengro; Kim, Jingul; Park, Heemin; Chung, Jinwook

    2016-12-01

    Bilayer graphene (BLG) has an extensive list of industrial applications in graphene-based nanodevices such as energy storage devices, flexible displays, and thermoelectric devices. By doping slow Na+ ions on Li-intercalated BLG, we find significantly improved thermal and electronic properties of BLG by using angle-resolved photoemission and high-resolution core level spectroscopy (HRCLS) with synchrotron photons. Our HRCLS data reveal that the adsorbed Na+ ions on a BLG produced by Li-intercalation through single layer graphene (SLG) spontaneously intercalate below the BLG, and substitute Li atoms to form Na-Si bonds at the SiC interface while preserving the same phase of BLG. This is in sharp contrast with no intercalation of Na+ ions on SLG though neutral Na atoms intercalate. The Na+-induced BLG is found to be stable upon heating up to T = 400 °C, but returns to SLG when heated at T d = 500 °C. The evolution of the π-bands upon doping the Na+ ions followed by thermal annealing shows that the carrier concentration of the π-band may be artificially controlled without damaging the Dirac nature of the π-electrons. The doubled desorption temperature from that (T d = 250 °C) of the Na-intercalated SLG together with the electronic stability of the Na+-intercalated BLG may find more practical and effective applications in advancing graphene-based thermoelectric devices and anode materials for rechargeable batteries.

  4. Formation and Characterization of Li0.24+2xLa0.59-xMxTiO3-LaPO4 (M=K, Na) System

    Institute of Scientific and Technical Information of China (English)

    Liu Huiyong; Wang Wenji

    2005-01-01

    Li0.24+2xLa0.59-xMxTiO3-LaPO4 (M=K, Na) fast ionic conductor was synthesized by high temperature solid state reaction. A.C. Impedance measurements show that the compositions of system have better conductivities in low doping content of Na+ and K+, as the doping content increases, the conductivity goes down in Na+ doping system. But in doping K+ system, the conductivity goes down and then goes up with the increasing content of K+. The activation energies of different doped ions are about 20 kJ·mol-1 in the temperature range of 25~400 ℃. X-ray powder diffraction shows that the doped Na+ and K+ would not affect the structure of compositions in the system. The main phase is Li0.24+2xLa0.59-xMxTiO3 perovskite solid solution, LaPO4 as a second phase also can be found. With increasing the content of M (x>0.04), unknown phase appears. IR measurement also indicates that the structure of compositions in the system would not be affected by doping alkali ion.

  5. High-pressure synthesis and structural characterization of the type II clathrate compound Na(30.5)Si(136) encapsulating two sodium atoms in the same silicon polyhedral cages.

    Science.gov (United States)

    Yamanaka, Shoji; Komatsu, Masaya; Tanaka, Masashi; Sawa, Hiroshi; Inumaru, Kei

    2014-05-28

    Single crystals of sodium containing silicon clathrate compounds Na8Si46 (type I) and NaxSi136 (type II) were prepared from the mixtures of NaSi and Si under high-pressure and high-temperature conditions of 5 GPa at 600-1000 °C. The type II crystals were obtained at relatively low-temperature conditions of 700-800 °C, which were found to have a Na excess composition Na30.5Si136 in comparison with the compounds NaxSi136 (x ≤ 24) obtained by a thermal decomposition of NaSi under vacuum. The single crystal study revealed that the Na excess type II compound crystallizes in space group Fd3̅m with a lattice parameter of a = 14.796(1) Å, slightly larger than that of the ambient phase (Na24Si136), and the large silicon hexakaidecahedral cages (@Si28) are occupied by two sodium atoms disordered in the two 32e sites around the center of the @Si28 cages. At temperatures primitive cell with space group P213, and the Na atoms in the @Si28 cages are aligned as Na2 pairs. The temperature dependence of the magnetic susceptibility of Na30.5Si136 suggests that the two Na ions (2 Na(+)) in the cage are changed to a Na2 molecule. The Na atoms of Na30.5Si136 can be deintercalated from the cages topochemically by evacuation at elevated temperatures. The single crystal study of the deintercalated phases NaxSi136 (x = 25.5 and 5.5) revealed that only excess Na atoms have disordered arrangements.

  6. Revision of the Li13Si4 structure

    Directory of Open Access Journals (Sweden)

    Thomas F. Fässler

    2013-12-01

    Full Text Available Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li–Si system is the phase Li13Si4 (tridecalithium tetrasilicide, the structure of which has been determined previously [Frank et al. (1975. Z. Naturforsch. Teil B, 30, 10–13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i the introduction of a split position for one Li site [occupancy ratio 0.838 (7:0.162 (7], (ii the anisotropic refinement of atomic displacement parameters for all atoms, and (iii a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si–Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si–Si dumbbells at z = 0.5.

  7. Synthèse, étude et validation structurale d'un triple bis-molybdate en couches, Ag0.60Na0.40Fe(MoO42 lié à yavapaiite

    Directory of Open Access Journals (Sweden)

    Amira Souilem

    2016-05-01

    Full Text Available The title compound, Ag0.60Na0.40Fe(MoO42 {silver sodium iron(III bis[molybdate(VI]}, was synthesized by a solid-state reaction. The structure is built up from FeO6 octahedra and MoO4 tetrahedra sharing corners to form a two-dimensional framework parallel to the (001 plane. The occupationally disordered (Ag/Na+ cations are located in the interlayer space. These [Fe(MoO42−]n layers are similar to those in the isotypic yavapaiite-related structure of NaFe(MoO42. All atoms are on general positions except for Fe (site symmetry -1 and Ag/Na (site symmetry 2. The Ag/Na occupancies of the latter site were refined to 0.597 (4:0.403 (5. The title structure is compared to similar structures.

  8. Desorption of alkali atoms from 4He nanodroplets.

    Science.gov (United States)

    Hernando, Alberto; Barranco, Manuel; Pi, Martí; Loginov, Evgeniy; Langlet, Marina; Drabbels, Marcel

    2012-03-21

    The dynamics following the photoexcitation of Na and Li atoms located on the surface of helium nanodroplets has been investigated in a joint experimental and theoretical study. Photoelectron spectroscopy has revealed that excitation of the alkali atoms via the (n + 1)s ←ns transition leads to the desorption of these atoms. The mean kinetic energy of the desorbed atoms, as determined by ion imaging, shows a linear dependence on excitation frequency. These experimental findings are analyzed within a three-dimensional, time-dependent density functional approach for the helium droplet combined with a Bohmian dynamics description of the desorbing atom. This hybrid method reproduces well the key experimental observables. The dependence of the observables on the impurity mass is discussed by comparing the results obtained for the (6)Li and (7)Li isotopes. The calculations show that the desorption of the excited alkali atom is accompanied by the creation of highly non-linear density waves in the helium droplet that propagate at supersonic velocities.

  9. Ax(H3O)2-xMn5(HPO3)6 (A = Li, Na, K and NH4): open-framework manganese(ii) phosphites templated by mixed cationic species.

    Science.gov (United States)

    Orive, Joseba; Fernández de Luis, Roberto; Fernández, Jesús Rodríguez; Lezama, Luis; Arriortua, María I

    2016-07-26

    Ax(H3O)2-xMn5(HPO3)6 (A = Li, x = 0.55 (1-Li); A = Na, x = 0.72 (2-Na); A = K, x = 0.30 (3-K); A = NH4, x = 0.59 (4-NH4)) phases were synthesized by employing mild hydrothermal conditions. 1-Li was studied by single crystal X-ray diffraction, while sodium, potassium and ammonium containing analogues were obtained as polycrystalline samples and characterized by powder X-ray diffraction. The four compounds were characterized by ICP-Q-MS, thermal analysis and XPS, IR, UV/Vis and EPR spectroscopy. Single crystal data indicate that 1-Li crystallizes in the P3[combining macron]c1 space group with lattice parameters a = 10.3764(1) Å and c = 9.4017(1) Å with Z = 2. The crystal structure of these phases is constituted by a three-dimensional [Mn(ii)5(HPO3)6](2-) anionic skeleton templated by alkali metal and ammonium cations together with protonated water molecules. Such an inorganic framework is formed by layers of edge-sharing MnO6 octahedra placed in the ab plane and joined along the c direction through phosphite pseudotetrahedra. The sheets display 12-membered ring channels parallel to the c-axis, ca. 5 Å in diameter, where the extraframework species display a strong disorder. EPR measurements point to the existence of short range ferromagnetic interactions around 12 K. Magnetic susceptibility and heat capacity measurements show that all the compounds exhibit long range antiferromagnetic order below circa 4 K, with a significant magnetocaloric effect around the Neel temperature.

  10. Synthesis and structure of two new quaternary nitrides: Li{sub 3}Sr{sub 2}MN{sub 4} (M = Nb, Ta)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.Z.; Eick, H.A. [Michigan State Univ., East Lansing, MI (United States)

    1997-04-01

    Two new quaternary nitrides, Li{sub 3}Sr{sub 2}MN{sub 4} (M = Nb, Ta) have been synthesized from Li, Sr, and Nb or Ta metals under a flowing Ar-NH{sub 3} atmosphere at 800{degrees}C under ambient pressure. The structures, determined by single crystal X-ray diffraction, are orthorhombic, space group Pnnm (No. 58) with Z=4, and have lattice parameters a = 8.713(6) {angstrom}, b=9.007(4) {angstrom}, c=7.006(5) {angstrom} and a=8.700(6) {angstrom}, b=9.004(4) {angstrom}, c=7.000(3) {angstrom} for M = Nb and Ta, respectively. Refinement based upon F yielded R=0.033 and R{sub w} = 0.036 for M = Nb and R=0.035 and R{sub w}=0.045 for M = Ta. The structures are isotypic with Na{sub 2}Li{sub 3}MO{sub 4}, M = Fe, Ga. The M and two independent Li atoms are tetrahedrally coordinated by N atoms. Each MN{sub 4} tetrahedron connects three Li(2)N{sub 4} tetrahedra, one by edge-sharing and two by corner-sharing, to form a two-dimensional layer in the bc plane. These layers are linked together by Li(1) atoms to form the three-dimensional structure. The two Sr atoms occupy channels formed by N atoms along the c direction. Crystalline Li{sub 3}Sr{sub 2}NbN{sub 4} was synthesized by heating a Li{sub 3}N-Sr{sub 2}NbN{sub 3} mixture at 750{degrees}C under an Ar atmosphere. Magnetic susceptibility data for Li{sub 3}Sr{sub 2}NbN{sub 4} between 4 and 300 K exhibit temperature independent paramagnetism.

  11. Electric properties of textured (K$_{0.44}$Na$_{0.52}$Li$_{0.04}$)(Nb$_{0.86}Ta$_{0.10}$Sb$_{0.04}$)O$_3$ thick film prepared by screen printing method

    Indian Academy of Sciences (India)

    FANG FU; JIWEI ZHAI; ZHENGKUI XU

    2016-08-01

    Textured (K$_{0.44}$Na$_{0.52}$Li$_{0.04}$) (Nb$_{0.86}$Ta$_{0.10}$Sb$_{0.04}$)O$_3$ thick film was fabricated by the screen printing method with plate-like NaNbO3 particles as template. Thick film with 75% grain orientation was prepared. Remnant polarization and coercive field observed from the P–E loops of textured thick film were 3.6 $\\mu$C cm$^{−2}$ and 21 kV cm$^{−1}$, respectively. Textured (K$_{0.44}$Na$_{0.52}$Li$_{0.04}$) (Nb$_{0.86}$Ta$_{0.10}$Sb$_{0.04}$)O$_{3}$ thick film exhibited diffusion behaviour by analysing the temperature dependence of permittivity and loss tangent. The result of leakage current density showed a conduction mechanism of Schottky emission. Piezoelectric (PZT) properties of the thick film were characterized by the relationship of unipolar strain and applied electric field and the PZT constant $d^∗_{33}$ of textured thick film reached to 150 pm V$^{−1}$. Nonlinear PZT property of the thick film was investigated by Rayleigh law.

  12. High temperature phase stability in Li{sub 0.12}Na{sub 0.88}NbO{sub 3}: A combined powder X-ray and neutron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S. K.; Krishna, P. S. R.; Shinde, A. B.; Jayakrishnan, V. B.; Mittal, R.; Sastry, P. U.; Chaplot, S. L. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-09-07

    The phase stabilities of ecofriendly piezoelectric material of lithium doped sodium niobate for composition Li{sub 0.12}Na{sub 0.88}NbO{sub 3} (LNN12) have been investigated by a combination of powder X-ray and neutron diffraction techniques in the temperature range of 300–1100 K. We observed interesting changes with appearance or disappearance of the super-lattice reflections in the powder diffraction patterns. Unambiguous experimental evidence is shown for coexistence of paraelectric and ferroelectric orthorhombic phases in the temperature range of 525 K to 675 K. We identified the correct crystal structure of LNN12 with temperature and correlated it with observed anomaly in the physical properties. Identification of crystal structure also helps in the mode assignments in Raman and infrared spectroscopies. We argued that application of chemical pressure as a result of Li substitution in NaNbO{sub 3} matrix favors the freezing of zone centre phonons in contrast to the freezing of zone boundary phonons in pure NaNbO{sub 3} with the variation of temperature.

  13. Luminescence properties of a new red emitting Eu3+-doped alkaline-earth fluoborate phosphor: BaCa(1-2x)BO3F:xEu3+, xM+ (M=Li, Na, K)

    Institute of Scientific and Technical Information of China (English)

    SUN Jiayue; LAI Jinli; SUN Jianfeng; DU Haiyan

    2011-01-01

    A series of new red-emitting BaCa1-2xBO3F:xEu3+, xM+ (M=Li, Na, K) phosphors were synthesized by the solid-reaction method.X-ray diffraction (XRD), diffuse reflection (UV-vis) and photoluminescence spectra were utilized to characterize the crystallization process,structure and luminescence properties of the as-synthesized phosphors. The XRD results indicated that the sample began to crystallize at 800 ℃,and single-phase BaCaBO3F was fully obtained after annealing at 1000 C. The charge compensated behaviors were investigated in this paper by considering different cations like Li+, Na+ and K- acting as the charge compensator. The as-prepared phosphors had better emission properties, and the two characteristic emission lines peaking at 590 and 615 nm could be obtained upon 394, 463 and 532 nm excitation with the chromaticity coordinates of (0.596, 0.391), which were due to 5D0-7F1 and 5D0-TF2 transitions of Eu3+ ions. Further, the concentration quenching and corresponding luminescence mechanisms of BaCa1-2xBO3F:xEu3+, xNa+ phosphors were also discussed.

  14. A novel class of compounds--superalkalides: M⁺(en)₃M'₃O⁻ (M, M' = Li, Na, and K; en = ethylenediamine)-with excellent nonlinear optical properties and high stabilities.

    Science.gov (United States)

    Mai, Jinmei; Gong, Shida; Li, Nan; Luo, Qiong; Li, Zhiru

    2015-11-21

    With the aid of ab initio calculations at the MP2 level of theory, we designed a novel class of inorganic salts, M(+)(en)3M3'O(-) (M, M' = Li, Na, and K), by using the M3'O superalkalis. These compounds are the first examples of inorganic salts wherein the superalkali occupies the anionic site, and termed superalkalides. The electronic structural features of the M(+)(en)3M3'O(-) superalkalides are very similar to those of the corresponding M(+)(en)3M'(-) alkalides which have been reported by Zurek (J. Am. Chem. Soc., 2011, 133, 4829). In this study, the calculated NLO properties of M(+)(en)3M3'O(-) and M(+)(en)3M'(-) (M, M' = Li, Na, and K) show that both superalkalides and alkalides have significantly large first hyperpolarizabilities (β0) with the values in the range of 7.80 × 10(3) to 9.16 × 10(4) a.u. and 7.95 × 10(3) to 1.84 × 10(5) a.u., respectively. Computations on the stabilities of M(+)(en)3M3'O(-) and M(+)(en)3M'(-) demonstrate that the M(+)(en)3M3'O(-) superalkalides are preferably stable than the corresponding M(+)(en)3M'(-) alkalides because of the presence of hydrogen bonds in M(+)(en)3M3'O(-). Therefore, the designed superalkalides, M(+)(en)3M3'O(-) (M, M' = Li, Na, and K), with excellent nonlinear optical properties and high stabilities are greatly promising candidates for NLO materials. We hope that this article could attract more research interest in superatom chemistry and for further experimental research.

  15. Effect of water coordination on competition between π and non-π cation binding sites in aromatic amino acids: L-phenylalanine, L-tyrosine, and L-tryptophan Li+, Na +, and K+ complexes.

    Science.gov (United States)

    Remko, Milan; Šoralová, Stanislava

    2012-04-01

    Quantum chemistry methods have been applied to charged complexes of the alkali metals Li(+), Na(+), and K(+) with the aromatic amino acids (AAAs) phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp). The geometries of 72 different complexes (Phe·M, Tyr·M, Trp·M, M is Li(+), Na(+), or K(+)) were completely optimized at the B3LYP/6-311+G(d,p) level of density functional theory. The solvent effect on the geometry and stability of individual complexes was studied by making use of a microsolvation model. The interaction enthalpies, entropies, and Gibbs energies of nine different complexes of the systems Phe·M, Tyr·M, and Trp·M (M is Li(+), Na(+), or K(+)) were also determined at the B3LYP density functional level of theory. The calculated Gibbs binding energies of the M(+)-AAA complexes follow the order Phe < Tyr < Trp for all three metal cations studied. Among the three AAAs studied, the indole ring of Trp is the best π donor for alkali metal cations. Our calculations demonstrated the existence of strong cation-π interactions between the alkali metals and the aromatic side chains of the three AAAs. These AAAs comprise about 8% of all known protein sequences. Thus, besides the potential for hydrogen-bond interaction, aromatic residues of Phe, Tyr, and Trp show great potential for π-donor interactions. The existence of cation-π interaction in proteins has also been demonstrated experimentally. However, more complex experimental studies of metal cation-π interaction in diverse biological systems will no doubt lead to more exact validation of these investigations.

  16. Optical absorption and electron spin resonance studies of Cu2+ in Li2O–Na2O–B2O3–As2O3 glasses

    Indian Academy of Sciences (India)

    N Srinivasa Rao; Shashidhar Bale; M Purnima; K Siva Kumar; Syed Rahman

    2005-10-01

    The local structure around Cu2+ ion has been examined by means of electron spin resonance and optical absorption measurements in Li2O–(40 – )Na2O–50B2O3–10As2O3 glasses. The site symmetry around Cu2+ ions is tetragonally distorted octahedral. The ground state of Cu2+ is $d_{x^2–y^2}$. The glass exhibited broad absorption band near infrared region and small absorption band around 548 nm, which was assigned to the ${}^{2}B_{1g} \\rightarrow {}^{2}E_{g}$ transition.

  17. Relaxor Behaviour and Ferroelectric Properties of (Li0.12Na0.88)(Nb0.9-xTa0.10Sbx)O3 Lead-Free Ceramics

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; LI Yong-Xiang; YI Zhi-Guo; WANG Dong; YIN Qing-Rui

    2006-01-01

    @@ New lead-free ceramics (Li0.12Na0.88)(Nb0.9-x Ta0.10 Sbx) O3 (0.01×0.06) are synthesized by solid-state reaction method. The dielectric, piezoelectric and ferroelectric properties of the ceramics are studied. The dielectric constant dependence with temperature and frequency of the ceramic specimen with x = 0.04 shows typical characteristics of relaxor ferroelectrics, and the Vogel-Fulcher relationship is fulfilled. The dielectric behaviour and its relation to the phase transition phenomena are discussed. The polarization hysteresis loops at room temperature are also measured.

  18. Electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Iamsasri, Thanakorn; Jones, Jacob L., E-mail: jacobjones@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Tutuncu, Goknur [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Uthaisar, Chunmanus; Pojprapai, Soodkhet [School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, Nakorn Ratchasima 30000 (Thailand); Wongsaenmai, Supattra [Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand)

    2015-01-14

    The electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary (PPB) were observed using in situ X-ray diffraction. The ratio of monoclinic to tetragonal phase fraction was used as an indicator of the extent and reversibility of the phase transitions. The reversibility of the phase transition was greater in compositions further from the PPB. These results demonstrate that the field-induced phase transition is one of the origins of high piezoelectric properties in lead-free ferroelectric materials.

  19. Clay nanocomposites for use in Li batteries

    Science.gov (United States)

    Moore, Gregory John

    1999-11-01

    Nanocomposites, materials made of more than one component and combined in an ordered manner on the nanometer scale, were synthesized using clay mineral hosts with various types of guests. The guests include polymers such as polyethylene oxide (PEO) and polyaniline (PANI), large molecules such as ethylmethyl sulfone, tetramethylene sulfone, and various length alkylamines. Vanadyl groups (VO 2+) were also incorporated with the clays. The otherwise non-swellable mica clay, synthetic Na-fluorophlogopite, was expanded by intercalation of acidic ions such as Cu2+ and Fe3+. As aqueous solutions, these ions caused the stable fluoromica to go from its dehydrated interlayer spacing of 9.8 A to over 14 A. This clay became a host for many other reactions including swelling with alkylamines to over 25 A. However, despite hydrated Cu2+ ions swelling fluorophlogopite, polymeric species such as PEO or PANI could not be inserted. Another clay that was used for formation of nanocomposites came from a procedure for the synthesis of Li-taeniolite, Li(Mg2Li)Si 4O10F2. The clay was synthesized following a high temperature method that led to a non-reactive product. Instead, a novel precursor route was employed that gave a clay product with a single hydration layer. Various chemical analyses gave a formula of Li0.8(Mg 2.2Li0.8)Si4O10(F1.6O 0.4)·H2O. For the purpose of forming nanocomposite electrolytes, ethylmethyl sulfone was synthesized and incorporated into the clay. For comparison of different shaped sulfones, tetramethylene sulfone also was inserted into the layers for electrolytic studies. To make a polymer-clay electrolyte, polyethylene oxide was intercalated into the Li-taeniolite. All of these new electrolyte materials were characterized using impedance spectroscopy for measurement of their conductivity. Syntheses and analyses are thoroughly discussed for all of these materials. Special attention is placed on powder x-ray diffraction and thermogravimetric techniques to

  20. The influence of isotope substitution of neon atom on the integral cross sections of rotational excitation in Ne-Na2 collisions

    Institute of Scientific and Technical Information of China (English)

    Zang Hua-Ping; Li Wen-Feng; Linghu Rong-Feng; Cheng Xin-Lu; Yang Xiang-Dong

    2011-01-01

    This paper applies the multiple ellipsoid model to the 16Ne (20Ne, 28Ne, 34Ne)-Na2 collision systems, and calculates integral cross sections for rotational excitation at the incident energy of 190 meV. It can be seen that the accuracy of the integral cross sections can be improved by increasing the number of equipotential ellipsoid surfaces. Moreover, by analysing the differences of these integral cross sections, it obtains the change rules of the integral cross sections with the increase of rotational angular quantum number J', and with the change of the mass of isotope substitution neon atom. Finally, the contribution of different regions of the potential to inelastic cross sections for 20Ne-Na2 collision system is investigated at relative incident energy of 190 meV.

  1. Effects of Li Substitution and Sintering Temperature on Properties of Bi0.5(Na,K)0.5TiO3 Lead-Free Piezoelectric Ceramics

    Institute of Scientific and Technical Information of China (English)

    MING Bao-Quan; WANG Jin-Feng; ZANG Guo-Zhong

    2008-01-01

    Bi0.5 (Na0.72K0.28-xLix)0.5 TiO3 (BNKLT-100x) lead-free piezoelectric ceramics are synthesized by conventional solid state sintering techniques. The dielectric and piezoelectric properties of the BNKLT-100x ceramics as a function of Li content are systematically investigated. It is found that not only Li content but also the sintering temperature has a strong effect on the piezoelectric properties of BNKLT. The piezoelectric constant d33 of BNKLT varies from 120 to 252pC/N in the Li content range from 0.03 to 0.16. In the sintering temperature range from 1080 to 1130℃, the d33 value of BNKLT-6 changes from 200pC/N to 252pC/N. The BNKLT-6 sample sintered at 1100℃ has the highest piezoelectric constant d33 Of 252pC/N, with the electromechanical coupling factors kp of 0.32 and kt of 0.44.

  2. High-temperature solution growth and vapour transport equilibration of (1-x)K1-yNaYNbO3-xLiNbO3 lead-free piezo-/ferroelectric single crystals

    Science.gov (United States)

    Wong, Jenny Y. Y.; Zhang, Nan; Ye, Zuo-Guang

    2016-10-01

    In order to develop lead-free piezo-/ferroelectric materials, single crystals of 0.98K0.8Na0.2NbO3-0.02LiNbO3 (KNN-LN) have been grown in the perovskite structure using the high-temperature solution growth method. Dielectric measurements reveal structural phase transitions at TC (cubic to tetragonal)=411 °C and TO-T (tetragonal to orthorhombic)=189 °C, respectively, and an additional phase transition at a lower temperature of -78 °C which corresponds to the transition from the orthorhombic to a rhombohedral phase. Single crystal structural refinements based on X-ray diffraction data indicate that there are no oxygen octahedral tilts present at room temperature and at -103 °C, which suggests that the crystal is K-rich. Composition analysis by energy dispersive spectroscopy and laser ablation - inductively coupled plasma - mass spectrometry confirms the K-rich composition. A vapour transport equilibration technique is successfully developed to optimise the composition of the as-grown crystals by enriching the Li-content and it is demonstrated to be a viable approach to increase the Li-concentration of KNN-LN and other piezo-/ferroelectric crystals.

  3. New Alkali-Metal- and 2-Phenethylamine-Intercalated Superconductors Ax(C8H11N)yFe1-zSe (A = Li, Na) with the Largest Interlayer Spacings and Tc ˜ 40 K

    Science.gov (United States)

    Hatakeda, Takehiro; Noji, Takashi; Sato, Kazuki; Kawamata, Takayuki; Kato, Masatsune; Koike, Yoji

    2016-10-01

    New FeSe-based intercalation superconductors, Ax(C8H11N)yFe1-zSe (A = Li, Na), with Tc = 39-44 K have been successfully synthesized via the intercalation of alkali metals and 2-phenethylamine into FeSe. The interlayer spacings, namely, the distances between neighboring Fe layers, d, of Ax(C8H11N)yFe1-zSe (A = Li, Na) are 19.04(6) and 18.0(1) Å, respectively. These d values are the largest among those of the FeSe-based intercalation compounds and are understood to be due to the intercalation of two molecules of 2-phenethylamine in series perpendicular to the FeSe layers. It appears that the relationship between Tc and d in the FeSe-based intercalation superconductors is not domic but Tc is saturated at ˜45 K, which is comparable to the Tc values of single-layer FeSe films, for d ≥ 9 Å.

