WorldWideScience

Sample records for atoms li na

  1. Atomic scattering in the diffraction limit: electron transfer in keV Li+-Na(3s, 3p) collisions

    DEFF Research Database (Denmark)

    Poel, Mike van der; Nielsen, C.V.; Rybaltover, M.

    2002-01-01

    We measure angle differential cross sections (DCS) in Li+ + Na --> Li + Na+ electron transfer collisions in the 2.7-24 keV energy range. We do this with a newly constructed apparatus which combines the experimental technique of cold target recoil ion momentum spectroscopy with a laser-cooled target...... of the de Broglie wavelength lambda(dB) = 150 fm at a velocity v = 0.20 au and the effective atomic diameter for electron capture 2R = 20 au. Parallel AO and MO semiclassical coupled-channel calculations of the Na(3s, 3p) --> Li(2s, 2p) state-to-state collision amplitudes have been performed, and quantum...

  2. Endurance testing with Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Ong, E.T.; Remick, R.J.; Sishtla, C.I. [Institute of Gas Technology, Des Plaines, IL (United States)

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  3. Structure of the weakly bound triatomic He2Li and He2Na molecules

    Science.gov (United States)

    Suno, Hiroya

    2017-07-01

    We study the structure of triatomic molecules containing two helium atoms and one alkali-metal atom X (X = Li, Na). The three-body Schrödinger equation is solved in hyperspherical coordinates using the He-He and He-X pair van der Waals potentials available in the literature. We calculate the structural properties of the He2Li and He2Na bound states, and analyze one-dimensional pair and angle distribution functions as well as two-dimensional pair-pair and angle-angle distribution functions. These bound states are characterized by so peculiar weakly bound structures that classifying them into particular sizes and geometrical shapes appears to be elusive. Particularly, the JΠ=0+ excited states of He426Li and He427Li are found to constitute giant triatomic molecules with their size amounting to several hundred bohrs.

  4. High performance MCFC using Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Donado, R.A.; Ong, E.T.; Sishtla, C.I.

    1995-08-01

    The substitution of a lithium/ sodium carbonate (Li/Na) mixture for the lithium/potassium carbonate (Li/K) electrolyte used in MCFCs holds the promise of higher ionic conductivity, higher exchange current density at both electrodes, lower vapor pressure, and lower cathode dissolution rates. However, when the substitution is made in cells optimized for use with the Li/K electrolyte, the promised increase in performance is not realized. As a consequence the literature contains conflicting data with regard to the performance, compositional stability, and chemical reactivity of the Li/Na electrolyte. Experiments conducted at the Institute of Gas Technology (IGT) concluded that the source of the problem is the different wetting characteristics of the two electrolytes. Electrode pore structures optimized for use with Li/K do not work well with Li/Na. Using proprietary methods and materials, IGT was able to optimize a set of electrodes for the Li/Na electrolyte. Experiments conducted in bench-scale cells have confirmed the superior performance of the Li/Na electrolyte compared to the Li/K electrolyte. The Li/Na cells exhibited a 5 to 8 percent improvement in overall performance, a substantial decrease in the rate of cathode dissolution, and a decreased decay rate. The longest running cell has logged over 13,000 hours of operation with a decay rate of less than 2 mV/1000 hours.

  5. Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries.

    Science.gov (United States)

    Jena, Naresh K; Araujo, Rafael B; Shukla, Vivekanand; Ahuja, Rajeev

    2017-05-17

    Borophene, single atomic-layer sheet of boron ( Science 2015 , 350 , 1513 ), is a rather new entrant into the burgeoning class of 2D materials. Borophene exhibits anisotropic metallic properties whereas its hydrogenated counterpart borophane is reported to be a gapless Dirac material lying on the same bench with the celebrated graphene. Interestingly, this transition of borophane also rendered stability to it considering the fact that borophene was synthesized under ultrahigh vacuum conditions on a metallic (Ag) substrate. On the basis of first-principles density functional theory computations, we have investigated the possibilities of borophane as a potential Li/Na-ion battery anode material. We obtained a binding energy of -2.58 (-1.08 eV) eV for Li (Na)-adatom on borophane and Bader charge analysis revealed that Li(Na) atom exists in Li+(Na+) state. Further, on binding with Li/Na, borophane exhibited metallic properties as evidenced by the electronic band structure. We found that diffusion pathways for Li/Na on the borophane surface are anisotropic with x direction being the favorable one with a barrier of 0.27 and 0.09 eV, respectively. While assessing the Li-ion anode performance, we estimated that the maximum Li content is Li0.445B2H2, which gives rises to a material with a maximum theoretical specific capacity of 504 mAh/g together with an average voltage of 0.43 V versus Li/Li+. Likewise, for Na-ion the maximum theoretical capacity and average voltage were estimated to be 504 mAh/g and 0.03 V versus Na/Na+, respectively. These findings unambiguously suggest that borophane can be a potential addition to the map of Li and Na-ion anode materials and can rival some of the recently reported 2D materials including graphene.

  6. Atomic layer deposition for nanostructured Li-ion batteries

    NARCIS (Netherlands)

    Knoops, H. C. M.; Donders, M. E.; M. C. M. van de Sanden,; Notten, P. H. L.; Kessels, W. M. M.

    2012-01-01

    Nanostructuring is targeted as a solution to achieve the improvements required for implementing Li-ion batteries in a wide range of applications. These applications range in size from electrical vehicles down to microsystems. Atomic layer deposition (ALD) could be an enabling technology for

  7. Study of Li atom diffusion in amorphous Li3PO4 with neural network potential

    Science.gov (United States)

    Li, Wenwen; Ando, Yasunobu; Minamitani, Emi; Watanabe, Satoshi

    2017-12-01

    To clarify atomic diffusion in amorphous materials, which is important in novel information and energy devices, theoretical methods having both reliability and computational speed are eagerly anticipated. In the present study, we applied neural network (NN) potentials, a recently developed machine learning technique, to the study of atom diffusion in amorphous materials, using Li3PO4 as a benchmark material. The NN potential was used together with the nudged elastic band, kinetic Monte Carlo, and molecular dynamics methods to characterize Li vacancy diffusion behavior in the amorphous Li3PO4 model. By comparing these results with corresponding DFT calculations, we found that the average error of the NN potential is 0.048 eV in calculating energy barriers of diffusion paths, and 0.041 eV in diffusion activation energy. Moreover, the diffusion coefficients obtained from molecular dynamics are always consistent with those from ab initio molecular dynamics simulation, while the computation speed of the NN potential is 3-4 orders of magnitude faster than DFT. Lastly, the structure of amorphous Li3PO4 and the ion transport properties in it were studied with the NN potential using a large supercell model containing more than 1000 atoms. The formation of P2O7 units was observed, which is consistent with the experimental characterization. The Li diffusion activation energy was estimated to be 0.55 eV, which agrees well with the experimental measurements.

  8. First-principles investigation on hydrogen storage performance of Li, Na and K decorated borophene

    Science.gov (United States)

    Wang, Lifuzi; Chen, Xianfei; Du, Haiying; Yuan, Yuquan; Qu, Hui; Zou, Miao

    2018-01-01

    Borophene, a new kind of two-dimensional materials, were successfully synthesized in experiment recently with potential applications. In this study, we have investigated the hydrogen storage performances of alkali-metal (Li, Na and K) doped three types of borophene polytypes synthesized on Ag substrate. It is found that strong binding strength exists between alkali-metal atoms and borophene, where metal atoms on borophene with separated distribution are energy more favorable than the formation of metal clusters, avoiding the aggregation problems. Polarization mechanism plays a dominant role in H2 adsorption and the obtained storage capacities are closely related with the configurations of borophene, types of foreign atoms and the electronic interactions therein. The effects of temperature and pressure have also been taken into consideration through modified van't Hoff equation. Our results demonstrate that Na-doped S2 and S3 and Li-doped three types of borophene could be severed as promising candidates for hydrogen storage.

  9. Photodesorption of Na atoms from rough Na surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Gerlach, R.; Manson, J.R.

    1997-01-01

    We investigate the desorption of Na atoms from large Na clusters deposited on dielectric surfaces. High-resolution translational energy distributions of the desorbing atoms are determined by three independent methods, two-photon laser-induced fluorescence, as well as single-photon and resonance......-enhanced two-photon ionization techniques. Upon variation of surface temperature and for different substrates (mica vs lithium fluoride) clear non-Maxwellian time-of-flight distributions are observed with a cos θ angular dependence and most probable kinetic energies below that expected of atoms desorbing from...... atoms are scattered by surface vibrations. Recent experiments providing time constants for the decay of the optical excitations in the clusters support this model. The excellent agreement between experiment and theory indicates the importance of both absorption of the laser photons via direct excitation...

  10. Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na-ion batteries

    Science.gov (United States)

    Maletti, S.; Sarapulova, A.; Tsirlin, A. A.; Oswald, S.; Fauth, F.; Giebeler, L.; Bramnik, N. N.; Ehrenberg, H.; Mikhailova, D.

    2018-01-01

    Vanadium(V)-containing oxides show superior intercalation properties for alkaline ions, although the performance of the material strongly depends on its surface morphology. In this work, intercalation activity of LiV3O8, prepared by a conventional solid state synthesis, is demonstrated for the first time in non-aqueous Li,Na-ion hybrid batteries with Na as negative electrode, and different Na/Li ratios in the electrolyte. In the pure Na-ion cell, one Na per formula unit of LiV3O8 can be reversibly inserted at room temperature via a two-step process, while further intercalation leads to gradual amorphisation of the material, with a specific capacity of 190 mAhg-1 after 10 cycles in the potential window of 0.8-3.4 V. Hybrid Li,Na-ion batteries feature simultaneous intercalation of Li+ and Na+ cations into LiV3O8, resulting in the formation of a second phase. Depending on the electrolyte composition, this second phase bears structural similarities either to Li0.7Na0.7V3O8 in Na-rich electrolytes, or to Li4V3O8 in Li-rich electrolytes. The chemical diffusion coefficients of Na+ and Li+ in crystalline LiV3O8 are very close, hence explaining the co-intercalation of these cations. As DFT calculations show, once formed, the Li0.7Na0.7V3O8-type structure favors intercalation of Na+, whereas the LiV3O8-type prefers to accommodate Li+ cations.

  11. The interaction of atoms with LiF(001) revisited

    CERN Document Server

    Miraglia, J E

    2016-01-01

    Pairwise additive potentials for multielectronic atoms interacting with a LiF(001) surface are revisited by including an improved description of the electron density associated with the different lattice sites, as well as non-local electron density contributions. Within this model, the electron distribution around each ionic site of the crystal is described by means of an onion approach that accounts for the influence of the Madelung potential. From such densities, binary interatomic potentials are then derived by using well-known non-local functionals for the kinetic, exchange and correlation terms. Rumpling and long-range contributions due to projectile polarization and van der Waals forces are also included in an analogous fashion. We apply this pairwise additive approximation to evaluate the interaction potential between closed-shell - He, Ne, Ar, Kr, and Xe - and open-shell - N, S, and Cl - atoms and the LiF surface, analyzing the relative importance of the different contributions. The performance of the...

  12. Structural relationships among LiNaMg[PO4]F and Na2M[PO4]F (M = Mn-Ni, and Mg), and the magnetic structure of LiNaNi[PO4]F.

    Science.gov (United States)

    Ben Yahia, Hamdi; Shikano, Masahiro; Kobayashi, Hironori; Avdeev, Maxim; Liu, Samuel; Ling, Chris D

    2014-02-07

    The new compound LiNaMg[PO4]F has been synthesized by a wet chemical reaction route. Its crystal structure was determined from single-crystal X-ray diffraction data. LiNaMg[PO4]F crystallizes with the monoclinic pseudomerohedrally twinned LiNaNi[PO4]F structure, space group P2(1)/c, a = 6.772(4), b = 11.154(6), c = 5.021(3) Å, β = 90.00(1)° and Z = 4. The structure contains [MgO3F]n chains made up of zigzag edge-sharing MgO4F2 octahedra. These chains are interlinked by PO4 tetrahedra forming 2D-Mg[PO4]F layers. The alkali metal atoms are well ordered in between these layers over two atomic positions. The use of group-subgroup transformation schemes in the Bärnighausen formalism enabled us to determine precise phase transition mechanisms from LiNaNi[PO4]F- to Na2M[PO4]F-type structures (M = Mn-Ni, and Mg) (see video clip 1 and 2). The crystal and magnetic structure and properties of the parent LiNaNi[PO4]F phase were also studied by magnetometry and neutron powder diffraction. Despite the rather long interlayer distance, d(min)(Ni(+2)-Ni(+2)) ~ 6.8 Å, the material develops a long-range magnetic order below 5 K. The magnetic structure can be viewed as antiferromagnetically coupled ferromagnetic layers with moments parallel to the b-axis.

  13. Theoretical study on the correlation between the nature of atomic Li intercalation and electrochemical reactivity in TiS2 and TiO2.

    Science.gov (United States)

    Kim, Yang-Soo; Kim, Hee-Jin; Jeon, Young-A; Kang, Yong-Mook

    2009-02-12

    The electronic structures of LiTiS(2) and LiTiO(2) (having alpha-NaFeO(2) structure) have been investigated using discrete variational Xalpha molecular orbital methods. The alpha-NaFeO(2) structure is the equilibrium structure for LiCoO(2), which is widely used as a commercial cathode material for lithium secondary batteries. This study especially focused on the charge state of Li ions and the magnitude of covalency around Li ions. When the average voltage of lithium intercalation was calculated using pseudopotential methods, the average intercalation voltage of LiTiO(2) (2.076 V) was higher than that of LiTiS(2) (1.958 V). This can be explained by the differences in Mulliken charge of lithium and the bond overlap population between the intercalated Li ions and anion in LiTiO(2) as well as LiTiS(2). The Mulliken charge, which is the ionicity of Li atom, was approximately 0.12 in LiTiS(2), and the bond overlap population (BOP) indicating the covalency between Ti and S was about 0.339. When compared with the BOP (0.6) of C-H, which is one of the most famous example of covalent bonding, the intercalated Li ions in LiTiS(2) tend to form a quite strong covalent bond with the host material. In contrast, the Mulliken charge of lithium was about 0.79, which means that Li is fully ionized and the BOP, the covalency between Ti and O, was 0.181 in LiTiO(2). Because of the high ionicity of Li and the weak covalency between Ti and the nearest anion, LiTiO(2) has a higher intercalation voltage than LiTiS(2).

  14. Poling piezoelectric (K,Na,Li)NbO

    NARCIS (Netherlands)

    Deutz, D.B.; Mascarenhas, N.T.; van der Zwaag, S.; Groen, W.A.

    2017-01-01

    Composites of aligned (K,Na,Li)NbO3 (KNLN) piezoceramic particles in a PDMS polymer matrix are presented as promising materials for flexible sensors and energy harvesters. Their ease of processing is matched with a relatively high damage tolerance and piezoelectric performance at low

  15. Energetics of a Li Atom adsorbed on B/N doped graphene with monovacancy

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Babita, E-mail: babitabaghla15@gmail.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Department of Physics, Punjabi University, Patiala 147002 (India); Jindal, V.K. [Department of Physics, Panjab University, Chandigarh 160014 (India); Dharamvir, Keya, E-mail: keya@pu.ac.in [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2016-08-15

    We use density functional theory (DFT) to study the adsorption properties and diffusion of Li atom across B/N-pyridinic graphene. Regardless of the dopant type, B atoms of B-pyridinic graphene lose electron density. On the other hand, N atoms (p-type dopants) have tendency to gain electron density in N-pyridinic graphene. Higher chemical reactivity and electronic conductivity of B/N-pyridinic graphene are responsible for stronger binding of Li with the substrates as compared to pristine graphene. The binding energy of Li with B/N-pyridinic graphene exceeds the cohesive energy of bulk Li, making it energetically unfavourable for Li to form clusters on these substrates. Li atom gets better adsorbed on N-pyridinic graphene due to an additional p-p hybridization of the orbitals while Li on B-pyridinic prefers the ionic bonding. Also, significant distortion of N-pyridinic graphene upon Li adsorption is a consequence of the change in bonding mechanism between Li atom and the substrate. Our results show that bonding character and hence binding energies between Li and graphene can be tuned with the help of B/N doping of monovacancy defects. Further, the sites for most stable adsorption are different for the two types of doped and defective graphene, leading to greater Li uptake capacity of B-pyridinic graphene near the defect. In addition, B-pyridinic graphene offering lower diffusion barrier, ensures better Li kinetics. Thus, B-pyridinic graphene presents itself as a better anode material for LIBs as compared to N-pyridinic graphene. - Graphical abstract: Adsorption and diffusion of Li atom across the B/N doped monovacancy graphene is studied using ab-initio DFT calculations. Our results show that bonding mechanism and binding of Li with graphene can be tuned with the help of N/B doping of defects. Also, B-pyridinic graphene presents itself as a better anode material for lithium ion batteries as compared to N-pyridinic graphene. Display Omitted - Highlights: • Density

  16. Transmission channels through Na and Al atom wire

    DEFF Research Database (Denmark)

    Kobayashi, N.; Brandbyge, Mads; Tsukada, M.

    1999-01-01

    First-principles calculations of the transmission channels of single-atom-width Na and Al atom wires bridged between metallic jellium electrodes are presented. For the Na wire, a single channel contributes to the conduction with an almost full quantization value, 2e(2)/h. The conductance...

  17. Interaction between an icosahedron Li(13) cluster and a graphene layer doped with a hydrogen atom.

    Science.gov (United States)

    Rangel, Eduardo; Vázquez, Gerardo; Magaña, Fernando; Sansores, Enrique

    2012-12-01

    It is known that graphene reacts with atomic hydrogen to form a hydrogenated sheet of graphene. In order to understand the nature of the interaction between hydrogen and lithium in hydrogenated samples, we have carried out first principle calculations. Density functional theory and molecular dynamics were used to study the interaction between an icosahedron Li(13) cluster, and a graphene layer doped with a hydrogen atom. It was found that a hydrogen atom is levitated from the graphene layer and absorbed into the cluster of Li at 300 K and atmospheric pressure, with a binding energy far exceeding that of the adsorption energy of a hydrogen atom on the graphene layer.

  18. On the nuclear $(n;t)-$reaction in the three-electron ${}^{6}$Li atom

    CERN Document Server

    Frolov, Alexei M

    2012-01-01

    The nuclear $(n;t)-$reaction of the three-electron ${}^{6}$Li atom with thermal/slow neutrons is considered. An effective method has been developed for determining the probabilities of formation of various atoms and ions in different bound states. We discuss a number of fundamental questions directly related to numerical computations of the final state atomic probabilities. A few appropriate variational expansions for atomic wave functions of the incident lithium atom and final helium atom and/or tritium negatively charged ion are discussed. It appears that the final ${}^4$He atom arising during the nuclear $(n,{}^{6}$Li; ${}^4$He$,t)$-reaction in the three-electron Li atom can also be created in its triplet states. The formation of the quasi-stable three-electron $e^{-}_3$ during the nuclear $(n; t)-$reaction at the Li atom is briefly discussed. Bremsstrahlung emitted by atomic electrons accelerated by the rapidly moving fragments from this reaction is analyzed. The frequency spectrum of the emitted radiatio...

  19. Estudio del Sistema Li2SO4 – Na2SO4. Diagrama de fases y caracterización del LiNaSO4

    Directory of Open Access Journals (Sweden)

    Font-Bardia, M.

    2004-08-01

    Full Text Available An exhaustive study of the phase diagram of binary system Li2SO4-Na2SO4 is presented. Phase diagram was determined using thermo-X-ray diffraction in powder samples and calorimetry ATD. A new phase with formula Li2-xNaxSO4 has been obtained, with 1 ≤ x ≤ 1.22. The crystal structure of β-LiNaSO4 was determined from single-crystal X-ray diffraction. This study shows that the crystals usually become twinned when the growth is by solution; which explains the poor spontaneous polarization. The Raman dispersion of Li2SO4, Na2SO4 and LiNaSO4 compounds is explained from the structural data. The measurements have been made at different heating and cooling rate.Se presenta un estudio exhaustivo del diagrama de fase del sistema binario Li2SO4-Na2SO4. El diagrama de fases se determinó mediante termo-difractometría de rayos-X en muestras de polvo y calorimetría ATD. Se obtiene una nueva fase de fórmula Li2-xNaxSO4, con 1 ≤ x ≤ 1.22. La estructura cristalina de β-LiNaSO4 se determinó por difracción de rayos-X sobre un monocristal. Este estudio muestra que los cristales usualmente se maclan cuando el crecimiento es por solución, lo cual explica la baja polarización espontánea. Se explica la dispersión Raman de los compuestos Li2SO4, Na2SO4 y LiNaSO4, a partir de los datos estructurales. Las medidas experimentales se han efectuado a diferentes velocidades de calentamiento y enfriamiento.

  20. Observation of selective desorption of one-phonon inelastically scattered He atoms from a LiF crystal surface

    Science.gov (United States)

    Brusdeylins, G.; Doak, R. Bruce; Toennies, J. Peter

    1981-08-01

    Measurements of angular distributions for scattering of low energy (≊20 meV) monoenergetic (Δv/v = 0.8% FWHM) He beams from a LiF (001) crystal along the and directions and from a NaF (001) crystal along the direction reveal a large number of mostly small maxima and minima between the specular and diffraction peaks. Typical intensities of these features are about 10-3 of the specular peak. Time-of-flight spectra of the scattered atoms at the incident angles corresponding to the maxima reveal that the atoms were inelastically scattered by single phonons. From the known bound state energies for both systems He-LiF and He-NaF, we find that most of the maxima can be explained by a two step process in which the atoms are first elastically selectively adsorbed by diffraction into an in-plane bound state and then are subsequently desorbed as a result of a single phonon inelastic process. From the observed half-widths the lifetimes of atoms in the trapped states are found to depend on the vibrational quantum number and for the weakest bound state is as large as 60×10-12 sec. Evidence for minima involving selective adsorption into out-of-plane states is also presented.

  1. Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study

    Science.gov (United States)

    Mortazavi, Bohayra; Dianat, Arezoo; Rahaman, Obaidur; Cuniberti, Gianaurelio; Rabczuk, Timon

    2016-10-01

    Borophene, the boron atom analogue to graphene, being atomic thick have been just recently experimentally fabricated. In this work, we employ first-principles density functional theory calculations to investigate the interaction of Ca, Mg, Na or Li atoms with single-layer and free-standing borophene. We first identified the most stable binding sites and their corresponding binding energies as well and then we gradually increased the ions concentration. Our calculations predict strong binding energies of around 4.03 eV, 2.09 eV, 2.92 eV and 3.28 eV between the borophene substrate and Ca, Mg, Na or Li ions, respectively. We found that the binding energy generally decreases by increasing the ions content. Using the Bader charge analysis, we evaluate the charge transfer between the adatoms and the borophene sheet. Our investigation proposes the borophene as a 2D material with a remarkably high capacity of around 800 mA h/g, 1960 mA h/g, 1380 mA h/g and 1720 mA h/g for Ca, Mg, Na or Li ions storage, respectively. This study can be useful for the possible application of borophene for the rechargeable ion batteries.

  2. Cascading Boost Effect on the Capacity of Nitrogen-Doped Graphene Sheets for Li- and Na-Ion Batteries.

    Science.gov (United States)

    Tian, Lei-Lei; Li, Si-Bai; Zhang, Ming-Jian; Li, Shuan-Kui; Lin, Ling-Piao; Zheng, Jia-Xin; Zhuang, Quan-Chao; Amine, Khalil; Pan, Feng

    2016-10-12

    Specific capacity and cyclic performance are critically important for the electrode materials of rechargeable batteries. Herein, a capacity boost effect of Li- and Na-ion batteries was presented and clarified by nitrogen-doped graphene sheets. The reversible capacities progressively increased from 637.4 to 1050.4 mAh g-1 (164.8% increase) in Li-ion cell tests from 20 to 185 cycles, and from 187.3 to 247.5 mAh g-1 (132.1% increase) in Na-ion cell tests from 50 to 500 cycles. The mechanism of the capacity boost is proposed as an electrochemical induced cascading evolution of graphitic N to pyridinic and/or pyrrolic N, during which only these graphitic N adjacent pyridinic or pyrrolic structures can be taken precedence. The original and new generated pyridinic and pyrrolic N have strengthened binding energies to Li/Na atoms, thus increased the Li/Na coverage and delivered a progressive capacity boost with cycles until the entire favorable graphitic N transform into pyridinic and pyrrolic N.

  3. The electrochemical performance of super P carbon black in reversible Li/Na ion uptake

    NARCIS (Netherlands)

    Peng, B.; Xu, Y.; Wang, Xiaoqun; Shi, Xinghua; Mulder, F.M.

    2017-01-01

    Super P carbon black (SPCB) has been widely used as a conducting additive in Li/Na ion batteries to improve the electronic conductivity. However, there has not yet been a comprehensive study on its structure and electrochemical properties for Li/Na ion uptake, though it is important to

  4. Fast atom diffraction for grazing scattering of Ne atoms from a LiF(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S., E-mail: msilvia@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Schueller, A.; Winter, H. [Institut fuer Physik, Humboldt Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin-Adlershof (Germany); Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2011-06-01

    Angular distributions of fast Ne atoms after grazing collisions with a LiF(0 0 1) surface under axial surface channeling conditions are experimentally and theoretically studied. We use the surface eikonal approximation to describe the quantum interference of scattered projectiles, while the atom-surface interaction is represented by means of a pairwise additive potential, including the polarization of the projectile atom. Experimental data serve as a benchmark to investigate the performance of the proposed potential model, analyzing the role played by the projectile polarization.

  5. Hydrogen Desorption Properties of Bulk and Nanoconfined LiBH4-NaAlH4

    Directory of Open Access Journals (Sweden)

    Payam Javadian

    2016-06-01

    Full Text Available Nanoconfinement of 2LiBH4-NaAlH4 into a mesoporous carbon aerogel scaffold with a pore size, BET surface area and total pore volume of Dmax = 30 nm, SBET = 689 m2/g and Vtot = 1.21 mL/g, respectively is investigated. Nanoconfinement of 2LiBH4-NaAlH4 facilitates a reduction in the temperature of the hydrogen release by 132 °C, compared to that of bulk 2LiBH4-NaAlH4 and the onset of hydrogen release is below 100 °C. The reversible hydrogen storage capacity is also significantly improved for the nanoconfined sample, maintaining 83% of the initial hydrogen content after three cycles compared to 47% for that of the bulk sample. During nanoconfinement, LiBH4 and NaAlH4 reacts to form LiAlH4 and NaBH4 and the final dehydrogenation products, obtained at 481 °C are LiH, LiAl, AlB2 and Al. After rehydrogenation of the nanoconfined sample at T = 400 °C and p(H2 = 126 bar, amorphous NaBH4 is recovered along with unreacted LiH, AlB2 and Al and suggests that NaBH4 is the main compound that can reversibly release and uptake hydrogen.

  6. Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function

    Science.gov (United States)

    Chen, Lin; Wu, Wen-Bin; Liu, Pin-Yang; Xiao, Yun-Qing; Li, Guo-Peng; Liu, Yi-Ran; Jiang, Hao-Yu; Guo, Yan-Ling; Chen, Xi-Meng

    2016-08-01

    For Li+ and Na+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako-Newns (BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li+ and Na+ ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405078 and 11474140), the Fundamental Research Funds for the Central Universities, China (Grant Nos. lzujbky-2014-169 and lzujbky-2015-244), the Project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry, and the National Students’ Innovation and Entrepreneurship Training Program (Grant Nos. 201410730069 and 201510730078).

  7. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) with controllable properties are highly desirable to improve battery performance. In this paper, we use a combined experimental and simulation approach to study the SEI formation on hard carbon in Li and Na-ion batteries. We show that with proper additives, stable SEI can be formed on hard carbon by pre-cycling the electrode materials in Li or Na-ion electrolyte. Detailed mechanistic studies suggest that the ion transport in the SEI layer is kinetically controlled and can be tuned by the applied voltage. Selective Na and Li-ion SEI membranes are produced using the Na or Li-ion based electrolytes respectively. The large Na ion SEI allows easy transport of Li ions, while the small Li ion SEI shuts off the Na-ion transport. Na-ion storage can be manipulated by tuning the SEI with film-forming electrolyte additives or preforming a SEI on the electrodes’ surface. The Na specific capacity can be controlled to <25 mAh/g, ~1/10 of the normal capacity (250 mAh/g). Unusual selective/preferential transport of Li-ion is demonstrated by preforming a SEI on the electrode’s surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion selective conductors using electrochemical approaches in the future.

  8. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ion storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1); approximate to 1/10 of the normal capacity (250 mAh g(-1)). Unusual selective/ preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.

  9. New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes

    Science.gov (United States)

    Chen, Liang; Gu, Qingwen; Zhou, Xufeng; Lee, Saixi; Xia, Yonggao; Liu, Zhaoping

    2013-01-01

    Rechargeable batteries made from low-cost and abundant materials operating in safe aqueous electrolytes are attractive for large-scale energy storage. Sodium-ion battery is considered as a potential alternative of current lithium-ion battery. As sodium-intercalation compounds suitable for aqueous batteries are limited, we adopt a novel concept of Li+/Na+ mixed-ion electrolytes to create two batteries (LiMn2O4/Na0.22MnO2 and Na0.44MnO2/TiP2O7), which relies on two electrochemical processes. One involves Li+ insertion/extraction reaction, and the other mainly relates to Na+ extraction/insertion reaction. Two batteries exhibit specific energy of 17 Wh kg−1 and 25 Wh kg−1 based on the total weight of active electrode materials, respectively. As well, aqueous LiMn2O4/Na0.22MnO2 battery is capable of separating Li+ and Na+ due to its specific mechanism unlike the traditional “rocking-chair” lithium-ion batteries. Hence, the Li+/Na+ mixed-ion batteries offer promising applications in energy storage and Li+/Na+ separation. PMID:23736113

  10. 23Na multiple quantum filtered NMR characterisation of Na+ binding and dynamics in animal cells: a comparative study and effect of Na+/Li + competition.

    Science.gov (United States)

    Fonseca, Carla P; Fonseca, Luís L; Montezinho, Liliana P; Alves, Paula M; Santos, Helena; Castro, M Margarida C A; Geraldes, Carlos F G C

    2013-07-01

    Double quantum and triple quantum filtered (23)Na nuclear magnetic resonance techniques were used to characterise in detail the isotropic and anisotropic binding and dynamics of intra- and extracellular Na(+) in different cellular systems, in the absence and presence of Li(+). The kinetics of Li(+) influx by different cell types was evaluated. At steady state, astrocytes accumulated more Li(+) than red blood cells (RBCs), while a higher intracellular Li(+) concentration was found in chromaffin than in SH-SY5Y cells. Anisotropic and isotropic motions were detected for extracellular Na(+) in all cellular systems studied. Isotropic intracellular Na(+) motions were observed in all types of cells, while anisotropic Na(+) motions in the intracellular compartment were only detected in RBCs. (23)Na triple quantum signal efficiency for intracellular Na(+) was SH-SY5Y > chromaffin > RBCs, while the reverse order was observed for the extracellular ions. (23)Na double quantum signal efficiency for intracellular Na(+) was non-zero only in RBCs, and for extracellular Na(+) the order RBCs > chromaffin > SH-SY5Y cells was observed. Li(+) loading generally decreased intracellular Na(+) isotropic movements in the cells, except for astrocytes incubated with a low Li(+) concentration and increased anisotropic intracellular Na(+) movements in RBCs. Li(+) effects on the extracellular signals were more complex, reflecting Li(+)/Na(+) competition for isotropic and anisotropic binding sites at the extracellular surface of cell membranes and also at the surface of the gel used for cell immobilisation. These results are relevant and contribute to the interpretation of the in vivo pharmacokinetics and sites of Li(+) action.

  11. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.

    Science.gov (United States)

    Park, Ah-Ram; Park, Cheol-Min

    2017-06-27

    A cubic crystal-structured Sn-based compound, SnTe, was easily synthesized using a solid-state synthetic process to produce a better rechargeable battery, and its possible application as a Sn-based high-capacity anode material for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was investigated. The electrochemically driven phase change mechanisms of the SnTe electrodes during Li and Na insertion/extraction were thoroughly examined utilizing various ex situ analytical techniques. During Li insertion, SnTe was converted to Li4.25Sn and Li2Te; meanwhile, during Na insertion, SnTe experienced a sequential topotactic transition to NaxSnTe (x ≤ 1.5) and conversion to Na3.75Sn and Na2Te, which recombined into the original SnTe phase after full Li and Na extraction. The distinctive phase change mechanisms provided remarkable electrochemical Li- and Na-ion storage performances, such as large reversible capacities with high Coulombic efficiencies and stable cyclabilities with fast C-rate characteristics, by preparing amorphous-C-decorated nanostructured SnTe-based composites. Therefore, SnTe, with its interesting phase change mechanisms, will be a promising alternative for the oncoming generation of anode materials for LIBs and NIBs.

  12. Narrow-linewidth cooling of $^{6}$Li atoms using the 2S-3P transition

    CERN Document Server

    Chen, Hao-Ze; Wu, Yu-Ping; Liu, Xiang-Pei; Wang, Xiao-Qiong; Chen, Yu-Ao; Pan, Jian-Wei

    2016-01-01

    We report on a narrow-linewidth cooling of $^{6}$Li atoms using the $2S_{1/2}\\to 3P_{3/2}$ transition in the ultraviolet (UV) wavelength regime. By combining the traditional red magneto-optical trap (MOT) at 671 nm and the UV MOT at 323 nm, we obtain a cold sample of $1.3\\times10^9$ atoms with a temperature of 58 $\\mu$K. Furthermore, we demonstrate a high efficiency magnetic transport for $^{6}$Li atoms with the help of the UV MOT. Finally, we obtain $8.1\\times10^8$ atoms with a temperature of 296 $\\mu$K at a magnetic gradient of 198 G/cm in the science chamber with a good vacuum environment and large optical access.

  13. Long-range dispersion interactions between Li and rare-gas atoms

    Science.gov (United States)

    Zhang, Deng-Hong; Xu, Ya-Bin; Jiang, Jun; Jiang, Li; Xie, Lu-You; Dong, Chen-Zhong

    2017-06-01

    The energy levels, oscillator strength and dipole scalar polarizabilities of Li atoms are calculated by using the relativistic semiempirical-core-potential method (RCICP). The dispersion coefficients C6 between ground 2s1/2 2p1/2,2p3/2 states of Li atom and the ground state of rare gas atoms (Ne, Ar, Kr, Xe) are calculated in JJ coupled states, in which the spin-orbital interactions are included. Present results are in good agreement with other available results. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  14. Nanoconfined NaAlH4 Conversion Electrodes for Li Batteries

    DEFF Research Database (Denmark)

    Huen, Priscilla; Peru, Filippo; Charalambopoulou, Georgia

    2017-01-01

    NaAlH4 was improved from around 30 to 70% compared to that of nonconfined NaAlH4. Cyclic voltammetry revealed that nanoconfinement alters the conversion pathway, and operando powder X-ray diffraction showed that the conversion from NaAlH4 into Na3AlH6 is favored over the formation of LiNa2AlH6...

  15. Lithium salt of biphenyl tetracarboxylate as an anode material for Li/Na-ion batteries

    Science.gov (United States)

    Medabalmi, Veerababu; Wang, Guanxiong; Ramani, Vijay K.; Ramanujam, Kothandaraman

    2017-10-01

    Electrochemical lithiation/delithiation and sodiation/desodiation studies are carried out on lithium [1,1‧-biphenyl]-3,3‧,4,4‧-tetracarboxylate (Li4-BPTC). Although four Li+ can be inserted, only two Li+ was reversible yielding a capacity of 110, 122 and 107 mAh g-1 (after 50 cycles) at a current density of 40, 80 and 160 mA g-1 respectively. As sodium analog of Li4-BPTC is unstable in the ambient conditions, Li4-BPTC was tested in sodium half-cell and a reversible capacity of 107 mAh g-1 was obtained even after 200 cycles at 160 mA g-1 rate. The exchange of Li+ by Na+ in Li4-BPTC electrode during the electrochemical sodiation/desodiation was confirmed by ICP-OES and XPS studies.

  16. Density functional theory studies on theelectronic, structural, phonon dynamicaland thermo-stability properties of bicarbonates MHCO3, M D Li, Na, K

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Zhang, Bo; Sorescu, Dan C.; Johnson, Karl; Majzoub, Eric H; Luebke, David R.

    2012-07-01

    The structural, electronic, phonon dispersion and thermodynamic properties of MHCO3 (M D Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO3 has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO3 using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy .FPH/ calculations predict that LiHCO3 will be stable under suitable conditions of temperature and partial pressures of CO2 and H2O. Our calculations indicate that the HCO 3 groups in LiHCO3 and NaHCO3 form an infinite chain structure through O H O hydrogen bonds. In contrast, the HCO 3 anions form dimers, .HCO 3 /2, connected through double hydrogen bonds in all phases of KHCO3. Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical–transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0–900 K, the FPH and the entropies (S) of MHCO3 (M D Li, Na, K) systems vary as FPH.LiHCO3/ > FPH.NaHCO3/ > FPH.KHCO3/ and S.KHCO3/ > S.NaHCO3/ > S.LiHCO3/, respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO2 capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO2 capture technology, in agreement with experiments.

  17. Density functional theory studies on the electronic, structural, phonon dynamical and thermo-stability properties of bicarbonates MHCO(3), M =  Li, Na, K.

    Science.gov (United States)

    Duan, Yuhua; Zhang, Bo; Sorescu, Dan C; Karl Johnson, J; Majzoub, Eric H; Luebke, David R

    2012-08-15

    The structural, electronic, phonon dispersion and thermodynamic properties of MHCO(3) (M = Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO(3) has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO(3) using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy (F(PH)) calculations predict that LiHCO(3) will be stable under suitable conditions of temperature and partial pressures of CO(2) and H(2)O. Our calculations indicate that the [Formula: see text] groups in LiHCO(3) and NaHCO(3) form an infinite chain structure through O⋯H⋯O hydrogen bonds. In contrast, the [Formula: see text] anions form dimers, [Formula: see text], connected through double hydrogen bonds in all phases of KHCO(3). Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical-transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0-900 K, the F(PH) and the entropies (S) of MHCO(3) (M =Li, Na, K) systems vary as F(PH)(LiHCO(3)) > F(PH)(NaHCO(3)) > F(PH)(KHCO(3)) and S(KHCO(3)) > S(NaHCO(3)) > S(LiHCO(3)), respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO(2) capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO(2) capture technology, in agreement with experiments.

  18. Destabilized LiBH4-NaAlH4 Mixtures Doped with Titanium Based Catalysts

    DEFF Research Database (Denmark)

    Shi, Qing; Yu, Xuebin; Feidenhans'l, Robert

    2008-01-01

    We investigate the hydrogen storage properties of the mixed complex hydride LiBH4-NaAlH4 system, both undoped and doped with a TiCl3 additive. The mixed system is found to initiate a transformation to LiBH4-NaAlH4 after ball-milling, and the doped system is found to have a significant lower hydro......Na2AlH6 is found in NaAlH4 rich mixtures at higher temperature, and this phase is found to reversibly discharge and recharge hydrogen at 80 bar and 180 degrees C....

  19. Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues

    Directory of Open Access Journals (Sweden)

    Yutaka Moritomo

    2013-01-01

    Full Text Available Prussian blue analogies (PBAs are promising cathode materials for lithium ion (LIB and sodium ion (SIB secondary batteries, reflecting their covalent and nanoporous host structure. With use of synchrotron-radiation (SR X-ray source, we investigated the structural and electronic responses of the host framework of PBAs against Li+ and Na+ intercalation by means of the X-ray powder diffraction (XRD and X-ray absorption spectroscopy (XAS. The structural investigation reveals a robust nature of the host framework against Li+ and Na+ intercalation, which is advantageous for the stability and lifetime of the batteries. The spectroscopic investigation identifies the redox processes in respective plateaus in the discharge curves. We further compare these characteristics with those of the conventional cathode materials, such as, LiCoO2, LiFePO4, and LiMn2O4.

  20. Local structure analysis of NaNbO3 and AgNbO3 modified by Li substitution

    Science.gov (United States)

    Yoneda, Yasuhiro; Aoyagi, Rintaro; Fu, Desheng

    2016-10-01

    We analyzed the local structures of NaNbO3 and AgNbO3 by combining the X-ray absorption fine structure (XAFS) and atomic pair-distribution function (PDF) techniques. NaNbO3 is known to be an antiferroelectric material at room temperature. It also undergoes a diffuse phase transition, in which orthorhombic and rhombohedral phases coexist over a wide temperature range. We found a disordered feature in the nearest-neighbor bond distance corresponding to the Nb-O bonds. The disordered bond distribution disappeared when Li was substituted for Na. A similar disorder feature was found in AgNbO3. The disordered site can be specified by combining XAFS and PDF techniques. The sequences of disordered and complex phase transitions are attributable to the competition between the tolerance of the AO12 cage and the tilt of NbO6 octahedra.

  1. Transmission electron microscopy investigation of the LiMn2O4/NaxMnO2 interface as a model study of a Na-ion battery electrode

    Directory of Open Access Journals (Sweden)

    Mitsunori Kitta

    2016-11-01

    Full Text Available The phase transformation from spinel LiMn2O4 to layered rock-salt NaxMnO2 via Na insertion-extraction cycles is crucial for a LiMn2O4 positive electrode in a Na-ion battery. To reveal the atomic-scale mechanism of the structural conversion, we applied advanced techniques of analytical electron microscopy to a Na-containing LiMn2O4 specimen, formed by lithiation of a thin MnO wafer containing Na impurity. Scanning transmission electron microscopy (STEM-energy dispersive X-ray spectroscopy (EDX and electron energy loss spectroscopy (EELS analyses revealed that Na and Li are separately distributed in the two phases of the specimen, which are layered NaxMnO2 and spinel LiMn2O4 phases confirmed by annular bright field (ABF-STEM observation. The large difference in the ionic radii of Na and Li is considered to be the reason for the clear phase separation without atomic-scale mixture. EDX analysis showed that the layered NaxMnO2 phase with P3 structure exhibits local variations in Na composition, with the maximum value of x = 0.6. High-resolution transmission electron microscopy (HRTEM and ABF-STEM imaging clearly showed that an epitaxial LiMn2O4/NaxMnO2 interface is formed without any lattice dislocations, however, the interface has a low inclination angle due to the lattice mismatch, and local distortions are induced in the NaxMnO2 phase. The epitaxial lattice transition suggests smooth generation of a Na-inserted phase with a layered structure in a spinel LiMn2O4 crystal, which should contribute to the superiority of the LiMn2O4 electrode in a Na-ion battery.

  2. Two-stage crossed beam cooling with ⁶Li and ¹³³Cs atoms in microgravity.

    Science.gov (United States)

    Luan, Tian; Yao, Hepeng; Wang, Lu; Li, Chen; Yang, Shifeng; Chen, Xuzong; Ma, Zhaoyuan

    2015-05-04

    Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment. According to our simulations, the temperature of 6Li atoms can be cooled to T = 29.5 pK and T/TF = 0.59 with several thousand atoms, which propose a novel way to get ultracold fermion atoms with quantum degeneracy near pico-Kelvin.

  3. Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas

    Science.gov (United States)

    Coons, R. W.; Harilal, S. S.; Campos, D.; Hassanein, A.

    2010-09-01

    Tin and lithium plasmas emit efficiently in the in-band region (13.5 nm with 2% bandwidth) necessary for extreme ultraviolet (EUV) lithography. We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and Li plasmas under identical experimental conditions. Planar slabs of pure Sn and Li were irradiated with 1064 nm, 9 ns neodymium-doped yttrium aluminum garnet laser pulses for producing plasmas. A suite of diagnostics were used to analyze the emission and debris features, including optical emission spectroscopy (OES), a Faraday cup, an EUV pinhole camera, the absolute measurement of EUV conversion efficiency (CE), etc. Our results show that Sn plasmas provide a CE nearly twice that of Li. However, the kinetic energies of Sn ions are considerably higher, though with a lower flux. OES studies have showed that the kinetic energies of neutral species are substantially lower compared to that of the charged particle species.

  4. Atomic Layer Deposition of SnO2 on MXene for Li-Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2017-02-24

    In this report, we show that oxide battery anodes can be grown on two-dimensional titanium carbide sheets (MXenes) by atomic layer deposition. Using this approach, we have fabricated a composite SnO2/MXene anode for Li-ion battery applications. The SnO2/MXene anode exploits the high Li-ion capacity offered by SnO2, while maintaining the structural and mechanical integrity by the conductive MXene platform. The atomic layer deposition (ALD) conditions used to deposit SnO2 on MXene terminated with oxygen, fluorine, and hydroxyl-groups were found to be critical for preventing MXene degradation during ALD. We demonstrate that SnO2/MXene electrodes exhibit excellent electrochemical performance as Li-ion battery anodes, where conductive MXene sheets act to buffer the volume changes associated with lithiation and delithiation of SnO2. The cyclic performance of the anodes is further improved by depositing a very thin passivation layer of HfO2, in the same ALD reactor, on the SnO2/MXene anode. This is shown by high-resolution transmission electron microscopy to also improve the structural integrity of SnO2 anode during cycling. The HfO2 coated SnO2/MXene electrodes demonstrate a stable specific capacity of 843 mAh/g when used as Li-ion battery anodes.

  5. Atomic structure and electrochemical potential of Li[sub 1+x]V[sub 3]O[sub 8

    Energy Technology Data Exchange (ETDEWEB)

    Benedek, R.; Thackeray, M.M. (Chemical Technology Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)); Yang, L.H. (Condensed Matter Physics Division, Lawrence Livermore National Laboratory, University of California, Livermore, California 94551 (United States))

    1999-09-01

    The atomic configurations and total energies of both monoclinic phases of Li[sub 1+x]V[sub 3]O[sub 8], a candidate electrode material in rechargeable Li batteries, are calculated as a function of [ital x] within local-density-functional theory, using the plane-wave pseudopotential method. The predicted structures at the most standard compositions, 1+x=1.2 and 1+x=4, agree closely with x-ray-diffraction measurements of atomic structure. As Li is inserted into the low-Li compound, Li(2) is half filled and then S[sub t](3) is half filled, where the Li sites are labeled as in de Picciotto [ital et al.] This is followed by the onset of a two-phase region. Calculations of the electrochemical potential as a function of lithiation are in excellent overall agreement with experiment. thinsp [copyright] [ital 1999] [ital The American Physical Society

  6. Prawn Shell Derived Chitin Nanofiber Membranes as Advanced Sustainable Separators for Li/Na-Ion Batteries.

    Science.gov (United States)

    Zhang, Tian-Wen; Shen, Bao; Yao, Hong-Bin; Ma, Tao; Lu, Lei-Lei; Zhou, Fei; Yu, Shu-Hong

    2017-08-09

    Separators, necessary components to isolate cathodes and anodes in Li/Na-ion batteries, are consumed in large amounts per year; thus, their sustainability is a concerning issue for renewable energy storage systems. However, the eco-efficient and environmentally friendly fabrication of separators with a high mechanical strength, excellent thermal stability, and good electrolyte wettability is still challenging. Herein, we reported the fabrication of a new type of separators for Li/Na-ion batteries through the self-assembly of eco-friendly chitin nanofibers derived from prawn shells. We demonstrated that the pore size in the chitin nanofiber membrane (CNM) separator can be tuned by adjusting the amount of pore generation agent (sodium dihydrogen citrate) in the self-assembly process of chitin nanofibers. By optimizing the pore size in CNM separators, the electrochemical performance of the LiFePO4/Li half-cell with a CNM separator is comparable to that with a commercialized polypropylene (PP) separator. More attractively, the CNM separator showed a much better performance in the LiFePO4/Li cell at 120 °C and Na3V2(PO4)3/Na cell than the PP separator. The proposed fabrication of separators by using natural raw materials will play a significant contribution to the sustainable development of renewable energy storage systems.

  7. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells.

    Directory of Open Access Journals (Sweden)

    Igor A Vereninov

    Full Text Available Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1-10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential.

  8. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells.

    Science.gov (United States)

    Vereninov, Igor A; Yurinskaya, Valentina E; Model, Michael A; Vereninov, Alexey A

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1-10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential.

  9. Synthesis and optoelectrical properties of ABO{sub 2} (A = Li, Na; B = Y, Yb)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ying; Natsume, Yuuki; Sawaguchi, Naoya; Sasaki, Makoto, E-mail: sasaki@mmm.muroran-it.ac.jp [Muroran Institute of Technology (Japan)

    2011-10-29

    The transparent electrically conductive composite materials ABO{sub 2} (A = Li, Na; B = Y, Yb) were synthesized under high temperature solid-state reactions from A{sub 2}O and B{sub 2}O{sub 3}. The synthesized compounds have been investigated by Rietveld analysis, giving the crystal (monoclinic, c12/c1, a = 611.6 pm) for LiYO2, (monoclinic, p121/c1, a = 999 pm) for NaYO{sub 2}, (trigonal, R3-bar m, a = 335.2 pm) for NaYbO{sub 2}, (tetragonal, I4{sub 1}/amd, a = 438.6 pm) for LiYbO{sub 2}. Optical properties of the four compounds were studied by UV-vis spectral measurements, results show each of the compounds has an optical band gap more than 3.3 eV which is the standard for transparent property. Electrical conductivities of the four compounds have been studied by two probe direct current electrical conductivity measurements. The results show with increasing heating temperature, an obvious increase in electrical conductivity was observed for each compound. Also, the crystal energy band structure of each compound has been studied by using density functional theory code CASTEP. The results show the solid-state compounds of NaYO{sub 2}, NaYbO{sub 2} and LiYbO{sub 2} are semiconductors with direct band gaps, LiYO{sub 2} is a semiconductor with an indirect band gap.

  10. Diffraction of fast atoms and molecules during grazing scattering from a LiF(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Schueller, Andreas; Wethekam, Stephan; Winter, Helmut [Humboldt-Universitaet Berlin, Institut fuer Physik, Newtonstrasse 15, 12489 Berlin (Germany)

    2008-07-01

    Neutral atoms and molecules with energies from 300 eV up to some 10 keV are scattered under a grazing angle of incidence from a clean and flat LiF(001) surface. For scattering along low index directions in the surface plane (''axial surface channeling'') we observe defined patterns in the intensity distributions for scattered atoms which can be attributed to diffraction effects. The data can be understood by diffraction of fast atoms at the surface where the symmetry of the crystal lattice and of the interaction potential between atom and surface determine the diffraction pattern. The periodicity of the surface potential follows the geometrical arrangement of surface atoms and determines the angular position of diffraction peaks. The corrugation of the surface potential determines the characteristic intensity modulations of these diffraction peaks which can be observed also for fast and for heavy atoms, where diffraction based on the periodicity of the crystal lattice can not be resolved. Such so called ''supernumerary rainbows'' allows one to derive the corrugation of atomic interaction potentials in the eV regime with high accuracy.

  11. Atomic Sulfur Anchored on Silicene, Phosphorene, and Borophene for Excellent Cycle Performance of Li-S Batteries.

    Science.gov (United States)

    Li, Fen; Zhao, Jijun

    2017-12-13

    Dissolution of intermediate lithium polysulfides (LiPS) is an inevitable obstacle for the solid sulfur-based cathode in Li-S batteries. For the first time, herein, atomic sulfur is incorporated into silicene, phosphorene, and borophene to intrinsically eliminate the dissolution of LiPS. The small molecular sulfur species are anchored on the silicene surface with stronger Si-S interaction than the P-S and B-S ones. Meanwhile, a high atomic sulfur coverage (63.1 wt %) is achieved in silicene and concomitantly stabilizes the silicene layer. For the S3-covered silicene, a high theoretical capacity of 857 mA h g-1 is achieved with slight dissolution of LiPS originated from the loss of interior S atoms that are not directly bound with silicene surface. By realizing the elemental S2 coverage on silicene with large surface area, the Li+ ions can react fast with the S2 species, leading to a high theoretical capacity of 891 mA h g-1 without dissolution and migration of the intermediate LiPS. Most interestingly, the discharge products of atomic layer of lithium sulfides on silicene surface exhibit completely different behaviors from the traditional discharge products of solid Li2S, which can function as effective adsorption and activation sites for the conversion of LiPS from long chain to short chain by accelerated redox reaction. The present study gains some key insights into how the atomic sulfur contributes to the intrinsic shuttle inhibition and offers a feasible way to design the atomic sulfur-based cathode materials of Li-S batteries with better electrochemical performance.

  12. Nano-glass ceramic cathodes for Li+/Na+ mixed-ion batteries

    DEFF Research Database (Denmark)

    He, Wen; Zhang, Xudong; Jin, Chao

    2017-01-01

    reactions, and the influences of molar ratio of Fe/V on the structure and electrochemical properties of NGCs. This nanoscale design offers a new possibility improved the electrochemical performances of Li+/Na+ mixed-ion batteries (LNMIBs). The NGCs-3 electrode exhibits a higher discharge capacity (145 mAh g...

  13. Electrochemical behavior of boron in LiF-NaF-KF- melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakova, E.G.

    1996-01-01

    The electrochemical reduction of B(III) to B(0) in KBF4-LiF-NaF-KF melts has been studied by voltammetric and chronopotentiometric methods, Glassy carbon, Pt, and Ag were used as working electrode materials. Only in the case of Ag was the reduction not complicated by interaction between boron and...

  14. Terahertz reflection spectroscopy of aqueous NaCl and LiCl solutions

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Merbold, Hannes

    2010-01-01

    frequencies. Whereas both the real and imaginary part of the permittivity of NaCl increases with concentration,we see that the imaginary part of the permittivity of LiCl (related to the absorption)decreases with increasing salt concentration. We relate these changes to the behavior...

  15. Poling piezoelectric (K,Na,Li)NbO3-polydimethylsiloxane composites

    NARCIS (Netherlands)

    Deutz, D.B.; Mascarenhas, N.T.; Zwaag, S. van der; Groen, W.A.

    2017-01-01

    Composites of aligned (K,Na,Li)NbO3 (KNLN) piezoceramic particles in a PDMS polymer matrix are presented as promising materials for flexible sensors and energy harvesters. Their ease of processing is matched with a relatively high damage tolerance and piezoelectric performance at low dielectric

  16. Characterization of charge-exchange collisions between ultracold 6Li atoms and 40Ca+ ions

    Science.gov (United States)

    Saito, R.; Haze, S.; Sasakawa, M.; Nakai, R.; Raoult, M.; Da Silva, H.; Dulieu, O.; Mukaiyama, T.

    2017-03-01

    We investigate the energy dependence and the internal-state dependence of the charge-exchange collision cross sections in a mixture of 6Li atoms and 40Ca+ ions. Deliberately excited ion micromotion is used to control collision energy of atoms and ions. The energy dependence of the charge-exchange collision cross section obeys the Langevin model in the temperature range of the current experiment, and the measured magnitude of the cross section is correlated to the internal state of the 40Ca+ ions. Revealing the relationship between the charge-exchange collision cross sections and the interaction potentials is an important step toward the realization of the full quantum control of the chemical reactions at an ultralow-temperature regime.

  17. New hydrogen titanium phosphate sulfate electrodes for Li-ion and Na-ion batteries

    Science.gov (United States)

    Zhao, Ran; Mieritz, Daniel; Seo, Dong-Kyun; Chan, Candace K.

    2017-03-01

    NASICON-type materials with general formula AxM2(PO4)3 (A = Li or Na, M = Ti, V, and Fe) are promising candidates for Li- and Na-ion batteries due to their open three-dimensional framework structure. Here we report the electrochemical properties of hydrogen titanium phosphate sulfate, H0.4Ti2(PO4)2.4(SO4)0.6 (HTPS), a new mixed polyanion material with NASICON structure. Micron-sized HTPS aggregates with crystallite grain size of ca. 23 nm are synthesized using a sol-gel synthesis in an acidic medium. The properties of the as-synthesized HTPS, ball-milled HTPS, and samples prepared as carbon composites using an in-situ glucose decomposition reaction are investigated. A capacity of 148 mAh g-1 corresponding to insertion of 2 Li+ per formula unit is observed in the ball-milled HTPS over the potential window of 1.5-3.4 V vs. Li/Li+. Lithiation at ca. 2.8 and 2.5 V is determined to occur through filling of the M1 and M2 sites, respectively. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) are used characterize the HTPS before and after cycling. Evaluation of the HTPS in a Na-ion cell is also performed. A discharge capacity of 93 mAh g-1 with sodiation at ca. 2.9 and 2.2 V vs. Na/Na+ is observed.

  18. Theoretical prediction of the fundamental properties for the ternary Li{sub 2}PtH{sub 6} and Na{sub 2}PtH{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Ghebouli, M.A., E-mail: med.amineghebouli@yahoo.fr [Laboratory of materials and microelectronis systems (LMSE), University of Bachir Ibrahimi, Bordj-Bou-Arreridj 34000 (Algeria); Choutri, H. [Laboratory of materials and microelectronis systems (LMSE), University of Bachir Ibrahimi, Bordj-Bou-Arreridj 34000 (Algeria); Bouarissa, N. [Department of Physics, Faculty of Science, King Khalid University, Abha, PO Box 9004 (Saudi Arabia); Ghebouli, B. [Laboratory of Studies Surfaces and Interfaces of Solids Materials, Department of Physics, Faculty of Science, University Ferhat Abbas of Setif, Setif 19000 (Algeria); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University Ferhat Abbas of Setif, 19000 Setif (Algeria); Department of Physics and Astronomy, College of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Soyalp, F. [Yuzuncu Yil University, Faculty of Education, Department of Physics, Van 65080 (Turkey); Ucgun, E.; Ocak, H.Y. [Department of Physics, Faculty of Arts and Sciences, Dumlupinar University, Kutahya (Turkey)

    2012-12-15

    Li{sub 2}PtH{sub 6} and Na{sub 2}PtH{sub 6} are good candidate for hydrogen storage. The structural, elastic, electronic and optical properties of Li{sub 2}PtH{sub 6} and Na{sub 2}PtH{sub 6} compounds have been investigated using pseudo-potential plane-wave method based on the density functional theory. Computed lattice constant and H atom positional parameter at equilibrium agree well with the available experimental data. A quadratic pressure dependence of the elastic stiffness is found. A set of isotropic elastic parameters and related properties, namely bulk and shear moduli, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature are numerically estimated in the framework of the Voigt-Reuss-Hill approximation for Li{sub 2}PtH{sub 6} and Na{sub 2}PtH{sub 6} polycrystalline aggregate. The analyses of the band structure indicates that Li{sub 2}PtH{sub 6} and Na{sub 2}PtH{sub 6} are indirect gap semiconductors. The static dielectric constant and static refractive index are inversely proportional to the fundamental gap. Highlights: Black-Right-Pointing-Pointer We predict elastic moduli, energy gaps and optical parameters. Black-Right-Pointing-Pointer Electron effective mass is anisotropic. Black-Right-Pointing-Pointer Li{sub 2}PtH{sub 6} and Na{sub 2}PtH{sub 6} are indirect gap semiconductors. Black-Right-Pointing-Pointer The contribution to the optical spectra from main transitions are predicted.

  19. Imidazolidene carboxylate bound MBPh4 complexes (M = Li, Na) and their relevance in transcarboxylation reactions.

    Science.gov (United States)

    Van Ausdall, Bret R; Poth, Nils F; Kincaid, Virginia A; Arif, Atta M; Louie, Janis

    2011-10-21

    Combination of 1,3-bis(2,6-diisopropylphenyl)imidazolum-2-carboxylate (IPrCO(2)) with the Lewis acids MBPh(4), where M = Li or Na, provided two separate complexes. The crystal structures of these complexes revealed that coordination to NaBPh(4) yielded a dimeric species, yet coordination of IPrCO(2) with LiBPh(4) yielded a monomeric species. Combination of 1,3-bis(2,4,6-trimethylphenyl)imidazolum-2-carboxylate (IMesCO(2)) with LiBPh(4) also afforded a dimeric species that was similar in global structure to that of the IPrCO(2)+NaBPh(4) dimer. In all three cases, the cation of the organic salt was coordinated to the oxyanion of the zwitterionic carboxylate. Thermogravimetric analysis of the crystals demonstrated that decarboxylation occurred at lower temperatures than the decarboxylation temperature of the parent NHC·CO(2) (NHC = N-heterocyclic carbene). Kinetic analysis of the transcarboxylation of IPrCO(2) to acetophenone with NaBPh(4) to yield sodium benzoylacetate was performed. First-order dependences were observed for IPrCO(2) and acetophenone, whereas zero -order dependence was observed for NaBPh(4). Direct dicarboxylation was observed when I(t)BuCO(2) was added to MeCN in the absence of added MBPh(4).

  20. The electronic structure and optical properties of ABP 2O 7 ( A = Na, Li) double phosphates

    Science.gov (United States)

    Hizhnyi, Yu. A.; Oliynyk, A.; Gomenyuk, O.; Nedilko, S. G.; Nagornyi, P.; Bojko, R.; Bojko, V.

    2008-01-01

    Partial densities of states and reflection spectra of NaAlP 2O 7, KAlP 2O 7 and LiInP 2O 7 double phosphate crystals are calculated by the full-potential linear-augmented-plane-wave (FLAPW) method. Experimental reflection spectra of KAlP 2O 7, CsAlP 2O 7 and NaInP 2O 7 are measured in the 4-20 eV energy range. The values of band gaps, Eg, are found from a comparison of experiment and calculations to be 6.0 eV for NaAlP 2O 7 and KAlP 2O 7, and 4.6 eV for LiInP 2O 7.

  1. Band gap opening in silicene on MgBr2(0001) induced by Li and Na

    KAUST Repository

    Zhu, Jiajie

    2014-11-12

    Silicene consists of a monolayer of Si atoms in a buckled honeycomb structure and is expected to be well compatible with the current Si-based technology. However, the band gap is strongly influenced by the substrate. In this context, the structural and electronic properties of silicene on MgBr2(0001) modified by Li and Na are investigated by first-principles calculations. Charge transfer from silicene (substrate) to substrate (silicene) is found for substitutional doping (intercalation). As compared to a band gap of 0.01 eV on the pristine substrate, strongly enhanced band gaps of 0.65 eV (substitutional doping) and 0.24 eV (intercalation) are achieved. The band gap increases with the dopant concentration.

  2. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    Science.gov (United States)

    Dubreuil, B.; Harnafi, M.

    1989-07-01

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.

  3. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries.

    Science.gov (United States)

    Xu, Jiantie; Dou, Yuhai; Wei, Zengxi; Ma, Jianmin; Deng, Yonghong; Li, Yutao; Liu, Huakun; Dou, Shixue

    2017-10-01

    Lithium-ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium-ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated-graphite for LIBs, but also an effective strategy to develop diverse high-energy batteries for stationary energy storage in the future.

  4. Spatial Atomic Layer Deposition for Coating Flexible Porous Li-Ion Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, Katherine E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tenent, Robert C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yersak, Alexander S. [University of Colorado; Sharma, Kashish [University of Colorado; Wallas, Jasmine M. [University of Colorado; Dameron, Arrelaine A. [University of Colorado; Li, Xuemin [Colorado School of Mines; Yang, Yongan [Colorado School of Mines; George, Steven M. [University of Colorado

    2017-12-29

    Ultrathin atomic layer deposition (ALD) coatings on the electrodes of Li-ion batteries can enhance the capacity stability of the Li-ion batteries. To commercialize ALD for Li-ion battery production, spatial ALD is needed to decrease coating times and provide a coating process compatible with continuous roll-to-roll (R2R) processing. The porous electrodes of Li-ion batteries provide a special challenge because higher reactant exposures are needed for spatial ALD in porous substrates. This work utilized a modular rotating cylinder spatial ALD reactor operating at rotation speeds up to 200 revolutions/min (RPM) and substrate speeds up to 200 m/min. The conditions for spatial ALD were adjusted to coat flexible porous substrates. The reactor was initially used to characterize spatial Al2O3 and ZnO ALD on flat, flexible metalized polyethylene terephthalate foils. These studies showed that slower rotation speeds and spacers between the precursor module and the two adjacent pumping modules could significantly increase the reactant exposure. The modular rotating cylinder reactor was then used to coat flexible, model porous anodic aluminum oxide (AAO) membranes. The uniformity of the ZnO ALD coatings on the porous AAO membranes was dependent on the aspect ratio of the pores and the reactant exposures. Larger reactant exposures led to better uniformity in the pores with higher aspect ratios. The reactant exposures were increased by adding spacers between the precursor module and the two adjacent pumping modules. The modular rotating cylinder reactor was also employed for Al2O3 ALD on porous LiCoO2 (LCO) battery electrodes. Uniform Al coverages were obtained using spacers between the precursor module and the two adjacent pumping modules at rotation speeds of 25 and 50 RPM. The LCO electrodes had a thickness of ~49 um and pores with aspect ratios of ~12-25. Coin cells were then constructed using the ALD-coated LCO electrodes and were tested to determine their battery

  5. Hugoniot Models for Na and LiF from LEOS

    Energy Technology Data Exchange (ETDEWEB)

    Whitley, Heather D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Christine J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-12

    In this document, we provide the Hugoniot for sodium from two models: LEOS table L110 and Lynx table 110. We also provide the Hugoniot for lithium fluoride from LEOS (L2240) and Lynx (2240). The Hugoniot pressures are supplied for temperatures between 338.0 and 1.16×109 Kelvin and densities between 0.968 and 11.5 g/cc. These LEOS models were developed by the quotidian EOS methodology, which is a widely used and robust method for producing tabular EOS data. Tables list the model data for LEOS 110, Lynx 110, LEOS 2240, and Lynx 2240. The Lynx models follow the same methodology as the LEOS models; however, the Purgatorio average-atom DFT code was used to compute the electron thermal part of the EOS. The models for Lynx are only listed at high compression due to known issues with the Lynx library at lower pressures.