  4. Metastable Equilibria for the Quaternary System Li2B4O7+ Na2B4O7+K2B4O7+H2Oat15℃

    Institute of Scientific and Technical Information of China (English)

    SANG,Shi-Hua; YIN,Hui-An; NI,Shi-Jun; DENG,Miao

    2008-01-01

    Metastable equilibrium solubilities and such physico-chemical properties as densities, conductivity, pH, refractive index and viscosity of the solution for the quaternary system Li2B4O7+Na2B4O7+K2B4O7+H2O at 15℃ were determined experimentally. According to the experimental data, the metastable equilibrium phase diagram was plotted. In the metastable phase diagram, there are one invariant point, three univariant curves, and three fields of crystallization: Li2B2O4·16H2O, Na2B4O7·10H2O, and K2B4O7·4H2O. Potassium borate (K2B4O7·4H2O) has the smallest crystallization field and sodium borate (borax) has the biggest one. Also, the relationship diagram between the properties and the ion concentration of solution was constructed. It can be seen from the relationship diagram that the metastable equilibrium solution density values, viscosity values and refractive index values are increased apparently with the rise of lithium borate concentration, reaching the maximum values at invariant point F. Electrical conductivity values and pH values, however, fall down with the rise of ion concentration on the whole.

  5. VUV spectroscopic properties of rare-earth (RE=Eu, Tb and Dy)-doped A2Zr(PO4)2 (A=Li, Na and K) phosphates

    Institute of Scientific and Technical Information of China (English)

    林啸; 冯昂; 张志军; 赵景泰

    2014-01-01

    This study fully investigated the vacuum ultraviolet excitation spectra of pure and rare-earth (RE=Eu, Tb and Dy)-doped A2Zr(PO4)2 (A=Li, Na and K) phosphors. The synthesized Na and Li compounds were characterized by XRD showing two new types of phases after indexation. Although these three pure compounds had different crystal structures, they exhibited similar luminescence properties. For Eu3+-activated samples, the broad excitation band centered at 217 nm could be attributed to the CT transition between O2- (2p6) and Eu3+ ions. For Tb3+-doped samples, two groups of f-d transitions were observed, where a strong broad band at 221 nm was due to the spin-allowed f-d transition. Energy transfer from O2-to Dy3+was not observed in Dy3+-doped phosphors, probably because it overlapped considerably with the CT transition from O2- to Zr4+at 187 nm.

  6. Effect of paramagnetic manganese ions doping on frequency and high temperature dependence dielectric response of layered Na1.9Li0.1Ti3O7 ceramics

    Indian Academy of Sciences (India)

    Dharmendra Pal; J L Pandey

    2010-12-01

    The manganese doped layered ceramic samples (Na1.9Li0.1)Ti3O7 : XMn(0.01 ≤ X ≤ 0.1) have been prepared using high temperature solid state reaction. The room temperature electron paramagnetic resonance (EPR) investigations exhibit that at lower percentage of doping the substitution of manganese ions occur as Mn3+ at Ti4+ sites, whereas for higher percentage of doping Mn2+ ions occupy the two different interlayer sodium/lithium sites. In both cases, the charge compensation mechanism should operate to maintain the overall charge neutrality of the lattice. The manganese doped derivatives of layered Na1.9Li0.1Ti3O7 (SLT) ceramics have been investigated through frequency dependence dielectric spectroscopy in this work. The results indicate that the dielectric losses in these ceramics are the collective contribution of electric conduction, dipole orientation and space charge polarization. Smeared peaks in temperature dependence of permittivity plots suggest diffuse nature of high temperature ferroelectric phase transition. The light manganese doping in SLT enhances the dielectric constant. However, manganese doping decreases dielectric loss due to inhibition of domain wall motion, enhances electronhopping conduction, and impedes the interlayer ionic conduction as well. Manganese doping also gives rise to contraction of interlayer space.

  7. Structures and considerable static first hyperpolarizabilities: new organic alkalides (M+@n6adz)M'- (M, M'=Li, Na, K; n=2, 3) with cation inside and anion outside of the cage complexants.

    Science.gov (United States)

    Wang, Fang-Fang; Li, Zhi-Ru; Wu, Di; Wang, Bing-Qiang; Li, Ying; Li, Zong-Jun; Chen, Wei; Yu, Guang-Tao; Gu, Feng Long; Aoki, Yuriko

    2008-01-31

    Eighteen structures of new organic alkalides (M+@n6adz)M'- (M, M'=Li, Na, K; n=2, 3) with the alkali-metal cation M+ lying near the center of the adz cage and the alkali-metal anion M'- located outside are obtained with all real frequencies. They exhibit very large static first hyperpolarizabilities (beta0) up to 3.2x10(5) au, which exceeds the record value of beta0=1.7x10(5) au for nonlinear optical compounds [Chem.-Eur. J. 1997, 3, 1091]. All potassides (M+@n6adz)K- (M=Li, Na, K; n=2, 3) have considerably large beta0 values (1.6x10(5)-3.2x10(5) au) much larger than the beta0 value (3.6x10(4) au) of the previously designed cuplike alkalide Li+(calix[4]pyrrole)K- [J. Am. Chem. Soc. 2006, 128, 1072]. This shows that the 26adz and 36adz cage complexants are preferable to cuplike calix[4]pyrrole complexant in enhancing the first hyperpolarizability. The effect of cage size of the complexant on the first hyperpolarizability is also presented here: in most cases, the smaller cage complexant corresponds to the larger beta0 value. Moreover, the crucial role by the alkali-metal anion in the large first hyperpolarizability of these alkalides is revealed. These results may provide new means for designing high-performance nonlinear optical materials.

  8. Atomically thin Co3O4 nanosheet-coated stainless steel mesh with enhanced capacitive Na+ storage for high-performance sodium-ion batteries

    Science.gov (United States)

    Dou, Yuhai; Wang, Yunxiao; Tian, Dongliang; Xu, Jiantie; Zhang, Zhijia; Liu, Qiannan; Ruan, Boyang; Ma, Jianmin; Sun, Ziqi; Xue Dou, Shi

    2017-03-01

    Capacitive storage (e.g., double layer capacitance and pseudocapacitance) with Na+ stored mainly at the surface or interface of the active materials rather than inserted into the bulk crystal is an effective approach to achieve high rate capability and long cycle life in sodium-ion batteries (SIBs). Herein, atomically thin Co3O4 nanosheets are successfully synthesized and grown directly on the stainless steel mesh as an anode material for SIBs. This anode delivers a high average capacity of 509.2 mAh g-1 for the initial 20 cycles (excluding the first cycle) at 50 mA g-1, presents excellent rate capability with an average capacity of 427.0 mAh g-1 at 500 mA g-1, and exhibits high cycling stability, which significantly outperforms the electrode prepared from conventional Co3O4 nanostructures, the electrode prepared by conventional casting method, and previously reported Co3O4 electrodes. The superior electrochemical performance is mainly attributable to the atomic thickness of the Co3O4 nanosheets and the direct growth method in electrode processing, which lead to remarkably enhanced surface redox pseudocapacitance and interfacial double layer capacitance. This Na+ capacitive storage mechanism provides a promising strategy for the development of electrode materials with high energy and power densities and ultralong cycle life for SIBs.

  9. Combined Electron Paramagnetic Resonance and Atomic Absorption Spectroscopy/Inductively Coupled Plasma Analysis As Diagnostics for Soluble Manganese Species from Mn-Based Positive Electrode Materials in Li-ion Cells.

    Science.gov (United States)

    Shilina, Yuliya; Ziv, Baruch; Meir, Aviv; Banerjee, Anjan; Ruthstein, Sharon; Luski, Shalom; Aurbach, Doron; Halalay, Ion C

    2016-04-19

    Manganese dissolution from positive electrodes significantly reduces the durability of lithium-ion batteries. Knowledge of dissolution rates and oxidation states of manganese ions is essential for designing effective mitigation measures for this problem. We show that electron paramagnetic resonance (EPR) combined with atomic absorption spectroscopy (AAS) or inductively coupled plasma (ICP) can determine both manganese dissolution rates and relative Mn(3+) amounts, by comparing the correlation between EPR and AAS/ICP data for Mn(2+) standards with that for samples containing manganese cations dissolved from active materials (LiMn2O4 (LMO) and LiNi(0.5)Mn(1.5)O4 (LNMO)) into the same electrolyte solution. We show that Mn(3+), and not Mn(2+), is the dominant species dissolved from LMO, while Mn(2+) is predominant for LNMO. Although the dissolution rate of LMO varies significantly for the two investigated materials, due to particle morphology and the presence of Cr in one of them, the Mn speciation appears independent of such details. Thus, the relative abundance of dissolved manganese ions in various oxidation states depends mainly on the overall chemical identity of the active material (LMO vs LNMO). We demonstrate the relevance of our methodology for practical batteries with data for graphite-LMO cells after high-temperature cycling or stand at 4.2 V.

  10. A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry for analysis of samples with high NaCl contents

    Science.gov (United States)

    Čánský, Zdeněk; Rychlovský, Petr; Petrová, Zuzana; Matousek, J. P.

    2007-03-01

    A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry has been developed for determination of lead and cadmium in samples with high salt contents. To separate the analyte from the sample matrix, the analyte was in-situ quantitatively electrodeposited on a platinum sampling capillary serving as the cathode (sample volume, 20 μL). The spent electrolyte containing the sample matrix was then withdrawn, the capillary with the analyte deposited was washed with deionized water and the analyte was stripped into a chemically simple electrolyte (5 g/L NH 4H 2PO 4) by reversing the polarity of the electrodeposition circuit. Electrothermal atomization using a suitable optimized temperature program followed. A fully automated manifold was designed for this coupled technique and the appropriate control software was developed. The operating conditions for determination of Pb and Cd in samples with high contents of inorganic salts were optimized, the determination was characterized by principal analytical parameters and its applicability was verified on analyses of urine reference samples. The absolute limits of detection for lead and cadmium (3 σ criterion) in a sample containing 30 g/L NaCl were 8.5 pg and 2.3 pg, respectively (peak absorbance) and the RSD values amounted to 1.6% and 1.9% for lead (at the 40 ng mL - 1 level) and cadmium (at the 4.0 ng mL - 1 level), respectively. These values (and also the measuring sensitivity) are superior to the results attained in conventional electrothermal atomic absorption spectrometric determination of Pb and Cd in pure solutions (5 g/L NH 4H 2PO 4). The sensitivity of the Pb and Cd determination is not affected by the NaCl concentration up to a value of 100 g/L, demonstrating an efficient matrix removal during the electrodeposition step.

  11. X-ray Absorption Spectroscopy Characterization of a Li/S Cell

    Directory of Open Access Journals (Sweden)

    Yifan Ye

    2016-01-01

    Full Text Available The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S cell life cycle. We have investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH3(CH215N+(CH33Br− and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na2Sx solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfur reaction products on the cathode surface during the charge/discharge processes make the capacity decay. A modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies.

  12. First principles study of nanostructured TiS2 electrodes for Na and Mg ion storage

    Science.gov (United States)

    Li, S. N.; Liu, J. B.; Liu, B. X.

    2016-07-01

    The development of competitive Na- and Mg-ion batteries (NIBs and MIBs) with performance comparable to Li-ion batteries is hindered by the major challenge of finding advanced electrode materials. In this work, nanostructured TiS2 electrodes including nanosheets, nanoribbons and nanotubes are shown by first principles calculations to achieve improved Na and Mg ion diffusion as compared with the bulk phase. Comparative studies between Li, Na, and Mg reveal that the diffusion kinetics of Na ions would especially benefit from the nanostructure design of TiS2. More specifically, the Na ion diffusivity turns out to be considerably higher than Li ion diffusivity, which is opposite to that observed in bulk TiS2. However, in the case of Mg ions, fast diffusion is still beyond attainment since a relatively high degree of interaction is expected between Mg and the S atoms. Edge-induced modifications of diffusion properties appear in both Na and Mg ions, while the mobility of Li ions along the ribbon edges may not be as appealing. Effects of the curvature of nanotubes on the adsorption strength and ion conductivity are also explored. Our results highlight the nanostructure design as a rich playground for exploring electrodes in NIBs and MIBs.

  13. Penetration of alkali atoms throughout a graphene membrane: theoretical modeling.

    Science.gov (United States)

    Boukhvalov, D W; Virojanadara, C

    2012-03-07

    Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout a graphene membrane grown on a silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate a rather low (about 0.8 eV) energy barrier for the formation of temporary defects in the carbon layer required for the penetration of Li at a high concentration of adatoms, a higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from the graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100 °C and impenetrability of the graphene membrane for Rb and Cs. Differences between epitaxial and free-standing graphene for the penetration of alkali ions are also discussed.

  14. Luminescent properties of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} and its luminescence improvement by incorporating A{sup +} (A=Li, Na, and K)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Panlai, E-mail: li_panlai@126.com; Wang, Zhijun, E-mail: wangzj1998@126.com; Yang, Zhiping; Guo, Qinglin

    2014-12-15

    A novel green phosphor SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} is synthesized by a high temperature solid-state method, and its luminescent property is investigated. X-ray diffraction patterns of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} indicate a similarity crystalline phase to SrZn{sub 2}(PO{sub 4}){sub 2}. SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} shows green emission under 369 nm excitation, and the prominent luminescence in green (544 nm) due to {sup 5}D{sub 4}–{sup 7}F{sub 5} transition of Tb{sup 3+}. For the 544 nm emission, excitation spectrum has several excitation band from 200 nm to 400 nm. Emission intensity of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} is influenced by Tb{sup 3+} concentration, and concentration quenching effect of Tb{sup 3+} in SrZn{sub 2}(PO{sub 4}){sub 2} is also observed. With incorporating A{sup +} (A=Li, Na, and K) as compensator charge, the emission intensity of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} can be obviously enhanced. CIE color coordinates of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} locate in the green region. The results indicate this phosphor may be a potential application in white LEDs. - Graphical abstract: SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} can produce green emission under near-UV excitation, and its luminescent properties can be improved by incorporating A{sup +} (A=Li, Na, and K). - Highlights: • SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} can produce green emission under near-UV excitation. • Concentration quenching effect of Tb{sup 3+} in SrZn{sub 2}(PO{sub 4}){sub 2} is observed. • Emission intensities of SrZn{sub 2}(PO{sub 4}){sub 2}:Tb{sup 3+} are enhanced by codoped A{sup +} (A=Li, Na, K)

  15. Comparison of Technique of Li Na and Her Rivals in 2013 Australian Open Tennis%2013年澳网李娜与对手网球技术比较

    Institute of Scientific and Technical Information of China (English)

    朱先彬

    2014-01-01

    Through the official website of the Australian Open statistical data, using the statistical method of data, the technology of Li Na and her opponents in the 2013 Australian Open Tennis Championships are analyzed.The results showed that:psychological factors and tactics are equally important in the ten-nis match, all-round development of technique, tactics, psychology and physical quality and reducing fault is still the magic weapon of victory.The psychological ability, ability to spot the tactical change, stability of technology and physical ability of Li Na still needs improving .Suggestion:Li Na should keep maintain advantages in the serve technology, enhance technical stability, increase net play times, and strengthen training of the psychological endurance and strain capacity in a stalemate stage.%通过澳大利亚网球公开赛的官方网站数据统计,采用数据统计法对2013年澳大利亚网球公开赛李娜与对手的各项技术进行分析。结果表明:在网球比赛中心理因素与技战术同等重要,技术、战术、心理和身体素质的全面发展和减少失误仍然是取得比赛胜利的法宝。李娜在心理承受能力,临场战术变化的能力,技术的稳定性以及体能等方面仍需提高。建议:李娜应继续保持发球技术优势,增强技术稳定性,增加上网次数,加强相持阶段心理承受能力和应变能力的训练。

  16. LiYbCl4(THF4

    Directory of Open Access Journals (Sweden)

    Lukas Richtera

    2011-06-01

    Full Text Available The title compound, di-μ-chlorido-dichlorido-1κ2Cl-tetrakis(tetrahydrofuran-1κ2O,2κ2O-lithiumytterbium(III, [LiYbCl4(C4H8O4], was prepared by the reaction of YbCl3(THF3 with LiCl in THF (THF is tetrahydrofuran. The central motif of the structure is a Yb(μ-Cl2Li ring. The Yb atom is hexacoordinated to four Cl atoms and two THF molecules oriented in a trans fashion. The Li atom has a tetrahedral environment and is coordinated to two Cl atoms and two THF molecules. No intermolecular interactions other than van der Waals forces were observed. Two of the THF molecules are disordered over two positions.

  17. Measurement of the electric quadrupole moments of $^{26-29}$Na

    CERN Document Server

    Keim, M; Klein, A; Neugart, R; Neuroth, M; Wilbert, S; Lievens, P; Vermeeren, L; Brown, B A

    2000-01-01

    The nuclear electric quadrupole moments of the isotopes $^{26}$Na, $^{27}$Na, $^{28}$Na and $^{29}$Na were measured by $\\beta$-NMR spectroscopy in single crystals of LiNbO$_3$ and NaNO$_3$. High degrees of nuclear polarization were produced by optical pumping of the sodium atoms in a fast beam with a collinear laser beam.The polarized nuclei were implanted into the crystals and NMR signals were observed in the $\\beta$-decay asymmetries. Preparatory measurements also yielded improved values for the magnetic moments of $^{27-31}$Na and confirmed the spin $I=3/2$for $^{31}$Na. The results are discussed in comparison with large-basis shell-model calculations.

  18. Synthèse, étude et validation structurale d'un triple bis-molybdate en couches, Ag0.60Na0.40Fe(MoO4)2 lié à yavapaiite.

    Science.gov (United States)

    Souilem, Amira; Zid, Mohamed Faouzi

    2016-05-01

    The title compound, Ag0.60Na0.40Fe(MoO4)2 {silver sodium iron(III) bis-[molyb-date(VI)]}, was synthesized by a solid-state reaction. The structure is built up from FeO6 octa-hedra and MoO4 tetra-hedra sharing corners to form a two-dimensional framework parallel to the (001) plane. The occupationally disordered (Ag/Na)(+) cations are located in the inter-layer space. These [Fe(MoO4)2 (-)] n layers are similar to those in the isotypic yavapaiite-related structure of NaFe(MoO4)2. All atoms are on general positions except for Fe (site symmetry -1) and Ag/Na (site symmetry 2). The Ag/Na occupancies of the latter site were refined to 0.597 (4):0.403 (5). The title structure is compared to similar structures.

  19. Local Atomic Structure Deviation from Average Structure of Na0.5Bi0.5TiO3: Combined X-ray and Neutron Total Scattering Study

    Science.gov (United States)

    2013-03-27

    model into a single unit cell produced “ point clouds ” of approximately a thousand atoms at each crystallographic site. These are plotted as a function...In order to determine the origin of the two distinct A- O bonding environments, the Na+ and Bi3+ point clouds from Fig. 8 are further investigated...bonding arrangement is the effect on the possible ferroelectric domain FIG. 8. (Color online) Folded RMC models produce “ point clouds ” of atoms at each

  20. Double layer effects in electrocatalysis: the oxygen reduction reaction and ethanol oxidation reaction on Au(111), Pt(111) and Ir(111) in alkaline media containing Na and Li cations.

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Pietro P.; Strmcnik, Dusan; Jirkovsky, Jakub S.; Connell, Justin G.; Stamenkovic, Vojislav; Markovic, Nenad

    2016-03-15

    Oxygen reduction and ethanol oxidation reactions were studied on Au(111), Pt(111) and Ir(111) in alkaline solutions containing sodium and/or lithium cations. By keeping the same (111) surface orientation and exploring oxophilicity trends and non-covalent interactions between OHad and alkali metal cations (AMCn+), we were able to gain deep insights into the multiple roles that OHad plays in these important electrocatalytic reactions. Cyclic voltammetry experiments revealed that OHad formation initiates at distinct electrode potentials, governed by the oxophilicity of the specific metal surface, with further OHad adlayer stabilization by non-covalent alkali-cation interactions and affecting the formation of a “true oxide” layer at higher electrode potentials. Although OHad is a simple spectator for the ORR, it promotes the ethanol oxidation reaction (EOR) at lower potentials and act as spectator at high OHad coverages. By changing the alkali metal cation at the interface (Li+) on more oxophilic surfaces, it was possible to promote the EOR even more, relative to Na+, without changing the product distribution for the reaction. This cation effect suggests that OHad---Li+(H2O)x clusters can stabilize the ethoxide adlayer, thus improving the EOR activity. Our results indicate the importance of the entire electrochemical interface in determining the electrocatalytic activity during reaction.

  1. Studies of the local distortions and the EPR parameters for Cu{sup 2+} in xLi{sub 2}O-(30-x)Na{sub 2}O-69.5B{sub 2}O glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chang-Chun; Wu, Shao-Yi; Kuang, Min-Quan; Hu, Xian-Fen; Li, Guo-Liang [Univ. of Electronic Science and Technology of China, Chengdu (China). Dept. of Applied Physics

    2016-07-01

    The local distortions and electron paramagnetic resonance (EPR) parameters for Cu2+ in lithium sodium borate (LNB) glasses xLi{sub 2}O.(30-x).Na{sub 2}O.69.5B{sub 2}O{sub 3} (5 ≤ x ≤ 25 mol%) are theoretically studied at various concentrations x in a consistent way. Owing to the Jahn-Teller effect, the [CuO{sub 6}]{sup 10-} clusters are found to experience the significant tetragonal elongations of 16% along C{sub 4} axis. Despite the nearly unchanging observed g factors, measured d-d transition band (or cubic field parameter Dq) shows remarkable linear increases with concentration x, whose influences on g {sub parallel} and g {sub perpendicular} {sub to} are actually cancelled by the linearly increasing covalency factor N and relative elongation ratio η with x. The almost unvarying hyperfine structure constants are attributed to the fact that the influences of the linearly increasing N and the linearly decreasing core polarisation constant κ largely cancel one another. The microscopic mechanisms of the above concentration dependences for these quantities are illustrated from mixed alkali effect (modification of B{sub 2}O{sub 3} network by transforming some BO{sub 3} units into BO{sub 4} ones with variations in modifier Li{sub 2}O concentration).

  2. Ca3Na4LiBe4B10O24F: a new beryllium borate with a unique beryl borate ∞(2)[Be8B16O40F2] layer intrabridged by [B12O24] groups.

    Science.gov (United States)

    Luo, Siyang; Yao, Wenjiao; Gong, Pifu; Yao, Jiyong; Lin, Zheshuai; Chen, Chuangtian

    2014-08-18

    A novel beryllium borate, Ca3Na4LiBe4B10O24F, has been discovered. It possesses a unique ∞(2)[Be8B16O40F2] layer composed of two opposite parallel [Be4B4O12F]∞ layers bridged with [B12O24] polyborates. The linkage of [B12O24] to other structural units is first found in anhydrous borates. In the ∞(2)[Be8B16O40F2] layer, multiple tunnels are arranged along different directions resided by the alkali and alkaline-earth cations. The compound remains stable in an ambient atmosphere from room temperature to the melting point at 830 °C and melts incongruently.

  3. Dielectric, ferroelectrics properties and impedance spectroscopy analysis of the [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3-based lead-free ceramics

    Science.gov (United States)

    Saidi, M.; Chaouchi, A.; D'Astorg, S.; Rguiti, M.; Courtois, C.

    2015-04-01

    Polycrystalline of [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3 samples were prepared using the high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis indicates the formation of a single-phase with orthorhombic structure. AC impedance plots were used as tool to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The AC impedance studies revealed the presence of grain effect, from 425°C onwards. Complex impedance analysis indicated non-Debye type dielectric relaxation. The Nyquist plot showed the negative temperature coefficient of resistance (NTCR) characteristic of NKLNT. The AC conductivity results were used to correlate with the barrier hopping (CBH) model to evaluate the binding energy (Wm), the minimum hopping distance (Rmin), the density of states at Fermi level (N(Ef)), and the activation energy of the compound.

  4. Benchmarking a modified version of the civ3 nonrelativistic atomic-structure code within Na-like-tungsten R -matrix calculations

    Science.gov (United States)

    Turkington, M. D.; Ballance, C. P.; Hibbert, A.; Ramsbottom, C. A.

    2016-08-01

    In this work we explore the validity of employing a modified version of the nonrelativistic structure code civ3 for heavy, highly charged systems, using Na-like tungsten as a simple benchmark. Consequently, we present radiative and subsequent collisional atomic data compared with corresponding results from a fully relativistic structure and collisional model. Our motivation for this line of study is to benchmark civ3 against the relativistic grasp0 structure code. This is an important study as civ3 wave functions in nonrelativistic R -matrix calculations are computationally less expensive than their Dirac counterparts. There are very few existing data for the W LXIV ion in the literature with which we can compare except for an incomplete set of energy levels available from the NIST database. The overall accuracy of the present results is thus determined by the comparison between the civ3 and grasp0 structure codes alongside collisional atomic data computed by the R -matrix Breit-Pauli and Dirac codes. It is found that the electron-impact collision strengths and effective collision strengths computed by these differing methods are in good general agreement for the majority of the transitions considered, across a broad range of electron temperatures.

  5. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy; Probabilidades de transicion de algunos niveles de Cr II, Na II y Sb I medediante espectroscopia de plasma producidos por laser

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-07-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities ({approx}{approx} 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs.

  6. Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition.

    Science.gov (United States)

    Zhao, Yang; Goncharova, Lyudmila V; Lushington, Andrew; Sun, Qian; Yadegari, Hossein; Wang, Biqiong; Xiao, Wei; Li, Ruying; Sun, Xueliang

    2017-03-03

    Na-metal batteries are considered as the promising alternative candidate for Li-ion battery beneficial from the wide availability and low cost of sodium, high theoretical specific capacity, and high energy density based on the plating/stripping processes and lowest electrochemical potential. For Na-metal batteries, the crucial problem on metallic Na is one of the biggest challenges. Mossy or dendritic growth of Na occurs in the repetitive Na stripping/plating process with an unstable solid electrolyte interphase layer of nonuniform ionic flux, which can not only lead to the low Coulombic efficiency, but also can create short circuit risks, resulting in possible burning or explosion. In this communication, the atomic layer deposition of Al2 O3 coating is first demonstrated for the protection of metallic Na anode for Na-metal batteries. By protecting Na foil with ultrathin Al2 O3 layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved. Furthermore, the thickness of protective layer has been further optimized with 25 cycles of Al2 O3 layer presenting the best performance over 500 cycles. The novel design of atomic layer deposition protected metal Na anode may bring in new opportunities to the realization of the next-generation high energy-density Na metal batteries.

  7. Cold three-body collisions in hydrogen-hydrogen-alkali atomic system

    CERN Document Server

    Wang, Yujun; Esry, B D

    2010-01-01

    We have studied hydrogen-hydrogen-alkali three-body systems in the adiabatic hyperspherical representation. For the spin-stretched case, there exists a single $X$H molecular state when $X$ is one of the bosonic alkali atoms: $^7$Li, $^{23}$Na, $^{39}$K, $^{87}$Rb and $^{133}$Cs. As a result, the {\\em only} recombination process is the one that leads to formation of $X$H molecules, H+H+$X

  8. Estimating the activation energy of the displacement of Mg atoms in the channels of B25C4Mg1.42 crystals

    Science.gov (United States)

    Konovalikhin, S. V.; Ponomarev, V. I.

    2016-10-01

    The activation energy of displacement of Mg atoms through channels of B25C4Mg1.42 crystals is estimated using quantum chemical calculations (DFT (B3LYP potential), RHF, and UHF methods, 3-21G basis set) of the element of the structure modeling the channel and location of Mg atoms in it. The changes in the activation energy at the replacement of Mg atoms by Na and Li atoms were estimated. The greatest decreasing in the activation energy was detected for Li atoms. The obtained results can be regarded as a theoretical background for development of conducting systems based on B25C4Mg1.42 crystals.

  9. Li-promoted sodium zirconate as a CO{sub 2} absorbent at high temperatures; Zirconato de sodio promovido con Li como absorbente de CO{sub 2} a alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Guzman Velderrain, V.; Barraza Jimenez, D.; Lardizabal Gutierrez, D.; Delgado Vigil, D.; Salinas Gutierrez, J.; Lopez Ortiz, A.; Collins-Martinez, V. [Centro de Investigacion en Materiales Avanzados S. C., Chihuahua, Chihuahua (Mexico)]. E-mail: virginia.collins@cimav.edu.mx

    2009-09-15

    In processes to produce hydrogen from fossil fuels, CO{sub 2} capture at high temperatures has played a crucial role in their conversion into energy-efficient processes. One example is steam reformer methane improved with absorption (SER), where CO{sub 2} capture at high temperatures (600 degrees Celsius) provides an energy savings of {approx_equal} 23% over conventional reformer processes (SMR). An important part of this concept is solid CO{sub 2} absorption, which must have adequate absorption capacity and rapid absorption/regeneration kinetics. Recently, synthetic CO{sub 2} absorbents have been developed that consist of mixed Li oxides. Previous studies conducted in our laboratory report that the absorption/regeneration properties of sodium zirconate (Na{sub 2}ZrO{sub 3}) are higher than Li-oxides. The objective of the present work is to increase the absorption capacity of Na{sub 2}ZrO{sub 3} at high temperatures without significantly affecting the kinetics of its absorption and regeneration, with Li promotion. The Na{sub 2}ZrO{sub 3} was synthesized by reaction in a solid state and impregnated with LiNO{sub 3} at different Li/Na ratios: 0, 0.03, 0.05, 0.1 and 0.25 (NZ, NZL3, NZL5, NZL10, NZL25). The characterization consisted of XRD and SEM. The evaluation as an absorbent was performed with TGA at 600 degrees Celsius in 80% CO{sub 2} (absorption) and 800 degrees Celsius in air (regeneration). While XRD shows only the Na{sub 2}ZrO{sub 3} structure in all the samples, the promoted samples present a signal shift with respect to Na{sub 2}ZrO{sub 3}, which is attributed to the substitution of Na atoms with Li. The TGA results indicate that the addition of Li to the Na{sub 2}ZrO{sub 3} structure does not significantly modify the absorption or regeneration kinetics. As the Li contents in the Na{sub 2}ZrO{sub 3} increase, the amount of CO{sub 2} capture increases up to a limit between 10 and 25% mol of Li. This is due to the displaced sodium presumably tending to form

  10. 盐湖卤水体系的热力学模型及其应用Ⅰ:在Li+,Na+,K+,Mg2+/Cl-,SO42--H2O体系物理化学方面的应用%Parameters of Pitzer Model for the Salt Lake Brine System and their Applications Ⅰ.Applications in Physical Chemistry for the System Li+,Na+,K+, Mg2+/Cl-,SO42--H2O

    Institute of Scientific and Technical Information of China (English)

    宋彭生; 姚燕

    2003-01-01

    在简要介绍如何获得了描述"盐湖卤水体系"Li+,Na+,K+,Mg2+/Cl-,SO42--H2O 25℃热力学的全部Pitzer参数后,详细举例说明了模型在卤水热力学性质预测、含锂盐湖卤水中盐类饱和度、含锂盐湖卤水在25℃ 1.013×105Pa下的天然卤水离子缔和状态(化学模型)计算等方面的应用.

  11. Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al{sub 2}O{sub 3} on Li ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kashish [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States); Routkevitch, Dmitri; Varaksa, Natalia [InRedox, Longmont, Colorado 80544 (United States); George, Steven M., E-mail: Steven.George@Colorado.Edu [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-01-15

    Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the pores of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li{sub 0.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} electrodes on flexible metal foil were coated with Al{sub 2}O{sub 3} using 2–5 Al{sub 2}O{sub 3} ALD cycles. The Al{sub 2}O{sub 3} ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al{sub 2}O{sub 3} S-ALD coating on the electrodes enhanced the capacity stability. This S

  12. Momentum densities and Compton profiles of alkali-metal atoms

    Indian Academy of Sciences (India)

    Pranab Sarkar; Anupam Sarkar; S N Roy; B Talukdar

    2003-03-01

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree–Fock–Roothaan values only, for want of data from other realistic calculations.

  13. First-principle studies on the Li-Te system

    Science.gov (United States)

    Wang, Youchun; Tian, Fubo; Li, Da; Duan, Defang; Liu, Yunxian; Liu, Bingbing; Zhou, Qiang; Cui, Tian

    2017-01-01

    First-principle evolutionary calculation was performed to search for all probable stable lithium tellurium compounds. In addition to the well-known structures of Fm-3m Li2Te and Pnma Li2Te, several novel structures, including those of P4/nmm Li2Te, Imma Li8Te2, and C2/m Li9Te2, were determined under high pressure. The transformation sequence of Li2Te induced by pressure was presented as follows. The phase transition occurred at 7.5 GPa while transforming from Fm-3m phase to Pnma structure, then transformed to P4/nmm phase at 14 GPa. P4/nmm Li2Te can remain stable at least up to 140 GPa. Li8Te2 and Li9Te2 were stable at 8-120 GPa and 80-120 GPa, respectively. Interestingly, Li8Te2 and Li9Te2 were predicted to be metallic under high pressure, Li2Te would metalize on compression. P4/nmm Li2Te is likely a super ionic conductor due to the special characteristic. Metallic P4/nmm Li2Te may be a candidate mixed conductor material under extreme pressure. Charge transfer was studied using Bader charge analysis. Charge transferred from Li to Te, and the relative debilitated ionicity between Li and Te atoms existed at high pressure.

  14. Multi-spin-state at a Li3PO4/LiCoO2 (104) interface.

    Science.gov (United States)

    Sumita, Masato; Ohno, Takahisa

    2016-02-14

    We have found the disproportion between the intermediate spin (IS) and low spin (LS) configurations of Co atoms at a Li3PO4/LiCoO2 (104) interface through density functional molecular dynamics (DF-MD). The manifold of the spin state at the interface, however, does not affect the band alignment between the Li3PO4 and LiCoO2 regions.

  15. Precipitation of ALn(CO3),xH2O and Dy2(CO3),xH2O compounds from aqueous solutions for A=Li,Na,K,Cs,NH4+ and =La,Nd,Eu,Dy

    Science.gov (United States)

    Philippini, Violaine; Vercouter, Thomas; Chaussé, Annie; Vitorge, Pierre

    2008-09-01

    Double carbonates of lanthanide ( Ln) and alkaline or ammonium ( A) ions, noted ALn(CO3)2,xH2O, were precipitated from concentrated A2CO3 aqueous solutions at room temperature and atmospheric pressure. Twelve hydrated compounds out of the twenty targeted ones have been obtained: Li(Nd or Eu)(CO3)2, NaLa(CO3)2, KNd(CO3)2,xH2O, Cs(La or Nd)(CO3)2, NH4(Nd, Eu or Dy)(CO3)2, Dy2(CO3)3 from concentrated A2CO3 solutions and Na(Nd, Eu or Dy)(CO3)2 from concentrated AHCO3 solutions. Although the trivalent lanthanide ions are often considered as analogs in solution, differences in their precipitation behaviour was observed, which is believed to have a kinetic origin in relation to the small differences in their ionic radii. The solid compounds were characterised by elemental analyses, thermogravimetry (TG), X-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). The powder diffraction patterns of nine solids were fitted using the tetragonal P4/mmm Laüe class: LiNd(CO3)2,xH2O: a=(12.16±0.02) A˚, c=(9.21±0.02) A˚, LiEu(CO3)2,3H2O: a=(12.201±0.007) A˚, c=(9.23±0.01) A˚, KNd(CO3)2,xH2O: a=(13.28±0.04) A˚, c=(10.00±0.04) A˚, CsLa(CO3)2,xH2O: a=(10.82±0.02) A˚, c=(8.18±0.02) A˚, CsNd(CO3)2,xH2O: a=(10.81±0.07) A˚, c=(8.16±0.07) A˚ for NaLn(CO3)2,xH2O: a=(11.10+1.75r) A˚ and c=(8.60+1.13r) A˚, where r is the ionic radius of for a coordination number of 8 ( r=1.16 A˚, r=1.12 A˚, r=1.07 A˚ and r=1.03 A˚). It is proposed that all the NaLn(CO3)2,xH2O compounds are of very similar structure, as evidenced by their XRD patterns and by the linear variations of the lattice parameters with r. The small differences in the lattice parameters can induce large modification of the precipitation pathways. Conversely, structural changes were evidenced within the A+ series for ANd(CO3)2,xH2O. Dy2(CO3)3,xH2O was also obtained as a by-product. Its lattice parameters are in good agreement with Eu2(CO3)3,3H2O ones.

  16. Hyperfine structure in photoassociative spectra of 6Li2 and 7Li2

    NARCIS (Netherlands)

    Abraham, E.R.I.; McAlexander, W.I.; Stoof, H.T.C.; Hulet, R.G.

    1996-01-01

    We present spectra of hyperfine resolved vibrational levels of the A1Σu+and 1 3Σg+ states of 6Li2 and 7Li2 obtained via photoassociation of colliding ultracold atoms in a magneto-optical trap. A simple first-order perturbation theory analysis accurately accounts for the frequency splittings and rela

  17. First observation of $^{13}$Li ground state

    CERN Document Server

    Kohley, Z; DeYoung, P A; Volya, A; Baumann, T; Bazin, D; Christian, G; Cooper, N L; Frank, N; Gade, A; Hall, C; Hinnefeld, J; Luther, B; Mosby, S; Peters, W A; Smith, J K; Snyder, J; Spyrou, A; Thoennessen, M

    2013-01-01

    The ground state of neutron-rich unbound $^{13}$Li was observed for the first time in a one-proton removal reaction from $^{14}$Be at a beam energy of 53.6 MeV/u. The $^{13}$Li ground state was reconstructed from $^{11}$Li and two neutrons giving a resonance energy of 120$^{+60}_{-80}$ keV. All events involving single and double neutron interactions in the Modular Neutron Array (MoNA) were analyzed, simulated, and fitted self-consistently. The three-body ($^{11}$Li+$n+n$) correlations within Jacobi coordinates showed strong dineutron characteristics. The decay energy spectrum of the intermediate $^{12}$Li system ($^{11}$Li+$n$) was described with an s-wave scattering length of greater than -4 fm, which is a smaller absolute value than reported in a previous measurement.

  18. Facebook’ta Bulunma Amacı ve Facebook Reklamlarına Duyulan İlgi Arasındaki İlişki

    OpenAIRE

    Ay, Arş. Grv. Ufuk

    2014-01-01

    Bu araştırmada Facebook’ta bulunma amaçları ile Facebook reklamlarına duyulan ilgi arasında bir ilişki olup olmadığı ölçülmüştür. Bu amaçla internet üzerinden 283 kişiye anket uygulanmıştır. Araştırmanın bulguları Facebook’ta bulunma amaçları olarak tanımlanan “sosyal arama” ve “sosyal tarama” değişkenleriyle Facebook reklamlarına duyulan ilgi arasında anlamlı ilişkiler olduğunu destekler niteliktedir.

  19. Facebook’ta Bulunma Amacı ve Facebook Reklamlarına Duyulan İlgi Arasındaki İlişki

    OpenAIRE

    Ay, Arş. Grv. Ufuk

    2016-01-01

    Bu araştırmada Facebook’ta bulunma amaçları ile Facebook reklamlarına duyulan ilgi arasında bir ilişki olup olmadığı ölçülmüştür. Bu amaçla internet üzerinden 283 kişiye anket uygulanmıştır. Araştırmanın bulguları Facebook’ta bulunma amaçları olarak tanımlanan “sosyal arama” ve “sosyal tarama” değişkenleriyle Facebook reklamlarına duyulan ilgi arasında anlamlı ilişkiler olduğunu destekler niteliktedir.

  20. A quem confiamos os recursos comuns - estado, comunidade ou mercado? - lições aprendidas com o manejo da pesca na Amazônia

    Directory of Open Access Journals (Sweden)

    Antonio Oviedo

    2003-12-01

    Full Text Available A ausência de práticas de manejo sustentável da base comum de recursos naturais é decorrente de várias causas, tais como: insegurança fundiária, instituições locais pouco representativas, políticas públicas inadequadas para a gestão participativa e ausência de incentivos e créditos adequados. Este modelo de exploração dos recursos comuns tem provocado a degradação ambiental e conflitos sociais entre os diversos usuários do recurso. Este artigo trata do uso e conservação da base comum de recursos naturais, visando fornecer subsídios para uma avaliação da gestão ambiental na Amazônia e do papel das estruturas institucionais. O artigo apresenta experiências de gestão ambiental da pesca na Amazônia, com ênfase na participação das comunidades locais organizadas, as quais apontam novas possibilidades para os processos de tomada de decisão, fortalecendo um sistema descentralizado, e configurando um marco regulatório da gestão ambiental participativa.

  1. Implementing quantum electrodynamics with ultracold atomic systems

    Science.gov (United States)

    Kasper, V.; Hebenstreit, F.; Jendrzejewski, F.; Oberthaler, M. K.; Berges, J.

    2017-02-01

    We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic 23Na and fermionic 6Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson–fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose–Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.

  2. MULTIPLY CHARGED IONS COLLISIONS WITH ATOMS INTO EXCITED STATES

    Institute of Scientific and Technical Information of China (English)

    PanGuangyan

    1990-01-01

    The emission spectra in collisions between Ions and Atoms have been measured by an Optical Multichannel Analysis System (OMA).The experimental results demonstrate that there are two channels of excitation in collision between single charged ions and atoms and three channels of excitation in collision between double charged ions and atoms.Emission cross cestions and excitation cross sections have been obtained.K.Kadota et al and R.Shingal et al suggested that,under the appropriate conditions,the H42+-Li and He2++Na collision systems can be used efficiently to produce a laser of Lyman-α(30,4nm) and Lyman-β(25.6nm)lines via cascade to He+(2P)state.

  3. Trend Analysis of Li Na's Domestic and lnternational Competition in the Recent Five Years%李娜近5年国内国际比赛成绩特点分析

    Institute of Scientific and Technical Information of China (English)

    孙海燕; 段骄阳

    2015-01-01

    As the world's highest ranked tennis players in China, Li Na started practicing tennis at six year old and turned pro in 1999. She plays all the way to the four grand slam tennis. she became the Asia's first grand slam singles champion tennis player of French open women's singles champion in 2011. In 2013 Li Na was listed in the world's one hundred most influential people and on February 17, 2014, she rose to the world's second world rankings, the women's personal highest ranked Asian record. Through observation statistics and analysis, this thesis reaches the general trend of Li’s results. The trend is that her results shows some rises and falls in the year of 2009 and 2011, while in 2010 and 2013 her peak performances are more concentrated. By large Li Na is in her best at the beginning of this year especially in January and usually June is the second peak stage and October normally is the third one.%李娜是我国世界排名最高的网球选手,6岁开始练习网球,1999年转为职业网球选手。从网球低级别赛事一路打到四大满贯。2011年获得法国网球公开赛女单冠军,成为亚洲第一个获得大满贯单打冠军的网球选手。2013年,李娜入选全球最有影响力人物名单,2014年2月17日世界排名上升到世界第二,创造了女子亚洲选手个人排名最高记录。文章对李娜近5年的比赛成绩进行观察统计和分析归纳,最后得出李娜成绩的一些特点:按年份来看,李娜2009年、2011年、2012年的成绩起伏较大。2010年、2013年全年成绩高峰比较集中。按月份来看,李娜在年初,特别是1月份的赛事上成绩普遍处于高峰状态。经过一段时间的低谷后,在6月份左右又会出现全年的第二个高峰阶段。在年末10月份的时候又会有一个成绩的小高峰。李娜的成绩在低谷之后必会迎来高峰。

  4. Concentrations of As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, and Zn in uruguayan rice determined by atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mario E. Rivero Huguet

    2011-04-01

    Full Text Available The United Nations General Assembly declared the year 2004 the International Year of Rice and the concept "Rice is life". The largest nutritional problems occurring globally are protein-energy malnutrition, and Ca, Fe, I, Zn, and vitamin A deficiency. In this report, 49 rice samples (Oryza sativa L. were digested by dry ashing in order to determine As, Cd, Cr, and Pb by ETA-AAS; while Ca, Co, Cu, Fe, K, Mg, Mo, Mn, Na, Ni, and Zn were determined by FAAS; and Hg by CV-AAS using microwave-assisted decomposition. The following concentration ranges were obtained for Ca (9.1-15 mg/100 g, Cd (2.30-4.12 µg/kg, Co (41-60 µg/kg, Cu (1.33-180 mg/kg, Fe (4.41-7.15 mg/kg, K (167-217 mg/100 g, Mg (45-121 mg/100 g, Mo (0.52-0.97 mg/kg, Mn (5.45-25.4 mg/kg, Na (0.95-2.50 mg/100g, Ni (0.53-0.72 mg/kg, and Zn (5.86-12.6 mg/kg. Mean recoveries of elements from fortified rice were: 87±12% for As, 95.3±8.9% for Ca, 106.2±7.7% for Cd, 103.3±6.5% for Co, 89.4±8.1% for Cr, 99.3±4.6% for Cu, 103±10% for Fe, 96.3±9.3% for Hg, 95.4±12% for K, 98.3±8.0% for Mg, 93.4±7.8% for Mo, 95.3±9.9% for Mn, 89±12% for Na, 90.3±9.7% for Ni, 91.2±5.5% for Pb and 92.0±9.4% for Zn. The concentrations of the minerals and microelements studied fall within the typical range of rice grown around the world. Potassium was the most abundant mineral, followed by Mg and Ca; among microelements, the concentrations of Cu, Fe, Mo, Mn, Na, and Zn in rice were outstanding. It was also found that the milling process highly affects the K, Mg, Mn, Na, and Zn concentrations, while it has little influence on Ca, Co, Cu, and Fe. On the other hand, there is a loss of Ca, Fe, and Mn during the parboiling process. Recent studies have shown the potential to exploit the genetic variation of rice seeds with regard to the concentration of some minerals (Ca, Fe, Zn, etc. without affecting yield or adding new traits. All rice samples tested showed lower levels of As, Cd, Hg, and Pb in comparison

  5. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    Science.gov (United States)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5 s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  6. Improved Piezoelectricity in (K0.44Na0.52Li0.04) (Nb0.91Ta0.05Sb0.04)O3- xBi0.25Na0.25NbO3 Lead-Free Piezoelectric Ceramics

    Science.gov (United States)

    Zhao, Yan; Xu, Zhijun; Li, Huaiyong; Hao, Jigong; Du, Juan; Chu, Ruiqing; Wei, Dongdong; Li, Guorong

    2017-01-01

    (1 - x)[(K0.44Na0.52Li0.04)(Nb0.91Ta0.05Sb0.04)O3]- xBi0.25Na0.25NbO3 (KNLNTS- xBNN) lead-free piezoelectric ceramics have been prepared using a conventional solid-state reaction method and the effects of BNN on their phase structure, microstructure, and electrical properties systematically studied. X-ray diffraction analysis suggested that BNN substitution into KNLNTS induced coexistence of orthorhombic-tetragonal mixed phase and thus improved the ferroelectric and piezoelectric properties. The surface morphologies indicated that different amounts of BNN had two different effects on grain growth. Good electrical properties ( d 33 = 256 pC N-1, T c = 354.27°C, k p = 43.43%, P r = 26.85 μC cm-2, E c = 24.47 kV cm-1) were simultaneously obtained at x = 0.0025, suggesting that our research could benefit development of (K,Na)NbO3-based ceramics and widen their application range.

  7. Inorganic alkali lead iodide semiconducting APbI3 (A = Li, Na, K, Cs and NH4PbI3 films prepared from solution: Structure, morphology, and electronic structure

    Directory of Open Access Journals (Sweden)

    Eric Mankel

    2016-06-01

    Full Text Available APbI3 alkali lead iodides were prepared from aqueous (A= Na, Cs, ammonium NH4+, and methyl­ammonium CH3NH3+ and acetone (A= Li, K solutions by a self-organization low temperature process. Diffraction analysis revealed that the methylammonium-containing system (MAPbI3 crystallizes into a tetragonal perovskite structure, whereas the alkali and NH4+ systems adopt orthorhombic structures. Morphological inspection confirmed the influence of the cation on the growth mechanism: for A = Cs and NH4+, needle-like crystallites with lengths up to 3–4 mm; for A = K, thin stripes with lengths up to 5–6 mm; and for A = MA+, dodecahedral crystallites were observed. For A = Li and Na, the APbI3 systems typically resulted in polycrystalline aggregates. Optical absorption measurements demonstrated large energy band gaps for the alkali and ammonium systems with values between 2.19 and 2.40 eV. For electronic and chemical characterization by photoelectron spectroscopy, the as-prepared powders were dissolved in di-methylformamide and re-crystallized as thin films on F:SnO2 substrates by spin-coating. The binding energy differences between Pb4f and I3d core levels are highly similar in the investigated systems and close to the value measured for PbI2, indicating similar relative partial charges and formal oxidation states. The binding energies of the alkali ions are in accordance with oxidation state +1. The X-ray excited valence band spectra of the investigated APbI3 systems exhibited similar line shapes in the region between the valence band maximum and 4.5 eV higher binding energy due to common PbI6 octahedra which dominate the electronic structure. While the ionization energy values are quite similar (6.15 ± 0.25 eV, the Fermi-level positions of the unintentionally doped materials vary for different cations and different batches of the same material, which indicates that the position of the Fermi level can be influenced by changing the process parameters.

  8. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    Science.gov (United States)

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.

  9. Inelastic H+Li and H^-+Li^+ collisions and non-LTE Li I line formation in stellar atmospheres

    CERN Document Server

    Barklem, P S; Asplund, M

    2003-01-01

    Rate coefficients for inelastic collisions between Li and H atoms covering all transitions between the asymptotic states Li(2s,2p,3s,3p,3d,4s,4p,4d,4f)+H(1s) and Li^+ +H^- are presented for the temperature range 2000-8000 K based on recent cross-section calculations. The data are of sufficient completeness for non-LTE modelling of the Li I 670.8 nm and 610.4 nm features in late-type stellar atmospheres. Non-LTE radiative transfer calculations in both 1D and 3D model atmospheres have been carried out for test cases of particular interest. Our detailed calculations show that the classical modified Drawin-formula for collisional excitation and de-excitation (Li*+H Li*'+H) over-estimates the cross-sections by typically several orders of magnitude and consequently that these reactions are negligible for the line formation process. However, the charge transfer reactions collisional ion-pair production and mutual neutralization (Li*+H Li^+ +H^-) are of importance in thermalizing Li. In particular, 3D non-LTE calcu...

  10. Theory of metal atom-water interactions and alkali halide dimers

    Science.gov (United States)

    Jordan, K. D.; Kurtz, H. A.

    1982-01-01

    Theoretical studies of the interactions of metal atoms with water and some of its isoelectronic analogs, and of the properties of alkali halides and their aggregates are discussed. Results are presented of ab initio calculations of the heats of reaction of the metal-water adducts and hydroxyhydrides of Li, Be, B, Na, Mg, and Al, and of the bond lengths and angles an; the heats of reaction for the insertion of Al into HF, H2O, NH3, H2S and CH3OH, and Be and Mg into H2O. Calculations of the electron affinities and dipole moments and polarizabilities of selected gas phase alkali halide monomers and dimers are discussed, with particular attention given to results of calculations of the polarizability of LiF taking into account electron correlation effects, and the polarizability of the dimer (LiF)2.

  11. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G. Q. [Department of Physics, Nanjing Normal University, Nanjing 210023 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xing, Z. W., E-mail: zwxing@nju.edu.cn [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xing, D. Y. [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  12. Band Diagram and Rate Analysis of Thin Film Spinel LiMn 2 O 4 Formed by Electrochemical Conversion of ALD-Grown MnO

    Energy Technology Data Exchange (ETDEWEB)

    Young, Matthias J. [Department of Chemical and Biological Engineering, University of Colorado, Boulder CO 80309 USA; Schnabel, Hans-Dieter [Leupold-Institut für Angewandte Naturwissenschaften, Westsächsische Hochschule, 08012 Zwickau Germany; Holder, Aaron M. [Department of Chemical and Biological Engineering, University of Colorado, Boulder CO 80309 USA; Department of Chemistry and Biochemistry, University of Colorado, Boulder CO 80309 USA; National Renewable Energy Laboratory, Golden CO 80401 USA; George, Steven M. [Department of Chemistry and Biochemistry, University of Colorado, Boulder CO 80309 USA; Department of Mechanical Engineering, University of Colorado, Boulder CO 80309 USA; Musgrave, Charles B. [Department of Chemical and Biological Engineering, University of Colorado, Boulder CO 80309 USA; Department of Chemistry and Biochemistry, University of Colorado, Boulder CO 80309 USA

    2016-09-22

    Nanoscale spinel lithium manganese oxide is of interest as a high-rate cathode material for advanced battery technologies among other electrochemical applications. In this work, the synthesis of ultrathin films of spinel lithium manganese oxide (LiMn2O4) between 20 and 200 nm in thickness by room-temperature electrochemical conversion of MnO grown by atomic layer deposition (ALD) is demonstrated. The charge storage properties of LiMn2O4 thin films in electrolytes containing Li+, Na+, K+, and Mg2+ are investigated. A unified electrochemical band-diagram (UEB) analysis of LiMn2O4 informed by screened hybrid density functional theory calculations is also employed to expand on existing understanding of the underpinnings of charge storage and stability in LiMn2O4. It is shown that the incorporation of Li+ or other cations into the host manganese dioxide spinel structure (..lambda..-MnO2) stabilizes electronic states from the conduction band which align with the known redox potentials of LiMn2O4. Furthermore, the cyclic voltammetry experiments demonstrate that up to 30% of the capacity of LiMn2O4 arises from bulk electronic charge-switching which does not require compensating cation mass transport. The hybrid ALD-electrochemical synthesis, UEB analysis, and unique charge storage mechanism described here provide a fundamental framework to guide the development of future nanoscale electrode materials for ion-incorporation charge storage.