  6. Graphene/Na carboxymethyl cellulose composite for Li-ion batteries prepared by enhanced liquid exfoliation

    Energy Technology Data Exchange (ETDEWEB)

    Naboka, Olga, E-mail: olga.naboka@nrc-cnrc.gc.ca [Energy, Mining and Environment Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Automotive and Surface Transportation Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Yim, Chae-Ho, E-mail: chae-ho.yim@nrc-cnrc.gc.ca [Energy, Mining and Environment Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Automotive and Surface Transportation Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Abu-Lebdeh, Yaser, E-mail: yaser.abu-lebdeh@nrc-cnrc.gc.ca [Energy, Mining and Environment Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Automotive and Surface Transportation Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada)

    2016-11-15

    Highlights: • Concentrated graphene dispersions were prepared using microwave enhanced exfoliation. • Microwave heating increased graphene concentration at least by 34%. • Graphene concentration in its dispersions reached 4.29 mg/ml. • Graphene/NaCMC composite with 38.65 wt% graphene content was prepared. • Graphene/NaCMC composite increased Si capacity by 30%. - Abstract: In the present work, we report a sonication-assisted exfoliation method of graphene preparation enhanced by the use of microwave heating and “green” exfoliant – sodium carboxymethyl cellulose (NaCMC). Introducing microwave heating during sonication of graphite dispersions in aqueous solutions of NaCMC results in the formation of graphene dispersions with concentration as high as 4.29 mg/ml. It is found that drying the dispersions results in the formation of graphene/NaCMC composites with graphene content up to 38.65 wt%. A study of the composite with High Resolution Transmission Electron Microscopy and Raman Spectroscopy reveals the formation of few-layer graphene approximately below five layers. The as-prepared graphene/NaCMC composite shows higher capacities than commercial graphite in Li-ion half cells reaching 397 mAh/g{sub (graphene)}. Also, when the composite is used with a nanosilicon (33 wt%) in a Li-ion half cell high initial reversible capacities of 1611 mAh/g{sub (Si)} with good cyclability and rate capability have been reached.

  7. Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries

    Science.gov (United States)

    Luo, Chao

    To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit

  8. Adolescent erythrocytes: influence of high density lipoproteins-cholesterol (HDL-c) plasmatic levels on Na+/Li+ exchange kinetics.

    Science.gov (United States)

    Serrani, Raquel; Taborda, Diego; DeMaria, Ines; Corchs, Juan

    2003-01-01

    An inverse relationship between HDL-c plasmatic levels and Li+ flux (Na+-Li+ exchange mediated) has been reported in normotensive individuals with hypertensive ancestors as well as in essential hypertensive subjects. This lipoprotein reaction with plasmatic membrane components induces modifications in membrane transport mechanisms as well as in cellular enzymes. In this paper we present data on Li+ flux (Na+-Li+ exchange mediated) in red blood cells from normotensive individuals without hypertensive ancestors. Kinetic analysis of Li+ efflux as a function of Na+(extracell) concentration was carried out. Vmax and Km values were determined. HDL-c plasmatic levels were also determined. Vmax showed a significant inverse correlation with HDL-c levels. No significant correlation of Km values with HDL-c levels was observed. The data presented support previous data showing that variable Vmax is sensitive to cellular environmental factors. Otherwise the Km variable not influenced by these factors is sensitive to hereditary influences.

  9. Atomic Layer Deposition of the Solid Electrolyte Garnet Li7La3Zr2O12

    Energy Technology Data Exchange (ETDEWEB)

    Kazyak, Eric; Chen, Kuan-Hung; Wood, Kevin N.; Davis, Andrew L.; Thompson, Travis; Bielinski, Ashley R.; Sanchez, Adrian; Wang, Xiang; Wang, Chongmin; Sakamoto, Jeff S.; Dasgupta, Neil P.

    2017-04-25

    Lithium solid electrolytes are a promising platform for achieving high energy density, long-lasting, and safe rechargeable batteries, which could have widespread societal impact. In particular, the ceramic oxide garnet Li7La3Zr2O12 (LLZO) has been shown to be a promising electrolyte due to its stability and high ionic conductivity. Two major challenges for commercialization are manufacturing of thin layers and creating stable, low-impedance, interfaces with both anode and cathode materials. Atomic Layer Deposition (ALD) has recently been shown as a potential method for depositing both solid electrolytes and interfacial layers to improve the stability and performance at electrode-electrolyte interfaces in battery systems. Herein we present the first reported ALD process for LLZO, demonstrating the ability to tune composition within the amorphous film and anneal to achieve the desired cubic garnet phase. Formation of the cubic phase was observed at temperatures as low as 555°C, significantly lower than is required for bulk processing. Additionally, challenges associated with achieving a dense garnet phase due to substrate reactivity, morphology changes and Li loss under the necessary high temperature annealing are quantified via in situ synchrotron diffraction.

  10. Theoretical Study on Cyclopeptides as the Nanocarriers for Li+, Na+, K+ and F−, Cl−, Br−

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2015-01-01

    Full Text Available The interaction process between a series of cyclopeptide compounds cyclo(Glyn  (n=4,6,8 and monovalent ions (Li+, Na+, K+, F−, Cl−, and Br− was studied using theoretical calculation. The mechanism of combination between the cyclo(Glyn and ions was discussed through binding energy, Mulliken electron population, and hydrogen bond. It was found that for the same cyclopeptide the binding energy has the order of cyclo(Glyn–Li+ > cyclo(Glyn–Na+ > cyclo(Glyn–K+ and cyclo(Glyn–F− > cyclo(Glyn–Br− > cyclo(Glyn–Cl−. The binding energy manifests the stable complex of cyclo(Glyn and ions can be formed, and the different energy shows the potential use of cyclo(Glyn as nanocarriers for metal ions or the extractant for ions separation.

  11. Franck-Condon factors for photodetachment from LiO(-), NaO(-), and KO(-)

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Pettersson, Lars G. M.

    1993-09-01

    The 1Sigma(+), 3Sigma(+), 1Pi, and 3Pi states of the negative ions and the 2Pi and 2Sigma(+) states of the neutral alkali oxides are studied at high levels of theory. The calculations show that ground state of the negative ions changes from 3Pi for LiO(-) to 1Sigma(+) for KO(-). Although the calculations give a 3Pi ground state for NaO(-), we cannot rule out the possibility that the very low-lying 1Sigma(+) state is the true ground state. The Franck-Condon factors for photodetachment of an electron from the 1Sigma(+) and/or 3Pi states of the negative ion are presented to help interpret photodetachment experiments. Our best results for the A 2Sigma(+) - X 2Pi separations in LiO and NaO are 2496 and 2061/cm, which are in excellent agreement with that deduced (2516 and 2018/cm) from experiment.

  12. Franck-Condon factors for photodetachment from LiO(-), NaO(-), and KO(-)

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Pettersson, Lars G. M.

    1993-01-01

    The 1Sigma(+), 3Sigma(+), 1Pi, and 3Pi states of the negative ions and the 2Pi and 2Sigma(+) states of the neutral alkali oxides are studied at high levels of theory. The calculations show that ground state of the negative ions changes from 3Pi for LiO(-) to 1Sigma(+) for KO(-). Although the calculations give a 3Pi ground state for NaO(-), we cannot rule out the possibility that the very low-lying 1Sigma(+) state is the true ground state. The Franck-Condon factors for photodetachment of an electron from the 1Sigma(+) and/or 3Pi states of the negative ion are presented to help interpret photodetachment experiments. Our best results for the A 2Sigma(+) - X 2Pi separations in LiO and NaO are 2496 and 2061/cm, which are in excellent agreement with that deduced (2516 and 2018/cm) from experiment.

  13. Dependence of shake probability on nuclear charge in Li-, Na- and K-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Kupliauskiene, A. [Vilnius University Institute of Theoretical Physics and Astronomy, A. Gostauto 12, LT-01108 Vilnius (Lithuania)]. E-mail: akupl@itpa.lt; Glemza, K. [Vilnius University, Saul e-dot tekio 9, LT-10222 Vilnius (Lithuania)

    2005-07-01

    In sudden perturbation approximation, the probability of the shake-up process accompanying inner-shell ionization is calculated for the isoelectronic sequences of Li-, Na- and K-like ions in the ground and excited np and nd states. Numerical solutions of Hartree-Fock equations and hydrogen-like radial orbitals are used. Very large differences between the results of both approximations for all ions and strong dependences on ion charge are obtained at the beginning of the isoelectronic sequences.

  14. L x ray spectrometry in vivo with a Si(Li)-NaI(Tl)

    Science.gov (United States)

    Strauss, M. G.; Keane, A. T.; Reinke, S. A.; Pehl, R. H.

    A new Si(Li)-NaI(Tl) spectrometer was developed for measurements of UL x rays from Pu-239 in lungs of exposed persons. The spectrometer consists of six large, cooled Si(Li) detectors mounted on edge to provide two windows, one facing the lungs and the other a NaI(Tl) scintillator for anticoincidence background suppression. The sensitive area of the array is 54.5 sq cm and the FWHM resolution at 17 keV is 390 eV. The ambient background count rate per minute in the energy band of interest of the Si(Li)-NaI(Tl) detector is 0.13. This is less than 1/4 of that of an equal area HPGe detector and 1/15 of an equal area phoswich. The sensitivity of this detector for Pu-239 approaches the maximum achievable, where the minimum detectable level is fundamentally limited by the lung geometry (signal) and the natural radioactivity in the human body (background). With this detector one can measure for the first time Pu in human lungs directly even in the presence of Am-241. A spectrum of ZrK x rays from (92m)Nb (simulating Pu), obtained from lungs of a human subject in vivo, demonstrate the detector performance.

  15. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.

    Science.gov (United States)

    Song, Zhiping; Qian, Yumin; Zhang, Tao; Otani, Minoru; Zhou, Haoshen

    2015-09-01

    In concern of resource sustainability and environmental friendliness, organic electrode materials for rechargeable batteries have attracted increasing attentions in recent years. However, for many researchers, the primary impression on organic cathode materials is the poor cycling stability and low energy density, mainly due to the unfavorable dissolution and low redox potential, respectively. Herein, a novel polymer cathode material, namely poly(benzoquinonyl sulfide) (PBQS) is reported, for either rechargeable Li or Na battery. Remarkably, PBQS shows a high energy density of 734 W h kg-1 (2.67 V × 275 mA h g-1) in Li battery, or 557 W h kg-1 (2.08 V × 268 mA h g-1) in Na battery, which exceeds those of most inorganic Li or Na intercalation cathodes. Moreover, PBQS also demonstrates excellent long-term cycling stability (1000 cycles, 86%) and superior rate capability (5000 mA g-1, 72%) in Li battery. Besides the exciting battery performance, investigations on the structure-property relationship between benzoquinone (BQ) and PBQS, and electrochemical behavior difference between Li-PBQS battery and Na-PBQS battery, also provide significant insights into developing better Li-organic and Na-organic batteries beyond conventional Li-ion batteries.

  16. Removal of SO42− from Li2CO3 by Recrystallization in Na2CO3 Solution

    Directory of Open Access Journals (Sweden)

    Wei Cai

    2018-01-01

    Full Text Available Li2CO3 with high purity is an important raw material for the fabrication of lithium rechargeable batteries. This paper reports a facile recrystallization way to produce Li2CO3 with high purity from commercial Li2CO3 containing 0.8 wt % of SO42− by the treatment of the commercial Li2CO3 in Na2CO3 solution. The increase of temperature from 30 °C to 90 °C favored the recrystallization of Li2CO3 in Na2CO3 solution and promoted the removal of SO42− adsorbed or doped on/in the commercial Li2CO3. The content of SO42− in Li2CO3 decreased to 0.08 wt % after the treatment of the commercial Li2CO3 in 1.0 mol·L−1 Na2CO3 solution at 90 °C for 10.0 h.

  17. Native defects affecting the Li atom distribution tune the optical emission of ZnO:Li epitaxial thin film

    Science.gov (United States)

    Sahu, R.; Dileep, K.; Loukya, B.; Datta, R.

    2014-02-01

    It is found that the oxygen vacancy (VO) defect concentration affecting the separation between individual species in LiZn-Lii complex influences the optical emission property of Li0.06Zn0.94O epitaxial thin film grown by pulsed laser deposition. The film grown under low oxygen partial pressure (n-type conductivity)/higher partial pressure (resistive-type) has broad emission at ˜2.99 eV/˜2.1 eV and a narrower emission at 3.63 eV/3.56 eV, respectively. First principle based mBJLDA electronic structure calculation suggests that the emission at 2.99 eV is due to the LiZn-Lii pair complex and the emission at 2.1 eV is when the component species are away from each other.

  18. Emergence of superconductivity in (NH3)yMxMoSe2 (M: Li, Na and K)

    Science.gov (United States)

    Miao, Xiao; Nishiyama, Saki; Zheng, Lu; Goto, Hidenori; Eguchi, Ritsuko; Ota, Hiromi; Kambe, Takashi; Terashima, Kensei; Yokoya, Takayoshi; Nguyen, Huyen T. L.; Kagayama, Tomoko; Hirao, Naohisa; Ohishi, Yasuo; Ishii, Hirofumi; Liao, Yen-Fa; Kubozono, Yoshihiro

    2016-01-01

    We report syntheses of new superconducting metal-doped MoSe2 materials (MxMoSe2). The superconducting MxMoSe2 samples were prepared using a liquid NH3 technique, and can be represented as ‘(NH3)yMxMoSe2’. The Tcs of these materials were approximately 5.0 K, independent of x and the specific metal atom. X-ray diffraction patterns of (NH3)yNaxMoSe2 were recorded using polycrystalline powders. An increase in lattice constant c showed that the Na atom was intercalated between MoSe2 layers. The x-independence of c was observed in (NH3)yNaxMoSe2, indicating the formation of a stoichiometric compound in the entire x range, which is consistent with the x-independence of Tc. A metallic edge of the Fermi level was observed in the photoemission spectrum at 30 K, demonstrating its metallic character in the normal state. Doping of MoSe2 with Li and K also yielded superconductivity. Thus, MoSe2 is a promising material for designing new superconductors, as are other transition metal dichalcogenides. PMID:27404919

  19. The use Na, Li, K cations for modification of ZSM-5 zewolite to control hydrocarbon cold-start emission

    Energy Technology Data Exchange (ETDEWEB)

    Golubeva V.; Rohatgi U.; Korableva, A.; Anischenko, O.; Kustov, L.; Nissenbaum, V; Viola, M.B.

    2012-08-29

    This paper addresses the problem of controlling hydrocarbon emissions from cold-start of engines by investigating the adsorbents which could adsorb the hydrocarbons at cold temperatures and hold them to 250-300 ?. The materials, that has been studied, are based on the modification of ZSM-5 (SiO{sub 2}/Al{sub 2}O{sub 3} = 35) zeolite with Li, K, Na cations. It has been shown that the introduction of Li, Na and K in an amount that is equivalent to the content of Al in zeolite results in occurrence of toluene temperature desorption peaks at high-temperatures. The toluene temperature desorption curves for 5%Li-ZSM-5 and 2.3%Na-ZSM-5 zeolites are identical and have peak toluene desorption rate between 200 to 400 ?. Upon analysis of toluene adsorption isotherms for 2.3%Na-ZSM-5 and 5%Li-ZSM-5, it was concluded that the toluene diffusion inside of the modified zeolites channels is extremely slow and the sorption capacity of 2.3%Na-ZSM-5 is higher than with 5%Li-ZSM-5. The 2.3%Na-ZSM-5 didn't change toluene temperature programmed desorption (TPD) rate of curve after the treatment in environment with 10% ?{sub 2}? at 750-800 ? for about 28 h. The 2.3%Na-ZSM-5 zeolite is very promising as adsorbent to control the cold-start hydrocarbon emissions.

  20. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    KAUST Repository

    Khushaim, Muna

    2015-05-19

    The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T 1 Al 2 CuLi / θ ′ Al 2 Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al 2 Cu equilibrium composition. Additionally, the Li distribution inside the θ ′ platelets was found to equal the same value as in the matrix. The equally thin T 1 platelet deviates from the formula (Al 2 CuLi) in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al 2 CuLi) stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T 1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T 1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  1. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Muna Khushaim

    2015-01-01

    Full Text Available The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T1Al2CuLi/θ′Al2Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al2Cu equilibrium composition. Additionally, the Li distribution inside the θ′ platelets was found to equal the same value as in the matrix. The equally thin T1 platelet deviates from the formula (Al2CuLi in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al2CuLi stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  2. Ferroelectric response of Na0.9Li0.1NbO3 at room temperature

    Science.gov (United States)

    Isaza-Zapata, V.; Arias, A.; Maya, C.; Martínez, W.; Agudelo, A.; Álvarez, B.; Gómez, A.; Izquierdo, J. L.

    2017-06-01

    Polycrystalline samples of the dielectric, ferroelectric Na0.9Li0.1NbO3 were synthesized by means of solid-state reaction using different ramps of temperature. High purity precursors Nb2O5, Na2CO3 and Li2CO3 were stoichiometricaly mixed and heated at 1373 K for 6 hours in air atmosphere. The Na0.9Li0.1NbO3 samples were characterized by means of diffraction of X-rays using a Panalytical X’Pert Pro diffractometer. The obtained diffractograms were refined by Rietveld procedure using the software Maud. The results show that Na0.9Li0.1NbO3 crystallizes in an orthorhombic structure (space group Pbma). The refined diffraction patterns also suggest a possible replacement of the Na ions by Li ions in the parent, ferroelectric NaNbO3 compound. For electrical characterization of the samples, electrical polarization curves were measured using a Radiant Technologies RT66A test system for ferroelectric materials. The polarization versus applied electrical dependence shows a hysteretic behavior verifying the ferroelectric character of the material. A maxima polarization of 130 µC/m2 is obtained at room temperature.

  3. Dependence of shake probability on nuclear charge in Li-, Na- and K-like ions

    OpenAIRE

    Kupliauskiene, A.; Glemza, K.

    2005-01-01

    In sudden perturbation approximation, the probability of the shake-up process accompanying inner-shell ionization is calculated for the isoelectronic sequences of Li-, Na- and K-like ions in the ground and excited $n$p and $n$d states. Numerical solutions of Hartree-Fock equations and hydrogen-like radial orbitals are used. Very large differences between the results of both approximations for all ions and strong dependences on ion charge are obtained at the beginning of the isoelectronic sequ...

  4. Ab initio molecular dynamics study of the hydration of Li(+), Na(+) and K(+) in a montmorillonite model. Influence of isomorphic substitution.

    Science.gov (United States)

    Mignon, Pierre; Ugliengo, Piero; Sodupe, Mariona; Hernandez, Eduardo R

    2010-01-21

    The present work reports ab initio molecular dynamics simulations, based on density functional theory using the PBE functional, of Li(+)- Na(+)- and K(+)-montmorillonites, considering three types of isomorphic substitutions in the montmorillonite layer: tetrahedral (T(sub)), octahedral (O(sub)) and both (OT(sub)). These simulations allow us to evaluate the effect of each type of substitution on the inner- outer-sphere complex formation of the alkali cations. It is observed that, for the three kinds of substituted montmorillonites, K(+) remains bound to the surface confirming its role as swelling inhibitor. In contrast, Li(+) tends to hydrate and coordinate to 4 water molecules in all cases, except for OT(sub), for which one of the two Li(+) cations remains bound to the oxygens close to the substituted tetrahedral site. Finally, Na(+) presents an intermediate behaviour, binding to the surface in T(sub) montmorillonite but being hydrated in O(sub). These simulations show that the hydration/adsorption behaviour of alkali cations in the swelling process of montmorillonite depends on the affinity of the cation for water and the surface, as well as on the type of substitution that controls the negative charge on surface oxygen atoms.

  5. Morphotropy and temperature-driven polymorphism in A2Th(AsO4)2 (A = Li, Na, K, Rb, Cs) series.

    Science.gov (United States)

    Yu, Na; Klepov, Vladislav V; Modolo, Giuseppe; Bosbach, Dirk; Suleimanov, Evgeny V; Gesing, Thorsten M; Robben, Lars; Alekseev, Evgeny V

    2014-10-20

    A new alkaline thorium arsenate family was obtained and systematically investigated. The structures of A2Th(AsO4)2 (A = Li, Na, K, Rb, Cs) were determined from single crystal X-ray diffraction data. Li2Th(AsO4)2 and either isostructural K2Th(AsO4)2 and Rb2Th(AsO4)2 crystallize in the monoclinic crystal system. Na2Th(AsO4)2 and Cs2Th(AsO4)2 crystallize in the orthorhombic and tetragonal crystal systems, respectively. Li2Th(AsO4)2 consists of [Th(AsO4)2](2-) layers with Li atoms in the interlayer space. The rest of the compounds are based on 3D frameworks. Differences in local environments of ThO8 coordination polyhedra are described in relation to the symmetry. Despite different local environments of ThO8 coordination polyhedra and different structural symmetry, underlying nets of A2Th(AsO4)2 (A = Na, K, Rb, Cs) were shown to be the same. Single-crystal and powder Raman spectra were measured, and bands are assigned. DSC measurements showed phase transitions in K2Th(AsO4)2 and Rb2Th(AsO4)2, which were studied using high-temperature powder X-ray diffraction (HT-PXRD). The data of HT-PXRD demonstrates two high-temperature polymorphic modification of K2Th(AsO4)2 and only one for the isotypic Rb2Th(AsO4)2. The phase transitions in both K and Rb phases are reversible.

  6. Improving the electrochemical performances of Li-rich Li1.20Ni0.13Co0.13Mn0.54O2 through a cooperative doping of Na+ and PO43- with Na3PO4

    Science.gov (United States)

    Liu, Yi; Ning, De; Zheng, Lirong; Zhang, Qinghua; Gu, Lin; Gao, Rui; Zhang, Jicheng; Franz, Alexandra; Schumacher, Gerhard; Liu, Xiangfeng

    2018-01-01

    Li-rich layered oxide cathodes suffer from poor rate capability, voltage decay and inferior cycling stability. Herein, we propose a novel synergistic strategy to improve the electrochemical performances of Li-rich Li1.20Ni0.13Co0.13Mn0.54O2 by the co-doping of Na+ and PO43-. The co-doping of Na+ for Li and PO43- for Mn is simultaneously achieved using Na3PO4 as a dopant. The co-doping of Na+ and PO43- not only enhances the high-rate performance (106.4 mAhg-1@10C) and capacity retention (93.8%@1C@100 cycles) but also mitigates the voltage decay owing to the synergistic effect of Na+ and PO43- co-doping. The synergistic mechanism is unraveled based on neutron diffraction, aberration-corrected scanning transmission electron microscope, X-ray photoelectron spectroscopy, ex-situ X-ray absorption spectra, ex-situ X-ray diffraction, electrochemical impedance spectroscopy and electrochemical measurements. The co-doping of Na+ and PO43- enlarges the interlayer spacing and suppresses Li/Ni mixing which increases Li+ diffusivity and enhances the rate capability. Meanwhile, the co-doping of Na+ and PO43- shrinks the thickness of the slabs, weakens the TM-O covalency and alleviates the volume change in the charge/discharge process which improves the layered structure stability and the cycling performances. This study presents some new insights into designing high performance cathode materials through a cooperative modulation of different crystal sites doping.

  7. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries.

    Science.gov (United States)

    Zhang, Xiaoming; Hu, Junping; Cheng, Yingchun; Yang, Hui Ying; Yao, Yugui; Yang, Shengyuan A

    2016-08-18

    "Two-dimensional (2D) materials as electrodes" is believed to be the trend for future Li-ion and Na-ion battery technologies. Here, by using first-principles methods, we predict that the recently reported borophene (2D boron sheets) can serve as an ideal electrode material with high electrochemical performance for both Li-ion and Na-ion batteries. The calculations are performed on two experimentally stable borophene structures, namely β12 and χ3 structures. The optimized Li and Na adsorption sites are identified, and the host materials are found to maintain good electric conductivity before and after adsorption. Besides advantages including small diffusion barriers and low average open-circuit voltages, most remarkably, the storage capacity can be as high as 1984 mA h g(-1) in β12 borophene and 1240 mA h g(-1) in χ3 borophene for both Li and Na, which are several times higher than the commercial graphite electrode and are the highest among all the 2D materials discovered to date. Our results highly support that borophenes can be appealing anode materials for both Li-ion and Na-ion batteries with extremely high power density.

  8. Superhalogen properties of hetero-binuclear anions MM‧F4- and MM″F5- (M = Li, Na, M‧ = Be, Mg, Ca; M″ = B, Al, Ga)

    Science.gov (United States)

    Yang, Hui; Li, Ying; He, Hui-Min; Tong, Jing; Wu, Di; Li, Zhi-Ru

    2017-09-01

    Hetero-binuclear superhalogen anions, namely MM‧F4- and MM″F5- (M = Li, Na; M‧ = Be, Mg, Ca; M″ = B, Al, Ga), have been theoretically characterized at the MP2(FULL)/6-311+G(3df) level. It is found that two central atoms can be linked by at most three fluorine ligands. The large vertical electron detachment energies (VDEs, 7.449-8.978 eV) verify the superhalogen identity of these anions. The VDEs of both MM‧F4- and MM″F5- decrease when the atomic size of M increases whereas increase with the size of M‧ and M″. Besides, the extra electron distribution also has effect on the VDEs of such superhalogen anions.

  9. Red cell Na+/Li+ countertransport in non-insulin-dependent diabetics with diabetic nephropathy

    DEFF Research Database (Denmark)

    Gall, M A; Rossing, P; Jensen, J S

    1991-01-01

    -matched healthy control subjects. Na+/Li+ countertransport was identical in patients with and without diabetic nephropathy, 0.43 (0.24 to 0.92) versus 0.44 (0.20 to 0.83) mmol/(liter cells x hr), but was elevated compared to control subjects, 0.32 (0.09 to 0.73; P less than 0.05). Arterial blood pressure...... was elevated in patients with nephropathy (162/92 +/- 21/9 mm Hg) compared to normoalbuminuric patients (132/82 +/- 15/7) and control subjects (133/83 +/- 14/7 mm Hg; P less than 0.001). Our study does not support the hypothesis that the risk of diabetic nephropathy in non-insulin-dependent diabetes......Genetic predisposition to essential hypertension, as indicated by increased maximal velocity of Na+/Li+ countertransport in red cells, has been suggested as a marker for the risk of developing diabetic nephropathy. To evaluate the validity of this concept in non-insulin-dependent diabetics, we...

  10. Enhanced Li- and Na-storage in Sb-Graphene nanocomposite anodes

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Yeongjae; Shim, Hyun-Woo; Seo, Seung-Deok [School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Dar, Mushtaq Ahmad [Center of Excellence for Research in Engineering Materials, Advanced Manufacturing Institute, King Saud University,Riyadh 11421 (Saudi Arabia); Kim, Dong-Wan, E-mail: dongwan1@empal.com [School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2016-04-15

    Highlights: • Antimony-graphene nanocomposite (Sb-GNP) was prepared by a wet-chemical approach. • Sb-GNP exhibits the well-dispersed Sb nanoparticles anchored on the graphenes. • Sb-GNP shows highly reversible capacities in both Li- and Na-storage. - Abstract: Antimony-graphene nanocomposite (Sb-GNP) was prepared from commercially available graphene nanoplatelets (GNPs) by a simple wet-chemical route at room temperature, and systematically investigated as an anode material for both lithium- and sodium-ion batteries (LIBs and NIBs). The microstructural features of Sb-GNP, and of pure Sb nanoparticles prepared without addition of GNPs, were characterized using X-ray diffraction, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. The successful formation of a nanocomposite structure was observed for Sb-GNP; the Sb nanoparticles are well dispersed and anchored on graphene nanoplatelets without significant aggregation of Sb nanoparticles, in contrast to the pure Sb nanoparticles. Furthermore, galvanostatic studies revealed that Sb-GNP displays better Li- and Na-storage performance than the pure Sb nanoparticles when utilized as an anode material. The enhanced electrochemical performance can be attributed to the effects of nanocomposite formation with GNPs.

  11. Functionalized NbS2 as cathode for Li- and Na-ion batteries

    KAUST Repository

    Zhu, Jiajie

    2017-07-27

    Cathodes of Li- and Na-ion batteries usually have capacities <200 mAh/g, significantly less than the anodes. Two-dimensional materials can overcome this limitation but suffer from low voltages. In this context, we investigate NbS2 functionalized by O, F, and Cl as a cathode material by first-principles calculations, considering both the conversion and intercalation mechanisms. NbS2O2 shows a higher voltage than NbS2 for both Li and Na, but the voltage decreases drastically for increasing ion coverage. Even higher voltages and favorable dependences on the ion coverage are achieved by F and Cl functionalization. We obtain NbS2F2 and NbS2Cl2 energy densities of 1223 mW h/g and 823 mW h/g for lithiation and 1086 mW h/g and 835 mW h/g for sodiation, respectively. These values are higher than those for most state-of-the-art cathode materials (∼600 mW h/g). In addition, low diffusion barriers enable high cycling rates.

  12. β-Li0.37Na0.63Fe(MoO42

    Directory of Open Access Journals (Sweden)

    Amira Souilem

    2014-02-01

    Full Text Available The title compound, lithium/sodium iron(III bis[orthomolybdate(VI], was obtained by a solid-state reaction. The main structure units are an FeO6 octahedron, a distorted MoO6 octahedron and an MoO4 tetrahedron sharing corners. The crystal structure is composed of infinite double MoFeO11 chains along the b-axis direction linked by corner-sharing to MoO4 tetrahedra so as to form Fe2Mo3O19 ribbons. The cohesion between ribbons via mixed Mo—O—Fe bridges leads to layers arranged parallel to the bc plane. Adjacent layers are linked by corners shared between MoO4 tetrahedra of one layer and FeO6 octahedra of the other layer. The Na+ and Li+ ions partially occupy the same general position, with a site-occupancy ratio of 0.631 (9:0.369 (1. A comparison is made with AFe(MoO42 (A = Li, Na, K and Cs structures.

  13. Abnormal effects of cations (Li+, Na+, and K+) on photoelectrochemical and electrocatalytic water splitting.

    Science.gov (United States)

    Ding, Chunmei; Zhou, Xin; Shi, Jingying; Yan, Pengli; Wang, Zhiliang; Liu, Guiji; Li, Can

    2015-02-26

    The electrode-electrolyte interface chemistry is highly important for photoelectrochemical (PEC) and electrocatalytic water splitting where cations in the electrolyte are often crucial. However, the roles of cations in an electrolyte are much debated and not well-understood. This work reports that the PEC and electrocatalytic water oxidation (WO) activities in basic electrolytes with different cations follow an unexpected trend (Li(+) > K(+) > Na(+)) especially for long-term reaction. Such an abnormal order of activity is found to be the balance effect of two factors: the distinct extents of the weakening of O-H bond on electrode surface after interacting with cations in different electrolytes and the different rates of oxygen reduction reaction (ORR) which turns out to be dominant. Li(+) not only brings the most significant decrease of O-H bond strength but also is most effective for avoiding back reaction, while Na(+) shows the most detrimental effect on WO because of ORR. Our results provide important insight into the roles of cations in WO and demonstrate a new strategy of tailoring the electrode-electrolyte interface via judicious choice of cations in electrolyte for more efficient PEC and electrocatalytic water splitting.

  14. High-temperature nuclear magnetic resonance study of phase transition kinetics in LiNaSO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shakhovoy, R. A., E-mail: roman.shakhovoy@cnrs-orleans.fr, E-mail: r.a.shakhovoy@gmail.com; Sarou-Kanian, V.; Rakhmatullin, A.; Véron, E.; Bessada, C. [CNRS, CEMHTI UPR 3079, Univ. Orléans, F-45071 Orléans (France)

    2015-12-28

    A new high-temperature NMR technique for measurements of the phase transition kinetics in solids has been developed. The technique allows measuring the time evolution of the volume of the appearing phase at controlled cooling rates. Developed method was applied to study the phase transition kinetics in the superionic conductor LiNaSO{sub 4}. It was revealed that the phase transition in LiNaSO{sub 4} is governed by the diffusion-controlled growth of nuclei (“germs”). An effect of the crystallite rearrangement in the LiNaSO{sub 4} powder after cooling through the phase transition was also revealed. This effect was studied by means of high-temperature XRD and NMR.

  15. Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions.

    Science.gov (United States)

    Cheng, Qian; Sui, Jiehe; Cai, Wei

    2012-02-07

    β-NaGdF(4) : Yb(3+)/Er(3+) nanoparticles (NPs) codoped with Li(+) ions were prepared for the first time via a thermal decomposition reaction of trifluoroacetates in oleylamine. The influence of site occupancy of Li(+) on the upconversion emission of β-NaGdF(4) : Yb(3+)/Er(3+) NPs was investigated in detail. The upconversion emission intensity was significantly enhanced by introducing different concentrations of Li(+) ions. In contrast to lithium-free β-NaGdF(4) : Yb(3+)/Er(3+), the green and red UC emission intensities of the NPs codoped with 7 mol% Li(+) ions were enhanced by about 47 and 23 times, respectively. The luminescence enhancement should be attributed to the distortion of the local asymmetry around Er(3+) ions. The mechanisms for the enhancement of upconversion emission were discussed. In addition, it was found in our research work that β-NaGdF(4) : Yb(3+)/Er(3+) NPs exhibited paramagnetic features at room temperature and the magnetization was slightly increased by introducing Li(+) ions. This journal is © The Royal Society of Chemistry 2012

  16. Magnetic Excitations in the Stacked Quantum Magnets NaNiO2 and LiNiO2

    Science.gov (United States)

    Clancy, J. P.; Gaulin, B. D.; Ruff, J. P. C.; Ross, K. A.; van Gastel, G. J.; Abernathy, D. L.; Stone, M. B.

    2009-03-01

    NaNiO2 and LiNiO2 are isostructural stacked triangular lattice quantum magnets, in which magnetism is conventionally thought to arise due to spin 1/2 moments carried by Ni^3+ ions. Surprisingly, while NaNiO2 undergoes a cooperative Jahn-Teller transition at 480K and magnetically orders below TN ˜ 23K, LiNiO2 undergoes a glass transition at Tg ˜ 9K and remains disordered down to the lowest measured temperatures. The absence of long-range magnetic order in LiNiO2 has been attributed to either geometric frustration caused by mixing of the Li and Ni sublattices, or orbital degeneracy due to the absence of a coherent Jahn-Teller distortion. We have performed time of flight neutron scattering measurements on polycrystalline samples of NaNiO2 and LiNiO2 using the wide Angular-Range Chopper Spectrometer (ARCS) at the SNS. Our measurements reveal previously unobserved magnetic excitations at relatively high energy transfers, which we associate with ferromagnetic spin waves mediated by in-plane interactions. We also find evidence of critical scattering in NaNiO2 near the magnetic phase transition at TN. These results will be compared with previous measurements collected using the DCS at NIST.

  17. The Competitive Influence of Li+, Na+, K+, Ag+, and H+ on the Fragmentation of a PEGylated Polymeric Excipient

    Science.gov (United States)

    Wei, Juan; Bristow, Anthony W. T.; O'Connor, Peter B.

    2015-01-01

    The collisionally activated dissociation (CAD) and electron capture dissociation (ECD) of doubly charged tocopheryl polyethylene glycol succinate (TPGS) have been examined. Li+, Na+, K+, Ag+, and H+ were selected in the study, and the competitive influence of each ion was investigated by fragmenting TPGS attached with two different cations, [M + X1 + X2]2+ (X1 and X2 refer to Li+, Na+, K+, Ag+, H+). For metallic adducts, CAD results show that the dissociation of ionic adducts from the precursor is most likely depending on the binding strength, where the affinity of each ion to the TPGS is in the order of Ag+ ≈ Li+ ˃ Na+ ˃ K+. Introducing more strongly bound adducts increases fragmentation. During ECD, however, the silver cation is lost most easily compared with the other alkali metal ions, but silver also shows a dominant role in producing fragmentations. Moreover, the charge carriers are lost in an order (Ag+ ˃ Na+ ˃ K+ ≥ Li+ where the loss of Ag is most easily) that appears to correlate with the standard reduction potential of the metallic ions (Ag+ ˃ Na+ ˃ K+ ˃ Li+). The ECD results suggest that the reduction potential of the charge carrier could be an important factor influencing the fragmentation, where the ion with a high reduction potential is more effective in capturing electrons, but may also be lost easily before leading to any fragmentation. Finally, a proton has the weakest binding with the TPGS according to the CAD results, and its dissociation in ECD follows the order of the reduction potential (Ag+ ˃ H+ ˃ Na+ ˃ K+ > Li+).

  18. Carbon-coated rhombohedral Li2NaV2(PO4)3 nanoflake cathode for Li-ion battery with excellent cycleability and rate capability

    Science.gov (United States)

    Alfaruqi, Muhammad Hilmy; Islam, Saiful; Song, Jinju; Kim, Sungjin; Pham, Duong Tung; Jo, Jeonggeun; Kim, Seokhun; Baboo, Joseph Paul; Putro, Dimas Yunianto; Mathew, Vinod; Kim, Jaekook

    2017-08-01

    Rhombohedral Li2NaV2(PO4)3 is very attractive cathode material for lithium-ion battery (LIB) application due to its single voltage plateau at 3.7 V that provides a constant output power. Here, for the first time, we report a direct and simple synthesis of high performance carbon-coated rhombohedral Li2NaV2(PO4)3 (LNVP/C) nanoflake cathode using a pyro-synthesis technique. The cathode demonstrates long cycle stability (100% capacity retention over 300 cycles) and high rate capabilities (77 and 55 mAh g-1 at 6.4 and 12C, respectively). The present study may facilitate a simple and low-cost preparation technique towards high performance cathode materials for advanced LIB applications.

  19. Demixion in simple liquid metals alloys comparative investigation of non local and local pseudopotentials: example of LiNa

    Energy Technology Data Exchange (ETDEWEB)

    Takhloukh, A; Grosdidier, B; Hellal, S [Laboratoire de Physique des Milieux Denses, Universite de Metz, Institut de Physique -electronique et de chimie 1 BdArago, 57078 Metz cedex 3 (France); Regnaut, C [Laboratoire de Physique des Liquides et des Milieux Complexes, Universite de Paris 12, Faculte des Sciences et Technologie, 61 Av. du General de Gaulle, 94 010 Creteil cedex (France)], E-mail: regnaut@univ-parisl2.fr

    2008-02-15

    Using perturbation theory and classical molecular dynamics simulations, we study the static structure and demixing behaviour of the liquid LiNa alloy from the pseudopotential approach and different classes of models. We find that the norm conserving pseudopotential does not lead to demixing while various local models, with few adjustable parameters correctly predict the structure and spinodal unstability in the alloy. Transferability of the pseudopotential to the alloy is improved if the parameters are fitted to some bulk or structural properties of the pure metal. We find that demixion can be predicted when the structure factors of the pure liquid Li and Na are reasonably reproduced from such pseudopotentials.

  20. Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Finegan, Donal [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robinson, James B. [University College London; Heenan, Thomas M. M. [University College London; Smith, Katherine [Sharp Laboratories of Europe; Kendrick, Emma [Sharp Laboratories of Europe; University College London; Brett, Daniel J. L. [University College London; Shearing, Paul R. [University College London

    2017-12-06

    Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with a standard shutdown separator in the Li-ion and a low-cost polypropylene (PP) separator in the Na-ion. Even with the shutdown separator, it is shown that the self-heating rate and rate of thermal runaway in Na-ion cells is significantly slower than that observed in Li-ion systems. The thermal runaway event initiates at a higher temperature in Na-ion cells. The effect of thermal runaway on the architecture of the cells is examined using X-ray microcomputed tomography, and scanning electron microscopy (SEM) is used to examine the failed electrodes of both cells. Finally, from examination of the respective electrodes, likely due to the carbonate solvent containing electrolyte, it is suggested that thermal runaway in Na-ion batteries (NIBs) occurs via a similar mechanism to that reported for Li-ion cells.

  1. Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Wei Lu

    2017-10-01

    Full Text Available Electrode materials and electrolytes play a vital role in device-level performance of rechargeable Li-ion batteries (LIBs. However, electrode structure/component degeneration and electrode-electrolyte sur-/interface evolution are identified as the most crucial obstacles in practical applications. Thanks to its congenital advantages, atomic layer deposition (ALD methodology has attracted enormous attention in advanced LIBs. This review mainly focuses upon the up-to-date progress and development of the ALD in high-performance LIBs. The significant roles of the ALD in rational design and fabrication of multi-dimensional nanostructured electrode materials, and finely tailoring electrode-electrolyte sur-/interfaces are comprehensively highlighted. Furthermore, we clearly envision that this contribution will motivate more extensive and insightful studies in the ALD to considerably improve Li-storage behaviors. Future trends and prospects to further develop advanced ALD nanotechnology in next-generation LIBs were also presented.

  2. Electric properties of textured (K0. 44Na0. 52Li0. 04)(Nb0. 86Ta0 ...

    Indian Academy of Sciences (India)

    Textured (K 0.44 Na 0.52 Li 0.04 ) (Nb 0.86 Ta 0.10 Sb 0.04 )O 3 thick film was fabricated by the screen printing method with plate-like NaNbO3 particles as template. Thick film with 75% grain orientation was prepared. Remnant polarization and coercive field observed from the P–E loops of textured thick film were 3.6 μ C ...

  3. Ligand Influence on Carbonyl Hydroboration Catalysis by Alkali Metal Hydridotriphenylborates [(L)M][HBPh3 ] (M=Li, Na, K).

    Science.gov (United States)

    Osseili, Hassan; Mukherjee, Debabrata; Spaniol, Thomas P; Okuda, Jun

    2017-10-12

    Alkali metal hydridotriphenylborates [(L(1) )M][HBPh3 ] (L(1) =Me6 TREN; M=Li, Na, K) chemoselectively catalyze the hydroboration of carbonyls and CO2 , with lithium being the most active system. A new series of complexes [(L(2) )M][HBPh3 ] [M=Li (1), Na (2), K (3)] featuring the cyclen-derived macrocyclic polyamine Me4 TACD (L(2) ) were synthesized in a "one-pot" fashion and fully characterized including X-ray crystallography. In the crystal, 1-3 exhibit wide variation in metal coordination of the [HBPh3 ](-) anion from lithium to potassium. The structures differ from those in [(L(1) )M][HBPh3 ]. Effects of coordination of L(1) , L(2) , and other N- and O-donor multidentate ligands on [Li(HBPh3 )] were used to rationalize the catalytic activity in carbonyl hydroboration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ground-based research of LiIO3 and NaClO3 crystal growth under microgravity environment

    Science.gov (United States)

    Song, Youting

    Ground-based research of LiIO3 and NaClO3 crystal growth under microgravity environment Youting Song*, Wanchun Chen, Xiaolong Chen Institute of Physics and Beijing National Lab-oratory for Condensed Matter Physics, Beijing, 100080 P. R. China ytsong@aphy.iphy.ac.cn The progress in ground-based research of LiIO3 and NaClO3 crystal growth under micro-gravity environment was reported. (a) A new apparatus used for growth of large size of LiIO3 crystals by the evaporation method has been developed, in which the hydrophobic poly-terafluorothytene micro-filtration (PEFT) film was used to resist the leakage of LiIO3 solution and control the growth rate of LiIO3 crystals along with CaCl2 adsorbent. The pore diameters of PEFT film should be between 0.1-1.0m, and the optimal weight of the adsorbent should be as three times as that of the solvent H2O evaporated. During crystal growth, the solution is re-plenished by a creeping pump to avoid separating the growing crystal from the solution. Using this technique we have obtained good quality LiIO3 crystals in the ground-based experiments. (b) The nucleating experiment of NaClO3 seed-induction was carried out in a ground-based en-vironment, and experimental results showed that seed-induction of NaClO3 played certainly a role of increasing crystal chiral enantiomer excess (cee), which will become the basis of contrast experiment under microgravity environment.

  5. Charge-state distribution of Li ions from the β decay of laser-trapped 6He atoms

    Science.gov (United States)

    Hong, R.; Leredde, A.; Bagdasarova, Y.; Fléchard, X.; García, A.; Knecht, A.; Müller, P.; Naviliat-Cuncic, O.; Pedersen, J.; Smith, E.; Sternberg, M.; Storm, D. Â. W.; Swanson, H. Â. E.; Wauters, F.; Zumwalt, D.

    2017-11-01

    The accurate determination of atomic final states following nuclear β decay plays an important role in several experiments. In particular, the charge state distributions of ions following nuclear β decay are important for determinations of the β -ν angular correlation with improved precision. Beyond the hydrogenic cases, the decay of neutral 6He presents the simplest case. Our measurement aims at providing benchmarks to test theoretical calculations. The kinematics of Lin + ions produced following the β decay of 6He within an electric field were measured using 6He atoms in the metastable (1 s 2 s ,S31) and (1 s 2 p ,P32) states confined by a magneto-optical trap. The electron shakeoff probabilities were deduced, including their dependence on ion energy. We find significant discrepancies on the fractions of Li ions in the different charge states with respect to a recent calculation.

  6. The effect of Nb2O5 and ZrO2 additions on the behaviour of Li/MgO and Li/Na/MgO catalysts for the oxidative coupling of methane

    NARCIS (Netherlands)

    McNamara, D.J.; Korf, S.J.; Seshan, Kulathuiyer; van Ommen, J.G.; Ross, J.R.H.

    1991-01-01

    Incorporation of Nb2O5 or ZrO2 into both Li/MgO and Li/Na/MgO systems produced ternary and quaternary catalysts, respectively, capable of attaining optimal C2 yields and selectivities at lower temperatures relative to the unpromoted materials. The degree of enhancement effected by these metal oxide

  7. Poly(benzoquinonyl sulfide) as a High‐Energy Organic Cathode for Rechargeable Li and Na Batteries

    Science.gov (United States)

    Song, Zhiping; Qian, Yumin; Zhang, Tao; Otani, Minoru

    2015-01-01

    In concern of resource sustainability and environmental friendliness, organic electrode materials for rechargeable batteries have attracted increasing attentions in recent years. However, for many researchers, the primary impression on organic cathode materials is the poor cycling stability and low energy density, mainly due to the unfavorable dissolution and low redox potential, respectively. Herein, a novel polymer cathode material, namely poly(benzoquinonyl sulfide) (PBQS) is reported, for either rechargeable Li or Na battery. Remarkably, PBQS shows a high energy density of 734 W h kg–1 (2.67 V × 275 mA h g–1) in Li battery, or 557 W h kg–1 (2.08 V × 268 mA h g–1) in Na battery, which exceeds those of most inorganic Li or Na intercalation cathodes. Moreover, PBQS also demonstrates excellent long‐term cycling stability (1000 cycles, 86%) and superior rate capability (5000 mA g–1, 72%) in Li battery. Besides the exciting battery performance, investigations on the structure–property relationship between benzoquinone (BQ) and PBQS, and electrochemical behavior difference between Li–PBQS battery and Na–PBQS battery, also provide significant insights into developing better Li‐organic and Na‐organic batteries beyond conventional Li‐ion batteries. PMID:27980977

  8. Spectroelectrochemistry of EuCl 3 in Four Molten Salt Eutectics; 3 LiCl−NaCl, 3 LiCl−2 KCl, LiCl−RbCl, and 3 LiCl−2 CsCl; at 873 K

    Energy Technology Data Exchange (ETDEWEB)

    Schroll, Cynthia A. [Department of Chemistry, University of Cincinnati, Cincinnati OH 45221-0172; Chatterjee, Sayandev [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352; Levitskaia, Tatiana [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352; Heineman, William R. [Department of Chemistry, University of Cincinnati, Cincinnati OH 45221-0172; Bryan, Samuel A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352

    2016-05-17

    Key electrochemical properties affecting pyroprocessing of nuclear fuel were examined in four eutectic melts using using Eu3+/2+ as a representative probe. We report the electrochemical and spectroelectrochemical behavior of EuCl3 in four molten salt eutectics (3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl and 3 LiCl – 2 CsCl) at 873 K. Cyclic voltammetry was used to determine the redox potential for Eu3+/2+ and the applied potentials for spectroelectrochemistry. Single step chronoabsorptometry and thin-layer spectroelectrochemistry were used to obtain the number of electrons transferred, redox potentials and diffusion coefficients for Eu3+ in each eutectic melt. The redox potentials determined by thin-layer spectroelectrochemistry were extremely close to those obtained using cyclic voltammetry. The redox potential for Eu3+/2+ was most positive in the 3 LiCl - NaCl melt, showed a negative shift in the 3 LiCl - 2 KCl melt, and was the most negative in the LiCl - RbCl and 3 LiCl - 2 CsCl eutectics. The diffusion coefficient for Eu3+ followed this same trend; it was the largest in the 3 LiCl - NaCl melt and the smallest in the LiCl - RbCl and 3 LiCl - 2 CsCl melts. The basic one-electron reversible electron transfer for Eu3+/2+ was not changed by melt composition.

  9. First-Principles Study of Lithium and Sodium Atoms Intercalation in Fluorinated Graphite

    Directory of Open Access Journals (Sweden)

    Fengya Rao

    2015-06-01

    Full Text Available The structure evolution of fluorinated graphite (CFx upon the Li/Na intercalation has been studied by first-principles calculations. The Li/Na adsorption on single CF layer and intercalated into bulk CF have been calculated. The better cycling performance of Na intercalation into the CF cathode, comparing to that of Li intercalation, is attributed to the different strength and characteristics of the Li-F and Na-F interactions. The interactions between Li and F are stronger and more localized than those between Na and F. The strong and localized Coulomb attraction between Li and F atoms breaks the C−F bonds and pulls the F atoms away, and graphene sheets are formed upon Li intercalation.

  10. True atomic-scale imaging of a spinel Li{sub 4}Ti{sub 5}O{sub 12}(111) surface in aqueous solution by frequency-modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kitta, Mitsunori, E-mail: m-kitta@aist.go.jp; Kohyama, Masanori [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-09-15

    Spinel-type lithium titanium oxide (LTO; Li{sub 4}Ti{sub 5}O{sub 12}) is a negative electrode material for lithium-ion batteries. Revealing the atomic-scale surface structure of LTO in liquid is highly necessary to investigate its surface properties in practical environments. Here, we reveal an atomic-scale image of the LTO(111) surface in LiCl aqueous solution using frequency-modulation atomic force microscopy. Atomically flat terraces and single steps having heights of multiples of 0.5 nm were observed in the aqueous solution. Hexagonal bright spots separated by 0.6 nm were also observed on the flat terrace part, corresponding to the atomistic contrast observed in the ultrahigh vacuum condition, which suggests that the basic atomic structure of the LTO(111) surface is retained without dramatic reconstruction even in the aqueous solution.

  11. Theoretical study of the spectroscopy of the alkali oxides LiO, NaO, and KO

    Science.gov (United States)

    Langhoff, Stephen R.; Partridge, Harry; Bauschlicher, Charles W., Jr.

    1991-01-01

    A state-averaged complete-active-space self-consistent-field multireference configuration-interaction method is presented to characterize the bound-bound emission from the CPi-2 state into the two lowest ionic states of LiO, NaO, and KO. Ab initio calculations use the experimental results obtained by Woodward et al. (1989) of the emitting state as CPi-2, but indicate that the tentative experimental band assignments are incorrect.

  12. High Piezoelectric Voltage Coefficient in Structured Lead-Free (K,Na,Li)NbO3 Particulate—Epoxy Composites

    NARCIS (Netherlands)

    James, N.K.; Deutz, D.B.; Bose, R.J.; Zwaag, S. van der; Groen, P.

    2016-01-01

    A high-voltage coefficient has been found in lead-free piezoelectric particulate composites based on epoxy with lead-free (K0.50Na0.50)0.94Li0.06NbO3 (KNLN) piezoceramic particles with a natural cubic morphology. The KNLN powder used in the composites has been prepared using a new solid-state double

  13. Cation effects on rotational dynamics of anions and water molecules in alkali (Li+, Na+, K+, Cs+) thiocyanate (SCN-) aqueous solutions.

    Science.gov (United States)

    Bian, Hongtao; Chen, Hailong; Zhang, Qiang; Li, Jiebo; Wen, Xiewen; Zhuang, Wei; Zheng, Junrong

    2013-07-03

    Waiting time dependent rotational anisotropies of SCN(-) anions and water molecules in alkali thiocyanate (XSCN, X = Li, Na, K, Cs) aqueous solutions at various concentrations were measured with ultrafast infrared spectroscopy. It was found that cations can significantly affect the reorientational motions of both water molecules and SCN(-) anions. The dynamics are slower in a solution with a smaller cation. The reorientational time constants follow the order of Li(+) > Na(+) > K(+) ~/= Cs(+). The changes of rotational time constants of SCN(-) at various concentrations scale almost linearly with the changes of solution viscosity, but those of water molecules do not. In addition, the concentration-dependent amplitudes of dynamical changes are much more significant in the Li(+) and Na(+) solutions than those in the K(+) and Cs(+) solutions. Further investigations on the systems with the ultrafast vibrational energy exchange method and molecular dynamics simulations provide an explanation for the observations: the observed rotational dynamics are the balanced results of ion clustering and cation/anion/water direct interactions. In all the solutions at high concentrations (>5 M), substantial amounts of ions form clusters. The structural inhomogeneity in the solutions leads to distinct rotational dynamics of water and anions. The strong interactions of Li(+) and Na(+) because of their relatively large charge densities with water molecules and SCN(-) anions, in addition to the likely geometric confinements because of ion clustering, substantially slow down the rotations of SCN(-) anions and water molecules inside the ion clusters. The interactions of K(+) and Cs(+) with water or SCN(-) are much weaker. The rotations of water molecules inside ion clusters of K(+) and Cs(+) solutions are not significantly different from those of other water species so that the experimentally observed rotational relaxation dynamics are only slightly affected by the ion concentrations.

  14. Fluor-ferro-leakeite, NaNa2(FC2+2Fe3+2Li)Si8O22F2, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.

    Science.gov (United States)

    Hawthorne, F.C.; Oberti, R.; Ungaretti, L.; Ottolini, L.; Grice, Joel D.; Czamanske, G.K.

    1996-01-01

    Fluor-ferro-leakeite is a new amphibole species from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.; it occurs in association with quartz, alkali feldspar, acmite, ilmenite, and zircon. It forms as anhedral bluish black crystals elongated along c and up to 1 mm long. It is brittle, H = 6, Dmeas = 3.37 g/cm3, Dcalc = 3.34 g/cm3. In plane-polarized light, it is strongly pleochroic, X = very dark indigo blue, Y = gray blue, Z = yellow green; X ??? c = 10?? (in ??obtuse), Y = b, Z ??? a = 4?? (in ?? obtuse), with absorption X > Y > Z. Fluor-ferro-leakeite is biaxial positive, ?? = 1.675(2), ??= 1.683(2), ?? = 1.694(1); 2V = 87(2)??; dispersion is not visible because of the strong absorption. Fluor-ferro-leakeite is monoclinic, space group C2/m, a = 9.792(1), b = 17.938(1), c = 5.3133(4) A??, ??= 103.87(7)??, V = 906.0(1) A??3, Z = 2. The ten strongest X-ray diffraction lines in the powder pattern are [d(I,hkl)]: 2.710(100,151), 2.536(92,202), 3.404(57,131), 4.481(54,040), 8.426(45,110), 2.985(38,241), 2.585(38,061), 3.122(29,310), 2.165(26,261), and 1.586(25,403). Analysis by a combination of electron microprobe, ion microprobe, and crystal-structure refinement (Hawthorne et al. 1993) gives SiO2 51.12, Al2O3 1.13, TiO2 0.68, Fe2O3 16.73, FeO 8.87, MgO 2.02, MnO 4.51, ZnO 0.57, CaO 0.15, Na2O 9.22, K2O 1.19, Li2O 0.99, F 2.87, H2Ocalc 0.60, sum 99.44 wt%. The formula unit, calculated on the basis of 23 O atoms, is (K0.23Na0.76)(Na1.97Ca0.03)(Mg 0.46Fe2+1.4Mn2+0.59Zn0.07Fe3+1.93-Ti 0.08Al0.02Li0.61])(Si7.81Al 0.19)O22(F1.39OH0.61). A previous crystal-structure refinement (Hawthorne et al. 1993) shows Li to be completely ordered at the M3 site. Fluor-ferro-leakeite, ideally NaNa2(Fe2+2Fe3+2Li)Si8O22F2, is related to leakeite, NaNa2(Mg2Fe3+3Li)Si 8O22(OH)2, by the substitutions Fe2+ ??? Mg and F ??? OH.

  15. Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries.

    Science.gov (United States)

    Li, Jiachen; Pu, Jun; Liu, Ziqiang; Wang, Jian; Wu, Wenlu; Zhang, Huigang; Ma, Haixia

    2017-08-02

    The energy and power densities of rechargeable batteries urgently need to be increased to meet the ever-increasing demands of consumer electronics and electric vehicles. Alloy anodes are among the most promising candidates for next-generation high-capacity battery materials. However, the high capacities of alloy anodes usually suffer from some serious difficulties related to the volume changes of active materials. Porous supports and nanostructured alloy materials have been explored to address these issues. However, these approaches seemingly increase the active material-based properties and actually decrease the electrode-based capacity because of the oversized pores and heavy mass of mechanical supports. In this study, we developed an ultralight porous nickel to scaffold with high-capacity SnSb alloy anodes. The porous-nickel-supported SnSb alloy demonstrates a high specific capacity and good cyclability for both Li-ion and Na-ion batteries. Its capacity retains 580 mA h g-1 at 2 A g-1 after 100 cycles in Li-ion batteries. For a Na-ion battery, the composite electrode can even deliver a capacity of 275 mA h g-1 at 1 A g-1 after 1000 cycles. This study demonstrates that combining the scaffolding function of ultralight porous nickel and the high capacity of the SnSb alloy can significantly enhance the electrochemical performances of Li/Na-ion batteries.

  16. Theoretical study of the spectroscopy of the alkali oxides LiO, NaO, and KO

    Science.gov (United States)

    Langhoff, Stephen R.; Partridge, Harry; Bauschlicher, Charles W.

    1991-05-01

    Theoretical calculations show that only three of the eleven doublet electronic states of LiO, NaO, and KO dissociating to the three lowest asymptotes are significantly bound. The only bound-bound transitions that occur in the visible and infrared spectral regions are from the C 2Π state to the lowest two ionic states ( Π and 2Σ +). The emission is dominated by the C 2Π-X 2Π transition, which has a very large transition moment near re (C 2Π). Although chemiluminescence observed for these alkali oxides has been correctly assigned to this transition, the vibrational assignments are incorrect, as the strongest transitions from the lower vibrational levels of the C 2Π state are into rather high vibrational levels of the X 2Π state. The radiative lifetimes for the C 2Π (ν = 0) level are 66.2, 90.7, and 315.5 ns for LiO, NaO, and KO, respectively: the C 2Π-A 2Σ + channel contributes less than 1% to the radiative lifetimes. Emission spectra are presented for the C 2Π-X 2Π band systems of LiO, NaO, and KO. Except for very high vibrational temperatures, most of the emission occurs in the infrared region. The maxima in the spectra shift to longer wave-lengths for the heavier alkali oxides, paralleling the decrease in the Te(C 2Π) values.

  17. Electronic structure ‘engineering’ in the development of materials for Li-ion and Na-ion batteries

    Science.gov (United States)

    Molenda, Janina

    2017-03-01

    Transition metal oxides with a general formula A x M a O b (A  =  Li, Na, M  =  transition metal) constitute a group of potential electrode materials for a new generation of alkaline batteries. This application is related to the fact that these compounds can reversibly intercalate high amounts of alkaline ions (1 or more moles per mole of M a O b ) already at room temperature, without significant changes in their crystallographic structure. The author of this work basing on her own investigations of A x M a O b (A  =  Li, Na; M  =  3d, 4d, 5d) has demonstrated that the electronic structure of these materials plays an important role in the intercalation process. Electronic model of intercalation process is presented. Author’s studies show that electronic structure ‘engineering’ is an excellent method of controlling properties of the cathode materials for Li-ion and Na-ion batteries, changing their unfavorable character of the discharge curve, from step-like to monotonic, through modification and control density of states function of a cathode material. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  18. Polarization effects in reactive scattering of Na atoms in the 4D level

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, P.S.; Covinsky, M.H.; Schmidt, H.; Balko, B.A.; Lee, Y.T.; Mestdagh, J.M.

    1988-11-01

    Experiments performed using a crossed beam apparatus have shown that the reactivity of Na(4D) with HCl and O/sub 2/ changes substantially as the 4d orbital alignment is varied. This change is found different for the two reactions. The favorable alignment for the reaction with HCl has the d orbital aligned along the relative velocity vector of the reactants. This result is consistent with a long range electron transfer initiating the reaction and suggests that the Na-Cl axis dominates over the H-Cl axis in determining the favorable atomic orbital alignment. For the reaction with O/sub 2/, the NaO formation has a high translational energy threshold, and the favored orbital alignment varies as a function of the NaO laboratory scattering angle. Very restricted conditions are found to be necessary for the reaction: Near collinear geometry and the d orbital perpendicular to the molecular axis.

  19. Polarization effects in reactive scattering of Na atoms in the 4 D level

    Science.gov (United States)

    Weiss, P. S.; Covinsky, M. H.; Schmidt, H.; Balko, B. A.; Lee, Y. T.; Mestdagh, J. M.

    1988-06-01

    Experiments performed using a crossed beam apparatus have shown that the reactivity of Na(4 D) with HCl and O2 changes substantially as the 4 d orbital alignment is varied. This change is found to be different for the two reactions. The favorable alignment for the reaction with HCl has the d orbital aligned along the relative velocity vector of the reactants. This result is consistent with a long range electron transfer initiating the reaction and suggests that the Na-Cl axis dominates over the H-Cl axis in determining the favorable atomic orbital alignment. For the reaction with O2, the NaO formation has a high translational energy threshold, and the favored orbital alignment varies as a function of the NaO laboratory scattering angle. Very restricted conditions are found to be necessary for the reaction: near collinear geometry and the d orbital perpendicular to the molecular axis.

  20. Hydrogen storage of type MBH{sub 4}(H{sub 2})n M = Li, Na, K, Rb, Cs; Almacenadores de hidrogeno del tipo MBH{sub 4}(H{sub 2})n M = Li, Na, K, Rb, Cs

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Castro, Maria Esther [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Saltillo, Ramos Arizpe, Coahuila (Mexico)] e-mail: esther.sanchez@cinvestav.edu.mx; Sanchez-Vazquez, Mario [Centro de Investigacion en Materiales Avanzados, S.C., Apodaca, Nuevo Leon (Mexico)

    2009-09-15

    Interest has recently been increasing in finding new sources of energy other than fossil fuels. Hydrogen has potential with respect to oil, it does not contaminate the environment or produce greenhouse gases. Nevertheless, finding materials capable of storing hydrogen is not trivial, since certain aspects must be addressed, such as reversible hydrogen storage with high gravimetric and volumetric density, manipulated at moderate temperatures and pressures. To contribute to the search for new materials, we are interested in studying the structures of type MBH{sub 4}, which have a boron atom and a M metal. The boron has a lighter mass and is surrounded by four hydrogen atoms. LiBH{sub 4}, for example, is already being used as a source of hydrogen by disassociating the B-H bonds. On the other hand, the M atom is positive and can house molecular hydrogen in its coordination sphere. Our studies, using mp{sup 2}/def2-TZVP computational methods, show that this type of structures (MBH4) can coordinate in the M atom from three (when M = Li) to nine (when M = Cs) hydrogen molecules. [Spanish] Recientemente, el interes por encontrar nuevas fuentes de energia diferentes al combustible fosil ha ido en aumento. El hidrogeno tiene un potencial con respecto al petroleo, no contamina el medio ambiente ni produce gases invernadero. Sin embargo, encontrar materiales capaces de almacenar hidrogeno no es trivial, ya que se deben cuidar aspectos como: almacenar reversiblemente hidrogeno con alta densidad gravimetrica y volumetrica, y manipularlos a temperaturas y presiones moderadas. A fin de contribuir con la busqueda de nuevos materiales, es de nuestro interes estudiar a las estructuras del tipo MBH4. Estas estructuras tienen la caracteristica de tener un atomo de boro y un metal M. El boro es de masa ligera y esta rodeado de cuatro atomos de hidrogeno. El LiBH{sub 4} por ejemplo ya se esta utilizando como fuente de hidrogenos al disociar los enlaces B-H. Por otra parte, el atomo M es

  1. Calculation of inelastic helium atom scattering from H2/ NaCl(001)

    DEFF Research Database (Denmark)

    Bruch, L.W.; Hansen, Flemming Yssing; Traeger, F.

    2011-01-01

    The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determi......The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 me...

  2. Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films

    Science.gov (United States)

    Abazari, M.; Safari, A.

    2010-12-01

    Conduction mechanisms in epitaxial (001)-oriented pure and 1 mol % Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrate were investigated. Temperature dependence of leakage current density was measured as a function of applied electric field in the range of 200-380 K. It was shown that the different transport mechanisms dominate in pure and Mn-doped thin films. In pure (KNN-LT-LS) thin films, Poole-Frenkel emission was found to be responsible for the leakage, while Schottky emission was the dominant mechanism in Mn-doped thin films at higher electric fields. This is a remarkable yet clear indication of effect of 1 mol % Mn on the resistive behavior of such thin films.

  3. Theoretical studies on the electronic structure, charge distribution and vibrational spectra of diglyme-M(+)-AsF(6)(-) (M=Li, Na, K).