  13. Phase transitions and optical characterization of lead-free piezoelectric (K0.5Na0.5)0.96Li0.04(Nb 0.8Ta0.2)O3 thin films

    KAUST Repository

    Yao, Yingbang

    2013-06-01

    Lead-free piezoelectric thin films, (K0.5Na0.5) 0.96Li0.04(Nb0.8Ta0.2)O 3, were epitaxially grown on MgO(001) and Nb-doped SrTiO 3(001) substrates using pulsed laser deposition. The optimum deposition temperature was found to be 600 C. Two types of in-plane orientations were observed in the films depending on the substrates used. The transmittance and photoluminescence spectra as well as the dielectric and ferroelectric properties of the films were measured. The measured band-gap energy was found to be decreased with the deposition temperature. The dielectric constant decreased from 550 to 300 as the frequency increased from 100 Hz to 1 MHz. The measured remnant polarization and coercive field were 4 μC/cm2 and 68 kV/cm, respectively. The phase transitions of the films were studied by Raman spectroscopy. Two distinct anomalies originating from the cubic-to-tetragonal (TC-T ~ 300 C) and tetragonal-to-orthorhombic (TT-O ~ 120 C) phase transitions were observed. Our results show that Raman spectroscopy is a powerful tool in identifying the phase transitions in ferroelectric thin films. © 2013 Elsevier B.V.

  14. A randomised, double-blind, controlled efficacy trial of the LiESP/QA-21 vaccine in naïve dogs exposed to two leishmania infantum transmission seasons.

    Science.gov (United States)

    Oliva, Gaetano; Nieto, Javier; Foglia Manzillo, Valentina; Cappiello, Silvia; Fiorentino, Eleonora; Di Muccio, Trentina; Scalone, Aldo; Moreno, Javier; Chicharro, Carmen; Carrillo, Eugenia; Butaud, Therese; Guegand, Laurie; Martin, Virginie; Cuisinier, Anne-Marie; McGahie, David; Gueguen, Sylvie; Cañavate, Carmen; Gradoni, Luigi

    2014-10-01

    Canine leishmaniasis is an important zoonosis caused by uncontrolled infection with Leishmania infantum, where an inappropriate immune response is not only responsible for permitting this intracellular parasite to multiply, but is also responsible for several of the pathological processes seen in this disease. Effective canine vaccines are therefore a highly desirable prevention tool. In this randomised, double-blinded, controlled trial, the efficacy of the LiESP/QA-21 vaccine (CaniLeish, Virbac, France) was assessed by exposing 90 naïve dogs to natural L. infantum infection during 2 consecutive transmission seasons, in two highly endemic areas of the Mediterranean basin. Regular PCR, culture, serological and clinical examinations were performed, and the infection/disease status of the dogs was classified at each examination. The vaccine was well-tolerated, and provided a significant reduction in the risk of progressing to uncontrolled active infection (p = 0.025) or symptomatic disease (p = 0.046), with an efficacy of 68.4% and a protection rate of 92.7%. The probability of becoming PCR positive was similar between groups, but the probability of returning to a PCR negative condition was higher in the vaccinated group (p = 0.04). In conclusion, we confirmed the interest of using this vaccine as part of a comprehensive control program for canine leishmaniasis, and validated the use of a protocol based on regular in-depth assessments over time to assess the efficacy of a canine leishmaniasis vaccine.

  15. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.

    Science.gov (United States)

    Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay

    2016-01-27

    Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future.

  16. Study of Dielectric Relaxation in 60B2O3 – 10TeO2 -5TiO2 - 25R2O (R= Li, Na & K Quaternary Glass System.

    Directory of Open Access Journals (Sweden)

    Suresh Sripada

    2014-01-01

    Full Text Available Glasses with composition 60B2O3 - 10TeO2 - 5TiO2 - 25R2O ( R= Li, Na & K have been prepared using normal melt-quench technique. Dielectric measurements were carried out in the frequency range from 100Hz to 1MHz and in temperature range from room temperature (RT to 350oC by using alternating current impedance spectroscopy. The dielectric constant values increase with increase in temperature. Dielectric value lies in the range of 30-170 for lithium, 30-80 for sodium and 32-60 for potassium containing boro tellurite glasses. It is also found that dielectric constant values decrease with increasing frequency. The temperature dependence of the dielectric constant ( shows that, at relatively lower temperature, the electric dipoles formed in the glasses are frozen and rotated at the softening temperature of the glass.. At elevated temperature the glassy network gets relaxed while, motion charge carrier and dipoles become easier. Each ( and  (was found to be dependent on the alkali oxide. Dielectric constant values are found to be high for lithium containing glass

  17. Piezoelectric properties and diffusion phase transition around PPT of La-doped (Na0.52K0.44Li0.04) Nb0.8Ta0.2O3 lead-free piezoelectric ceramics

    Science.gov (United States)

    Yang, Wenlong; Wang, Li; Li, Haidong; Han, Junsheng; Xiu, Hanjiang; Zhou, Zhongxiang

    2016-10-01

    Lead-free ceramics (Na0.52K0.44Li0.04)1-3xLaxNb0.8Ta0.2O3 (KNLNT-Lax, x=0.00, 0.25, 0.5, 0.75, 1.00, 1.25 mol%) as non-polluting materials were prepared by solid state reaction method. The structure, piezoelectric proprieties and temperature stability of KNLNT ceramic with different La doping concentrations were investigated. The results show a transition from orthorhombic-tetragonal mix phase to tetragonal single phase with the variation of La3+ concentrations. The SEM micrographs of surface and fractured surface show a dense microstructure with few micropores. The La-doped KNLTN ceramic will be an alternative candidate contributes to excellent piezoelectric properties, which are found in the 0.75 mol% La-doped KNLNT ceramics, with d33=215pC/N, kp=42.8%and Qm=89. It has been remarkably improved that the temperature stability of KNLTN-Lax piezoelectric properties at room temperature, and the dielectric relaxation can be observed obviously. The mechanism of La doping was analyzed in terms of valence compensation and polymorphic phase transition (PPT) diffusion. The orthorhombic-tetragonal phase transition around room temperature and the relaxation transition were considered contributing to the excellent piezoelectric performance and improved temperature stability of La3+-doped KNLTN.

  18. Calculation of NaCl, KCl and LiCl Salts Activity Coefficients in Polyethylene Glycol (PEG4000)-Water System Using Modified PHSC Equation of State, Extended Debye-Hückel Model and Pitzer Model

    Science.gov (United States)

    Marjani, Azam

    2016-07-01

    For biomolecules and cell particles purification and separation in biological engineering, besides the chromatography as mostly applied process, aqueous two-phase systems (ATPS) are of the most favorable separation processes that are worth to be investigated in thermodynamic theoretically. In recent years, thermodynamic calculation of ATPS properties has attracted much attention due to their great applications in chemical industries such as separation processes. These phase calculations of ATPS have inherent complexity due to the presence of ions and polymers in aqueous solution. In this work, for target ternary systems of polyethylene glycol (PEG4000)-salt-water, thermodynamic investigation for constituent systems with three salts (NaCl, KCl and LiCl) has been carried out as PEG is the most favorable polymer in ATPS. The modified perturbed hard sphere chain (PHSC) equation of state (EOS), extended Debye-Hückel and Pitzer models were employed for calculation of activity coefficients for the considered systems. Four additional statistical parameters were considered to ensure the consistency of correlations and introduced as objective functions in the particle swarm optimization algorithm. The results showed desirable agreement to the available experimental data, and the order of recommendation of studied models is PHSC EOS > extended Debye-Hückel > Pitzer. The concluding remark is that the all the employed models are reliable in such calculations and can be used for thermodynamic correlation/predictions; however, by using an ion-based parameter calculation method, the PHSC EOS reveals both reliability and universality of applications.

  19. Crystal structure of Li3Ga(BO32

    Directory of Open Access Journals (Sweden)

    Robert W. Smith

    2017-03-01

    Full Text Available The crystal structure of trilithium gallium bis(orthoborate, Li3Ga(BO32, is isotypic with Li3Al(BO32 in a triclinic cell in space-group type P-1. The three Li and the unique Ga atom are coordinated by four O atoms each in tetrahedra, and the two B atoms are coordinated by three O atoms in orthoborate triangles. Chains with composition [Ga2(BO34]6− extend along the a axis. The Li atoms interleave these chains in tetrahedral interstices. A comparison is made between the structure model of the title compound and that of a previously reported model for a compound with the same composition [Abdullaev & Mamedov (1972. Zh. Strukt. Khim. 13, 943–946.

  20. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations.

    Science.gov (United States)

    Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep

    2015-06-15

    In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and

  1. Electronic properties of Li-doped zigzag graphene nanoribbons

    Science.gov (United States)

    Narin, P.; Kutlu, E.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Özbay, E.

    2016-10-01

    Zigzag graphene nanoribbons (ZGNRs) are known to exhibit metallic behavior. Depending on structural properties such as edge status, doping and width of nanoribbons, the electronic properties of these structures may vary. In this study, changes in electronic properties of crystal by doping Lithium (Li) atom to ZGNR structure are analyzed. In spin polarized calculations are made using Density Functional Theory (DFT) with generalized gradient approximation (GGA) as exchange correlation. As a result of calculations, it has been determined that Li atom affects electronic properties of ZGNR structure significantly. It is observed that ZGNR structure exhibiting metallic behavior in pure state shows half-metal and semiconductor behavior with Li atom.

  2. Novel synergistic 0.9LiMn0.9Fe0.1PO4·0.1Na3V2(PO4)2F3/C nano-hybrid cathode with enhanced electrochemical performance for lithium-ion batteries

    Science.gov (United States)

    Zhang, Zhijian; Hu, Guorong; Cao, Yanbing; Duan, Jianguo; Du, Ke; Peng, Zhongdong

    2016-01-01

    The nanostructured 0.9LiMn0.9Fe0.1PO4·0.1Na3V2(PO4)2F3/C composites are successfully synthesized by a facile solvothermal method followed by mechanical activation and subsequent carbonthermal reduction process. Behaviours of bi-phase co-existence and element mutual-substitution have been investigated by XRD, TEM/EDX and FTIR. The result shows that the composites have dual phase boundaries including the semi-coherent phase interface and incoherent phase interface, as well as the advantage of Na3V2(PO4)2F3 acting as ionic conductor. Due to the multifunctional phase and (Mn,Fe)-V mutual doping as well as nano-carbon continual conducting network, enhanced Li+ migration and charge transfer of nano-hybrid is obtained. Compared with pristine one, the 0.9LiMn0.9Fe0.1PO4·0.1Na3V2(PO4)2F3/C composites exhibit high rate capability and cycling ability, showing 125.5, 106.4 mAh g-1 at 1.0 C, 3.0 C at room temperature, respectively, with high capacity retention up to 93.9% after 600th at 2 C.

  3. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries

    Science.gov (United States)

    Fürtauer, Siegfried; Effenberger, Herta S.; Flandorfer, Hans

    2014-12-01

    The stannides CuLi2Sn (CSD-427095) and Cu2LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu2Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi2Sn, the space group F-43m. was verified (structure type CuHg2Ti; a=6.295(2) Å; wR2(F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu2LiSn, the space group P63/mmc was confirmed (structure type InPt2Gd; a=4.3022(15) Å, c=7.618(3) Å; wR2(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

  4. Li2CuVO4: A high capacity positive electrode material for Li-ion batteries

    Science.gov (United States)

    Ben Yahia, Hamdi; Shikano, Masahiro; Yamaguchi, Yoichi

    2016-07-01

    The new compound Li2CuVO4 was synthesized by a solid state reaction route, and its crystal structure was determined from single crystal X-ray diffraction data. Li2CuVO4 was characterized by galvanometric cycling, cycle voltammetry, and electrochemical impedance spectroscopy. The structure of Li2CuVO4 is isotypic to Pmn21-Li3VO4. It can be described as a disordered wurtzite structure with rows of Li1/Cu1 atoms alternating with rows of (Li2/Cu2)-V-(Li2/Cu2) atoms along [100]. All cations are tetrahedrally coordinated. The lithium and copper atoms are statistically disordered over two crystallographic sites. The electrochemical cycling between 2.0 and 4.7 V indicates that almost two lithium atoms could be extracted and re-intercalated. This delivers a maximum discharge capacity of 257 mA h g-1 at a C/50 rate (theoretical capacity = 139 mA h g-1 for one lithium). Li2CuVO4 shows also high rate capability with a capacity of 175 mA h g-1 at 1C rate. This demonstrates that Cu-based compounds can be very interesting as electrodes for Li-ion batteries if Cu-dissolution is avoided.

  5. Coincidence in the two-photon spectra of Li and Li2 at 735 nm

    Science.gov (United States)

    DeGraffenreid, W.; Sansonetti, Craig J.

    2005-02-01

    A coincidence between the 22S1/2-32S1/2 two-photon transition in the atomic spectrum of 6Li and the X 1Σ+g→ E 1Σ+g two-photon ro-vibrational series of 7Li2 was observed near 735 nm in a heat pipe oven using a tunable laser and thermionic diode detection scheme. The molecular transition obscures one component of the 6Li atomic transition. Selective detection of the atomic transition was obtained by adding an intensity-modulated laser that drives atoms from the 3S to 16P state. The coincident molecular transition and four nearby molecular lines were identified using previously determined Dunham coefficients.

  6. The synthesis of Li(Cosbnd Mnsbnd Ni)O2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions

    Science.gov (United States)

    Senćanski, Jelena; Bajuk-Bogdanović, Danica; Majstorović, Divna; Tchernychova, Elena; Papan, Jelena; Vujković, Milica

    2017-02-01

    Several spent Li-ion batteries were manually dismantled and their components were uncurled and separated. The chemical composition of each battery's component was determined by atomic absorption spectroscopy. Among several ways to separate cathode material from the collector, the alkali dissolution treatment was selected as the most effective one. After both complete separation and acid leaching steps, the co-precipitation method, followed by a thermal treatment (700 °C or 850 °C), was used to resynthesize cathode material LiCo0.415Mn0.435Ni0.15O2. Its structure and morphology were characterized by XRD, Raman spectroscopy and SEM-EDS methods. The electrochemical behavior of recycled cathode materials was examined by cyclic voltammetry and chronopotentiometry in both LiNO3 and NaNO3 aqueous solutions. High sodium storage capacity, amounting to 93 mAh g-1, was measured galvanostatically at a relatively high current of ∼100 mA g-1. Initial lithium intercalation capacity of ∼64 mAh g-1, was determined potentiodynamically at very high scan rate of 20 mV s-1 (∼40 C). Somewhat lower initial capacity of ∼30 mAh g-1, but much lower capacity fade on cycling, was found for sodium intercalation at the same scan rate. The differences in the Li and Na charge storage capability were explained in terms of ion rearrangement during charging/discharging processes.

  7. Dispersion C3 coefficients for the alkali-metal atoms interacting with a graphene layer and with a carbon nanotube

    CERN Document Server

    Arora, Bindiya; Sahoo, B K

    2013-01-01

    We evaluate separation dependent van der Waal dispersion ($C_3$) coefficients for the interactions of the Li, Na, K and Rb alkali atoms with a graphene layer and with a single walled carbon nanotube (CNT) using the hydrodynamic and Dirac models. The results from both the models are evaluated using accurate values of the dynamic polarizabilities of the above atoms. Accountability of these accurate values of dynamical polarizabilities of the alkali atoms in determination of the above $C_3$ coefficients are accentuated by comparing them with the coefficients evaluated using the dynamic dipole polarizabilities estimated from the single oscillator approximation which are typically employed in the earlier calculations. For practical description of the atom-surface interaction potentials the radial dependent $C_3$ coefficients are given for a wide range of separation distances between the ground states of the considered atoms and the wall surfaces and also for different values of nanotube radii. The coefficients for...

  8. ‘Play Time’ Filmi ve Modern Mimarlık Kuramlarına İlişkin Eleştirel Bir Deneme

    Directory of Open Access Journals (Sweden)

    Mehmet Şener

    2016-01-01

    Full Text Available ÖzJacques Tati sineması, gerek dünya sinema tarihinde, gerek de mimarlık (tarihi sinema ilişkisi bağlamında çok önemli bir yere sahiptir. Tati’nin 1967 yılında çektiği ‘Play Time’ filmi de, mimari ve kentsel unsurlar üzerine şekillenir ve dönemine bu çerçevelerden ışık tutan bir filmdir. Bu makalede, Tati’nin ‘Play Time’ filmi üzerinden yapılacak mekânsal analizler doğrultusunda modern mimarlık ve şehircilik kuramları üzerine eleştirel bir bakış getirilmesi amaçlanmaktadır. Bu çerçevede, ilk bölümde Jacques Tati filmlerinin sinema dünyası ve tarihindeki yeri ile ‘Play Time’ filminin sinematografik yapısı incelenecektir. Bundan sonraki kısımlarda filme dair mekansal analiz ve bulgular üzerine değerlendirmeler yapılacak olup; öncelikle modern mimarinin başat unsurlarından olan “prizmatik” kamusal yapılar ve “kutu mekanlar”, sonrasında da filmde yer alan sergi mekânı, mobilya tasarımı bağlamında yabancılaşma metaforu üzerinden ele alınacaktır. Bunu müteakip, filmdeki sembolik mimari ifade araçlarından biri olan “cam”, modern yaşamda ifade ettiği anlam çerçevesinde; konut yaşantısının resmedildiği sahneler de, modern yaşamın konut ve yapı mahremiyetine etkileri üzerinden analiz edilecektir. Son kısımda da, restoran sahnelerinin incelenmesi üzerinden modern tasarım anlayışına dair eleştirel bir inceleme yapılacak ve sonuç kısmıyla makale tamamlanacaktır.     

  9. Mevlâna ve Kierkegaard’da Birey Tanrı İlişkisi The Relationship between the Individual and God in Mevlana and Kierkegaard

    Directory of Open Access Journals (Sweden)

    Vefa TAŞDELEN

    2013-07-01

    ını oluşturur. Onlar başlıca bu ilişkiyi tesis etme, insanın hayatına bireysel ve toplumsal düzeyde bir anlam katma ve düzen getirme amacını güderler. Yalnız peygamberler değil filozoflar da bu ilişki üzerinde durmuş, onun nasıl mümkün olabileceği hususunda görüşler öne sürmüş, bu şekilde “iman” konusuna felsefi bir derinlik kazandırmaya çalışmışlardır. Bu tutum felsefe tarihi boyunca genellikle Tanrı varlığının kanıtlanması, ruhun ölümsüzlüğünün temellendirilmesi şeklinde kendini göstermiştir. Mevlâna ve Kierkegaard, Tanrı’nın kanıtlanamayacağı konusunda hemfikirdirler. Onlara göre Tanrı için kanıt aramak iman açısında yetkinlik değil kusur, tamlık değil eksikliktir. İman, temelini Tanrı’nın kanıtlanabilir oluşunda değil kanıtlanamaz oluşunda, bilinebilir oluşunda değil bilinemez oluşunda bulur. Akıl bu konuyu anlamakta, dil bu konuyu anlatmakta yetersizdir. Mevlana ve Kierkegaard, birey ve Tanrı arasındaki ilişkiyi rasyonel bir zeminde değil, Tanrı’nın insana, insanın Tanrı’ya yönelimi doğrultusunda daha çok bir gönül ilişkisi olarak kurmak isterler. Kierkegaard için iman iki varoluş arasındaki sevgide ifadesini bulur. Mevlana’da ise kendi varlığını sevgilinin varlığında yeniden keşfetmede ortaya çıkar. Onlar Tanrı’dan insana gelen, insandan Tanrı’ya dönen, Tanrı’dan yine insana gelen, insandan insana, aşama aşama tüm varlığa, tüm evrene doğru yansıyan bir sevgi sarmalından söz ederler. Sonuçta inanma hali, varlığa karşı derin ve içtenlikli bir sevgi duymaya, yaratılanı yaratandan ötürü sevmeye, hoş ve güzel görmeye dönüşür. Bu yönelim temelini, imanın bir “aşk hali” olarak algılanmasında bulur. Çalışmamızda, Mevlana’nın ve Kierkegaard’un inanma tutumu, bu “aşk hali” bağlamında değerlendirilmeye çalışılacaktır.

  10. Structure characteristics and electrochemical properties of LiMn2O4 modified by LiCoO2

    Institute of Scientific and Technical Information of China (English)

    Zhenping Cai; Mingxun Li; Shigang Lu; Weihua Jin

    2005-01-01

    In order to improve the cycle performance of LiMn2O4, the modified LiMn2O4 was prepared by solid-state reactions using LiMn2O4 and LiCoO2 as precursors. XRD and EDS were used to study the structure properties of the modified LiMn2O4. The electrochemical properties of the modified LiMn2O4 were also investigated. The results show that Li and Co atoms could insert into the LiMn2O4 crystal lattice and a newly formed spinel phase, modified LiMn2O4 was obtained. The modified LiMn2O4 exhibits excellent cycle ability at room and elevated temperatures compared to pure LiMn2O4. The improved electrochemical stability of the modified LiMn2O4 attributes to the entrance of Li and Co ions inserted into the spinel crystal structure.

  11. Modified Li chains as atomic switches

    KAUST Repository

    Wunderlich, Thomas

    2013-09-06

    We present electronic structure and transport calculations for hydrogen and lithium chains, using density functional theory and scattering theory on the Green\\'s function level, to systematically study impurity effects on the transmission coefficient. To this end we address various impurity configurations. Tight-binding results allow us to interpret our the findings. We analyze under which circumstances impurities lead to level splitting and/or can be used to switch between metallic and insulating states. We also address the effects of strongly electronegative impurities.

  12. A.C. Conductivity Investigations on Layered Na2-x-yLixKyTi3O7 Ceramics

    Directory of Open Access Journals (Sweden)

    Rakesh Singh

    2013-01-01

    Full Text Available Frequency and temperature dependence of a.c. electrical conductivity of layered mixed ionic alkali trititanates, Na1.89Li0.10K0.01Ti3O7, Na1.88Li0.10K0.02Ti3O7, Na1.86Li0.10K0.04Ti3O7, and Na1.85Li0.10K0.05Ti3O7, have been investigated over a wide temperature 350 K ≤T≥ 725 K and frequency 10 kHz to 1 MHz range. For this, Arrhenius plots are used for a.c. electrical conductivity of these compounds. The obtained conductivity plots have been divided into four distinct regions and discussed the relevant theory. According to slop variation, the conduction mechanisms occurring are different in different temperature regions. At lower temperatures, the hopping electron disorders the surroundings by moving to its neighboring Ti atoms from their equilibrium positions, causing structural defect in the polycrystalline network named small polaron. At higher temperatures, associated/unassociated interlayer ionic conduction occurs along with the alkali ions hopping through the interlayer space and electron hopping (small polaron conduction through Ti–Ti chains in these layered polar alkali titanates.

  13. Structures of Hydrated Alkali Metal Cations, M+(H2O)nAr (m = Li, Na, K, rb and Cs, n = 3-5), Using Infrared Photodissociation Spectroscopy and Thermodynamic Analysis

    Science.gov (United States)

    Ke, Haochen; van der Linde, Christian; Lisy, James M.

    2014-06-01

    Alkali metal cations play vital roles in chemical and biochemical systems. Lithium is widely used in psychiatric treatment of manic states and bipolar disorder; Sodium and potassium are essential elements, having major biological roles as electrolytes, balancing osmotic pressure on body cells and assisting the electroneurographic signal transmission; Rubidium has seen increasing usage as a supplementation for manic depression and depression treatment; Cesium doped compounds are used as essential catalysts in chemical production and organic synthesis. Since hydrated alkali metal cations are ubiquitous and the basic form of the alkali metal cations in chemical and biochemical systems, their structural and thermodynamic properties serve as the foundation for modeling more complex chemical and biochemical processes, such as ion transport and ion size-selectivity of ionophores and protein channels. By combining mass spectrometry and infrared photodissociation spectroscopy, we have characterized the structures and thermodynamic properties of the hydrated alkali metal cations, i.e. M+(H2O)nAr, (M = Li, Na, K, Rb and Cs, n = 3-5). Ab initio calculations and RRKM-EE (evaporative ensemble) calculations were used to assist in the spectral assignments and thermodynamic analysis. Results showed that the structures of hydrated alkali metal cations were determined predominantly by the competition between non-covalent interactions, i.e. the water---water hydrogen bonding interactions and the water---cation electrostatic interactions. This balance, however, is very delicate and small changes, i.e. different cations, different levels of hydration and different effective temperatures clearly impact the balance.

  14. Effects of A-site non-stoichiometry on the structural and electrical properties of 0.96K0.5Na0.5NbO3-0.04LiSbO3 lead-free piezoelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    Zhao Jing-Bo; Du Hong-Liang; Qu Shao-Bo; Zhang Hong-Mei; Xu Zhuo

    2011-01-01

    Effects of A-site non-stoichiometry on the structural and electrical properties of 0.96K0.5+xNa0.5+xNbO30.04LiSbO3 lead-free piezoelectric ceramics were examined for 0 < x < 0.02. The piezoelectric coefficients exhibited a maximum, d33 = 187 pC/N at x = 0.0075, coinciding with the maximum of the grain size and the apparent density at x = 0.0075. The apparent density and the piezoelectric coefficients decreased with increasing x at higher x which was likely due to the crystal geometrical distortion of 0.96K0.5+xNa0.5+xNbO3-0.04LiSbO3. In addition, super-large grains were found and this may be due to liquid phase sintering. Excess (K++Na+) attracted a sum of space charges to keep the charge neutral, resulting in charge leakage during the course of ceramic polarization, influencing the piezoelectric and ferroelectric properties. These findings are of importance for guiding the design of K0.5Na0.5NbO3-based lead-free ceramics with enhanced electrical properties.

  15. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral atoms: Theory, comparisons, and application to Ca

    CERN Document Server

    Barklem, Paul S

    2016-01-01

    A theoretical method for the estimation of cross sections and rates for excitation and charge transfer processes in low-energy hydrogen atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in the neutral atom-hydrogen atom system, is presented. The calculation of potentials and non-adiabatic radial couplings using the method is demonstrated. The potentials are used together with the multi-channel Landau-Zener model to calculate cross sections and rate coefficients. The main feature of the method is that it employs asymptotically exact atomic wavefunctions, which can be determined from known atomic parameters. The method is applied to Li+H, Na+H, and Mg+H collisions, and the results compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically important problem of Ca+H collisions, and rate coefficients are calculated for temperatures in the range 1000-20000 K.

  16. Striking impact of Na insertion on structural and electronic properties of the electrode material Na2+x V6O16

    Science.gov (United States)

    Le Bacq, O.; Jakse, N.; Pasturel, A.

    2016-12-01

    The Na2.55V6O16 structure is a promising material for sodium ion batteries due to a significant capacity and stability at high current rates, but its cycle stability for Na application is significantly lower than that obtained with Li (de-)insertion. In this work, we present the results of density functional theory (DFT) calculations on the structural and electronic properties of Na2+x V6O16 compounds up to x  =  2. As x increases, we evidence a strong deformation of the tetrahedral sites occupied by sodium ions, leading to new highly stable sites for these inserted ions at x  =  2. Comparing with Li4V6O16, we demonstrate that the stability of these new Na sites can be attributed to the electrostatic interactions between sodium ions and atoms of the host structure, the evolution of the oxidation degree of Vanadium atoms being another indicator of such effects.

  17. An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface

    Directory of Open Access Journals (Sweden)

    Yan-Zi Yu

    2015-01-01

    Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.

  18. New rock salt-related oxides Li{sub 3}M{sub 2}RuO{sub 6} (M=Co, Ni): Synthesis, structure, magnetism and electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Laha, S. [Departamento de Químicas Inorganica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India); Morán, E., E-mail: emoran@quim.ucm.es [Departamento de Químicas Inorganica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Sáez-Puche, R.; Alario-Franco, M.Á.; Dos santos-Garcia, A.J. [Departamento de Químicas Inorganica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Gonzalo, E.; Kuhn, A.; García-Alvarado, F. [Universidad CEU San Pablo, Facultad de Farmacia, Departamento de Química, 28668 Boadilla del Monte, Madrid (Spain); Sivakumar, T.; Tamilarasan, S.; Natarajan, S.; Gopalakrishnan, J. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India)

    2013-07-15

    We describe the synthesis, crystal structure, magnetic and electrochemical characterization of new rock salt-related oxides of formula, Li{sub 3}M{sub 2}RuO{sub 6} (M=Co, Ni). The M=Co oxide adopts the LiCoO{sub 2} (R-3m) structure, where sheets of LiO{sub 6} and (Co{sub 2}/Ru)O{sub 6} octahedra are alternately stacked along the c-direction. The M=Ni oxide also adopts a similar layered structure related to Li{sub 2}TiO{sub 3}, where partial mixing of Li and Ni/Ru atoms lowers the symmetry to monoclinic (C2/c). Magnetic susceptibility measurements reveal that in Li{sub 3}Co{sub 2}RuO{sub 6}, the oxidation states of transition metal ions are Co{sup 3+} (S=0), Co{sup 2+} (S=1/2) and Ru{sup 4+} (S=1), all of them in low-spin configuration and at 10 K, the material orders antiferromagnetically. Analogous Li{sub 3}Ni{sub 2}RuO{sub 6} presents a ferrimagnetic behavior with a Curie temperature of 100 K. The differences in the magnetic behavior have been explained in terms of differences in the crystal structure. Electrochemical studies correlate well with both magnetic properties and crystal structure. Li-transition metal intermixing may be at the origin of the more impeded oxidation of Li{sub 3}Ni{sub 2}RuO{sub 6} when compared to Li{sub 3}Co{sub 2}RuO{sub 6}. Interestingly high first charge capacities (between ca. 160 and 180 mAh g{sup −1}) corresponding to ca. 2/3 of theoretical capacity are reached albeit, in both cases, capacity retention and cyclability are not satisfactory enough to consider these materials as alternatives to LiCoO{sub 2}. - Graphical abstract: Two new rock salt related oxides of formula, Li{sub 3}M{sub 2}RuO{sub 6}, (M=Co, Ni) have been prepared. The M=Co oxide adopts the LiCoO{sub 2} (R-3m) structure and the M=Ni oxide adopts a similar layered structure related to Li{sub 2}TiO{sub 3,} monoclinic (C2/c), with partial mixing of Li and Ni/Ru atoms. For Li{sub 3}Co{sub 2}RuO{sub 6}, oxidation state for Ru is 4+ and antiferromagnetic (AFM) order is

  19. New intermetallic phases in the Cu-Li-Sn system. The lithium-rich phases Li{sub 3}CuSn and Li{sub 6}Cu{sub 2}Sn{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Flandorfer, Hans [Wien Univ. (Austria). Inst. fuer Anorganische Chemie (Materialchemie); Effenberger, Herta S. [Wien Univ. (Austria). Inst. fuer Mineralogie und Kristallographie

    2016-04-01

    The Li-rich ternary intermetallic compounds with the idealized end-member compositions Li{sub 3}CuSn (CSD-427099) and Li{sub 6}Cu{sub 2}Sn{sub 3} (CSD-427100) were synthesized from the pure elements by induction melting in Ta crucibles and annealing at 400 {sup circle} C. Both powder and single-crystal XRD investigations were performed. Li{sub 3}CuSn crystallizes in space group P6/mmm [a=4.5769(2), c=8.461(2) Aa; wR{sub 2}=0.073 for 180 unique F{sup 2}-values and 25 free variables]. All atoms are located along [00z], [1/3 2/3 z] and [2/3 1/3 z]; individual sites are arranged in layers parallel to (00.1). One site is fully, one partially occupied by Sn atoms. Fully but mixed occupation with Cu and Li atoms was found for one site. The remaining electron-density distribution resulting from the strong anisotropic displacement parallel to the c axis is considered in four further sites, which are mixed occupied with (Li, Cu, □), but modelled solely by Li atoms. The crystal structure exhibits analogies with that of Li{sub 2}CuSn (F anti 43m); comparable layers occur parallel to {111} but the stacking sequence and packing density differs adopting cubic symmetry. In Li{sub 6}Cu{sub 2}Sn{sub 3} [space group R anti 32/m, a=4.5900(2), c=30.910(6) Aa; wR{sub 2}=0.039 for 253 unique F{sup 2}-values for 25 free variables] all atoms are arranged again at (00z), (1/3 2/3 z) and (2/3 1/3 z). Three sites are fully occupied (two by Sn atoms, a further one by Li atoms). Three additional positions are mixed occupied by Cu and Li atoms. The crystal structure is closely related to that of the binary phases Li{sub 13}Sn{sub 5} and Li{sub 5}Sn{sub 2}; the substitution of Li by Cu atoms and vice versa is evident. The structural relationship to Li{sub 13}Ag{sub 5}Si{sub 6}, which is permeable for Li ions, makes the title compound interesting as anode material in Li-ion batteries.

  20. Solid-solution thermodynamics in Al-Li alloys

    Science.gov (United States)

    Alekseev, A. A.; Lukina, E. A.

    2016-05-01

    The relative equilibrium concentrations of lithium atoms distributed over different electron-structural states has been estimated. The possibility of the existence of various nonequilibrium electron-structural states of Li atoms in the solid solution in Al has been substantiated thermodynamically. Upon the decomposition of the supersaturated solid solution, the supersaturation on three electron-structural states of Li atoms that arises upon the quenching of the alloy can lead to the formation of lithium-containing phases in which the lithium atoms enter in one electron-structural state.

  1. Nuclear magnetic resonance studies of atomic motion in borohydride-based materials: Fast anion reorientations and cation diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Skripov, A.V., E-mail: skripov@imp.uran.ru; Soloninin, A.V.; Babanova, O.A.; Skoryunov, R.V.

    2015-10-05

    Highlights: • Solid solutions LiBH{sub 4}–LiI: extremely fast BH{sub 4} reorientations down to low T. • LiLa(BH{sub 4}){sub 3}Cl: Li-ion diffusive jumps and BH{sub 4} reorientations at the same frequency scale. • Dramatic acceleration of B{sub 12}H{sub 12} reorientations in the disordered phase of Na{sub 2}B{sub 12}H{sub 12}. • Fast Na-ion diffusion in the disordered phase of Na{sub 2}B{sub 12}H{sub 12}. - Abstract: Two basic types of thermally activated atomic jump motion are known to exist in solid borohydrides and the related systems: the reorientations of complex anions ([BH{sub 4}]{sup −}, [B{sub 12}H{sub 12}]{sup 2−}) and the translational diffusion of metal cations or complex anions. This paper reviews recent progress in nuclear magnetic resonance (NMR) studies of these jump processes in complex hydrides, such as solid solutions of halide anions in borohydrides, bimetallic borohydrides and borohydride–chlorides, borohydride–amides, and B{sub 12}H{sub 12}-based compounds. The emphasis is put on the systems showing fast-ion conductivity. For these systems, we discuss a possible relation between the reorientational motion of complex anions and the translational motion of metal cations.

  2. Interactions and low energy collisions between an alkali ion and an alkali atom of different nucleus

    CERN Document Server

    Rakshit, Arpita; Berriche, Hamid; Deb, Bimalendu

    2015-01-01

    We study theoretically interaction potentials and low energy collisions between different alkali atoms and alkali ions. Specifically, we consider systems like X + Y$^{+}$, where X(Y$^{+})$ is either Li(Cs$^+$) or Cs((Li$^+$), Na(Cs$^+$) or Cs(Na$^+$) and Li(Rb$^+$) or Rb(Li$^+$). We calculate the molecular potentials of the ground and first two excited states of these three systems using pseudopotential method and compare our results with those obtained by others. We calculate ground-state scattering wave functions and cross sections of these systems for a wide range of energies. We find that, in order to get convergent results for the total scattering cross sections for energies of the order $1$ K, one needs to take into account at least 60 partial waves. In the low energy limit ($< 1 \\mu$K), elastic scattering cross sections exhibit Wigner law threshold behavior while in the high energy limit the cross sections go as $E^{-1/3}$. We discuss qualitatively the possibilities of forming cold molecular ion by ...

  3. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  4. Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage.

    Science.gov (United States)

    Niu, Min; Yu, Guangtao; Yang, Guanghui; Chen, Wei; Zhao, Xingang; Huang, Xuri

    2014-01-06

    Under ab initio computations, several new inorganic electride compounds with high stability, M@x-Al12N12 (M = Li, Na, and K; x = b66, b64, and r6), were achieved for the first time by doping the alkali metal atom M on the fullerene-like Al12N12 nanocage, where the alkali atom is located over the Al-N bond (b66/b64 site) or six-membered ring (r6 site). It is revealed that independent of the doping position and atomic number, doping the alkali atom can significantly narrow the wide gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) (EH-L = 6.12 eV) of the pure Al12N12 nanocage in the range of 0.49-0.71 eV, and these doped AlN nanocages can exhibit the intriguing n-type characteristic, where a high energy level containing the excess electron is introduced as the new HOMO orbital in the original gap of pure Al12N12. Further, the diffuse excess electron also brings these doped AlN nanostructures the considerable first hyperpolarizabilities (β0), which are 1.09 × 10(4) au for Li@b66-Al12N12, 1.10 × 10(4), 1.62 × 10(4), 7.58 × 10(4) au for M@b64-Al12N12 (M = Li, Na, and K), and 8.89 × 10(5), 1.36 × 10(5), 5.48 × 10(4) au for M@r6-Al12N12 (M = Li, Na, and K), respectively. Clearly, doping the heavier Na/K atom over the Al-N bond can get the larger β0 value, while the reverse trend can be observed for the series with the alkali atom over the six-membered ring, where doping the lighter Li atom can achieve the larger β0 value. These fascinating findings will be advantageous for promoting the potential applications of the inorganic AlN-based nanosystems in the new type of electronic nanodevices and high-performance nonlinear optical (NLO) materials.

  5. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  6. Evaluation of the thermoluminescent detector answers of CaSO{sub 4}:Dy, LiF:Mg,Ti and micro LiF:Mg,Ti in photon clinical beams dosimetry using water simulator; Avaliacao da resposta de detectores termoluminescentes de CaSO4:Dy, LiF:Mg,Ti e microLiF:Mg,Ti na dosimetria de feixes clinicos de fotons utilizando simulador de agua

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana C.; Veneziani, Glauco R.; Campos, Leticia L., E-mail: lmatsushima@usp.b, E-mail: veneziani@ipen.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (GMR/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Metrologia das Radiacoes; Sakuraba, Roberto K.; Cruz, Jose C. da, E-mail: rsakuraba@einstein.b, E-mail: jccruz@einstein.b [Sociedade Beneficente Israelita Brasileira, Sao Paulo, SP (Brazil). Hospital Albert Einstein (HAE)

    2011-10-26

    This paper perform the comparative study of thermoluminescent answer of calcium sulfate dosemeter doped with dysprosium (DaSO{sub 4}:Dy) produced by the IPEN, Sao Paulo, with answer of lithium fluoride dosemeters doped with magnesium and titanium (LiF:Mg, Ti) in the dosimetry of clinical beams of photons (6 and 15 MV) by using water simulator object. Dose-answer curves were obtained for gamma radiation of cobalt-60 in the air and in conditions of electronic equilibrium (plate of PMMA), and clinical photons of CLINAC model 2100C accelerators of the two evaluated hospitals: Hospital das Clinicas of the Faculty of Medicine of Sao Paulo university and Hospital Albert Einstein. It was also evaluated the sensitivity and reproduction of the three dosemeters

  7. Solid state 13C-NMR, infrared, X-ray powder diffraction and differential thermal studies of the homologous series of some mono-valent metal (Li, Na, K, Ag) n-alkanoates: A comparative study

    Science.gov (United States)

    Nelson, Peter N.; Ellis, Henry A.; White, Nicole A. S.

    2015-06-01

    A comparative study of the molecular packing, lattice structures and phase behaviors of the homologous series of some mono-valent metal carboxylates (Li, Na, K and Ag) is carried out via solid state FT-infrared and 13C-NMR spectroscopes, X-rays powder diffraction, density measurements, differential scanning calorimetry, polarizing light microscopy and variable temperature infrared spectroscopy. It is proposed that, for lithium, sodium and potassium carboxylates, metal-carboxyl coordination is via asymmetric chelating bidentate bonding with extensive intermolecular interactions to form tetrahedral metal centers, irrespective of chain length. However, for silver n-alkanoates, carboxyl moieties are bound to silver ions via syn-syn type bridging bidentate coordination to form dimeric units held together by extensive head group inter-molecular interactions. Furthermore, the fully extended hydrocarbon chains which are crystallized in the all-trans conformation are tilted at ca. 30°, 27°, 15° and 31° with respect to a normal to the metal plane, for lithium, sodium, silver and potassium carboxylates, respectively. All compounds are packed as lamellar bilayer structures, however, lithium compounds are crystallized in a triclinic crystal system whilst silver, sodium and potassium n-alkanoates are all monoclinic with possible P1 bravais lattice. Odd-even alternation observed in various physical features is associated with different inter-planar spacing between closely packed layers in the bilayer which are not in the same plane; a phenomenon controlled by lattice packing symmetry requirements. All compounds, except silver carboxylates, show partially reversibly first order pre-melting transitions; the number of which increases with increasing chain length. These transitions are associated, for the most part, with lamellar collapse followed by increased gauche-trans isomerism in the methylene group assembly, irrespective of chain length. It is proposed that the absence of

  8. Li-Ge-H system: Hydrogenation and structural properties of LiGeHx (0

    Science.gov (United States)

    Pavlyuk, V.; Ciesielski, W.; Kulawik, D.; Prochwicz, W.; Rożdżyńska-Kiełbik, B.

    2016-11-01

    The synthesis, isothermal section at 450 °C of the Li-Ge-H system in the concentration region from 40 at.% Li to 70 at.% Li and structural characterizations of the observed phases are reported. The hydrogenation and structural properties of the LiGeHx (0 < x < 0.25) phase were studied by volumetric analysis and X-ray diffraction. The absorption of hydrogen by LiGe binary compound produce the ternary hydride phase LiGeHx (0 < x < 0.25), thus the volume tetragonal unit cell increases on 1.8 Å3. The LiGeHx solid solution is formed by means of the insertion of hydrogen atoms into tetrahedral voids of parent LiGe structure. The extension of homogeneity range of LiGeHx (0 < x < 0.25) phase and its crystal structure were more precisely refined using X-ray diffraction data. Electronic structure calculations reveal an increased occupation of electronic states at the Fermi level for LiGeHx in comparison to LiGe.

  9. Direction-dependent RBS channelling studies in ion implanted LiNbO3

    Science.gov (United States)

    Wendler, E.; Becker, G.; Rensberg, J.; Schmidt, E.; Wolf, S.; Wesch, W.

    2016-07-01

    Damage formation in ion implanted LiNbO3 was studied by Rutherford backscattering spectrometry (RBS) along various directions of the LiNbO3 crystal. From the results obtained it can be unambiguously concluded that Nb atoms being displaced during ion implantation preferably occupy the free octahedron sites of the LiNbO3 lattice structure and most likely also form NbLi antisite defects.

  10. Direction-dependent RBS channelling studies in ion implanted LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, E., E-mail: elke.wendler@uni-jena.de; Becker, G.; Rensberg, J.; Schmidt, E.; Wolf, S.; Wesch, W.

    2016-07-15

    Damage formation in ion implanted LiNbO{sub 3} was studied by Rutherford backscattering spectrometry (RBS) along various directions of the LiNbO{sub 3} crystal. From the results obtained it can be unambiguously concluded that Nb atoms being displaced during ion implantation preferably occupy the free octahedron sites of the LiNbO{sub 3} lattice structure and most likely also form Nb{sub Li} antisite defects.

  11. Study of the reduction in detection limits of track detectors used for {sup 10}B(n,α){sup 7}Li reaction rate measure through annealing and chemical etching experiments; Estudo da reducao nos limites de deteccao de detectores de tracos utilizados na medida de taxa de reacao {sup 10}B(n, α){sup 7}Li atraves de experimentos de annealing e ataque quimico

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Herminiane L.; Smilgys, Barbara; Guedes, Sandro, E-mail: hluizav@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin; Castro, Vinicius A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear

    2013-08-15

    The Boron Neutron Capture Therapy (BNCT) is an experimental radiotherapy for cancer treatment. It is based on {sup 10}B(n, α){sup 7}Li reaction, which can be measured by track detectors capable of recording events that strike them. With this recording, it is possible to determine the number of alpha particles and recoiling Lithium-7 nucleus, reaction products, and from this information, which amount of radiation dose a patient is exposed to. In this work, PADC detectors were characterized, irradiated at the IEA-R1 IPEN/CNEN reactor to assess the contribution of the{sup 10}B(n, α){sup 7}Li reaction and protons from fast neutron scattering with the elements that compounds the tissue. With the aim of reducing the proton background, the detectors were subjected to heating experiments at 80°C for periods in the range 0-100 hours. This was done in order to restore partially modified structure of the detector, causing a reduction in the size and density of tracks. This effect is known as annealing. For the visualization of tracks at microscope, detectors were made three chemical attacks with sodium hydroxide (NaOH) for 30, 60 and 90 minutes at 70°C. It was observed a reduction in the track density achieving a plateau heating time of 50 hours. For detectors that have not undergone annealing and were etched with another etchant, PEW solution, a reduction of 87% in track density was obtained. (author)

  12. Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms.

    Science.gov (United States)

    Noskov, Sergei Y; Roux, Benoît

    2008-03-28

    The x-ray structure of LeuT, a bacterial homologue of Na(+)/Cl(-)-dependent neurotransmitter transporters, provides a great opportunity to better understand the molecular basis of monovalent cation selectivity in ion-coupled transporters. LeuT possesses two ion binding sites, NA1 and NA2, which are highly selective for Na(+). Extensive all-atom free-energy molecular dynamics simulations of LeuT embedded in an explicit membrane are performed at different temperatures and various occupancy states of the binding sites to dissect the molecular mechanism of ion selectivity. The results show that the two binding sites display robust selectivity for Na(+) over K(+) or Li(+), the competing ions of most similar radii. Of particular interest, the mechanism primarily responsible for selectivity for each of the two binding sites appears to be different. In NA1, selectivity for Na(+) over K(+) arises predominantly from the strong electrostatic field arising from the negatively charged carboxylate group of the leucine substrate coordinating the ion directly. In NA2, which comprises only neutral ligands, selectivity for Na(+) is enforced by the local structural restraints arising from the hydrogen-bonding network and the covalent connectivity of the polypeptide chain surrounding the ion according to a "snug-fit" mechanism.

  13. Size-specific interaction of alkali metal ions in the solvation of M+-benzene clusters by Ar atoms.

    Science.gov (United States)

    Huarte-Larrañaga, F; Aguilar, A; Lucas, J M; Albertí, M

    2007-08-23

    The size-specific influence of the M+ alkali ion (M = Li, Na, K, Rb, and Cs) in the solvation process of the M+-benzene clusters by Ar atoms is investigated by means of molecular dynamic simulations. To fully understand the behavior observed in M+-bz-Ar(n) clusters, solvation is also studied in clusters containing either M+ or benzene only. The potential energy surfaces employed are based on a semiempirical bond-atom decomposition, which has been developed previously by some of the authors. The outcome of the dynamics is analyzed by employing radial distribution functions, studying the evolution of the distances between the Ar atoms and the alkali ion M+ or the benzene molecule for all M+-bz-Ar(n) clusters. For all members, in the M+-bz series, the benzene molecule (bz) is found to remain strongly bound to M+ even in the presence of solvent atoms. The radial distribution functions for the heavier clusters (K+-bz, Rb+-bz, and Cs+-bz), are found to be different than for the lighter (Na+-bz and Li+-bz) ones.

  14. Effective atomic numbers of some composite mixtures including borax

    Energy Technology Data Exchange (ETDEWEB)

    Bastug, Arif [Department of Physics, Faculty of Art and Science, Aksaray University, Aksaray (Turkey); Guerol, Ali [Department of Physics, Faculty of Sciences, Atatuerk University, Erzurum (Turkey); Icelli, Orhan, E-mail: oicelli@yildiz.edu.t [Department of Physics, Faculty of Art and Sciences, Yildiz Technical University, Davutpasa 34220, Istanbul (Turkey); Sahin, Yusuf [Department of Physics, Faculty of Sciences, Atatuerk University, Erzurum (Turkey)

    2010-07-15

    Effective atomic numbers for (PbO and Na{sub 2}B{sub 4}O{sub 7}10H{sub 2}O) and (UO{sub 2}(NO{sub 3}){sub 2}, and Na{sub 2}B{sub 4}O{sub 7}10H{sub 2}O) mixtures against changing contents of PbO, Na{sub 2}B{sub 4}O{sub 7}10H{sub 2}O, and UO{sub 2}(NO{sub 3}){sub 2} were measured in the X-ray energy range from 25.0 to 58.0 keV. The gamma rays emitted by a {sup 241}Am annular source have been sent on the absorbers which emits their characteristic X-rays to be used in transmission arrangement. The X-rays were counted by a Si(Li) detector with a resolution of 146 eV at 5.90 keV. The changing compositions of the compounds were assigned to be 0, 0.167, 0.333, 0.500, 0.666, 0.833 and total masses of the mixtures were adjusted to be identical. Also, the total effective atomic numbers of each mixture were estimated by using the mixture rule. The measured values were compared with estimated values for the mixtures.

  15. Simultaneous magneto-optical trapping of lithium and ytterbium atoms towards production of ultracold polar molecules

    CERN Document Server

    Okano, M; Muramatsu, M; Doi, K; Uetake, S; Takasu, Y; Takahashi, Y

    2009-01-01

    We have successfully implemented the first simultaneous magneto-optical trapping (MOT) of lithium ($^6$Li) and ytterbium ($^{174}$Yb) atoms, towards production of ultracold polar molecules of LiYb. For this purpose, we developed the dual atomic oven which contains both atomic species as an atom source and successfully observed the spectra of the Li and Yb atoms in the atomic beams from the dual atomic oven. We constructed the vacuum chamber including the glass cell with the windows made of zinc selenium (ZnSe) for the CO$_2$ lasers, which are the useful light sources of optical trapping for evaporative and sympathetic cooling. Typical atom numbers and temperatures in the compressed MOT are 7$\\times10^3$ atoms, 640 $\\mu$K for $^6$Li, 7$\\times10^4$ atoms and 60 $\\mu$K for $^{174}$Yb, respectively.

  16. Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium

    NARCIS (Netherlands)

    McAlexander, W.I.; Abraham, E.R.I.; Ritchie, N.W.M.; Williams, C.J.; Stoof, H.T.C.; Hulet, R.G.

    1995-01-01

    We have obtained spectra of the high-lying vibrational levels of the 13Σg+ state of 6Li2 via photoassociation of ultracold 6Li atoms confined in a magneto-optical trap. The 13Σg+ state of the diatomic molecule correlates to a 2S1/2 state atom plus a 2P1/2 state atom. The long-range part of the molec

  17. [6-chloro-3-pyridylmethyl-{sup 3}H]neonicotinoids as high-affinity radioligands for the nicotinic acetylcholine receptor: preparation using NaB{sup 3}H{sub 4} and LiB{sup 3}H{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Latli, Bachir; Casida, J.E. [California Univ., Berkeley, CA (United States). Dept. of Environmental Science Policy and Management; Chit Than; Morimoto, Hiromi; Williams, P.G. [Lawrence Berkeley National Lab., CA (United States)

    1996-11-01

    NaB{sup 3}H{sub 4} and LiB{sup 3}H{sub 4} at 78% and 97% isotopic enrichments, respectively, were used in the synthesis of {sup 3}H-labeled 1-(6-chloro-3-pyridyl)-methyl-2-nitromethyleneimidazolidine (CH-IMI) and N`-[(6-chloro-3-pyridyl)methyl]-n``-cyano-n`-methylacetamidine (acetamiprid) (two very potent insecticides) and of 1-(6-chloro-3-pyridyl)methyl-2-iminoimidazolidine (desnitro-IMI) (a metabolite of the commercial insecticides imidacloprid). 6-Chloronicotinoyl chloride was treated with either NaB{sup 3}H{sub 4} in methanol or LiB{sup 3}H{sub 4} in tetrahydrofuran and the resulting alcohol transformed to 2-chloro-5-chloromethylpyridine, which was then coupled to N-cyano-N`-methylacetamidine to give [{sup 3}H] acetamiprid (45 Ci/mmol). 2-Chloro-5-chloro[{sup 3}H]methylpyridine was also reacted with ethylenediamine and the product was either refluxed in absolute ethanol with 1,1-bis(methylthio)-2-nitro-ethylene to provide [{sup 3}H]CH-IMI or reacted in toluene with a solution of cyanogen bromide to produce [{sup 3}H] desnitro-IMI (each 55 Ci/mmol). (author).

  18. Study on Low Temperature Pyroelectric and Elastic Properties of Li0.06Na0.94NbO3 Ceramics%低温下铌酸锂钠陶瓷的热释电性与弹性研究

    Institute of Scientific and Technical Information of China (English)

    艾树涛; 王春雷; 张沛霖; 赵明磊; 杜爱军

    2001-01-01

    Pyroelectric and elastic properties of Li0.06Na0.94NbO3 ceramics have been investigated in the temperature range from 120~320 K.Its pyroelectric and elastic properties behave anomalously in certain low temperature intervals.This shows there is a low temperature ferroelectric phase transition in Li0.06Na0.94NbO3 ceramics.The inversion of its pyroelectric coefficient in polarized direction to the opposite sign and the change of the polarity of pyroelectric charge with time during phase transtion have been observed.The evolution of elastic properties is connected with the secondary piezoelectric effect.%在120~320 K的温度范围内研究了锂酸锂钠陶瓷的热释电性与弹性。其热释电行为与弹性行为在低温区域内显著反常,表明该陶瓷存在低温铁电-铁电相变。观测到极化方向的热释电系数改变符号及热释电电荷随时间改变极性的现象。弹性变化与次级压电效应是相关的。

  19. Molecular mechanics on bonding and non-bonding interactions in (atom@C60)

    Institute of Scientific and Technical Information of China (English)

    朱传宝; 徐志谨; 严继民

    1997-01-01

    The interactions between the embedded atom X (X=Li,Na,K,Rb,Cs; F,Cl,Br,I) and C60cage in the endohedral-form complexes (X@C60) are calculated and discussed according to molecular mechanics from the point of view of the bonding and non-bonding.It is found from the computational results that for atoms with radii larger than Li’s,their locations with the minimum interaction in (X@C60) are at the cage center,while atom Li has an off-center location with the minimum interaction deviation of-0.05 nm,and the cage-environment in C60 can be regarded as sphero-symmetry in the region with radius r of ~0.2 nm.It is shown that the interaction between X and C60 cage is of non-bonding characteristic,and this non-bonding interaction is not purely electrostatic.The repulsion and dispersion in non-bonding interactions should not be neglected,which make important contribution to the location with minimum interaction of X,at center or off center.Some rules about the variations of interactions with atomic radii have been ob

  20. Coincidence in the two-photon spectra of Li and Li{sub 2} at 735 nm

    Energy Technology Data Exchange (ETDEWEB)

    DeGraffenreid, W [Department of Physics and Astronomy, California State University, Sacramento, Sacramento, CA 95819-6041 (United States); Sansonetti, Craig J [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2005-02-28

    A coincidence between the 2{sup 2}S{sub 1/2}-3{sup 2}S{sub 1/2} two-photon transition in the atomic spectrum of {sup 6}Li and the X {sup 1}{sigma}{sup +}{sub g}{yields} E {sup 1}{sigma}{sup +}{sub g} two-photon ro-vibrational series of {sup 7}Li{sub 2} was observed near 735 nm in a heat pipe oven using a tunable laser and thermionic diode detection scheme. The molecular transition obscures one component of the {sup 6}Li atomic transition. Selective detection of the atomic transition was obtained by adding an intensity-modulated laser that drives atoms from the 3S to 16P state. The coincident molecular transition and four nearby molecular lines were identified using previously determined Dunham coefficients.