    Science.gov (United States)

    Pinjari, Rahul V; Joshi, Kaustubh A; Gejji, Shridhar P

    2008-12-01

    Electronic structure and the vibrational spectra of CH(3)(OCH(2)CH(2))(2)OCH(3)-M(+)-AsF(6)(-) (M=Li, Na, K) have been obtained using the density functional theory. Lithium ion exhibits a pentavalent coordination via 3 oxygens from diglyme and two fluorines of AsF(6)(-) whereas Na(+) and K(+) exhibit coordinate number 6 with 3 fluorines of the anion binding to alkali metal in these complexes. Analysis of calculated spectra reveal that the CH(2) wag (840-1120 cm(-1)) vibrations in the complex are sensitive to metal ion coordination. A frequency downshift relative to the free anion has been predicted for the vibrations of AsF(6)(-) anion when the fluorines are directly bonded (denoted by F) to metal ion. Consequent reorganization of electron density in the complex engenders a frequency shift in the opposite direction for As-F vibrations wherein the fluorine atoms are not coordinating to the alkali metal ion. An approach based on the molecular electron density topography coupled with the difference electron density map explains the direction of the frequency shifts of C-O-C and the As-F stretchings compared to those of free diglyme or AsF(6) anion. A new method, which includes the color-mapping function for the difference molecular electron density (MED), superimposed on the bond critical points in MED topography has been suggested to explain the direction of the frequency shifts in a single attempt.

  4. First-principles calculation of atomic structure and electrochemical potential of Li{sub 1+x}V{sub 3}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Benedek, R.; Thackeray, M.M. [Argonne National Lab., IL (United States). Chemical Technology Div.; Yang, L.H. [Lawrence Livermore National Lab., CA (United States)

    1999-09-01

    Interest in the {gamma}-bronze, Li{sub 1+x}V{sub 3}O{sub 8}, as a possible electrode material in rechargeable Li batteries has stimulated several experimental studies on this system. Detailed interpretation of the electrochemical and physical-property measurements is complicated by uncertainties regarding the structural arrangement of Li atoms as a function of x and by a phase transition between two monoclinic structures ({gamma}{sub a}, {gamma}{sub b}) during intercalation. To elucidate the atomic structures and the phase transition, first-principles calculations re performed with the local-density-functional-theory (LDFT) planewave pseudopotential method for both {gamma}{sub a} and {gamma}{sub b} as a function of lithiation. Calculations for the compositions 1+x=1.5 and 1+x=4 confirm that the Li configuration determined in the existing X-ray diffraction structure refinements (at 1+x=1.2 and 1+x=4, respectively), coincide with the predicted low-energy configurations. Structure predictions were made at intermediate compositions, for which no experimental structure measurement is available. The order in which the tetrahedrally coordinated Li sites are filled at equilibrium as a function of x in {gamma}{sub a} was predicted. Calculated electrochemical potentials as a function of composition agree well with experimental data. (orig.)

  5. Rotationally inelastic collisions of excited NaK and NaCs molecules with noble gas and alkali atom perturbers

    Science.gov (United States)

    Jones, J.; Richter, K.; Price, T. J.; Ross, A. J.; Crozet, P.; Faust, C.; Malenda, R. F.; Carlus, S.; Hickman, A. P.; Huennekens, J.

    2017-10-01

    We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very

  6. Atomic layer deposition of (K,Na)(Nb,Ta)O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sønsteby, Henrik Hovde, E-mail: henrik.sonsteby@kjemi.iuio.no; Nilsen, Ola; Fjellvåg, Helmer [Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0371 Oslo (Norway)

    2016-07-15

    Thin films of complex alkali oxides are frequently investigated due to the large range of electric effects that are found in this class of materials. Their piezo- and ferroelectric properties also place them as sustainable lead free alternatives in optoelectronic devices. Fully gas-based routes for deposition of such compounds are required for integration into microelectronic devices that need conformal thin films with high control of thickness- and composition. The authors here present a route for deposition of materials in the (K,Na)(Nb,Ta)O{sub 3}-system, including the four end members NaNbO{sub 3}, KNbO{sub 3}, NaTaO{sub 3}, and KTaO{sub 3}, using atomic layer deposition with emphasis on control of stoichiometry in such mixed quaternary and quinary compunds.

  7. The crystal structure and electronic properties of Ba 4Ru 3MO 12( M =Li, Na, Mg, Zn)

    Science.gov (United States)

    Battle, P. D.; Kim, S. H.; Powell, A. V.

    1992-11-01

    The crystal structures of two new hexagonal perovskites, 6H-Ba 4Ru 3LiO 12 and 8H-Ba 4Ru 3NaO 12, have been refined from neutron powder diffraction data. The former shows cch stacking of the pseudo-close-packed BaO 3 layers in space group P6 3/ mmc, a = 5.7828(1) and c = 14.1917(4)A˚. The structure contains Ru 2O 9 dimers linked together by vertex-sharing MO 6 octahedra, where M represents a disordered distribution of Ru and Li. Ba 4Ru 3NaO 12 has a ccch stacking sequence in space group P6 3mc, a = 5.8142(1) and c = 19.2643(4)A˚. The structure contains Ru 2O 9 dimers linked by vertex-sharing RuNaO 11 groups. Magnetic susceptibility measurements suggest that both compounds are magnetically ordered at low temperatures. Electrical conductivity measurements show that both are semiconductors. The preparation and electronic properties of the mixed valence compounds Ba 4Ru 3MgO 12 and Ba 4Ru 3ZnO 12 are also discussed.

  8. Electrochemistry of Europium(III) Chloride in 3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl, and 3 LiCl – 2 CsCl Eutectics at Various Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schroll, Cynthia A.; Chatterjee, Sayandev; Levitskaia, Tatiana G.; Heineman, William R.; Bryan, Samuel A.

    2017-01-01

    Here we report the effect of changing the eutectic melt composition on the electrochemical properties of europium(III) chloride under pyroprocessing conditions. The number of electrons transferred, redox potentials and diffusion coefficients were determined using various electrochemical and spectroelectrochemical techniques in four different eutectic mixtures (3 LiCl - NaCl, 3 LiCl - 2 KCl, 3 LiCl - RbCl, and 3 LiCl - 2 CsCl) while varying the temperature of the melt. It was determined that Eu3+ undergoes a one electron reduction to Eu2+ in each melt at all temperatures evaluated. Within all the melts a positive shift in the redox potential as well as an increase in the diffusion coefficient for Eu3+ was observed as the temperature increased. Also observed was a positive shift in the redox potential and increase in the diffusion coefficient for Eu3+ as the weighted average of the cationic radii for the melt decreased.

  9. Study of Tb/sup 3+/ luminescence in the fluoride LiNaY/sub 2/F/sub 8/

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, D.; Mahiou, R.; Arbus, A.; Fournier, M.T.; Cousseins, J.C.

    1986-01-01

    We report on the results of Tb/sup 3+/ fluorescence measurements performed on a new phase LiNaY/sub 2-x/Tb/sub x/F/sub 8/. The processus of cross relaxation has been observed between the /sup 5/D/sub 3/ and /sup 5/D/sub 4/ levels, and is perfectly predicted by the Inokuti and Hirayama model in the case of a dipolar interaction, leading to a critical distance of 11 A. Moreover, for highest Tb/sup 3+/ contents, the fluorescence quenching of the /sup 5/D/sub 4/ emission is attributed to transfers to non radiative traps. 20 refs.

  10. Electrochemical studies of the molten system K2NbF7-Na2O-Nb-(LiF-NaF-KF)(eut) at 700 degrees C

    DEFF Research Database (Denmark)

    Rosenkilde, C.; Vik, A.; Østvold, T.

    2000-01-01

    Various voltammetric methods have been used to study FLINAK (LiF-NaF-KF eutectic melt 46.5-11.5-42 mol %) melts containing about 1 mol % niobium-fluoro and -oxofluoro complexes with Nh in oxidation states (V) and (IV) at 700 degrees C and varying amounts of Na2O in the range 0 ... indications of the coexistence of the oxygen rich Nb(V)OF complexes and O-2(-) ions in FLINAK at n(O)(0)/n(Nb)(0) > 4 have been found. An equilibrium/sampling/analysis technique was also used to study this system without Nb metal added. The results mainly agree with the results of the voltammetric studies...

  11. Emission analysis of Tb3+-and Sm3+-ion-doped (Li2O/Na2O/K2O) and (Li2O + Na2O/Li2O + K2O/K2O + Na2O)-modified borosilicate glasses.

    Science.gov (United States)

    Naveen Kumar Reddy, B; Sailaja, S; Thyagarajan, K; Jho, Young Dahl; Sudhakar Reddy, B

    2017-12-28

    Four series of borosilicate glasses modified by alkali oxides and doped with Tb 3+ and Sm 3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B 2 O 3 + 10SiO 2 + 5MgO + R + 0.5(Tb 2 O 3 /Sm 2 O 3 ) [where R = 10(Li 2 O /Na 2 O/K 2 O) for series A and C, and R = 5(Li 2 O + Na 2 O/Li 2 O + K 2 O/K 2 O + Na 2 O) for series B and D]. The X-ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5 D 4 → 7 F 5 (543 nm) transition of the Tb 3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm 3+ ions with the series C and D glasses showed strong reddish-orange emission at 600 nm ( 4 G 5/2 → 6 H 7/2 ) with an excitation wavelength λ exci = 404 nm ( 6 H 5/2 → 4 F 7/2 ). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb 3+ and Sm 3+ ions was studied to optimize the potential alkali-oxide-modified borosilicate glass. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Diffusion Phenomena of Fluorine and Cations in Molten Li2BeF4,LiBeF3 and NaBeF3

    OpenAIRE

    大野 英雄

    1984-01-01

    本報告は過去10年近くにわたり行ってきた、溶融Li2BeF4、LiBeF3およびNaBeF3中のフッ素ならびにカチオンの自己拡散現象について総合的にまとめたものである。これら溶融塩中におけるカチオンの自己拡散係数は、活性化エネルギーも小さく、典型的なアルカリハライド液体と同様な挙動を示す。一方、これら溶融塩中のフッ素の挙動は、活性化エネルギーも大きく、高温で大きな自己拡散係数をもち、溶融アルカリ土類珪酸塩中の酸素と同様な挙動を示す。核磁気共鳴の解析結果と合わせ考えると、跳躍拡散模型(一つの錯イオンからフッ素が解離し、液中を拡散して、h化の錯イオンのF空孔にとらえられる)が、この異常なフッ素の自己拡散現象を説明し得る最も可能性の高い模型のように思われる。...

  13. Ionic ASi2N3 (A=Li, Na, K and Rb) stabilized by the covalent Si-N bonding: First-principles calculations

    Science.gov (United States)

    Zhang, Huijun; Ren, Jiadong; Wu, Lailei; Zhang, Jingwu

    2017-01-01

    The structural, elastic and electronic properties of LiSi2N3 and its substitutions by Na, K and Rb were investigated through first-principles computations. The expansion of lattice parameters of ASi2N3 from Li, Na, K to Rb is found to be determined by the bond angle of Si-N1-Si, which suggests a possible way to improve the lithium ionic conductivity by substitutions. ASi2N3 (A=Li, Na, K and Rb) shows the similar elastic behaviors, while the electronic band gap gradually decreases from 5.1 to 3.4 eV from LiSi2N3 to RbSi2N3. Interestingly, the analysis of electronic structure, crystal orbital Hamiltonian populations and Bader charges shows that the covalence of Si-N bonding is critical for the stability of ASi2N3 phase. Among ASi2N3 phases, there is a relatively high ionicity in NaSi2N3; the Si-N bond strength in [Si2N3]- net for KSi2N3 and RbSi2N3 is comparable to LiSi2N3, but stronger than NaSi2N3.

  14. Atomic Layer Deposited MgO: A Lower Overpotential Coating for Li[Ni0.5Mn0.3Co0.2]O2 Cathode.

    Science.gov (United States)

    Laskar, Masihhur R; Jackson, David H K; Xu, Shenzhen; Hamers, Robert J; Morgan, Dane; Kuech, Thomas F

    2017-03-29

    An ultrathin MgO coating was synthesized via atomic layer deposition (ALD) to improve the surface properties of the Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathode. An in-situ quartz crystal sensor was used to monitor the "self-limiting" surface reactions during ALD process and estimate the density of the deposited film. The electrochemical performance of the MgO-coated NMC cathode was evaluated in a half-cell assembly and compared to other ALD-based coatings, such as Al2O3 and ZrO2. Cyclic voltammetry studies suggested that ALD MgO has a higher Li-diffusion coefficient which resulted in lower overpotential on the NMC cathode surface and improved Li-ion battery rate performance. MgO-coated NMC also yielded improved capacity retention over uncoated NMC in a long-range cycling test.

  15. Structural, electronic properties and charge density distribution of the LiNaB{sub 4}O{sub 7}: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, Ali Hussain, E-mail: maalidph@yahoo.co.uk [School of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Chen, Xuean, E-mail: xueanchen@bjut.edu.cn [College of Materials Science and Engineering, Beijing University of Technology, Ping Le Yuan 100, Beijing 100124 (China); Auluck, S. [National Physical Laboratory Dr. K S Krishnan Marg, New Delhi 110012 (India); Kamarudin, H. [School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia)

    2012-11-15

    The title compound was synthesized by employing high-temperature solution reaction methods at 840 Degree-Sign C. Single-crystal XRD analysis showed that it crystallizes in the orthorhombic noncentrosymmetric space group Fdd2, with unit cell parameters a = 13.326(3) Angstrom-Sign , b = 14.072(3) Angstrom-Sign , c = 10.238(2) Angstrom-Sign , Z = 16, and V = 1919.9(7) Angstrom-Sign {sup 3}. It has two independent and interpenetrating 3D frameworks consisting of [B{sub 4}O{sub 9}]{sup 6-} groups bridged by O atoms, with intersecting channels occupied by Na{sup +} and Li{sup +} cations. The IR spectrum further confirmed the presence of both BO{sub 3} and BO{sub 4} groups. UV-vis diffuse reflectance spectrum showed a band gap of about 3.88 eV. Solid-state fluorescence spectrum exhibited the maximum emission peak at around 337.8 nm. Furthermore we have performed theoretical calculations by employing the state-of-the-art all-electron full potential linearized augmented plane wave (FP-LAPW) method to solve the Kohn Sham equations. We have optimized the atomic positions taken from our XRD data by minimizing the forces. The optimized atomic positions are used to calculate the electronic band structure, the atomic site-decomposed density of states, electron charge density and the chemical bonding features. The calculated electronic band structure and densities of states suggested that this single crystal possesses a wide energy band gap of about 2.80 eV using the local density approximation, 2.91 eV by generalized gradient approximation, 3.21 eV for the Engel-Vosko generalized gradient approximation and 3.81 eV using modified Becke-Johnson potential (mBJ). This compares well with our experimentally measured energy band gap of 3.88 eV. From our calculated electron charge density distribution, we obtain an image of the electron clouds that surround the molecules in the average unit cell of the crystal. The chemical bonding features were analyzed and the substantial covalent

  16. Na-doped LiMnPO4 as an electrode material for enhanced lithium ...

    Indian Academy of Sciences (India)

    Hybrid electric vehicles require lithium rechargeable batter- ies because of their excellent power density and long life time [1]. Cathode is the most important element within the lithium batteries, which gives significant impact on capacity and electrochemical performance. Lithium manganese phos- phate (LiMnPO4) is mainly ...

  17. Supernumerary rainbows in the angular distribution of scattered projectiles for grazing collisions of fast atoms with a LiF(001) surface.

    Science.gov (United States)

    Schüller, A; Winter, H

    2008-03-07

    Fast atoms with keV energies are scattered under a grazing angle of incidence from a clean and flat LiF(001) surface. For scattering along low index azimuthal directions within the surface plane ("axial surface channeling") we observe pronounced peak structures in the angular distributions for scattered projectiles that are attributed to "supernumerary rainbows." This phenomenon can be understood in the framework of quantum scattering only and is observed here up to projectile energies of 20 keV. We demonstrate that the interaction potential and, in particular, its corrugation for fast atomic projectiles at surfaces can be derived with a high accuracy.

  18. Interaction potentials for multi-electron atoms in front of a LiF (0 0 1) surface from rainbow scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, C1428EGA Buenos Aires (Argentina); Miraglia, J.E., E-mail: miraglia@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, C1428EGA Buenos Aires (Argentina); Schüller, A.; Winter, H. [Institut für Physik, Humboldt Universität zu Berlin, Newtonstrasse 15, D-12489 Berlin-Adlershof (Germany)

    2013-12-15

    Pairwise interaction potentials for multi-electron atoms moving in front of a LiF (0 0 1) surface are investigated theoretically and experimentally. From angular distributions of fast He, N, S, Cl and Kr atoms grazingly scattered under axial surface channeling conditions, rainbow angles are experimentally determined for a wide range of energies for the motion normal to the surface plane. These angles are used as a benchmark to probe the pairwise potential model. In the simulations the scattering process is described by means of the surface eikonal approximation, while the atom–surface interaction is derived by adding binary interatomic potentials that include the proper asymptotic limit.

  19. In Situ Tracking Kinetic Pathways of Li+/Na+Substitution during Ion-Exchange Synthesis of LixNa1.5-xVOPO4F0.5.

    Science.gov (United States)

    Park, Young-Uk; Bai, Jianming; Wang, Liping; Yoon, Gabin; Zhang, Wei; Kim, Hyungsub; Lee, Seongsu; Kim, Sung-Wook; Looney, J Patrick; Kang, Kisuk; Wang, Feng

    2017-09-13

    Ion exchange is a ubiquitous phenomenon central to wide industrial applications, ranging from traditional (bio)chemical separation to the emerging chimie douce synthesis of materials with metastable structure for batteries and other energy applications. The exchange process is complex, involving substitution and transport of different ions under non-equilibrium conditions, and thus difficult to probe, leaving a gap in mechanistic understanding of kinetic exchange pathways toward final products. Herein, we report in situ tracking kinetic pathways of Li + /Na + substitution during solvothermal ion-exchange synthesis of Li x Na 1.5-x VOPO 4 F 0.5 (0 ≤ x ≤ 1.5), a promising multi-Li polyanionic cathode for batteries. The real-time observation, corroborated by first-principles calculations, reveals a selective replacement of Na + by Li + , leading to peculiar Na + /Li + /vacancy orderings in the intermediates. Contradicting the traditional belief of facile topotactic substitution via solid solution reaction, an abrupt two-phase transformation occurs and predominantly governs the kinetics of ion exchange and transport in the 1D polyanionic framework, consequently leading to significant difference of Li stoichiometry and electrochemical properties in the exchanged products. The findings may help to pave the way for rational design of ion exchange synthesis for making new materials.

  20. In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO2 Cathode in a Working All-Solid-State Battery.

    Science.gov (United States)

    Gong, Yue; Zhang, Jienan; Jiang, Liwei; Shi, Jin-An; Zhang, Qinghua; Yang, Zhenzhong; Zou, Dongli; Wang, Jiangyong; Yu, Xiqian; Xiao, Ruijuan; Hu, Yong-Sheng; Gu, Lin; Li, Hong; Chen, Liquan

    2017-03-29

    We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.

  1. Origin of d{sup 0} half-metallic characteristic in DO{sub 3}-type XO{sub 3} (X=Li, Na, K and Rb) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaotian [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China); Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Cheng, Zhenxiang, E-mail: cheng@uow.edu.au [Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Wang, Jianli [Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Rozale, Habib [Condensed Matter and Sustainable Development Laboratory, Physics Department, University of Sidi-Bel-Abbès, 22000 Sidi-Bel-Abbès (Algeria); Yang, Juntao [School of Science, Hubei University of Automotive Technology, Shiyan Hubei 442002 (China); Yu, Zheyin [Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Liu, Guodong, E-mail: gdliu1978@126.com [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-08-15

    Plane-wave pseudo-potential methods based on density functional theory are employed to investigate the electronic structures, magnetic properties of newly designed DO{sub 3}-type XO{sub 3} (X=Li, Na, K and Rb) compounds. Result shows they are d{sup 0} HM ferromagnets with total magnetic moment of 5.00 μ{sub B}. Importantly, the d{sup 0} HM characteristic is originated from the polarization of the p-orbitals of O atoms in these hypothetical compounds. The structure stability in the aspects of cohesion energy and formation energy of these four compounds have been tested. The spin-flip gaps of the four XO{sub 3} compounds are quite large (>1.00 eV). Furthermore, the d{sup 0} HM behavior can be maintained in a wide range of lattice constants. - Highlights: • In an attempt to combine the properties of DO{sub 3}-type and d{sup 0} HMFs, XO{sub 3} have been designed. • The electronic structures and magnetism of the XO{sub 3} have been studied. • The effect of uniform strain on the spin polarization ratio have been tested. • The origin of the d{sup 0} HM character have been explained. • Total energy calculation and structure stability have been performed.

  2. Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition Towards High Rate Durable Li Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2015-06-03

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in Lithium (Li) ion batteries at high rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2 coated MoO3 electrodes is 68% higher than bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2 coated MoO3 electrodes exhibited specific capacity of 657 mAh/g, on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2 coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li–ions through the passivation layer to the active material. Furthermore, ex–situ HRTEM, X–ray photoelectron spectroscopy (XPS), Raman spectroscopy and X–ray diffraction was carried out to explain the capacity retention mechanism after HfO2 coating.

  3. Role of atomic-level defects and electronic energy loss on amorphization in LiNbO3 single crystals

    Science.gov (United States)

    Sellami, N.; Crespillo, M. L.; Xue, H.; Zhang, Y.; Weber, W. J.

    2017-08-01

    Understanding complex non-equilibrium defect processes, where multiple irradiation mechanisms may take place simultaneously, is a long standing subject in material science. The separate and combined effects of elastic and inelastic energy loss are a very complicated and challenging topic. In this work, LiNbO3 has been irradiated with 0.9 MeV Si+ and 8 MeV O3+, which are representative of regimes where nuclear (S n) and electronic (S e) energy loss are dominant, respectively. The evolution of damage has been investigated by Rutherford backscattering spectrometry (RBS) in channeling configuration. Pristine samples were irradiated with 0.9 MeV Si+ ions to create different pre-existing damage states. Below the threshold (S e,th  =  5-6 keV nm-1) for amorphous track formation in this material, irradiation of the pristine samples with a highly ionizing beam of 8 MeV O3+ ions, with nearly constant S e of about 3 keV nm-1, induces a crystalline to amorphous phase transition at high ion fluences. In the pre-damaged samples, the electronic energy loss from the 8 MeV O3+ ions interacts synergistically with the pre-existing damage, resulting in a rapid, non-linear increase in damage production. There is a significant reduction in the incubation fluence for rapid amorphization with the increasing amount of pre-existing damage. These results highlight the important role of atomic-level defects on increasing the sensitivity of some oxides to amorphization induced by electronic energy loss. Controlling the nature and amount of pre-damage may provide a new approach to tuning optical properties for photonic device applications.

  4. Accessing a low-lying bound electronic state of the alkali oxides, LiO and NaO, using laser induced fluorescence

    Science.gov (United States)

    Pugh, J. V.; Shen, K. K.; Winstead, C. B.; Gole, J. L.

    1996-01-01

    The first laser based probe for the sodium and lithium monoxides is established. The Li(Na)+N 2O reactions studied in a multiple collision entrainment mode produce the LiO and NaO ground X 2Π and low-lying monoxide excited states. In contrast to the alkali halides, laser induced excitation spectroscopy confirms that the LiO and NaO B 2Π states, counter to recent predictions, are located at energies well below the ground state dissociation asymptote and, as predicted, possess significant binding energies. An assignment of the laser induced excitation spectra (LIF) for the B 2Π-X 2Π transitions of LiO in the region 3940-4300 Å is based on a direct correlation with the observed chemiluminescence (CL) from the lowest level of the LiO B 2Π state ( ˜4000-7000 Å) and high quality ab initio calculations for the ground state. The self-consistent assignment of the observed LIF and CL spectra makes use of the complimentary extended progressions in the X 2Π (CL) and B 2Π (LIF) vibrational level structure which results from the significant shift of the B 2Π excited state potential relative to that of the ground state. The experimental data are consistent with an excited state vibrational frequency separation of order 130 cm -1, and T e( B2Π) ≈ 26078 ± 800 cm-1. The latter value, in correlation with the ground state dissociation energy of LiO, suggests a B 2Π excited state dissociation energy well in excess of 2000 cm -1. The radiative lifetimes of the lowest levels of the LiO B 2Π state, isoergic with the highest levels of the LiO ground state, are determined to be in excess of 600 ns. The corresponding NaO excitation spectra in the range 6680-7250 Å also correlate well with ab initio calculations for the ground electronic state of NaO. Within this study, we provide optical signatures which one might consider to monitor LiO or NaO in process streams. In correlation with the observed chemiluminescence from B 2Π states of the higher alkali oxides KO, RbO, and

  5. Soluble semiconductors AAsSe2 (A = Li, Na) with a direct-band-gap and strong second harmonic generation: a combined experimental and theoretical study.

    Science.gov (United States)

    Bera, Tarun K; Jang, Joon I; Song, Jung-Hwan; Malliakas, Christos D; Freeman, Arthur J; Ketterson, John B; Kanatzidis, Mercouri G

    2010-03-17

    AAsSe(2) (A = Li, Na) have been identified as a new class of polar direct-band gap semiconductors. These I-V-VI(2) ternary alkali-metal chalcoarsenates have infinite single chains of (1/infinity)[AsQ(2)(-)] derived from corner-sharing pyramidal AsQ(3) units with stereochemically active lone pairs of electrons on arsenic. The conformations and packing of the chains depend on the structure-directing alkali metals. This results in at least four different structural types for the Li(1-x)Na(x)AsSe(2) stoichiometry (alpha-LiAsSe(2), beta-LiAsSe(2), gamma-NaAsSe(2), and delta-NaAsSe(2)). Single-crystal X-ray diffraction studies showed an average cubic NaCl-type structure for alpha-LiAsSe(2), which was further demonstrated to be locally distorted by pair distribution function (PDF) analysis. The beta and gamma forms have polar structures built of different (1/infinity)[AsSe(2)(-)] chain conformations, whereas the delta form has nonpolar packing. A wide range of direct band gaps are observed, depending on composition: namely, 1.11 eV for alpha-LiAsSe(2), 1.60 eV for LiAsS(2), 1.75 eV for gamma-NaAsSe(2), 2.23 eV for NaAsS(2). The AAsQ(2) materials are soluble in common solvents such as methanol, which makes them promising candidates for solution processing. Band structure calculations performed with the highly precise screened-exchange sX-LDA FLAPW method confirm the direct-gap nature and agree well with experiment. The polar gamma-NaAsSe(2) shows very large nonlinear optical (NLO) second harmonic generation (SHG) response in the wavelength range of 600-950 nm. The theoretical studies confirm the experimental results and show that gamma-NaAsSe(2) has the highest static SHG coefficient known to date, 337.9 pm/V, among materials with band gaps larger than 1.0 eV.

  6. High-pressure synthesis of Na{sub 1-x}Li{sub x}MgH{sub 3} perovskite hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Coronado, R., E-mail: rmartinez@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid (Spain); Sanchez-Benitez, J. [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid (Spain); Dpto. Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Retuerto, M. [Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854-808 (United States); Fernandez-Diaz, M.T. [Institut Laue Langevin, BP 156X, Grenoble F-38042 (France); Alonso, J.A. [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid (Spain)

    2012-05-05

    Highlights: Black-Right-Pointing-Pointer New synthesis method for the ternary metal hydride perovskite system Na{sub 1-x}Li{sub x}MgH{sub 3}. Black-Right-Pointing-Pointer Direct reaction of simple hydrides under high-pressure and high-temperature conditions. Black-Right-Pointing-Pointer X-ray and Neutron Powder Diffraction analysis were used to identify the purity of the samples. Black-Right-Pointing-Pointer Perovskite hydride structure; more distorted and unstable as Li is introduced (smaller ionic size of Li{sup +}vs Na{sup +}). Black-Right-Pointing-Pointer Hydrogen desorption temperature much reduced respect to MgH{sub 2}; useful as hydrogen storage materials. - Abstract: Magnesium base alloys are very attractive for hydrogen storage due to their large hydrogen capacity, small weight and low-cost. We have designed a new synthesis method for the ternary metal hydride perovskite system Na{sub 1-x}Li{sub x}MgH{sub 3}, based on the direct reaction of simple hydrides under high-pressure and moderate-temperature conditions. Well-crystallized samples were obtained in a piston-cylinder hydrostatic press at moderate pressures of 2 GPa and temperatures around 750 Degree-Sign C from mixtures of MgH{sub 2}, NaH and LiH enclosed in gold capsules. X-ray and neutron powder diffraction analysis were used to identify the purity of the samples and provide an accurate description of the crystal structure features (GdFeO{sub 3} type). Na{sub 1-x}Li{sub x}MgH{sub 3} hydrides series (0 {<=} x {<=} 0.18) show an orthorhombic symmetry with space group Pnma (No. 62). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) have been carried out to determine the hydrogen desorption temperatures.

  7. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I.; Simon, M. N. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Edwards, S. [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Heyer, M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Rigliaco, E. [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Hillenbrand, L. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Gorti, U.; Hollenbach, D., E-mail: pascucci@lpl.arizona.edu [SETI Institute, Mountain View, CA 94043 (United States)

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.

  8. Charge-exchange, ionization and excitation in low-energy Li$^{+}-$ Ar, K$^{+}-$ Ar, and Na$^{+}-$He collisions

    CERN Document Server

    Lomsadze, Ramaz A; Kezerashvili, RomanYa; Schulz, Michael

    2016-01-01

    Absolute cross sections are measured for charge-exchange, ionization, and excitation within the same experimental setup for the Li$^{+}-$Ar, K$^{+}-$ Ar, and Na$^{+}-$ He collisions in the ion energy range $0.5-10$ keV. Results of our measurements along with existing experimental data and the schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. The experimental results show that the charge-exchange processes are realized with high probabilities and electrons are predominately captured in ground states. The cross section ratio for charge exchange, ionization and excitation processes roughly attains the value $10:2:1$, respectively. The contributions of various partial inelastic channels to the total ionization cross sections are estimated and a primary mechanism for the process is defined. The energy-loss spectrum, in addition, is applied to estimate the relative contribution of different inelastic channels and to determine the mechanisms for the ionization and f...

  9. Understanding doping strategies in the design of organic electrode materials for Li and Na ion batteries: an electronic structure perspective.

    Science.gov (United States)

    Lüder, Johann; Cheow, Mun Ho; Manzhos, Sergei

    2017-05-24

    In this paper, we present a systematic study of the effects of p- and n-doping in small molecules on the voltage and capacity of organic electrode materials for electrochemical batteries. In particular, coronene, phenalene derivatives as well as disodium terephthalate and related fused ring derivatives, representing often used building blocks in organic electrode materials, are chosen as model systems. We show that p-doping can drastically increase the binding strength to Li or Na and is therefore an effective strategy to design organic electrode materials for both lithium and sodium ion batteries. It could also be used to increase the theoretical capacity. On the other hand, n-doping generally has a much smaller effect on the voltage. The effects of n- and p-doping are rationalized based on the analysis of changes they induce in the band structure as well as in the molecular structure.

  10. Synthesis and characterization of O3-Na{sub 3}LiFeSbO{sub 6}: A new honeycomb ordered layered oxide

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Whitney; Berthelot, Romain [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States); Etienne, Laetitia; Wattiaux, Alain [CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, 33608 F-Pessac (France); Subramanian, M.A., E-mail: mas.subramanian@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States)

    2014-02-01

    Highlights: • A new honeycomb ordered layered oxide Na{sub 3}LiFeSbO{sub 6} was synthesized. • This compound crystallizes in the C2/c space group. • Disorder in the honeycomb arrangement of Li and Fe is present. - Abstract: A new compound Na{sub 3}LiFeSbO{sub 6} has been synthesized by conventional solid state methods and investigated using X-ray diffraction, DC magnetic susceptibility, {sup 57}Fe Mössbauer spectroscopy and optical measurements. This compound crystallizes in a monoclinic unit cell and is related to a family of honeycomb ordered layered oxide materials where Na{sup +} fills octahedral interlayer sites between Li{sub 1/3}Fe{sub 1/3}Sb{sub 1/3}O{sub 2} slabs of edge sharing octahedra. Each SbO{sub 6} octahedron is surrounded by LiO{sub 6} and FeO{sub 6} octahedra creating a honeycomb arrangement within the slabs. Powder X-ray diffraction indicates the presence of stacking faults. This compound exhibits Curie–Weiss behavior at high temperatures and the effective magnetic moment verifies the presence of high spin Fe{sup 3+}. The {sup 57}Fe Mössbauer spectroscopy confirms Fe{sup 3+} in an octahedral position and indicates disorder in the arrangement of LiO{sub 6} and FeO{sub 6} octahedra in the Li{sub 1/3}Fe{sub 1/3}Sb{sub 1/3}O{sub 2} slabs.

  11. Viscosity Coefficients of KCl, NaCl, NaI, KNO3, LiNO3, NaBPh4 and Bu4NI in Water - Dimethyl Sulfoxide Binary Mixtures With a Low Organic Solvent Content

    Directory of Open Access Journals (Sweden)

    Adam Bald

    2016-09-01

    Full Text Available In this work the viscosities of KCl, NaCl, NaI, KNO3, LiNO3, NaBPh4 and Bu4NI solutions (from ~0.01 mol dm–3 to ~0.05 mol dm–3 in water (1 + dimethyl sulfoxide (DMSO (2 binary mixtures with mole fractions of DMSO, x2 = 0.01, 0.02, 0.05, 0.075, 0.10 and 0.15, were determined at 298. 15 K. The viscosities measured were used to evaluate the viscosity B-coefficients by means of Jones-Dole's equation. The results obtained allowed us to determine the values of B± coefficients for individual ions using the assumption about the equality B(Bu4N+ = B(BPh4–. All the results have been discussed in terms of ion-solvent interactions.

  12. Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles

    NARCIS (Netherlands)

    Zhao, C.; Kong, X.; Liu, X.; Tu, L.; Wu, F.; Zhang, Y.; Liu, K.; Zeng, Q.; Zhang, H.

    2013-01-01

    The application of upconversion nanoparticles (UCNPs), especially in vivo, has so far been hampered by their relatively low upconversion efficiency. In this work, a strategy of Li+ doping was revisited with the aim of enhancing UV to blue UC luminescence of NaYF4:Yb3+, Tm3+ nanocrystals. We have

  13. Spectroscopic investigations of Cu 2 in Li2O–Na2O–B2O3–Bi2O3 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 4. Spectroscopic investigations of Cu2+ in Li2O–Na2O–B2O3–Bi2O3 glasses. N Srinivasa Rao M Purnima Shashidhar Bale K Siva Kumar Syed Rahman. Ceramics and Glasses Volume 29 Issue 4 August 2006 pp 365-370 ...

  14. Page 1 Li & Na in transition metal oxides & chalcogenides 203 (c) (d ...

    Indian Academy of Sciences (India)

    lithium incorporation seems to be determined primarily by the strength of bonding in the direction of expansion. Among the three oxides of vanadium, V6O13 taking up as many as eight lithium atoms per formula unit (four at room temperature and six at. 320 K) has been found to be good cathode material for battery ...

  15. Diagnosing, Optimizing and Designing Ni & Mn based Layered Oxides as Cathode Materials for Next Generation Li-ion Batteries and Na-ion Batteries

    Science.gov (United States)

    Liu, Haodong

    The progressive advancements in communication and transportation has changed human daily life to a great extent. While important advancements in battery technology has come since its first demonstration, the high energy demands needed to electrify the automotive industry have not yet been met with the current technology. One considerable bottleneck is the cathode energy density, the Li-rich layered oxide compounds xLi2MnO3.(1-x)LiMO 2 (M= Ni, Mn, Co) (0.5= Co) (0.5=discharge capacities greater than 280 mAh g-1 (almost twice the practical capacity of LiCoO 2). In this work, neutron diffraction under operando battery cycling is developed to study the lithium and oxygen dynamics of Li-rich compounds that exhibits oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show movement of oxygen and lattice contractions during the high voltage plateau until the end of charge. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer and transition metal layer are related to the different charge and discharge characteristics. In the second part, a combination of multi-modality surface sensitive tools was applied in an attempt to obtain a complete picture to understand the role of NH4F and Al2O3 surface co-modification on Li-rich. The enhanced discharge capacity of the modified material can be primary assigned to three aspects: decreased irreversible oxygen loss, the activation of cathode material was facilitated with pre-activated Mn3+ on the surface, and stabilization of the Ni redox pair. These insights will provide guidance for the surface modification in high voltage cathode battery materials of the future. In the last part, the idea of Li-rich has transferred to the Na-ion battery cathode. A new O3 - Na0.78Li0.18Ni0.25Mn 0.583Ow is prepared as the cathode material for Na-ion batteries, delivering exceptionally high

  16. First-principles study of the magnetic and electronic properties of AMnAs (A=Li, Na, K, Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenqi; Wu, Shuxiang; Li, Shuwei, E-mail: stslsw@mail.sysu.edu.cn

    2016-12-15

    Recent studies have demonstrated that antiferromagnetic (AFM) semiconductors are promising alternative materials for spintronic applications. In this work, we report a detailed investigation of the magnetic and electronic properties of AMnAs (A=Li, Na, K, Rb, Cs) using density functional theory. It is found that all studied compounds are ordered antiferromagnetically in the MnAs ab plane, however, along the c axis, NaMnAs is ordered ferromagnetically which is different from the AFM coupling of other materials. These results on magnetic structures are in good agreement with observed facts. Furthermore, our calculations predict that all materials have a semiconducting band structure, which indicates the potential of device applications. - Highlights: • The magnetic and electronic properties of AMnAs (A=Li, Na, K, Rb, Cs) are investigated. • The relative energetic ordering of various magnetic phases is obtained within both GGA and LDA. • Our calculations predict that all AMnAs are semiconductors.

  17. What can we learn from ionic conductivity measurements in polymer electrolytes? A case study on poly(ethylene oxide) (PEO)-NaI and PEO-LiTFSI.

    Science.gov (United States)

    Stolwijk, Nicolaas A; Wiencierz, Manfred; Heddier, Christian; Kösters, Johannes

    2012-03-15

    We explore in detail what information on ionic diffusivity and ion pairing can be exclusively gained from combining accurate direct-current conductivity data in polymer electrolytes with a novel evaluation model. The study was performed on two prototype systems based on poly(ethylene oxide) (PEO) with known disparate ion-association properties, which are due to the dissimilar salt components being either sodium iodide (NaI) or lithium bis(trifluoromethane-sulfonyl)imide (LiN(CF(3)SO(2))(2) or LiTFSI). The temperature dependence of the conductivity can be described by an extended Vogel-Tammann-Fulcher (VTF) equation, which involves a Boltzmann factor containing the pair-formation enthalpy ΔH(p). We find a distinct increase of the positive ΔH(p) values with decreasing salt concentration and similarly clear trends for the pertinent VTF parameters. The analysis further reveals that PEO-NaI combines a high pair fraction with a high diffusivity of the I(-) ion. By contrast, PEO-LiTFSI appears to be characterized by a low ion-pairing tendency and a relatively low mobility of the bulky TFSI(-) ion. The observed marked differences between PEO-NaI and PEO-LiTFSI complexes of homologous composition are most pronounced at high temperatures and low salt concentrations. © 2012 American Chemical Society

  18. First principles DFT study of ferromagnetism in SnO2 induced by doped group 1A and 2A non-magnetic elements X (X=Li, Na, K, Be, Mg, Ca)

    Science.gov (United States)

    Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2014-04-01

    Transition metal - free - ferromagnetism in diluted magnetic semiconductors (DMS) is of much current interest in the search for more efficient DMS materials for spintronic applications. Here, we report the results of our first principles density functional theory (DFT) study on impurity - induced ferromagnetism in non-magnetic SnO2 by a non-magnetic impurity. The impurities considered are sp-type of group 1A and 2A elements X (X = Li, Na, K, Be, Mg, Ca). Even a single atom of the group 1A elements makes the system magnetic, whereas for the group 2A elements Ca and Mg, a higher doping is required to induce ferromagnetism. For all the elements studied, the magnetic moment appears to increase with the doping concentration, at least at certain impurity separations, which is a positive indicator for practical applications.

  19. Incorporation of Co into MoS2/graphene nanocomposites: One effective way to enhance the cycling stability of Li/Na storage

    Science.gov (United States)

    Li, Xiaomin; Feng, Zhenxing; Zai, Jiantao; Ma, Zi-Feng; Qian, Xuefeng

    2018-01-01

    Layered transition metal dichalcogenides are promising as lithium and/or sodium storage materials for lithium and sodium (Li/Na) ion batteries. However they always exhibit limited rate capability and long-term cycling stability, due to the fact that their 2D structures are easily restacking and agglomeration during cycling process and further result poor electrochemical reversibility. Herein, hierarchical Co1/3Mo2/3S2/graphene nanocomposites without CoSx and MoS2 impurities have been synthesized via one-pot solvothermal process. The incorporation of Co into MoS2 at atomic level can not only give rise to thinner and smaller nanosheets in the nanocomposites than MoS2/graphene nanocomposites, but also significantly decrease the size of in-situ formed MoS2/CoSx nanoparticles during electrochemical conversion process, which can greatly promoting the ion diffusion and suppressing the aggregation of active materials. Furthermore, the conductivity of Co1/3Mo2/3S2/graphene nanocomposites can be enhanced from 0.46 S m-1 (MoS2/graphene) to 1.39 S m-1via changing the semiconducting MoS2 to metallic Co1/3Mo2/3S2. The simultaneously optimized electron conductivity and ions diffusion dynamics of Co1/3Mo2/3S2/graphene nanocomposites can effectively improve the reversibility of electrochemical conversion reactions. A capacity of 940 mAh g-1 and 529 mAh g-1 can be maintained at 3200th cycle (2 A g-1) in lithium-ion batteries and 200th cycle (1 A g-1) in sodium-ion batteries, respectively.

  20. Ferromagnetism in 4H-GaN polytype doped by non-magnetic light elements Li, Be, B, C, O, F, Ne, Na, and Mg: Ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Torrichi, M. [LPMF, Département de Physique Energétique, Faculté des Sciences, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, Oran (Algeria); Ferhat, M. [LPMF, Département de Génie Physique, Faculté des Sciences, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, Oran (Algeria); Bouhafs, B., E-mail: bbouhafs@gmail.com [Laboratoire de Modélisation et Simulation en Sciences des Matériaux, Université Djillali Liabès de Sidi Bel-Abbés, Sidi Bel-Abbés 22000 (Algeria)

    2016-09-15

    Using density-functional theory within the generalized-gradient approximation, we explore the magnetic behavior induced by nonmagnetic impurity X atoms, such as Li, Be, B, C, O, F, Ne, Na, and Mg on cation site in 4H-GaN polytype. The results reveal that Ne doped 4H-GaN has the highest magnetic moment of 3µ{sub B}, whereas Mg doped 4H-GaN has the lowest magnetic moment of 0.75µ{sub B}. Among the systems studied 4H-GaN doped Ne has been found to be half-metallic, whereas 4H-GaN doped F and Na are found to be nearly half-metallic. The partial density of states evidence that magnetism is achieved through a p-p like coupling between the impurity and the host 2p states. Furthermore, we inspect whether there exists a relationship between the spin-polarization and the local structure around the doping X atoms. It is found that for all the compounds studied, the total magnetic moment increases with increasing the X–N bond lengths. Interestingly, 4H-GaN:Be becomes ferromagnetic with increasing the Be–N bond length, whereas 4H-GaN:Na and 4H-GaN:F become half-metallic with increasing Na–N and F–N bond lengths. - Highlights: • The partial densities of states of 4H-GaN polytype doped light nonmagnetic elements have been investigated. • We found that 4H-GaN:Ne is half metallic. • We found that N atoms induced strong local magnetic. • We found that doping with half-filled X-s impurity states promotes ferromagnetism. • We found that doping with full-filled X-s impurity annihilates ferromagnetism.

  1. Thermal analysis and phase diagrams of the LiF BiF{sub 3} e NaF BiF{sub 3} systems; Analise termica e diagramas de fase dos sistemas LiF-BiF{sub 3} e NaF-BiF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Gerson Hiroshi de Godoy

    2013-07-01

    Investigations of the binary systems LiF-BiF{sub 3} and NaF-BiF{sub 3} were performed with the objective of clarifying the thermal behavior and phase equilibria of these systems and their intermediary phases, an important requisite for high-quality crystal growth. Several samples in the entire range of compositions (0 to 100 mol% BiF{sub 3}) of both systems were subjected to experiments of differential thermal analysis (DTA) and thermogravimetry (TG), and also of differential scanning calorimetry (DSC). A few specific compositions were selected for X-ray diffraction to supplement the experimental data. Due to the high vulnerability of BiF{sub 3} to oxygen contamination, its volatility and propensity to destroy metal parts upon heating, it was necessary to determine the optimal conditions for thermal analysis before investigating the systems themselves. Phase relations in the system LiF-BiF{sub 3} were completely clarified and a phase diagram was calculated and evaluated via the commercial software Factsage. The diagram itself consists in a simple peritectic system in which the only intermediary compound, LiBiF{sub 4}, decomposes into LiF and a liquid phase. The NaF-BiF{sub 3} system could not be completely elucidated and the phase relations in the NaF poor side (> 50% BiF{sub 3}) are still unknown. In the NaF rich side, however, the possible peritectoid decomposition of the compound NaBiF{sub 4} was identified. In both systems X-ray diffraction yielded crystal structures discrepant with the literature for the intermediary phases, LiBiF{sub 4}, NaBiF{sub 4} and a solid solution of NaF and BiF{sub 3} called {sup I.} The observed structures remain unknown and explanations for the discrepancies were proposed. (author)

  2. Emergence of Multiple Superconducting Phases in (NH3)yMxFeSe (M: Na and Li).

    Science.gov (United States)

    Zheng, Lu; Miao, Xiao; Sakai, Yusuke; Izumi, Masanari; Goto, Hidenori; Nishiyama, Saki; Uesugi, Eri; Kasahara, Yuichi; Iwasa, Yoshihiro; Kubozono, Yoshihiro

    2015-08-04

    We previously discovered multiple superconducting phases in the ammoniated Na-doped FeSe material, (NH3)yNaxFeSe. To clarify the origin of the multiple superconducting phases, the variation of Tc was fully investigated as a function of x in (NH3)yNaxFeSe. The 32 K superconducting phase is mainly produced in the low-x region below 0.4, while only a single phase is observed at x  =  1.1, with Tc =  45 K, showing that the Tc depends significantly on x, but it changes discontinuously with x. The crystal structure of (NH3)yNaxFeSe does not change as x increases up to 1.1, i.e., the space group of I4/mmm. The lattice constants, a and c, of the low-Tc phase (Tc = 32.5 K) are 3.9120(9) and 14.145(8) Å, respectively, while a = 3.8266(7) Å and c = 17.565(9) Å for the high-Tc phase (~46 K). The c increases in the high Tc phase, implying that the Tc is directly related to c. In (NH3)yLixFeSe material, the Tc varies continuously within the range of 39 to 44 K with changing x. Thus, the behavior of Tc is different from that of (NH3)yNaxFeSe. The difference may be due to the difference in the sites that the Na and Li occupy.

  3. Characterization of Anthraquinone-DerivedRedox Switchable Ionophores and Their Complexes with Li+, Na+, K+, Ca+, and Mg+ Metal Ions

    Directory of Open Access Journals (Sweden)

    Vaishali Vyas

    2011-01-01

    Full Text Available Anthraquinone derived redox switchable ionophores 1,5 bis (2-(2-(2-ethoxy ethoxy ethoxyanthracene-9,10-dione (V1 and 1,8-bis(2-(2-(2-ethoxyethoxyethoxy anthracene—9,10-dione (V2 have been used for isolation, extraction and liquid membrane transport studies of Li+, Na+, K+, Ca2+ and Mg2+ metal ions. These isolated complexes were characterized by melting point determination, CV and IR, 1H NMR spectral analysis. Ionophore V2 shows maximum shift in reduction potential (ΔE with Ca(Pic2. The observed sequence for the shifting in reduction potential (ΔE between V2 and their complexes is V2 calcium picrate (42 mV > V2 potassium picrate (33 mV > V2 lithium picrate (25 mV > V2 sodium picrate (18 mV > V2 magnesium picrate (15 mV. These findings are also supported by results of extraction, back extraction and transport studies. Ionophore V2 complexed with KPic and showed much higher extractability and selectivity towards K+ than V1. These synthetic ionophores show positive and negative cooperativity towards alkali and alkaline earth metal ions in reduced and oxidized state. Hence, this property can be used in selective separation and enrichment of metal ions using electrochemically driven ion transport.

  4. Transesterification of used cooking oil over alkali metal (Li, Na, K supported rice husk silica as potential solid base catalyst

    Directory of Open Access Journals (Sweden)

    Noor Hindryawati

    2014-06-01

    Full Text Available Investigation was conducted on three alkali metals (Li, Na, and K supported by rice husk silica as catalysts for methyl esters production. A simple pseudo-heterogeneous transesterification process of used cooking oil with methanol was conducted to produce methyl esters using calcined alkali metal supported rice husk silica as a solid catalyst. Alkali metal silicate catalysts showed longer lasting activity than the traditional alkali catalysts. The optimum conditions for the process were: alkali metals silicate calcination temperature 500 °C, time 3 h; catalyst amount 3%; methanol to oil molar ratio 9:1; and a reaction temperature of 65 °C. The process was able to transesterify oil to methyl esters in the range of 96.5–98.2% in 1 h for all series. The catalyst is able to tolerant free fatty acid and moisture up to 1.25% and 1.75%, respectively. The catalyst was easily separated from the reaction mixture by filtration and able to reuse six times. The final product met the selected biodiesel fuel properties in accordance with European Standard (EN 14214.

  5. Unprecedented phase transition sequence in the perovskite Li0.2Na0.8NbO3

    Directory of Open Access Journals (Sweden)

    Charlotte A. L. Dixon

    2017-05-01

    Full Text Available The perovskite Li0.2Na0.8NbO3 is shown, by powder neutron diffraction, to display a unique sequence of phase transitions at elevated temperature. The ambient temperature polar phase (rhombohedral, space group R3c transforms via a first-order transition to a polar tetragonal phase (space group P42mc in the region 150–300°C; these two phases correspond to Glazer tilt systems a−a−a− and a+a+c−, respectively. At 500°C a ferroelectric–paraelectric transition takes place from P42mc to P42/nmc, retaining the a+a+c− tilt. Transformation to a single-tilt system, a0a0c+ (space group P4/mbm, occurs at 750°C, with the final transition to the aristotype cubic phase at 850°C. The P42mc and P42/nmc phases have each been seen only once and twice each, respectively, in perovskite crystallography, in each case in compositions prepared at high pressure.

  6. Charge transfer and association of Na+ with 87Rb atoms from extremely low to intermediate energies

    Science.gov (United States)

    Yan, L. L.; Liu, L.; Wu, Y.; Qu, Y. Z.; Wang, J. G.; Buenker, R. J.

    2013-07-01

    The nonradiative charge-transfer processes in Na++87Rb(5s) collisions have been investigated by using the quantum-mechanical molecular-orbital close-coupling method and the two-center atomic-orbital close-coupling method for the energy range of 10-4-5 and 0.3-100 keV/u, respectively. The radiative charge-transfer, radiative-decay, and radiative-association processes have been investigated by using the fully quantum, optical-potential, and semiclassical methods for the energy range of 10-18-0.2 eV/u. The nonradiative charge-transfer processes dominate the collisions for energies above 0.2 eV/u and radiative-decay processes dominate in the lower-energy region. At the very low collision energies of 10-18-10-3 eV/u, the radiative-association process is more important than the radiative charge-transfer process. Most importantly, it is found that the radiative cross sections exhibit Langevin behavior as E-1/2 for energies less than 10-2 eV/u.

  7. Ultramicroporous Carbon through an Activation-Free Approach for Li-S and Na-S Batteries in Carbonate-Based Electrolyte.

    Science.gov (United States)

    Hu, Lei; Lu, Yue; Zhang, Tianwen; Huang, Tao; Zhu, Yongchun; Qian, Yitai

    2017-04-26

    We report an activation-free approach for fabricating ultramicroporous carbon as an accommodation of sulfur molecules for Li-S and Na-S batteries applications in carbonate-based electrolyte. Because of the high specific surface area of 967 m2 g-1, as well as 51.8% of the pore volume is contributed by ultramicropore with pore size less than 0.7 nm, sulfur cathode exhibits superior electrochemical behavior in carbonate-based electrolyte with a capacity of 507.9 mA h g-1 after 500 cycles at 2 C in Li-S batteries and 392 mA h g-1 after 200 cycles at 1 C in Na-S batteries, respectively.

  8. The compressibility mechanism of Li3Na3In2F12 garnet

    DEFF Research Database (Denmark)

    Grzechnik, Andrzej; Balic Zunic, Tonci; Makovicky, Emil

    2006-01-01

    The high pressure behaviour of Li3Na3In2F12 garnet (Ia¯3d, Z = 8) is studied up to 9.2 GPa at room temperature in diamond anvil cells using xray diffraction. Its equation of state to 9.2 GPa and the pressure dependences of the structural parameters to 4.07 GPa are determined from synchrotron angl...

  9. Structure and properties of (1− x)[(K0. 5Na0. 5) NbO3–LiSbO3 ...

    Indian Academy of Sciences (India)

    Lead-free piezoelectric ceramics ( 1 − x ) [0.95(K 0.5 Na 0.5 )NbO 3 –0.05LiSbO 3 ]– x BiFe 0.8 Co 0.2 O 3 (KNN–LS– x BFC) were prepared by a conventional sintering technique. The effect of BFC content on the structure, piezoelectricand electrical properties of KNN–LS ceramics was investigated. The results reveal that ...

  10. Effects of Core-valence and Core-core Correlation On the Line-strength of the Resonance Lines In Li-i and Na-i

    OpenAIRE

    Brage, Tomas; Fischer, C.F.; Jonsson, P

    1994-01-01

    The resonance lines in Li I and Na I both exhibit a puzzling discrepancy between experiment and accurate ab initio calculations. Only results from a semiempirical method, that in principal neglects core-core correlation, agree with the experiments. The agreement with a multiconfiguration Hartree-Fock calculation, including only core-valence correlation, shows that this might be fortuitous. A method for including some core-core correlation is designed and gives results in excellent agreement w...

  11. Effects of Er{sup 3+} and Yb{sup 3+} doping on structural and non-linear optical properties of LiNaSO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Palmero, I.C. [Departamento de Fisica Basica, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Gonzalez-Silgo, C. [Departamento de Fisica Fundamental II, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Torres, M.E. [Departamento de Fisica Basica, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Marrero-Lopez, D. [Departamento de Quimica Inorganica, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Rivera-Lopez, Fernando [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain)], E-mail: frivera@ull.es; Haro-Gonzalez, P. [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Solans, X. [Departament de Cristallografia, Universitat de Barcelona, E-08028, Barcelona (Spain)

    2008-05-15

    We have characterized LiNaSO{sub 4} crystals doped with rare earth (RE) (Er{sup 3+} and Yb{sup 3+}) to give new insights about their structural properties relations. The samples were analyzed by X-ray single crystal diffraction and differential thermal analysis. The non-centrosymmetry was confirmed second-harmonic generation. Inductively coupled plasma (ICP) and emission experiments confirmed the nominal concentrations of the REs. Crystallographic data and two empirical models were employed to understand the structural modifications by substitution of the Na site which reduces, monotonically, the non-linear optical coefficients and the temperature of the phase transition in these crystals.

  12. Synthesis and enhancement of luminescence intensity by co-doping of M+ (M = Li, Na, K) in Ce3+ doped strontium haloborate

    Science.gov (United States)

    Gawande, A. B.; Sonekar, R. P.; Omanwar, S. K.

    2014-05-01

    Photoluminescence properties of Ce3+ doped strontium haloborates synthesized by solution combustion technique were studied. Sr2B5O9Cl:Ce3+ produce emission band peaking at 345 nm under 307 nm excitation radiation. Enhancement of luminescence intensity was observed when M+ (Li+, Na+, K+) ions were used as co-dopant in Sr2B5O9Cl:Ce3+. Charge compensation by Na+ ion in Sr2B5O9Cl:Ce3+ show strongest luminescence intensity at 345 nm under 307 nm excitation radiation.

  13. Enhanced photoluminescence of Gd2O3:Eu3+ nanophosphors with alkali (M=Li+, Na+, K+) metal ion co-doping.

    Science.gov (United States)

    Dhananjaya, N; Nagabhushana, H; Nagabhushana, B M; Rudraswamy, B; Shivakumara, C; Narahari, K; Chakradhar, R P S

    2012-02-01

    Gd(1.95)Eu(0.04)M(0.01)O(3) (M=Li(+), Na(+), K(+)) nanophosphors have been synthesized by a low temperature solution combustion (LSC) method. Powder X-ray diffraction pattern (PXRD), scanning electron microscopy (SEM), UV-vis and photoluminescence (PL) measurements were carried out to characterize their structural and luminescent properties. The excitation and emission spectra indicated that the phosphor could be well excited by UV light (243 nm) and emit red light about 612 nm. The effect of alkali co-dopant on PL properties has been examined. The results showed that incorporation of Li(+), Na(+) and K(+) in to Gd(2)O(3):Eu(3+) phosphor would lead to a remarkable increase of photoluminescence. The PL intensity of Gd(2)O(3):Eu(3+) phosphor was improved evidently by co-doping with Li(+) ions whose radius is less than that of Gd(3+) and hardly with Na(+), K(+) whose radius is larger than that of Gd(3+). The effect of co-dopants on enhanced luminescence was mainly regarded as the result of a suitable local distortion of crystal field surrounding the Eu(3+) activator. These results will play an important role in seeking some more effective co-dopants. Copyright © 2011. Published by Elsevier B.V.

  14. Amorphous MoS3as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries.

    Science.gov (United States)

    Ye, Hualin; Ma, Lu; Zhou, Yu; Wang, Lu; Han, Na; Zhao, Feipeng; Deng, Jun; Wu, Tianpin; Li, Yanguang; Lu, Jun

    2017-12-12

    Many problems associated with Li-S and Na-S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS 3 as such a material for room-temperature Li-S and Na-S batteries. In Li-S batteries, MoS 3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 °C. MoS 3 can also be used as the cathode material of even more challenging Na-S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS 3 It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates.

  15. Infraestrutura na Amazônia: as lições dos planos plurianuais

    Directory of Open Access Journals (Sweden)

    Philip Martin Fearnside

    Full Text Available O sistema de avaliação de impacto ambiental no Brasil ainda não é capaz de lidar com o desafio apresentado pelos planos plurianuais, que têm sido a forma de organizar as prioridades do governo desde 1996. Espera-se que esse desafio resulte no fortalecimento do sistema. Problemas genéricos com o processo de licenciamento incluem: a formação de lobby a favor da construção, antes de serem tomadas as decisões sobre a prudência dos projetos; o "efeito arrasto" de terceiros, devido à atividade econômica estimulada pela infraestrutura, que escapa do sistema de avaliação de impacto ambiental; uma forte tendência para empresas de consultoria produzirem relatórios favoráveis, como resultado de tentações embutidas no sistema; uma ênfase burocrática na existência de passos, tais como a submissão de relatórios e a realização de audiências públicas, sem considerar o conteúdo do que é dito; e a inabilidade do sistema de avaliação de impactos de considerar a cadeia de eventos que são deslanchados quando um determinado projeto é empreendido. O exemplo dos planos plurianuais, desde o Brasil em Ação (1996-1999 até o atual PAC-2 (Programa de Aceleração do Crescimento-2, 2012-2015, deixa clara a necessidade de se repensar a maneira como grandes programas de desenvolvimento são decididos e promovidos, assim como a necessidade de se reconsiderar a prudência de vários projetos que os compõem.

  16. Respuesta Ferro-Piezoeléctrica de (K,Na,Li(Nb,Ta,SbO3 Poroso

    Directory of Open Access Journals (Sweden)

    Barolin, S. A.

    2014-02-01

    Full Text Available KNL-NTS powder with (K0.44Na0.52Li0.04(Nb0.86Ta0.10Sb0.04O3 stoichiometry was prepared following the conventional ceramic method of mixing carbonates and oxides. KNL-NTS powder synthesis is carried out in solid state at 700 ºC for 3h. To obtain ceramic samples with different porosity the sintering of pellets is carried out in air at different temperatures between 1088 and 1125 ºC for 2h. Structural and microstructural characterizations are performed by XRD and SEM and the degree and type of porosity is determined by mercury intrusion porosimetry. The influence of sintering temperature on the porosity and its consequence on both the ferroelectric hysteresis loops and the piezoelectric response was evaluated. The maximum densification is achieved at 1125 ºC and the best ferroelectric response is achieved in sintered pellets at 1125 ºC. Meanwhile, it was observed that pellets sintered in a lower temperature range (1094-1100 ºC where porosity reaches values up to 15 % have good ferroelectric piezoelectric response, similar to that found in the sintered pellets to 1125 ºC.Polvo de KNL-NTS con estequiometria (K0.44Na0.52Li0.04(Nb0.86Ta0.10Sb0.04O3 fue preparado siguiendo el método convencional cerámico de mezcla de carbonatos y óxidos. La síntesis del polvo de KNL-NTS fue llevada a cabo en estado sólido a 700 ºC durante 3h. Para obtener muestras cerámicas con diferente porosidad, se llevó a cabo la sinterización de pastillas en un rango de temperaturas entre 1088 y 1125 ºC durante 2h en aire. Las muestras fueron caracterizadas estructural y microestructuralmente mediante DRX y MEB, y se determinó el grado y tipo de porosidad mediante porosimetría de intrusión de mercurio. Se investigó la influencia de la temperatura de sinterización en la porosidad y se evaluó el impacto de la misma en los ciclos de histéresis ferroeléctricos y la respuesta piezoeléctrica de las pastillas. La máxima densificación del material se consigue a

  17. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin

    2016-06-14

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ\\' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ\\' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  18. SnO2 anode surface passivation by atomic layer deposited HfO2 improves li-ion battery performance

    KAUST Repository

    Yesibolati, Nulati

    2014-03-14

    For the first time, it is demonstrated that nanoscale HfO2 surface passivation layers formed by atomic layer deposition (ALD) significantly improve the performance of Li ion batteries with SnO2-based anodes. Specifically, the measured battery capacity at a current density of 150 mAg -1 after 100 cycles is 548 and 853 mAhg-1 for the uncoated and HfO2-coated anodes, respectively. Material analysis reveals that the HfO2 layers are amorphous in nature and conformably coat the SnO2-based anodes. In addition, the analysis reveals that ALD HfO2 not only protects the SnO2-based anodes from irreversible reactions with the electrolyte and buffers its volume change, but also chemically interacts with the SnO2 anodes to increase battery capacity, despite the fact that HfO2 is itself electrochemically inactive. The amorphous nature of HfO2 is an important factor in explaining its behavior, as it still allows sufficient Li diffusion for an efficient anode lithiation/delithiation process to occur, leading to higher battery capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Conversion of fluor-phlogopite to hydroxy-phlogopite in NaOH and LiOH hydrothermal solutions. Suinetsu joken ka ni okeru NaOH, LiOH suiyoeki wo mochiita fusso kin prime unmo no F/OH kokan

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T.; Nakazawa, H. (National Inst. for Research in Inorganic Materials, Tsukuba (Japan)); Sugimori, K. (Topy Industries, Ltd, Tokyo (Japan))

    1991-09-01

    If it is possible to make conversion of flourine into OH radical by adding some treatment using flour-phlogopite to be produced with rather cheap cost as a material, it is safety to use it for human bodies such as cosmetics and is possible to extend its utilizing field. Authors have carried out F/OH excange reactions using KOH in the former report, and have examined production conditions of hydroxy-phlogopite and its conversion mechanism. in this paper, experiments of using LiOH and NaOH solutions were added, and examined characteristics on F/OH conversion reactions by three kinds of strong alkali. As a result, progressing degree of F/OH conversion reactions using flour-phlogopite was in the order of NaOH > KOH > LiOH, and in case of NaOH, the conversion rate was about 90% with the reaction conditions of 7 days by 600 {degree} C. Moreover, produced crystallization of hydroxy-phlogopite was in the order of NaOH > KOH {approximately} LiOH, which was rather good. In case of NaOH, since its crystal was large, even there were grain size of 0.5 mm could be found. 21 refs., 4 figs., 2 tabs.

  20. Ca(2+) clearance by plasmalemmal NCLX, Li(+)-permeable Na(+)/Ca(2+) exchanger, is required for the sustained exocytosis in rat insulinoma INS-1 cells.

    Science.gov (United States)

    Han, Young-Eun; Ryu, Shin-Young; Park, Sun-Hyun; Lee, Kyu-Hee; Lee, Suk-Ho; Ho, Won-Kyung

    2015-12-01

    Na(+)/Ca(2+) exchangers are key players for Ca(2+) clearance in pancreatic β-cells, but their molecular determinants and roles in insulin secretion are not fully understood. In the present study, we newly discovered that the Li(+)-permeable Na(+)/Ca(2+) exchangers (NCLX), which were known as mitochondrial Na(+)/Ca(2+) exchangers, contributed to the Na(+)-dependent Ca(2+) movement across the plasma membrane in rat INS-1 insulinoma cells. Na(+)/Ca(2+) exchange activity by NCLX was comparable to that by the Na(+)/Ca(2+) exchanger, NCX. We also confirmed the presence of NCLX proteins on the plasma membrane using immunocytochemistry and cell surface biotinylation experiments. We further investigated the role of NCLX on exocytosis function by measuring the capacitance increase in response to repetitive depolarization. Small interfering (si)RNA-mediated downregulation of NCLX did not affect the initial exocytosis, but significantly suppressed sustained exocytosis and recovery of exocytosis. XIP (NCX inhibitory peptide) or Na(+) replacement for inhibiting Na(+)-dependent Ca(2+) clearance also selectively suppressed sustained exocytosis. Consistent with the idea that sustained exocytosis requires ATP-dependent vesicle recruitment, mitochondrial function, assessed by mitochondrial membrane potential (ΔΨ), was impaired by siNCLX or XIP. However, depolarization-induced exocytosis was hardly affected by changes in intracellular Na(+) concentration, suggesting a negligible contribution of mitochondrial Na(+)/Ca(2+) exchanger. Taken together, our data indicate that Na(+)/Ca(2+) exchanger-mediated Ca(2+) clearance mediated by NCLX and NCX is crucial for optimizing mitochondrial function, which in turn contributes to vesicle recruitment for sustained exocytosis in pancreatic β-cells.

  1. DFT study of structural, electronic, and spectroscopic properties of D6d endohedral fullerenes: X@C24H12 (X=Li+, Na+, K+).

    Science.gov (United States)

    Peng, Sheng; Li, Xiao Jun

    2009-07-01

    Based on the D6d-symmetrical C24H12, the equilibrium geometries, electronic structures, Infrared and Raman spectra, reaction energies, the energy gaps, and BSSE- and Zero-Point-corrected binding energies of endohedral fullerenes X@C24H12 (X=Li+, Na+, K+) have been calculated by first-principle density functional theory (DFT) at B3LYP/6-31G(d) level of theory. The results suggest that the average bond lengths of endohedral fullerenes are longer than those of the empty cage. And in the endohedral fullerenes, Li+@C24H12 is only favorable in energy, and can stably exist. The stable order of three endohedral fullerenes is Li+@C24H12>Na+@C24H12>K+@C24H12, this indicates that the reaction energies and binding energies are in excellent agreement with the energy gaps between the frontier orbitals in the aspect of stability. All may provide a theoretical reference for further applications in the fields of materials physics and chemistry.

  2. Atomic layer deposition of TiO2 on nitrogen-doped carbon nanofibers supported Ru nanoparticles for flexible Li-O2 battery: A combined DFT and experimental study

    Science.gov (United States)

    Yang, Jingbo; Mi, Hongwei; Luo, Shan; Li, Yongliang; Zhang, Peixin; Deng, Libo; Sun, Lingna; Ren, Xiangzhong

    2017-11-01

    Flexible Li-O2 batteries have attracted worldwide research interests and been considered to be potential alternatives for the next-generation flexible devices. Nitrogen-doped carbon nanofibers (N-CNFs) prepared by electrospinning are used as flexible substrate and an amorphous TiO2 layer is coated by atomic layer deposition (ALD) and then decorated with Ru nanoparticles. The Ru/N-CNFs@TiO2 composite is directly used as a free-standing electrode for Li-O2 batteries and the electrode delivers a high specific capacity, improved round-trip efficiency and good cycling ability. The superior electrochemical performance can be attributed to the amorphous TiO2 protecting layer and superior catalytic activity of Ru nanoparticles. Based on density functional theory (DFT) calculations from first principles, the carbon electrode after coating with TiO2 is more stable during discharge/charge process. The analysis of Li2O2 on three different interfaces (Li2O2/N-CNFs, Li2O2/TiO2, and Li2O2/Ru) indicates that the electron transport capacity was higher on Ru and TiO2 compared with N-CNFs, therefore, Li2O2 could be formed and decomposed more easily on the Ru/N-CNFs@TiO2 cathode. This work paves a way to develop the free-standing cathode materials for the future development of high-performance flexible energy storage systems.

  3. Cold collisions of heavy 2Σ molecules with alkali-metal atoms in a magnetic field: Ab initio analysis and prospects for sympathetic cooling of SrOH (+2Σ) by Li (2S)

    Science.gov (United States)

    Morita, Masato; Kłos, Jacek; Buchachenko, Alexei A.; Tscherbul, Timur V.

    2017-06-01

    We use accurate ab initio and quantum scattering calculations to explore the prospects for sympathetic cooling of the heavy molecular radical SrOH (2Σ+) by ultracold Li atoms in a magnetic trap. Our ab initio calculations show that the chemical reaction between spin-polarized Li and SrOH, which occurs on the triplet Li-SrOH potential energy surface (PES), is strongly endothermic and hence energetically forbidden at ultralow temperatures. The chemical reaction Li (2S) +SrOH (2Σ+) →Sr (1S) +LiOH (1Σ+) occurs barrierlessly on the singlet PES and is exothermic by 2505 cm-1. A two-dimensional PES for the triplet electronic state of Li-SrOH is calculated ab initio using the partially spin-restricted coupled cluster method with single, double, and perturbative triple excitations and a large correlation-consistent basis set. The highly anisotropic PES has a deep global minimum in the skewed Li-HOSr geometry with De=4932 cm-1 and saddle points in collinear configurations. Our quantum scattering calculations predict low spin-relaxation rates in fully spin-polarized Li + SrOH collisions with the ratios of elastic to inelastic collision rates well in excess of 100 over a wide range of magnetic fields (1-1000 G) and collision energies (10-5 to 0.1 K), suggesting favorable prospects for sympathetic cooling of SrOH molecules with spin-polarized Li atoms in a magnetic trap. We find that spin relaxation in Li + SrOH collisions occurs via a direct mechanism mediated by the magnetic dipole-dipole interaction between the electron spins of Li and SrOH, and that the indirect (spin-rotation) mechanism is strongly suppressed. The upper limit to the Li + SrOH reaction rate coefficient calculated for the singlet PES using adiabatic capture theory is found to decrease from 4 ×10-10cm3 /s to a limiting value of 3.5 ×10-10cm3 /s with decreasing temperature from 0.1 K to 1 μ K .

  4. Development of the North American Listening in Spatialized Noise-Sentences test (NA LiSN-S): sentence equivalence, normative data, and test-retest reliability studies.

    Science.gov (United States)

    Cameron, Sharon; Brown, David; Keith, Robert; Martin, Jeffrey; Watson, Charlene; Dillon, Harvey

    2009-02-01

    by 18.7 percent for each 1 dB increase in signal-to-noise ratio. Analysis of the normative data revealed no significant differences on any performance measure as a consequence of data collection site or gender. Inter- and intra-participant variation was minimal. A trend of improved performance as a function of increasing age was found across performance measures, and cutoff scores, calculated as two standard deviations below the mean, were adjusted for age. Test-retest differences were not significant on any measure of the North American (NA) LiSN-S (p ranging from .080 to .862). Mean test-retest differences on the various NA LiSN-S performance measures ranged from 0.1 dB to 0.6 dB. One-sided critical difference scores calculated from the retest data ranged from 3 to 3.9 dB. These scores, which take into account mean practice effects and day-to-day fluctuations in performance, can be used to determine whether a child has improved on the NA LiSN-S on retest. The NA LiSN-S is a potentially valuable tool for assessing auditory stream segregation skills in children. The availability of one-sided critical difference scores makes the NA LiSN-S useful for monitoring listening performance over time and determining the effects of maturation, compensation (such as an assistive listening device), or remediation.

  5. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    Science.gov (United States)

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  6. Lithium Insertion in LiCr3O8, NaCr3O8, and KCr3O8 at Room Temperature and at 125°C

    DEFF Research Database (Denmark)

    Koksbang, R.; Fauteux, D.; Norby, P.

    1989-01-01

    at high temperature. At both temperatures,LiCr3O8 inserts chemically and electrochemically ca. 4 and 5 Li per formula unit, respectively. Experimental data revealthat the reaction involves major structural changes. Insertion of only small amounts of Li leads to irreversible structuralbreakdown......Lithium insertion and deinsertion reactions have been carried out with LiCr3O8, NaCr3O8, and KCr3O8 chemically andelectrochemically at room temperature and at 125°C. The electrochemical experiments were performed with a nonaqueousliquid electrolyte at room temperature and with a polymer electrolyte....... At elevated temperatures, the isostructural compounds NaCr3O8 and KCr3O8 are able to accommodate morethan 4Li/MCr3O8. During this process, minor structural changes are observed. At room temperature, NaCr3O8 and KCr3O8also accommodate Li topotactically, but the maximum number of Li inserted per formula...

  7. Enhance luminescence by introducing alkali metal ions (R+ = Li+, Na+ and K+) in SrAl2O4:Eu3+ phosphor by solid-state reaction method

    Science.gov (United States)

    Prasad Sahu, Ishwar

    2016-05-01

    In the present article, the role of charge compensator ions (R+ = Li+, Na+ and K+) in europium-doped strontium aluminate (SrAl2O4:Eu3+) phosphors was synthesized by the high-temperature, solid-state reaction method. The crystal structures of sintered phosphors were in a monoclinic phase with space group P21. The trap parameters which are mainly activation energy (E), frequency factor (s) and order of the kinetics (b) were evaluated by using the peak shape method. The calculated trap depths are in the range from 0.76 to 0.84 eV. Photoluminescence measurements showed that the phosphor exhibited emission peak with good intensity at 595 nm, corresponding to 5D0-7F1 (514 nm) orange emission and weak 5D0-7F2 (614 nm) red emission. The excitation spectra monitored at 595 nm show a broad band from 220 to 320 nm ascribed to O-Eu charge-transfer state transition and the other peaks in the range of 350-500 nm originated from f-f transitions of Eu3+ ions. The strongest band at 394 nm can be assigned to 7F0-5L6 transition of Eu3+ ions due to the typical f-f transitions within Eu3+ of 4f6 configuration. The latter lies in near ultraviolet (350-500 nm) emission of UV LED. CIE color chromaticity diagram and thermoluminescence spectra confirm that the synthesized phosphors would emit an orange-red color. Incorporating R+ = Li+, Na+ and K+ as the compensator charge, the emission intensity of SrAl2O4:Eu3+ phosphor can be obviously enhanced and the emission intensity of SrAl2O4:Eu3+ doping Li+ is higher than that of Na+ or K+ ions.

  8. Lições de dança na mídia = Dance lessons at the media = Lecciones de danza en los medios

    Directory of Open Access Journals (Sweden)

    Santos, Airton Ricardo Tomazzoni dos

    2015-01-01

    Full Text Available Este artigo busca sintetizar aspectos desenvolvidos na tese Lições de dança no baile da pós-modernidade – corpos (desgovernados na mídia, expondo delineamentos pedagógicos no cenário midiático contemporâneo. A perspectiva dos Estudos Culturais em seu cruzamento com a Educação inspirou as opções teorico-metodológicas que pemitiram avançar na articulação do conceito de midiatização e de como este possibilita a operação de estratégias de construção de sujeitos e de seu governamento. Para tal entendimento foi fundamental a contribuição dos conceitos de poder e dispositivo trazidos por Michael Foucault e Gilles Deleuze. O estudo debruçou-se sobre um corpus composto por filmes, videoclipes, sites da internet, revistas, jornais, brinquedos eletrônicos, programas de televisão, entre outros. A análise permitiu perceber dez lições que se esboçam de maneira recorrente na mídia, operando na configuração de sujeitos dançantes, em políticas de gestão da vida, tanto promovendo o gerenciamento de singularidades, como a potencialização de novos modos de ser e estar no mundo contemporâneo

  9. Efficient emission of positronium atoms from an Na-coated polycrystalline tungsten surface

    Science.gov (United States)

    Terabe, H.; Iida, S.; Wada, K.; Hyodo, T.; Yagishita, A.; Nagashima, Y.

    2013-06-01

    Time-of-flight spectra for the ortho-positronium emitted from clean and Na-coated tungsten surfaces have been measured using the pulsed slow positron beam at KEK-IMSS slow positron facility. Emission efficiency of positronium from the Na-coated sample was found to be several times greater than that from uncoated tungsten surfaces.

  10. Optimizing AlF{sub 3} atomic layer deposition using trimethylaluminum and TaF{sub 5}: Application to high voltage Li-ion battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, David H. K., E-mail: david.jackson@wisc.edu; Kuech, Thomas F. [Materials Science Program, University of Wisconsin–Madison, Madison, Wisconsin 53706 and Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Laskar, Masihhur R.; Ellis, Ryan G. [Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Fang, Shuyu; Hamers, Robert J. [Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Xu, Shenzhen; Li, Xiaoqing; Morgan, Dane [Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Dreibelbis, Mark [Core R& D, Inorganic Materials and Heterogeneous Catalysis, The Dow Chemical Company, Midland, Michigan 48674 (United States); Babcock, Susan E. [Materials Science Program, University of Wisconsin–Madison, Madison, Wisconsin 53706 and Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Mahanthappa, Mahesh K. [Materials Science Program, University of Wisconsin–Madison, Madison, Wisconsin 53706 and Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    Atomic layer deposition (ALD) of conformal AlF{sub 3} coatings onto both flat silicon substrates and high-voltage LiNi{sub 0.5}Mn{sub 0.3}Co{sub 0.2}O{sub 2} (NMC) Li-ion battery cathode powders was investigated using a Al(CH{sub 3}){sub 3}/TaF{sub 5} precursor combination. This optimized approach employs easily handled ALD precursors, while also obviating the use of highly toxic HF(g). In studies conducted on planar Si wafers, the film's growth mode was dictated by a competition between the desorption and decomposition of Ta reaction byproducts. At T ≥ 200 °C, a rapid decomposition of the Ta reaction byproducts to TaC led to continuous deposition and high concentrations of TaC in the films. A self-limited ALD growth mode was found to occur when the deposition temperature was reduced to 125 °C, and the TaF{sub 5} exposures were followed by an extended purge. The lower temperature process suppressed conversion of TaF{sub x}(CH{sub 3}){sub 5−x} to nonvolatile TaC, and the long purges enabled nearly complete TaF{sub x}(CH{sub 3}){sub 5−x} desorption, leaving behind the AlF{sub 3} thin films. NMC cathode powders were coated using these optimized conditions, and coin cells employing these coated cathode particles exhibited significant improvements in charge capacity fade at high discharge rates.

  11. Optoelectronic properties of Li{sub x}A{sub x}NbO{sub 3} (A=Na, K, Rb, Cs, Fr) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Rahnamaye Aliabad, H.A., E-mail: h.rahnama@sttu.ac.ir [Department of Physics, Sabzevar Tarbiat Moallem University, Sabzevar (Iran, Islamic Republic of); Ahmad, Iftikhar [Department of Physics, University of Malakand, Chakdara (Pakistan)

    2012-02-01

    The structural and optoelectronic properties of Li{sub x}A{sub x}NbO{sub 3} (A=Na, K, Rb, Cs, Fr and x=0, 0.5) compounds have been investigated by the generalized gradient approximation within density functional theory. The calculated fundamental direct band gap of pure LiNbO{sub 3} is 3.32 eV. It is found that the substitution of alkali elements drastically change the optoelectronic nature of the compound from direct to indirect bandgap semiconductor and the fundamental gap also decreases. The nature of the compound is ionic with strong bonds between alkali ions and O, while there are partial covalent bonds between Nb and O. The calculated static refractive index of pure LiNbO{sub 3} is 2.43 for the perpendicular plane to the c-axis, while 2.37 for the parallel plane to the c-axis. So these values are intensively dependent on the substitution of alkali metals. The calculated electron energy loss spectra are in good agreement with the experimental results. It also predicts some extra interesting peaks, which have not been observed in experiments.

  12. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of 21Na with improved laser trapping techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mary Anderson [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive 21Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88 in. cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of 21Na to the experiment. Efficient manipulation of the 21Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of 21Na. She measured the 3S1/2(F=1,m=0)-3S1/2(F=2,m=0) atomic level splitting of 21Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  13. Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries

    Directory of Open Access Journals (Sweden)

    Akitoshi Hayashi

    2016-07-01

    Full Text Available All-solid-state batteries with inorganic solid electrolytes are recognized as an ultimate goal of rechargeable batteries because of their high safety, versatile geometry and good cycle life. Compared to thin-film batteries, increasing the reversible capacity of bulk-type all-solid-state batteries using electrode active material particles is difficult because contact areas at solid–solid interfaces between the electrode and electrolyte particles are limited. Sulfide solid electrolytes have several advantages of high conductivity, wide electrochemical window, and appropriate mechanical properties such as formability, processability, and elastic modulus. Sulfide electrolyte with Li7P3S11 crystal has the highest Li+ ion conductivity of 1.7 × 10-2 S cm-1 at 25 °C. It is far beyond the Li+ ion conductivity of conventional organic liquid electrolytes. The Na+ ion conductivity of 7.4 × 10-4 S cm-1 is achieved for Na3.06P0.94Si0.06S4 with cubic structure. Moreover, formation of favorable solid–solid interfaces between electrode and electrolyte is important for realizing solid-state batteries. Sulfide electrolytes have better formability than oxide electrolytes. Consequently, a dense electrolyte separator and closely attached interfaces with active material particles are achieved via room-temperature sintering of sulfides merely by cold pressing without heat treatment. Elastic moduli for sulfide electrolytes are smaller than that of oxide electrolytes, and Na2S-P2S5 glass electrolytes have smaller Young’s modulus than Li2S-P2S5 electrolytes. Cross-sectional SEM observations for a positive electrode layer reveal that sulfide electrolyte coating on active material particles increases interface areas even with a minimum volume of electrolyte, indicating that the energy density of bulk-type solid-state batteries is enhanced. Both surface coating of electrode particles and preparation of nanocomposite are effective for increasing the reversible

  14. Local structure analysis of (Na0.5K0.45Li0.05)NbO3 synthesized by malic acid complex solution method

    Science.gov (United States)

    Yoneda, Yasuhiro; Takada, Eri; Nagai, Haruka; Kikuchi, Takeyuki; Morishita, Masao; Kobune, Masafumi

    2017-10-01

    A monoclinic ferroelectric phase with the space group Pm has been discovered in lead-free (Na0.5K0.45Li0.05)NbO3 solid solution ceramics synthesized by a malic acid complex solution method. At ambient temperature, the lattice parameters of this monoclinic structure were (am,bm,cm;β ) = (4.002 \\text{Å},3.935 \\text{Å},3.980 \\text{Å}90.32^\\circ ). The average and local structures of this monoclinic phase were analyzed by synchrotron X-ray measurements. The average structure maintained the monoclinic structure down to 20 K, although the local structure changed below room temperature. The distinct short-range order structure was found to be rhombohedral. The results demonstrate the presence of an order-disorder-type phase transition structurally bridging between the rhombohedral local structure and the low-symmetry monoclinic average structure in a (Na0.5K0.45Li0.05)NbO3 solid solution system.

  15. Thermodynamic assessment of the LiF–NaF–BeF{sub 2}–ThF{sub 4}–UF{sub 4} system

    Energy Technology Data Exchange (ETDEWEB)

    Capelli, E.; Beneš, O., E-mail: ondrej.benes@ec.europa.eu; Konings, R.J.M.

    2014-06-01

    The present study describes the full thermodynamic assessment of the LiF–NaF–BeF{sub 2}–ThF{sub 4}–UF{sub 4} system which is one of the key systems considered for a molten salt reactor fuel. The work is an extension of the previously assessed LiF–NaF–ThF{sub 4}–UF{sub 4} system with addition of BeF{sub 2} which is characterized by very low neutron capture cross section and a relatively low melting point. To extend the database the binary BeF{sub 2}–ThF{sub 4} and BeF{sub 2}–UF{sub 4} systems were optimized and the novel data were used for the thermodynamic assessment of BeF{sub 2} containing ternary systems for which experimental data exist in the literature. The obtained database is used to optimize the molten salt reactor fuel composition and to assess its properties with the emphasis on the melting behaviour.

  16. β-Xenophyllite-type Na4Li0.62Co5.67Al0.71(AsO46

    Directory of Open Access Journals (Sweden)

    Riadh Marzouki

    2013-10-01

    Full Text Available The title compound, tetrasodium lithium cobalt aluminium hexa(orthoarsenate, was synthesized by a solid state reaction route. In the crystal structure, Co2+ ions are partially substituted by Al3+ in an octahedral environment [M1 with site symmetry 2/m; occupancy ratio Co:Al = 0.286 (10:0.714 (10]. The charge compensation is ensured by Li+ cations sharing a tetrahedral site with Co2+ ions [M2 with site symmetry 2; occupancy ratio Co:Li = 0.690 (5:0.310 (5]. The anionic unit is formed by two octahedra and three tetrahedra linked only by corners. The CoM1M2As2O19 units associate to an open three-dimensional framework containing tunnels propagating along the a-axis direction. One Na+ cation is located in the periphery of the tunnels while the other two are situated in the centres: all Na+ cations exhibit half-occupancy. The structure of the studied material is compared with those of various related minerals reported in the literature.

  17. Measurement of the diffusion coefficient of oriented Na atoms in different buffer gases

    Energy Technology Data Exchange (ETDEWEB)

    Bicchi, P. (Siena Univ. (Italy). Ist. di Fisica); Moi, L.; Savino, P.; Zambon, B. (Consiglio Nazionale delle Ricerche, Pisa (Italy). Lab. di Fisica Atomica e Moleculare)

    1980-01-11

    The authors report the measurements of the diffusion coefficients of Na in different buffer gases obtained through the study of the optical activity of Na vapour oriented by laser light. The reliability of this method is analyzed in the different physical situations to which the different buffer gases give rise. The accuracy of the method, in all cases in which extremely short relaxation processes are absent, is confirmed either by the comparison among the diffusion coefficient values here measured and those present in the literature obtained with different techniques, or by the analysis of the polarization distribution in steady conditions, which results to be in good agreement with the theoretical forecasts.

  18. Vibronic transitions in the alkali-metal (Li, Na, K, Rb) - alkaline-earth-metal (Ca, Sr) series: A systematic analysis of de-excitation mechanisms based on the graphical mapping of Frank-Condon integrals

    Science.gov (United States)

    Pototschnig, Johann V.; Meyer, Ralf; Hauser, Andreas W.; Ernst, Wolfgang E.

    2017-02-01

    Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. After forming weakly bound molecules from atoms in cold collisions, the preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. Accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. This paper is dedicated to the vibrational analysis of potentially relevant electronically excited states in the alkali-metal (Li, Na, K, Rb)- alkaline-earth metal (Ca,Sr) diatomic series. Graphical maps of Frank-Condon overlap integrals are presented for all molecules of the group. By comparison to overlap graphics produced for idealized potential surfaces, we judge the usability of the selected states for future experiments on laser-enhanced molecular formation from mixtures of quantum degenerate gases.

  19. Role of Hard-Acid/Hard-Base Interaction on Structural and Dielectric Behavior of Solid Polymer Electrolytes Based on Chitosan-XCF3SO3 (X = Li+, Na+, Ag+

    Directory of Open Access Journals (Sweden)

    Shujahadeen B. Aziz

    2014-01-01

    Full Text Available Solid films of pure chitosan, chitosan-LiCF3SO3, chitosan-NaCF3SO3, and chitosan-AgCF3SO3 were prepared using solution cast technique. The influence of cation size on the chitosan structure has been investigated by X-ray diffraction technique. The interaction between the alkali metal ions and the donor atoms of chitosan polymer is a strong hard-acid/hard-base interaction. It was found that the intensity of crystalline peaks of chitosan decreases with increase of cation size. The impedance analysis shows that ionic transport is high for the high amorphous system. The second semicircle in Z′′-Z′ plots and the surface plasmonic resonance (SPR peaks in chitosan-AgCF3SO3 sample system reveal the formations of silver metal nanoparticles. It was found that the high amorphous sample exhibits the high dielectric constant and dielectric loss values. The increase of dielectric constant and dielectric loss with temperature for chitosan-salt membranes indicated an increase of charge carrier concentration.

  20. NMR study of the paramagnetic state of low-dimensional magnets LiCu{sub 2}O{sub 2} and NaCu{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sadykov, A. F., E-mail: sadykov@imp.uran.ru; Piskunov, Yu. V.; Gerashchenko, A. P.; Ogloblichev, V. V.; Smol’nikov, A. G.; Verkhovskii, S. V.; Arapova, I. Yu.; Volkova, Z. N.; Mikhalev, K. N. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation); Bush, A. A. [Moscow State Technical University of Radio Engineering, Electronics, and Automation (Russian Federation)

    2017-02-15

    A comprehensive NMR study of the magnetic properties of single crystal LiCu{sub 2}O{sub 2} (LCO) and NaCu{sub 2}O{sub 2} (NCO) is carried out in the paramagnetic region of the compounds for various orientations of single crystals in an external magnetic field. The values of the electric-field gradient (EFG) tensor, as well as the dipole and transferred hyperfine magnetic fields for {sup 63,65}Cu, {sup 7}Li, and {sup 23}Na nuclei are determined. The results are compared with the data obtained in previous NMR studies of the magnetically ordered state of LCO/NCO cuprates.

  1. Acerca da Consciência Eterna: lições sobre religiosidade na filosofia do direito de Hegel

    Directory of Open Access Journals (Sweden)

    Ramiro Corrêa Junior

    2017-05-01

    Full Text Available Trata-se de examinar trechos do manuscrito de Lições sobre a Filosofia da Religião e das Linhas Fundamentais da Filosofia do Direito - A Sociedade Civil-Burguesa -, de Georg Wilhelm Friedrich Hegel, aproximando as ideias de Deus e do Sistema de Eticidade. O artigo também avalia posições de influentes comentadores de Hegel, como Bobbio, Losurdo, Marcuse, Lebrun, Lima Vaz e Müller.

  2. Electrochemical investigation on the redox chemistry of niobium in LiCl-KCl-KF-Na2O melts

    DEFF Research Database (Denmark)

    Gillesberg, Bo; Bjerrum, Niels; Barner, Jens H. Von

    1997-01-01

    The system LiCl-KCl-KF-1 mole percent K2NbF7 (molar ration F-/Nb = 8) has been investigated in-the temperature range 370 to 725 degrees C by cyclic and square wave voltammetry. In the temperature range from 370 to 520 degrees C Nb(V) was reduced to Nb(III) in two reversible steps: Nb(V) --> Nb(IV...

  3. Fabrication of Li-intercalated bilayer graphene

    Directory of Open Access Journals (Sweden)

    K. Sugawara

    2011-06-01

    Full Text Available We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp 3×3R30° pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk C6Li. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the π bands of graphene are systematically folded by the superstructure of intercalated Li atoms, producing a snowflake-like Fermi surface centered at the Γ point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.

  4. Application of atomic force microscopy for investigation of Na(+),K(+)-ATPase signal-transducing function.

    Science.gov (United States)

    Khalisov, M M; Ankudinov, A V; Penniyaynen, V A; Dobrota, D; Krylov, Boris V

    2015-06-01

    The Young's modulus of 10-12-day-old chick embryos' sensory neurons cultivated in dissociated cell culture was measured using a PeakForce Quantitative Nanomechanical Mapping atomic force microscopy. The native cells were tested in control experiments and after application of ouabain. At low "endogenous" concentration of 10⁻¹⁰ M, ouabain tended to increase the rigidity of sensory neurons. We hypothesize that this trend resulted from activation of Na⁺,K⁺-ATPase signal-transducing function.

  5. A UB3LYP and UMP2 theoretical investigation on unusual cation-pi interaction between the triplet state HB=BH (3 Sigma g-) and H+, Li +, Na +, Be 2+ or Mg 2+.

    Science.gov (United States)

    Ren, Fu-de; Ren, Jun; Liu, Sheng-nan; Yue, Yuan; Wang, Wen-liang; Chen, Shu-sen

    2010-04-01

    The nature of the unusual cation-pi interactions between cations (H(+), Li(+), Na(+), Be(2+) and Mg(2+)) and the electron-deficient B=B bond of the triplet state HB=BH (3 Sigma g-) was investigated using UMP2(full) and UB3LYP methods at 6-311++G(2df,2p) and aug-cc-pVTZ levels, accompanied by a comparison with 1:1 and 2:1 sigma-binding complexes between BH and the cations. The binding energies follow the order HB=BH...H(+) > HB=BH...Be(2+) > HB=BH...Mg(2+) > HB=BH...Li(+) > HB=BH...Na(+) and HB=BH ((1)Delta(g))...M(+)/M(2+) > H(2)C=CH(2)...M(+)/M(2+) > HC identical with CH...M(+)/M(2+) > HB=BH (3 Sigma g-)...M(+)/M(2+). Furthermore, except for HB...H(+), the sigma-binding interaction energy of the 1:1 complex HB...M(+)/M(2+) is stronger than the cation-pi interaction energy of the C(2)H(2)...M(+)/M(2+), C(2)H(4)...M(+)/M(2+), B(2)H(2) ((1)Delta(g))...M(+)/M(2+) or B(2)H(2) (3 Sigma g-)...M(+)/M(2+) complex, and, for the 2:1 sigma-binding complexes, except for HBBe(2+)...BH, they are less stable than the cation-pi complexes of B(2)H(2) ((1)Delta(g)) or B(2)H(2) (3 Sigma g-). The atoms in molecules (AIM) theory was also applied to verify covalent interactions in the H(+) complexes and confirm that HB=BH (3 Sigma 3-) can be a weaker pi-electron donor than HB=BH ((1)Delta(g)), H(2)C=CH(2) or HC identical with CH in the cation-pi interaction. Analyses of natural bond orbital (NBO) and electron density shifts revealed that the origin of the cation-pi interaction is mainly that many of the lost densities from the pi-orbital of B=B and CC multiple bonds are shifted toward the cations.

  6. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO{sub 3} films on SiO{sub 2}/LiNbO{sub 3} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gainutdinov, R. V.; Volk, T. R. [Shubnikov Institute of Crystallography RAS, 119333 Moscow (Russian Federation); Zhang, H. H. [Jinan Jingzheng Electronics Co., Ltd., 250101 Jinan (China)

    2015-10-19

    We report on studies on writing of micro- and nanodomains and specified domain patterns by AFM-tip voltages U{sub DC} in thin (0.5 μm thick) ion-sliced LiNbO{sub 3} films embedded to SiO{sub 2}/LiNbO{sub 3} substrates. A peculiar feature is an overlapping of domains as the distance between them decreases. Piezoelectric hysteresis loops were measured in a wide range of U{sub DC} pulse durations. Domain dynamics and characteristics of hysteresis loops reveal marked distinctions from those observed so far in LiNbO{sub 3} films and bulk crystals.

  7. ESTUDIO DEL EFECTO DE ISOTÓPO DE HIDRÓGENO EN LOS COMPLEJOS M–H•••H–F (M=Li, Na

    Directory of Open Access Journals (Sweden)

    Andrés Reyes

    2009-06-01

    Full Text Available Se estudió teóricamente el efecto de isotópo de hidrógeno sobre la geometría, la distribución de carga electrónica, la estabilidad relativa y la energía de formación de complejos lineales tipo M–X···Y–F y todos sus isotopólogos de hidrógeno (M=Li, Na; X, Y= H, D, T. Estos estudios fueron realizados con el paquete computacional APMO a un nivel de teoría Hartree-Fock electrónico y nuclear. Los resultados obtenidos están de acuerdo con resultados reportados por otros autores que usan métodos de estructura electrónica convencional.  

  8. AB INITIO INVESTIGATION OF 12-CROWN-4 AND BENZO-12-CROWN-4 COMPLEXES WITH Li+, Na+, K+, Zn2+, Cd2+, AND Hg2+

    Directory of Open Access Journals (Sweden)

    Yahmin Yahmin

    2010-06-01

    Full Text Available The structure and binding energies of 12-crown-4 and benzo-12-crown-4 complexes with Li+, Na+, K+, Zn2+, Cd2+, and Hg2+were investigated with ab initio calculations using Hartree-Fock approximation and second-order perturbation theory. The basis set used in this study is lanl2mb. The structure optimization of cation-crown ether complexes was evaluated at HF/lanl2mb level of theory and interaction energy of the corresponding complexes was calculated at MP2/lanl2mb level of theory (MP2/lanl2mb//HF/lanl2mb. Interactions of the crown ethers and the cations were discussed in term of the structure parameter of crown ether. The binding energies of the complexes show that all complex formed from transition metal cations is more stable than the complexes formed from alkali metal cations.   Keywords: 12-crown-4, benzo-12-crown-4, alkali metals, transition metals

  9. Preparation and characterization of phosphate glass system A2MnMP2O10 (A = Li, Na, K and (M = W, Mo

    Directory of Open Access Journals (Sweden)

    Moutataouia M.

    2013-09-01

    Full Text Available New materials based glassy phosphates and transition elements A2MnMP2O10 (A = Li, Na, K and (M = Mo, W were prepared by direct fusion of the mixture of the reactants followed by quenching in the air. Analysis by X-ray diffraction showed that the obtained materials are amorphous. Differential scanning calorimetry DSC was used to determine the glass transition (Tg and crystallization (Tc temperatures. The thermal stability of tungsten glasses is higher than that of molybdenum ones. Tungsten plays, certainly, a role of cross-linking polyphosphate groups by creating more covalent new bonds P-O-W and W-O-W. Moreover, it has been shown that lithium glasses are more stable than sodium and potassium, probably due to the potassium hygroscopy. Raman analysis confirms that the studied glasses have similar structures and the predominant structural units are PO4, P2O7 and MO6 polyhedra (M = W, Mo, Mn.

  10. LiDy(PO34

    Directory of Open Access Journals (Sweden)

    Fathia Chehimi-Moumen

    2008-07-01

    Full Text Available Single crystals of lithium dysprosium polyphosphate, LiDy(PO34, were prepared by the flux method. The atomic arrangement is built up by infinite (PO3n chains extending along the b axis. Dy3+ and Li+ cations alternate in the middle of four such chains, with Dy...Li distances of 3.54 (1 and 3.48 (1 Å. The DyO8 dodecahedra and LiO4 tetrahedra deviate significantly from the ideal geometry. Both Dy and Li occupy special positions (Wyckoff position 4e, site symmetry 2.

  11. The pentasulfates A{sub 2}[S{sub 5}O{sub 16}] (A = Li, Na, Cs, Ag). Rare species by reactions in SO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Lisa Verena; Struckmann, Mona; Becker, Anna; Wickleder, Mathias S. [Institute of Inorganic and Analytical Chemistry, Justus Liebig University of Giessen (Germany)

    2017-02-03

    The reaction of various sulfate salts A{sub 2}SO{sub 4} (A = Li, Na, Ag, Cs) with neat SO{sub 3} led to the respective pentasulfates A{sub 2}[S{sub 5}O{sub 16}] {Li_2[S_5O_1_6]: monoclinic, C2/c, Z = 4, a = 1850.71(7) pm, b = 665.45(2) pm, c = 992.80(4) pm, β = 106.764(2) , V = 1170.72(7) x 10"6 pm"3; Na_2[S_5O_1_6]: orthorhombic, Pbcn, Z = 4, a = 880.17(3) pm, b = 1039.88(4) pm, c = 1348.58(5) pm, V = 1234.32(8) x 10"6 pm"3; Ag_2[S_5O_1_6]: orthorhombic, Pbcn, Z = 4, a = 884.34(4) pm, b = 1043.19(5) pm, c = 1381.83(7) pm, V = 1274.8(1) x 10"6 pm"3; Cs_2[S_5O_1_6]: monoclinic, P2_1, Z = 4, a = 892.96(3) pm, b = 859.72(3) pm, c = 978.30(4) pm, β = 101.443(2) , V = 736.11(5) x 10"6 pm"3}. All four compounds are colorless and extremely moisture-sensitive substances. They all contain the pentasulfate anion [S{sub 5}O{sub 16}]{sup 2-} that has, until now, only been reported once. This comparative study of polysulfate salts with the same polysulfate anion, but varying countercations, is a crucial step in comprehending this very basic and, nevertheless, poorly investigated class of materials. Raman spectroscopy and powder diffraction complete the structural investigations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Phase development, densification and dielectric properties of (0.95-xNa0.5K0.5NbO3 - 0.05LiTaO3 - x LiSbO3 lead-free piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Pornsuda Bomlai

    2008-08-01

    Full Text Available Lead-free piezoelectric ceramics in the system (0.95-x Na0.5K0.5NbO3 - 0.05LiTaO3 - x LiSbO3, x = 0-0.1, were synthesized by a reaction-sintering method. The effects of the content of LiSbO3, and the sintering temperature on phase-development, microstructure and dielectric properties of the samples were investigated. Additions of LiSbO3 produced a change in crystal system from orthorhombic to tetragonal. The additive reduced the temperature at which secondary recrystallisation occurred, and also affected average grain size and dielectric constant. A sintering temperature of 1050oC (for 2 h was the optimum for this system in order to achieve a high density and high dielectric constant. A maximum dielectric constant of 1510 was recorded for the x = 0.04 composition.

  13. A neutron diffraction study of crystal and low-temperature magnetic structures within the (Na,Li)FeGe2O6 pyroxene-type solid solution series

    Science.gov (United States)

    Redhammer, Günther J.; Senyshyn, Anatoliy; Lebernegg, Stefan; Tippelt, Gerold; Dachs, Edgar; Roth, Georg

    2017-10-01

    Solid solution compounds along the Li1- x Na x FeGe2O6 clinopyroxene series have been prepared by solid state ceramic sintering and investigated by bulk magnetic and calorimetric methods; the Na-rich samples with x(Na) > 0.7 were also investigated by low-temperature neutron diffraction experiments in a temperature range of 4-20 K. For samples with x(Na) > 0.76 the crystal structure adopts the C2/ c symmetry at all measuring temperatures, while the samples display P21/ c symmetry for smaller Na contents. Magnetic ordering is observed for all samples below 20 K with a slight decrease of T N with increasing Na content. The magnetic spin structures change distinctly as a function of chemical composition: up to x(Na) = 0.72 the magnetic structure can be described by a commensurate arrangement of magnetic spins with propagation vector k = (½, 0 0), an antiferromagnetic (AFM) coupling within the Fe3+O6 octahedra zig-zag chains and an alternating AFM and ferromagnetic (FM) interaction between the chains, depending on the nature of the tetrahedral GeO4 chains. The magnetic structure can be described in magnetic space group P a21/ c. Close to the structural phase transition for sample with x(Na) = 0.75, magnetic ordering is observed below 15 K; however, it becomes incommensurately modulated with k = (0.344, 0, 0.063). At 4 K, the magnetic spin structure best can be described by a cycloidal arrangement within the M1 chains, the spins are within the a- c plane. Around 12 K the cycloidal structure transforms to a spin density wave (SDW) structure. For the C2/ c structures, a coexistence of a simple collinear and an incommensurately modulated structure is observed down to lowest temperatures. For 0.78 ≤ x(Na) ≤ 0.82, a collinear magnetic structure with k = (0 1 0), space group P C21/ c and an AFM spin structure within the M1 chains and an FM one between the spins is dominating, while the incommensurately modulated structure becomes dominating the collinear one in the

  14. CO Oxidation and Subsequent CO2 Chemisorption on Alkaline Zirconates: Li2 ZrO3 and Na2 ZrO3

    Energy Technology Data Exchange (ETDEWEB)

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    2016-09-21

    Here, two different alkaline zirconates (Li2ZrO3 and Na2ZrO3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li2ZrO3 and Na2ZrO3, under different O2 partial flows. We found results clearly showed that Na2ZrO3 possesses much better catalytic properties than Li2ZrO3. After the CO-O2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na2ZrO3 ceramic. The results confirmed that Na2ZrO3 is able to work as a bifunctional material (CO oxidation and subsequent CO2 chemisorption), although the kinetic CO2 capture process was not the best one under the physicochemical condition used in this case. For Na2ZrO3, the best CO conversions were found between 445 and 580 °C (100%), while Li2ZrO3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na2ZrO3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.

  15. FeSi4P4: A novel negative electrode with atypical electrochemical mechanism for Li and Na-ion batteries

    Science.gov (United States)

    Coquil, Gaël; Fullenwarth, Julien; Grinbom, Gal; Sougrati, Moulay Tahar; Stievano, Lorenzo; Zitoun, David; Monconduit, Laure

    2017-12-01

    The electrochemical mechanism and performance of FeSi4P4, vs. Na and Li were studied using a combination of operando X-ray diffraction, 57Fe Mössbauer spectroscopy, and SQUID magnetometry. This silicon- and phosphorous-rich material exhibits a high capacity of 1750 mAh/g, retaining 1120 mAh/g after 40 cycles, and reacts through an original reversible mechanism surprisingly involving only slight changes in the chemical environment of the iron. Magnetic measurements and 57Fe Mössbauer spectroscopy at low temperature reveal the reversible but incomplete change of the magnetic moment upon charge and discharge. Such a mild reversible process without drastic phase transition (with the exception of the crystalline to amorphous transition during the first lithiation) can explain the satisfying capacity retention. The electrochemical mechanism appears thus to be significantly different from the classical conversion or alloying/dealloying mechanisms usually observed in Lithium ion batteries for p-group element based materials. The same iron silicon phosphide electrode shows also interesting but significantly lower performance vs. Na, with a limited capacity retention 350 mAh/g.

  16. Crystallization behavior of (1 - x)Li{sub 2}O.xNa{sub 2}O.Al{sub 2}O{sub 3}.4SiO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Moo-Chin [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Cheng, Chih-Wei; Chang, Kuo-Ming [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Hsi, Chi-Shiung, E-mail: chsi@nuu.edu.t [Department of Materials Science and Engineering, National United University, 1 Lien-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)

    2010-07-02

    The crystallization behavior of the (1 - x)Li{sub 2}O.xNa{sub 2}O.Al{sub 2}O{sub 3}.4SiO{sub 2} glasses has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and energy dispersive spectroscopy (EDS). The crystalline phase was composed of {beta}-spodumene. The isothermal crystallization kinetics of {beta}-spodumene from the (1 - x)Li{sub 2}O.xNa{sub 2}O.Al{sub 2}O{sub 3}.4SiO{sub 2} glasses has also been studied by a quantitative X-ray diffraction method. The activation energy of {beta}-spodumene formation decreases from 359.2 to 317.8 kJ/mol when the Na{sub 2}O content increases from 0 to 0.4 mol and it increases from 317.8 to 376.9 kJ/mol when the Na{sub 2}O content increases from 0.4 to 0.6 mol. The surface nucleation and plate-like growth were dominant in the crystallization of the (1 - x)Li{sub 2}O.xNa{sub 2}O.Al{sub 2}O{sub 3}.4SiO{sub 2} glasses.

  17. A novel orange-red phosphor Ca3B2O6:Sm3+, A+(A = Li, Na, K) for white light emitting diodes

    Science.gov (United States)

    Liu, Qingbo; Liu, Yufeng; Yang, Fu; Han, Bing; Feng, Hao; Yu, Quanmao

    2014-03-01

    A novel orange-red phosphor Ca3B2O6:Sm3+, A+(A = Li, Na, K) has been synthesized by solid-state reaction at 950°C. The phase purity and photoluminescence (PL) behavior of the phosphor are studied in detail using the powder X-ray diffraction (XRD) technique and PL measurements. Ca3B2O6:Sm3+ phosphor can be efficiently excited by near ultraviolet (n-UV) and blue light, and the emission spectrum consists of four emission peaks at 563, 599, 646 and 709 nm, generating bright orange-red light. When a cation A+ is introduced into Ca3B2O6:Sm3+ as charge compensator, the emission intensity of Ca3B2O6:Sm3+ is evidently enhanced, but the PL spectral profile is unchanged. The integral intensity of the emission spectrum of Ca2.96Sm0.02Na0.02B2O6 excited at 401 nm is about 1.2 times than that of Y2O2S:Eu3+ commercial red phosphor. The CIE chromaticity coordinates of Ca2.96Sm0.02Na0.02B2O6 phosphor were (0.608, 0.365), which are close to that of the commercial red phosphors Y2O3:Eu3+ (0.655, 0.345), Y2O2S:Eu3+ (0.622, 0.351) and Sr2Si5N8:Eu2+ (0.620, 0.370).

  18. Study of NaCl:Mn{sup 2+} nanostructures in the Suzuki phase by optical spectroscopy and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mejía-Uriarte, E.V., E-mail: elsi.mejia@ccadet.unam.mx [Laboratorio de Fotónica de Microondas, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, AP 70-186, C.P. 04510, D.F. México (Mexico); Kolokoltsev, O. [Laboratorio de Fotónica de Microondas, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, AP 70-186, C.P. 04510, D.F. México (Mexico); Navarrete Montesinos, M. [Instituto de Ingeniería, Universidad Nacional Autónoma de México, D.F. México (Mexico); Camarillo, E.; Hernández A, J.; Murrieta S, H. [Instituto de Física, Universidad Nacional Autónoma de México, AP 20-364, C.P. 01000, D.F. México (Mexico)

    2015-04-15

    NaCl:Mn{sup 2+} nanostructures in the Suzuki phase have been studied by fluorescence (emission and excitation) spectroscopy and atomic force microscopy (AFM) as a function of temperature. The “as-grown” samples give rise to two broad emission bands that peak at 508 (green emission) and 610 nm (red emission). The excitation spectrum shows peaks at 227 nm and 232 nm for emission wavelengths at 508 nm and 610 nm, respectively. When the samples are heated continuously from room temperature up to 220 °C, the green emission (associated to the excitation peak at 227 nm) disappears at a temperature close to 120 °C, whilst only the red emission remains, which is characteristic of manganese ions. AFM images on the (0 0 1) surface (freshly cleaved) show several conformations of nanostructures, such as disks of 20–50 nm in diameter. Particularly, the images also reveal nanostructures with rectangular shape of ~280×160 nm{sup 2} and ~6 nm height; these are present only in samples with green emission associated to the Suzuki phase. Then, the evidence suggests that this topographic configuration might be related to the interaction with the first neighbors and the next neighbors, according to the configuration that has been suggested for the Suzuki phase. - Highlights: • NaCl:Mn{sup 2+} single crystals in the Suzuki phase contain rectangular nanostructures. • Double emission of manganese ions: green (508 nm) and red (610 nm) bands. • The excitation peak at 227 nm is attributed to rectangular nanostructures. • The green emission band associated to Suzuki phase is extinguished at 120 °C.

  19. Charge-state distribution of Li ions from the β decay of laser-trapped He6 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hong, R.; Leredde, A.; Bagdasarova, Y.; Fléchard, X.; García, A.; Knecht, A.; Müller, P.; Naviliat-Cuncic, O.; Pedersen, J.; Smith, E.; Sternberg, M.; Storm, D.  W.; Swanson, H.  E.; Wauters, F.; Zumwalt, D.

    2017-11-01

    The accurate determination of atomic final states following nuclear beta decay plays an important role in several experiments. In particular, the charge state distributions of ions following nuclear beta decay are important for determinations of the beta-nu angular correlation with improved precision. Beyond the hydrogenic cases, the decay of neutral He-6 presents the simplest case. Our measurement aims at providing benchmarks to test theoretical calculations. The kinematics of Lin+ ions produced following the beta decay of He-6 within an electric field were measured using He-6 atoms in the metastable (ls2s,S-3(1)) and (ls2p,P-3(2)) states confined by a magneto-optical trap. The electron shakeoff probabilities were deduced, including their dependence on ion energy. We find significant discrepancies on the fractions of Li ions in the different charge states with respect to a recent calculation.

  20. The phase transformation and crystallization kinetics of (1 - x)Li{sub 2}O-xNa{sub 2}O-Al{sub 2}O{sub 3}-4SiO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Moo-Chin [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Li, Wang-Long [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Cheng, Chih-Wei [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Chang, Kuo-Ming; Chen, Yong-Feng [Department of Electrical Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hsi, Chi-Shiung, E-mail: chsi@nuu.edu.tw [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miaoli 36003, Taiwan (China)

    2010-09-01

    The phase transformation and crystallization kinetics of (1 - x)Li{sub 2}O-xNa{sub 2}O-Al{sub 2}O{sub 3}-4SiO{sub 2} glasses have been studied by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED) analysis. The crystallization temperature at the exothermic peak increases from 1171 to 1212 K when the Na{sub 2}O content increases from 0 to 0.6 mol. The crystalline phase is composed of spodumene crystallization when the Na{sub 2}O content increases from 0 to 0.6 mol. The activation energy of spodumene crystallization decreases from 444.0 {+-} 22.2 to 284.0 {+-} 10.8 kJ mol{sup -1} when the Na{sub 2}O content increases from 0 to 0.4 mol. Moreover, the activation energy increases from 284.0 {+-} 10.8 to 446.0 {+-} 23.2 kJ mol{sup -1} when the Na{sub 2}O content increases from 0.4 to 0.6 mol. The crystallization parameters m and n approach 2, indicating that the surface nucleation and two-dimensional growth are dominant in (1 - x)Li{sub 2}O-xNa{sub 2}O-Al{sub 2}O{sub 3}-4SiO{sub 2} glasses.

  1. Ensino de imunologia na educação médica: lições de Akira Kurosawa

    OpenAIRE

    Rodrigo Siqueira-Batista; Andréia Patrícia Gomes; Verônica Santos Albuquerque; Rodrigo Madalon-Fraga; Ana Maria Coutinho Aleksandrowicz; Mauro Geller

    2009-01-01

    O ensino e a investigação no campo da Imunologia se inscrevem, prevalentemente, num paradigma marcial - ou belicoso -, segundo o qual as interações hospedeiro-microrganismo são vistas de acordo com uma concepção de processos de ataque-defesa. Uma vez que este saber é tradicionalmente abordado nos cursos de graduação da área de saúde, tal perspectiva tem evidente influência na formação destes profissionais, incluídos os médicos. No presente artigo, reflete-se sobre as questões pedagógicas rela...

  2. Prediction of thermodynamically reversible hydrogen storage reactions utilizing Ca-M(M = Li, Na, K)-B-H systems: a first-principles study.

    Science.gov (United States)

    Guo, Yajuan; Ren, Ying; Wu, Haishun; Jia, Jianfeng

    2013-12-01

    Calcium borohydride is a potential candidate for onboard hydrogen storage because it has a high gravimetric capacity (11.5 wt.%) and a high volumetric hydrogen content (∼130 kg m(-3)). Unfortunately, calcium borohydride suffers from the drawback of having very strongly bound hydrogen. In this study, Ca(BH₄)₂ was predicted to form a destabilized system when it was mixed with LiBH₄, NaBH₄, or KBH₄. The release of hydrogen from Ca(BH₄)₂ was predicted to proceed via two competing reaction pathways (leading to CaB₆ and CaH₂ or CaB₁₂H₁₂ and CaH₂) that were found to have almost equal free energies. Using a set of recently developed theoretical methods derived from first principles, we predicted five new hydrogen storage reactions that are among the most attractive of those presently known. These combine high gravimetric densities (>6.0 wt.% H₂) with have low enthalpies [approximately 35 kJ/(mol(-1) H₂)] and are thermodynamically reversible at low pressure within the target window for onboard storage that is actively being considered for hydrogen storage applications. Thus, the first-principles theoretical design of new materials for energy storage in future research appears to be possible.

  3. Effect of particle size and strain on phase stability of (Li{sub 0.06} Na{sub 0.94}) NbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S. K., E-mail: skmsspd@barc.gov.in; Shinde, A. B.; Krishna, P. S. R. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-40085 (India)

    2014-05-07

    Alkaline niobates are most suitable and excellent candidates for lead free piezoceramics, as they exhibit morphotropic phase boundary and have ultra-large piezoresponse similar to them. We provide direct experimental evidence of ferroelectric to paraelectric phase transition in (Li{sub 0.06} Na{sub 0.94})NbO{sub 3} with reduction of particle size using a combination of x-ray and neutron powder diffraction techniques at room temperature. Detailed Rietveld analyses of x-ray data show variation of particle sizes from micrometer to nanometer for sintered, calcined, and ball milled powders. The ferroelectric orthorhombic phase for micron sized powder (∼1.17 μm) is found to transform to paraelectric phase by reducing particle size to ∼10.8 nm. The crystal structure of paraelectric phase has been identified with tetragonal symmetry (P4{sub 2}/mmc) and is found to be a post perovskite phase. The low temperature neutron diffraction studies on the powders with different particle sizes reveal that orthorhombic to rhombohedral phase transition gets suppressed with reducing particle size.

  4. Mechanism of energy transfer Tb/sup 3+/->Eu/sup 3+/ in the LiNaY/sub 2/F/sub 8/ matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, D.; Mahiou, R.; Avignant, D.; Cousseins, J.C.

    1988-01-01

    The Tb/sup 3+/->Eu/sup 3+/ transfer in LiNaY/sub 2-x-y/Tb/sub x/Eu/sub y/F/sub 8/ compounds has been studied at both 300 and 77 K after selective excitation into the /sup 5/D/sub 3/ or /sup 5/D/sub 4/ level of the Tb/sup 3+/ ion. In this temperature range the energy transfer occurs mainly towards Tb/sup 3+/ ions while trapping by Eu/sup 3+/ ions takes place. The dynamic of the fluorescence arising from the /sup 5/D/sub 4/ level of the Tb/sup 3+/ ion is governed by a limited diffusion process and the fluorescence decays from this level are well fitted by the Heber's model. Both /sup 5/D/sub 4/ of Tb/sup 3+/ and /sup 5/D/sub 0/ of Eu/sup 3+/ are the excited levels involved in the energy transfer. The temperature dependence of the transfer process is explained by phonon assistance. In addition the more efficient energy transfer occurs for a large Tb/sup 3+/ ion donors and a low Eu/sup 3+/ acceptors concentrations. 14 refs.

  5. Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh PA 15261 USA; Gu, Meng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Haiyan [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 China; Luo, Langli [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Shao, Yuyan [Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Gao, Fei [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor MI 48109 USA; Du, Yingge [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Mao, Scott X. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh PA 15261 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2016-04-13

    Reversible insertion and extraction of ionic species into a host lattice governs the basic operating principle for both rechargeable battery (such as lithium batteries) and electrochromic devices (such as ANA Boeing 787-8 Dreamliner electrochromic window). Intercalation and/or conversion are two fundamental chemical processes for some materials in response to the ion insertion. The interplay between these two chemical processes has never been established. It is speculated that the conversion reaction is initiated by ion intercalation. However, experimental evidence of intercalation and subsequent conversion remains unexplored. Here, using in situ HRTEM and spectroscopy, we captured the atomistic conversion reaction processes during lithium, sodium and calcium ion insertion into tungsten trioxide (WO3) single crystal model electrodes. An intercalation step right prior to conversion is explicitly revealed at atomic scale for the first time for these three ion species. Combining nanoscale diffraction and ab initio molecular dynamics simulations, it is found that, beyond intercalation, the inserted ion-oxygen bonding formation destabilized the transition-metal framework which gradually shrunk, distorted and finally collapsed to a pseudo-amorphous structure. This study provides a full atomistic picture on the transition from intercalation to conversion, which is of essential for material applications in both secondary ion batteries and electrochromic devices.

  6. Crystal chemical study of a series of rare earth fluorinated compounds with formula LiNaLn/sub 2/F/sub 8/ and evidence for the participation of 4 f orbitals in bonding

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, D.; Metin, J.; Picaud, B.; Avignant, D.

    1985-11-28

    A number of rare earth fluorides with formula LiNaLn/sub 2/F/sub 8/ (Ln=Ho, Er, Tm, Yb, Lu) have been synthesized. Their crystal chemical characteristics have been determined by analogy with the isostructural fluoride LiNaY/sub 2/F/sub 8/ which crystallizes in the monoclinic system with P2/sub 1//m space group and unit cell parameters: a=6.622 A, b=6.995 A, c=6.632 A and ..beta..=103/sup 0/14. The position of yttrium in comparison with the lanthanides family has been determined from the variation of the unit cell volume in the series. These results indicate that a certain degree of covalency due to the participation of 4f orbitals to bonding is present in these compounds with predominant ionic character.

  7. Energy transfer phenomena in Tb sup 3+ , Eu sup 3+ activated LiNaY sub 2 F sub 8 : Gd sup 3+. Transferts d'energie Gd sup 3+ yields Tb sup 3+ , Eu sup 3+ dans LiNaY sub 2 F sub 8

    Energy Technology Data Exchange (ETDEWEB)

    Aamili, A.; Zambon, D.; Mahiou, R.; Cousseins, J.C. (Clermont-Ferrand-2 Univ., 63 - Aubiere (FR))

    1991-10-01

    Energy transfer phenomena in the system LiNaY{sub 1.8}Gd{sub 0.2}F{sub 8}: Tb{sup 3+}, Eu{sup 3+} have been investigated. At 300 K and 77 K, excitation into the Gd{sup 3+} ion results in mainly Tb{sup 3+} or Eu{sup 3+} emission. It is shown that the excitation energy migrates from the Gd{sup 3+} ion to the Tb{sup 3+} ({sup 5}D{sub 4}) or Eu{sup 3+} ({sup 5}D{sub 0}) acceptor. The energy levels involved in the energy transfer and the Gd{sup 3+} fluorescence decays are discussed considering the existence of two sites for the Gd{sup 3+} ion in this material.

  8. Ensino de imunologia na educação médica: lições de Akira Kurosawa

    Directory of Open Access Journals (Sweden)

    Rodrigo Siqueira-Batista

    Full Text Available O ensino e a investigação no campo da Imunologia se inscrevem, prevalentemente, num paradigma marcial - ou belicoso -, segundo o qual as interações hospedeiro-microrganismo são vistas de acordo com uma concepção de processos de ataque-defesa. Uma vez que este saber é tradicionalmente abordado nos cursos de graduação da área de saúde, tal perspectiva tem evidente influência na formação destes profissionais, incluídos os médicos. No presente artigo, reflete-se sobre as questões pedagógicas relativas ao modelo ataque-defesa. Realizou-se uma pesquisa teórica, utilizando-se o seguinte método: (1 revisão crítica da literatura, com textos obtidos nos livros e nos capítulos de livros de Imunologia; (2 leitura crítica dos textos; (3 elaboração de síntese reflexiva sobre o tema. Identificou-se que o modelo marcial da Imunologia se apresentou hegemônico nos livros-texto consultados, estando inscrito em idêntica concepção teórica inerente à medicina ocidental, ajudando a compor a visão dos estudantes dos cursos de graduação e pós-graduação e dos trabalhadores da área de saúde. É possível buscar alternativas, inclusive possibilidades para pensar a Imunologia em termos de novos modelos, em termos de homeostase e interdependência (ambos delimitando um paradigma ecológico, talvez mais propícios à abordagem das questões que ora se impõem nos seus horizontes, com inquestionáveis efeitos na educação.

  9. In-situ studies on the micro-structure evolution of A2W2O7 (A = Li, Na, K) during melting by high temperature Raman spectroscopy and density functional theory

    Science.gov (United States)

    Wang, Jian; You, Jinglin; Wang, Min; Lu, Liming; Wan, Songming; Sobol, A. A.

    2017-10-01

    In-situ high temperature Raman spectroscopic (HTRS) technique in combination with density functional theory (DFT) analysis has been adopted to investigate the micro-structure of solid and molten A2W2O7 (A = Li, Na, K). The [WO6] octahedra were found to be connected to each other by corner and edge sharing in the crystalline Li2W2O7 and K2W2O7 compounds. In the crystal lattice of Na2W2O7, on the other hand, the [WO4] tetrahedra and [WO6] octahedra were found to coexist and paired by corner sharing. Although the structural diversity has clearly led to distinct Raman spectra of the crystalline A2W2O7 compounds, the spectra of their melts tended to be analogous, showing the typical vibration modes of (W2O7)2 - dimer. A mechanism was then proposed to explain the structure evolution occurring during the melting process of A2W2O7. The effect of A+ cation on the Raman bands of (W2O7)2 - dimer in molten A2W2O7 has also been investigated. Both the wavenumber and full width at half-height (FWHH) of the characteristic band assigned to the symmetrical stretching vibration mode of Wsbnd Onb (non-bridging oxygen) in (W2O7)2 - were found to decrease in the sequence of Li+, Na+ and K+, indicating the cation effect on the mean bond length and its distribution range of Wsbnd Onb. In addition, the relative intensity of this band was also influenced by the cation and it was increased in the order of Li2W2O7, Na2W2O7 and K2W2O7, which has been explained by the charge transfer process and confirmed by Mulliken overlap population analysis.

  10. Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O{sub 3} lead-free piezoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Marcos, F., E-mail: fernando.rubio-marcos@unilim.fr [Laboratoire de Science des Procedes Ceramiques et de Traitements de Surface, UMR 6638 CNRS, Universite de Limoges, Centre Europeen de la Ceramique, 12, rue Atlantis, 87068 Limoges Cedex (France); Marchet, P. [Laboratoire de Science des Procedes Ceramiques et de Traitements de Surface, UMR 6638 CNRS, Universite de Limoges, Centre Europeen de la Ceramique, 12, rue Atlantis, 87068 Limoges Cedex (France); Vendrell, X. [Grup de Quimica de l' Estat Solid, Departament de Quimica Inorganica, Universitat de Barcelona, 08028 Barcelona (Spain); Romero, J.J. [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Remondiere, F. [Laboratoire de Science des Procedes Ceramiques et de Traitements de Surface, UMR 6638 CNRS, Universite de Limoges, Centre Europeen de la Ceramique, 12, rue Atlantis, 87068 Limoges Cedex (France); Mestres, L. [Grup de Quimica de l' Estat Solid, Departament de Quimica Inorganica, Universitat de Barcelona, 08028 Barcelona (Spain); Fernandez, J.F. [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain)

    2011-09-01

    Highlights: {center_dot} MnO doping effects on structure and properties of (K,Na,Li)(Nb,Ta,Sb)O{sub 3} piezoceramics. {center_dot} The structure changes towards an orthorhombic symmetry for higher MnO concentrations. {center_dot} High doping levels induce a tetragonal tungsten-bronze secondary phase. {center_dot} Mn{sup 2+} doping modifies the phase transition temperature and the piezoelectric properties. {center_dot} Manganese doping increases the mechanical quality factor Q{sub m}. - Abstract: Mn{sup 2+}-doped (K,Na,Li)(Nb,Ta,Sb)O{sub 3} lead-free piezoelectric ceramics have been prepared by a conventional sintering technique. The effects of Mn{sup 2+} doping on the phase structure, microstructure and ferro-piezoelectric properties of the ceramics have been evaluated. MnO doping modifies the (K,Na,Li)(Nb,Ta,Sb)O{sub 3} structure, giving rise to the appearance of a TTB-like secondary phase and to changes on the orthorhombic to tetragonal phase transition temperature. The modification of this temperature induces a reduction of the piezoelectric constants, which is accompanied by an increase on the mechanical quality factor. Mn{sup 2+} ions incorporate into the perovskite structure in different off ways depending on their concentration.

  11. Experimental limits on the velocities of sodium atoms sputtered from solid surfaces by hydrogen ions. [Na cloud production around Io

    Science.gov (United States)

    Stoner, J. O., Jr.

    1976-01-01

    Optical emission at 589.0 nm by sodium atoms sputtered from solid targets by hydrogen molecular ions was observed, and no accompanying broadening or shifts of this line could be detected relative to that from a laboratory lamp. This allowed an upper limit of about 500,000 cm/sec on the mean speed of ejected sodium atoms to be calculated. The results are consistent with the hypothesis that the atomic sodium cloud surrounding Io is produced by this mechanism.

  12. Prediction of Setschenow constants of N-heteroaromatics in NaCl solutions based on the partial charge on the heterocyclic nitrogen atom.

    Science.gov (United States)

    Yang, Bin; Li, Zhongjian; Lei, Lecheng; Sun, Feifei; Zhu, Jingke

    2016-02-01

    The solubilities of 19 different kinds of N-heteroaromatic compounds in aqueous solutions with different concentrations of NaCl were determined at 298.15 K with a UV-vis spectrophotometry and titration method, respectively. Setschenow constants, Ks, were employed to describe the solubility behavior, and it is found that the higher ring numbers of N-heteroaromatics gave rise to the lower values of Ks. Moreover, Ks showed a good linear relationship with the partial charge on the nitrogen atom (QN) for either QN > 0 or QN salting-out effect for N-heteroaromatics compared to the conventional descriptors such as molar volume (VH) and the octanol-water partition coefficient (Kow). The heterocyclic N in N-heteroaromatics may interact with Na(+) ions in NaCl solution for QN 0.

  13. A new look at correlation energy in atomic and molecular systems. II. The application of the Green's function Monte Carlo method to LiH

    Science.gov (United States)

    Moskowitz, Jules W.; Schmidt, K. E.; Lee, Michael A.; Kalos, M. H.

    1982-07-01

    The potential energy surface of the LiH molecule is calculated using the Green's function Monte Carlo method. The calculated correlation energy is 0.078±0.001 hartree and the binding energy is 2.56 eV. These results are within 6% and 2% of the experimental values, respectively. The Green's function Monte Carlo method is discussed in some detail with particular emphasis on problems of chemical interest.