  1. Ab initio evaluations of the He solubility in liquid Li

    Energy Technology Data Exchange (ETDEWEB)

    Sedano, Luis A. [EURATOM-CIEMAT Assoc., Materials for Fusion Program, Bd. 43 P0.04, Avda. Complutense 22, 28040 Madrid (Spain)]. E-mail: luis.sedano@ciemat.es; Hassanein, Ahmed [Argonne Nat. Lab, 9700 South Class Av., Argonne, IL (United States)]. E-mail: hassanein@anl.gov; Sanz, Javier [ETSII-UNED, c/Juan del Rosal, 12, 28040 Madrid (E) (Spain)]. E-mail: jsanz@ind.UNED.es

    2005-11-15

    Modified embedding atom methods (MEAM) are developed to have predictions of the partial molar heat of solution (-H{sub s}) by direct simulation of metal cohesion, He-metal and He-He interaction. Transitions from crystalline Li to configurations, having the liquid Li structure's factors (h-bar (q)), are simulated ab initio. Once h-bar (q) reproduced, He atoms are added, one by one, to the Li system. Parallel lines for each case, with slopes clearly independent on the number of He atoms in the system, are obtained for energy versus pressure at given temperatures. Average differences between two adjacent parallels at zero pressure, once kinetic energy of the system discounted, represents the energy gained by an He atom when added to the Li system, related to the solution energy -H{sub s}. The molar excess entropy of gas in solution (S-bar {sub l}{sup ex}) is previously evaluated following diverse fundamental approaches: a 'thermodynamic liquid-hole' (TL-H) model for alkali liquids and a statistical-mechanics (Neff and McQuarrie's) model (SMM). Between 600 and 900 deg. C, a typical range of interest for the use of Li in fusion technology, the computed values for the (He) Henry's constant in Li range from 8x10{sup -14} to 10{sup -13} at. fr. Pa{sup -1}.

  2. Optical waveguides in LiNbO3 and stoichiometric LiNbO3 crystals by proton exchange

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The formation of optical planar waveguides in LiNbO3 and stoichiometric LiNbO3 crystals by proton exchange was reported. The prism-coupling method was used to characterize the dark-line spectroscopy at the wavelength of 633 and 1539 nm, re-spectively. The mode optical near-field outputs from proton-exchanged LiNbO3 and SLN waveguides at 633 nm were presented. The mode field from stoichiometric LiNbO3 (SLN) waveguide is lighter and more uniform than that from LiNbO3 waveguide, which means the quality of the waveguide in SLN crystal is better than that of the LiNbO3 waveguide. For proton-exchanged LiNbO3 waveguides, the evo-lution of the refractive index profile with annealing was presented. The disorder profiles of Nb atoms in proton-exchanged LiNbO3 waveguides were obtained by Rutherford backscattering/channeling technique. It is shown that the longer the exchange time, the larger the displacement of Nb atoms.

  3. Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure, (7) Li, (29) Si, and (31) P MAS NMR Spectroscopy, and Impedance Spectroscopy of Li8 SiP4 and Li2 SiP2.

    Science.gov (United States)

    Toffoletti, Lorenzo; Kirchhain, Holger; Landesfeind, Johannes; Klein, Wilhelm; van Wüllen, Leo; Gasteiger, Hubert A; Fässler, Thomas F

    2016-12-05

    The need to improve electrodes and Li-ion conducting materials for rechargeable all-solid-state batteries has drawn enhanced attention to the investigation of lithium-rich compounds. The study of the ternary system Li-Si-P revealed a series of new compounds, two of which, Li8 SiP4 and Li2 SiP2 , are presented. Both phases represent members of a new family of Li ion conductors that display Li ion conductivity in the range from 1.15(7)×10(-6) Scm(-1) at 0 °C to 1.2(2)×10(-4) Scm(-1) at 75 °C (Li8 SiP4 ) and from 6.1(7)×10(-8) Scm(-1) at 0 °C to 6(1)×10(-6) Scm(-1) at 75 °C (Li2 SiP2 ), as determined by impedance measurements. Temperature-dependent solid-state (7) Li NMR spectroscopy revealed low activation energies of about 36 kJ mol(-1) for Li8 SiP4 and about 47 kJ mol(-1) for Li2 SiP2 . Both compounds were structurally characterized by X-ray diffraction analysis (single crystal and powder methods) and by (7) Li, (29) Si, and (31) P MAS NMR spectroscopy. Both phases consist of tetrahedral SiP4 anions and Li counterions. Li8 SiP4 contains isolated SiP4 units surrounded by Li atoms, while Li2 SiP2 comprises a three-dimensional network based on corner-sharing SiP4 tetrahedra, with the Li ions located in cavities and channels.

  4. Hydrogen diffusion in Al-Li alloys

    Science.gov (United States)

    Anyalebechi, P. N.

    1990-08-01

    The diffusion coefficients of hydrogen in binary Al-Li alloys containing 1,2, and 3 wt pct Li have been determined from desorption curves of samples saturated with hydrogen at 473 to 873 K. Within this temperature range, the diffusivity of hydrogen in the binary Al-Li alloys investigated has an Arrhenius-type temperature dependence and follows the equation of the general form D = DT) where D 0exp(-Q/R is the diffusion coefficient (m2/s), D 0 is the preexponential or frequency factor (m2/s), R is the gas constant (J/K mol), Q is the activation energy (J/mol), and T is absolute temperature (K). The rate of diffusion of hydrogen in aluminum decreases with increase in lithium additions. This is provisionally attributed to the stronger local binding energy between hydrogen and lithium atoms in the aluminum metal lattice.

  5. Lattice dynamics in Bosonic 7 Li

    Science.gov (United States)

    Chen, Huiyao Y.; Jung, Minwoo; Rabinowitz, Jacob; Madjarov, Ivaylo S.; Cheung, Hil F. H.; Patil, Yogesh Sharad; Vengalattore, Mukund

    2016-05-01

    The light mass and strong spin-dependent interactions in 7 Li make it an attractive candidate to study Bosonic quantum magnetism and lattice dynamics in regimes where rapid dynamics is favored, e.g. percolative transport and entropy segregation. Such studies require large ensembles of quantum degenerate 7 Li atoms which has proved to be a technical challenge. We describe our ongoing efforts to overcome this challenge using Raman sideband cooling (RSC). In addition to enabling the rapid production of large degenerate gases, RSC is also a very powerful means of local control of lattice gas dynamics. Extending this to a spinful 7 Li Bose gas will also enable studies of transport and defect dynamics in F=1 lattice gases. This work is supported by the ARO MURI on non-equilibrium dynamics.

  6. Enhancing the High-Voltage Cycling Performance of LiNi(0.5)Mn(0.3)Co(0.2)O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3.

    Science.gov (United States)

    Su, Yantao; Cui, Suihan; Zhuo, Zengqing; Yang, Wanli; Wang, Xinwei; Pan, Feng

    2015-11-18

    High-voltage (>4.3 V) operation of LiNi(x)Mn(y)Co(z)O2 (NMC; 0 ≤ x, y, z batteries because of the rapid capacity degradation over cycling. In this work, we investigate the performance of LiNi(0.5)Mn(0.3)Co(0.2)O2 (NMC532) electrodes with and without an atomic-layer-deposited (ALD) Al2O3 layer for charging/discharging in the range from 3.0 to 4.5 V (high voltage). The results of the electrochemical measurements show that the cells with ALD Al2O3-coated NMC532 electrodes have much enhanced cycling stability. The mechanism was investigated by using X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and electrochemical methods. We find that the ultrathin ALD Al2O3 film can reduce the interface resistance of lithium-ion diffusion and enhance the surface stability of NMC532 by retarding the reactions at NMC532/electrolyte interfaces for preventing the formation of a new microstructure rock-salt phase NiO around the NMC532 surfaces.

  7. Okul Öncesi Öğretmenlerinin Öz-Yeterlik İnançlarına İlişkin Görüşleri Pre-School Teachers’ Perceptions Of Self-Efficacy Beliefs

    Directory of Open Access Journals (Sweden)

    Mehmet Nuri GÖMLEKSİZ

    2013-09-01

    Full Text Available The main aim of this study is to explore pre-school teachers’perceptions of self-efficacy beliefs. In this direction, we tried todetermine what pre-school teachers’ perceptions of self-efficacy beliefswas and whether their opinions differed significantly in terms of gender,seniority, school type, and socio-economic status of the schoolvariables. Data for the study was collected through “Pre-SchoolTeachers’ Self-Efficacy Beliefs Scale” developed by Tepe and Demir(2012. The scale included six factors and comprised of totally 37 items.The sub-scales of the scale were named as follows: teaching-learningprocess (α:.91, communication skills (α:.90, family participation(α:.90, planning (α:.87, designing learning environment (α:.88 andclassroom management (α:.87. Cronbach alpha reliability coefficient ofthe overall scale was calculated to be .97. The five-point Likert-stylescale was rated as never (1, little (2, middle (3, much (4 andcompletely (5. Study group of the research included 98 pre-schoolteachers working in Elazığ city center. Frequency, percent, mean score,standard deviation, independent groups t test, one way Anova andMann Whitney U tests were utilized to analyze the data. Study resultsrevealed that pre-school teachers had high level of self-efficacy level andtheir opinions did not differ in terms of gender, seniority, school andsocio-economic level of the school variables. These results werecompared and discussed with the results of similar studies. Someuseful recommendations were offered based on the study results. Bu araştırmanın genel amacı, okul öncesi öğretmenlerinin, öğretmen öz-yeterlik inançlarına ilişkin görüşlerini belirlemektir. Bu genel amaç doğrultusunda öğretmenlerin öz-yeterlik inançlarına ilişkin görüşlerinin ne olduğu ve bu görüşlerin cinsiyet, meslekteki hizmet süresi, görev yaptıkları kurum ve kurumun içinde bulunduğu sosyo-ekonomik düzey değişkenlerine göre de

  8. Solution and computed structure of O-lithium N,N-diisopropyl-P,P-diphenylphosphinic amide. Unprecedented Li-O-Li-O self-assembly of an aryllithium.

    Science.gov (United States)

    Fernández, Ignacio; Oña-Burgos, Pascual; Oliva, Josep M; Ortiz, Fernando López

    2010-04-14

    The structural characterization of an ortho-lithiated diphenylphosphinic amide is described for the first time. Multinuclear magnetic resonance ((1)H, (7)Li, (13)C, (31)P) studies as a function of temperature and concentration employing 1D and 2D methods showed that the anion exists as a mixture of one monomer and two diastereomeric dimers. In the dimers the chiral monomer units are assembled in a like and unlike manner through oxygen-lithium bonds, leading to fluxional ladder structures. This self-assembling mode leads to the formation of Li(2)O(2) four-membered rings, a structural motif unprecedented in aryllithium compounds. DFT computations of representative model compounds of ortho-lithiated phosphinic amide monomer and Li(2)C(2) and Li(2)O(2) dimers with different degrees of solvation by THF molecules showed that Li(2)O(2) dimers are thermodynamically favored with respect to the alternative Li(2)C(2) structures by 4.3 kcal mol(-1) in solvent-free species and by 2.3 kcal mol(-1) when each lithium atom is coordinated to one THF molecule. Topological analysis of the electron density distribution revealed that the Li(2)O(2) four-membered ring is characterized by four carbon-lithium bond paths and one oxygen-oxygen bond path. The latter divides the Li-O-Li-O ring into two Li-O-Li three-sided rings, giving rise to two ring critical points. On the contrary, the bond path network in the Li(2)C(2) core includes a catastrophe point, suggesting that this molecular system can be envisaged as an intermediate in the formation of Li(2)O(2) dimers. The computed (13)C chemical shifts of the C-Li carbons support the existence of monomeric and dimeric species containing only one C-Li bond and are consistent with the existence of tricoordinated lithium atoms in all species in solution.

  9. α-emission channeling studies of the interaction of Li with defects in Si and diamond

    CERN Multimedia

    2002-01-01

    In most semiconductors Li is a fast diffusing impurity and acts as a shallow interstitial donor, i.e. Li atoms normally appear as positively charged ions located on non-substitutional lattice sites. However, due to the positive charge Li may interact with other, preferentially negatively charged, defects present in the material. The major three groups of defects where interaction with Li was observed are p-type dopants, vacancy defects and defects containing trace impurities like oxygen. Although the influence of Li on electrical or optical properties of Si was investigated extensively in the past, the microscopical structure of Li-defect complexes and the relation between structure and electronic properties is still unresolved in many cases. In diamond, Li is the only impurity to date which was found to be an interstitial donor after ion implantation. Up to now there are no systematic investigations of the behavior of Li in diamond.\\\\ ...

  10. Crystal structure of Li3Ga(BO3)2

    Science.gov (United States)

    Smith, Robert W.; Holman, Darien; Villa, Eric M.

    2017-01-01

    The crystal structure of trilithium gallium bis­(orthoborate), Li3Ga(BO3)2, is isotypic with Li3Al(BO3)2 in a triclinic cell in space-group type P-1. The three Li and the unique Ga atom are coordinated by four O atoms each in tetra­hedra, and the two B atoms are coordinated by three O atoms in orthoborate triangles. Chains with composition [Ga2(BO3)4]6− extend along the a axis. The Li atoms inter­leave these chains in tetra­hedral inter­stices. A comparison is made between the structure model of the title compound and that of a previously reported model for a compound with the same composition [Abdullaev & Mamedov (1972 ▸). Zh. Strukt. Khim. 13, 943–946.

  11. Spectroscopic properties of alkali atoms embedded in Ar matrix.

    Science.gov (United States)

    Jacquet, E; Zanuttini, D; Douady, J; Giglio, E; Gervais, B

    2011-11-07

    We present a theoretical investigation of visible absorption and related luminescence of alkali atoms (Li, Na, and K) embedded in Ar matrix. We used a model based on core polarization pseudopotentials, which allows us to determine accurately the gas-to-matrix shifts of various trapping sites. The remarkable agreement between our calculated results and the experimental spectra recorded by several authors allows us to establish a clear assignment of the observed spectra, which are made of contributions from crystalline sites on the one hand, and of grain boundary sites on the other hand. Our study reveals remarkably large Stokes shifts, up to 9000 cm(-1), which could be observed experimentally to identify definitely the trapping sites.

  12. LiCe9Mo16O35

    Directory of Open Access Journals (Sweden)

    Patrick Gougeon

    2012-03-01

    Full Text Available The structure of lithium nonacerium hexadecamolybdenum pentatridecaoxide, LiCe9Mo16O35, is isotypic with LiNd9Mo16O35 [Gougeon Gall, Cuny, Gautier, Le Polles, Delevoye & Trebosc (2011. Chem. Eur. J. 17, 13806–13813]. It is characterized by Mo16O26iO10a units (where i = inner and a = apical containing Mo16 clusters that share some of their O atoms to form infinite molybdenum cluster chains running parallel to the b axis and separated by Li+ and Ce3+ cations. The Mo16 cluster units are centred at Wyckoff positions 2c and have point-group symmetry 2/m. The Li+ atom, in a flattened octahedron of O atoms, is in a 2a Wyckoff position with 2/m symmetry. The Ce3+ cations have coordination numbers to the O atoms of 6, 9 or 10. Two Ce, two Mo and five O atoms lie on sites with m symmetry (Wyckoff site 4i, and one Ce and one O atom on sites with 2/m symmetry (Wyckoff sites 2b and 2d, respectively.

  13. Influence of BiFeTaO{sub 3} addition on the electrical properties of Na{sub 0.4725}K{sub 0.4725}Li{sub 0.055}NbO{sub 3} ceramics system using impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Poonam [School of Physics, Shoolini University, Solan, HP (India); Rai, Radheshyam, E-mail: rshyam1273@gmail.com [School of Physics, Shoolini University, Solan, HP (India); Kholkin, A.L. [Department of Glass and Ceramics, Aveiro University, Aveiro (Portugal)

    2015-07-15

    Highlights: • (1 − x)(Na{sub 0.4725}K{sub 0.4725}Li{sub 0.055}NbO{sub 3}) − x(BiFe{sub 0.5}Ta{sub 0.5}O{sub 3}) ceramic samples have monoclinic phase. • Ferroelectric transition temperature (T{sub c}) of this system was 400–405 °C. • Dielectric properties were observed in (1 − x)(Na{sub 0.4725}K{sub 0.4725}Li{sub 0.055}NbO{sub 3}) − x(BiFe{sub 0.5}Ta{sub 0.5}O{sub 3}) system. • Activation energy increases with for concentration ratio. - Abstract: Polycrystalline samples of (1 − x)(Na{sub 0.4725}K{sub 0.4725}Li{sub 0.055}NbO{sub 3}) − x(BiFe{sub 0.5}Ta{sub 0.5}O{sub 3}) (where x = 0.005 and 0.007 were prepared by using a solid state reaction technique. The XRD patterns of the samples at room temperature shows perovskite phase with monoclinic structure. The dielectric constant for x = 0.007 is maximum. Detailed studies of dielectric and impedance properties of the materials in a wide range of frequency (100 Hz–1 MHz) and temperatures (RT–500 °C) shows that dielectric properties were strongly temperature and frequency dependent. Dielectric and electrical properties of samples, indicate that the Curie temperature shifted to higher temperature side with the increase in frequency. The AC conductivity also increases with increase in frequency. The low value of activation energy obtained for the ceramic samples could be attributed to the influence of electronic contribution to the conductivity. The plots of Z″ and M″ vs frequency at various temperatures shows peaks in the higher temperature range (>320 °C). The compounds show dielectric relaxation, which is found to be of non-Debye type and the relaxation frequency shifted to higher side with increase in temperature. The Nyquist plot and conductivity studies showed the NTCR character of samples.

  14. K_4CuNb_8O_(23)掺杂对K_(0.44)Na_(0.52)Li_(0.04)Nb_(0.86)Ta_(0.10)Sb_(0.04)O_3压电陶瓷性能的影响%Effect of K_4CuNb_8O_(23) Doped on the Properties of K_(0.44)Na_(0.52)Li_(0.04)Nb_(0.86)Ta_(0.10)Sb_(0.04)O_3 Piezoelectric Ceramics

    Institute of Scientific and Technical Information of China (English)

    陈燕; 江向平; 涂娜; 冯子义; 陈超; 李月明

    2009-01-01

    采用固相反应法制备了K_(0.44)Na_(0.52)Li_(0.04)Nb_(0.86)Ta_(0.10)Sb_(0.04)O_3+x mol %K_4CuNb_8O_(23)(0≤x≤2)(简称LF4-KCN)无铅压电陶瓷,使用XRD、SEM、 Agilent 4294A精密阻抗分析仪等对该体系的相组成、显微结构、压电及介电等性能进行表征.XRD分析表明,随着KCN含量的增加,室温时样品由四方相向正交相转变,且当x≥1时,出现K_6Li_4Nb_(10)O_(30)杂相.SEM分析表明,掺入KCN后,样品晶粒尺寸减小,晶粒轮廓清晰.随着KCN含量的增加,在100 ℃附近的介电常数温度曲线上出现第二介电常数极大值,即正交→四方铁电相变温度T_(O-T),同时居里温度TC向低温方向移动.KCN掺杂量对LF4的电性能有很大影响,表现为"硬性"掺杂,其压电常数d_(33),平面机电耦合系数k_p,1kHz频率下的介电损耗tanδ和介电常数ε_r均随着 KCN含量的增加而降低,而机械品质因素Q_m整体提高,样品的密度也显著增大.%The K_(0.44)Na_(0.52)Li_(0.04)Nb_(0.86)Ta_(0.10)Sb_(0.04)O_3+x mol%K_4CuNb_8O_(23)(0≤x≤2)(abbreviated as LF4-KCN) lead-free piezoelectric ceramics were fabricated by solid state reaction. The phase, microstructure, electric properties of the samples were characterized by XRD, SEM and Agilent 4294A impedance analyzer. XRD result shows that the phase of the sample transforms from tetragonal into orthorhombic with the increasing of KCN content. When x≥1, the trace amount of second phase K_6Li_4Nb_(10)O_(30) can be detected. SEM shows that the grain size of those materials decreases as the KCN content increasing, and the figure of the grain becomes clearly. There is another dielectric constant maximum value around 100 ℃, which is the phase transition from orthorhombic to tetragonal (T_(O-T)), while the curie temperature (TC) shifts to higher temperature. The KCN-doping has great influence on the electrical properties, the ceramic becomes "hardened", the piezoelectric constant (d_(33)), electromechanical planar

  15. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard [IBM Research-Zurich, 8803 Rüschlikon (Switzerland)

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  16. Emission Channeling Studies on the Behaviour of Light Alkali Atoms in Wide-Band-Gap Semiconductors

    CERN Multimedia

    Recknagel, E; Quintel, H

    2002-01-01

    % IS342 \\\\ \\\\ A major problem in the development of electronic devices based on diamond and wide-band-gap II-VI compound semiconductors, like ZnSe, is the extreme difficulty of either n- or p-type doping. The only reports of successful n-type doping of diamond involves ion implanted Li, which was found to be an intersititial donor. Recent theoretical calculations suggest that Na, P and N dopant atoms are also good candidates for n-type doping of diamond. No experimental evidence has been obtained up to now, mainly because of the complex and partly unresolved defect situation created during ion implantation, which is necessary to incorporate potential donor atoms into diamond. \\\\ \\\\In the case of ZnSe, considerable effort has been invested in trying to fabricate pn-junctions in order to make efficient, blue-light emitting diodes. However, it has proved to be very difficult to obtain p-type ZnSe, mainly because of electrical compensation related to background donor impurities. Li and Na are believed to be ampho...

  17. Y-doped Li8ZrO6: A Li-Ion Battery Cathode Material with High Capacity.

    Science.gov (United States)

    Huang, Shuping; Wilson, Benjamin E; Wang, Bo; Fang, Yuan; Buffington, Keegan; Stein, Andreas; Truhlar, Donald G

    2015-09-02

    We study--experimentally and theoretically--the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li8ZrO6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li(+) for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/discharge cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO2, and O2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li6ZrO6 and Li5ZrO6 delithiation products can be thermodynamically metastable to release of O2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.

  18. Enhanced hydrogen adsorption on Li-coated B12C6N6

    Science.gov (United States)

    Jin, Xueling; Qi, Pengtang; Yang, Huihui; Zhang, Yan; Li, Jinyun; Chen, Hongshan

    2016-10-01

    The hydrogen storage property of Li-coated B12C6N6 is investigated by density functional theory calculations. B12C6N6 is an electron deficient fullerene. Li atoms can be strongly bound to this cage by donating their valance electrons to the virtual 2p orbitals of carbon in the cluster. The binding energy (-2.90 eV) is much larger than the cohesive energy (1.63 eV) of bulk Li, and it prevents the Li atoms from aggregation. The coated Li atoms have large positive charges and the adsorbed hydrogen molecules can be moderately polarized by the Li+ ions. The computation shows that each Li atom coated on B12C6N6 can hold 2-3 H2 molecules with adsorption energies in the range of 0.21-0.24 eV/H2. The B12C6N6Li8 can adsorb 16 H2 and achieve a gravimetric hydrogen density of 8.63 wt. %. The present results indicate that alkali-metal atoms coated on electron deficient fullerenes can serve as hydrogen storage materials that can operate at ambient temperatures with high recycling storage capacity.

  19. Silicene for Na-ion battery applications

    Science.gov (United States)

    Zhu, Jiajie; Schwingenschlögl, Udo

    2016-09-01

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954 mAh/g for freestanding silicene and 730 mAh/g for the graphene-silicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of \\gt 0.3 {{V}} against the Na{}+/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be \\lt 0.3 {eV}.

  20. Silicene for Na-ion battery applications

    KAUST Repository

    Zhu, Jiajie

    2016-08-19

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954mAh/g for freestanding silicene and 730mAh/g for the graphenesilicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of >0.3 V against the Na/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be <0.3 eV.

  1. Reactions between cold methyl halide molecules and alkali-metal atoms.

    Science.gov (United States)

    Lutz, Jesse J; Hutson, Jeremy M

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  2. 新闻语篇的批评性话语分析--以李娜获得2011年法网女单冠军为例%A critical discourse analysis of news discourse--Li Na won the 2011 French Open champion as an example

    Institute of Scientific and Technical Information of China (English)

    刘莹

    2016-01-01

    以批评性话语分析为理论基础,从新闻话语角度分析美国有线新闻网(CNN),美国之音(VOA)和英国广播公司(BBC)针对2011年李娜获得法国网球公开赛冠军的新闻报道进行分析,探讨这几家新闻媒体对这一消息的反应。%A critical discourse analysis as the theoretical basis, analysis the news reports from the perspective of news discourse of Li Na won the 2011French Open tennis tournament according to CNN, voice of America (VOA) and Broadcasting British Corporation (BBC), to investigate these news media’s reaction to the news.