  14. Na{sub 2}EDTA-assisted hydrothermal synthesis and electrochemical performance of LiFePO{sub 4} powders with rod-like and block-like morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juan, E-mail: juanwang168@gmail.com [Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Zheng, Siqi; Yan, Hao; Zhang, Haipeng [Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Hojamberdiev, Mirabbos [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503 (Japan); Ren, Bing; Xu, Yunhua [Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2015-06-15

    Nano and micro-sized LiFePO{sub 4} were synthesized by disodium ethylenediamine tetraacetate (Na{sub 2}EDTA) – assisted hydrothermal synthesis method with the pH of synthesizing solution in the range from 2 to 8. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and electrochemical performance experiments. The obtained results showed that the pH of synthesizing solution played a key role in the formation of the final products with different morphologies, including rod-like and block-like structures and so on. The formation mechanism and the influence of Na{sub 2}EDTA on the morphology of LiFePO{sub 4} micro- and nanocrystals were investigated as a function of pH value. The results of electrochemical performance measurement revealed that the charge/discharge cycling characteristics of the samples were varied by tailoring their morphologies. Particularly, the block-like LiFePO{sub 4} particles with the average size of 200–600 nm present the highest initial discharge capacity of 141 mAh/g at 0.1C rate, and cycling stability of this sample is optimal among all the obtained products owing to its good diffusion properties. It also exhibits an excellent rate capability with high discharge capacities of more than 93.2 mAh/g at 5C after 80 cycles. The present study offers a simple way to synthesize and design high performance cathode materials for lithium-ion batteries by the methods of morphology control without carbon coating or doping with supervalent cations. - Highlights: • Nano and micro-sized LiFePO{sub 4} were synthesized by a hydrothermal synthesis method. • Effect of the pH of synthesizing solution on the formation of LiFePO{sub 4} was studied. • The block-like LiFePO{sub 4} particles present the highest initial discharge capacity. • The rate capability of the block-like LiFePO{sub 4} is more than 93.2 m

  15. Hydrothermal synthesis and crystal structure of a new lithium copper bismuth oxide, LiCuBiO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Nobuhiro, E-mail: kumada@yamanashi.ac.jp [Center for Crystal Science and Technology, University of Yamanashi, Miyamae-cho 7-32, Kofu 400-8511 (Japan); Nakamura, Ayumi [Center for Crystal Science and Technology, University of Yamanashi, Miyamae-cho 7-32, Kofu 400-8511 (Japan); Miura, Akira [Center for Crystal Science and Technology, University of Yamanashi, Miyamae-cho 7-32, Kofu 400-8511 (Japan); Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Takei, Takahiro [Center for Crystal Science and Technology, University of Yamanashi, Miyamae-cho 7-32, Kofu 400-8511 (Japan); Azuma, Masaki; Yamamoto, Hajime [Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku Yokohama, Kanagawa 226-8503 (Japan); Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro [Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526 (Japan)

    2017-01-15

    A new lithium copper bismuth oxide, LiCuBiO{sub 4} was prepared by hydrothermal reaction using NaBiO{sub 3}0.1*4H{sub 2}O. The crystal structural model of this compound was refined by using synchrotron X-ray powder diffraction data. This bismuthate has the LiCuSbO{sub 4} related structure with the orthorhombic cell (Space group: Pnma) of a=10.9096(9), b=5.8113(5) and c=5.0073(4) Å, and the final R-factors were R{sub wp}=4.84 and R{sub p}=3.58%. This compound is the first example of a lithium copper bismuthate containing Bi{sup 5+}. An antiferromagnetic ordering of Cu{sup 2+} moment was observed at 6 K. - Graphical abstract: In the crystal structure of LiCuBiO{sub 4} all metal atoms are coordinated octahedrally by six O atoms and LiO{sub 6} and CuO{sub 6} octahedra form the one-dimensional chains by edge-sharing along the b-axis. The LiO{sub 6} and CuO{sub 6} chains form the layer by face-sharing in the bc plane. The Bi atoms are placed in that interlayer and BiO{sub 6} octahedra are edge-sharing with LiO{sub 6} and CuO{sub 6} octahedra. - Highlights: • A new lithium copper bismuth oxide, LiCuBiO{sub 4} is prepared by hydrothermal reaction. • The crystal structure of LiCuBiO{sub 4} is closely related with that of LiCuSbO{sub 4}. • This new compound exhibits an antiferromagnetic ordering of Cu{sup 2+} moment at 6 K.

  16. Determination of Al, Cu, Li and Mn in spruce seeds and plant reference materials by slurry sampling graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Engelsen, C; Wibetoe, G

    2000-03-01

    An ultrasonic slurry sampling graphite furnace AAS method was developed for the determination of Al, Cu, Li and Mn in spruce seeds, NBS SRM 1575 pine needles and GBW CRM 07602 bush branches and leaves. The only sample preparation was grinding in a Mixer Mill before preparing a slurry by adding 0.14 mol/L nitric acid to a small sample aliquot. Cryogenic grinding was used for the spruce seeds to solve the problem of agglomerating during grinding at room temperature. A modified sample tray was applied allowing the use of both the commercial 1.5 mL vials and home-made 15 mL vials. With optimal conditions for ultrasonic agitation the homogeneity and particle size distributions in the slurries prepared in the two different vials were similar. Several aspects of the slurry sampling approach are discussed and data of important parameters are given, including the total number of particles injected into the graphite furnace, densities of the materials and percentage of analyte extracted into the liquid phase of the slurry. The density of the materials was determined by two methods; by using a Coulter particle analyser and by using a gravimetric method. The two methods gave similar accuracy and precision. The concentration ranges of the elements (in microg g(-1)) were: 80-2100 for Al, 3-15 for Cu, 0.06-2.5 for Li and 50-700 for Mn. External calibration with aqueous standards was employed. Chemical modifiers were not found to be necessary. The relative standard deviations were in the range 1.7-7%. Analyses of the two certified plant reference materials confirmed the accuracy of the method. In addition no significant difference was found for analyses of digested and slurried spruce seeds. The detection limit was 10 ng g(-1) for Li and 170 ng g(-1) for Cu. The characteristic mass (area measurements) was 4.4 pg for Li and 11 pg for Cu. For Al and Mn less sensitive wavelengths were used.

  17. Combined Electron Paramagnetic Resonance and Atomic Absorption Spectroscopy/Inductively Coupled Plasma Analysis As Diagnostics for Soluble Manganese Species from Mn-Based Positive Electrode Materials in Li-ion Cells.

    Science.gov (United States)

    Shilina, Yuliya; Ziv, Baruch; Meir, Aviv; Banerjee, Anjan; Ruthstein, Sharon; Luski, Shalom; Aurbach, Doron; Halalay, Ion C

    2016-04-19

    Manganese dissolution from positive electrodes significantly reduces the durability of lithium-ion batteries. Knowledge of dissolution rates and oxidation states of manganese ions is essential for designing effective mitigation measures for this problem. We show that electron paramagnetic resonance (EPR) combined with atomic absorption spectroscopy (AAS) or inductively coupled plasma (ICP) can determine both manganese dissolution rates and relative Mn(3+) amounts, by comparing the correlation between EPR and AAS/ICP data for Mn(2+) standards with that for samples containing manganese cations dissolved from active materials (LiMn2O4 (LMO) and LiNi(0.5)Mn(1.5)O4 (LNMO)) into the same electrolyte solution. We show that Mn(3+), and not Mn(2+), is the dominant species dissolved from LMO, while Mn(2+) is predominant for LNMO. Although the dissolution rate of LMO varies significantly for the two investigated materials, due to particle morphology and the presence of Cr in one of them, the Mn speciation appears independent of such details. Thus, the relative abundance of dissolved manganese ions in various oxidation states depends mainly on the overall chemical identity of the active material (LMO vs LNMO). We demonstrate the relevance of our methodology for practical batteries with data for graphite-LMO cells after high-temperature cycling or stand at 4.2 V.

  18. Ax(H3O)2-xMn5(HPO3)6 (A = Li, Na, K and NH4): open-framework manganese(ii) phosphites templated by mixed cationic species.

    Science.gov (United States)

    Orive, Joseba; Fernández de Luis, Roberto; Fernández, Jesús Rodríguez; Lezama, Luis; Arriortua, María I

    2016-07-26

    Ax(H3O)2-xMn5(HPO3)6 (A = Li, x = 0.55 (1-Li); A = Na, x = 0.72 (2-Na); A = K, x = 0.30 (3-K); A = NH4, x = 0.59 (4-NH4)) phases were synthesized by employing mild hydrothermal conditions. 1-Li was studied by single crystal X-ray diffraction, while sodium, potassium and ammonium containing analogues were obtained as polycrystalline samples and characterized by powder X-ray diffraction. The four compounds were characterized by ICP-Q-MS, thermal analysis and XPS, IR, UV/Vis and EPR spectroscopy. Single crystal data indicate that 1-Li crystallizes in the P3[combining macron]c1 space group with lattice parameters a = 10.3764(1) Å and c = 9.4017(1) Å with Z = 2. The crystal structure of these phases is constituted by a three-dimensional [Mn(ii)5(HPO3)6](2-) anionic skeleton templated by alkali metal and ammonium cations together with protonated water molecules. Such an inorganic framework is formed by layers of edge-sharing MnO6 octahedra placed in the ab plane and joined along the c direction through phosphite pseudotetrahedra. The sheets display 12-membered ring channels parallel to the c-axis, ca. 5 Å in diameter, where the extraframework species display a strong disorder. EPR measurements point to the existence of short range ferromagnetic interactions around 12 K. Magnetic susceptibility and heat capacity measurements show that all the compounds exhibit long range antiferromagnetic order below circa 4 K, with a significant magnetocaloric effect around the Neel temperature.

  19. Small bipolarons and extended states of guest Na and Rb atoms in quasi-two-dimensional disordered M7.8 -δAl7.8Si8.2O32.0 (M =Na, Rb)

    Science.gov (United States)

    Hettiarachchi, Gayan Prasad; Moriasa, Fumiya; Nishida, Yoshihumi; Nakano, Takehito; Muhid, Mohd Nazlan Mohd; Hamdan, Halimaton

    2017-10-01

    The evolution of the electronic properties of guest Na and Rb atoms in a disordered deformable lattice is investigated for a series of guest-atom densities n . The quasi-two-dimensional host M7.8 -δAl7.8Si8.2O32.0 (M =Na, Rb), known as zeolite P, is used. The Na system is a stubborn bipolaronic insulator to the maximum n of 1.03. In contrast, the Rb system exhibits a crossover from a bipolaronic insulator to a conducting phase analogous to a disordered metal at n = 0.89. A critical region undergoing polaronic melting appears in the vicinity of the crossover on the insulating side, evidenced by a reduction in the small bipolaron absorption band and a drop in the activation energy. Transition to the conducting phase coincides with the appearance of a midinfrared band and an increase in the charge-carrier decay length, suggesting the polaronic and extended nature of the carriers. These findings constitute rare examples of electron-lattice coupling opening (or closing) a mobility gap and scaling the continuity (or discontinuity) of a conducting transition in the face of disorder.

  20. Reactions of pulsed-laser evaporated lithium atoms with O 2 and N 2O

    Science.gov (United States)

    Andrews, Lester; Saffell, Wendy; Yustein, Jason T.

    1994-12-01

    Pulsed laser evaporated Li atoms were codeposited with O 2 in excess argon at 12 K. The same LiO 2 and LiO 2Li products were observed that were formed with thermal Li atoms. However, with N 2O the LiO product was observed in contrast to thermal Li atom reactions. Excess kinetic energy in the laser evaporated Li atoms provided activation energy for the abstraction reaction. In addition the extremely large yield of O 4- observed in O 2 experiments provides evidence for photoelectron emission from the lithium metal surface.

  1. The use of NaX zeolite as a template to obtain a mono-atomic Pt dispersion by impregnation with Pt(II acetylacetonate/acetone solution

    Directory of Open Access Journals (Sweden)

    SLAVKO MENTUS

    2009-09-01

    Full Text Available The incorporation of platinum into the cavities of NaX zeolite was realized by impregnation and thermal decomposition of the organometallic compound Pt(II-acetylacetonate dissolved in acetone. A high dispersion of platinum to predominantly mono-atomic particles was achieved thanks to the tight fit of the Pt(II-acetylacetonate molecules in the aperture of the zeolite supercage. Using the high angle annular dark field imaging technique of HRTEM, individual Pt particles situated within the zeolite crystals were, for the first time, clearly visible. This offers new possibilities of studying the distribution of incorporated metal particles along the crystal depth.

  2. A novel class of compounds--superalkalides: M⁺(en)₃M'₃O⁻ (M, M' = Li, Na, and K; en = ethylenediamine)-with excellent nonlinear optical properties and high stabilities.

    Science.gov (United States)

    Mai, Jinmei; Gong, Shida; Li, Nan; Luo, Qiong; Li, Zhiru

    2015-11-21

    With the aid of ab initio calculations at the MP2 level of theory, we designed a novel class of inorganic salts, M(+)(en)3M3'O(-) (M, M' = Li, Na, and K), by using the M3'O superalkalis. These compounds are the first examples of inorganic salts wherein the superalkali occupies the anionic site, and termed superalkalides. The electronic structural features of the M(+)(en)3M3'O(-) superalkalides are very similar to those of the corresponding M(+)(en)3M'(-) alkalides which have been reported by Zurek (J. Am. Chem. Soc., 2011, 133, 4829). In this study, the calculated NLO properties of M(+)(en)3M3'O(-) and M(+)(en)3M'(-) (M, M' = Li, Na, and K) show that both superalkalides and alkalides have significantly large first hyperpolarizabilities (β0) with the values in the range of 7.80 × 10(3) to 9.16 × 10(4) a.u. and 7.95 × 10(3) to 1.84 × 10(5) a.u., respectively. Computations on the stabilities of M(+)(en)3M3'O(-) and M(+)(en)3M'(-) demonstrate that the M(+)(en)3M3'O(-) superalkalides are preferably stable than the corresponding M(+)(en)3M'(-) alkalides because of the presence of hydrogen bonds in M(+)(en)3M3'O(-). Therefore, the designed superalkalides, M(+)(en)3M3'O(-) (M, M' = Li, Na, and K), with excellent nonlinear optical properties and high stabilities are greatly promising candidates for NLO materials. We hope that this article could attract more research interest in superatom chemistry and for further experimental research.

  3. Production of NaCa$^+$ molecular ions in the ground state from cold atom-ion mixtures by photoassociation via an intermediate state

    CERN Document Server

    Gacesa, Marko; Michels, H Harvey; Côté, Robin

    2016-01-01

    We present a theoretical analysis of optical pathways for formation of cold Ca($^1$S)Na$^+$($^1$S) molecular ions via an intermediate state. The formation schemes are based on ab initio potential energy curves and transition dipole moments calculated using effective-core-potential methods of quantum chemistry. In the proposed approach, starting from a mixture of cold trapped Ca$^+$ ions immersed into an ultracold gas of Na atoms, (NaCa)$^+$ molecular ions are photoassociated in the excited E$^{1}\\Sigma^+$ electronic state and allowed to spontaneously decay either to the ground electronic state or an intermediate state from which the population is transferred to the ground state via an additional optical excitation. By analyzing all possible pathways, we find that the efficiency of a two-photon scheme, via either B$^{1}\\Sigma^+$ or C$^{1}\\Sigma^+$ potential, is sufficient to produce significant quantities of ground state (NaCa)$^+$ molecular ions. A single-step process results in lower formation rates that wou...

  4. Etude en spectrographie infrarouge des groupes ? liés à un atome de phosphore dans des phosphorhydrazides cycliques et acycliques

    Science.gov (United States)

    Mathis, R.; Pellizzari, A. M.; Bouissou, T.; Revel, M.; Chihaoui, M.

    Twenty cyclic or acyclic phosphorhydrazides containing the ? group have been studied with i.r. spectroscopy. The interaction between the lone pair of atom N 1 and the N 2H 2 or N 2HR group is significantly weaker than in ordinary hydrazines. This is interpreted as originating from a partial delocalization of the N 1 doublet towards phosphorus. The 'spectroscopic acidity' of N 2H or N 2H 2 protons appears as rather low in acyclic or saturated cyclic phosphosphorhydrazides: the electronic state of N 2 nitrogen can be considered as analogous to that of aliphatic amines. This can be related to the comparatively high basicity and nucleophilicity of this atom.

  5. Effect of A-Site Non-stoichiometry on Structure and Microwave Dielectric Properties of Ca x (Li0.36Nd0.36Bi0.14Na0.14)TiO3 Ceramics

    Science.gov (United States)

    Liu, Xiao; Yuan, Changlai; Luo, Fenghua; Liu, Xinyu; Zhen, Yuanlei; Liu, Fei; Chen, Guohua; Zhou, Changrong

    2018-01-01

    By adding a small amount of calcium to the starting composition, Li0.36Nd0.36Bi0.14Na0.14TiO3, oxygen vacancies are suppressed and, therefore, the microwave properties are enhanced. This study not only obtained a kind of ceramic with excellent microwave dielectric properties, ɛ r ˜ 160, Q × f ˜ 1300 GHz and τ f ˜ 10 ppm/°C, but also gives a way to optimize the compositions with various donor and acceptor dopants for better performance in microwave ceramics.

  6. X-ray Absorption Spectroscopy Characterization of a Li/S Cell

    Directory of Open Access Journals (Sweden)

    Yifan Ye

    2016-01-01

    Full Text Available The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S cell life cycle. We have investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH3(CH215N+(CH33Br− and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na2Sx solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfur reaction products on the cathode surface during the charge/discharge processes make the capacity decay. A modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies.

  7. Reduction of 1,4-dien-3-one steroids with LiAl2H4 or NaB2H4: stereospecific deuterium-labeling at the c-1alpha position of a 4-en-3-one steroid.

    Science.gov (United States)

    Numazawa, Mitsuteru; Handa, Wakako

    2006-04-01

    Reduction of a double bond at C-1 of 1,4-dien-3-one steroids 7 and 8 with LiAl2H4 in THF or NaB2H4 in MeOH and H2O gave stereospecifically [1alpha-2H]-labeled 4-en-3-one steroids 9 and 10, respectively. When the deuterated solvents, MeO2H and 2H2O, were used for the reaction of steroid 8 with NaB2H4, [1alpha,2xi-2H2]-labeled compound 10 was produced. This indicates that the reaction proceeds through the initial hydride attack at the C-1alpha position, followed by ketonization of the 2-en-3-ol intermediate.

  8. Diffuse dielectric behaviour in Na{sub 0.5}K{sub 0.5}NbO{sub 3}-LiTaO{sub 3}-BiScO{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Fangyuan; Skidmore, T.A.; Bell, A.J.; Comyn, T.P.; James, C.W.; Ward, M. [Institute for Materials Research, University of Leeds, Leeds LS2 9JT (United Kingdom); Milne, S.J., E-mail: S.J.Milne@leeds.ac.uk [Institute for Materials Research, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2011-09-15

    Highlights: {yields} Novel solid-solution system investigated. {yields} Dielectric and piezoelectric properties dominated by chemical inhomogeneity effects. {yields} Phase-separation and core-shell, nanostructured grains identified by TEM-EDX. {yields} Piezoelectric charge coefficients of {approx}200 pC/N. - Abstract: Dielectric and piezoelectric properties are presented for lead-free piezoelectric compositions in the Na{sub 0.5}K{sub 0.5}NbO{sub 3}-LiTaO{sub 3}-BiScO{sub 3} ternary system, focusing on the compositional join 0.98[(1 - x)(Na{sub 0.5}K{sub 0.5}NbO{sub 3})-xLiTaO{sub 3}]-0.02[BiScO{sub 3}]; 0 {<=} x {<=} 0.1. The end-member composition, 0.98Na{sub 0.5}K{sub 0.5}NbO{sub 3}-0.02BiScO{sub 3} has previously been reported to exhibit relatively high piezoelectric coefficients; the present paper examines changes in properties resulting from incorporation of LiTaO{sub 3}. Measurements of relative permittivity versus temperature showed a Curie peak at {approx}350 deg. C in x {<=} 0.02 samples. This peak broadened as the LiTaO{sub 3} content increased from x = 0.02 to 0.03. At x = 0.05 and 0.07, the relative permittivity-temperature curve became even more diffuse, and a second peak occurred at {approx}470 deg. C; transmission electron microscopy revealed this was the result of elemental segregation and the formation of a core-shell grain structure. Maximum values of d{sub 33} piezoelectric charge coefficients were {approx}200 pC/N in samples x = 0.01 and 0.02, for which dielectric and X-ray diffraction data inferred an orthorhombic-tetragonal phase transition close to room-temperature.

  9. Binding S0.6 Se0.4 in 1D Carbon Nanofiber with CS Bonding for High-Performance Flexible Li-S Batteries and Na-S Batteries.

    Science.gov (United States)

    Yao, Yu; Zeng, Linchao; Hu, Shuhe; Jiang, Yu; Yuan, Beibei; Yu, Yan

    2017-05-01

    A one-step synthesis procedure is developed to prepare flexible S0.6 Se0.4 @carbon nanofibers (CNFs) electrode by coheating S0.6 Se0.4 powder with electrospun polyacrylonitrile nanofiber papers at 600 °C. The obtained S0.6 Se0.4 @CNFs film can be used as cathode material for high-performance Li-S batteries and room temperature (RT) Na-S batteries directly. The superior lithium/sodium storage performance derives from its rational structure design, such as the chemical bonding between Se and S, the chemical bonding between S0.6 Se0.4 and CNFs matrix, and the 3D CNFs network. This easy one-step synthesis procedure provides a feasible route to prepare electrode materials for high-performance Li-S and RT Na-S batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Insights into the structures of the gas-phase hydrated cations M⁺(H₂O)(n)Ar (M = Li, Na, K, Rb, and Cs; n = 3-5) using infrared photodissociation spectroscopy and thermodynamic analysis.

    Science.gov (United States)

    Ke, Haochen; van der Linde, Christian; Lisy, James M

    2015-03-12

    The hydration of alkali cations yields a variety of structural conformers with varying numbers of water molecules in the first solvation shell. How these ions move from the aqueous phase into biological systems, such as at the entrance of an ion channel, depends on the interplay between competing intermolecular forces, which first must involve ion-water and water-water interactions. New infrared action spectra, using argon as a messenger or "spy", for Li(+), Na(+), and K(+), with up to five water molecules are reported, and new structural conformers determined from ab initio calculations, combined with previous results on Rb(+) and Cs(+), have identified structural transitions at each hydration level. These transitions are a result of the delicate balance between competing noncovalent interactions and represent a quantitative microscopic view of the macroscopic enthalpy-entropy competition between energy and structural variety. Smaller cations (Li(+) and Na(+)), with higher charge density, yield structural configurations with extended linear networks of hydrogen bonds. Larger cations (Rb(+) and Cs(+)), with lower charge density, generate configurations with cyclic hydrogen-bonded water subunits. It appears that K(+) is somewhat unique, with very simple (and predominantly) single structural conformers. This has led to the suggestion that K(+) can "move" easily in or through biological systems, concealing its identity as an ion, under the "appearance" or disguise of a water molecule.

  11. Electric properties of textured (K0.44Na0.52Li0.04)(Nb0.86Ta0 ...

    Indian Academy of Sciences (India)

    52Li0.04)(Nb0.86Ta0.10Sb0.04)O3 ... thick film were characterized by the relationship of unipolar strain and applied electric field and the PZT constant d. ∗ ... and then the organic vehicle was added in the mixture to mill for another 2 h in the same ...

  12. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithium-ion batteries

    Science.gov (United States)

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of ∼190 mAh g-1 in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distribution-function (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2MnSiO4 nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (β) Li2MnSiO4 crystalline phase (space group Pmn21) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures.

  13. Enhanced tolerance to NaCl and LiCl stresses by over-expressing Caragana korshinskii sodium/proton exchanger 1 (CkNHX1) and the hydrophilic C terminus is required for the activity of CkNHX1 in Atsos3-1 mutant and yeast

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Da-Hai, E-mail: gresea_young@hotmail.com [Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101 (China); Department of Plant Physiology, Institute of General Botany and Plant Physiology, Friedrich-Schiller-University, Dornburger Strasse 159, 07743 Jena (Germany); Song, Li-Ying, E-mail: lysong@genetics.ac.cn [Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101 (China); Hu, Jun, E-mail: jhu@genetics.ac.cn [Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101 (China); Yin, Wei-Bo, E-mail: wbyin@genetics.ac.cn [Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101 (China); Li, Zhi-Guo, E-mail: gzhi@genetics.ac.cn [Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101 (China); Chen, Yu-Hong, E-mail: yhchen@genetics.ac.cn [Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101 (China); Su, Xiao-Hua, E-mail: suxh@caf.ac.cn [Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091 (China); Wang, Richard R.-C., E-mail: Richard.Wang@ARS.USDA.GOV [USDA-ARS, FRRL, Utah State University, Logan, UT 84322-6300 (United States); Hu, Zan-Min, E-mail: zmhu@genetics.ac.cn [Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101 (China)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer CkNHX1 was isolated from Caragana korshinskii. Black-Right-Pointing-Pointer CkNHX1 was expressed mainly in roots, and significantly induced by NaCl in stems. Black-Right-Pointing-Pointer Expression of CkNHX1 enhanced the resistance to NaCl and LiCl in yeast and Atsos3-1. Black-Right-Pointing-Pointer Expression of CkNHX1-{Delta}C had little effect on NaCl/LiCl tolerance in Atsos3-1. Black-Right-Pointing-Pointer C-terminal region of CkNHX1 is required for its Na{sup +} and Li{sup +} transporting activity. -- Abstract: Sodium/proton exchangers (NHX antiporters) play important roles in plant responses to salt stress. Previous research showed that hydrophilic C-terminal region of Arabidopsis AtNHX1 negatively regulates the Na{sup +}/H{sup +} transporting activity. In this study, CkNHX1 were isolated from Caragana korshinskii, a pea shrub with high tolerance to salt, drought, and cold stresses. Transcripts of CkNHX1 were detected predominantly in roots, and were significantly induced by NaCl stress in stems. Transgenic yeast and Arabidopsisthalianasos3-1 (Atsos3-1) mutant over-expressing CkNHX1 and its hydrophilic C terminus-truncated derivative, CkNHX1-{Delta}C, were generated and subjected to NaCl and LiCl stresses. Expression of CkNHX1 significantly enhanced the resistance to NaCl and LiCl stresses in yeast and Atsos3-1 mutant. Whereas, compared with expression of CkNHX1, the expression of CkNHX1-{Delta}C had much less effect on NaCl tolerance in Atsos3-1 and LiCl tolerance in yeast and Atsos3-1. All together, these results suggest that the predominant expression of CkNHX1 in roots might contribute to keep C. korshinskii adapting to the high salt condition in this plant's living environment; CkNHX1 could recover the phenotype of Atsos3-1 mutant; and the hydrophilic C-terminal region of CkNHX1 should be required for Na{sup +}/H{sup +} and Li{sup +}/H{sup +} exchanging activity of CkNHX1.

  14. Bowl shaped deformation in a planar aromatic polycycle upon reduction. Li and Na separated dianions of the aromatic polycycle 5,6:11,12-di-o-phenylene-tetracene.

    Science.gov (United States)

    Wombacher, T; Goddard, R; Lehmann, C W; Schneider, J J

    2017-10-24

    Herein we report the synthesis and crystal structures of three light alkali metal salts of the dianion of the polycyclic aromatic hydrocarbon 5,6:11,12-di-o-phenylenetetracene (L DOPT ). The compounds are obtained by reaction of L DOPT with an excess of lithium or sodium metal in different O-donor solvents (DME, diglyme) and crystallize as naked, solvated-cation separated dianions exhibiting no interaction between the alkali metal ion and the aromatic π-system of L DOPT . Depending on the aprotic etheral solvent and the hardness of the alkaline metal agent a significant structural perturbation of the conjugated carbon framework of L DOPT is observed resulting in a bowl shaped curvature of the anionic π-perimeter, in contrast to its fully planar neutral state. Reduction of L DOPT with lithium in DME results in the formation of the solvent-separated molecular structure of {[(DME-κ 2 O) 3 Li + ] 2 (L DOPT 2- )} 2 1 containing naked isolated units of dianionic L DOPT . A similar structural arrangement is observed for the corresponding sodium compound {[(DME-κ 2 O) 3 Na + ] 2 (L DOPT 2- )} 2 2 in which, however, a lesser curvature of the isolated dianionic ligand skeleton compared to 1 is observed. In contrast to 1 and 2 reduction with sodium in diglyme results in the formation of {[(diglyme-κ 3 O) 2 Na + ] 2 (L DOPT 2- )} 0.5 3. The deformation of the peripheric phenylene rings of [L DOPT 2- ] in 3 is not as pronounced as compared to 1 and 2. Nevertheless, molecular structures of 1-3 deviate from full-planarity as observed in the parent neutral L DOPT . No preferential endo- or exo-site coordination of the alkaline metal cations Li + and Na + on the curved dianionic π-perimeter is observed.

  15. Increased hindrance on the chiral carbon atom of mexiletine enhances the block of rat skeletal muscle Na+ channels in a model of myotonia induced by ATX

    Science.gov (United States)

    Desaphy, Jean-François; Camerino, Diana Conte; Franchini, Carlo; Lentini, Giovanni; Tortorella, Vincenzo; De Luca, Annamaria

    1999-01-01

    The antiarrhythmic drug mexiletine (Mex) is also used against myotonia. Searching for a more efficient drug, a new compound (Me5) was synthesized substituting the methyl group on the chiral carbon atom of Mex by an isopropyl group. Effects of Me5 on Na+ channels were compared to those of Mex in rat skeletal muscle fibres using the cell-attached patch clamp method.Me5 (10 μM) reduced the maximal sodium current (INa) by 29.7±4.4 % (n=6) at a frequency of stimulation of 0.3 Hz and 65.7±4.4 % (n=6) at 1 Hz. At same concentration (10 μM), Mex was incapable of producing any effect (n=3). Me5 also shifted the steady-state inactivation curves by −7.9±0.9 mV (n=6) at 0.3 Hz and −12.2±1.0 mV (n=6) at 1 Hz.In the presence of sea anemone toxin II (ATX; 5 μM), INa decayed more slowly and no longer to zero, providing a model of sodium channel myotonia. The effects of Me5 on peak INa were similar whatever ATX was present or not. Interestingly, Me5 did not modify the INa decay time constant nor the steady-state INa to peak INa ratio.Analysis of ATX-induced late Na+ channel activity shows that Me5 did not affect mean open times and single-channel conductance, thus excluding open channel block property.These results indicate that increasing hindrance on the chiral atom of Mex increases drug potency on wild-type and ATX-induced noninactivating INa and that Me5 might improve the prophylaxis of myotonia. PMID:10578128

  16. Photolysis of metal oxides as a source of atoms in planetary exospheres

    Science.gov (United States)

    Valiev, R. R.; Berezhnoy, A. A.; Sidorenko, A. D.; Merzlikin, B. S.; Cherepanov, V. N.

    2017-10-01

    The cross sections of photolysis of LiO, NaO, KO, MgO, and CaO molecules have been calculated by the use of quantum chemistry methods. The maximal values for photolysis cross sections of alkali metal monoxides have the order of 10-17 cm2, and for alkaline earth metal monoxides these values are less on 1-2 orders of the magnitude. The lifetimes of photolysis at 1 astronomical unit are estimated as 5, 3, 60, 70, and 3,000 s for LiO, NaO, KO, MgO, and CaO, respectively. Typical kinetic energies of main peaks of photolysis-generated metal atoms are determined. Impact-produced LiO, NaO, KO, and MgO molecules are destroyed in the lunar and Hermean exospheres almost completely during the first ballistic flight while CaO molecule is more stable against destruction by photolysis. Photolysis-generated metal atoms in planetary exospheres can be detected by performing high-resolution spectral observations of velocity distribution of exospheric metal atoms.

  17. Implementing quantum electrodynamics with ultracold atomic systems

    Science.gov (United States)

    Kasper, V.; Hebenstreit, F.; Jendrzejewski, F.; Oberthaler, M. K.; Berges, J.

    2017-02-01

    We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic 23Na and fermionic 6Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson-fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose-Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.

  18. Adsorption of alkali and alkaline-earth metal atoms on stanene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Yelda; Ersan, Fatih [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Gökoğlu, Gökhan [Department of Physics, Karabük University, 78050 Karabük (Turkey); Aktürk, Olcay Üzengi [Department of Electrical & Electronics Engineering, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey); Aktürk, Ethem, E-mail: ethem.akturk@adu.edu.tr [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2016-09-01

    This paper presents a study on the adsorption of alkali and alkaline-earth metal atoms on single-layer stanene with different levels of coverage using first-principles plane wave calculations within spin-polarized density functional theory. The most favorable adsorption site for alkali atoms (Li, Na, K) were found to be the hollow site similar to other group IV single-layers, but the case of alkaline-earths on stanene is different from silicene and germanene. Whereas Mg and Ca are bound to stanene at hollow site, the bridge site is found to be energetically favorable for Be adatom. All adsorbed atoms are positively charged due to the charge transfer from adatom to stanene single-layer. The semimetallic bare stanene become metallic except for Be adsorption. The Beryllium adsorption give rise to non-magnetic semiconducting ground state. Our results illustrate that stanene has a reactive and functionalizable surface similar to graphene or silicene. - Highlights: • Alkali and alkaline-earth metal atoms form stronger bonds with stanene compared to other group IV monolayers. • Semi-metallic stanene becomes nonmagnetic metal for Li, Na, K, Mg, and Ca atoms adsorption. • Semi-metallic stanene becomes nonmagnetic semiconductor with 94 meV band gap for Be atom adsorption.

  19. First-principle studies on the Li-Te system

    Science.gov (United States)

    Wang, Youchun; Tian, Fubo; Li, Da; Duan, Defang; Liu, Yunxian; Liu, Bingbing; Zhou, Qiang; Cui, Tian

    2017-01-01

    First-principle evolutionary calculation was performed to search for all probable stable lithium tellurium compounds. In addition to the well-known structures of Fm-3m Li2Te and Pnma Li2Te, several novel structures, including those of P4/nmm Li2Te, Imma Li8Te2, and C2/m Li9Te2, were determined under high pressure. The transformation sequence of Li2Te induced by pressure was presented as follows. The phase transition occurred at 7.5 GPa while transforming from Fm-3m phase to Pnma structure, then transformed to P4/nmm phase at 14 GPa. P4/nmm Li2Te can remain stable at least up to 140 GPa. Li8Te2 and Li9Te2 were stable at 8-120 GPa and 80-120 GPa, respectively. Interestingly, Li8Te2 and Li9Te2 were predicted to be metallic under high pressure, Li2Te would metalize on compression. P4/nmm Li2Te is likely a super ionic conductor due to the special characteristic. Metallic P4/nmm Li2Te may be a candidate mixed conductor material under extreme pressure. Charge transfer was studied using Bader charge analysis. Charge transferred from Li to Te, and the relative debilitated ionicity between Li and Te atoms existed at high pressure.

  20. Direct observation of Li diffusion in Li-doped ZnO nanowires

    Science.gov (United States)

    Li, Guohua; Yu, Lei; Hudak, Bethany M.; Chang, Yao-Jen; Baek, Hyeonjun; Sundararajan, Abhishek; Strachan, Douglas R.; Yi, Gyu-Chul; Guiton, Beth S.

    2016-05-01

    The direct observation of Li diffusion in Li-doped zinc oxide nanowires (NWs) was realized by using in situ heating in the scanning transmission electron microscope (STEM). A continuous increase of low atomic mass regions within a single NW was observed between 200 °C and 600 °C when heated in vacuum, which was explained by the conversion of interstitial to substitutional Li in the ZnO NW host lattice. A kick-out mechanism is introduced to explain the migration and conversion of the interstitial Li (Lii) to Zn-site substitutional Li (LiZn), and this mechanism is verified with low-temperature (11 K) photoluminescence measurements on as-grown and annealed Li-doped zinc oxide NWs, as well as the observation of an increase of NW surface roughing with applied bias.

  1. Li-promoted sodium zirconate as a CO{sub 2} absorbent at high temperatures; Zirconato de sodio promovido con Li como absorbente de CO{sub 2} a alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Guzman Velderrain, V.; Barraza Jimenez, D.; Lardizabal Gutierrez, D.; Delgado Vigil, D.; Salinas Gutierrez, J.; Lopez Ortiz, A.; Collins-Martinez, V. [Centro de Investigacion en Materiales Avanzados S. C., Chihuahua, Chihuahua (Mexico)]. E-mail: virginia.collins@cimav.edu.mx

    2009-09-15

    In processes to produce hydrogen from fossil fuels, CO{sub 2} capture at high temperatures has played a crucial role in their conversion into energy-efficient processes. One example is steam reformer methane improved with absorption (SER), where CO{sub 2} capture at high temperatures (600 degrees Celsius) provides an energy savings of {approx_equal} 23% over conventional reformer processes (SMR). An important part of this concept is solid CO{sub 2} absorption, which must have adequate absorption capacity and rapid absorption/regeneration kinetics. Recently, synthetic CO{sub 2} absorbents have been developed that consist of mixed Li oxides. Previous studies conducted in our laboratory report that the absorption/regeneration properties of sodium zirconate (Na{sub 2}ZrO{sub 3}) are higher than Li-oxides. The objective of the present work is to increase the absorption capacity of Na{sub 2}ZrO{sub 3} at high temperatures without significantly affecting the kinetics of its absorption and regeneration, with Li promotion. The Na{sub 2}ZrO{sub 3} was synthesized by reaction in a solid state and impregnated with LiNO{sub 3} at different Li/Na ratios: 0, 0.03, 0.05, 0.1 and 0.25 (NZ, NZL3, NZL5, NZL10, NZL25). The characterization consisted of XRD and SEM. The evaluation as an absorbent was performed with TGA at 600 degrees Celsius in 80% CO{sub 2} (absorption) and 800 degrees Celsius in air (regeneration). While XRD shows only the Na{sub 2}ZrO{sub 3} structure in all the samples, the promoted samples present a signal shift with respect to Na{sub 2}ZrO{sub 3}, which is attributed to the substitution of Na atoms with Li. The TGA results indicate that the addition of Li to the Na{sub 2}ZrO{sub 3} structure does not significantly modify the absorption or regeneration kinetics. As the Li contents in the Na{sub 2}ZrO{sub 3} increase, the amount of CO{sub 2} capture increases up to a limit between 10 and 25% mol of Li. This is due to the displaced sodium presumably tending to form

  2. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy; Probabilidades de transicion de algunos niveles de Cr II, Na II y Sb I medediante espectroscopia de plasma producidos por laser

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-07-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities ({approx}{approx} 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs.

  3. Raman Spectra of Crystalline Double Calcium Orthovanadates Ca10M(VO4)7 (M = Li, K, Na) and Their Interpretation Based on Deconvolution Into Voigt Profilesparagraph>Please check captured article title, if appropriate.paragraph>-->

    Science.gov (United States)

    Khodasevich, I. A.; Voitikov, S. V.; Orlovich, V. A.; Kosmyna, M. B.; Shekhovtsov, A. N.

    2016-09-01

    Unpolarized spontaneous Raman spectra of crystalline double calcium orthovanadates Ca10M(VO4)7 (M = Li, K, Na) in the range 150-1600 cm-1 were measured. Two vibrational bands with full-width at half-maximum (FWHM) of 37-50 cm-1 were found in the regions 150-500 and 700-1000 cm-1. The band shapes were approximated well by deconvolution into Voigt profiles. The band at 700-1000 cm-1 was stronger and deconvoluted into eight Voigt profiles. The frequencies of two strong lines were ~848 and ~862 cm-1 for Ca10Li(VO4)7; ~850 and ~866 cm-1 for Ca10Na(VO4)7; and ~844 and ~866 cm-1 for Ca10K(VO4)7. The Lorentzian width parameters of these lines in the Voigt profiles were ~5 times greater than those of the Gaussian width parameters. The FWHM of the Voigt profiles were ~18-42 cm-1. The two strongest lines had widths of 21-25 cm-1. The vibrational band at 300-500 cm-1 was ~5-6 times weaker than that at 700-1000 cm-1 and was deconvoluted into four lines with widths of 25-40 cm-1. The large FWHM of the Raman lines indicated that the crystal structures were disordered. These crystals could be of interest for Raman conversion of pico- and femtosecond laser pulses because of the intense vibrations with large FWHM in the Raman spectra.

  4. NASICON-type surface functional modification in core-shell LiNi0.5Mn0.3Co0.2O2@NaTi2(PO4)3 cathode enhances its high-voltage cycling stabilty and rate capacity towards Li-ion batteries.

    Science.gov (United States)

    Liang, Longwei; Sun, Xuan; Wu, Chen; Hou, Linrui; Sun, Jinfeng; Zhang, Xiaogang; Yuan, Changzhou

    2018-01-22

    Surface modifications are established well as efficient methodologies to enhance comprehensive Li-storage behaviors of the cathodes, and play a significant role in cutting edge innovations towards lithium-ion batteries (LIBs). Herein, we first logically devised a pilot-scale coating strategy to integrate solid state electrolyte NaTi2(PO4)3 (NTP) and layered LiNi0.5Mn0.3Co0.2O2 (NMC) for smart construction of core-shell NMC@NTP cathodes. The NASICON-type NTP nanoshell with exceptional ion conductivity effectively suppressed gradual encroachment and/or loss of electroactive NMC, guaranteed stable phase-interfaces, and rendered small sur-/interfacial eletron/ion-diffusion resistance meanwhile. Benefitting from immanently promoting contributions of the nano-NTP coating, the as-fabricated core-shell NMC@NTP architectures were competitively endowed with superior high-voltage cyclic stabilities and rate capacities within larger electrochemical window from 3.0 to 4.6 V when utilized as advanced cathodes for advanced LIBs. More meaningfully, the appealing electrode design concept proposed here will exert significant impact upon further constructing other high-voltage Ni-based cathodes for high-energy/power LIBs.

  5. Measurement of the electric quadrupole moments of $^{26-29}$Na

    CERN Document Server

    Keim, M; Klein, A; Neugart, R; Neuroth, M; Wilbert, S; Lievens, P; Vermeeren, L; Brown, B A

    2000-01-01

    The nuclear electric quadrupole moments of the isotopes $^{26}$Na, $^{27}$Na, $^{28}$Na and $^{29}$Na were measured by $\\beta$-NMR spectroscopy in single crystals of LiNbO$_3$ and NaNO$_3$. High degrees of nuclear polarization were produced by optical pumping of the sodium atoms in a fast beam with a collinear laser beam.The polarized nuclei were implanted into the crystals and NMR signals were observed in the $\\beta$-decay asymmetries. Preparatory measurements also yielded improved values for the magnetic moments of $^{27-31}$Na and confirmed the spin $I=3/2$for $^{31}$Na. The results are discussed in comparison with large-basis shell-model calculations.

  6. Detection and quantification of a toxic salt substitute (LiCl) by using laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Sezer, Banu; Velioglu, Hasan Murat; Bilge, Gonca; Berkkan, Aysel; Ozdinc, Nese; Tamer, Ugur; Boyaci, Ismail Hakkı

    2018-01-01

    The use of Li salts in foods has been prohibited due to their negative effects on central nervous system; however, they might still be used especially in meat products as Na substitutes. Lithium can be toxic and even lethal at higher concentrations and it is not approved in foods. The present study focuses on Li analysis in meatballs by using laser induced breakdown spectroscopy (LIBS). Meatball samples were analyzed using LIBS and flame atomic absorption spectroscopy. Calibration curves were obtained by utilizing Li emission lines at 610nm and 670nm for univariate calibration. The results showed that Li calibration curve at 670nm provided successful determination of Li with 0.965 of R(2) and 4.64ppm of limit of detection (LOD) value. While Li Calibration curve obtained using emission line at 610nm generated R(2) of 0.991 and LOD of 22.6ppm, calibration curve obtained at 670nm below 1300ppm generated R(2) of 0.965 and LOD of 4.64ppm. Copyright © 2017. Published by Elsevier Ltd.

  7. Recent Developments in the NIST Atomic Databases

    Science.gov (United States)

    Kramida, Alexander

    2011-05-01

    New versions of the NIST Atomic Spectra Database (ASD, v. 4.0) and three bibliographic databases (Atomic Energy Levels and Spectra, v. 2.0, Atomic Transition Probabilities, v. 9.0, and Atomic Line Broadening and Shapes, v. 3.0) have recently been released. In this contribution I will describe the main changes in the way users get the data through the Web. The contents of ASD have been significantly extended. In particular, the data on highly ionized tungsten (W III-LXXIV) have been added from a recently published NIST compilation. The tables for Fe I and Fe II have been replaced with newer, much more extensive lists (10000 lines for Fe I). The other updated or new spectra include H, D, T, He I-II, Li I-III, Be I-IV, B I-V, C I-II, N I-II, O I-II, Na I-X, K I-XIX, and Hg I. The new version of ASD now incorporates data on isotopes of several elements. I will describe some of the issues the NIST ASD Team faces when updating the data.

  8. Study of inelastic processes in Li+–Ar, K+–Ar, and Na+–He collisions in the energy range 0.5–10 keV

    Science.gov (United States)

    Lomsadze, Ramaz A.; Gochitashvili, Malkhaz R.; Kezerashvili, Roman Ya; Schulz, Michael

    2017-11-01

    Absolute cross sections are measured for charge-exchange, ionization, and excitation processes within the same experimental setup for the Li{}+-Ar, K{}+-Ar, and Na{}+-He collisions in the ion energy range of 0.5–10 keV. The results of the measurements and schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. The experimental results show that the charge-exchange processes occur with high probabilities and electrons are predominantly captured in ground states. The contributions of various partial inelastic channels to the total ionization cross section are estimated, and a primary mechanism for the process is identified. In addition, the energy-loss spectrum is applied in order to estimate the relative contribution of different inelastic channels, and to determine the mechanisms for the ionization and for some excitation processes of Ar resonance lines for the {{{K}}}+-Ar collision system. The excitation cross sections for the helium and for the sodium doublet lines for the Na{}+-He collision system both reveal some unexpected features. A mechanism to explain this observation is suggested.

  9. LiHo(PO34

    Directory of Open Access Journals (Sweden)

    Mokhtar Férid

    2009-02-01

    Full Text Available Lithium holmium(III polyphosphate(V, LiHo(PO34, belongs to the type I of polyphosphates with general formula ALn(PO34, where A is a monovalent cation and Ln is a trivalent rare earth cation. In the crystal structure, the polyphosphate chains spread along the b-axis direction, with a repeat period of four tetrahedra and 21 internal symmetry. The Li and Ho atoms are both located on twofold rotation axes and are surrounded by four and eight O atoms, leading to a distorted tetrahedral and dodecahedral coordination, respectively. The HoO8 polyhedra are isolated from each other, the closest Ho...Ho distance being 5.570 (1 Å.

  10. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    Science.gov (United States)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  11. Composition design and electrical properties in (1-y)(K0.40Na0.60)0.985Li0.015(Nb1-xSbx)O3-yBi0.5Na0.5ZrO3 lead-free ceramics

    Science.gov (United States)

    Yuan, Yuan; Wu, Jiagang; Tao, Hong; Lv, Xiang; Wang, Xiangjian; Lou, Xiaojie

    2015-02-01

    To realize the enhancement in piezoelectric activities, the composition-induced phase boundaries in (1-y)(K0.40Na0.60)0.985Li0.015(Nb1-xSbx)O3-yBi0.5Na0.5ZrO3 lead-free ceramics were designed and fabricated by the conventional solid-state method. We presented the evolutions of their phase structure, microstructure, and electrical properties with the change of Sb5+ and Bi0.5Na0.5ZrO3 contents. A rhombohedral-tetragonal phase boundary was successfully built in the composition region of 0.04 ≤ x ≤ 0.09 (y = 0.025) and 0.025 ≤ y ≤ 0.035 (x = 0.06), and then the desirable piezoelectric coefficients and bipolar strains (e.g., d33˜390 pC/N, kp˜0.45, Smax˜0.2%, and TC˜250 °C) were simultaneously induced. We think that this may provide a direction of designing high-performance (K,Na)NbO3-based ceramics.

  12. Structure and electrical resistance of (Al{sub 5,5}Cu{sub 1}){sub 200-X}Li{sub X} layers; Struktur und elektrischer Widerstand von (Al{sub 5,5}Cu{sub 1}){sub 100-X}Li{sub X}-Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Lang, M.

    2005-11-29

    In the framework of the present thesis thew transition from amorphous AlCuLi layers ionto the quasi-crystalline phase should be studied. For this the atomic structure and the electrical resistance on in-situ produced amorphous (Al{sub 5,5}Cu{sub 1}){sub 100-X}Li{sub X} layers in the temperature range 2 KLi{sub X} the atoms position into the Friedel minima of the pairing potential. Up to about 26 at% this occurs mainly via a hybridization effect of the electrons from the valence band into the unoccupied Cu d-states. Above 26 at% Li this is reached increasingly by an increasement of the atomic-number density. In order to reach a decreasing of the atomic volume The Li losses its outer electron and decreases by this its radius. The maximum in the interference function I(K) at larger K values shifts parallely to the diameter of the Fermi sphere 2k{sub F} and is by this to be recognized as electronically induced. Electronic transport properties are shown, which could also be observed in other systems (NaSn,AlCuFe). In the range of more than 50 at% Li the density anomaly vanishes again and the atoms lie also without change of the volume near the Friedel minima. However the alloy losses thereby stability. The system behaves here similarly as comparable noble-metal polyvalent-element alloys.

  13. Modified Li chains as atomic switches

    KAUST Repository

    Wunderlich, Thomas

    2013-09-06

    We present electronic structure and transport calculations for hydrogen and lithium chains, using density functional theory and scattering theory on the Green\\'s function level, to systematically study impurity effects on the transmission coefficient. To this end we address various impurity configurations. Tight-binding results allow us to interpret our the findings. We analyze under which circumstances impurities lead to level splitting and/or can be used to switch between metallic and insulating states. We also address the effects of strongly electronegative impurities.

  14. Concentrations of As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, and Zn in uruguayan rice determined by atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mario E. Rivero Huguet

    2011-04-01

    Full Text Available The United Nations General Assembly declared the year 2004 the International Year of Rice and the concept "Rice is life". The largest nutritional problems occurring globally are protein-energy malnutrition, and Ca, Fe, I, Zn, and vitamin A deficiency. In this report, 49 rice samples (Oryza sativa L. were digested by dry ashing in order to determine As, Cd, Cr, and Pb by ETA-AAS; while Ca, Co, Cu, Fe, K, Mg, Mo, Mn, Na, Ni, and Zn were determined by FAAS; and Hg by CV-AAS using microwave-assisted decomposition. The following concentration ranges were obtained for Ca (9.1-15 mg/100 g, Cd (2.30-4.12 µg/kg, Co (41-60 µg/kg, Cu (1.33-180 mg/kg, Fe (4.41-7.15 mg/kg, K (167-217 mg/100 g, Mg (45-121 mg/100 g, Mo (0.52-0.97 mg/kg, Mn (5.45-25.4 mg/kg, Na (0.95-2.50 mg/100g, Ni (0.53-0.72 mg/kg, and Zn (5.86-12.6 mg/kg. Mean recoveries of elements from fortified rice were: 87±12% for As, 95.3±8.9% for Ca, 106.2±7.7% for Cd, 103.3±6.5% for Co, 89.4±8.1% for Cr, 99.3±4.6% for Cu, 103±10% for Fe, 96.3±9.3% for Hg, 95.4±12% for K, 98.3±8.0% for Mg, 93.4±7.8% for Mo, 95.3±9.9% for Mn, 89±12% for Na, 90.3±9.7% for Ni, 91.2±5.5% for Pb and 92.0±9.4% for Zn. The concentrations of the minerals and microelements studied fall within the typical range of rice grown around the world. Potassium was the most abundant mineral, followed by Mg and Ca; among microelements, the concentrations of Cu, Fe, Mo, Mn, Na, and Zn in rice were outstanding. It was also found that the milling process highly affects the K, Mg, Mn, Na, and Zn concentrations, while it has little influence on Ca, Co, Cu, and Fe. On the other hand, there is a loss of Ca, Fe, and Mn during the parboiling process. Recent studies have shown the potential to exploit the genetic variation of rice seeds with regard to the concentration of some minerals (Ca, Fe, Zn, etc. without affecting yield or adding new traits. All rice samples tested showed lower levels of As, Cd, Hg, and Pb in comparison

  15. Crystal structure of Li3Ga(BO32

    Directory of Open Access Journals (Sweden)

    Robert W. Smith

    2017-03-01

    Full Text Available The crystal structure of trilithium gallium bis(orthoborate, Li3Ga(BO32, is isotypic with Li3Al(BO32 in a triclinic cell in space-group type P-1. The three Li and the unique Ga atom are coordinated by four O atoms each in tetrahedra, and the two B atoms are coordinated by three O atoms in orthoborate triangles. Chains with composition [Ga2(BO34]6− extend along the a axis. The Li atoms interleave these chains in tetrahedral interstices. A comparison is made between the structure model of the title compound and that of a previously reported model for a compound with the same composition [Abdullaev & Mamedov (1972. Zh. Strukt. Khim. 13, 943–946.

  16. Facebook’ta Bulunma Amacı ve Facebook Reklamlarına Duyulan İlgi Arasındaki İlişki

    OpenAIRE

    Ay, Arş. Grv. Ufuk

    2014-01-01

    Bu araştırmada Facebook’ta bulunma amaçları ile Facebook reklamlarına duyulan ilgi arasında bir ilişki olup olmadığı ölçülmüştür. Bu amaçla internet üzerinden 283 kişiye anket uygulanmıştır. Araştırmanın bulguları Facebook’ta bulunma amaçları olarak tanımlanan “sosyal arama” ve “sosyal tarama” değişkenleriyle Facebook reklamlarına duyulan ilgi arasında anlamlı ilişkiler olduğunu destekler niteliktedir.

  17. O olhar contemporâneo na releitura do moderno: A lição de anatomia do temível Dr. Louison

    Directory of Open Access Journals (Sweden)

    Bruno Anselmi Matangrano

    2016-01-01

    Full Text Available Partiendo de elementos de la literatura “policial de enigma” y de los rasgos más sobresalientes de las poéticas naturalista, realista, simbolista y decadente, el objetivo de este artículo es mostrar cómo A Lição de anatomia do temível Dr. Louison, de Enéias Tavares, una novela de “ficción alternativa” con tendencia retrofuturista steampunk, revisita poéticas, obras y formas narrativas típicamente decimonónicas, confrontándolas y mezclándolas de tal manera que lanza una mirada contemporánea para un hipotético futuro del pasado reconstruido. Para ello, el texto se divide en cinco partes: en la primera son utilizados estudios sobre el steampunk con la intención de entender sus mecanismos y situar la obra de Tavares en esta tendencia estética contemporánea; en seguida se da inicio propiamente al análisis de A lição de anatomia, leído como novela policíaca, explicitando el diálogo con las obras a que hace referencia; después de eso, a la luz de los escritos de Charles Baudelaire, se evidencia el diálogo y la relectura de la tradición, al mismo tiempo en que señala el debate entre el cientificismo y el misticismo que estructura la obra en un contrapunto, dándole unidad; por fin, una lectura detallada de la figura del personaje-título es realizada en perspectiva comparada al personaje Des Esseintes del libro À Rebours [A contrapelo], de J.-K. Huysmans, explicitando el aspecto decadentista y su carácter de dandi. El artículo se encierra con una reflexión acerca de la victoria del dandi decadentista sobre la figura del “médico-loco”, síntesis metafórica de la novela y posible clave de lectura de la modernidad, a partir de una mirada contemporánea.

  18. Synthesis and luminescent properties of high brightness MLa(WO{sub 4}){sub 2}:Eu{sup 3+} (M=Li, Na, K) and NaRE(WO{sub 4}){sub 2}:Eu{sup 3+} (RE=Gd, Y, Lu) red phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Linlin; Liu, Lu; Zi, Wenwen; Yu, Hong [College of Chemistry, Jilin University, Changchun 130026 (China); Gan, Shucai, E-mail: gansc@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130026 (China); Ji, Guijuan; Zou, Haifeng [College of Chemistry, Jilin University, Changchun 130026 (China); Xu, Xuechun [College of Earth Sciences, Jilin University, Changchun 130026 (China)

    2013-11-15

    Eu{sup 3+}-activated double tungstates phosphors MLa(WO{sub 4}){sub 2} (M=Li, Na, K) and NaRE(WO{sub 4}){sub 2} (RE=Gd, Y, Lu) have been successfully prepared via the conventional solid-state reaction method. The effects of alkali ions and rare earth ions on the luminescence of MLa(WO{sub 4}){sub 2}:Eu{sup 3+} and NaRE(WO{sub 4}){sub 2}:Eu{sup 3+} were investigated. In MLa(WO{sub 4}){sub 2}:Eu{sup 3+} system the emission intensity was found to decrease with increasing the size of alkali ions, and in NaRE(WO{sub 4}){sub 2}:Eu{sup 3+} system the emission intensity can be ordered as follows: Lu>Y>Gd. Moreover, under 393 nm light excitation all compounds exhibited strong luminescence of {sup 5}D{sub 0}→{sup 7}F{sub 2} at 615 nm. The excitation spectra implied that these phosphors can absorb not only the emission of near UV-LED chips but also that of blue LED chips. All the results indicate that these phosphors are promising red-emitting phosphors pumped by near-UV or blue light. -- Highlights: • Eu{sup 3+}-activated MLa(WO{sub 4}){sub 2} and NaRE(WO{sub 4}){sub 2} have been prepared via the solid-state method. • The emission intensity was found to decrease with increasing the size of alkali cations. • In NaRE(WO{sub 4}){sub 2}:Eu{sup 3+} system the luminescent intensity can be ordered as follows: Lu>Y>Gd.

  19. A quem confiamos os recursos comuns - estado, comunidade ou mercado? - lições aprendidas com o manejo da pesca na Amazônia

    Directory of Open Access Journals (Sweden)

    Antonio Oviedo

    2003-12-01

    Full Text Available A ausência de práticas de manejo sustentável da base comum de recursos naturais é decorrente de várias causas, tais como: insegurança fundiária, instituições locais pouco representativas, políticas públicas inadequadas para a gestão participativa e ausência de incentivos e créditos adequados. Este modelo de exploração dos recursos comuns tem provocado a degradação ambiental e conflitos sociais entre os diversos usuários do recurso. Este artigo trata do uso e conservação da base comum de recursos naturais, visando fornecer subsídios para uma avaliação da gestão ambiental na Amazônia e do papel das estruturas institucionais. O artigo apresenta experiências de gestão ambiental da pesca na Amazônia, com ênfase na participação das comunidades locais organizadas, as quais apontam novas possibilidades para os processos de tomada de decisão, fortalecendo um sistema descentralizado, e configurando um marco regulatório da gestão ambiental participativa.

  20. Dispersion C3 coefficients for the alkali-metal atoms interacting with a graphene layer and with a carbon nanotube

    CERN Document Server

    Arora, Bindiya; Sahoo, B K

    2013-01-01

    We evaluate separation dependent van der Waal dispersion ($C_3$) coefficients for the interactions of the Li, Na, K and Rb alkali atoms with a graphene layer and with a single walled carbon nanotube (CNT) using the hydrodynamic and Dirac models. The results from both the models are evaluated using accurate values of the dynamic polarizabilities of the above atoms. Accountability of these accurate values of dynamical polarizabilities of the alkali atoms in determination of the above $C_3$ coefficients are accentuated by comparing them with the coefficients evaluated using the dynamic dipole polarizabilities estimated from the single oscillator approximation which are typically employed in the earlier calculations. For practical description of the atom-surface interaction potentials the radial dependent $C_3$ coefficients are given for a wide range of separation distances between the ground states of the considered atoms and the wall surfaces and also for different values of nanotube radii. The coefficients for...

  1. First-principles study of ternary Li-Al-Te compounds under high pressure

    Science.gov (United States)

    Wang, Youchun; Tian, Fubo; Li, Da; Duan, Defang; Xie, Hui; Liu, Bingbing; Zhou, Qiang; Cui, Tian

    2018-02-01

    The ternary Li-Al-Te compounds were investigated by the first-principle evolutionary calculation based on density function theory. Apart from the known structure, I-42d LiAlTe2 and P3m1 LiAlTe2, several new structures were discovered, P-3m1 LiAlTe2, Pnma LiAlTe2, C2/c Li9AlTe2, Immm Li9AlTe2 and P4/mmm Li6AlTe. We determined that the I-42d LiAlTe2 firstly changed to P-3m1 phase at 6 GPa, and then into the Pnma structure at 65 GPa, Pnma phase was stable up at least to 120 GPa. I-42d LiAlTe2 was a pseudo-direct band gap semiconductor, but P-3m1 LiAlT2 was an indirect band gap semiconductor. This may be caused by the pressure effect. Subsequently, it was metallized under pressure. Pnma LiAlTe2 was also metallic at the pressure we studied. C2/c Li9AlTe2 was stable above 4 GPa, then turned into Immm phase at 60 GPa. C2/c Li9AlTe2 was an indirect band gap semiconductor. The results show that P4/mmm Li6AlTe was stable and metallized in the pressure range of 0.7-120 GPa. The calculations of DOS and PDOS indicate that the arrangement of electrons near Fermi energy can be affected by the increase of Li. The calculated ELF results and Bader charge analysis indicate that there was no covalent bond between Al and Te atoms for high-pressure Pnma LiAlTe2, Li9AlTe2 and Li6AlTe. For Li9AlTe2 and Li6AlTe, different from LiAlTe2, Al atoms not connect with Te atoms, but link with Li atoms. The results were further proved by Mulliken population analysis. And the weak covalent bonds between Li and Al atoms stem from the hybridization of Li s and Al p presented in PDOS diagrams. We further deduced that the pressure effect and the increase of Li content may result in the disappearance of Al-Te bonds for Li-Al-Te compound under extreme pressure.

  2. An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface

    Directory of Open Access Journals (Sweden)

    Yan-Zi Yu

    2015-01-01

    Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.

  3. Channeling through Two Stacked Guanine Quartets of One and Two Alkali Cations in the Li(+), Na(+), K(+), and Rb(+) Series. Assessment of the Accuracy of the SIBFA Anisotropic Polarizable Molecular Mechanics Potential.

    Science.gov (United States)

    Gresh, Nohad; Naseem-Khan, Sehr; Lagardère, Louis; Piquemal, Jean-Philip; Sponer, Judit E; Sponer, Jiri

    2017-04-27

    Stacking of guanine quartets (GQs) can trigger the formation of DNA or RNA quadruple helices, which play numerous biochemical roles. The GQs are stabilized by alkali cations, mainly K(+) and Na(+), which can reside in, or channel through, the central axis of the GQ stems. Further, ion conduction through GQ wires can be leveraged for nanochemistry applications. G-quadruplex systems have been extensively studied by classical molecular dynamics (MD) simulations using pair-additive force fields or by quantum-chemical (QC) calculations. However, the non-polarizable force fields are very approximate, while QC calculations lack the necessary sampling. Thus, ultimate description of GQ systems would require long-enough simulations using advanced polarizable molecular mechanics (MM). However, to perform such calculations, it is first mandatory to evaluate the method's accuracy using benchmark QC. We report such an evaluation for SIBFA polarizable MM, bearing on the channeling (movement) of an alkali cation (Li(+), Na(+), K(+), or Rb(+)) along the axis of two stacked G quartets interacting with either one or two ions. The QC energy profiles display markedly different features depending upon the cation but can be retrieved in the majority of cases by the SIBFA profiles. An appropriate balance of first-order (electrostatic and short-range repulsion) and second-order (polarization, charge-transfer, and dispersion) contributions within ΔE is mandatory. With two cations in the channel, the relative weights of the second-order contributions increase steadily upon increasing the ion size. In the G8 complexes with two K(+) or two Rb(+) cations, the sum of polarization and charge-transfer exceeds the first order terms for all ion positions.

  4. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  5. A randomised, double-blind, controlled efficacy trial of the LiESP/QA-21 vaccine in naïve dogs exposed to two leishmania infantum transmission seasons.

    Science.gov (United States)

    Oliva, Gaetano; Nieto, Javier; Foglia Manzillo, Valentina; Cappiello, Silvia; Fiorentino, Eleonora; Di Muccio, Trentina; Scalone, Aldo; Moreno, Javier; Chicharro, Carmen; Carrillo, Eugenia; Butaud, Therese; Guegand, Laurie; Martin, Virginie; Cuisinier, Anne-Marie; McGahie, David; Gueguen, Sylvie; Cañavate, Carmen; Gradoni, Luigi

    2014-10-01

    Canine leishmaniasis is an important zoonosis caused by uncontrolled infection with Leishmania infantum, where an inappropriate immune response is not only responsible for permitting this intracellular parasite to multiply, but is also responsible for several of the pathological processes seen in this disease. Effective canine vaccines are therefore a highly desirable prevention tool. In this randomised, double-blinded, controlled trial, the efficacy of the LiESP/QA-21 vaccine (CaniLeish, Virbac, France) was assessed by exposing 90 naïve dogs to natural L. infantum infection during 2 consecutive transmission seasons, in two highly endemic areas of the Mediterranean basin. Regular PCR, culture, serological and clinical examinations were performed, and the infection/disease status of the dogs was classified at each examination. The vaccine was well-tolerated, and provided a significant reduction in the risk of progressing to uncontrolled active infection (p = 0.025) or symptomatic disease (p = 0.046), with an efficacy of 68.4% and a protection rate of 92.7%. The probability of becoming PCR positive was similar between groups, but the probability of returning to a PCR negative condition was higher in the vaccinated group (p = 0.04). In conclusion, we confirmed the interest of using this vaccine as part of a comprehensive control program for canine leishmaniasis, and validated the use of a protocol based on regular in-depth assessments over time to assess the efficacy of a canine leishmaniasis vaccine.

  6. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.

    Science.gov (United States)

    Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay

    2016-01-27

    Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future.

  7. Phase transitions and optical characterization of lead-free piezoelectric (K0.5Na0.5)0.96Li0.04(Nb 0.8Ta0.2)O3 thin films

    KAUST Repository

    Yao, Yingbang

    2013-06-01

    Lead-free piezoelectric thin films, (K0.5Na0.5) 0.96Li0.04(Nb0.8Ta0.2)O 3, were epitaxially grown on MgO(001) and Nb-doped SrTiO 3(001) substrates using pulsed laser deposition. The optimum deposition temperature was found to be 600 C. Two types of in-plane orientations were observed in the films depending on the substrates used. The transmittance and photoluminescence spectra as well as the dielectric and ferroelectric properties of the films were measured. The measured band-gap energy was found to be decreased with the deposition temperature. The dielectric constant decreased from 550 to 300 as the frequency increased from 100 Hz to 1 MHz. The measured remnant polarization and coercive field were 4 μC/cm2 and 68 kV/cm, respectively. The phase transitions of the films were studied by Raman spectroscopy. Two distinct anomalies originating from the cubic-to-tetragonal (TC-T ~ 300 C) and tetragonal-to-orthorhombic (TT-O ~ 120 C) phase transitions were observed. Our results show that Raman spectroscopy is a powerful tool in identifying the phase transitions in ferroelectric thin films. © 2013 Elsevier B.V.

  8. Development of hexa- and mono-celsian in the crystallization of banalsite BaNa2Al4Si4O16 (LiF-CaF2-B2O3) glasses

    Science.gov (United States)

    Eldera, S. S.; Rüssel, C.; Hamzawy, E. M. A.

    2017-12-01

    On the basis of the mineral banalsit (BaNa2Al4Si4O16) and the addition of small B2O3 concentrations, transparent glasses were prepared. Furthermore, in order to achieve nucleation, LiF and CaF2 were added. Hexacelsian was formed in bulk crystallized glass samples whereas, monocelsian, as well as small quantities of nepheline and banalsite were crystallized from sintered glass powder. The scanning electron micrographs of the sintered samples show high crystallinity and crystals with sizes from nano to micrometers. The SEM micrographs and the EDX microanalyses show that nano size rods of monocelsian surrounded by micrometer-sized hexagonal nepheline, banalsite or residual glassy phase occur. The coefficient of thermal expansion of the samples sintered at 1000 °C was higher (12.93-9.52 × 10-6 K-1) in hexacelsian containing samples than in monocelsian (2.24-7.35 × 10-6 K-1) containing ones. The samples also showed notably different densities of 2.6424 and 2.4718 g/cm3, respectively.

  9. New intermetallic phases in the Cu-Li-Sn system. The lithium-rich phases Li{sub 3}CuSn and Li{sub 6}Cu{sub 2}Sn{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Flandorfer, Hans [Wien Univ. (Austria). Inst. fuer Anorganische Chemie (Materialchemie); Effenberger, Herta S. [Wien Univ. (Austria). Inst. fuer Mineralogie und Kristallographie

    2016-04-01

    The Li-rich ternary intermetallic compounds with the idealized end-member compositions Li{sub 3}CuSn (CSD-427099) and Li{sub 6}Cu{sub 2}Sn{sub 3} (CSD-427100) were synthesized from the pure elements by induction melting in Ta crucibles and annealing at 400 {sup circle} C. Both powder and single-crystal XRD investigations were performed. Li{sub 3}CuSn crystallizes in space group P6/mmm [a=4.5769(2), c=8.461(2) Aa; wR{sub 2}=0.073 for 180 unique F{sup 2}-values and 25 free variables]. All atoms are located along [00z], [1/3 2/3 z] and [2/3 1/3 z]; individual sites are arranged in layers parallel to (00.1). One site is fully, one partially occupied by Sn atoms. Fully but mixed occupation with Cu and Li atoms was found for one site. The remaining electron-density distribution resulting from the strong anisotropic displacement parallel to the c axis is considered in four further sites, which are mixed occupied with (Li, Cu, □), but modelled solely by Li atoms. The crystal structure exhibits analogies with that of Li{sub 2}CuSn (F anti 43m); comparable layers occur parallel to {111} but the stacking sequence and packing density differs adopting cubic symmetry. In Li{sub 6}Cu{sub 2}Sn{sub 3} [space group R anti 32/m, a=4.5900(2), c=30.910(6) Aa; wR{sub 2}=0.039 for 253 unique F{sup 2}-values for 25 free variables] all atoms are arranged again at (00z), (1/3 2/3 z) and (2/3 1/3 z). Three sites are fully occupied (two by Sn atoms, a further one by Li atoms). Three additional positions are mixed occupied by Cu and Li atoms. The crystal structure is closely related to that of the binary phases Li{sub 13}Sn{sub 5} and Li{sub 5}Sn{sub 2}; the substitution of Li by Cu atoms and vice versa is evident. The structural relationship to Li{sub 13}Ag{sub 5}Si{sub 6}, which is permeable for Li ions, makes the title compound interesting as anode material in Li-ion batteries.

  10. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  11. New rock salt-related oxides Li{sub 3}M{sub 2}RuO{sub 6} (M=Co, Ni): Synthesis, structure, magnetism and electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Laha, S. [Departamento de Químicas Inorganica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India); Morán, E., E-mail: emoran@quim.ucm.es [Departamento de Químicas Inorganica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Sáez-Puche, R.; Alario-Franco, M.Á.; Dos santos-Garcia, A.J. [Departamento de Químicas Inorganica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Gonzalo, E.; Kuhn, A.; García-Alvarado, F. [Universidad CEU San Pablo, Facultad de Farmacia, Departamento de Química, 28668 Boadilla del Monte, Madrid (Spain); Sivakumar, T.; Tamilarasan, S.; Natarajan, S.; Gopalakrishnan, J. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India)

    2013-07-15

    We describe the synthesis, crystal structure, magnetic and electrochemical characterization of new rock salt-related oxides of formula, Li{sub 3}M{sub 2}RuO{sub 6} (M=Co, Ni). The M=Co oxide adopts the LiCoO{sub 2} (R-3m) structure, where sheets of LiO{sub 6} and (Co{sub 2}/Ru)O{sub 6} octahedra are alternately stacked along the c-direction. The M=Ni oxide also adopts a similar layered structure related to Li{sub 2}TiO{sub 3}, where partial mixing of Li and Ni/Ru atoms lowers the symmetry to monoclinic (C2/c). Magnetic susceptibility measurements reveal that in Li{sub 3}Co{sub 2}RuO{sub 6}, the oxidation states of transition metal ions are Co{sup 3+} (S=0), Co{sup 2+} (S=1/2) and Ru{sup 4+} (S=1), all of them in low-spin configuration and at 10 K, the material orders antiferromagnetically. Analogous Li{sub 3}Ni{sub 2}RuO{sub 6} presents a ferrimagnetic behavior with a Curie temperature of 100 K. The differences in the magnetic behavior have been explained in terms of differences in the crystal structure. Electrochemical studies correlate well with both magnetic properties and crystal structure. Li-transition metal intermixing may be at the origin of the more impeded oxidation of Li{sub 3}Ni{sub 2}RuO{sub 6} when compared to Li{sub 3}Co{sub 2}RuO{sub 6}. Interestingly high first charge capacities (between ca. 160 and 180 mAh g{sup −1}) corresponding to ca. 2/3 of theoretical capacity are reached albeit, in both cases, capacity retention and cyclability are not satisfactory enough to consider these materials as alternatives to LiCoO{sub 2}. - Graphical abstract: Two new rock salt related oxides of formula, Li{sub 3}M{sub 2}RuO{sub 6}, (M=Co, Ni) have been prepared. The M=Co oxide adopts the LiCoO{sub 2} (R-3m) structure and the M=Ni oxide adopts a similar layered structure related to Li{sub 2}TiO{sub 3,} monoclinic (C2/c), with partial mixing of Li and Ni/Ru atoms. For Li{sub 3}Co{sub 2}RuO{sub 6}, oxidation state for Ru is 4+ and antiferromagnetic (AFM) order is

  12. Synthesis of LiAlO{sub 2} and LiGaO{sub 2} by ion exchange reaction

    Energy Technology Data Exchange (ETDEWEB)

    Villafuerte-Castrejon, M.E.; Mondragon, C.; Sanchez-Arjona, A.M. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Investigaciones en Materiales; Olguin, M.T.; Bulbulian, S. [Inst. Nacional de Investigaciones Nucleares, Delegacion Miguel Hidalgo, Mexico, D.F. (Mexico); Bosch, P. [Univ. Autonoma Metropolitan-Iztapalapa, Mexico, D.F. (Mexico)

    1997-12-31

    The complex oxides {beta} and {gamma}-NaAlO{sub 2} polymorphs and NaGaO{sub 2} were reacted by the ion exchange route with molten salts (LiCl and LiNO{sub 3}). Kinetics of the reaction were followed by the X-ray powder diffraction and by neutronic activation analysis using a TRIGA MARG III nuclear reactor. The products of the reactions were polymorphs {beta} and {gamma}-LiAlO{sub 2} and LiGaO{sub 2}. {beta}-LiAlO{sub 2} is the high pressure form, obtained by this method at relative low temperature and at atmospheric pressure. LiGAO{sub 2} was obtained after only one minute of reaction in the molten salt. (orig.) 4 refs.

  13. Fast ion atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berry, H.G.; Young, L.; Goodman, L.S.; Somerville, L.P.; Hardis, J.; Neek, D.

    1984-01-01

    We have set up two collinear fast beam/laser excitation systems, one at the Argonne Dynamitron Accelerator (0.5 to 5.0 MeV beam energy) and another at a small electrostatic accelerator (20 to 130 keV). Our objective is to study fine structure, hyperfine structure and QED effects in ions of a few electrons. Initial projects underway include studies of multi-excited transitions in Li/sup -/ and Li/sup 0/, and transitions to high Rydberg states in H/sup 0/ and He/sup 0/. We have simultaneously excited a sodium jet with a laser at the resonance wavelength (D/sub 1/ or D/sub 2/ lines) and a 1-MeV He/sup +/ beam to produce excitation to autoionizing Na and Na/sup +/ states. The Auger electron spectra are compared to spectra obtained without laser excitation, and indicate strong variations in final state populations. 17 references.

  14. Mevlâna ve Kierkegaard’da Birey Tanrı İlişkisi The Relationship between the Individual and God in Mevlana and Kierkegaard

    Directory of Open Access Journals (Sweden)

    Vefa TAŞDELEN

    2013-07-01

    ını oluşturur. Onlar başlıca bu ilişkiyi tesis etme, insanın hayatına bireysel ve toplumsal düzeyde bir anlam katma ve düzen getirme amacını güderler. Yalnız peygamberler değil filozoflar da bu ilişki üzerinde durmuş, onun nasıl mümkün olabileceği hususunda görüşler öne sürmüş, bu şekilde “iman” konusuna felsefi bir derinlik kazandırmaya çalışmışlardır. Bu tutum felsefe tarihi boyunca genellikle Tanrı varlığının kanıtlanması, ruhun ölümsüzlüğünün temellendirilmesi şeklinde kendini göstermiştir. Mevlâna ve Kierkegaard, Tanrı’nın kanıtlanamayacağı konusunda hemfikirdirler. Onlara göre Tanrı için kanıt aramak iman açısında yetkinlik değil kusur, tamlık değil eksikliktir. İman, temelini Tanrı’nın kanıtlanabilir oluşunda değil kanıtlanamaz oluşunda, bilinebilir oluşunda değil bilinemez oluşunda bulur. Akıl bu konuyu anlamakta, dil bu konuyu anlatmakta yetersizdir. Mevlana ve Kierkegaard, birey ve Tanrı arasındaki ilişkiyi rasyonel bir zeminde değil, Tanrı’nın insana, insanın Tanrı’ya yönelimi doğrultusunda daha çok bir gönül ilişkisi olarak kurmak isterler. Kierkegaard için iman iki varoluş arasındaki sevgide ifadesini bulur. Mevlana’da ise kendi varlığını sevgilinin varlığında yeniden keşfetmede ortaya çıkar. Onlar Tanrı’dan insana gelen, insandan Tanrı’ya dönen, Tanrı’dan yine insana gelen, insandan insana, aşama aşama tüm varlığa, tüm evrene doğru yansıyan bir sevgi sarmalından söz ederler. Sonuçta inanma hali, varlığa karşı derin ve içtenlikli bir sevgi duymaya, yaratılanı yaratandan ötürü sevmeye, hoş ve güzel görmeye dönüşür. Bu yönelim temelini, imanın bir “aşk hali” olarak algılanmasında bulur. Çalışmamızda, Mevlana’nın ve Kierkegaard’un inanma tutumu, bu “aşk hali” bağlamında değerlendirilmeye çalışılacaktır.

  15. Influência dos cátions lítio (Li + , sódio (Na + e potássio (K + na reologia de bentonitas brasileiras para uso em fluidos de perfuração base aquosa

    Directory of Open Access Journals (Sweden)

    I. A. da Silva

    Full Text Available Resumo Os cátions lítio (Li+, sódio (Na+ e potássio (K+ encontram-se em primeiro lugar no plano de seletividade para a obtenção de bentonitas monocatiônicas a partir das policatiônicas, influenciando de forma específica o comportamento reológico dos fluidos de perfuração base água. O objetivo deste trabalho foi estudar a influência do Li+, Na+ e K+ na reologia de bentonitas do estado da Paraíba, Brasil, para uso em fluidos de perfuração à base de água. Os novos depósitos de bentonitas brasileiras foram comparados com base nas suas características químicas, físicas, mineralógicas, propriedades reológicas e de filtração. As amostras de bentonitas foram caracterizadas por meio da composição química através do método clássico, capacidade de troca de cátions, análise granulométrica por difração a laser, difração de raios X e análises térmicas. A reologia das dispersões foi estudada e determinadas as viscosidades aparente, viscosidade plástica e limite de escoamento com base nas normas da API e Petrobras, além dos estudos de inchamento em água e filtrado. Os resultados mostraram uma melhora significativa nas propriedades reológicas e de filtração das dispersões após a aditivação com os carbonatos de lítio e de sódio, nessa ordem, havendo presença de tixotropia nas curvas de fluxo das dispersões de argilas estudadas.

  16. Öğretmen Adaylarının E-Kitap Kavramına İlişkin Metaforik Algıları

    Directory of Open Access Journals (Sweden)

    Hacer ULU

    2017-12-01

    Full Text Available Bu çalışmanın amacı öğretmen adaylarının e-kitap kavramına ilişkin algılarının belirlenmesidir. Araştırmanın çalışma grubunu, 2017-2018 eğitim öğretim yılı güz döneminde bir devlet üniversitesinin sınıf, sosyal bilgiler ve okul öncesi öğretmenliği bölümlerine devam eden ikinci ve üçüncü sınıf öğretmen adayları oluşturmaktadır. Öğretmen adaylarının belirlenen kavramlarla ilgili algılarının ortaya konulması amacıyla veri toplama aracı olarak, bir adet açık uçlu sorudan oluşan form kullanılmıştır. Formda yer alan “E-kitap ………….’ ya benzer. Çünkü……” ifadesinin katılımcılar tarafından tamamlanması istenmiştir. Formda yer alan veriler içerik analizi tekniğiyle çözümlenmiştir. Analiz sonucunda belirlenen metaforlar ile bunlara bağlı oluşturulan kategorilerin doğruluğunun belirlenebilmesi amacıyla metafor ve kategori listeleri çalışma alanından bir uzman ile paylaşılmıştır. Uzman görüşleri sonrasında, örtüşmeyen metaforlar üzerinde tartışılarak çalışmada kullanılan metafor ve kategorilere son şekli verilmiştir. Öğretmen adaylarının çok katmanlılık, bilgi deposu, ulaşılabilirlik, taşınabilirlik, ekonomiklik açısından olumlu metafor ürettikleri tespit edilirken okuma sürecini doğallığından uzaklaştırıp sanal hale getirme ve göz sağlığı açısından olumsuz metafor ürettikleri ortaya konmuştur. Öğretmen adayları çok katmanlılık kategorisinde dergi, kitap, sosyal medya, ağaç, bilgi deposu kategorisinde kütüphane, kitap, dijital kütüphane, öğretmen, ulaşılabilirlik kategorisinde araba, telefon, okuma sürecini doğallığından uzaklaştırıp sanal hale getirme kategorisinde yapay zeka, bilgisayar, meyve vermeyen ağaç, taşınabilirlik kategorisinde ayaklı gazete, cep kitabı, ekonomiklik kategorisinde bisiklet, göz sağlığı kategorisinde ise tablet metaforlarını en fazla üretmişlerdir.

  17. Cytotoxicity effects of synthesized ZnO and Zn0.97X0.03O (X=Li, Na, and K nanoparticles by the gelatin-based sol-gel method

    Directory of Open Access Journals (Sweden)

    Ali Khorsand Zak

    2017-07-01

    Full Text Available Objective: In this study we would like to report the synthesis of pure and group I element doping of ZnO nanoparticles (ZnO-NPs prepared using gelatin. The use of natural polymers for the preparation of the pure and doped nanoparticles can result in achieving low cost and eco-friendly advantages.Materials and Method: Pure and doped ZnO-NPs were obtained at 500 °C and The cytotoxicity of nanoparticles was evaluated using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenylte-trazolium bromide (MTT assay. Briefly, neuro2A cells were seeded at a density of 1×104 cells perwellin96-wellplatesand incubatedfor24h.Thereafter, the cells were treated with various concentrations of nanoparticles in the presence of 10% FBS.Results: X-ray diffraction (XRD analysis revealed wurtzite hexagonal structure for the prepared nanoparticles. No other peaks related to the other compounds are detected which indicate that the doped group one elements have been diffused into ZnO lattice. Field emission scanning electron microscopy (FESEM showed that the formation of most nanoparticles in nano scale. In vitro cytotoxicity studies on neuro2A cells show the non-toxic effect of concentration below ~250 μg/mL for pure and K doped ZnONPs and ~63 μg/mL for Li and Na doped ZnO-NPs. Conclusion: The results show that the potentials of the prepared doped samples to be used in cancer treatments.

  18. Socioeconomic differences in prevalence, awareness, control and self-management of hypertension among four minority ethnic groups, Na Xi, Li Shu, Dai and Jing Po, in rural southwest China.

    Science.gov (United States)

    Cai, L; Dong, J; Cui, W L; You, D Y; Golden, A R

    2017-06-01

    This study investigates socioeconomic differences in prevalence, awareness, control and self-management of hypertension in rural China. A cross-sectional survey was conducted among four ethnic minority groups in Yunnan Province: Na Xi, Li Shu, Dai and Jing Po. Approximately 5532 consenting individuals aged ⩾35 years (48.4% of whom were male) were selected to participate in the study using a stratified, multistage sampling technique. Information about participants' demographic characteristics and hypertension awareness, treatment, control and self-management practices was obtained using a standard questionnaire. The age-standardised prevalence of hypertension in the study population was 33.6%. In hypertensive subjects, the overall levels of awareness, treatment and control of hypertension were 42.1%, 28.5% and 6.7%, respectively. Approximately 58.7% of hypertensive patients regularly self-monitored blood pressure (BP), 64.7% adhered to their physician-prescribed anti-hypertensive drugs, and 88.0% took at least one measure to control BP. Hypertensive patients of Jing Po ethnicity had the lowest rates of awareness, treatment, control and self-management of hypertension among the four ethnic minority groups studied. Individuals with lower levels of education were more likely to be hypertensive. Further, individuals with lower levels of education had a lower probability of awareness of their hypertensive status and of treatment with antihypertensive medication. Access to medical services was positively associated with awareness of suffering from hypertension, being treated with antihypertensive medication, and compliance with antihypertensive drug treatment. This study suggests that effective strategies to enhance awareness, treatment and management of hypertension should focus on individuals with low levels of education and poor access to medical services.

  19. A randomised, double-blind, controlled efficacy trial of the LiESP/QA-21 vaccine in naïve dogs exposed to two leishmania infantum transmission seasons.

    Directory of Open Access Journals (Sweden)

    Gaetano Oliva

    2014-10-01

    Full Text Available Canine leishmaniasis is an important zoonosis caused by uncontrolled infection with Leishmania infantum, where an inappropriate immune response is not only responsible for permitting this intracellular parasite to multiply, but is also responsible for several of the pathological processes seen in this disease. Effective canine vaccines are therefore a highly desirable prevention tool. In this randomised, double-blinded, controlled trial, the efficacy of the LiESP/QA-21 vaccine (CaniLeish, Virbac, France was assessed by exposing 90 naïve dogs to natural L. infantum infection during 2 consecutive transmission seasons, in two highly endemic areas of the Mediterranean basin. Regular PCR, culture, serological and clinical examinations were performed, and the infection/disease status of the dogs was classified at each examination. The vaccine was well-tolerated, and provided a significant reduction in the risk of progressing to uncontrolled active infection (p = 0.025 or symptomatic disease (p = 0.046, with an efficacy of 68.4% and a protection rate of 92.7%. The probability of becoming PCR positive was similar between groups, but the probability of returning to a PCR negative condition was higher in the vaccinated group (p = 0.04. In conclusion, we confirmed the interest of using this vaccine as part of a comprehensive control program for canine leishmaniasis, and validated the use of a protocol based on regular in-depth assessments over time to assess the efficacy of a canine leishmaniasis vaccine.

  20. A.C. Conductivity Investigations on Layered Na2-x-yLixKyTi3O7 Ceramics

    Directory of Open Access Journals (Sweden)

    Rakesh Singh

    2013-01-01

    Full Text Available Frequency and temperature dependence of a.c. electrical conductivity of layered mixed ionic alkali trititanates, Na1.89Li0.10K0.01Ti3O7, Na1.88Li0.10K0.02Ti3O7, Na1.86Li0.10K0.04Ti3O7, and Na1.85Li0.10K0.05Ti3O7, have been investigated over a wide temperature 350 K ≤T≥ 725 K and frequency 10 kHz to 1 MHz range. For this, Arrhenius plots are used for a.c. electrical conductivity of these compounds. The obtained conductivity plots have been divided into four distinct regions and discussed the relevant theory. According to slop variation, the conduction mechanisms occurring are different in different temperature regions. At lower temperatures, the hopping electron disorders the surroundings by moving to its neighboring Ti atoms from their equilibrium positions, causing structural defect in the polycrystalline network named small polaron. At higher temperatures, associated/unassociated interlayer ionic conduction occurs along with the alkali ions hopping through the interlayer space and electron hopping (small polaron conduction through Ti–Ti chains in these layered polar alkali titanates.

  1. Li interactions with the B40 fullerene and its application in Li-ion batteries: DFT studies

    Science.gov (United States)

    Moradi, Morteza; Bagheri, Zargham; Bodaghi, Ali

    2017-05-01

    The interaction of Li and Li+ with a B40 all-boron fullerene was theoretically investigated at the B3LYP, and Minnesota 2006 levels of theory. It was found that, unexpectedly, the interaction Li+ cation with the electron deficient B40 fullerene is stronger than the Li atom. It indicates that the B40 fullerene does not act as a conventional Lewis acid because of its highly correlated structure. Frontier molecular orbitals, partial density of states, and natural bond orbital analyses were used to discuss this unusual behavior. Our calculations indicate that this behavior makes the B40 fullerene more appropriate for application in the Li-ion batteries as anode material. The calculated cell voltage is about 530 mV. Also, it was found that Hartree Fock (HF) exchange percentage of density functionals has a reverse effect on the adsorption energies of Li and Li+. This energy is increased and decreased, respectively, for Li+ and Li adsorptions by increasing %HF exchange. Finally, a potential energy surface for Li and Li+ penetration into B40 fullerene was predicted.

  2. Energy and angular distributions of hyperthermal-energy Li{sup +} scattered from Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Behringer, E.R.; McLean, J.G.; Cooper, B.H. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501 (United States)

    1996-03-01

    We have measured the in-plane energy and angular distributions of scattered Li{sup +} ions that result when Li{sup +} ion beams with incident energies {ital E}{sub {ital i}}=100 and 400 eV impinge on Cu(001) with an incident angle {theta}{sub {ital i}}=65{degree} and along the {l_angle}100{r_angle} azimuth. By comparing the energy and angular distributions with those generated by classical trajectory simulations, we extract information about the ion-surface interaction potential. A model ion-surface potential consisting of a sum of Hartree-Fock pair potentials and an attractive term produces good agreement with the measured distributions at both incident energies, while the universal potential of Ziegler, Biersack, and Littmarck does so only for {ital E}{sub {ital i}} = 400 eV. Analysis of the simulated distributions enables us to correlate different types of scattering events with features of the measured distributions (e.g., rainbows) and so obtain a detailed understanding of the scattering of Li{sup +}, which is more complex than has been previously observed for heavier alkali ions (e.g., Na{sup +} and K{sup +}). We find that the energy loss of the Li{sup +} ions can be mostly accounted for by momentum transfer to the surface atoms and that inelastic losses are small but significant for this system at these incident energies. We also find that the thermal vibrations of the surface atoms have dramatic effects on the simulated energy and angular distributions. {copyright} {ital 1996 The American Physical Society.}

  3. Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium

    NARCIS (Netherlands)

    McAlexander, W.I.; Abraham, E.R.I.; Ritchie, N.W.M.; Williams, C.J.; Stoof, H.T.C.; Hulet, R.G.

    1995-01-01

    We have obtained spectra of the high-lying vibrational levels of the 13Σg+ state of 6Li2 via photoassociation of ultracold 6Li atoms confined in a magneto-optical trap. The 13Σg+ state of the diatomic molecule correlates to a 2S1/2 state atom plus a 2P1/2 state atom. The long-range part of the

  4. Mössbauer spectra obtained using β − γ coincidence method after {sup 57}Mn implantation into LiH and LiD

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.; Kobayashi, Y., E-mail: kyoshio@pc.uec.ac.jp [University of Electro-Communication, Graduate School of Engineering and Science (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan); Kubo, M. K. [International Christian University, Division of Arts Science (Japan); Mihara, M. [Osaka University, Graduate School of Science (Japan); Nagatomo, T. [RIKEN, Nishina Center Accelerator Based Science (Japan); Sato, W. [Kanazawa University, Department of Chemistry (Japan); Miyazaki, J. [Tokyo University Agri. Technology, Department of Chemistry and Engineering (Japan); Tanigawa, S.; Natori, D. [University of Electro-Communication, Graduate School of Engineering and Science (Japan); Sato, S.; Kitagawa, A. [National Institute Radiological Sciences (NIRS) (Japan)

    2016-12-15

    Highly energetic {sup 57}Mn (T{sub 1/2} = 1.45 m) was generated by nuclear projectile fragmentation in a heavy-ion accelerator, and implanted into lithium hydride (LiH) and lithium deuteride (LiD) at 578 K. Mössbauer spectroscopy with β − γ coincidence detection was then carried out on the {sup 57}Fe obtained from β{sup −}decay of the {sup 57}Mn to study the time dependence of the site distributions and coordination environments of dilute Fe atoms implanted in the LiH and LiD. The results suggest that the Fe atoms can substitute for either the Li and H or D atoms within 100 ns. Additionally, the displacement behavior of the substitutional {sup 57}Fe atoms on the lattice sites is discussed.

  5. Depopulation of lowly excited ns-states of Rb colliding with the He atom

    Energy Technology Data Exchange (ETDEWEB)

    Verma, S.K. [Jagdam College, Chapra (India). Dept. of Physics; Khan, A.A. [ZAI College, Siwan (India). Dept. of Physics; Kumar, V. [Rajendra College, Chapra (India). Dept. of Physics; Kumar, A. [JP University, Chapra (India). Dept. of Physics

    1996-03-28

    A semiclassical impact-parameter method has been used to study the total depopulation of lowly excited ns-states of the Rb atom colliding with ground-state He in the thermal energy region. A fairly large basis set of STO has been used to generate MO states and then a 14-state calculation has been carried out to evaluate the total as well as individual cross sections for quenching. A comparative study with the previously investigated Li-He and Na-He pairs is also presented. (Author).

  6. PEMODELAN KONDUKTIVITAS ION DALAM STRUKTUR Li2Sc3(PO43 (Modeling Ionic Conductivity in Li2Sc3(PO43 Structure

    Directory of Open Access Journals (Sweden)

    Akram La Kilo

    2011-11-01

    Full Text Available ABSTRAK Fasa Li2Sc3(PO43 merupakan material konduktor superionik yang dapat diaplikasikan sebagai baterai yang dapat diisi ulang (rechargeable. Ion Li+ dalam struktur Li2Sc3(PO4 dapat mengalami migrasi dari posisi terisi ke posisi kosong. Penelitian ini telah memodelkan migrasi ion Li+ dalam struktur Li2Sc3(PO4 dengan menggunakan metode bond valence sum (BVS. Metode ini dapat memprediksi bilangan oksidasi suatu atom berdasarkan jarak dengan atom-atom tetangga. Source code berbasis BVS yang digunakan adalah JUMPITER yang mensimulasi efek gaya listrik eksternal yang bertindak pada ion litium sehingga nilai BVS litium dapat dipetakan terhadap jarak. Hasil simulasi menunjukkan bahwa konduksi ion Li+ dapat terjadi pada arah [010], [101], dan [120]. Namun, lintasan konduksi ion Li+ lebih mudah terjadi pada arah [120] atau bidang ab dengan nilai maksimum BVS adalah 0,982. ABSTRACT g-phase of Li2Sc3(PO43 is a lithium super ionic conductor which can be applied as a rechargeable lithium battery. Lithium ions of g-Li2Sc3(PO43 can migrate from occupied site to vacant site. In this research, simulation of Li+ ions migration in the structure of g-Li2Sc3(PO43 carried out using bond valence sum (BVS to predict the oxidation state of Li+ion based on the distance of the ion to neighboring atoms. BVS-based code used JUMPITER to simulate the effect of external electrical force acting on the lithium ions to produce the lithium BVS value which can be mapped to the distance. The simulation results shows that Li+ ion conduction can be occurred on [010], [101], and [120] directions. However, the Li ion conduction pathway occur more easily in the direction of [120] or ab plane with the BVS maximum value is 0.982.

  7. Evaluation of the thermoluminescent detector answers of CaSO{sub 4}:Dy, LiF:Mg,Ti and micro LiF:Mg,Ti in photon clinical beams dosimetry using water simulator; Avaliacao da resposta de detectores termoluminescentes de CaSO4:Dy, LiF:Mg,Ti e microLiF:Mg,Ti na dosimetria de feixes clinicos de fotons utilizando simulador de agua

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana C.; Veneziani, Glauco R.; Campos, Leticia L., E-mail: lmatsushima@usp.b, E-mail: veneziani@ipen.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (GMR/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Metrologia das Radiacoes; Sakuraba, Roberto K.; Cruz, Jose C. da, E-mail: rsakuraba@einstein.b, E-mail: jccruz@einstein.b [Sociedade Beneficente Israelita Brasileira, Sao Paulo, SP (Brazil). Hospital Albert Einstein (HAE)

    2011-10-26

    This paper perform the comparative study of thermoluminescent answer of calcium sulfate dosemeter doped with dysprosium (DaSO{sub 4}:Dy) produced by the IPEN, Sao Paulo, with answer of lithium fluoride dosemeters doped with magnesium and titanium (LiF:Mg, Ti) in the dosimetry of clinical beams of photons (6 and 15 MV) by using water simulator object. Dose-answer curves were obtained for gamma radiation of cobalt-60 in the air and in conditions of electronic equilibrium (plate of PMMA), and clinical photons of CLINAC model 2100C accelerators of the two evaluated hospitals: Hospital das Clinicas of the Faculty of Medicine of Sao Paulo university and Hospital Albert Einstein. It was also evaluated the sensitivity and reproduction of the three dosemeters

  8. Density functional theory calculations on alkali and the alkaline Ca atoms adsorbed on graphene monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, Nicholas, E-mail: nicholas.dimakis@utrgv.edu [Department of Physics, University of Texas Rio Grande Valley, Edinburg, TX (United States); Valdez, Danielle; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade [Department of Physics, University of Texas Rio Grande Valley, Edinburg, TX (United States); Vargas, Sarah; Saenz, Justin [Robert Vela High School, Edinburg, TX (United States)

    2017-08-15

    Highlights: • Li, K, Na, and Ca graphene interaction is primarily ionic, whereas small covalent interactions also co-exist in these cases. • Van der Waals interactions are revealed by comparing adatom-graphene geometries between 1.4% and 3% adatom coverages and using Grimme corrections. • The Li, K, Na graphene interactions are accurately described by both PBE0 and PBE functionals. For Ca/graphene, the PBE0 functional should not be used. • For Li, K, and Na adsorbed on graphene, adatom-graphene interaction weakens as the adatom coverages increases. • The Ca-graphene interaction strength, which is stronger at high coverages, is opposite to increases in the Ca–4s orbital population. - Abstract: The adsorption of the alkali Li, K, and Na and the alkaline Ca on graphene is studied using periodic density functional theory (DFT) under various adatom coverages. The charge transfers between the adatom and the graphene sheet and the almost unchanged densities-of-states spectra in the energy region near and below the Fermi level support an ionic bond pattern between the adatom and the graphene atoms. However, the presence of small orbital overlap between the metal and the nearest graphene atom is indicative of small covalent bonding. Van der Waals interactions are examined through a semiempirical correction in the DFT functional and by comparing adatom-graphene calculations between 3% and 1.4% adatom coverages. Optimized adatom-graphene geometries identify the preferred adatom sites, whereas the adatom-graphene strength is correlated with the adsorption energy and the adatom distance from the graphene plane. Calculated electronic properties and structural parameters are obtained using hybrid functionals and a generalized gradient approximation functional paired with basis sets of various sizes. We found that due to long range electrostatic forces between the alkali/alkaline adatoms and the graphene monolayer, the adatom-graphene structural and electronic

  9. Theoretical investigation of the use of nanocages with an adsorbed halogen atom as anode materials in metal-ion batteries.

    Science.gov (United States)

    Razavi, Razieh; Abrishamifar, Seyyed Milad; Rajaei, Gholamreza Ebrahimzadeh; Kahkha, Mohammad Reza Rezaei; Najafi, Meysam

    2018-02-21

    The applicability of C 44 , B 22 N 22 , Ge 44 , and Al 22 P 22 nanocages, as well as variants of those nanocages with an adsorbed halogen atom, as high-performance anode materials in Li-ion, Na-ion, and K-ion batteries was investigated theoretically via density functional theory. The results obtained indicate that, among the nanocages with no adsorbed halogen atom, Al 22 P 22 would be the best candidate for a novel anode material for use in metal-ion batteries. Calculations also suggest that K-ion batteries which utilize these nanocages as anode materials would give better performance and would yield higher cell voltages than the corresponding Li-ion and Na-ion batteries with nanocage-based anodes. Also, the results for the nanocages with an adsorbed halogen atom imply that employing them as anode materials would lead to higher cell voltages and better metal-ion battery performance than if the nanocages with no adsorbed halogen atom were to be used as anode materials instead. Results further implied that nanocages with an adsorbed F atom would give higher cell voltages and better battery performance than nanocages with an adsorbed Cl or Br atom. We were ultimately able to conclude that a K-ion battery that utilized Al 21 P 22 with an adsorbed F atom as its anode material would afford the best metal-ion battery performance; we therefore propose this as a novel highly efficient metal-ion battery. Graphical abstract The results of a theoretical investigation indicated that Al 22 P 22 is a better candidate for a high-performance anode material in metal-ion batteries than Ge 44 is. Calculations also showed that K-ion batteries with nanocage-based anodes would produce higher cell voltages and perform better than the equivalent Li-ion and Na-ion batteries with nanocage-based anodes, and that anodes based on nanocages with an adsorbed F atom would perform better than anodes based on nanocages with an adsorbed Cl or Br atom.

  10. [MECHANISMS OF THE EFFECT OF Li+ ON MYOCARDIUM OF VERTEBRATES].

    Science.gov (United States)

    Shemarova, I V; Korotkov, S M; Nesterov, V P

    2015-01-01

    The effect of Li+ on the frog Rana temporaria myocardium and its influence on the ion transport in the rat heart mitochondria (RHM) were studied. Li+ added to the normal Ringer solution (Li(+)-R) was found to attenuate myocardial tension, decrease the maximal rate of tension development and its half-relaxation time. Comparison of the cardiac muscle contraction parameters in the Li(+)-R with the effect of the voltage-gated Ca(2+)-channels (Cav1.2), verapamil and CdCl2, showed that the negative inotropic effect of the Na+ replacement by Li+ in the limited intermembrane ("fuzzy") space is underlain by the blocking of Ca2+ influx into the myoplasm via the reverse Ca2+/Na(+)-exchanger in the plasma membrane (PM). This, in turn, prevents Ca(2+)-induced massive Ca2+ release into the myoplasm via the RYR2-channels in the sarcoplasmic reticulum (SR) leading in aggregate to suppression of Ca(2+)-dependent myocardial contractions. In the experimental studies of the Li+ effect on the RHM it was established that Li+ just slightly increases the passive permeability of the inner mitochondrial membrane (IMM) for K+ and H+ and decreases the intensity of ion pumping out of the energized mitochondrial matrix to the external medium. This may also indicate the lack of relationship between the mitochondrial oxidative processes and the reduction in the myocardial contractile activity under the Na+ replacement by Li+.

  11. Modeling Li-ion conductivity in LiLa(PO{sub 3}){sub 4} powder

    Energy Technology Data Exchange (ETDEWEB)

    Mounir, Ferhi, E-mail: ferhi.mounir@gmail.com [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Karima, Horchani-Naifer [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Khaled, Ben Saad [Laboratoire de Photovoltaieque, Centre des Recherches et des Technologies de l' Energie, Technopole Borj Cedria, BP No. 95, 2050 Hammam Lif (Tunisia); Mokhtar, Ferid [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia)

    2012-07-01

    Polycrystalline powder and single-crystal of LiLa(PO{sub 3}){sub 4} are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO{sub 3}){sub 4} powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO{sub 3}){sub 4} are characterized by single-crystal X-ray diffraction. The LiLa(PO{sub 3}){sub 4} structure was found to be isotypic with LiNd(PO{sub 3}){sub 4}. It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) A, b=7.130(3) A, c=9.913(3) A, {beta}=126.37(4) Degree-Sign , V=946.72(6) A{sup 3} and Z=4. The LiLa(PO{sub 3}){sub 4} structure was described as an alternation between spiraling chains (PO{sub 3}){sub n} and (La{sup 3+}, Li{sup +}) cations along the b direction. The small Li{sup +} ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO{sub 8} polyhedra and the polyphosphate chains. The jumping of Li{sup +} through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO{sub 3}){sub 4} and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  12. Effect of charging on silicene with alkali metal atom adsorption

    Science.gov (United States)

    Li, Manman; Li, Zhongyao; Gong, Shi-Jing

    2018-02-01

    Based on first-principles calculations, we studied the effects of charging on the structure, binding energy and electronic properties of silicene with alkali metal (AM) atom (Li, Na or K) adsorption. In AMSi2, electron doping enlarges the lattice constant of silicene, while the influence of hole doping is non-monotonic. In AMSi8, the lattice constant increases/decreases almost linearly with the increase in electron/hole doping. In addition, the AM–Si vertical distance can be greatly enlarged by excessive hole doping in both AMSi2 and AMSi8 systems. When the hole doping is as large as  +e per unit cell, both AMSi2 and AMSi8 can be transformed from metal to semiconductor. However, the binding energy would be negative in the AM+ Si2 semiconductor. It suggests AM+ Si2 is unstable in this case. In addition, the electron doping and the AM–Si vertical distance would greatly influence the band gap of silicene in LiSi8 and NaSi8, while the band gap in KSi8 is relatively stable. Therefore, KSi8 may be a more practicable material in nanotechnology.

  13. Study of the reduction in detection limits of track detectors used for {sup 10}B(n,α){sup 7}Li reaction rate measure through annealing and chemical etching experiments; Estudo da reducao nos limites de deteccao de detectores de tracos utilizados na medida de taxa de reacao {sup 10}B(n, α){sup 7}Li atraves de experimentos de annealing e ataque quimico

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Herminiane L.; Smilgys, Barbara; Guedes, Sandro, E-mail: hluizav@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin; Castro, Vinicius A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear

    2013-08-15

    The Boron Neutron Capture Therapy (BNCT) is an experimental radiotherapy for cancer treatment. It is based on {sup 10}B(n, α){sup 7}Li reaction, which can be measured by track detectors capable of recording events that strike them. With this recording, it is possible to determine the number of alpha particles and recoiling Lithium-7 nucleus, reaction products, and from this information, which amount of radiation dose a patient is exposed to. In this work, PADC detectors were characterized, irradiated at the IEA-R1 IPEN/CNEN reactor to assess the contribution of the{sup 10}B(n, α){sup 7}Li reaction and protons from fast neutron scattering with the elements that compounds the tissue. With the aim of reducing the proton background, the detectors were subjected to heating experiments at 80°C for periods in the range 0-100 hours. This was done in order to restore partially modified structure of the detector, causing a reduction in the size and density of tracks. This effect is known as annealing. For the visualization of tracks at microscope, detectors were made three chemical attacks with sodium hydroxide (NaOH) for 30, 60 and 90 minutes at 70°C. It was observed a reduction in the track density achieving a plateau heating time of 50 hours. For detectors that have not undergone annealing and were etched with another etchant, PEW solution, a reduction of 87% in track density was obtained. (author)

  14. Transmission electron microscopy study investigating Li intercalation in tunnel structured ζ-V2O5 nanowire

    Science.gov (United States)

    Mukherjee, Arijita; Yoo, Hyun Deog; Nolis, Gene; Andrews, Justin; Banerjee, Sarbajit; Cabana, Jordi; Klie, Robert; Joint Center for Energy Storage Research Collaboration

    Energy storage research has become quite relevant in recent years with the advent of smarter electronic devices and electric vehicles that demand more efficient options. Orthorhombic α-V2O5 has been known as a versatile intercalation cathode host for lithium and beyond Li cations, such as Na and Mg. Recent reports have established that a novel tunnel structured polymorph, ζ-V2O5 can perform better as a cathode material, and can intercalate Li and Mg chemically. This contribution will focus on an in depth study of phase formation upon electrochemical Li intercalation of this new polymorph, ζ-V2O5 using aberration corrected scanning transmission electron microscopy(STEM) electron energy loss spectroscopy(EELS) and energy dispersive X ray spectroscopy(EDX). Results will also be presented investigating Mg and Na intercalation into this ζ-V2O5 polymorph and compare the electrochemical performance in the various scenarios directly with structural changes at an atomic scale. This work is supported by Joint Center for Energy Storage Research(JCESR).

  15. Atomes et rayonnement

    OpenAIRE

    Dalibard, Jean; Haroche, Serge

    2013-01-01

    Matière et lumière sont intimement liées dans notre modélisation du monde physique. De l’élaboration de la théorie quantique à l’invention du laser, l’interaction entre atomes et rayonnement a joué un rôle central dans le développement de la science et de la technologie d’aujourd’hui. La maîtrise de cette interaction permet désormais d’atteindre les plus basses températures jamais mesurées. Le refroidissement de gaz d’atomes par la lumière d’un laser conduit à une « matière quantique » aux pr...

  16. Determination of Ca, Cr, Cu, Fe, K, Mg, Na and Zn in Brazilian medicinal plants by neutron activation and atomic absorption; Determinacao de Ca, Cr, Cu, Fe, K, Mg, Na e Zn em plantas medicinais brasileiras por ativacao neutronica e absorcao atomica

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ricardo P. de; Sabino, Claudia de Vilhena S.; Franco, Milton B.; Amaral, Angela M.; Guedes, Joao B.; Assis, Adilson de C. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Leite, Simone C.A.L.; Silva, Isabel R. [Pontificia Univ. Catolica de Minas Gerais, Belo Horizonte, MG (Brazil)

    2002-07-01

    Medicinal plants are available in the markets in Belo Horizonte, Minas Gerais. The objective of this work is to investigate the Ca, Cr, Cu, Fe, K, Mg, Na e Zn concentrations in two lots of usually known diuretics plants (azeitona do mato, cabelo de milho, cavalinha, cervejinha do campo, chapeu de couro, congonha de bugre, marmelinho do campo and quebra pedra) bought with an interval of time - six months - between the purchases. The elemental concentrations were determined applying k{sub 0} instrumental neutron activation analysis and atomic absorption spectrophotometry analysis. (author)

  17. α-emission channeling studies of the interaction of Li with defects in Si and diamond

    CERN Multimedia

    2002-01-01

    In most semiconductors Li is a fast diffusing impurity and acts as a shallow interstitial donor, i.e. Li atoms normally appear as positively charged ions located on non-substitutional lattice sites. However, due to the positive charge Li may interact with other, preferentially negatively charged, defects present in the material. The major three groups of defects where interaction with Li was observed are p-type dopants, vacancy defects and defects containing trace impurities like oxygen. Although the influence of Li on electrical or optical properties of Si was investigated extensively in the past, the microscopical structure of Li-defect complexes and the relation between structure and electronic properties is still unresolved in many cases. In diamond, Li is the only impurity to date which was found to be an interstitial donor after ion implantation. Up to now there are no systematic investigations of the behavior of Li in diamond.\\\\ ...

  18. Model Hamiltonians for atomic and molecular systems

    Science.gov (United States)

    Carlson, J.; Moskowitz, Jules W.; Schmidt, K. E.

    1989-01-01

    A model Hamiltonian, designed to allow larger systems to be treated with the Green's function Monte Carlo method, is introduced for atomic and molecular systems. The model reduces the statistical variance associated with Green's function Monte Carlo calculations by reducing potential energy fluctuations in the core regions. By performing calculations of Li, LiH, and Li2 we show that this method can be used to obtain energy differences with much less computer time than required for the complete interaction. Increases in efficiency for larger systems will be even greater.

  19. Emission Channeling Studies on the Behaviour of Light Alkali Atoms in Wide-Band-Gap Semiconductors

    CERN Multimedia

    Recknagel, E; Quintel, H

    2002-01-01

    % IS342 \\\\ \\\\ A major problem in the development of electronic devices based on diamond and wide-band-gap II-VI compound semiconductors, like ZnSe, is the extreme difficulty of either n- or p-type doping. The only reports of successful n-type doping of diamond involves ion implanted Li, which was found to be an intersititial donor. Recent theoretical calculations suggest that Na, P and N dopant atoms are also good candidates for n-type doping of diamond. No experimental evidence has been obtained up to now, mainly because of the complex and partly unresolved defect situation created during ion implantation, which is necessary to incorporate potential donor atoms into diamond. \\\\ \\\\In the case of ZnSe, considerable effort has been invested in trying to fabricate pn-junctions in order to make efficient, blue-light emitting diodes. However, it has proved to be very difficult to obtain p-type ZnSe, mainly because of electrical compensation related to background donor impurities. Li and Na are believed to be ampho...

  20. Behavior of Li on graphene surfaces observed using high-resolution ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Nikko, Masataka; Nakajima, Kaoru [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan); Hasegawa, Masataka [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Tukuba Cetral 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Kimura, Kenji, E-mail: kimura@kues.kyoto-u.ac.jp [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2016-03-15

    Behavior of Li atoms deposited on the surfaces of highly oriented pyrolytic graphite (HOPG) and graphene-based thin films were observed at room temperature using high-resolution elastic recoil detection analysis (ERDA). On the HOPG surface, the deposited Li atoms intercalate into the bulk and no Li was observed in the surface region. The Li atoms were found to stay in the surface region (from the surface down to at least 3 nm) when the HOPG was irradiated with 200 keV He ions to a fluence of 5 × 10{sup 15} ions/cm{sup 2} before Li deposition. This indicates that stable Li sites are produced by the ion irradiation. It was also found that Li atoms are accumulated on the surface due to the oxidation by the residual gas. This oxidation occurs only on the surface and not inside HOPG. Graphene-based thin films were prepared on Cu by microwave plasma chemical vapor deposition. The Li atoms deposited on the graphene-based thin films are found to distribute through the film almost uniformly and no accumulation either on the surface or at the interface was observed.

  1. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  2. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  3. [6-chloro-3-pyridylmethyl-{sup 3}H]neonicotinoids as high-affinity radioligands for the nicotinic acetylcholine receptor: preparation using NaB{sup 3}H{sub 4} and LiB{sup 3}H{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Latli, Bachir; Casida, J.E. [California Univ., Berkeley, CA (United States). Dept. of Environmental Science Policy and Management; Chit Than; Morimoto, Hiromi; Williams, P.G. [Lawrence Berkeley National Lab., CA (United States)

    1996-11-01

    NaB{sup 3}H{sub 4} and LiB{sup 3}H{sub 4} at 78% and 97% isotopic enrichments, respectively, were used in the synthesis of {sup 3}H-labeled 1-(6-chloro-3-pyridyl)-methyl-2-nitromethyleneimidazolidine (CH-IMI) and N`-[(6-chloro-3-pyridyl)methyl]-n``-cyano-n`-methylacetamidine (acetamiprid) (two very potent insecticides) and of 1-(6-chloro-3-pyridyl)methyl-2-iminoimidazolidine (desnitro-IMI) (a metabolite of the commercial insecticides imidacloprid). 6-Chloronicotinoyl chloride was treated with either NaB{sup 3}H{sub 4} in methanol or LiB{sup 3}H{sub 4} in tetrahydrofuran and the resulting alcohol transformed to 2-chloro-5-chloromethylpyridine, which was then coupled to N-cyano-N`-methylacetamidine to give [{sup 3}H] acetamiprid (45 Ci/mmol). 2-Chloro-5-chloro[{sup 3}H]methylpyridine was also reacted with ethylenediamine and the product was either refluxed in absolute ethanol with 1,1-bis(methylthio)-2-nitro-ethylene to provide [{sup 3}H]CH-IMI or reacted in toluene with a solution of cyanogen bromide to produce [{sup 3}H] desnitro-IMI (each 55 Ci/mmol). (author).

  4. Guang-Rong Li

    Indian Academy of Sciences (India)

    Guang-Rong Li. Articles written in Journal of Genetics. Volume 91 Issue 3 December 2012 pp 343-348 Research Note. Chromosomal distribution of a new centromeric Ty3-gypsy retrotransposon sequence in Dasypyrum and related Triticeae species · Guang-Rong Li Cheng Liu Pei Wei Xiao-Jin Song Zu-Jun Yang.

  5. [(K0.5Na0.5)NbO3–LiSbO3]– xBiFe0.8Co0.2O3 lead-free ...

    Indian Academy of Sciences (India)

    LiSbO3]–xBiFe0.8Co0.2O3(KNN–. LS–xBFC) were prepared by a conventional sintering technique. The effect of BFC content on the structure, piezo- electric and electrical properties of KNN–LS ceramics was investigated. The results reveal that ...

  6. Li- and F-bearing alkali amphibole from granitic pegmatite at Hurricane Mountain, Carroll County, New Hampshire

    Science.gov (United States)

    Foord, E.E.; Erd, Richard C.; Robie, S.B.; Lichte, F.E.; King, V.T.

    1996-01-01

    At Hurricane Mountain, Carroll County, New Hampshire, bodies of granitic pegmatite in riebeckite granite contain large (up to 10 cm long and 2 cm across) primary crystals of Li-bearing fluor-arfvedsonite in miarolitic cavities, grading to euhedral Li- and F-poor arfvedsonite. Fine-grained, fibrous, light blue-gray riebeckite occurs as a late-stage hydrothermal filling in the miarolitic cavities. The early, Li-rich, fluor-arfvedsonite has: a 9.836(5), b 17.997(7), c 5.316(4) A??, ?? 103.735(4)??, V 914.20(6) A??3; Z = 2, Dmeas. 3.34 g/cm3, Dcalc. 3.353 g/cm3; biaxial (-), 2Vmeas. 44(1)??, 2Vcalc. 46??; ?? 1.681(2), ?? 1.692(2), ?? 1.694(2), inclined dispersion, r > v; X ??? c -7??, Y = b, Z ??? a +7??; X dark blue, Y lavender gray, Z pale yellowish brown; X > Y > Z; X is opaque at 0.03 mm thickness. A structural formula, on the basis of 24 (O,OH,F) atoms is: (Na0.86K0.25)Na2(Fe2+2.54Fe3+1.485Mn0.10Zn 0.02Li0.49Ti0.07)(Si7.71Al 0.07)O22(F1.34OH0.63). Arfvedsonite within the miarolitic cavities contains less Li and F than that of the earlier generation, and the still later riebeckite contains only 0.09 wt.% Li2O and 0.3 wt.% F. The Fe3+:Fe2+ ratio of the early Li-bearing fluor-arfvedsonite and that of the euhedral arfvedsonite crystals within miarolitic cavities is 0.58. The late, fibrous, cavity-filling riebeckite has an Fe3+:Fe2+ ratio of 0.99. The total iron content of the three amphiboles increases with continued crystallization. These amphiboles are products of peralkaline pegmatites locally derived from peralkaline granite.

  7. Influence of endohedral confinement of atoms on structural and dynamical properties of the C60 fullerene

    Science.gov (United States)

    Etindele, A. J.; Maezono, R.; Melingui Melono, R. L.; Motapon, O.

    2017-10-01

    The influence of encapsulated atoms in the structural and dynamical properties of C60 in A@C60 complexes is studied in the framework of the Density Functional Theory using Density of states and the theoretical Electron Energy Loss Spectroscopy. It is shown that C60 preserves its spherical geometry no matter the equilibrium position of the encapsulated atom. The Infrared and Raman spectra of the H@C60, He@C60 and Ne@C60 complexes are found not to differ significantly from that of C60 whereas those for Li@C60 and Na@C60 exhibit more peaks. The analysis shows that the changes on the cage properties come from inside it.

  8. Reactions between cold methyl halide molecules and alkali-metal atoms

    CERN Document Server

    Lutz, Jesse J

    2013-01-01

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH$_{3}X$ ($X$ = F, Cl, Br, I) and alkali-metal atoms $A$ ($A$ = Li, Na, K, Rb) using high-level {\\it ab initio} calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, ${\\rm CH}_{3}X+A\\rightarrow{\\rm CH}_{3}+AX$. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  9. Acid-base properties of electrolytic manganese dioxide in aqueous electrolyte solution 3. International common sample number 1-RNO sub 3 (R :Li ,K ) solution system

    Energy Technology Data Exchange (ETDEWEB)

    Tari, Isao; Tokin, Yasushi; Nakahara, Takashi; Hirai, Taketsugu (Okayama Univ., Faculty of Engineering, Okayama, Japan Osaka City Univ., Faculty of Engineering Osaka (Japan))

    1989-07-05

    Behavior of electrolytic manganese dioxide as acid and base in the electrolyte solution of lithium and pottasium nitrates international common sample was studied. Regarding electrolytic manganese dioxide, special treatment was applied for removing Na , treatment method for it was explained. Experiment was conducted by potentiometric titration, continuously and intermittently, Concentration of each ion was measured by atomic absorption to obtain adsorbed quantity of it by electrolytic manganese dioxide. As the result of experiment, those were obtained that, in case pH was higher than 3, electrolytic manganese dioxide acted as acid by releasing H , and at the same time, equivalent amount of Li or K was adsorbed, the quantity of which depended on pH value. As the consideration on experimental result, it was concluded that Li or K was adsorbed at different location. 11 refs., 6 figs.

  10. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  11. Structural evolution upon decomposition of the LiAlH{sub 4} + LiBH{sub 4} system

    Energy Technology Data Exchange (ETDEWEB)

    Soru, S.; Taras, A. [Department of Chemistry and Pharmacy, University di Sassari and INSTM, Via Vienna 2, I-07100 Sassari (Italy); Pistidda, C. [Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht, Max-Planck, Str. 1, D-21502 Geesthacht (Germany); Milanese, C. [Pavia H2 Lab, C.S.G.I. and Dipartimento di Chimica, Sezione di Chimica Fisica, Università di Pavia, Viale Taramelli 16, I-27100 Pavia (Italy); Bonatto Minella, C. [IFW Dresden, Institute for Metallic Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Masolo, E. [Department of Chemistry and Pharmacy, University di Sassari and INSTM, Via Vienna 2, I-07100 Sassari (Italy); Nolis, P. [Servei de Ressonància Magnètica Nuclear and Departament de Química, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Baró, M.D. [Universitat Autònoma de Barcelona, Departament de Física, E-08193 Bellaterra (Spain); Marini, A. [Pavia H2 Lab, C.S.G.I. and Dipartimento di Chimica, Sezione di Chimica Fisica, Università di Pavia, Viale Taramelli 16, I-27100 Pavia (Italy); Tolkiehn, M. [DESY Synchrotron, Beam Line D3, Hamburg (Germany); Dornheim, M. [Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht, Max-Planck, Str. 1, D-21502 Geesthacht (Germany); Enzo, S.; Mulas, G. [Department of Chemistry and Pharmacy, University di Sassari and INSTM, Via Vienna 2, I-07100 Sassari (Italy); Garroni, S., E-mail: sgarroni@uniss.it [Department of Chemistry and Pharmacy, University di Sassari and INSTM, Via Vienna 2, I-07100 Sassari (Italy)

    2014-12-05

    Highlights: • The desorption mechanism of LiBH{sub 4} + LiAlH{sub 4} was studied by in situ SR-PXD • The formation of unidentified intermediate was proved by experimental evidences. • This intermediate is based on Li, B, Al, H atoms. - Abstract: In the present work we focus the attention on the phase structural transformations occurring upon the desorption process of the LiBH{sub 4} + LiAlH{sub 4} system. This study is conducted by means of manometric–calorimetric, in situ Synchrotron Radiation Powder X-ray Diffraction (SR-PXD) and exsitu Solid State Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) measurements. The desorption reaction is characterized by two main dehydrogenation steps starting at 320 and 380 °C, respectively. The first step corresponds to the decomposition of LiAlH{sub 4} into Al and H{sub 2}via the formation of Li{sub 3}AlH{sub 6} whereas the second one refers to the dehydrogenation of LiBH{sub 4} (molten state). In the range 328–380 °C, the molten LiBH{sub 4} reacts with metallic Al releasing hydrogen and forming an unidentified phase which appears to be an important intermediate for the desorption mechanism of LiBH{sub 4}–Al-based systems. Interestingly, NMR studies indicate that the unknown intermediate is stable up to 400 °C and it is mainly composed of Li, B, Al and H. In addition, the NMR measurements of the annealed powders (400 °C) confirm that the desorption reaction of the LiBH{sub 4} + Al system proceeds via an amorphous boron compound.

  12. Li diffusion in zircon

    Science.gov (United States)

    Cherniak, D. J.; Watson, E. B.

    2010-09-01

    Diffusion of Li under anhydrous conditions at 1 atm and under fluid-present elevated pressure (1.0-1.2 GPa) conditions has been measured in natural zircon. The source of diffusant for 1-atm experiments was ground natural spodumene, which was sealed under vacuum in silica glass capsules with polished slabs of zircon. An experiment using a Dy-bearing source was also conducted to evaluate possible rate-limiting effects on Li diffusion of slow-diffusing REE+3 that might provide charge balance. Diffusion experiments performed in the presence of H2O-CO2 fluid were run in a piston-cylinder apparatus, using a source consisting of a powdered mixture of spodumene, quartz and zircon with oxalic acid added to produce H2O-CO2 fluid. Nuclear reaction analysis (NRA) with the resonant nuclear reaction 7Li(p,γ)8Be was used to measure diffusion profiles for the experiments. The following Arrhenius parameters were obtained for Li diffusion normal to the c-axis over the temperature range 703-1.151°C at 1 atm for experiments run with the spodumene source: D_{text{Li}} = 7.17 × 10^{ - 7} { exp }( - 275 ± 11 {text{kJmol}}^{ - 1} /{text{RT}}){text{m}}2 {text{s}}^{ - 1}. Diffusivities are similar for transport parallel to the c-axis, indicating little anisotropy for Li diffusion in zircon. Similar Li diffusivities were also found for experiments run under fluid-present conditions and for the experiment run with the Dy-bearing source. Li diffusion is considerably faster than diffusion of other cations in zircon, with a smaller activation energy for diffusion. Although Li diffusion in zircon is comparatively rapid, zircons will be moderately retentive of Li signatures at mid-crustal metamorphic temperatures, but they are unlikely to retain this information for geologically significant times under high-grade metamorphism.

  13. Can atom-surface potential measurements test atomic structure models?

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  14. Studies on ionization and excitation processes in Ps–Li scattering

    Indian Academy of Sciences (India)

    ... (Ps) by the simplest alkali atom (Li) using a Coulomb–Born approximation for ionization and first-Born approximation for excitation. This is the first work where orthogonalized Coulomb wave is used to represent the ionized electron for Ps–Li scattering using a single-electron and a three-electron prescription of the target.

  15. Electronic structure of the layered nitride LiMoN2

    Science.gov (United States)

    Singh, D. J.

    1992-10-01

    Electronic-structure calculations are reported for the layered ternary nitride LiMoN2. It is found that the material is best described as a three-dimensional metal consisting of strongly covalent MoN2 sheets and Li ions between them. Highly unusual strong direct bonding between N atoms in opposing layers is found.

  16. Modeling and simulation of the atomization process in the ceramic tile industry; Modelagem e simulacao do processo de atomizacao na industria de revestimento ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Renata Cristina

    2002-07-01

    The aim of the present work is to numerically simulate the behaviour of the drying system for several sets of operating conditions in order to improve and optimize this process. However, the mathematical modeling adopted here can be employed to simulate other systems such as the processes that occur in liquid-fueled engines with direct spray injection and ceramic spraying for hard surfacing. Then, mathematical and physical models were established to simulate the interaction of continuous and disperse phases in drying processes of ceramic slurries. Solving the set of governing coupled partial differential equations, it is possible to study the influence of drying air on the atomized droplets of alumina slurry, and vice-versa. The materials used as continuous and disperse phase, air and alumina slurry respectively, are representative since any kind of gas and slurry can be used if its thermodynamic and transport properties are known. Several experimental tests were carried out in a spray dryer in the 'Laboratorio de Insumos', at IPEN - Instituto de Pesquisas Energeticas e Nucleares for different sets of operating conditions: initial temperature of the drying air, the gas flow rate, the slurry feed rate and atomiser configuration among others. Measurements of the wet and the dry bulb temperatures were made in some experimental tests to allow the calculations of the air humidity. The dynamic pressure were also measured in order to determine the gas flow rate. Some samples of the material used in the tile industry and of the one produced at IPEN were analysed to determine: the morphology of the atomized material and the range of granules diameter through scanning electron microscopy; the amount of pores and the bulk density through porosimetry; the residual moisture of the material through thermogravimetry; and the granulometric distribution of granules and particles through laser diffraction. Important information about the process and the final material are

  17. Dopant occupancy and exposure energy in Hf:Nd:LiNbO3 crystal as a function of [Li]/[Nb] ratios

    Science.gov (United States)

    Dai, Li; Liu, Chunrui; Han, Xianbo; Yan, Zhehua; Tan, Chao; Wang, Luping; Xu, Yuheng

    2017-09-01

    A series of Hf: Nd: LiNbO3 crystals with various [Li]/[Nb] ratios ([Li]/[Nb] = 0.94, 1.05, 1.20, 1.38) in the melt were grown by conventional Czochralski technique. The distribution coefficients of Hf4+ and Nd3+ ions were recorded by an inductively coupled plasma-atomic emission spectrometer (ICP-AES). The effective distribution coefficient of Hf4+ is reduced and that of Nd3+ is increased with the increase of [Li]/[Nb] ratio in the melts. In all cases, the effective distribution coefficients is less than 1. The IR transmission spectroscopy of the Hf: Nd: LiNbO3 crystals were measured, getting the results that Hf: Yb: Ho: LiNbO3 crystals with 1.05 [Li]/[Nb] ratios was the stoichiometric. The optical damage resistance ability of Hf:Nd:LiNbO3 crystals were studied by light-induced scattering exposure energy flux threshold method and it increases with the increasing of [Li]/[Nb] ratios. When the [Li]/[Nb] ratio is 1.38 in the melt (the sample 4#), the exposure energy achieves 687.35 J/cm2, approximately 441 folds than that of the sample 1# ([Li]/[Nb] = 0.94) in magnitude.

  18. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  19. Early Atomism

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  20. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.

    Science.gov (United States)

    Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang

    2011-11-01

    Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.

  1. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  2. Adsorption mechanism of H2O molecule on the Li4SiO4 (0 1 0) surface from first principles

    Science.gov (United States)

    Kong, Xianggang; Yu, You; Ma, Shenggui; Gao, Tao; Xiao, Chengjian; Chen, Xiaojun

    2018-01-01

    The adsorption and dissociation behaviors of molecular H2O on the Li4SiO4 (0 1 0) surface have been systematically studied by first-principles calculations. It is found that the adsorbed H2O molecule mainly interacts with the O and Li atoms of the surface, that is, H atom bonds with O atoms of the surface while O atom bonds with the surface Li atoms due to the hydrogen bond effect. According to the different adsorption energies and vibrational frequencies of H2O, different adsorption types can be classified. These results may explain the origin of multiple desorption peaks in TDS experiments.

  3. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    Science.gov (United States)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  4. Enhanced hydrogen storage on Li-doped defective graphene with B substitution: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yanan [School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Chu, Wei, E-mail: chuwei1965@scu.edu.cn [School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Jing, Fangli [School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Zheng, Jian [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010 (China); Sun, Wenjing [China-America Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong 523808 (China); Xue, Ying [Key Laboratory Green Chemistry & Technology of Ministry of Education (MOE), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan (China)

    2017-07-15

    Highlights: • Li atoms were found to be well dispersed on defective structures without clustering. • First H{sub 2} with five different initial configurations on Li/MV, Li/DV, Li/BMV, Li/BDV were explored in order. • Each system could bind up to three H{sub 2} molecules with hydrogen average adsorption energies close to the range of 0.2–0.4 eV. • H{sub 2} molecules bind with systems through weak electrostatic interaction between Li cation and induced H{sub 2} dipole. • H{sub 2} adsorption and desorption on the studied systems can process under ambient conditions. - Abstract: The characteristics of hydrogen adsorption on Li-doped defective graphene systems were investigated using density functional theory (DFT) calculations. Four types of defective structures were selected. Li atoms were well dispersed on the defective graphene without clustering, evidenced by the binding energy value between Li and defective graphene than that of Li-Li{sub x}. Additionally, as the amount of adsorbed H{sub 2} molecules increase, the H{sub 2} molecules show tilting configuration toward the Li adatom. This is beneficial for more hydrogen adsorption under the electrostatic interaction. On these four stable structures, there were up to three polarized H{sub 2} molecules adsorbed on per Li adatom, with the average hydrogen adsorption energy in the range of approximately 0.2–0.4 eV. These results provide new focus on the nature of Li-doped defective graphene with sometimes B substitution medium, which could be considered as a promising candidate for hydrogen storage.