  3. Zn-B玻璃掺杂的(K0.5Na0.44Li0.06)(Nb0.84Ta0.1Sb0.06)O3陶瓷相变及电学性能研究%Phase Transition and Electrical Properties of (K0.5Na0.44Li0.06 )( Nb0.84Ta0.1Sb0.06)O3 Ceramics with Zn-B Glass Sintering Aid

    Institute of Scientific and Technical Information of China (English)

    范桂芬; 吕文中; 王允祺; 汪小红; 梁飞

    2011-01-01

    研究了Zn-B玻璃掺杂的(K0.5Na0.44Li0.06)(Nb0.84Ta0.1Sb0.06)O3(KNLNTS)陶瓷的制备、相变及电学性能.研究发现,Zn-B玻璃能够有效地促进铌酸钾钠基无铅压电陶瓷的烧结特性.XRD结果显示Zn-B玻璃掺杂的KNLNTS陶瓷为正交-四方共存结构,随掺杂量的增加正交结构相的含量逐渐增加;并且降低烧结温度能够有效地抑制第二相的产生.介电温谱测试结果显示Zn-B玻璃掺杂的KNLNTS陶瓷其居里温度先降后增在x=0.1时达到最小值.在1050℃保温5 h条件下烧结可以获得最佳的压电性能:d33=197 pC/N,kp=0.37,εr=975,tanδ=0.028.%The preparation, phase transition and electrical properties of (K0. 5 Na0. 44 Li0. 06 ) ( Nb0. 84 Ta0. 1 Sb0.06 )O3 (KNLNTS) lead-free piezoelectric ceramics with Zn-B glass sintering aid were studied in this paper. It was fount that the addition of Zn-B glass could greatly enhance the sintering properties of KNLNTS ceramics. The XRD results showed that Zn-B doped KNLNTS ceramics had the coexistence structure of the orthorhombic and tetragonal phase, and the orthorhombic phase increased gradually with the amount of Zn-B doping increasing. Lowering the sintering temperature could inhibit the production of the second phase. The dielectric spectrum test results showed that the Curie temperature of the Zn-B-doped KNLNTS ceramics first decreases and then increases, it reaches the minimum at x=0.1. At the sintering temperature of 1 050 ℃ with the soaking time of 5 h, the Zn-B doped KNLNTS-x ceramics obtained the optimum piezoelectric properties of d33 = 197 pC/N, kp =0.37, εr = 975 and tan δ=0.028.

  4. Buffer-gas-assisted polarization spectroscopy of 6Li.

    Science.gov (United States)

    Ohtsubo, Nozomi; Aoki, Takatoshi; Torii, Yoshio

    2012-07-15

    We report on the demonstration of Doppler-free polarization spectroscopy of the D2 line of (6)Li atoms. Counterintuitively, the presence of an Ar buffer gas, in a certain pressure range, causes a drastic enhancement of the polarization rotation signal. The observed dependence of the signal amplitude on the Ar buffer pressure and the pump laser power is reproduced by calculations based on simple rate equations. We performed stable laser frequency locking using a dispersion signal obtained by polarization spectroscopy for laser cooling of (6)Li atoms.

  5. Presence of Li Clusters in Molten LiCl-Li

    Science.gov (United States)

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev

    2016-05-01

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. This observation is indicative of a nanofluid type colloidal suspension of Li8 in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.

  6. Modeling and simulation of the atomization process in the ceramic tile industry; Modelagem e simulacao do processo de atomizacao na industria de revestimento ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Renata Cristina

    2002-07-01

    The aim of the present work is to numerically simulate the behaviour of the drying system for several sets of operating conditions in order to improve and optimize this process. However, the mathematical modeling adopted here can be employed to simulate other systems such as the processes that occur in liquid-fueled engines with direct spray injection and ceramic spraying for hard surfacing. Then, mathematical and physical models were established to simulate the interaction of continuous and disperse phases in drying processes of ceramic slurries. Solving the set of governing coupled partial differential equations, it is possible to study the influence of drying air on the atomized droplets of alumina slurry, and vice-versa. The materials used as continuous and disperse phase, air and alumina slurry respectively, are representative since any kind of gas and slurry can be used if its thermodynamic and transport properties are known. Several experimental tests were carried out in a spray dryer in the 'Laboratorio de Insumos', at IPEN - Instituto de Pesquisas Energeticas e Nucleares for different sets of operating conditions: initial temperature of the drying air, the gas flow rate, the slurry feed rate and atomiser configuration among others. Measurements of the wet and the dry bulb temperatures were made in some experimental tests to allow the calculations of the air humidity. The dynamic pressure were also measured in order to determine the gas flow rate. Some samples of the material used in the tile industry and of the one produced at IPEN were analysed to determine: the morphology of the atomized material and the range of granules diameter through scanning electron microscopy; the amount of pores and the bulk density through porosimetry; the residual moisture of the material through thermogravimetry; and the granulometric distribution of granules and particles through laser diffraction. Important information about the process and the final material are

  7. H{sub 2} adsorption in Li-decorated porous graphene

    Energy Technology Data Exchange (ETDEWEB)

    Seenithurai, S.; Pandyan, R. Kodi; Kumar, S. Vinodh; Munieswaran, P.; Saranya, C.; Mahendran, M., E-mail: manickam-mahendran@tce.edu [Smart Materials Lab, Department of Physics, Thiagarajar College of Engineering, Madurai – 625015 (India)

    2015-06-24

    Porous graphene (PG) has been decorated with Li atoms and subsequently studied the hydrogen (H{sub 2}) adsorption characteristics, by using Density Functional Theory (DFT)-based calculations. A 2×2 PG has been decorated with eight Li atoms. Upto four H{sub 2} molecules get adsorbed on each Li atom. The maximum H{sub 2} storage capacity that could be achieved in 2×2PG-8Li is 8.95 wt% which is higher than the U.S. DOE’s revised target for the on-board vehicles. The average H{sub 2} adsorption binding energy is 0.535 eV/H{sub 2}, which lies between 0.2-0.6 eV/H{sub 2} that is required for achieving adsorption and desorption at near ambient conditions. Thus, Li-decorated PG could be a viable option for on-board automobile applications.

  8. na õhtul improviseerime / Roman Baskin, Jaanus Rohumaa ; interv. Triin Sinissaar

    Index Scriptorium Estoniae

    Baskin, Roman, 1954-

    1999-01-01

    Luigi Pirandello "Täna õhtul improviseerime", lavastaja Jaanus Rohumaa, kunstnik Mae Kivilo. Esitavad EMA Kõrgema Lavakunstikooli 19. lennu üliõpilased. Esietendus 11. dets. Tallinna Linnateatris

  9. Effect of charge compensator ions (R{sup +} = Li{sup +}, Na{sup +} and K{sup +}) on Sr{sub 2}MgSi{sub 2}O{sub 7}:Dy{sup 3+} phosphors by solid-state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Ishwar Prasad [Pt. Ravishankar Shukla University, School of Studies in Physics and Astrophysics, Raipur, Chhattisgarh (India)

    2016-09-15

    The Sr{sub 2}MgSi{sub 2}O{sub 7}:Dy{sup 3+} and Sr{sub 2}MgSi{sub 2}O{sub 7}:Dy{sup 3+}, R{sup +} (R{sup +} = Li{sup +}, Na{sup +} and K{sup +}) phosphors were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The prepared phosphors were excited at 350 nm, and their corresponding emission spectrum were recorded at blue (482 nm) and yellow (575 nm) region due to the {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2} and {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2} transitions, respectively, of Dy{sup 3+} ions. Commission Internationale de L'Eclairage coordinates have been calculated for each sample and its value exhibited that overall emission is near white light. The possible mechanisms of discussed white light emitting phosphors were also investigated. In order to investigate the suitability of the samples as white color light sources for industrial uses, color purity, correlated color temperature (CCT) and color rendering index (CRI) were calculated. Values of color purity, CCT and CRI were found well within the defined acceptable range. With incorporating (R{sup +} = Li{sup +}, Na{sup +} and K{sup +}) as charge compensator ions, the emission intensity of Sr{sub 2}MgSi{sub 2}O{sub 7}:Dy{sup 3+} can be obviously enhanced. The results indicate that prepared phosphors may be a potential application in display devices. (orig.)

  10. Calculations of long-range three-body interactions for Li($2\\,^2S$)-Li($2\\,^2S$)-Li($2\\,^2P$)

    CERN Document Server

    Yan, Pei-Gen; Yan, Zong-Chao; Babb, James F

    2016-01-01

    General formulas for calculating the several leading long-range interactions among three identical atoms where two atoms are in identical $S$ states and the other atom is in a $P$ state are obtained using perturbation theory for the energies up to second order. The first order (dipolar) interactions depend on the geometrical configurations of the three atoms. In second order, additive and nonadditive dispersion interactions are obtained. The nonadditive interactions depend on the geometrical configurations in marked contrast to the case where all three atoms are in identical $S$ states, for which the nonadditive (also known as triple-dipole or as Axilrod-Muto-Teller) dispersion interactions appear at the third order. The formalism is demonstrated by the calculation of the coefficients for the Li($2\\,^2S$)-Li($2\\,^2S$)-Li($2\\,^{2}P$) system using variationally-generated atomic lithium wave functions in Hylleraas coordinates. The present dipolar coefficients and additive and nonadditive dispersion coefficients ...

  11. Stability of atoms in the anionic domain (Z

    CERN Document Server

    Gil, G

    2013-01-01

    We study the stability and universal behaviour of the ionization energy of N-electron atoms with nuclear charge Z in the anionic domain (Zatom region to the anionic instability threshold. As testing systems we choose inert gases (He-like, Ne-like and Ar-like isoelectronic sequences) and alkali metals (Li-like, Na-like, K-like sequences). From the results, it is apparent that, for inert gases case, the stability relation with N is completely inverted in the singly-charged anion region (Z=N-1) with respect to the neutral atom region (Z=N), i.e. larger systems are more stable than the smaller ones. We devised a semi-analytical model (inspired by the zero-range forces theory) which lead us to establish the ionization energy dependence on the nuclear charge n...

  12. Natural ageing responses of duplex structured Mg-Li based alloys

    Science.gov (United States)

    Li, C. Q.; Xu, D. K.; Wang, B. J.; Sheng, L. Y.; Qiao, Y. X.; Han, E. H.

    2017-01-01

    Natural ageing responses of duplex structured Mg-6%Li and Mg-6%Li-6%Zn-1.2%Y alloys have been investigated. Microstructural analyses revealed that the precipitation and coarsening process of α-Mg particles could occur in β-Li phases of both two alloys during ageing process. Since a certain amount of Mg atoms in β-Li phases were consumed for the precipitation of abundant tiny MgLiZn particles, the size of α-Mg precipitates in Mg-6%Li-6%Zn-1.2%Y alloy was relatively smaller than that in Mg-6%Li alloy. Micro hardness measurements demonstrated that with the ageing time increasing, the α-Mg phases in Mg-6%Li alloy could have a constant hardness value of 41 HV, but the contained β-Li phases exhibited a slight age-softening response. Compared with the Mg-6%Li alloy, the age-softening response of β-Li phases in Mg-6%Li-6%Zn-1.2%Y alloy was much more profound. Meanwhile, a normal age-hardening response of α-Mg phases was maintained. Tensile results indicated that obvious ageing-softening phenomenon in terms of macro tensile strength occurred in both two alloys. Failure analysis demonstrated that for the Mg-6%Li alloy, cracks were preferentially initiated at α-Mg/β-Li interfaces. For the Mg-6%Li-6%Zn-1.2%Y alloy, cracks occurred at both α-Mg/β-Li interfaces and slip bands in α-Mg and β-Li phases.

  13. Analysis of the Phenomenon of LI NA from the Perspective of the Sports Training Study%从《运动训练学》视角剖析“李娜现象”

    Institute of Scientific and Technical Information of China (English)

    朱宗海

    2015-01-01

    运用《运动训练学》的基本原理和方法,从运动选材、项群训练理论、高原现象、运动员竞技能力非衡结构的补偿效应、体能训练、心理训练、技战术训练等方面分析“李娜现象”,指出“李娜现象”符合《运动训练学》的基本原理,是《运动训练学》理论的实践成果,符合体育学和竞技运动的发展规律。%This paper uses the sports training to learn the basic principle and method to analyze on the current social phenomenon of “Li Na”. From select material, Event-group training theory, the plateau phenomenon, athletes competitive ability the compensation effect of non equilibrium structure , physical training, psychological training , and training of tactics for analysis , the article points out that the phenomenon of “Li Na” is in accordance with the basic principle of sports training , and it is the practice of the sports training theory, conforming to the sports science and the law of development of competitive sports.

  14. BARCELONA & Li-Fi

    OpenAIRE

    Verdú Leal, Adrián

    2016-01-01

    Project focused on the study of the possibility of introducing the Li-Fi technology in the city of Barcelona as a pioneering example of Smart City. Proyecto enfocado al estudio de la posibilidad de implantar la tecnología Li-Fi en la ciudad de Barcelona como ejemplo pionero de Smart City. Projecte enfocat a l'estudi de la possibilidad d'implantació la tecnologia Li-Fi a la ciudad de Barcelona com exemple innovador de Smart City.

  15. A new tetragonal structure type for Li2B2C.

    Science.gov (United States)

    Pavlyuk, Volodymyr; Milashys, Viktoriya; Dmytriv, Grygoriy; Ehrenberg, Helmut

    2015-01-01

    The ternary dilithium diboron carbide, Li2B2C (tetragonal, space group P-4m2, tP10), crystallizes as a new structure type and consists of structural fragments which are typical for structures of elemental lithium and boron or binary borocarbide B13C2. The symmetries of the occupied sites are .m. and 2mm. for the B and C atoms, and -4m2 and 2mm. for the Li atoms. The coordination polyhedra around the Li atoms are cuboctahedra and 15-vertex distorted pseudo-Frank-Kasper polyhedra. The environment of the B atom is a ten-vertex polyhedron. The nearest neighbours of the C atom are two B atoms, and this group is surrounded by a deformed cuboctahedron with one centred lateral facet. Electronic structure calculations using the TB-LMTO-ASA method reveal strong B...C and B...B interactions.

  16. Effect of Ca and Li additions on densification and electrical conductivity of 10 mol% gadolinia-doped ceria prepared by the coprecipitation technique; Efeito de adicoes de litio e calcio na densificacao e na condutividade eletrica da ceria-10% mol gadolinia preparada pela tecnica de co-precipitacao

    Energy Technology Data Exchange (ETDEWEB)

    Porfirio, T.C.

    2010-07-01

    Ceria containing rare-earth ceramics are potential candidates for application in intermediate-temperature solid oxide fuel cells. One of the main problems related to these ceramic materials is their relatively low sinterability. In this work, the effects of Ca and Li additions on densification and electrical conductivity of 10 mol% gadolinia-doped ceria was investigated. Ceramic compositions containing 1.5 mol% Ca or Li were prepared by the oxalate coprecipitation technique. Results of sintered density and electrical conductivity were compared to those of ceramic samples obtained by solid state reactions showing the effects of the synthesis method on densification and total electrical conductivity of the sintered materials. (author)

  17. Highly stable Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 cathode modified by atomic layer deposition for sodium-ion batteries.

    Science.gov (United States)

    Kaliyappan, Karthikeyan; Liu, Jian; Lushington, Andrew; Li, Ruying; Sun, Xueliang

    2015-08-10

    For the first time, atomic layer deposition (ALD) of Al2 O3 was adopted to enhance the cyclic stability of layered P2-type Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 (MNC) cathodes for use in sodium-ion batteries (SIBs). Discharge capacities of approximately 120, 123, 113, and 105 mA h g(-1) were obtained for the pristine electrode and electrodes coated with 2, 5, and 10 ALD cycles, respectively. All electrodes were cycled at the 1C discharge current rate for voltages between 2 and 4.5 V in 1 M NaClO4 electrolyte. Among the electrodes tested, the Al2 O3 coating from 2 ALD cycles (MNC-2) exhibited the best electrochemical stability and rate capability, whereas the electrode coated by 10 ALD cycles (MNC-10) displayed the highest columbic efficiency (CE), which exceeded 97 % after 100 cycles. The enhanced electrochemical stability observed for ALD-coated electrodes could be a result of the protection effects and high band-gap energy (Eg =9.00 eV) of the Al2 O3 coating layer. Additionally, the metal-oxide coating provides structural stability against mechanical stresses occurring during the cycling process. The capacity, cyclic stability, and rate performance achieved for the MNC electrode coated with 2 ALD cycles of Al2 O3 reveal the best results for SIBs. This study provides a promising route toward increasing the stability and CE of electrode materials for SIB application.

  18. Electronic structure of the layered nitride LiMoN2

    Science.gov (United States)

    Singh, D. J.

    1992-10-01

    Electronic-structure calculations are reported for the layered ternary nitride LiMoN2. It is found that the material is best described as a three-dimensional metal consisting of strongly covalent MoN2 sheets and Li ions between them. Highly unusual strong direct bonding between N atoms in opposing layers is found.

  19. Li intercalation in graphite: A van der Waals density-functional study

    Science.gov (United States)

    Hazrati, E.; de Wijs, G. A.; Brocks, G.

    2014-10-01

    Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1 /2C6 are stable, corresponding to two-dimensional √{3 }×√{3 } lattices of Li atoms intercalated between two graphene planes. Stage N >2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3 /16C6 is relatively stable, corresponding to a √{7 }×√{7 } in-plane packing of Li atoms. First-principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.

  20. The hydrogen storage properties of Na decorated small boron cluster B6Na8

    Science.gov (United States)

    Tang, Chunmei; Wang, Zhiguo; Zhang, Xue; Wen, Ninghua

    2016-09-01

    The binding energy of the Na atoms to the hollow sites of the B6 cage is larger than the experimental cohesive energy of bulk Na, so the clustering of Na atoms can be avoided. The polarization interaction dominates the adsorption of H2 by the B6Na8 cluster. The Na-coated B6Na8sbnd B8sbnd B6Na8 complex with the dispersive Na atoms and four H2 molecules adsorbed per Na can serve as better building blocks of polymers than the (B6Na8)2 dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on sp2-terminated boron chains.

  1. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  2. Atomic energy

    CERN Multimedia

    1996-01-01

    Interviews following the 1991 co-operation Agreement between the Department of Atomic Energy (DAE) of the Government of India and the European Organization for Nuclear Research (CERN) concerning the participation in the Large Hadron Collider Project (LHC) . With Chidambaram, R, Chairman, Atomic Energy Commission and Secretary, Department of Atomic Energy, Department of Atomic Energy (DAE) of the Government of India and Professor Llewellyn-Smith, Christopher H, Director-General, CERN.

  3. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.

    Science.gov (United States)

    Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang

    2011-11-01

    Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.

  4. The electrochemical behaviors of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn in sodium chloride solution

    Science.gov (United States)

    Lv, Yanzhuo; Liu, Min; Xu, Yan; Cao, Dianxue; Feng, Jing

    2013-03-01

    The electrochemical oxidation behaviors of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn electrodes in 0.7 mol L-1 NaCl solution are investigated by methods of potentiodynamic polarization, potentiostatic oxidation, electrochemical impedance spectroscopy and scanning electron microscopy. The phase composition of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn alloys is analyzed conducted by X-ray diffraction. The performances of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn as the anode of Mg-H2O2 semi fuel cells are determined. The effect of Zn content on the corrosion resistant of these Mg-Li-based alloys is studied. It is found that the Mg-8Li-3Al-0.5Zn electrode has higher discharge activity and less corrosion resistance than that of Mg-8Li-3Al-1.0Zn electrode in 0.7 mol L-1 NaCl solution. The Mg-H2O2 semi fuel cell with Mg-8Li-3Al-0.5Zn anode presents a maximum power density of 100 mW cm-2 at room temperature, which is higher than that of Mg-8Li-3Al-1.0Zn anode (80 mW cm-2). The performance of semi fuel cell with the Mg-8Li-3Al-0.5Zn electrode is better than that with Mg-8Li-3Al-1.0Zn electrode, especially at higher current density (>30 mA cm-2).

  5. Can atom-surface potential measurements test atomic structure models?

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  6. Selective blue emission from an HPBO-Li{sup +} complex in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Obare, S.O.; Murphy, C.J. [South Carolina Univ., Dept. of Chemistry and Biochemistry, Graduate Science Research Center, Columbia, SC (United States)

    2001-12-01

    Li{sup +} sensors are currently in demand for monitoring Li{sup +} transport in Li{sup +} batteries. Fluorescent receptors specific for metal ions are desirable since they allow both direct and real-time detection. Here we show that 2-(2-Hydroxyphenyl)benzoxazole(HPBO) exhibits enhanced fluorescence and specificity for Li{sup +} compared to Na{sup +} and K{sup +}, in an alkaline medium. The selectivity was observed in several organic solvents in the presence of bases such as pyridine, triethylamine and trimethyl-amine. HPBO-Li{sup +} complex formation results in an intense blue emission readily observed by the naked eye under UV light. Spectroscopic titrations suggest that the structure of the complex is one in which two HPBO anionic ligands coordinate to one Li{sup +}, with a second Li{sup +} as a counter-ion. (authors)

  7. Assessment of CaSO{sub 4}:Dy and LiF:Mg,Ti thermoluminescent dosimeters performance in the dosimetry of clinical electron beams; Avaliacao do desempenho dos detectores termoluminesncetes de CaSO{sub 4}:Dy e LiF:Mg,Ti na dosimetria de feixes clinicos de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Maira Goes

    2008-07-01

    The assessment of the performance of CaS0{sub 4}:Dy thermoluminescent detectors produced by IPEN in the dosimetry of clinical electron beams aims to propose an alternative to the LiF:Mg,Ti commercial dosimeters (TLD-100) largely applied in radiation therapy. The two types of thermoluminescent dosimeters were characterised with the use of PMMA, RMI-457 type solid water and water phantoms in radiation fields of 4, 6, 9, 12 and 16 MeV electrons of nominal energies in which the dose-response curves were obtained and the surface and depth doses were determined. The thermoluminescent response dependency with the electron nominal energies and the applied phantom were studied. The CaS0{sub 4}:Dy presented the same behaviour than the LiF:Mg,Ti in such a way that its application as an alternative to the TLD-100 pellets in the radiation therapy dosimetry of electron beams is viable and presents the significantly higher sensitivity to the electron radiation as its main advantage. (author)

  8. Crystal structure of a new variety of lead dodecaborate Pb{sub 6}(Li{sub 0.65}Na{sub 0.19})[B{sub 12}O{sub 24}]I{sub 0.84} {center_dot} 0.168H{sub 2}O and its comparison with beryl and cordierite

    Energy Technology Data Exchange (ETDEWEB)

    Belokoneva, E. L., E-mail: elbel@geol.msu.ru; Derkach, I. K.; Dimitrova, O. V. [Moscow State University, Faculty of Geology (Russian Federation)

    2013-05-15

    Crystals of a new representative of ring-radical dodecaborates Pb{sub 6}(Li{sub 0.65}Na{sub 0.19})[B{sub 12}O{sub 24}]I{sub 0.84} {center_dot} 0.168H{sub 2}O, space group R3bar m , are obtained under hydrothermal conditions. The structure is determined with-out preliminary knowledge of the chemical formula. It is close to that of the Pb{sub 6}[B{sub 12}O{sub 24}] {center_dot} H{sub 2}O dodecaborate studied earlier, but unlike the latter structure it contains admixtures of iodide anion, lithium cation, and water molecule, which incompletely populate positions in channels. The formation of the second variety, which brings to light ion-exchange properties of the crystals, is due to mineralizing ions available in the concen-trated solution in the course of crystallization. The new compound is compared with beryl and cordierite, which have close structures with channels capable of capturing various groups. Structures of synthetic Na and Ag dodecaborates with analogous but distorted ring dodecaborate radicals are discussed.

  9. The determination of total calcium in urine: a comparison between the atomic absorption and the ortho-cresolphtalein complexone methods Análise do cálcio na urina: uma comparação entre os métodos de absorção atômica e ortocresolftaleína complexona

    Directory of Open Access Journals (Sweden)

    Lucia Simas Parentoni

    2001-01-01

    Full Text Available Atomic absorption spectrometry has been recommended as the reference method for the analysis of total calcium in body fluids and the ortho-cresolphtalein complexone (o-CPC method has been widely used as the field method. We evaluated the performance of the Mega-Bayer, a fully automatic selective analyser, in determining total calcium in urine utilizing the o-CPC method. We assayed native urines with low, normal and high calcium concentrations. The two methods agreed well, according to least-squares analysis and the F-test, with Mega-Bayer having the upper limit of linearity two times higher (10 mmol/L than that of the atomic absorption. The present method achieved excellent analytical goals and sistematic errors bellow half of the allowed limit goals recommended by the Clinical Laboratory Improvements Amendments. Final Rule. Laboratory Requirements (CLIA. We concluded that o-CPC in the Mega-Bayer equipment can confidently perform the total calcium urinary analysis with the advantage of being a fully automatized biochemical procedure and of allowing a wider linear analytical range.A espectrofotometria de absorção atômica é o método de referência para a análise do cálcio total em líquidos corporais, e o método da ortocresolftalína complexona (o-CPC tem sido utilizado rotineiramente. Avaliamos a performance do Mega-Bayer, um analisador seletivo automático, em determinar o cálcio total na urina utilizando o método da ortocresolftaleína complexona. Analisamos urinas com concentrações de cálcio baixas, médias e altas. Os dois métodos foram semelhantes de acordo com a análise de quadrados mínimos e o teste-F; o Mega-Bayer apresentou um limite de linearidade duas vezes mais alto (10mm/l do que a absorção atômica. O presente método atingiu excelentes metas analíticas, além de erros sistemáticos menores que a metade do permitido pelo Clinical Laboratory Improvements Amendments. Final Rule. Laboratory Requirements (CLIA. Conclu

  10. Atomic Resolution Interfacial Structure of Lead-free Ferroelectric K0.5Na0.5NbO3 Thin films Deposited on SrTiO3.

    Science.gov (United States)

    Li, Chao; Wang, Lingyan; Wang, Zhao; Yang, Yaodong; Ren, Wei; Yang, Guang

    2016-11-25

    Oxide interface engineering has attracted considerable attention since the discovery of its exotic properties induced by lattice strain, dislocation and composition change at the interface. In this paper, the atomic resolution structure and composition of the interface between the lead-free piezoelectric (K0.5Na0.5)NbO3 (KNN) thin films and single-crystalline SrTiO3 substrate were investigated by means of scanning transmission electron microscopy (STEM) combining with electron energy loss spectroscopy (EELS). A sharp epitaxial interface was observed to be a monolayer composed of Nb and Ti cations with a ratio of 3/1. The First-Principles Calculations indicated the interface monolayer showed different electronic structure and played the vital role in the asymmetric charge distribution of KNN thin films near the interface. We also observed the gradual relaxation process for the relatively large lattice strains near the KNN/STO interface, which remarks a good structure modulation behavior of KNN thin films via strain engineering.

  11. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  12. Dispersion coefficients for the interactions of the alkali and alkaline-earth ions and inert gas atoms with a graphene layer

    CERN Document Server

    Kaur, Kiranpreet; Sahoo, B K

    2015-01-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients ($C_3$s) of the alkali ions (Li$^+$, Na$^+$, K$^+$ and Rb$^+$), the alkaline-earth ions (Ca$^+$, Sr$^+$, Ba$^+$ and Ra$^+$) and the inert gas atoms (He, Ne, Ar and Kr) with a graphene layer are determined precisely within the framework of Dirac model. For these calculations, we have evaluated the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are, finally, given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at the room temperature.