  5. Lithiation-induced shuffling of atomic stacks

    KAUST Repository

    Nie, Anmin

    2014-09-10

    In rechargeable lithium-ion batteries, understanding the atomic-scale mechanism of Li-induced structural evolution occurring at the host electrode materials provides essential knowledge for design of new high performance electrodes. Here, we report a new crystalline-crystalline phase transition mechanism in single-crystal Zn-Sb intermetallic nanowires upon lithiation. Using in situ transmission electron microscopy, we observed that stacks of atomic planes in an intermediate hexagonal (h-)LiZnSb phase are "shuffled" to accommodate the geometrical confinement stress arising from lamellar nanodomains intercalated by lithium ions. Such atomic rearrangement arises from the anisotropic lithium diffusion and is accompanied by appearance of partial dislocations. This transient structure mediates further phase transition from h-LiZnSb to cubic (c-)Li2ZnSb, which is associated with a nearly "zero-strain" coherent interface viewed along the [001]h/[111]c directions. This study provides new mechanistic insights into complex electrochemically driven crystalline-crystalline phase transitions in lithium-ion battery electrodes and represents a noble example of atomic-level structural and interfacial rearrangements.

  6. Lithium vanado(Vmolybdate(VI, Li[VMoO6

    Directory of Open Access Journals (Sweden)

    Safa Ezzine Yahmed

    2013-09-01

    Full Text Available Brannerite-type Li[VMoO6] has been synthesized by a solid state reaction route. The V and Mo atoms statistically occupy the same site with mirror symmetry and are octahedrally surrounded by O atoms. The framework is two-dimensional and is built up from edge-sharing (V,MoO6 octahedra forming (VMoO6∞ layers that run parallel to the (001 plane. Li+ ions are situated in position with symmetry 2/m in the interlayer space. The bond-valence analysis reveals that the Li+ ionic conductivity is along the [010] and [110] directions, and shows that this material may have interesting conduction properties. This simulation proposes a model of the lithium conduction pathways.

  7. Effect of manganese doping on remnant polarization and leakage current in (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 epitaxial thin films on SrTiO3

    Science.gov (United States)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-05-01

    Single phase, epitaxial, ⟨001⟩ oriented, undoped and 1mol% Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films of 400nm thickness were synthesized on SrRuO3 coated SrTiO3. Such films exhibit well saturated hysteresis loops and have a spontaneous polarization (Ps) of 10μC /cm2, which is a 150% higher over the Ps of the undoped composition. The coercive field of 1mol% Mn doped films is 13kV/cm. Mn-doping results in three orders of magnitude decrease in leakage current above 50kV/cm electric field, which we attribute to the suppression of intrinsic p-type conductivity of undoped films by Mn donors.

  8. Effects of background oxygen pressure on dielectric and ferroelectric properties of epitaxial (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films on SrTiO3

    Science.gov (United States)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-11-01

    Oxygen partial pressure (PO_2) in pulsed laser deposition significantly influences the composition, microstructure, and electrical properties of epitaxial misfit strain-relieved 450nm ⟨001⟩ oriented epitaxial (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films on SrRuO3 coated SrTiO3. Films deposited at 400mTorr exhibit high remnant and saturated polarization of 7.5 and 16.5μC /cm2, respectively, which is ˜100% increase over the ones grown at 100mTorr. The dielectric constant linearly increases from 220 to 450 with increasing PO2. The observed changes in surface morphology of the films and their properties are shown to be due to the suppression of volatile A-site cation loss.

  9. Recycling of LiCo0.59Mn0.26Ni0.15O2 cathodic material from spent Li-ion batteries by the method of the citrate gel combustion

    Directory of Open Access Journals (Sweden)

    Senćanski Jelena V.

    2017-01-01

    Full Text Available The Li-ion batteries are the main power source for the high technology devices, such as mobile phones and electric vehicles. Because of that, the number of spent Li-ion batteries significantly increases. Today, the number of active mobile phones crossed 7.19 billion. It is estimated that the mass of the spent lithium ion batteries in China will exceed 500,000 t by 2020. The trouble is in the ingredients of these batteries. They contain Li, Co, Mn, Ni, Cu, Al and toxic and flammable electrolytes which have a harmful affection to the environment. Because of that, the recycling procedure attracts raising attention of researches. Several commercial spent Li-ion batteries were recycled by the relatively fast, economic and simple procedure. The three ways of separating the cathode material from Al collector were examined after the manual dismantling of the components of batteries with the Li(Co–Mn–NiO2 as cathode material. These were: 1. dissolution of the Al collector in the alkali medium, 2. peeling off with N-methylpyrrolidone and 3. thermal decomposition of the adhesive at 700°C. The procedure with the highest yield was the one with the dissolution in alkali medium. The chemical analysis of the single batteries'' components (the crust, Al/Cu collector, cathode material were done by the atomic absorption spectrometry. The components, before the analysis, were dissolved. The re-synthesis of the cathode material by the method of the citrate gel combustion was done after the separating the cathode material and dissolving it in the nitric acid. The obtained product was, after annealing, characterized by the methods of X-ray diffraction and Raman spectroscopy. The recycled product was LiCo0.59Mn0.26Ni0.15O2 stoichiometry, with the hexagonal layered structure α-NaFeO2 type. The functionalization of the resynthesized material was examined in the 1 M solution LiClO4 in the propylene carbonate, by galvanostatic charging, with the current density of 0

  10. Selective blue emission from an HPBO-Li{sup +} complex in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Obare, S.O.; Murphy, C.J. [South Carolina Univ., Dept. of Chemistry and Biochemistry, Graduate Science Research Center, Columbia, SC (United States)

    2001-12-01

    Li{sup +} sensors are currently in demand for monitoring Li{sup +} transport in Li{sup +} batteries. Fluorescent receptors specific for metal ions are desirable since they allow both direct and real-time detection. Here we show that 2-(2-Hydroxyphenyl)benzoxazole(HPBO) exhibits enhanced fluorescence and specificity for Li{sup +} compared to Na{sup +} and K{sup +}, in an alkaline medium. The selectivity was observed in several organic solvents in the presence of bases such as pyridine, triethylamine and trimethyl-amine. HPBO-Li{sup +} complex formation results in an intense blue emission readily observed by the naked eye under UV light. Spectroscopic titrations suggest that the structure of the complex is one in which two HPBO anionic ligands coordinate to one Li{sup +}, with a second Li{sup +} as a counter-ion. (authors)

  11. The Mass Attenuation Coefficients, Electronic, Atomic, and Molecular Cross Sections, Effective Atomic Numbers, and Electron Densities for Compounds of Some Biomedically Important Elements at 59.5 keV

    Directory of Open Access Journals (Sweden)

    Burcu Akça

    2014-01-01

    Full Text Available The mass attenuation coefficients for compounds of biomedically important some elements (Na, Mg, Al, Ca, and Fe have been measured by using an extremely narrow collimated-beam transmission method in the energy 59.5 keV. Total electronic, atomic, and molecular cross sections, effective atomic numbers, and electron densities have been obtained by using these results. Gamma-rays of 241Am passed through compounds have been detected by a high-resolution Si(Li detector and by using energy dispersive X-ray fluorescence spectrometer (EDXRF. Obtained results have been compared with theoretically calculated values of WinXCom and FFAST. The relative difference between the experimental and theoretical values are −9.4% to +11.9% with WinXCom and −11.8% to +11.7% FFAST. Results have been presented and discussed in this paper.

  12. New insight on Li and B isotope fractionation during serpentinization derived from batch reaction investigations

    Science.gov (United States)

    Hansen, Christian T.; Meixner, Anette; Kasemann, Simone A.; Bach, Wolfgang

    2017-11-01

    Multiple batch experiments (100 °C, 200 °C; 40 MPa) were conducted, using Dickson-type reactors, to investigate Li and B partitioning and isotope fractionation between rock and water during serpentinization. We reacted fresh olivine (5 g; Fo90; [B] = saline solutions (NaB(OH)4(aq) and B(OH)3Cl-) as well as variable B fixation and fractionation for different serpentinization product minerals (brucite, chrysotile). Breakdown of the Li-rich olivine and limited Li incorporation into product mineral phases resulted in an overall lower Li content of the final solid phase assemblage at 200 °C ([Li]final_200 °C = 0.77 μg/g; DS/FLi200 °C = 1.58). First order changes in Li isotopic compositions were defined by mixing of two isotopically distinct sources i.e. the fresh olivine and the fluid rather than by equilibrium isotope fraction. At 200 °C primary olivine is dissolved, releasing its Li budget into the fluid which shifts towards a lower δ7LiF of +38.62‰. Newly formed serpentine minerals (δ7LiS = +30.58‰) incorporate fluid derived Li with a minor preference of the 6Li isotope. At 100 °C Li enrichment of secondary phases exceeded Li release by olivine breakdown ([Li]final_100 °C = 2.10 μg/g; DS/FLi100 °C = 11.3) and it was accompanied by preferential incorporation of heavier 7Li isotope that might be due to incorporation of a 7Li enriched fluid fraction into chrysotile nanotubes.

  13. Effect of Ca and Li additions on densification and electrical conductivity of 10 mol% gadolinia-doped ceria prepared by the coprecipitation technique; Efeito de adicoes de litio e calcio na densificacao e na condutividade eletrica da ceria-10% mol gadolinia preparada pela tecnica de co-precipitacao

    Energy Technology Data Exchange (ETDEWEB)

    Porfirio, T.C.

    2010-07-01

    Ceria containing rare-earth ceramics are potential candidates for application in intermediate-temperature solid oxide fuel cells. One of the main problems related to these ceramic materials is their relatively low sinterability. In this work, the effects of Ca and Li additions on densification and electrical conductivity of 10 mol% gadolinia-doped ceria was investigated. Ceramic compositions containing 1.5 mol% Ca or Li were prepared by the oxalate coprecipitation technique. Results of sintered density and electrical conductivity were compared to those of ceramic samples obtained by solid state reactions showing the effects of the synthesis method on densification and total electrical conductivity of the sintered materials. (author)

  14. Assessment of CaSO{sub 4}:Dy and LiF:Mg,Ti thermoluminescent dosimeters performance in the dosimetry of clinical electron beams; Avaliacao do desempenho dos detectores termoluminesncetes de CaSO{sub 4}:Dy e LiF:Mg,Ti na dosimetria de feixes clinicos de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Maira Goes

    2008-07-01

    The assessment of the performance of CaS0{sub 4}:Dy thermoluminescent detectors produced by IPEN in the dosimetry of clinical electron beams aims to propose an alternative to the LiF:Mg,Ti commercial dosimeters (TLD-100) largely applied in radiation therapy. The two types of thermoluminescent dosimeters were characterised with the use of PMMA, RMI-457 type solid water and water phantoms in radiation fields of 4, 6, 9, 12 and 16 MeV electrons of nominal energies in which the dose-response curves were obtained and the surface and depth doses were determined. The thermoluminescent response dependency with the electron nominal energies and the applied phantom were studied. The CaS0{sub 4}:Dy presented the same behaviour than the LiF:Mg,Ti in such a way that its application as an alternative to the TLD-100 pellets in the radiation therapy dosimetry of electron beams is viable and presents the significantly higher sensitivity to the electron radiation as its main advantage. (author)

  15. Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes

    KAUST Repository

    Rana, Kuldeep

    2012-05-24

    Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.

  16. First-principles investigation of adsorption and diffusion of Li on doped silicenes: Prospective materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Mohammad Jafar; Mousavi-Khoshdel, Morteza, E-mail: mmousavi@iust.ac.ir; Targholi, Ehsan

    2017-05-01

    In this report, we investigate the adsorption energies and diffusion characteristics of Li atom on doped silicenes using first principles density functional theory (DFT) calculations. Our results show that the Li adsorption energy on doped silicenes is larger than pristine silicene. Based on our calculations, Al- and B-doped silicenes, due to creating an electron-deficient center in silicene, show a stronger interaction with Li atom compared to P- and N-doped silicenes. The obtained data for surface and perpendicular diffusion of Li atom show the easier mobility of Li on some doped silicenes compared to pristine silicene. According to our results, doping silicene with nitrogen and phosphorus atoms facilitates the Li surface mobility (diffusion barrier of 0.05 and 0.11 eV, respectively versus 0.18 eV for pure silicene) while, doping with aluminum, speed Li perpendicular diffusion (1.47 eV versus 1.67 eV for pristine silicene). The adsorption energy and diffusion barrier values, show the advantage of doped silicenes for use in LIBs with respect to pure silicene. - Highlights: • Calculation of adsorption energy of lithium on pristine and doped silicenes. • Surface and perpendicular diffusion barrier of Li on doped silicenes. • Examination of electronic structure of Li adsorbed doped silicenes.

  17. Recovery and recycling of lithium value from spent lithium titanate (Li2TiO3) pebbles

    Science.gov (United States)

    Mandal, D.

    2013-09-01

    In the first generation fusion reactors the fusion of deuterium (D) and tritium (T) is considered to produce energy to meet the future energy demand. Deuterium is available in nature whereas, tritium is not. Lithium-6 (Li6) isotope has the ability to produce tritium in the n, α nuclear reaction with neutrons. Thus lithium-based ceramics enriched by Li6 isotope are considered for the tritium generation for its use in future fusion reactors. Lithium titanate is one such Li-based ceramic material being considered for its some attractive properties viz., high thermal and chemical stability, high thermal conductivity, and low tritium solubility. It is reported in the literature, that the burn up of these pebbles in the fusion reactor will be limited to only 15-17 atomic percentage. At the end of life, the pebbles will contain more than 45% unused Li6 isotope. Due to the high cost of enriched Li6 and the waste disposal considerations, it is necessary to recover the unused Li from the spent lithium titanate pebbles. Till date, only the feasibilities of different processes are reported, but no process details are available. Experiments were carried out for the recovery of Li from simulated Li2TiO3 pebbles and to reuse of lithium in lithium titanate pebble fabrication. The details of the experiments and results are discussed in this paper. Simulated lithium titanate (Li2TiO3) pebbles. The objective of the study is to develop a process which can be used to recover lithium value form the spent Li2TiO3 pebbles from future fusion reactor. The Li2TiO3 pebbles used in the study were synthesized and fabricated by the solid state reaction process developed by Mandal et al. described in details somewhere else [1,2]. Spherical Li2TiO3 pebbles of size 1.0 mm were used and the properties of the Li2TiO3 pebbles used in the study are shown in Table 1. Hydrochloric acid (HCl), of 99.8% purity, purchased from Merck and Loba Chemicals, Mumbai, India. To leach lithium from Li2TiO3

  18. LiBC3: a new borocarbide based on graphene and heterographene networks.

    Science.gov (United States)

    Milashius, Viktoria; Pavlyuk, Volodymyr; Kluziak, Karolina; Dmytriv, Grygoriy; Ehrenberg, Helmut

    2017-11-01

    Li-B-C alloys have attracted much interest because of their potential use in lithium-ion batteries and superconducting materials. The formation of the new compound LiBC3 [lithium boron tricarbide; own structure type, space group P-6m2, a = 2.5408 (3) Å and c = 7.5989 (9) Å] has been revealed and belongs to the graphite-like structure family. The crystal structure of LiBC3 presents hexagonal graphene carbon networks, lithium layers and heterographene B/C networks, alternating sequentially along the c axis. According to electronic structure calculations using the tight-binding linear muffin-tin orbital-atomic spheres approximations (TB-LMTO-ASA) method, strong covalent B-C and C-C interactions are established. The coordination polyhedra for the B and C atoms are trigonal prisms and for the Li atoms are hexagonal prisms.

  19. Silicene for Na-ion battery applications

    KAUST Repository

    Zhu, Jiajie

    2016-08-19

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954mAh/g for freestanding silicene and 730mAh/g for the graphenesilicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of >0.3 V against the Na/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be <0.3 eV.

  20. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Feijun; Wang, Wenjun; Wang, Jianquan

    2014-11-04

    Novel water-based binder lithium carboxymethyl cellulose (CMC-Li) is synthesized by cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries' cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and water-soluble binder are investigated. Sodium carboxymethyl cellulose (CMC-Na, CMC) and CMC-Li are used as the binder. After 200 cycles, compared with conventional poly(vinylidene fluoride) (PVDF) binder, the CMC-Li binder significantly improves cycling performance of the LFP cathode 96.7% of initial reversible capacity achieved at 175 mA h g(-1). Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, followed closely by those using CMC and PVDF binders, respectively. Electrochemical impedance spectroscopy test results show that the electrode using CMC-Li as the binder has lower charge transfer resistance than the electrodes using CMC and PVDF as the binders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  2. Magnetic field selective enhancement of Li I lines comparing Li II line in laser ablated lithium plasma at 10- 2 mbar air ambient gas

    Science.gov (United States)

    Liu, Ping; Wu, Ding; Sun, Liying; Hai, Ran; Liu, Jiamin; Ding, Hongbin

    2017-11-01

    In this paper, the effect of magnetic field (1.1 T) on the atomic and ionic spectral emission of a laser produced lithium plasma at low pressure has been investigated. The experimental results indicate that magnetic field enhances the intensities of Li I spectral lines but reduces the Li II spectral lines intensities. In this study, two narrowband filters were placed before the ICCD camera to observe the evolution feature of Li II spectral line (548.39 nm, 2p3P2,1,0 → 2s3S1) and Li I spectral line (610.30 nm, 3d2P3/2, 5/2 → 2p2P1/2, 3/2), respectively. The plasma dynamic images show that with the magnetic field, the number density of luminous Li atoms is higher, while the number density of luminous Li ions is lower in comparison to the field-free case. The reduced Li II spectral intensities indicate that the quenching rate of Li ions in the excited state is greater than that without the magnetic field. The enhanced impact frequency of recombination indicates that magnetic field increases the recombination process of electron and Li ions. All of these observations strongly suggest that magnetic confinement increases the recombination process of the electrons with Li ions in the plasma, which results in the decrease in the intensity of Li II line. The results are useful for applying laser-induced breakdown spectroscopy (LIBS) to in-situ diagnose the processes of lithium wall conditioning in EAST tokamak.

  3. Li-intercalated bilayer SnS2: A potential superconductor

    Science.gov (United States)

    Wang, Z. Y.; Xia, W.; Huang, G. Q.

    2017-12-01

    Electronic structure, lattice dynamics, and electron-phonon coupling of Li-intercalated bilayer SnS2 are systematically investigated via first-principles density functional theory. The energetically stable configuration for Li-intercalated bilayer SnS2 is /AB/ stacking, which is different from /AA/ stacking for pristine bilayer. There is a charge transfer from Li to bilayer SnS2 and the change of the band structure after Li intercalation can be explained well by a rigid band model, suggesting that the intercalated Li atoms mainly play a role of charge reservoir. Our calculations show that the softening of acoustic phonon near K bar high-symmetry point make a large contribution to electron-phonon interaction and the superconducting temperature Tc can achieve 14.0 K. Our study suggest that Li-intercalated SnS2, a potential material of lithium-ion battery, may meanwhile be a quasi two-dimensional superconductor.

  4. Atomic Power

    African Journals Online (AJOL)

    Atomic Power. By Denis Taylor: Dr. Taylor was formerly Chief UNESCO Advisor at the University. College, Nairobi, Kenya and is now Professor of Electrical Engineering in the Uni- versity of ... method of producing radioactive isotopes, which are materials .... the sealing and the pressure balancing, all can be carried out ...

  5. Thermodynamic properties of trapped 23Na atoms

    Indian Academy of Sciences (India)

    M Fabre de la Ripelle, Few-Body Systems 1, 181 (1986). [13] M Abramowitz and I A Stegun, Handbook of mathematical functions (Dover Publica- tions, New York, 1972), p. 773. [14] T K Das, H T Coelho and M Fabre de la Ripelle, Phys. Rev. C26, 2281 (1982). J L Ballot, M Fabre de la Ripelle and J S Levinger, Phys. Rev.

  6. Fundamental mechanisms in Li-air battery electrochemistry

    DEFF Research Database (Denmark)

    Højberg, Jonathan

    The lithium-air (or Li-O2) batteries have received wide attention as an enabling technology for a mass market entry of electric vehicles due to a potential capacity much higher than current Li-ion technology. The technology is a relatively new battery concept proposed in 1996, and the current...... research still focuses on developing an understanding of the reactions inside the battery. This thesis is dedicated to increase this understanding and use the knowledge to improve the performance of the battery, and the work span from detailed investigation of the atom positions to the proposal of a system...

  7. Charge Radius Measurement of the Halo Nucleus $^{11}$Li

    CERN Multimedia

    Kluge, H-J; Kuehl, T; Simon, H; Wang, Haiming; Zimmermann, C; Onishi, T; Tanihata, I; Wakasugi, M

    2002-01-01

    %IS385 %title\\\\ \\\\The root-mean-square charge radius of $^{11}$Li will be determined by measuring the isotope shift of a suitable atomic transition in a laser spectroscopic experiment. Comparing the charge radii of the lithium isotopes obtained by this nuclear-model-independent method with the relevant mass radii obtained before will help to answer the question whether the proton distribution in halo nuclei at the neutron drip-line is decoupled to the first order from their neutron distribution. The necessary experimental sensitivity requires the maximum possible rate of $^{11}$Li nuclei in a beam of low emittance which can only be provided by ISOLDE.

  8. Density functional theory studies of the structural, electronic, and phonon properties of Li2O and Li2CO3 : Application to CO2 capture reaction

    Science.gov (United States)

    Duan, Yuhua; Sorescu, Dan C.

    2009-01-01

    The structural, electronic, and phonon properties of Li2O and Li2CO3 solids are investigated using density functional theory (DFT) and their thermodynamic properties for CO2 absorption and desorption reactions are analyzed. The calculated bulk properties for both the ambient- and the high-pressure phases of Li2O and Li2CO3 are in good agreement with available experimental measurements. The calculated band gap of the high-pressure phase of Li2O (8.37 eV, indirect) is about 3 eV larger than the one corresponding to the ambient Li2O phase (5.39 eV, direct), whereas the calculated band gap for the high-pressure phase of Li2CO3 (3.55 eV, indirect) is about 1.6 eV smaller than that for the ambient phase of Li2CO3 (5.10 eV, direct). The oxygen atoms in the ambient phase of the Li2CO3 crystal are not equivalent as reflected by two different sets of C-O bond lengths (1.28 and 1.31Å ) and they form two different groups. When Li2CO3 dissociates, one group of O forms Li2O , while the other group of O forms CO2 . The calculated phonon dispersion and density of states for the ambient phases of Li2O and Li2CO3 are in good agreement with experimental measurements and other available theoretical results. Li2O(s)+CO2(g)↔Li2CO3(s) is the key reaction of lithium salt sorbents (such as lithium silicates and lithium zircornates) for CO2 capture. The energy change and the chemical potential of this reaction have been calculated by combining DFT with lattice dynamics. Our results indicate that although pure Li2O can absorb CO2 efficiently, it is not a good solid sorbent for CO2 capture because the reverse reaction, corresponding to Li2CO3 releasing CO2 , can only occur at very low CO2 pressure and/or at very high temperature when Li2CO3 is in liquid phase.

  9. Potential Energy Curves and Transport Properties for the Interaction of He with Other Ground-state Atoms

    Science.gov (United States)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The interactions of a He atom with a heavier atom are examined for 26 different elements, which are consecutive members selected from three rows (Li - Ne, Na - Ar, and K,Ca, Ga - Kr) and column 12 (Zn,Cd) of the periodic table. Interaction energies are determined wing high-quality ab initio calculations for the states of the molecule that would be formed from each pair of atoms in their ground states. Potential energies are tabulated for a broad range of Interatomic separation distances. The results show, for example, that the energy of an alkali interaction at small separations is nearly the same as that of a rare-gas interaction with the same electron configuration for the dosed shells. Furthermore, the repulsive-range parameter for this region is very short compared to its length for the repulsion dominated by the alkali-valence electron at large separations (beyond about 3-4 a(sub 0)). The potential energies in the region of the van der Waals minimum agree well with the most accurate results available. The ab initio energies are applied to calculate scattering cross sections and obtain the collision integrals that are needed to determine transport properties to second order. The theoretical values of Li-He total scattering cross sections and the rare-gas atom-He transport properties agree well (to within about 1%) with the corresponding measured data. Effective potential energies are constructed from the ab initio energies; the results have been shown to reproduce known transport data and can be readily applied to predict unknown transport properties for like-atom interactions.

  10. Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12

    Science.gov (United States)

    Yonemoto, Fumihiro; Nishimura, Atsuki; Motoyama, Munekazu; Tsuchimine, Nobuo; Kobayashi, Susumu; Iriyama, Yasutoshi

    2017-03-01

    This paper reports on the cycling stability of Li plating/stripping on Li6.6La3Zr1.6Ta0.4O12 [LLZ(Ta0.4)] with high sintering density at 25, 60, and 100 °C. Plated/stripped Li thicknesses are sequentially increased to 200 nm, 1.0 μm, and 2.0 μm after every ten cycles. The overpotential gradually increases with cycling Li plating/stripping processes, and the cells eventually short-circuit at 25 and 60 °C. However, the cycling stability of Li plating/stripping significantly improves at 100 °C, and the short-circuiting is prevented perfectly. Moreover, the cycling stability of Li plating/stripping at 25 °C is dramatically improved by pre-cycling the cell at 100 °C. Only heating a cell with Li metal at 100 °C for the same duration does not improve the cycling stability of the cell. It is hence considered that forced migrations of Li atoms and ions across entire Li/LLZ(Ta0.4) interfaces at 100 °C change the properties of the interfacial regions even for the following plating/stripping cycles at 25 °C.

  11. Numerical investigation on lithium transport in the edge plasma of EAST real-time- Li-injection experiments in the frame of BOUT + +

    Science.gov (United States)

    Li, N. M.; Sun, J. Z.; Wang, Z. H.; Xu, X. Q.; Sun, Z.; Wang, L.; Hu, J. S.; Wang, D. Z.

    2016-10-01

    Experimental observations on applications of Lithium (Li) have indicated that Li could benefit plasma performance. But all these call for further investigation on lithium transport. A simple model has been developed by reducing Braginskii's equations with assumed quasi-neutral condition for transport of Li species in the edge plasma in the EAST experiments of real-time Li aerosol injection and implemented in the frame of BOUT + + . The simulation results show that Li atoms propagate inwards continuously during the Li injection, and the propagating depth of Li atoms depends on both the local plasma conditions along its path and the Li injection velocity. It is also found that Li ions accumulate rapidly in the edge, and only a small fraction of Li species can transport cross the magnetic field into the core. In the poloidal direction, Li ions drift swiftly downwards along the field lines, and transport much faster at the high field side than at the low field side. The strong interaction between background plasma and Li ions plays a critical role in determining the edge plasma profile. It is found that real-time Li injection raises the plasma density in the pedestal region and reduces the plasma temperature, just as has been observed experimentally National Magnetic Confinement Fusion Science Program of China No. 2013GB107003, National Natural Science Foundation of China No. 11575039.

  12. Relative Li-ion mobility mapping in Li0.33La0.56TiO3 polycrystalline by electron backscatter diffraction and electrochemical strain microscopy

    Science.gov (United States)

    Sasano, Shun; Ishikawa, Ryo; Sugiyama, Issei; Higashi, Takuma; Kimura, Teiichi; Ikuhara, Yumi H.; Shibata, Naoya; Ikuhara, Yuichi

    2017-06-01

    Li-ion conductivity in a solid-state electrolyte has so far been measured by impedance spectroscopy. In this method, however, it is difficult to obtain microstructural information because of the absence of spatial resolution. Here, we show the relationship between the Li-ion mobility and the crystal orientation in Li0.33La0.56TiO3 polycrystalline by electrochemical strain microscopy combined with electron backscatter diffraction. On the experimentally constructed multivariable regression model, we obtained a qualitative Li-ion mobility map of sub-millimeter width with a 100 nm spatial resolution, which is impossible to achieve by only atomic force microscopy. The proposed method must be useful for identifying the Li-ion diffusion pathway in three dimensions.

  13. Atomic arias

    Science.gov (United States)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  14. Atomic rivals

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  15. Lithium diffusion study in Li2MnO3and Li1.17Ni0.17Mn0.67O2: a combined experimental and computational approach.

    Science.gov (United States)

    Sarkar, Tanmay; Prakasha, Kunkanadu R; Bharadwaj, Mridula Dixit; Prakash, Annigere S

    2017-12-06

    A theoretical and experimental diffusivity study of Li 2 MnO 3 and Li 1.17 Ni 0.17 Mn 0.67 O 2 has been carried out to investigate the effect of Mn, Ni and surrounding atoms on Li + diffusion and to understand how the Li + diffusion trajectory changes with different charge spheres. It is observed that due to the presence of Ni in Li 1.17 Ni 0.17 Mn 0.67 O 2 , the activation energy reduces in all the possible diffusion paths, which helps in faster Li + diffusion. This study brings a new physical insight into Li + diffusion based on elliptical and straight diffusion trajectories. In Li 1.17 Ni 0.17 Mn 0.67 O 2 , the Li + diffusion mechanism in different paths based on 2b, 2c and 4h Wyckoff sites of Li has been discussed. Experimentally, the galvanostatic intermittent titration technique is adopted to identify the diffusion coefficient of Li + . The diffusion coefficient of both the compounds varies in different voltage ranges. For L 2 MnO 3 , diffusion varies from 10 -11 to 10 -13 cm 2 s -1 , whereas for Li 1.17 Ni 0.17 Mn 0.67 O 2 , diffusion varies from 10 -9 to 10 -11 cm 2 s -1 in the voltage range of 3.7-4.7 V.

  16. Spin entanglement in elastic electron scattering from quasi-one electron atoms

    Science.gov (United States)

    Fonseca Dos Santos, Samantha; Bartschat, Klaus

    2017-04-01

    We have extended our work on e-Li collisions to investigate low-energy elastic electron collisions with atomic hydrogen and other alkali targets (Na,K,Rb). These systems have been suggested for the possibility of continuously varying the degree of entanglement between the elastically scattered projectile and the valence electron. In order to estimate how well such a scheme may work in practice, we carried out overview calculations for energies between 0 and 10 eV and the full range of scattering angles 0° -180° . In addition to the relative exchange asymmetry parameter that characterizes the entanglement, we present the differential cross section in order to estimate whether the count rates in the most interesting energy-angle regimes are sufficient to make such experiments feasible in practice. Work supported by the NSF under PHY-1403245.

  17. Conformational basis for the Li(+)-induced leak current in the rat gamma-aminobutyric acid (GABA) transporter-1

    DEFF Research Database (Denmark)

    MacAulay, Nanna; Zeuthen, Thomas; Gether, Ulrik

    2002-01-01

    (+)-bound conformation of the protein displayed a lower passive water permeability than that of the Na(+)- and choline (Ch(+))-bound conformations and the leak current did not saturate with increasing amounts of Li(+) in the test solution. The mechanism that gives rise to the leak current did not support active water...... millimolar concentrations of Na(+) (the apparent affinity constant, K'(0.5) = 3 mM). In addition, it was found that the GABA transport current was sustained at correspondingly low Na(+) concentrations if Li(+) was present instead of choline. This is consistent with a model in which Li(+) can bind...

  18. A computational study on the application of AlN nanotubes in Li-ion batteries

    Science.gov (United States)

    Anaraki-Ardakani, Hossein

    2017-03-01

    We investigated the potential application of the AlN nanotubes (AlNNTs) in Li-ion batteries by means of the density functional theory calculations. To this aim, the interaction of Li atom and Li+ cation with (3 , 3), (4 , 4), (5 , 5), (6 , 6), and (7 , 7) armchair AlNNTs was investigated. By decreasing the curvature of these nanotubes, the HOMO and LUMO levels are shifted to lower and higher energies, thereby enlarging the energy gap. It was found that AlNNTs can produce larger cell voltage in comparison to the carbon nanotubes and may be promising candidate for application in the anode electrode of Li-ion batteries. The calculated cell voltage is in the range of 1.66 to 1.84 V which is significantly increased by increasing the diameter of AlNNTs. The adsorptions of Li and Li+ on the exterior surface of AlNNTs are more favorable than those on its exterior surface. We showed that the interaction of atomic Li with the surface of the AlNNT plays the main rule in determining the cell voltage because of its large dependency on the tube diameter. While the interaction of Li+ is nearly independent of the tube diameter because of the electrostatic nature of the interaction.

  19. Dehydrogenation mechanism of LiBH{sub 4} by Poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianmei [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Yan, Yurong [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); Ouyang, Liuzhang, E-mail: meouyang@scut.edu.cn [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Key Laboratory for Fuel Cell Technology in Guangdong Province, South China University of Technology, Guangzhou 510641 (China); Wang, Hui [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Zhu, Min, E-mail: memzhu@scut.edu.cn [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China)

    2015-10-05

    Highlights: • LiBH{sub 4} is amorphous after modified with PMMA. • Dehydrogenation temperature of LiBH{sub 4} decreases by 120 °C after modifying with PMMA. • The LiBH{sub 4}@PMMA composite releases 10 wt.% hydrogen at 360 °C within 1 h. • C=O group of PMMA weakens the B−H bonds to lower dehydrogenation temperature. - Abstract: We investigated the dehydrogenation properties and mechanism of Poly(methyl methacrylate) (PMMA) confined LiBH{sub 4}. Thermal stability of LiBH{sub 4} was reduced by PMMA, with a decrease in dehydrogenation temperature by 120 °C. At 360 °C, the composite showed fast dehydrogenation kinetics with 10 wt.% of hydrogen released within 1 h. The improved dehydrogenation performance was mainly attributed to the reaction between LiBH{sub 4} and PMMA forming Li{sub 3}BO{sub 3} as a final product. Furthermore, the presence of electrostatic interaction between B atom of LiBH{sub 4} and O atom in the carbonyl group of PMMA may weaken the B−H bonding of [BH{sub 4}]{sup −} and lower the hydrogen desorption temperature.

  20. Politička komunikacija u medijskom društvu: da li demokracija još uživa spoznajnu dimenziju? Utjecaj normativne teorije na empirijska istraživanja

    OpenAIRE

    Habermas, Jürgen

    2013-01-01

    Ponajprije uspoređujem deliberativne modele demokracije s liberalnim i republikanskim te razmatram moguće veze s empirijskim istraživanjima, a potom istražujem koliko ima empirijskih dokaza da politička deliberacija razvija potencijal nalaženja istine. Glavni dijelovi članka služe prima facie raspršivanju sumnje o empirijskom sadržaju i primjenjivosti komunikativnog modela deliberativne politike. On, štoviše, ističe dva kritična uvjeta: u javnoj sferi posredovana politička k...

  1. Density functional theory calculations on alkali and the alkaline Ca atoms adsorbed on graphene monolayers

    Science.gov (United States)

    Dimakis, Nicholas; Valdez, Danielle; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade; Vargas, Sarah; Saenz, Justin

    2017-08-01

    The adsorption of the alkali Li, K, and Na and the alkaline Ca on graphene is studied using periodic density functional theory (DFT) under various adatom coverages. The charge transfers between the adatom and the graphene sheet and the almost unchanged densities-of-states spectra in the energy region near and below the Fermi level support an ionic bond pattern between the adatom and the graphene atoms. However, the presence of small orbital overlap between the metal and the nearest graphene atom is indicative of small covalent bonding. Van der Waals interactions are examined through a semiempirical correction in the DFT functional and by comparing adatom-graphene calculations between 3% and 1.4% adatom coverages. Optimized adatom-graphene geometries identify the preferred adatom sites, whereas the adatom-graphene strength is correlated with the adsorption energy and the adatom distance from the graphene plane. Calculated electronic properties and structural parameters are obtained using hybrid functionals and a generalized gradient approximation functional paired with basis sets of various sizes. We found that due to long range electrostatic forces between the alkali/alkaline adatoms and the graphene monolayer, the adatom-graphene structural and electronic properties could be well-described by specific DFT functionals paired with high-quality adatom basis sets. For Li, K, and Na adsorbed on graphene, increased adatom surface coverage weakens the adatom-graphene interaction. However, this statement does not apply for Ca adsorbed on graphene. In this case, the Ca adsorption strength, which is stronger at higher coverages, is opposite to increases in the Ca-4s orbital population.

  2. Selective population of unbound states in 10Li

    Science.gov (United States)

    Smith, J. K.; Baumann, T.; Brown, J.; DeYoung, P. A.; Frank, N.; Hinnefeld, J.; Kohley, Z.; Luther, B.; Marks, B.; Spyrou, A.; Stephenson, S. L.; Thoennessen, M.; Williams, S. J.

    2015-08-01

    Unbound positive-parity states in 10Li have been populated with a two-proton removal reaction from a 71 MeV/u 12B beam. The 9Li fragments and emitted neutrons were measured with the MoNA-LISA-Sweeper setup. The measured decay energy spectrum was best fit with three states at 110 ± 40, 500 ± 100, and 1100 ± 100 keV decay energy. This is the second observation of a resonance below 200 keV. The lower two states likely belong to the expected 1+, 2+ doublet.

  3. Ortaöğretim Öğrencilerinin Tarih Kavramına İlişkin Sahip Oldukları Metaforlar / Secondary School Students’ Metaphors about the History Concept

    Directory of Open Access Journals (Sweden)

    Ahmet Sait Candan

    2017-04-01

    Full Text Available Abstract A metaphor is a figure of speech that refers to one thing by mentioning another thing via comparison, fictionalizing and expression.  This study is revealing, in terms of metaphor concept, what the perceptions of the secondary school students with relate to “History” term are. Accordingly, comments of 160 students who are educating in secondary schools in Karabük city center are referred. In this research, the secondary school students’ perceptions about “History” term are tried to be determined via metaphors. The obtained data were analyzed with content analysis method by using the phenomenological pattern in terms of qualitative research method. As a result of this analysis, it has been revealed that metaphor is an effective factor in determining and expressing the perceptions of the secondary education students about “History” term. Öz Metafor bir şeyi başka bir şey ile benzetmeye, kurgulamaya, anlatmaya yarayan mecazlardır. Bu çalışma ortaöğretim öğrencilerinin “Tarih” kavramına ilişkin algılarının neler olduğunu metaforlar bağlamında ortaya koymaya yöneliktir. Bu doğrultuda Karabük il merkezinde bulunan ortaöğretim okullarında öğrenim gören 160 öğrencinin görüşlerine başvurulmuştur. Araştırmada çalışma grubundaki öğrencilerin “Tarih” kavramına yönelik algıları metaforlar üzerinden belirlenmeye çalışılmıştır. Elde edilen veriler, nitel araştırma yöntemi bağlamında olgubilim deseni kullanılarak içerik analizi tekniği ile analiz edilmiştir. Bu analiz sonucunda, ortaöğretim öğrencilerinin “Tarih” kavramına ilişkin sahip oldukları algıları belirlemede ve açıklamada metaforların etkin bir araç olduğu ortaya çıkmıştır.

  4. Quantum chemical investigation on the role of Li adsorbed on anatase (101) surface nano-materials on the storage of molecular hydrogen.

    Science.gov (United States)

    Srinivasadesikan, V; Raghunath, P; Lin, M C

    2015-06-01

    Lithiation of TiO2 has been shown to enhance the storage of hydrogen up to 5.6 wt% (Hu et al. J Am Chem Soc 128:11740-11741, 2006). The mechanism for the process is still unknown. In this work we have carried out a study on the adsorption and diffusion of Li atoms on the surface and migration into subsurface layers of anatase (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT+U). The model consists of 24 [TiO2] units with 11.097 × 7.655 Å(2) surface area. Adsorption energies have been calculated for different Li atoms (1-14) on the surface. A maximum of 13 Li atoms can be accommodated on the surface at two bridged O, Ti-O, and Ti atom adsorption sites, with 83 kcal mol(-1) adsorption energy for a single Li atom adsorbed between two bridged O atoms from where it can migrate into the subsurface layer with 27 kcal mol(-1) energy barrier. The predicted adsorption energies for H2 on the lithiated TiO2 (101) surface with 1-10 Li atoms revealed that the highest adsorption energies occurred on 1-Li, 5-Li, and 9-Li surfaces with 3.5, 4.4, and 7.6 kcal mol(-1), respectively. The values decrease rapidly with additional H2 co-adsorbed on the lithiated surfaces; the maximum H2 adsorption on the 9Li-TiO2(a) surface was estimated to be only 0.32 wt% under 100 atm H2 pressure at 77 K. The result of Bader charge analysis indicated that the reduction of Ti occurred depending on the Li atoms covered on the TiO2 surface.

  5. Electronic Properties of LiFePO4 and Li doped LiFePO4

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, G.V.; Allen, J.L.; Ross, P.N.; Guo, J.-H.; Jow, T.R.

    2005-06-28

    The potential use of different iron phosphates as cathodematerials in lithium-ion batteries has recently been investigated.1 Oneof the promising candidates is LiFePO4. This compound has severaladvantages in comparison to the state-of-the-art cathode material incommercial rechargeable lithium batteries. Firstly, it has a hightheoretical capacity (170 mAh/g). Secondly, it occurs as mineraltriphylite in nature and is inexpensive, thermally stable, non-toxic andnon-hygroscopic. However, its low electronic conductivity (~;10-9 S/cm)results in low power capability. There has been intense worldwideresearch activity to find methods to increase the electronic conductivityof LiFePO4, including supervalent ion doping,2 introducingnon-carbonaceous network conduction3 and carbon coating, and theoptimization of the carbon coating on LiFePO4 particle surfaces.4Recently, the Li doped LiFePO4 (Li1+xFe1-xPO4) synthesized at ARL hasyield electronic conductivity increase up to 106.5 We studied electronicstructure of LiFePO4 and Li doped LiFePO4 by synchrotron based soft X-rayemission (XES) and X-ray absorption (XAS) spectroscopies. XAS probes theunoccupied partial density of states, while XES the occupied partialdensity of states. By combining XAS and XES measurements, we obtainedinformation on band gap and orbital character of both LiFePO4 and Lidoped LiFePO4. The occupied and unoccupied oxygen partial density ofstates (DOS) of LiFePO4 and 5 percent Li doped LiFePO4 are presented inFig. 1. Our experimental results clearly indicate that LiFePO4 has wideband gap (~; 4 eV). This value is much larger than what is predicted byDFT calculation. For 5 percent Li doped LiFePO4, a new doping state wascreated closer to the Fermi level, imparting p-type conductivity,consistent with thermopower measurement. Such observation substantiatesthe suggestion that high electronic conductivity in Li1.05Fe0.95 PO4 isdue to available number of charge carriers in the material. Furthermore,Hall effect

  6. Calculation of the vibrational properties of LiMgAs.

    Science.gov (United States)

    Mellouki, A; Bennecer, B; Kalarasse, F

    2009-07-29

    We have studied the vibrational properties of the filled tetrahedral semiconductor LiMgAs and its binary analog AlAs by using the plane-wave pseudopotential method within density functional theory. The calculated lattice constants for the studied compounds are in good agreement with previous theoretical and experimental results. The phonon dispersion curves and phonon density of states are calculated by using density functional perturbation theory. The sound speeds in different directions are quantitatively similar in LiMgAs and AlAs. The assignment of the zone center modes to the relative motion of the atoms shows that the lower optic modes are due to the Mg-As pair vibrations, while for the upper ones the Li-Mg pair dominates, which is attributed to the smaller Mg atom mass. The longitudinal interatomic force constant of Mg-As is about 66% higher than that of Li-As, showing the relatively high covalency of the former bond.

  7. Calculation of the vibrational properties of LiMgAs

    Energy Technology Data Exchange (ETDEWEB)

    Mellouki, A; Bennecer, B; Kalarasse, F, E-mail: b_bennacer@hotmail.co [Physics Laboratory at Guelma, Faculty of Science and Engineering, University of Guelma, PO Box 401, Guelma 24000 (Algeria)

    2009-07-29

    We have studied the vibrational properties of the filled tetrahedral semiconductor LiMgAs and its binary analog AlAs by using the plane-wave pseudopotential method within density functional theory. The calculated lattice constants for the studied compounds are in good agreement with previous theoretical and experimental results. The phonon dispersion curves and phonon density of states are calculated by using density functional perturbation theory. The sound speeds in different directions are quantitatively similar in LiMgAs and AlAs. The assignment of the zone center modes to the relative motion of the atoms shows that the lower optic modes are due to the Mg-As pair vibrations, while for the upper ones the Li-Mg pair dominates, which is attributed to the smaller Mg atom mass. The longitudinal interatomic force constant of Mg-As is about 66% higher than that of Li-As, showing the relatively high covalency of the former bond.

  8. Supertetrahedral networks and lithium-ion mobility in Li{sub 2}SiP{sub 2} and LiSi{sub 2}P{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Haffner, Arthur; Braeuniger, Thomas; Johrendt, Dirk [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2016-10-17

    The new phosphidosilicates Li{sub 2}SiP{sub 2} and LiSi{sub 2}P{sub 3} were synthesized by heating the elements at 1123 K and characterized by single-crystal X-ray diffraction. Li{sub 2}SiP{sub 2} (I4{sub 1}/acd, Z=32, a=12.111(1) Aa, c=18.658(2) Aa) contains two interpenetrating diamond-like tetrahedral networks consisting of corner-sharing T2 supertetrahedra [(SiP{sub 4/2}){sub 4}]. Sphalerite-like interpenetrating networks of uniquely bridged T4 and T5 supertetrahedra make up the complex structure of LiSi{sub 2}P{sub 3} (I4{sub 1}/a, Z=100, a=18.4757(3) Aa, c=35.0982(6) Aa). The lithium ions are located in the open spaces between the supertetrahedra and coordinated by four to six phosphorus atoms. Temperature-dependent {sup 7}Li solid-state MAS NMR spectroscopic data indicate high mobility of the Li{sup +} ions with low activation energies of 0.10 eV in Li{sub 2}SiP{sub 2} and 0.07 eV in LiSi{sub 2}P{sub 3}. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Spectroscopy of lithium atoms sublimated from isolation matrix of solid Ne.

    Science.gov (United States)

    Sacramento, R L; Scudeller, L A; Lambo, R; Crivelli, P; Cesar, C L

    2011-10-07

    We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401(R) (2007)]. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid. © 2011 American Institute of Physics

  10. High Curie temperature and enhanced magnetoelectric properties of the laminated Li0.058(Na0.535K0.48)0.942NbO3/Co0.6Zn0.4Fe1.7Mn0.3O4composites.

    Science.gov (United States)

    Yang, Haibo; Zhang, Jintao; Lin, Ying; Wang, Tong

    2017-03-24

    Laminated magnetoelectric composites of Li 0.058 (Na 0.535 K 0.48 ) 0.942 NbO 3 (LKNN)/Co 0.6 Zn 0.4 Fe 1.7 Mn 0.3 O 4 (CZFM) prepared by the conventional solid-state sintering method were investigated for their dielectric, magnetic, and magnetoelectric properties. The microstructure of the laminated composites indicates that the LKNN phase and CZFM phase can coexist in the composites. Compared with the particulate magnetoelectric composites, the laminated composites have better piezoelectric and magnetoelectric properties due to their higher resistances and lower leakage currents. The magnetoelectric behaviors lie on the relative mass ratio of LKNN phase and CZFM phase. The laminated composites possess a high Curie temperature (T C ) of 463 °C, and the largest ME coefficient of 285 mV/cm Oe, which is the highest value for the lead-free bulk ceramic magnetoelectric composites so far.

  11. A sífilis e o aggiornamento do organicismo na psiquiatria brasileira: notas a uma lição do doutor Ulysses Vianna Syphilis and the aggiornamento of organicism in Brazilian psychiatry: notes on a lesson by Dr. Ulysses Vianna

    Directory of Open Access Journals (Sweden)

    Sérgio Carrara

    2010-12-01

    Full Text Available Toma como ponto de partida a lição do psiquiatra brasileiro Ulisses Vianna, publicada em 1919 nos Arquivos Brasileiros de Neuriatria e Psiquiatria, para analisar o modo como se desenvolviam, naquele momento, as discussões médicas em torno das 'sífilis do sistema nervoso' e 'sífilis cerebral'. Procura inscrever o trabalho de Vianna no horizonte intelectual mais amplo do qual fazia parte e explorar o impacto que essa categoria nosológica teve no pensamento psiquiátrico, especialmente na consolidação de concepções organicistas ou somatológicas a respeito da doença mental, ajustando-as aos novos horizontes inaugurados pela bacteriologia.Taking as its point of departure the lesson published by Brazilian psychiatrist Ulisses Vianna in the Arquivos Brasileiros de Neuriatria e Psiquiatria in 1919, the article analyzes the development of that day's medical discussions about 'syphilis of the nervous system' and 'cerebral syphilis,' situating Vianna's work within its broader intellectual scenario. The article also examines the impact of this disease category on psychiatric thought, especially how it strengthened the organicist or somatological concepts of mental illness and adjusted them to the new scenario created by bacteriology.

  12. Scanning MWCNT-Nanopipette and Probe Microscopy: Li Patterning and Transport Studies.

    Science.gov (United States)

    Larson, Jonathan M; Bharath, Satyaveda C; Cullen, William G; Reutt-Robey, Janice E

    2015-10-07

    A carbon-nanotube-enabling scanning probe technique/nanotechnology for manipulating and measuring lithium at the nano/mesoscale is introduced. Scanning Li-nanopipette and probe microscopy (SLi-NPM) is based on a conductive atomic force microscope (AFM) cantilever with an open-ended multi-walled carbon nanotube (MWCNT) affixed to its apex. SLi-NPM operation is demonstrated with a model system consisting of a Li thin film on a Si(111) substrate. By control of bias, separation distance, and contact time, attograms of Li can be controllably pipetted to or from the MWCNT tip. Patterned surface Li features are then directly probed via noncontact AFM measurements with the MWCNT tip. The subsequent decay of Li features is simulated with a mesoscale continuum model, developed here. The Li surface diffusion coefficient for a four (two) Li layer thick film is measured as D=8(±1.2)×10(-15) cm(2) s(-1) (D=1.75(±0.15)×10(-15) cm(2) s(-1)). Dual-Li pipetting/measuring with SLi-NPM enables a broad range of time-dependent Li and nanoelectrode characterization studies of fundamental importance to energy-storage research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  14. Uudised : Üliõpilaste kammermuusika festival. Lili Kaelase stipendium. Uudisteos ja lautokõlad raekojas / Annika Koppel

    Index Scriptorium Estoniae

    Koppel, Annika

    2000-01-01

    7.-10. dets. EMAs toimuvast rahvusvahelisest üliõpilaste kammermuusika festivalist. Täna antakse EMAs üle L. Kaelase Muusikafondi stipendiumid EMA üliõpilastele. Kontserdist sarjas "Ajastu muusikas ja sõnas" 10. dets. Tallinna Raekojas

  15. Two-neutron decay of excited states of 11Li

    Science.gov (United States)

    Smith, Jenna; MoNA Collaboration

    2013-10-01

    One prominent example of a Borromean nucleus is the two-neutron halo nucleus, 11Li. All excited states of this nucleus are unbound to two-neutron decay. Many theories propose that the two valence neutrons exhibit dineutron behavior in the ground state, but it is unclear what effect such a structure would have on the decay of the excited states. We have recently completed an experiment designed to study the decay of one of these excited states. Unbound 11Li was populated via a two-proton knockout from 13B. The two emitted neutrons were detected with the Modular Neutron Array (MoNA) and the Large-area multi-Institutional Scintillator Array (LISA) in coincidence with the daughter fragment, 9Li. Preliminary results will be discussed.

  16. Structural and electronic phase transitions of MoTe2 induced by Li ionic gating

    Science.gov (United States)

    Hwang, Jeongwoon; Zhang, Chenxi; Cho, Kyeongjae

    2017-12-01

    Monolayer MoTe2 has semiconducting and semimetallic phases with small energy difference, and the relative stability is readily reversed by gating. By first-principles calculations, we investigate the changes in atomic structure, electronic structure, and relative stability of two phases induced by Li ionic gating. To model Li ionic gating, we employ two approaches; one is direct adsorption of Li on MoTe2 and the other is introducing non-contacting Li plate over MoTe2. We show phonon instability in H-phase of MoTe2 with increasing the amount of charge transfer from Li, which implies a large electron-phonon coupling in the system resulting in a charge density wave state. Structural distortion is also observed in highly doped T d phase. The transition energy barrier from distorted H phase to distorted T d phase is reduced considerably compared to that of pristine MoTe2.

  17. Structure and Electrochemical Properties of Boron-Doped LiCoO 2

    Science.gov (United States)

    Alcántara, R.; Lavela, P.; Tirado, J. L.; Stoyanova, R.; Zhecheva, E.

    1997-12-01

    XRD, 6Li and 11B MAS NMR, IR, and EPR of low-spin Ni 3+probes were used for the structural characterization of boron-doped LiCoO 2. Up to 5 atom % boron additives were shown to dissolve in trigonal LiCoO 2. The structure of the CoO 2sandwiches remained unaffected by this treatment. The boron environment was assessed by spectroscopic analysis, which showed a distorted tetrahedral coordination. The boron-doped LiCoO 2samples were used as active electrode materials in lithium cells. Step potential electrochemical spectroscopy and galvanostatic cycling revealed that boron dopants improve the reversibility of the lithium deintercalation-intercalation process and favor lattice adaptation to lithium order-disorder in the depleted LiO 2layers.

  18. An oxysulfate Fe₂O(SO₄)₂ electrode for sustainable Li-based batteries.

    Science.gov (United States)

    Sun, Meiling; Rousse, Gwenaëlle; Abakumov, Artem M; Van Tendeloo, Gustaaf; Sougrati, Moulay-Tahar; Courty, Matthieu; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2014-09-10

    High-performing Fe-based electrodes for Li-based batteries are eagerly pursued because of the abundance and environmental benignity of iron, with especially great interest in polyanionic compounds because of their flexibility in tuning the Fe(3+)/Fe(2+) redox potential. We report herein the synthesis and structure of a new Fe-based oxysulfate phase, Fe2O(SO4)2, made at low temperature from abundant elements, which electrochemically reacts with nearly 1.6 Li atoms at an average voltage of 3.0 V versus Li(+)/Li, leading to a sustained reversible capacity of ≈125 mAh/g. The Li insertion-deinsertion process, the first ever reported in any oxysulfate, entails complex phase transformations associated with the position of iron within the FeO6 octahedra. This finding opens a new path worth exploring in the quest for new positive electrode materials.

  19. Effect of Alkali Metal Atoms Doping on Structural and Nonlinear Optical Properties of the Gold-Germanium Bimetallic Clusters

    Directory of Open Access Journals (Sweden)

    Xiaojun Li

    2017-07-01

    Full Text Available A new series of alkali-based complexes, AM@GenAu (AM = Li, Na, and K, have been theoretically designed and investigated by means of the density functional theory calculations. The geometric structures and electronic properties of the species are systematically analyzed. The adsorption of alkali metals maintains the structural framework of the gold-germanium bimetallic clusters, and the alkali metals prefer energetically to be attached on clusters’ surfaces or edges. The high chemical stability of Li@Ge12Au is revealed by the spherical aromaticity, the hybridization between the Ge atoms and Au-4d states, and delocalized multi-center bonds, as well as large binding energies. The static first hyperpolarizability (βtot is related to the cluster size and geometric structure, and the AM@GenAu (AM = Na and K clusters exhibit the much larger βtot values up to 13050 a.u., which are considerable to establish their strong nonlinear optical (NLO behaviors. We hope that this study will promote further application of alkali metals-adsorbed germanium-based semiconductor materials, serving for the design of remarkable and tunable NLO materials.

  20. Li-Decorated β12-Borophene as Potential Candidates for Hydrogen Storage: A First-Principle Study

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2017-12-01

    Full Text Available The hydrogen storage properties of pristine β12-borophene and Li-decorated β12-borophene are systemically investigated by means of first-principles calculations based on density functional theory. The adsorption sites, adsorption energies, electronic structures, and hydrogen storage performance of pristine β12-borophene/H2 and Li-β12-borophene/H2 systems are discussed in detail. The results show that H2 is dissociated into Two H atoms that are then chemisorbed on β12-borophene via strong covalent bonds. Then, we use Li atom to improve the hydrogen storage performance and modify the hydrogen storage capacity of β12-borophene. Our numerical calculation shows that Li-β12-borophene system can adsorb up to 7 H2 molecules; while 2Li-β12-borophene system can adsorb up to 14 H2 molecules and the hydrogen storage capacity up to 10.85 wt %.

  1. Li-Decorated β12-Borophene as Potential Candidates for Hydrogen Storage: A First-Principle Study.

    Science.gov (United States)

    Liu, Tingting; Chen, Yuhong; Wang, Haifeng; Zhang, Meiling; Yuan, Lihua; Zhang, Cairong

    2017-12-07

    The hydrogen storage properties of pristine β12-borophene and Li-decorated β12-borophene are systemically investigated by means of first-principles calculations based on density functional theory. The adsorption sites, adsorption energies, electronic structures, and hydrogen storage performance of pristine β12-borophene/H₂ and Li-β12-borophene/H₂ systems are discussed in detail. The results show that H₂ is dissociated into Two H atoms that are then chemisorbed on β12-borophene via strong covalent bonds. Then, we use Li atom to improve the hydrogen storage performance and modify the hydrogen storage capacity of β12-borophene. Our numerical calculation shows that Li-β12-borophene system can adsorb up to 7 H₂ molecules; while 2Li-β12-borophene system can adsorb up to 14 H₂ molecules and the hydrogen storage capacity up to 10.85 wt %.

  2. Öğretmen Adaylarının İş Birlikli Öğrenme Uygulamalarına İlişkin Görüşleri Prospective Teachers’ Opinions On Cooperative Learning Practices

    Directory of Open Access Journals (Sweden)

    2013-09-01

    , the exams don’t cause stress on thestudents due to the cooperative method used as a learning tool. İş birlikli öğrenme yöntemi, öğretim etkinliklerinde uygulama kolaylığı sağlaması, her yaş ve gruba uygulanabilir ve ekonomik olması yönüyle dikkat çeken bir yöntemdir. Öğrenci merkezli, yaparak yaşayarak öğrenmeyi ön plana çıkaran bu yöntem gelişmiş ülkelerde 1960’lı yıllardan beri kullanılmaktadır. Son yıllarda ülkemizde de kullanılmaya başlanan bu yöntem, sağladığı avantajlar ve verdiği olumlu sonuçlarla dikkat çekmektedir.Bu çalışmanın amacı sınıf öğretmeni adaylarının iş birlikli öğrenme uygulamalarına ilişkin bakış açılarını belirlemektir. Nitel araştırma metodolijisinin kullanıldığı bu araştırmanın çalışma grubunu 2010-2011 Eğitim-Öğretim yılı güz döneminde Artvin Çoruh Üniversitesi Eğitim Fakültesi Sınıf Öğretmenliği Bölümü 1. sınıf ikinci öğretim programında eğitim gören 25 sınıf öğretmeni adayı oluşturmaktadır. Veri toplama aracı olarak standartlaştırılmış görüşme (mülakat formu kullanılmıştır. Uzman görüşleri doğrultusunda 7 açık uçlu sorudan oluşturulan form 14 haftalık iş birlikli öğrenme uygulamalarından sonra öğretmen adaylarına uygulanmıştır. Mülakat formuyla elde edilen verilerin değerlendirilmesinde tematik içerik analizi kullanılmıştır.Analiz sonuçları, öğretmen adaylarının çok büyük çoğunluğunun iş birlikli öğrenme uygulamalarına yönelik olumlu bakış açısına sahip olduğunu göstermiştir. Buna göre öğretmen adayları; iş birlikli öğrenmenin kendilerini sosyal yaşama hazırladığını; çalışmada aktif roller üstlenerek sorumluluklarını yerine getirdiklerini, iş birlikli öğrenmeyi zevkli ve öğretici bulduklarını, bu yöntemin diğer derslerde de kullanılması gerektiğini, derslerdeki motivasyonlarını yüksek tuttuğunu; geleneksel yönteme nazaran i

  3. Ab initio molecular dynamics study of lithium diffusion in tetragonal Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Andriyevsky, B., E-mail: bohdan.andriyevskyy@tu.koszalin.pl [Faculty of Electronics and Computer Sciences, Koszalin University of Technology, 2 Śniadeckich Str., PL-75-453, Koszalin (Poland); Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89069, Ulm (Germany); Doll, K. [Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89069, Ulm (Germany); Institute of Theoretical Chemistry, Pfaffenwaldring 55, D-70569, Stuttgart (Germany); Jacob, T. [Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89069, Ulm (Germany); Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Albert-Einstein-Allee 11, D-89081, Ulm (Germany)

    2017-01-01

    Using ab initio density functional theory the thermally-stimulated migration of lithium ions in the garnet-type material Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} is investigated. The methods of ab initio molecular dynamics have been applied to calculate the lithium ion self-diffusion coefficient and the diffusion barriers as function of lithium ion concentration. The concentration of lithium in the initial Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} crystal unit cell is varied from 53 to 59 atoms, where 56 lithium atoms represent the stoichiometric concentration. Almost monotonous dependencies of the main characteristics on the number of lithium atoms N{sup (Li)} have been found, except for a non-monotonous peculiarity of the stoichiometric compound (N{sup (Li)} = 56). Finally, the influence of the unit cell volume change on lithium ion diffusion parameters as well as lithium ion hopping rates has been studied. - Highlights: • Partial lithium atoms subtraction from LLZO increases diffusion coefficient D{sup (Li)}. • Partial subtraction of lithium atoms from LLZO decreases activation energy E{sub a}{sup (Li)}. • Activation energy E{sub a}{sup (Li)} is the smallest for tetrahedral oxygen surrounding. • Compression of LLZO leads to a decrease of lithium ion diffusion coefficient D{sup (Li)}.

  4. Lição de Anatomia

    Directory of Open Access Journals (Sweden)

    João Luiz Leocadio da Nova

    2000-02-01

    Full Text Available Na formação médica, diagnosticamos a falência do modelo pedagógico/assistencial que se revela, dentre outros sintomas, na ideologia de frieza e distanciamento que perpassa a prática médica. Este modelo de relação médico-paciente reproduziria a relação estudante-cadáver. Visando modificar tal ideologia, desenvolvemos, na UFRJ, em atividade interdisciplinar com a Anatomia, grupos de reflexão com os alunos do primeiro período da Faculdade de Medicina. A partir dos resultados, de dois anos dessa pesquisa, denominada "O cadáver e a formação médica", realizamos, com o apoio da Fundação José Bonifácio, um vídeo didático, "Lição de Anatomia", por meio de equipe multidisciplinar, incluindo professores e alunos do Instituto de Artes e Comunicação Social da UFF, da Faculdade de Medicina da UFRJ e do Núcleo de Tecnologia Educacional para a Saúde da UFRJ (NUTES. Pretendemos que a utilização desse recurso audiovisual constitua mais uma ferramenta para a melhoria do ensino e da prática médica, introduzindo a discussão de questões éticas. A pesquisa e a realização do vídeo nos mostraram a possibilidade de se repensar e inovar o ensino universitário, o que foi, para todos nós, uma lição de convívio democrático.

  5. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  6. Fast Li ionic conduction in solid solutions of the system Li4GeO4-Li2ZnGeO4-Li3PO4

    NARCIS (Netherlands)

    Kamphorst, J.G.; Hellstrom, E.E.

    A wide range of solid solution formation in the Li4GeO4-Li2ZnGeO4-Li3PO4 system was observed to occur with a structure based on γII-Li3PO4. This includes the fast Li conductor lisicon (Li14Zn(GeO4)4). The ionic conductivities of solid solutions in this systems are reported. Much of the solid

  7. Modified structural characteristics and enhanced electrochemical properties of oxygen-deficient Li2MnO3-δ obtained from pristine Li2MnO3

    Science.gov (United States)

    Tan, Xiao; Liu, Rui; Xie, Congxin; Shen, Qiang

    2018-01-01

    Lithium-rich manganese(IV) oxide Li2MnO3 has hardly any activity as the cathode active substance of lithium-ion batteries (LIBs) but its reversible capacity can be greatly improved by introducing oxygen deficiencies. After the solid-state heat treatment of nanocrystalline Li2MnO3 by sodium borohydride (NaBH4), the resulting Li2MnO3-δ crystallites comparatively acquire distinguishable appearances in color and shape and slight differences in surface composition and lattice structure. As a LIB cathode within the potential range of 2.5-4.7 V, at 20 mA g-1 pristine Li2MnO3 gives the specific discharge capacities of 3.3, 5.0 and 7.4 mAh·g-1 in the 1st, 10th and 100th cycles, while the derivative Li2MnO3-δ delivers the relatively high values of 64.8, 103.8 and 140.2 mAh·g-1 in the 1st, 10th and 120th cycles, respectively. Aside from the similar phenomenon of gradual electrochemical activation, substituting Li2MnO3-δ for Li2MnO3 means the great enhancements of charge-transfer ability and electrochemical performances. Especially, the cationic-anionic redox mechanisms of Li2MnO3 and Li2MnO3-δ are similar to each other, suggesting a possible solution to prepare high-performance xLi2MnO3-δ·(1-x)LiMO2 solid solutions for application purposes.

  8. Migraine in the triptan era: progresses achieved, lessons learned and future developments Migrânea na era dos triptanos: progressos alcançados, lições aprendidas e desenvolvimentos futuros

    Directory of Open Access Journals (Sweden)

    Marcelo E. Bigal

    2009-06-01

    Full Text Available Triptans, serotonin 5-HT1B/1D receptor agonists, more than revolutionizing the treatment of migraine, stimulated also ground breaking research that provided insights into the anatomy, physiology, and molecular pharmacology of migraine. This knowledge, in turn, is stimulating research on new mechanisms of action for the treatment of migraine. Accordingly, it is opportune to critically review the main advances in migraine science that happened in the triptan era. Herein we first review and conceptualize some of the progresses achieved in migraine science during the triptan era. We then review the class of the triptans - mechanism of action and clinical evidence. We close by briefly discussing the class of CGRP receptor antagonists, which is currently being developed for the acute treatment of migraine.Os triptanos, agonistas serotoninérgicos 5-HT1B/1D, revolucionaram o tratamento da migrânea promovendo pesquisas que evidenciaram aspectos da anatomia, fisiologia e farmacologia molecular deste tipo prevalente de cefaléia primária. Esse conhecimento, por sua vez vem estimulando ainda mais a descoberta de novos mecanismos de ação para drogas anti-migranosas. Assim, é oportuno rever de forma crítica, os maiores avanços na ciência das cefaléias ocorridos durante a era dos triptanos. Inicialmente reveremos e conceituaremos alguns dos progressos obtidos nesta fase seguido de uma revisão profunda dos mecanismos de ação e evidências clínicas para o uso desta classe de fármacos. Finalmente, discutiremos a nova classe dos antagonistas dos receptores do peptideo geneticamente relacionado à calcitonina (CGRP atualmente em desenvolvimento.