  13. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  14. Lithium vanado(Vmolybdate(VI, Li[VMoO6

    Directory of Open Access Journals (Sweden)

    Safa Ezzine Yahmed

    2013-09-01

    Full Text Available Brannerite-type Li[VMoO6] has been synthesized by a solid state reaction route. The V and Mo atoms statistically occupy the same site with mirror symmetry and are octahedrally surrounded by O atoms. The framework is two-dimensional and is built up from edge-sharing (V,MoO6 octahedra forming (VMoO6∞ layers that run parallel to the (001 plane. Li+ ions are situated in position with symmetry 2/m in the interlayer space. The bond-valence analysis reveals that the Li+ ionic conductivity is along the [010] and [110] directions, and shows that this material may have interesting conduction properties. This simulation proposes a model of the lithium conduction pathways.

  15. Vibrations on the (001) surface of 9R Li

    Science.gov (United States)

    Sklyadneva, I. Yu.; Rusina, G. G.; Chulkov, E. V.

    2002-06-01

    Vibrational modes, surface energy, and surface relaxation on the (001) surface (hexagonal plane type C) of 9R Li are calculated using the embedded-atom method. A detailed discussion of the local phonon densities of states, the changes in interatomic force constants, and a comparison with the results for the hexagonal surface (110) of bcc Li are presented. For both surfaces considered the surface effect on the phonon densities is found to be significant only in the first three layers. The results show that interactions between atomic layers are weaker in the surface region compared to bulk values. This effect together with a substantial softening in the phonon spectrum for the (110) surface of bcc Li may favor the nucleation of the martensitic phase along preferable directions at the surface.

  16. Characteristics of Li diffusion on silicene and zigzag nanoribbon

    Science.gov (United States)

    Yan-Hua, Guo; Jue-Xian, Cao; Bo, Xu

    2016-01-01

    We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV, which is much lower than on graphene and Si bulk. The diffusion barriers along the axis of zigzag silicene nanoribbon range from 0.1 to 0.25 eV due to an edge effect, while the diffusion energy barrier is about 0.5 eV for a Li adatom to enter into a silicene nanoribbon. Our calculations indicate that using silicene nanoribbons as anodes is favorable for a Li-ion battery. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074212 and 11204123) and the Natural Science Foundation of Jiangsu province, China (Grant No. BK20130945).

  17. Storage and Effective Migration of Li-Ion for Defected β-LiFePO4 Phase Nanocrystals.

    Science.gov (United States)

    Guo, Hua; Song, Xiaohe; Zhuo, Zengqing; Hu, Jiangtao; Liu, Tongchao; Duan, Yandong; Zheng, Jiaxin; Chen, Zonghai; Yang, Wanli; Amine, Khalil; Pan, Feng

    2016-01-13

    Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstrate that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g(-1) at a rate of 0.1 C (1C = 170 mA g(-1)) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.

  18. Li- Site and Metal-Site Ion Doping in Phosphate-Olivine LiCoPO4 by First-Principles Calculation

    Institute of Scientific and Technical Information of China (English)

    LIN Zhi-Ping; ZHAO Yu-Jun; ZHAO Yan-Ming

    2009-01-01

    We present a first-principles investigation of the crystal and electronic structure as well as the average insertion voltage of the Li-site (by Na and Cr) and metal-site (by isovalent Ni,Zn,Ca,Mg and Mn and aliovalent Cu,AI,In,Mo and Zr) doped LiCoPO4.The results show that both the Li-site doping and metal-site doping may reduce the volume change of the material during Li extraction/reinsertion process.The metal doped at Li-site will block the path of Li ion diffusion.The doping by aliovalent transition metals will introduce defect levels in the energy band.It could influence the conductivity insertion voltage.

  19. Emergence of Metallic Properties at LiFePO4 Surfaces and LiFePO4/Li2S Interfaces: An Ab Initio Study.

    Science.gov (United States)

    Timoshevskii, Vladimir; Feng, Zimin; Bevan, Kirk H; Zaghib, Karim

    2015-08-26

    The atomic and electronic structures of the LiFePO4 (LFP) surface, both bare and reconstructed upon possible oxygenation, are theoretically studied by ab initio methods. On the basis of total energy calculations, the atomic structure of the oxygenated surface is proposed, and the effect of surface reconstruction on the electronic properties of the surface is clarified. While bare LFP(010) surface is insulating, adsorption of oxygen leads to the emergence of semimetallic behavior by inducing the conducting states in the band gap of the system. The physical origin of these conducting states is investigated. We further demonstrate that deposition of Li2S layers on top of oxygenated LFP(010) surface leads to the formation of additional conducting hole states in the first layer of Li2S surface because of the charge transfer from sulfur p-states to the gap states of LFP surface. This demonstrates that oxygenated LFP surface not only provides conducting layers itself, but also induces conducting channels in the top layer of Li2S. These results help to achieve further understanding of potential role of LFP particles in improving the performance of Li-S batteries through emergent interface conductivity.

  20. First-principles calculations on structure and properties of amorphous Li5P4O8N3 (LiPON)

    Science.gov (United States)

    Sicolo, Sabrina; Albe, Karsten

    2016-11-01

    The structural, electronic and ion transport properties of an amorphous member of the LiPON family with non-trivial composition and cross-linking are studied by means of electronic structure calculations within Density Functional Theory. By a combination of an evolutionary algorithm followed by simulated annealing and alternatively by a rapid quenching protocol, structural models of disordered Li5P4O8N3 are generated, which are characterized by a local demixing in Li-rich and Li-poor layers. These structures have a composition close to what is found experimentally in thin films and contain all the expected diversely coordinated atoms, namely triply- and doubly-coordinated nitrogens and bridging and non-bridging oxygens. The issue of ionic conductivity is addressed by calculating defect formation energies and migration barriers of neutral and charged point defects. Li+ interstitials are energetically much preferred over vacancies, both when the lithium reservoir is metallic lithium and LiCoO2. The competitive formation of neutral Li interstitials when LiPON is contacted with metallic Li results in the chemical reduction of LiPON and the disruption of the network, as recently observed in experiments.

  1. Recovery and recycling of lithium value from spent lithium titanate (Li2TiO3) pebbles

    Science.gov (United States)

    Mandal, D.

    2013-09-01

    In the first generation fusion reactors the fusion of deuterium (D) and tritium (T) is considered to produce energy to meet the future energy demand. Deuterium is available in nature whereas, tritium is not. Lithium-6 (Li6) isotope has the ability to produce tritium in the n, α nuclear reaction with neutrons. Thus lithium-based ceramics enriched by Li6 isotope are considered for the tritium generation for its use in future fusion reactors. Lithium titanate is one such Li-based ceramic material being considered for its some attractive properties viz., high thermal and chemical stability, high thermal conductivity, and low tritium solubility. It is reported in the literature, that the burn up of these pebbles in the fusion reactor will be limited to only 15-17 atomic percentage. At the end of life, the pebbles will contain more than 45% unused Li6 isotope. Due to the high cost of enriched Li6 and the waste disposal considerations, it is necessary to recover the unused Li from the spent lithium titanate pebbles. Till date, only the feasibilities of different processes are reported, but no process details are available. Experiments were carried out for the recovery of Li from simulated Li2TiO3 pebbles and to reuse of lithium in lithium titanate pebble fabrication. The details of the experiments and results are discussed in this paper. Simulated lithium titanate (Li2TiO3) pebbles. The objective of the study is to develop a process which can be used to recover lithium value form the spent Li2TiO3 pebbles from future fusion reactor. The Li2TiO3 pebbles used in the study were synthesized and fabricated by the solid state reaction process developed by Mandal et al. described in details somewhere else [1,2]. Spherical Li2TiO3 pebbles of size 1.0 mm were used and the properties of the Li2TiO3 pebbles used in the study are shown in Table 1. Hydrochloric acid (HCl), of 99.8% purity, purchased from Merck and Loba Chemicals, Mumbai, India. To leach lithium from Li2TiO3

  2. The B-Li System. Calorimetric and Theoretical Studies / Układ B-Li. Badania Kalorymetryczne I Teoretyczne

    Directory of Open Access Journals (Sweden)

    Dębski A.

    2015-12-01

    Full Text Available The standard enthalpy of formation of the B78Li22 alloy was measured with the use of the water reaction calorimetric method at 25 °C (298 K. An X-ray diffraction study of the prepared sample was conducted. The obtained diffraction pattern was different from the patterns for the B3Li and B14Li3 phases. The standard enthalpy of formation obtained for the B78Li22 alloy was -39.0 ± 0.7 kJ/mole of atoms. This value corresponds well with the formation enthalpies of the phases from the boron-lithium system. Theoretical calculations of the standard enthalpy of formation were conducted for the B78Li22 alloy and the phases from B-Li system, which were investigated earlier. A discussion of the deviations observed between both sets of data (experimental and calculated was performed. Additionally, DTA studies were performed for 14 alloys of the concentrations from 40 to 100 at. % of Li.

  3. Effect of using FLiBe and FLiNaBe molten salts bearing plutonium fluorides on the neutronic performance of PACER

    Energy Technology Data Exchange (ETDEWEB)

    Acir, Adem [Gazi Univ., Ankara (Turkey). Dept. of Energy Systems Engineering

    2012-12-15

    In this paper, the effects of using FLiBe and FLiNaBe Molten Salts Bearing Plutonium Fluorides on the neutronic performance of the PACER are investigated. The optimum radial thickness for tritium self-sufficiency of the blankets addition of plutonium fluorides to FLiNaBe (LiF-/NaF BeF{sub 2}) and FLiBe (LiF-/BeF{sub 2}) of a dual purpose modified PACER concept are determined. The calculations are carried out with the one dimensional transport code XSDRNPM/SCALE5. The tritium breeding capacities of FLiNaBe and FLiBe with addition of plutonium fluorides in molten salt zone are investigated and compared. The optimum molten salt zone thickness is computed as 155 cm for tritium self-sufficiency of the blankets using FLiBe +1% PuF{sub 4} whereas, the optimum thickness with FLiNaBe +1% PuF{sub 4} is calculated as 170 cm. In addition, neutron transport calculations have been performed to evaluate the energy multiplication factor, total fission rate, displacement per atom and helium gas generation for optimal radial thickness in the blanket. Also, the tritium production and the radiation damage limits should be evaluated together in a fusion blanket for determining the optimum thickness of molten salt layer. (orig.)

  4. Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes

    KAUST Repository

    Rana, Kuldeep

    2012-05-24

    Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.

  5. First Principles Study on NaxLi1-xFePO4 As Cathode Material for Rechargeable Lithium Batteries

    Science.gov (United States)

    Ouyang, Chu-Ying; Wang, De-Yu; Shi, Si-Qi; Wang, Zhao-Xiang; Li, Hong; Huang, Xue-Jie; Chen, Li-Quan

    2006-01-01

    The electronic structure and ionic dynamic properties of pure and Na doped (Li site) LiFePO4 have been investigated by first-principles calculations. The band gap of the Na doped material is much narrow than that of the undoped one, indicating of better electronic conductive properties. First-principles based molecular dynamic simulations have been performed to examine the migration energy barriers for the Li ion diffusion. The results shown that the energy barriers for Li diffusion decreased a little along the one-dimensional diffusion pathway, indicating that the ionic conductive property is also improved, as compared with the high valance doping (such as Cr) cases.

  6. Simulation and experimental study on compositional evolution of Li-Co in LiCoO2 thin films during sputter deposition

    Science.gov (United States)

    Nimisha, C. S.; Mohan Rao, G.

    2011-06-01

    The compositional evolution in sputter deposited LiCoO2 thin films is influenced by process parameters involved during deposition. The electrochemical performance of these films strongly depends on their microstructure, preferential orientation and stoichiometry. The transport process of sputtered Li and Co atoms from the LiCoO2 target to the substrate, through Ar plasma in a planar magnetron configuration, was investigated based on the Monte Carlo technique. The effect of sputtering gas pressure and the substrate-target distance (dst) on Li/Co ratio, as well as, energy and angular distribution of sputtered atoms on the substrate were examined. Stable Li/Co ratios have been obtained at 5 Pa pressure and dst in the range 5-11 cm. The kinetic energy and incident angular distribution of Li and Co atoms reaching the substrate have been found to be dependent on sputtering pressure. Simulations were extended to predict compositional variations in films prepared at various process conditions. These results were compared with the composition of films determined experimentally using x-ray photoelectron spectroscopy (XPS). Li/Co ratio calculated using XPS was in moderate agreement with that of the simulated value. The measured film thickness followed the same trend as predicted by simulation. These studies are shown to be useful in understanding the complexities in multicomponent sputtering.

  7. New real ternary and pseudoternary phases in the Li-Au-In system

    Science.gov (United States)

    Dmytriv, G. S.; Pavlyuk, V. V.; Pauly, H.; Eckert, J.; Ehrenberg, H.

    2011-05-01

    Two real ternary lithium gold indides LiAu 2In and Li 280Au 22In 130 (Li 0.65Au 0.05In 0.30) were found in the Li-Au-In system. They are isostructural to the respective Ag-alloys. LiAu 2In crystallizes in the MnCu 2Al-type structure ( Fm-3 m, Heusler phase, a=6.4982(8) Å, based on single crystal XRD-data) and Li 280Au 22In 130 in the Li 278Ag 40In 114-type structure ( F-43 m, a=19.9970(2) Å, based on powder XRD-data). The analogy of the two ternary systems Li-Au-In and Li-Ag-In is additionally reaffirmed by the wide homogeneity range of the pseudoternary solid solution with NaTl-type structure (Zintl phase),which expands not only in the direction of the quasibinary cut Li(Au xIn 1- x) with 0≤ x≤0.5, but also into the directions of both higher and lower Li-concentrations.

  8. Lithiation-induced shuffling of atomic stacks

    KAUST Repository

    Nie, Anmin

    2014-09-10

    In rechargeable lithium-ion batteries, understanding the atomic-scale mechanism of Li-induced structural evolution occurring at the host electrode materials provides essential knowledge for design of new high performance electrodes. Here, we report a new crystalline-crystalline phase transition mechanism in single-crystal Zn-Sb intermetallic nanowires upon lithiation. Using in situ transmission electron microscopy, we observed that stacks of atomic planes in an intermediate hexagonal (h-)LiZnSb phase are "shuffled" to accommodate the geometrical confinement stress arising from lamellar nanodomains intercalated by lithium ions. Such atomic rearrangement arises from the anisotropic lithium diffusion and is accompanied by appearance of partial dislocations. This transient structure mediates further phase transition from h-LiZnSb to cubic (c-)Li2ZnSb, which is associated with a nearly "zero-strain" coherent interface viewed along the [001]h/[111]c directions. This study provides new mechanistic insights into complex electrochemically driven crystalline-crystalline phase transitions in lithium-ion battery electrodes and represents a noble example of atomic-level structural and interfacial rearrangements.

  9. LiCaAlF6:Cr(3+) - A promising new solid-state laser material

    Science.gov (United States)

    Payne, Stephen A.; Chase, L. L.; Newkirk, Herbert W.; Smith, Larry K.; Krupke, William F.

    1988-11-01

    LiCaAlF6:Cr(3+) (Cr3+:LiCAF) exhibits an intrinsic (extrapolated maximum) slope efficiency of 67 percent. For comparison, the intrinsic slope efficiencies of BeAl2O4:Cr(3+) (alexandrite), Na3Ga2Li3F12:Cr(3+), and ScBO3:3+ were found to 65, 28, and 26 percent, respectively. The tuning range of LiCaAlF6:Cr(3+) was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  10. Effect of BaZrO3 Depant on the Structure and Electric Properties of (K0.49Na0.51)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 Lead-free Piezoceramics%BaZrO3掺杂对(K0.49Na0.51)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3无铅压电陶瓷的结构与电性能的影响

    Institute of Scientific and Technical Information of China (English)

    李月明; 肖祖贵; 沈宗洋; 王竹梅; 洪燕; 潘铁政; 吴芬

    2013-01-01

    采用固相反应法制备了(K0.49Na0.5 1)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3-xBaZrO3 (NKNLST-xBZ,x=0~0.020 mol)无铅压电陶瓷,系统研究了BaZrO3的掺杂量对陶瓷的压电、介电、机电和铁电性能的影响.结果表明:随着BaZrO3掺杂量x的增加,陶瓷的晶体结构由正交相向四方相转变,在x=0.005~0.008区间出现正交相与四方相两相共存的区域,在此区域内陶瓷的晶粒变得细小且均匀,介电损耗tanδ大幅降低,压电常数d33和平面机电耦合系数kp增加.该体系陶瓷的介电常数ε33(T) /ε0则随着BaZrO3的增加持续增加,相变温度则向低温方向移动.当x=0.005时,该组成陶瓷具有最佳的综合性能:压电常数d33=372 pC/N,平面机电耦合系数kp=47.2%,介电损耗tanδ=3.1%,以及较高的介电常数ε33(T)/ε0=1470和居里温度Tc=208℃.%(K0.45Na0.55)0.98Li0.020Nb0.77Ta0.18Sb0.05)O3-xBaZrO3 (NKNLST-xBZ,x =0-0.020 mol) lead-free piezoelectric ceramics were prepared by solid state reaction method.The effect of BaZrO3 doping amount on the piezoelectric,dielectric,electromechanical and ferroelectric properties were investigated systematically.The results revealed that the crystal structures transformed from orthorhombic phase to tetragonal phase with BaZrO3 doping amount increasing,and the coexistence of orthorhombic-tetragonal phases were observed in the x range from 0.005 to 0.008.Under the condition of two phases co-existence,the ceramic grain became small and uniform and dielectric loss tanδ significantly decreased,while the piezoelectric constant d33 and planar electro-mechanical coupling factor kp increased.The dielectric constant ε33(T)/ε0 of this system ceramics increased continuously with the increase of the BaZrO3 doping amount and the phase transition temperatures shifted to lower temperature.The optimized piezoelectric properties could be obtained at the x =0.005 composition ceramic as follows:the mized piezoelectric properties could be obtained at

  11. Intricate short-range ordering and strongly anisotropic transport properties of Li(1-x)Sn(2+x)As₂.

    Science.gov (United States)

    Lee, Kathleen; Kaseman, Derrick; Sen, Sabyasachi; Hung, Ivan; Gan, Zhehong; Gerke, Birgit; Pöttgen, Rainer; Feygenson, Mikhail; Neuefeind, Jörg; Lebedev, Oleg I; Kovnir, Kirill

    2015-03-18

    A new ternary compound, Li(1-x)Sn(2+x)As2, 0.2 < x < 0.4, was synthesized via solid-state reaction of elements. The compound crystallizes in a layered structure in the R3̅m space group (No. 166) with Sn-As layers separated by layers of jointly occupied Li/Sn atoms. The Sn-As layers are comprised of Sn3As3 puckered hexagons in a chair conformation that share all edges. Li/Sn atoms in the interlayer space are surrounded by a regular As6 octahedron. Thorough investigation by synchrotron X-ray and neutron powder diffraction indicate no long-range Li/Sn ordering. In contrast, the local Li/Sn ordering was revealed by synergistic investigations via solid-state (6,7)Li NMR spectroscopy, HRTEM, STEM, and neutron and X-ray pair distribution function analyses. Due to their different chemical natures, Li and Sn atoms tend to segregate into Li-rich and Sn-rich regions, creating substantial inhomogeneity on the nanoscale. The inhomogeneous local structure has a high impact on the physical properties of the synthesized compounds: the local Li/Sn ordering and multiple nanoscale interfaces result in unexpectedly low thermal conductivity and highly anisotropic resistivity in Li(1-x)Sn(2+x)As2.

  12. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    OpenAIRE

    Marschner, K; Musil, S. (Stanislav); Dědina, J. (Jiří)

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were ...

  13. Spectrum Simulation of Li-Like Aluminium Plasma

    Institute of Scientific and Technical Information of China (English)

    PENG Feng; JIANG Gang; ZHU Zheng-He

    2006-01-01

    X-ray emission spectra for L-shell of Li-like aluminium ions are simulated by using the flexible atomic code based on the collisional radiative model. Atomic processes including radiative recombination, dielectronic recombination, collisional ionization and resonance excitation from the neighbouring ion (Al9+ and Al11+) charge states of the target ion (Al10+) are considered in the model. In addition, the contributions of different atomic processes to the x-ray spectrum are analysed. The results show that dielectronic recombination, radiative recombination, collisional ionization and resonance excitation, other than direct collisional excitation, are very important processes.

  14. Esperanzaite, NaCa(2)Al(2)(As(5+)O(4))[As(5+)O(3)(OH)](OH)(2)F(4)(H(2)O), A New Mineral From Mina La Esperanza, Mexico: Descriptive Mineralogy and Atomic Arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Cureton, F.; Falster, A.U.; Foord, E.E.; Hlava, P.F.; Hughes, J.M.; Maxwell, C.H.

    1998-11-09

    Esperanzaite, ideally NaCazA12(As5+0.i)[As5+03 (OH)] (OH)2FJH20), Z =2, is a new mineral from the Mina h Esperarq Durango State, Mexico. The mineral occurs as blue-green botryoidal crystalline masses on rhyolite, with separate spheres up to 1.5 mm Y Deceased in diameter. Mobs hardness is 4.5, specific gravity 3.240h, and 3.36( 3)C.IC. Optical properties were measured in 589 nm light. Esperanzaite is biaxial (-), .Y= Y = Z= colorless, a 1.580(1), ~ 1.588( 1), and y 1.593(1 ); 2V0hs is 74(1 ~ and 2 }'CUIC is 76.3". Dispersion is medium, r < v, and optic axes are oriented as a A Z = +50.5o, b = Y, c P. X = +35". The five strongest X-ray diffraction maxima in the powder pattern are (~ /, hk~: 2.966,100, 13 i, 31 i, 031 ; 3.527,90, 220; 2.700,90,221,002, 040; 5.364>80, 001, 020; 4.796,80,011. Esperanzaite is monoclinic, u 9.687(5), b 10.7379(6), c 5.5523(7)& ~ 105.32( 1 )", space group P21/nz. The atomic arrangement of esperanzaite was solved by Direct Methods and Fourier analysis (R= 0.03 1). The Fundamental Building Block is formed of stacks of heteropolyhedral tetramers; the tetramers are formed of two arsenate tetrahedral and two Al octahedra, comer-linked in 4-member rings. The Fundamental Building Blocks are linked by irregular lda~j and Ca@ polyhedra.

  15. Structure prediction and targeted synthesis: a new Na(n)N2 diazenide crystalline structure.

    Science.gov (United States)

    Zhang, Xiuwen; Zunger, Alex; Trimarchi, Giancarlo

    2010-11-21

    Significant progress in theoretical and computational techniques for predicting stable crystal structures has recently begun to stimulate targeted synthesis of such predicted structures. Using a global space-group optimization (GSGO) approach that locates ground-state structures and stable stoichiometries from first-principles energy functionals by objectively starting from randomly selected lattice vectors and random atomic positions, we predict the first alkali diazenide compound Na(n)N(2), manifesting homopolar N-N bonds. The previously predicted Na(3)N structure manifests only heteropolar Na-N bonds and has positive formation enthalpy. It was calculated based on local Hartree-Fock relaxation of a fixed-structure type (Li(3)P-type) found by searching an electrostatic point-ion model. Synthesis attempts of this positive ΔH compound using activated nitrogen yielded another structure (anti-ReO(3)-type). The currently predicted (negative formation enthalpy) diazenide Na(2)N(2) completes the series of previously known BaN(2) and SrN(2) diazenides where the metal sublattice transfers charge into the empty N(2) Π(g) orbital. This points to a new class of alkali nitrides with fundamentally different bonding, i.e., homopolar rather than heteropolar bonds and, at the same time, illustrates some of the crucial subtleties and pitfalls involved in structure predictions versus planned synthesis. Attempts at synthesis of the stable Na(2)N(2) predicted here will be interesting.

  16. Diffuse Atomic and Molecular Gas in the Interstellar Medium of M82 toward SN 2014J

    CERN Document Server

    Ritchey, Adam M; Dahlstrom, Julie A; York, Donald G

    2014-01-01

    We present a comprehensive analysis of interstellar absorption lines seen in moderately-high resolution, high S/N ratio optical spectra of SN 2014J in M82. Our observations were acquired over the course of six nights, covering the period from ~7 days before to ~29 days after the supernova reached its maximum V-band brightness. Complex interstellar absorption is observed from Na I, Ca II, K I, Ca I, CH+, CH, and CN, much of which arises from gas in the interstellar medium of M82, although absorption features associated with the Galactic disk and halo are also observed. We detect Li I absorption over a range in velocity consistent with that exhibited by the strongest Na I and K I components associated with M82; this is the first detection of interstellar Li in a galaxy outside of the Local Group. There are no significant temporal variations in the absorption-line profiles over the 37 days sampled by our observations. The relative abundances of the observed atomic and molecular species reveal that the ISM of M82...

  17. Atomic physics

    CERN Document Server

    Born, Max

    1989-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  18. Comparative theoretical study of adsorption of lithium polysulfides (Li2Sx) on pristine and defective graphene

    Science.gov (United States)

    Jand, Sara Panahian; Chen, Yanxin; Kaghazchi, Payam

    2016-03-01

    Adsorption of Li2Sx on pristine and defective (Stone-Wales (SW) and vacancy) graphene is studied using density functional theory. Results show that the interaction between Li2Sx and graphene is dominated by dispersion interaction (physisorption), which depends on the size of molecule as well as the existence and type of defect sites on graphene. We find that single Li2Sx molecules interact only slightly stronger to the SW sites than to the defect-free sites, but they interact very strongly with single-vacant defects. In the later cases, the vacant site catches one S atom from the Li2Sx molecule, leading to the formation of a Li2Sx-1 molecule, which adsorbs weakly on the created S-doped graphene. This study suggests that defect sites can not improve the ability of graphene to catch lithium polysulfides in Li-S batteries.

  19. Excited, bound and resonant positron-atom systems

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, M W J [Department of Physics and Computational Science Research Center, San Diego State University, San Diego CA 92182 (United States); Mitroy, J, E-mail: mbromley@physics.sdsu.ed [ARC Centre for Antimatter-Matter Studies and Faculty of Education, Health and Science, Charles Darwin University, Darwin NT 0909 (Australia)

    2010-01-01

    Calculations have demonstrated that eleven neutral atoms can bind positrons, while many more can bind positronium. This is a short review of recent progress made in understanding some of the underlying mechanisms. The emphasis here being on configuration interaction calculations with excited state configurations. These have demonstrated the existence of a {sup 2}P{sup o} excited state of e{sup +}Ca, which consists predominantly of a positronium cluster orbiting the Ca{sup +} ion in the L = 1 partial wave. Preliminary results are presented of excited state positron binding to a model alkali atom, where the excited {sup 1}P{sup o} states are stable over a limited region. Implications for the unnatural parity, {sup 2,4}S{sup o}, states of PsH, LiPs, NaPs and KPs are also discussed. The e{sup +}Mg, e{sup +}Cu, e{sup +}Zn and e{sup +}Cd systems show a lack of a {sup 2}P{sup o} excited state, each instead possessing a low-energy p-wave shape resonance of varying strength.

  20. With or without "Li."

    Science.gov (United States)

    Wang, Mingquan

    1990-01-01

    Demonstrates how the important distinction between the locative and nonlocative implication of a noun is essential for the presence of the Chinese locative particle "li," identifying groups of nouns that can not take the particle, nouns that optionally use the particle, and nouns that must use the particle. (CB)