  9. Enhanced Li-Ion Battery

    Directory of Open Access Journals (Sweden)

    Natasha Ross

    2015-01-01

    Full Text Available Au with Pd nanoparticles were synthesized and coated onto the spinel LiMn2O4 via a coprecipitation calcination method with the objective to improve the microstructure, conductivity, and electrochemical activities of pristine LiMn2O4. The novel LiPdAuxMn2-xO4 composite cathode had high phase purity, well crystallized particles, and more regular morphological structures with narrow size distributions. At enlarged cycling potential ranges the LiPdAuxMn2-xO4 sample delivered 90 mAh g−1 discharge capacity compared to LiMn2O4 (45 mAh g−1. It was concluded that even a small amount of the Pd and Au enhanced both the lithium diffusivity and electrochemical conductivity of the host sample due to the beneficial properties of their synergy.

  10. DIFFUSE ATOMIC AND MOLECULAR GAS IN THE INTERSTELLAR MEDIUM OF M82 TOWARD SN 2014J

    Energy Technology Data Exchange (ETDEWEB)

    Ritchey, Adam M. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Welty, Daniel E.; York, Donald G. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Dahlstrom, Julie A., E-mail: aritchey@astro.washington.edu [Department of Physics and Astronomy, Carthage College, 2001 Alford Park Dr., Kenosha, WI 53140 (United States)

    2015-02-01

    We present a comprehensive analysis of interstellar absorption lines seen in moderately high resolution, high signal-to-noise ratio optical spectra of SN 2014J in M82. Our observations were acquired over the course of six nights, covering the period from ∼6 days before to ∼30 days after the supernova reached its maximum B-band brightness. We examine complex absorption from Na I, Ca II, K I, Ca I, CH{sup +}, CH, and CN, arising primarily from diffuse gas in the interstellar medium (ISM) of M82. We detect Li I absorption over a range in velocity consistent with that exhibited by the strongest Na I and K I components associated with M82; this is the first detection of interstellar Li in a galaxy outside of the Local Group. There are no significant temporal variations in the absorption-line profiles over the 37 days sampled by our observations. The relative abundances of the various interstellar species detected reveal that the ISM of M82 probed by SN 2014J consists of a mixture of diffuse atomic and molecular clouds characterized by a wide range of physical/environmental conditions. Decreasing N(Na I)/N(Ca II) ratios and increasing N(Ca I)/N(K I) ratios with increasing velocity are indicative of reduced depletion in the higher-velocity material. Significant component-to-component scatter in the N(Na I)/N(Ca II) and N(Ca I)/N(Ca II) ratios may be due to variations in the local ionization conditions. An apparent anti-correlation between the N(CH{sup +})/N(CH) and N(Ca I)/N(Ca II) ratios can be understood in terms of an opposite dependence on gas density and radiation field strength, while the overall high CH{sup +} abundance may be indicative of enhanced turbulence in the ISM of M82. The Li abundance also seems to be enhanced in M82, which supports the conclusions of recent gamma-ray emission studies that the cosmic-ray acceleration processes are greatly enhanced in this starburst galaxy.

  11. Boosting the adsorption performance of BN nanosheet as an anode of Na-ion batteries: DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinian, A. [Department of Engineering Science, College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran (Iran, Islamic Republic of); Soleimani-amiri, S. [Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj (Iran, Islamic Republic of); Arshadi, S., E-mail: chemistry_arshadi@pnu.ac.ir [Department of Chemistry, Payame Noor University, Tehran (Iran, Islamic Republic of); Vessally, E. [Department of Chemistry, Payame Noor University, Tehran (Iran, Islamic Republic of); Edjlali, L. [Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz (Iran, Islamic Republic of)

    2017-06-28

    Despite the high advance in the Li-ion battery technology, there exist great concerns about its lifetime, safety, cost, and low-temperature performance. It is expected that the Li-ion batteries may be replaced by Na-ion batteries (NIB) because of the low cost, nontoxicity, and wide availability of sodium. Here, we investigated the potential application of BN nanosheets in anode of NIBs by means of density functional theory calculation and introduced a strategy to increase their performance. It was shown that the Na and Na{sup +} are mainly adsorbed on the center of a hexagonal ring of BN sheet with adsorption energies of −0.08 and −33.7 kcal/mol, respectively. Replacing three N atoms of the hexagonal ring with larger P atoms significantly increases the performance of the sheet as an anode of a NIB but the replacement of B by Al decreases the performance. The initial cell voltage of LIB is increased by about 0.67 V after the P-doping which causes a high storage performance with long discharge time. The results are discussed based on the energetic, structural, orbital, charge transfer and electronic properties and provide guidelines to build better high-capacity anode materials for NIBs. - Highlights: • Potential use of BN sheet as anode in Na-ion batteries (NIB) is studied by DFT. • The replacement of B by Al decreases the performance. • The cell voltage of LIB is increased by about 0.67 V after by P-doping. • The order of performance is P-BN > BN >> Al-BN.

  12. Lithium intercalation into layered LiMnO2

    DEFF Research Database (Denmark)

    Vitins, G.; West, Keld

    1997-01-01

    Recently Armstrong and Bruce(1) reported a layered modification of lithium manganese oxide, LiMnO2, isostructural with LiCoO2. LiMnO2 obtained by ion exchange from alpha-NaMnO2 synthesized in air is characterized by x-ray diffraction and by electrochemical insertion and extraction of lithium...... in a series of voltage ranges between 1.5 and 4.5 V relative to a lithium electrode. During cycling voltage plateaus at 3.0 and 4.0 V vs. Li develop, indicating that the material is converted from its original layered structure to a spinel structure. This finding is confirmed by x-ray diffraction. Contrary...... to expectations based on thermodynamics, insertion of larger amounts of lithium leads to a more complete conversion. We suggest that a relatively high mobility of manganese leaves Li and Mn randomly distributed in the close-packed oxygen lattice after a deep discharge. This isotropic Mn distribution can...

  13. Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties.

    Science.gov (United States)

    Zhang, Liming; Wang, Zhixin; Lu, Zhuoxuan; Xia, Kai; Deng, Yan; Li, Song; Zhang, Chuanxiang; Huang, Yuanfu; He, Nongyue

    2014-06-01

    LiYbF4:Yb, Er nanoparticles have been successfully synthesized by thermal decomposition of multiple trifluoroacetic acid salts. The SEM and TEM results show the size of the LiYF4:Yb, Er nanoparticles is about 100 nm in diagonal line, and the morphology of the LiYF4:Yb, Er nanoparticles is highly uniform with octahedral structure. Under the excitation of 980 nm, the LiYF4:Yb, Er nanoparticles have higher upconversion luminescence efficiency compared with that of NaYF4:Yb, Er. The results indicate that the as-prepared LiYbF4:Yb, Er nanoparticles may have potential applications in bio-probes and displays.

  14. A High Capacity Li-Ion Cathode: The Fe(III/VI Super-Iron Cathode

    Directory of Open Access Journals (Sweden)

    Stuart Licht

    2010-05-01

    Full Text Available A super-iron Li-ion cathode with a 3-fold higher reversible capacity (a storage capacity of 485 mAh/g is presented. One of the principle constraints to vehicle electrification is that the Li-ion cathode battery chemistry is massive, and expensive. Demonstrated is a 3 electron storage lithium cathodic chemistry, and a reversible Li super-iron battery, which has a significantly higher capacity than contemporary Li-ion batteries. The super-iron Li-ion cathode consists of the hexavalent iron (Fe(VI salt, Na2FeO4, and is formed from inexpensive and clean materials. The charge storage mechanism is fundamentally different from those of traditional lithium ion intercalation cathodes. Instead, charge storage is based on multi-electron faradaic reduction, which considerably enhances the intrinsic charge storage capacity.

  15. Spooky Phenomena in Two-Photon Coherent Atomic Absorption

    Science.gov (United States)

    Li, Ming-Chiang

    2006-03-01

    Physical processes on two-photon coherent atomic absorption of multiple laser beams were discussed more than twenty five years ago. These processes can be divided into two distinct groups. In the first group, laser beams are from a single source^1,2, and in the second group laser beams are from two different sources^3. Several experiments in the first group were carried out and have led to the 2005 Nobel Prize in physics. The second group is more interesting. Atoms are in random motion and two photons are from different sources. Classically, it is impossible for atoms to transit coherently in the absorption process, but quantum mechanically, such a transition is possible and that is one of the spooky phenomena in quantum mechanic. To assure the coherent transition, each photon as absorbed by the atom must have two possible paths of choices. If one photon has the choice and other one is not, then the atomic transitions cannot be coherent. The present talk will review various spooky phenomena associated with two-photon coherent atomic absorption, and will clarify some theoretical misunderstandings regarding these interesting transitions. Reference: *M. C. Li, Nuovo Cimento 39B (1977) 165. *M. C. Li, Phys. Rev. A 16 (1977) 2480. *M. C. Li, Phys. Rev. A 22 (1980) 1323.

  16. Interesting cationic (Li /Fe /Te ) variations in new rocksalt ordered ...

    Indian Academy of Sciences (India)

    oxides are derived from the rocksalt (NaCl) structure by the ordering of layers formed by the edge-shared .... ture has been noted with the formation of almost reg- ular TeO6 octahedra with Te–O bond lengths ranging ... bond valences for Li+, Fe3+ and Te6+ ions based on their oxidation states (table 2). The verification of ...

  17. Spectroscopy of lithium atoms and molecules on helium nanodroplets.

    Science.gov (United States)

    Lackner, Florian; Poms, Johannes; Krois, Günter; Pototschnig, Johann V; Ernst, Wolfgang E

    2013-11-21

    We report on the spectroscopic investigation of lithium atoms and lithium dimers in their triplet manifold on the surface of helium nanodroplets (He(N)). We present the excitation spectrum of the 3p ← 2s and 3d ← 2s two-photon transitions for single Li atoms on He(N). The atoms are excited from the 2S(Σ) ground state into Δ, Π, and Σ pseudodiatomic molecular substates. Excitation spectra are recorded by resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) mass spectroscopy, which allows an investigation of the exciplex (Li*–He(m), m = 1–3) formation process in the Li–He(N) system. Electronic states are shifted and broadened with respect to free atom states, which is explained within the pseudodiatomic model. The assignment is assisted by theoretical calculations, which are based on the Orsay–Trento density functional where the interaction between the helium droplet and the lithium atom is introduced by a pairwise additive approach. When a droplet is doped with more than one alkali atom, the fragility of the alkali–He(N) systems leads preferably to the formation of high-spin molecules on the droplets. We use this property of helium nanodroplets for the preparation of Li dimers in their triplet ground state (13Σu(+)). The excitation spectrum of the 23Πg(ν′ = 0–11) ← 13Σu(+)(ν″ = 0) transition is presented. The interaction between the molecule and the droplet manifests in a broadening of the transitions with a characteristic asymmetric form. The broadening extends to the blue side of each vibronic level, which is caused by the simultaneous excitation of the molecule and vibrations of the droplet (phonons). The two isotopes of Li form 6Li2 and 7Li2 as well as isotope mixed 6Li7Li molecules on the droplet surface. By using REMPI-TOF mass spectroscopy, isotope-dependent effects could be studied.

  18. Molecular dynamics simulation of wetting behaviors of Li on W surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuegui [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Xiao, Shifang [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Deng, Huiqiu, E-mail: hqdeng@hnu.edu.cn [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Hu, Wangyu, E-mail: wyuhu@hnu.edu.cn [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2017-04-15

    A modified analytic embedded atom potential has been developed for the Li-W system. The potential has been fitted to physical quantities derived from density functional theory calculations. It is shown that the new potential is capable of reproducing the solubility of solid solution for Li-W systems. The wetting behaviors between solid tungsten and liquid Li are examined by using molecular dynamics simulations. The MD simulation results for the Li droplet wetting on the W surface illustrated that our MAEAM potential model has a good forecasting ability for the contact angle of liquid Li on W the cleaning surface above the wetting temperature. And the results of Li film dewetting from the W surfaces are consistent with relative experimental results. It is believed that the potential can be used to investigate the surfaces wettability of liquid Li on W substrate. We also simulated the lithium droplet on grooved surface. It is shown that the grooving W surfaces can obviously improve the wetting of liquid Li on W surfaces.

  19. From micro to macro: access to long-range Li+ diffusion parameters in solids via microscopic (6, 7) Li spin-alignment echo NMR spectroscopy.

    Science.gov (United States)

    Wilkening, Martin; Heitjans, Paul

    2012-01-16

    The development of highly conductive solids is a rapidly growing research area in materials science. In particular, the study of Li-ion conductors is driven by the ambitious effort to design powerful lithium-ion batteries. A deeper understanding of Li dynamics in solids requires the availability of a large set of complementary techniques to probe Li self-diffusion on different length and time-scales. We report on (7)Li as well as (6)Li spin-alignment echo (SAE) nuclear magnetic resonance (NMR) spectroscopy, which is capable of probing long-range diffusion parameters from a microscopic, that is, atomic-scale, point of view. So far, variable-temperature SAE NMR spectroscopy has been applied to a number of polycrystalline and glassy Li-ion conductors. The materials investigated serve as model systems to unravel the interesting features of the technique in determining reliable Li jump rates and hopping activation energies. In particular, the latter are compared with those probed by macroscopic techniques such as dc-conductivity measurements that are sensitive to long-range translational motions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  1. Cooper pair formation in trapped atomic Fermi gases

    NARCIS (Netherlands)

    Houbiers, M.; Stoof, H.T.C.

    1998-01-01

    We apply the closed time-path formalism to evaluate the dynamics of the BCS transition to the superfluid state in trapped atomic 6-Li. We find that the Fokker-Planck equation for the propability distribution of the order parameter is, sufficiently close to the critical temperature, identical to the

  2. Cooper-pair formation in trapped atomic Fermi gases

    NARCIS (Netherlands)

    Houbiers, M.; Stoof, H.T.C.

    1999-01-01

    We apply the Schwinger-Keldysh formalism to study the nonequilibrium dynamics of the BCS transition to the superfluid state in trapped atomic 6Li. We find that the Fokker-Planck equation for the probability distribution of the order parameter is, sufficiently close to the critical temperature,

  3. Heterotypic trans-interaction of LI- and E-cadherin and their localization in plasmalemmal microdomains.

    Science.gov (United States)

    Baumgartner, Werner; Wendeler, Markus W; Weth, Agnes; Koob, Rainer; Drenckhahn, Detlev; Gessner, Reinhard

    2008-04-18

    Cadherins are calcium-dependent adhesion molecules important for tissue morphogenesis and integrity. LI-cadherin and E-cadherin are the two prominent cadherins in intestinal epithelial cells. Whereas LI-cadherin belongs to the subfamily of 7D (seven-domain)-cadherins defined by their seven extracellular cadherin repeats and short intracellular domain, E-cadherin is the prototype of classical cadherins with five extracellular domains and a highly conserved cytoplasmic part that interacts with catenins and thereby modulates the organization of the cytoskeleton. Here, we report a specific heterotypic trans-interaction of LI- with E-cadherin, two cadherins of distinct subfamilies. Using atomic force microscopy and laser tweezer experiments, the trans-interaction of LI- and E-cadherin was characterized on the single-molecule level and on the cellular level, respectively. This heterotypic interaction showed similar binding strength (20-52 pN at 200-4000 nm/s) and lifetime (0.8 s) as the respective homotypic interactions of LI- and E-cadherin. VE-cadherin, another classical cadherin, did not bind to LI-cadherin. In enterocytes, LI-cadherin and E-cadherin are located in different membrane regions. LI-cadherin is distributed along the basolateral membrane, whereas the majority of E-cadherin is concentrated in adherens junctions. This difference in membrane distribution was also reflected in Chinese hamster ovary cells stably expressing either LI- or E-cadherin. We found that LI-cadherin is localized almost exclusively in cholesterol-rich fractions, whereas E-cadherin is excluded from these membrane fractions. Given their different membrane localization in enterocytes, the heterotypic trans-interaction of LI- and E-cadherin might play a role during development of the intestinal epithelium when the cells do not yet have elaborate membrane specializations.

  4. Electron-impact Ionization Of Li2 And Li+2

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, James P [Los Alamos National Laboratory

    2008-01-01

    Electron-impact ionization cross sections for Li{sub 2} and Li{sup +}{sub 2} are calculated using a configuration-average distorted-wave method. Bound orbitals for the molecule and its ions are calculated using a single configuration self-consistent field method based on a linear combination of Slater-type orbitals. The bound orbitals are transformed onto a two-dimensional lattice ({tau}, {theta}), which is variable in the radial coordinate and constant in the angular coordinate, from which Hartree with local exchange potentials are constructed. The single particle Schrodinger equation is then solved for continuum distorted-waves with S-matrix boundary conditions. Total ionization cross sections for Li{sub 2} at an equilibrium internuclear separation of R = 5.0 and for Li{sup +}{sub 2} at an equilibrium internuclear separation of R = 5.9 are presented.

  5. Theoretical study on nonlinear optical properties of the Li(+)[calix[4]pyrrole]Li(-)dimer, trimer and its polymer with diffuse excess electrons.

    Science.gov (United States)

    Yu, Guang Tao; Chen, Wei; Gu, Feng Long; Aoki, Yuriko

    2010-03-01

    The static (hyper)polarizabilities of the dimer and trimer with diffuse excess electrons, [Li(+)[calix[4]pyrrole]Li(-)](n), are firstly investigated by the DFT(B3LYP) method in detail. For the dimer and trimer, a Li atom inside each calix[4]pyrrole unit is ionized to form a diffuse excess electron. The results show that the dimer and trimer containing two and three excess electrons, respectively, have very large first hyperpolarizablities as 2.3 x 10(4) and 4.0 x 10(4) au, which are 30 and 40 times larger than that of the corresponding [calix[4]pyrrole](n) (n = 2, 3) without Li atom. Also, beta values of dimer and trimer are twice and four times as large as that of monomer containing one excess electron. Obviously, not only excess electron but also the number of excess electron plays an important role in increasing the first hyperpolarizability. Moreover, the (hyper)polarizabilities of the [Li(+)[calix[4]pyrrole]Li(-)](n) polymer are investigated at ab initio level by using the elongation finite-field (elongation FF) method. All the oligomers of the [Li(+)[calix[4]pyrrole]Li(-)](n) with many excess electrons exhibit very large first hyperpolarizability and large second hyperpolarizability. The present investigation shows that by introducing several and more excess electrons into the nonlinear optical (NLO) materials will be an important strategy for improving their NLO properties, which will be helpful for design of NLO materials. (c) 2009 Wiley Periodicals, Inc.

  6. Processing of Vietnamese lithium ores to produce LiCl

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thi Thu Hien

    2015-11-16

    A potential lithium deposit has been discovered in the La Vi mining district, located in Quang Ngai Province, Central Vietnam. The Li-rich rocks (average contents: 1.3±0.9 wt.% Li{sub 2}O) are highly fractionated, peraluminous granites, which are further characterized by high contents of Al{sub 2}O{sub 3}, Na{sub 2}O, K{sub 2}O, F, and P{sub 2}O{sub 5}, but very low concentrations of all other main components (MgO, CaO, Fe{sub 2}O{sub 3}tot, TiO{sub 2}). The granites exhibit a light pink color and contain mainly albite, quartz, muscovite, lithian muscovite, and lepidolite, with minor amounts of amblygonite-montebrasite, herderite, fluorapatite, topaz, and cassiterite, and accessory beryl and goyazite. Lepidolite from La Vi deposit was extracted to produce lithium chloride by using iron II sulphide (FeS)-CaO roasting and water leaching. The HSC program was applied for the simulation of the behavior of lepidolite and the additives during roasting, confirming the important role of SO{sub 2}/SO{sub 3} gas for extracting lithium from lepidolite. At optimum conditions roasting at 750 C using FeS/Li and Ca/F molar ratios of 5:1 and 1:1, respectively, followed by leaching at 50 C using water/calcine mass ratios of >5:1 could yield a maximum of ∝85% Li recovery (at <1 g/L Li concentration). Addition of CaO led to a decrease in the liberation of HF gas and insoluble LiF formation. NaOH and BaCl{sub 2} were used for removing the metal and sulphate impurities from the leach liquor by precipitation at ambient temperature. The efficiency of lithium extraction reached ∝100 % with washing of the precipitates after filtering. Alkali salts were separated from the LiCl solution via solar evaporation and isopropanol leaching. 96.3 wt.% LiCl could be produced using an isopropanol/salt mass ratio of 5:1 at ambient temperature in 3 h.

  7. Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor.

    Science.gov (United States)

    Geiger, Charles A; Alekseev, Evgeny; Lazic, Biljana; Fisch, Martin; Armbruster, Thomas; Langner, Ramona; Fechtelkord, Michael; Kim, Namjun; Pettke, Thomas; Weppner, Werner

    2011-02-07

    Recent research has shown that certain Li-oxide garnets with high mechanical, thermal, chemical, and electrochemical stability are excellent fast Li-ion conductors. However, the detailed crystal chemistry of Li-oxide garnets is not well understood, nor is the relationship between crystal chemistry and conduction behavior. An investigation was undertaken to understand the crystal chemical and structural properties, as well as the stability relations, of Li(7)La(3)Zr(2)O(12) garnet, which is the best conducting Li-oxide garnet discovered to date. Two different sintering methods produced Li-oxide garnet but with slightly different compositions and different grain sizes. The first sintering method, involving ceramic crucibles in initial synthesis steps and later sealed Pt capsules, produced single crystals up to roughly 100 μm in size. Electron microprobe and laser ablation inductively coupled plasma mass spectrometry (ICP-MS) measurements show small amounts of Al in the garnet, probably originating from the crucibles. The crystal structure of this phase was determined using X-ray single-crystal diffraction every 100 K from 100 K up to 500 K. The crystals are cubic with space group Ia3̅d at all temperatures. The atomic displacement parameters and Li-site occupancies were measured. Li atoms could be located on at least two structural sites that are partially occupied, while other Li atoms in the structure appear to be delocalized. (27)Al NMR spectra show two main resonances that are interpreted as indicating that minor Al occurs on the two different Li sites. Li NMR spectra show a single narrow resonance at 1.2-1.3 ppm indicating fast Li-ion diffusion at room temperature. The chemical shift value indicates that the Li atoms spend most of their time at the tetrahedrally coordinated C (24d) site. The second synthesis method, using solely Pt crucibles during sintering, produced fine-grained Li(7)La(3)Zr(2)O(12) crystals. This material was studied by X-ray powder

  8. In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.

    Science.gov (United States)

    Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten

    2017-04-01

    Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

  9. Depth profiling Li in electrode materials of lithium ion battery by 7Li(p,γ)8Be and 7Li(p,α)4He nuclear reactions

    Science.gov (United States)

    Sunitha, Y.; Kumar, Sanjiv

    2017-06-01

    A proton induced γ-ray emission method based on 7Li(p,γ)8Be proton capture reaction and a nuclear reaction analysis method involving 7Li(p,α)4He reaction are described for depth profiling Li in the electrode materials, graphite and lithium cobalt oxide for example, of a Li-ion battery. Depth profiling by 7Li(p,γ)8Be reaction is accomplished by the resonance at 441 keV and involves the measurement of 14.6 and 17.6 MeV γ-rays, characteristic of the reaction, by a NaI(Tl) detector. The method has a detection sensitivity of ˜0.2 at% and enables profiling up to a depth ≥20 μm with a resolution of ≥150 nm. The profiling to a fairly large depth is facilitated by the absence of any other resonance up to 1800 keV proton energy. The reaction has substantial off-resonance cross-sections. A procedure is outlined for evaluating the off-resonance yields. Interferences from fluorine and aluminium are major limitation of this depth profiling methodology. The depth profile measurement by 7Li(p,α)4He reaction, on the other hand, utilises 2-3 MeV protons and entails the detection of α-particles at 90° or 150° angles. The reaction exhibits inverse kinematics at 150°. This method, too, suffers interference from fluorine due to the simultaneous occurrence of 19F(p,α)16O reaction. Kinematical considerations show that the interference is minimal at 90° and thus is the recommended angle of detection. The method is endowed with a detection sensitivity of ˜0.1 at%, a depth resolution of ˜100 nm and a probing depth of about 30 μm in the absence and 5-8 μm in the presence of fluorine in the material. Both methods yielded comparable depth profiles of Li in the cathode (lithium cobalt oxide) and the anode (graphite) of a Li-ion battery.

  10. Influence of annealing in oxygen and argon on the superconducting properties of Li-doped YBCO single-grain bulks

    Science.gov (United States)

    Antal, V.; Volochová, D.; Kavečanský, V.; Kováč, J.; Diko, P.

    2017-10-01

    YBa2(Cu1-xLix)3O7-δ single-grain bulk superconductors with different Li concentrations were grown using the top-seeded melt growth process. Structural analysis of the samples and magnetisation measurements showed that substitution of the Cu atoms by the Li atoms took place in the YBa2Cu3O7-δ crystal lattice. This substitution was accompanied by the formation of effective pinning centres, which improved the pinning properties of the samples and increased the critical current density. Additional annealing and reannealing in oxygen and argon showed that the superconducting transition temperature displays substantially more suppression, when the Li-doped YBa2Cu3O7-δ samples were annealed in argon, that was associated with different distribution of the Li atoms between the CuO chains and the CuO2 planes in comparison to annealing in oxygen. Investigation of the critical current densities showed that the pinning properties of YBa2(Cu1-xLix)3O7-δ single-grain bulk superconductors did not depend on the arrangement of the Li atoms in the YBa2Cu3O7-δ crystal lattice. It was also observed that the crystal lattice parameters and the mean diameter of the non-superconducting Y2BaCuO5 particles systematically change with Li concentration.

  11. Teach us atom structure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Suh Yeon

    2006-08-15

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  12. Playing pinball with atoms.

    Science.gov (United States)

    Saedi, Amirmehdi; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Harold J W

    2009-05-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely controlling the tip current and distance we make two atom pairs behave like the flippers of an atomic-sized pinball machine. This atomic scale mechanical device exhibits six different configurations.

  13. Upconversion luminescence co-enhanced by Li+ ions doping and localized surface plasmon resonance for perovskite solar cells

    Science.gov (United States)

    Ding, Yanli; Qiao, Hongzhen; Yang, Tonghui; Yin, Naiqiang; Li, Peng; Zhao, Ying; Zhang, Xiaodan

    2017-11-01

    The minimization of non-absorption loss of solar photons is highly desirable for organolead halide perovskite solar cells by extending the spectral absorption from visible into near-infrared (NIR) range. NaYF4:Yb,Er/Li-Ag@SiO2 composites were created by employing Li+ ions doping and the localized surface plasmon resonance for co-enhancing upconversion luminescence intensity. NaYF4:Yb,Er/Li-Ag@SiO2 composites were doped into spiro-OMeTAD-based hole-transfer layer (HTM) of perovskite solar cells to enhance NIR absorption. The results show that the short circuit current density is apparently enhanced by doping NaYF4:Yb,Er/Li-Ag@SiO2 into the HTM while maintaining the open circuit voltage and fill factor, leading to an increase in power conversion efficiency from 7.83% to 9.34%.

  14. (Li/Ag)CoO2: a new intergrowth cobalt oxide composed of rock salt and delafossite layers.

    Science.gov (United States)

    Berthelot, R; Pollet, M; Doumerc, J-P; Delmas, C

    2011-07-18

    A new ordered (Li/Ag)CoO(2) layered compound with an unusual oxygen packing combining rock salt and delafossite layers is obtained during the (Li(+), Na(+))/Ag(+) ionic exchange from the OP4-(Li/Na)CoO(2) precursor. This compound is actually an intermediate step to the final D4-AgCoO(2) delafossite and can be isolated thanks to the kinetics difference between the Li(+)/Ag(+) and Na(+)/Ag(+) exchange processes. It crystallizes in the P6(3)/mmc space group with cell parameters a(hex.) = 2.848(3) Å and c(hex.) = 21.607(7) Å. The details of the structure as well as its thermal stability and transport properties are presented and discussed.

  15. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone

    Science.gov (United States)

    Lu, Jian; Qin, Yingying; Zhang, Qi; Wu, Yilin; Cui, Jiuyun; Li, Chunxiang; Wang, Liang; Yan, Yongsheng

    2018-01-01

    High-selective multilayered Li+-imprinted membranes (Li-IIMs) with enhanced hydrophilicity and stability were developed based on polyether sulfone substrate membranes. The multilayered structure was prepared with polydopamine (pDA) as the interfacial adhesion layer, SiO2 nanoparticles as the hydrophilic layer and Li+-imprinted polymers as the imprinted layer. The selective ;Li+-recognition sites; were formed using 12-crown-4 (12C4) as the adsorbing units. The optimal relative selectivity coefficients (α) of Li+/Na+ and Li+/K+ reached up to 1.85 and 2.07 with the imprinting factor (β) of 2.51, and the high permselectivity factors (γ) of Na+/Li+ (7.39) and K+/Li+ (9.86) were achieved on Li-IIMs. The Langmuir isotherm model and the pseudo-second-order kinetics model best fitted the rebinding data of Li-IIMs, as well as the rebinding capacities reached up to 90.3% of initial binding after 5 cycles of adsorption/desorption and just declined to 88.1% after another 5 cycles a month later. Therefore, the as-prepared Li-IIMs would have potential applications for the separation of lithium ions from salt lake brines.

  16. Electric dipolarizability of 7Li

    Indian Academy of Sciences (India)

    For the 6Li isotope modelled as an α-d cluster, because the centre of charge coincides with the centre of mass, the dipole polarizability is zero. The polarizability may arise if 6Li is described as a cluster of 3H and 3He. However, the results in that case will depend on polarizabilities of 3H and 3He besides that of their ...

  17. Lithium diffusion in a new cathode material Li0.8[Ni0.6Sb0.4]O2 studied by 7Li NMR

    Directory of Open Access Journals (Sweden)

    Salikhov T., Klysheva E., Zvereva E., Nalbandyan V., Shukaev I., Medvedev B., Vavilova E.

    2016-12-01

    Full Text Available A rhombohedral layered α-NaFeO2-type compound, Lix[Ni(1+x/3Sb(2-x/3]O2 (x=0.8 has been prepared from the sodium analogue by ion exchange at 570 K. In contrast to the stoichiometric composition Li3Ni2SbO6, it shows considerable Li/Ni inversion and no long-range Ni/Sb ordering. The temperature dependence of the 7Li NMR spin-lattice relaxation rate and linewidth data measured at temperature range from 30-450 K show the sharp increase of lithium ions mobility comparing to the stoichiometric compound Li3Ni2SbO6. From the NMR data the activation energy was estimated by different methods.

  18. Atomistic simulations of deformation mechanisms in ultralight weight Mg-Li alloys

    Science.gov (United States)

    Karewar, Shivraj

    Mg alloys have spurred a renewed academic and industrial interest because of their ultra-light-weight and high specific strength properties. Hexagonal close packed Mg has low deformability and a high plastic anisotropy between basal and non-basal slip systems at room temperature. Alloying with Li and other elements is believed to counter this deficiency by activating non-basal slip by reducing their nucleation stress. In this work I study how Li addition affects deformation mechanisms in Mg using atomistic simulations. In the first part, I create a reliable and transferable concentration dependent embedded atom method (CD-EAM) potential for my molecular dynamics study of deformation. This potential describes the Mg-Li phase diagram, which accurately describes the phase stability as a function of Li concentration and temperature. Also, it reproduces the heat of mixing, lattice parameters, and bulk moduli of the alloy as a function of Li concentration. Most importantly, our CD-EAM potential reproduces the variation of stacking fault energy for basal, prismatic, and pyramidal slip systems that in uences the deformation mechanisms as a function of Li concentration. This success of CD-EAM Mg-Li potential in reproducing different properties, as compared to literature data, shows its reliability and transferability. Next, I use this newly created potential to study the effect of Li addition on deformation mechanisms in Mg-Li nanocrystalline (NC) alloys. Mg-Li NC alloys show basal slip, pyramidal type-I slip, tension twinning, and two-compression twinning deformation modes. Li addition reduces the plastic anisotropy between basal and non-basal slip systems by modifying the energetics of Mg-Li alloys. This causes the solid solution softening. The inverse relationship between strength and ductility therefore suggests a concomitant increase in alloy ductility. A comparison of the NC results with single crystal deformation results helps to understand the qualitative and

  19. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3

    Science.gov (United States)

    Pearce, Paul E.; Perez, Arnaud J.; Rousse, Gwenaelle; Saubanère, Mathieu; Batuk, Dmitry; Foix, Dominique; McCalla, Eric; Abakumov, Artem M.; van Tendeloo, Gustaaf; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2017-05-01

    Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g-1. In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a β-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e- per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O2)n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, β-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4 V versus Li+/Li0, as equivalently observed in the layered α-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.

  20. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3.

    Science.gov (United States)

    Pearce, Paul E; Perez, Arnaud J; Rousse, Gwenaelle; Saubanère, Mathieu; Batuk, Dmitry; Foix, Dominique; McCalla, Eric; Abakumov, Artem M; Van Tendeloo, Gustaaf; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2017-05-01

    Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g-1. In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a β-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e- per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O2)n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, β-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4 V versus Li+/Li0, as equivalently observed in the layered α-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.

  1. First-principles study on interlayer state in alkali and alkaline earth metal atoms intercalated bilayer graphene

    Science.gov (United States)

    Kaneko, Tomoaki; Saito, Riichiro

    2017-11-01

    Energetics and electronic structures of alkali metal (Li, Na, K, Rb, and Cs) and alkaline earth metal (Be, Mg, Ca, Sr, and Ba) atoms intercalated bilayer graphene are systematically investigated using first-principles calculations based on density functional theory. Formation of alkali and alkaline earth metal atoms intercalated bilayer graphene is exothermic except for Be and Mg. The interlayer state between two graphene layers is occupied for K, Rb, Cs, Ca, Sr, and Ba. We find that the energetic position of the interlayer states between bilayer graphene monotonically shifts downward with increasing of interlayer distance. The interlayer distances of more than 4.5 Å and 4.0 Å, respectively, are necessary for the occupation of the interlayer state in bilayer graphene for alkali and alkaline earth metal atoms, which is almost independent of the intercalant metal species. We discuss the relevance to occurrence of superconductivity for the metal intercalated bilayer graphene in terms of the occupation of the interlayer state and the phonon frequency of metal ions.

  2. Long-term ozone decline and its effect on night airglow intensity of Li ...

    Indian Academy of Sciences (India)

    It has been shown that the rate of decrease of intensity of Li 6708 Е line was comparatively more at Halley Bay due to dramatic decrease of Antarctic O3 concentration. 1. Introduction. Airglow is a natural chemi-luminescence pheno- menon in the upper atmosphere (Midya and Midya. 1993). Ions, atoms and molecules of the ...

  3. Two-Photon Coherent Atomic Absorption of Multiple Laser Beams

    Science.gov (United States)

    Li, Ming-Chiang

    2006-05-01

    Physical processes on two-photon coherent atomic absorption of multiple laser beams were discussed about thirty years ago [M. C. Li, Bull. Am. Phys. Soc. 20, 654 (1975)]. These processes can be divided into two distinct groups. In the first group, laser beams are from a single source, and in the second group laser beams are from two different sources [M. C. Li, Phys. Rev. A 22 (1980) 1323]. Several experiments in the first group were carried out and have led to the 2005 Nobel Prize in physics. The second group is more interesting. Beside atoms are in random motion, two photons are from different sources. Classically, it is impossible for atoms to transit coherently in the absorption process, but quantum mechanically, such a transition is possible and that is one of the spooky phenomena in quantum mechanic. To assure the coherent transition, each photon as absorbed by the atom must have two possible paths of choices. If one photon has the choice and other one is not, then the atomic transitions cannot be coherent. Around1990, there were very active experimental pursuits on such a spooky phenomenon of two photons emitted from crystal parametric down conversion. The present talk will review various spooky phenomena associated with two-photon coherent atomic absorption. Hope that the talk will stimulate the interest on the long neglected experimental front on two-photon coherent atomic absorption from two different laser sources.

  4. Molecular dynamics study on the diffusion behavior of Li in the grain boundaries of α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xingang, E-mail: xgyu@ucas.ac.cn [School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Chengrui [Beijing Institute of Control Engineering, Beijing 100190 (China); Han, Tiansi [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Gan, Xianglai [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2016-11-01

    Highlights: • Confirmed the strong binding effect between the grain boundaries and lithium interstitials. • Determined the critical temperatures for a lithium atom to diffuse in the grain boundaries. • Revealed that the diffusion mechanism of a lithium atom depends on the grain boundary structure. - Abstract: Liquid lithium has been considered as a candidate material for several components of future fusion devices. Since the containment materials are usually ferrous alloys, molecular dynamics simulations were performed to study the diffusion behavior of lithium atoms along <110> tilt grain boundaries (GB) including Σ9{114}, Σ11{113}, Σ3{112} and Σ11{332} in α-Fe. The binding energies of a Li interstitial to the GBs were calculated. The results suggest that all the GBs have strong binding effect on the Li atom. The critical temperatures for the Li atom to diffuse were determined. The diffusion process of a Li interstitial in the GBs was systematically analyzed. It turns out that the diffusion mechanism depends on the GB structures. For Σ11{113} and GB Σ9{114}, the Li atom was trapped by the Frenkel defect around the GBs at 300 K and 400 K respectively and therefore the diffusion was slowed down rapidly. For Σ3{112}, no defects were formed around GB and the Li atom diffused into Fe bulk at 700 K and above. For Σ3{112}, the diffusion process is driven by the movement of the GB. Finally, the diffusion coefficient, as well as the activation energy, was evaluated.

  5. Control the fear atomic

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Gwan [I and Book, Seoul (Korea, Republic of)

    2003-04-15

    This book has a lot of explanation of nuclear energy with articles. Their titles are the bad man likes atomic, the secret of atom, nuclear explosion, NPT?, the secret of uranium fuel rod, nuclear power plant vs nuclear bomb, I hate atomic, keep plutonium in control, atomic in peace and find out alternative energy.

  6. Comparative study of Co, Cr and Al-doped LiMnO2 prepared by ion ...

    Indian Academy of Sciences (India)

    WINTEC

    –xO2 (M = Cr, Co, Al). After. NaMnO2, NaMxMn1–xO2 were added into LiBr n- .... This work was supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 07B060) and the Backbone Young Teacher Fund of ...

  7. Vozmozhen li amerikanskii variant na narvskoi potshve? / Tatjana Gritsenko

    Index Scriptorium Estoniae

    Gritsenko, Tatjana

    2007-01-01

    Narva linnavalitsuse delegatsioon külastas programmi International Visitor Leadership Program raames USA-d. Visiidi eesmärgiks oli tutvuda kohalike omavalitsuste tööga. Ülevaate külaskäigust teeb Narva abilinnapea Sofja Homjakova

  8. Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: A first-principles calculation

    Science.gov (United States)

    Sim, Eun Seob; Chung, Yong-Chae

    2018-03-01

    In this study, the influence of the non-uniform surface of F- and O-functionalized Ti2C on the anchoring behavior of lithium polysulfide (LiPS) is investigated using density functional theory. In order to consider the non-uniform surface, the substitutional, vacancy, and S-trapped sites of F- and O-functionalized Ti2C are designed. The anchoring behavior is investigated considering the adsorption energy of LiPS, reactivity between Li atoms and the substrate, and the reduction state of the S atoms. On the F-substitutional site of the O-functionalized surface, it is confirmed that the suppressing mechanism changes from the neutralization of S atoms to the anchoring of LiPS. However, too strong of an interaction between Ti atoms exposed at the vacancy site and S atoms induces trapping of the S atom at the vacancies of both F- and O-functionalized surfaces. As a result of the trapping of the S atom, the use of active material decreases. In addition, the S-trapped site originated from the vacancy site does not affect the suppressing mechanism. In conclusion, to optimize the Ti2C-based MXene as an anchoring material for Li-S batteries, the preparation process should be focused on eliminating the vacancy of functional groups.

  9. Trapping of molecular Oxygen together with Lithium atoms

    CERN Document Server

    Akerman, Nitzan; Segev, Yair; Bibelnik, Natan; Narevicius, Julia; Narevicius, Edvardas

    2016-01-01

    We demonstrate simultaneous deceleration and trapping of a cold atomic and molecular mixture. This is the first step towards studies of cold atom-molecule collisions at low temperatures as well as application of sympathetic cooling. Both atoms and molecules are cooled in a supersonic expansion and are loaded into a moving magnetic trap which brings them to rest via the Zeeman interaction from an initial velocity of 375 m/s. We use a beam seeded with molecular Oxygen, and entrain it with Lithium atoms by laser ablation prior to deceleration. The deceleration ends with loading of the mixture into a static quadrupole trap, which is generated by two permanent magnets. We estimate $10^9$ trapped O$_2$ molecules and $10^5$ Li atoms with background pressure limited lifetime on the order of 1 second. With further improvements to Lithium entrainment we expect that sympathetic cooling of molecules is within reach.

  10. Er{sup 3+} diffusion in LiTaO{sub 3} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, De-Long, E-mail: dlzhang@tju.edu.cn [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Zhang, Qun; Wong, Wing-Han [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Pun, Edwin Yue-Bun [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-12-01

    <0.6 mol%) for the temperature above 1400 °C. The Er{sup 3+} profile was studied by secondary ion mass spectrometry. The study shows that the diffused Er{sup 3+} ions follow either a complementary error function or a Gaussian profile. Characteristic parameters including diffusivity, diffusion constant, activation energy, solubility, solubility constant and heat of solution were obtained and compared with the LiNbO{sub 3} case. The comparison shows that the diffusivity and solubility in LiTaO{sub 3} are considerably smaller than in LiNbO{sub 3} because of the difference of Ta and Nb in atomic weight.

  11. Aligned Li+Tunnels in Core-Shell Li(NixMnyCoz)O2@LiFePO4Enhances Its High Voltage Cycling Stability as Li-ion Battery Cathode.

    Science.gov (United States)

    Wu, Zhongzhen; Ji, Shunping; Liu, Tongchao; Duan, Yandong; Xiao, Shu; Lin, Yuan; Xu, Kang; Pan, Feng

    2016-10-12

    Layered transition-metal oxides (Li[Ni x Mn y Co z ]O 2 , NMC, or NMCxyz) due to their poor stability when cycled at a high operating voltage (>4.5 V) have limited their practical applications in industry. Earlier researches have identified Mn(II)-dissolution and some parasitic reactions between NMC surface and electrolyte, especially when NMC is charged to a high potential, as primarily factors responsible for the fading. In our previous work, we have achieved a capacity of NMC active material close to theoretical value and optimized its cycling performance by a depolarized carbon nanotubes (CNTs) network and an unique "pre-lithiation process" that generates an in situ organic coating (∼40 nm) to prevent Mn(II) dissolution and minimize the parasitic reactions. Unfortunately, this organic coating is not durable enough during a long-term cycling when the cathode operates at a high potential (>4.5 V). This work attempts to improve the surface protection of the NMC532 particles by applying an active inorganic coating consisting of nanosized- and crystal-orientated LiFePO 4 (LFP) (about 50 nm, exposed (010) face) to generate a core-shell nanostructure of Li(Ni x Mn y Co z )O 2 @LiFePO 4 . Transmission electron microscopy (TEM) and etching X-ray photoelectron spectroscopy have confirmed an intimate contact coating (about 50 nm) between the original structure of NMC and LFP single-particle with atomic interdiffusion at the core-shell interface, and an array of interconnected aligned Li + tunnels are observed at the interface by cross-sectional high-resolution TEM, which were formed by ball-milling and then strictly controlling the temperature below 100 °C. Batteries based on this modified NMC cathode material show a high reversible capacity when cycled between 3.0 and 4.6 V during a long-term cycling.

  12. Growth and photorefractive properties of an Fe-doped near-stoichiometric LiNbO3 crystal

    Science.gov (United States)

    Zhang, Tao; Wang, Biao; Fang, Shuangquan; Ma, Decai

    2005-06-01

    A near-stoichiometric LiNbO3 crystal with 0.02 wt% Fe2O3 doping was grown from a Li-rich melt (Li/Nb = 1.38, atomic ratio) by the Czochralski method in air atmosphere. The OH- absorption band was characterized by infrared transmittance spectra. The appearance of the 3466 cm-1 absorption band (2.89 µm) manifests that the composition of the grown crystal is close to the stoichiometric ratio. The photorefractive properties were measured by a two-wave coupling experiment. The measured results show that the Fe-doped near-stoichiometric LiNbO3 crystal has a larger exponential gain coefficient than the Fe-doped congruent LiNbO3 crystal. The remarkable gain can be attributed to the photovoltaic field being comparable with the effective limiting space-charge field.

  13. Electrochemical properties and lithium ion diffusion in Li4FeSbO6 studied by first principle

    Science.gov (United States)

    Jia, Mingzhen; Wang, Hongyan; Wang, Hui; Chen, Yuanzheng; Guo, Chunsheng; Gan, Liyong

    2017-10-01

    Due to the high capacity, Li-rich materials Li2MO3 (M = transition metal) have attracted considerable attention as the next generation of Li-ion batteries. Li4FeSbO6 is a new Li-rich layered oxide material with antiferromagnet honeycomb structure. In this work, the electrochemical behavior, charging process and oxygen stability of LixFeSbO6 (0 ≤ xoxygen atoms through analyzing the Bader charges of each element. In addition, oxygen evolution reactions will occur in LixFeSbO6 (x ≤ 1.5), which will decay the capacities during cycling process. Finally, we calculated that the lithium ion can diffuse in a three-dimensional pathway with the activation barriers from 0.36 eV to 0.67 eV.

  14. Biased interface between solid ion conductor LiBH{sub 4} and lithium metal: A first principles molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Ikeshoji, Tamio [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568 (Japan); Ando, Yasunobu; Otani, Minoru; Tsuchida, Eiji [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568 (Japan); Takagi, Shigeyuki; Matsuo, Motoaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-09-23

    We use first-principles molecular dynamics to study the electrochemical solid-solid interface between lithium metal and lithium electrolyte LiBH{sub 4}. An external bias is applied by using an effective screening medium. We observe large polarization in the LiBH{sub 4}, because the lithium cations in LiBH{sub 4} are shifted more on one side of the double-well potential of Li{sup +}. This results in a large potential drop in the interface region and a large double-layer capacity corresponding to ca. 70 μF/cm{sup 2}. H-coordination to the Li atoms plays an important role in the charge-transfer reaction and ion transfer.

  15. Atomic scale investigation of planar defects in 0.95Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.05BaTiO{sub 3} thin films on SrTiO{sub 3} (001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xiao-Wei; Lu, Lu [The School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Mi, Shao-Bo, E-mail: shaobo.mi@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Cheng, Sheng; Liu, Ming [The School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Jia, Chun-Lin [The School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-08-15

    Thin films of lead-free piezoelectric 0.95Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.05BaTiO{sub 3} (0.95NBT–0.05BT) are epitaxially grown on single crystalline SrTiO{sub 3} (001) substrates at 800 °C, 850 °C and 900 °C, respectively, by a high-pressure sputtering deposition technique. The microstructure of the thin films is investigated by means of aberration-corrected scanning transmission electron microscopy. Planar defects are observed and the density of the defects increases with the increase of the film-growth temperature. Two types of planar defects in the films are studied at the atomic scale. One consists of groups of edge-sharing TiO{sub 6} octahedra with Bi atoms located between the TiO{sub 6} octahedral groups, and the other exists in the form of Na/Bi(Ba)−O{sub 2}−Na/Bi(Ba) layer parallel to the (010) plane of the films. Based on the structure feature of the planar defects, the propagation of the planar defects related to edge-sharing TiO{sub 6} octahedra within the films and from the film-substrate interface is discussed. Furthermore, the ordering of the planar defects is expected to form new structures. In comparison with the microstructure of 0.95NBT–0.05BT bulk materials, the appearance of the high-density planar defects observed within the films could be considered to be responsible for the difference in the physical properties between the bulk materials and the films. - Highlights: • NBT–BT films have been successfully prepared on SrTiO{sub 3} (001) substrates. • Complex planar defects of zigzag-like and Aurivillius-type have been determined. • The propagation of the planar defects in the films has been characterized. • The intergrowth of planar faults with NBT–BT structure units results in the formation of new structures. • The NBT–BT/SrTiO{sub 3} interface structure has been determined at the atomic scale.

  16. Exploration of mid-temperature alkali-metal-ion extraction route using PTFE (AEP): transformation of α-NaFeO2-type layered oxides into rutile-type binary oxides.

    Science.gov (United States)

    Ozawa, Tadashi C; Sasaki, Takayoshi

    2012-07-02

    Alkali-metal-ion extraction reactions using poly(tetrafluoroethylene) (PTFE; AEP reactions) were performed on two kinds of α-NaFeO(2)-type layered compounds: Na(0.68)(Li(0.68/3)Ti(1-0.68/3))O(2) and K(0.70)(Li(0.70/3)Sn(1-0.70/3))O(2). At 400 °C in flowing argon, these layered compounds were reacted with PTFE. By these reactions, alkali-metal ions in the layered compounds were successfully extracted, and TiO(2) and SnO(2) with rutile-type structure were formed. The structural similarity between the alkali-metal-ion-extracted layered compounds and the binary metal oxide products in these unique alkali-metal-ion extraction reactions was interpreted in terms of their interatomic distance distribution by atomic pair distribution function analysis. The results of this study indicate that PTFE is an effective agent to extract alkali-metal ions from layered compounds, and AEP reaction is not limited to the previously reported γ-FeOOH-type layered titania K(0.8)(Li(0.27)Ti(1.73))O(4), but is also applicable to other layered titania and other non-titanium-based layered metal oxides. Therefore, it was clarified that AEP reactions are widely applicable routes to prepare various compounds, including those that are difficult to synthesize by other reactions.

  17. Measurement of atomic number and mass attenuation coefficient in ...

    Indian Academy of Sciences (India)

    The linear attenuation coefficient (), mass attenuation coefficient (/ρ), total atomic cross-section (tot), total electronic cross-section (ele) and the effective atomic number (eff) were calculated for pure magnesium ferrite (MgFe2O4). The values of -ray mass attenuation coefficient were obtained using a NaI energy ...

  18. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  19. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  20. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  1. The low-lying electronic states of LiC

    Science.gov (United States)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The spectroscopic constants for the doublet and quartet states of LiC below about 30,000/cm are determined using an internally contracted multireference configuration-interaction approach in conjunction with a [6s 5p 3d 2f] atomic natural orbital basis sets. All of the strongly bound states, X(sup 4)(SIGMA)(sup -),(1)(sup 2)(DELTA), (1)(sup 2)(SIGMA)(sup +), and (2)(sup 2) II, very ionic in character. The only bound-bound quartet transition in this energy range is (2)(sup 4)SIGMA(sup -) and Franck-Condon factors, Einstein A values, and lifetimes are reported for this transition.

  2. Structure and crystallization kinetics of Li2O modified sodium-phosphate glasses

    Science.gov (United States)

    Jha, Paramjyot Kumar; Pandey, O. P.; Singh, K.

    2015-08-01

    Glasses of 55P2O5sbnd (45 - x)Na2Osbnd xLi2O; (5 ⩽ x ⩽ 25) are synthesized by melt-quench technique. The amorphous nature of the as-quenched sample is confirmed by X-ray powder diffraction (XRD). The glass transition (Tg) and crystallization temperatures (Tc) are evaluated under non-isothermal conditions using the differential thermal analyzer (DTA). Crystallization kinetic of present glasses is studied using Kissinger's and Augis-Benett models. The activation energies for glass transition (Eg) and crystallization (Ec) increases up to 15 mol% of Li2O and after that decreases. 15 mol% Li2O contained glass exhibits minimum crystallization frequency, which indicates its higher thermodynamic and kinetic stability than other glasses. FTIR and Raman analysis confirmed the higher polymerization of phosphate groups in 15 mol% Li2O glass as compared to other glasses.

  3. Growth, properties and first-principles study of mid-IR nonlinear optical crystal LiInS2

    Science.gov (United States)

    Wang, Shanpeng; Ruan, Huapeng; Liu, Guandong; Zhang, Guodong; Shi, Qiong; Zhang, Xiang; Gao, Zeliang; Dong, Chunming; Tao, Xutang

    2013-01-01

    The mid-infrared nonlinear optical (NLO) crystal, LiInS2, was successfully grown by the modified Bridgman method with an accelerated crucible rotation technique (ACRT). Spectral properties such as UV-vis-NIR and the mid-IR transmittance of LiInS2 have been investigated. First-principles study of the electronic structure and optical properties (dielectric function and refractive index) of LiInS2 has been performed by density function theory. The band structure shows that LiInS2 has a direct band gap of 3.21 eV. The calculated total and partial density of states indicate that the S-3p states mainly form the upper VBs, while the lower VBs are derived from the In-4d and S-3s states. The CBs are created by the S-3p, In-5s and In-5p states. The deep VBs lying at -43.2 eV originate mostly from Li-1s states. The charge density contours indicate that the bonds between the In and S atoms are covalent and that those between the Li and S atoms are ionic. This characteristic of the chemical bonding in LiInS2 also indicated from the Mulliken population analysis.

  4. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes.

    Science.gov (United States)

    Lu, Fang-Min; Hilgemann, Donald W

    2017-07-03

    Decades ago, it was proposed that Na transport in cardiac myocytes is modulated by large changes in cytoplasmic Na concentration within restricted subsarcolemmal spaces. Here, we probe this hypothesis for Na/K pumps by generating constitutive transsarcolemmal Na flux with the Na channel opener veratridine in whole-cell patch-clamp recordings. Using 25 mM Na in the patch pipette, pump currents decay strongly during continuous activation by extracellular K (τ, ∼2 s). In contradiction to depletion hypotheses, the decay becomes stronger when pump currents are decreased by hyperpolarization. Na channel currents are nearly unchanged by pump activity in these conditions, and conversely, continuous Na currents up to 0.5 nA in magnitude have negligible effects on pump currents. These outcomes are even more pronounced using 50 mM Li as a cytoplasmic Na congener. Thus, the Na/K pump current decay reflects mostly an inactivation mechanism that immobilizes Na/K pump charge movements, not cytoplasmic Na depletion. When channel currents are increased beyond 1 nA, models with unrestricted subsarcolemmal diffusion accurately predict current decay (τ ∼15 s) and reversal potential shifts observed for Na, Li, and K currents through Na channels opened by veratridine, as well as for Na, K, Cs, Li, and Cl currents recorded in nystatin-permeabilized myocytes. Ion concentrations in the pipette tip (i.e., access conductance) track without appreciable delay the current changes caused by sarcolemmal ion flux. Importantly, cytoplasmic mixing volumes, calculated from current decay kinetics, increase and decrease as expected with osmolarity changes (τ >30 s). Na/K pump current run-down over 20 min reflects a failure of pumps to recover from inactivation. Simulations reveal that pump inactivation coupled with Na-activated recovery enhances the rapidity and effectivity of Na homeostasis in cardiac myocytes. In conclusion, an autoregulatory mechanism enhances cardiac Na/K pump activity when

  5. LiDAR for data efficiency.

    Science.gov (United States)

    2011-09-30

    This report documents the AHMCT research project: LiDAR for Data Efficiency for the Washington State Department of Transportation (WSDOT). The research objective was to evaluate mobile LiDAR technology to enhance safety, determine efficiency ga...

  6. 2002 Willapa Bay LiDAR Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA contracted with Spencer B. Gross, Inc. (SBG) to obtain airborne LiDAR of Willapa Bay, Washington during low tide conditions. The LiDAR data was processed to...

  7. Assessment of the mean glandular dose using LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu TL detectors in mammography radiation fields

    Science.gov (United States)

    Fartaria, M. J.; Reis, C.; Pereira, J.; Pereira, M. F.; Cardoso, J. V.; Santos, L. M.; Oliveira, C.; Holovey, V.; Pascoal, A.; Alves, J. G.

    2016-09-01

    The aim of this paper is the characterization of four thermoluminescence detectors (TLD), namely, LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu for the measurement of the entrance surface air kerma (ESAK) and estimation of the mean glandular dose (MGD) in digital mammography examinations at hospitals and clinics. Low-energy x-ray beams in the typical energy ranges of mammography, produced with a tungsten target and additional 60 µm molybdenum filtration were implemented and characterized at the Laboratory of Metrology of Ionizing Radiation at Instituto Superior Técnico. These beams were used for the characterization of the TLDs in terms of sensitivity, linearity, reproducibility, energy dependence and fading at 40 °C. The energy dependence test was further extended using clinical beams produced by mammography units at hospitals and clinics. The method proposed by the International Atomic Energy Agency was used for the measurement of ESAK and assessment of MGD. The combined standard uncertainty for the measurement of ESAK (and MGD) was determined in accordance to the Guide to the expression of uncertainty in measurement. The x-ray beams generated in the 23-40 kVp range presented HVL values from 0.36 to 0.46 mm Al. The beam produced at 28 kVp (HVL 0.39 mm Al) was considered as reference. The radiation field defined a circle with 84 mm diameter with a maximum variation of the beam intensity of less than 1% at the top flat (plateau) within 4 cm of the central axis. The estimated total uncertainty for the measurement of air kerma was 0.42%. All the TL detectors tested showed good performance except the commercial Li2B4O7:Mn (or TLD-800) which was excluded due to its poor sensitivity in our experimental set up. Both lithium fluorides showed better linearity and reproducibility as well as lower energy dependence and fading when compared to lithium borates. The stable behaviour of LiF:Mg,Ti and LiF:Mg,Cu,P detectors is reflected in the low combined standard

  8. Collisions of low-energy antiprotons and protons with atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Luehr, Armin

    2010-02-18

    Antiproton (anti p) collisions have evolved to a powerful tool for the testing of dynamic electron correlations in atoms and molecules. While advances in the understanding of anti p collisions with the simplest one- and two-electron atoms, H and He, have been achieved experiment and theory did not agree for low-energy anti p+He collisions (<40 keV), stimulating a vivid theoretical activity. On the other hand, only very few theoretical anti p studies can be found considering molecular as well as other atomic targets, in contrast to proton (p) collisions. This is in particular true for anti p impacts on H{sub 2} despite its fundamental role in representing the simplest two-electron molecule. The obtained results may be useful for the anti p experiments at CERN (e.g., antihydrogen production) and in particular for the facility design of low-energy anti p storage rings (e.g., at FLAIR) where a precise knowledge of the anti p interaction with the dominant residual-gas molecule H{sub 2} is needed. In this work a nonperturbative, time-dependent numerical approach is developed which describes ionization and excitation of atoms or molecules by either anti p or p impact based on the impact-parameter method. A spectral close-coupling method is employed for solving the time-dependent Schroedinger equation in which the scattering wave function is expanded in (effective) one- or two-electron eigenstates of the target. This includes for the first time a full two-electron, two-center description of the H{sub 2} molecule in anti p collisions. The radial part of the one-electron eigenstates is expanded in B splines while the two-electron basis is obtained with a configurationinteraction approach. Calculations are performed for anti p collisions with H, H{sub 2}{sup +}, and H{sub 2} as well as with He and alkali-metal atoms Li, Na, K, and Rb. Additionally, data are obtained for p collisions with H{sub 2}, Li, Na, and K. The developed method is tested and validated by detailed

  9. Lithium ion mobility in lithium phosphidosilicates: Crystal structure, {sup 7}Li, {sup 29}Si, and {sup 31}P MAS NMR spectroscopy, and impedance spectroscopy of Li{sub 8}SiP{sub 4} and Li{sub 2}SiP{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Toffoletti, Lorenzo; Landesfeind, Johannes; Klein, Wilhelm; Gasteiger, Hubert A.; Faessler, Thomas F. [Department of Chemistry, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747, Garching bei Muenchen (Germany); Kirchhain, Holger; Wuellen, Leo van [Department of Physics, University of Augsburg, Universitaetsstrasse 1, 86159, Augsburg (Germany)

    2016-12-05

    The need to improve electrodes and Li-ion conducting materials for rechargeable all-solid-state batteries has drawn enhanced attention to the investigation of lithium-rich compounds. The study of the ternary system Li-Si-P revealed a series of new compounds, two of which, Li{sub 8}SiP{sub 4} and Li{sub 2}SiP{sub 2}, are presented. Both phases represent members of a new family of Li ion conductors that display Li ion conductivity in the range from 1.15(7) x 10{sup -6} Scm{sup -1} at 0 C to 1.2(2) x 10{sup -4} Scm{sup -1} at 75 C (Li{sub 8}SiP{sub 4}) and from 6.1(7) x 10{sup -8} Scm{sup -1} at 0 C to 6(1) x 10{sup -6} Scm{sup -1} at 75 C (Li{sub 2}SiP{sub 2}), as determined by impedance measurements. Temperature-dependent solid-state {sup 7}Li NMR spectroscopy revealed low activation energies of about 36 kJ mol{sup -1} for Li{sub 8}SiP{sub 4} and about 47 kJ mol{sup -1} for Li{sub 2}SiP{sub 2}. Both compounds were structurally characterized by X-ray diffraction analysis (single crystal and powder methods) and by {sup 7}Li, {sup 29}Si, and {sup 31}P MAS NMR spectroscopy. Both phases consist of tetrahedral SiP{sub 4} anions and Li counterions. Li{sub 8}SiP{sub 4} contains isolated SiP{sub 4} units surrounded by Li atoms, while Li{sub 2}SiP{sub 2} comprises a three-dimensional network based on corner-sharing SiP{sub 4} tetrahedra, with the Li ions located in cavities and channels. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Dependence of Ion Transport on the Electronegativity of the Constituting Atoms in Ionic Crystals.

    Science.gov (United States)

    Zhang, Qian; Kaghazchi, Payam

    2017-04-19

    Ion transport in electrode and electrolyte materials is a key process in Li-based batteries. In this work, we study the mechanism and activation energy of ion transport (Ea ) in rock-salt Li-based LiX (X=Cl, Br, and I) materials. It is found that Ea at low external voltages, where Li-X Schottky pairs are the most favorable defect types, is about 0.42 times the Gibbs energy of formation of LiX compound (ΔGf ). The value of 0.42 is the slope of the electronegativity of anions of binary Li-based materials as a function of ΔGf . At high voltages, where the Fermi level is located very close to the valence band maximum (VBM), electrons can be excited from the VB to Li vacancy-induced states close to the Fermi level. Under this condition, the formation of Li vacancies that are compensated by holes is energetically more favorable than that of Li-X Schottky pairs, and therefore, the activation energies are lower in the former case. The wide range of reported experimental values of activation energies lies between calculated values at low and high voltage regimes. This work motivates further studies on the relation between the activation energy for ionic conductivity in solid materials and the intrinsic ground-state properties of their free atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reversible Bergman cyclization by atomic manipulation

    Science.gov (United States)

    Schuler, Bruno; Fatayer, Shadi; Mohn, Fabian; Moll, Nikolaj; Pavliček, Niko; Meyer, Gerhard; Peña, Diego; Gross, Leo

    2016-03-01

    The Bergman cyclization is one of the most fascinating rearrangements in chemistry, with important implications in organic synthesis and pharmacology. Here we demonstrate a reversible Bergman cyclization for the first time. We induced the on-surface transformation of an individual aromatic diradical into a highly strained ten-membered diyne using atomic manipulation and verified the products by non-contact atomic force microscopy with atomic resolution. The diyne and diradical were stabilized by using an ultrathin NaCl film as the substrate, and the diyne could be transformed back into the diradical. Importantly, the diradical and the diyne exhibit different reactivity, electronic, magnetic and optical properties associated with the changes in the bond topology, and spin multiplicity. With this reversible, triggered Bergman cyclization we demonstrated switching on demand between the two reactive intermediates by means of selective C-C bond formation or cleavage, which opens up the field of radical chemistry for on-surface reactions by atomic manipulation.

  12. A Facile Surface Reconstruction Mechanism toward Better Electrochemical Performance of Li

    NARCIS (Netherlands)

    Qian, Kun; Tang, Linkai; Wagemaker, M.; He, Yan Bing; Liu, Dongqing; Li, Hai; Shi, Ruiying; Li, Baohua; Kang, Feiyu

    2017-01-01

    Through a facile sodium sulfide (Na2S)-assisted hydrothermal treatment, clean and nondefective surfaces are constructed on micrometer-sized Li4Ti5O12 particles. The remarkable improvement of surface quality shows a higher first cycle Coulombic

  13. Reactions of metallic Li or LiC6 with organic solvents for lithium ion battery

    Science.gov (United States)

    Nakajima, Tsuyoshi; Hirobayashi, Yuki; Takayanagi, Yuki; Ohzawa, Yoshimi

    2013-12-01

    DSC (Differential Scanning Calorimetry) study has been made on the reactions of metallic Li or LiC6 with organic solvents for lithium ion battery. Ethylene carbonate (EC) more easily reacts with metallic Li and LiC6 than propylene carbonate (PC). This may be because formation of lithium alkyl carbonate is more difficult for PC than EC. On the other hand, diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) react with Li in the same manner. Reactions of Li and LiC6 with organic solvents have been discussed based on the results of quantum calculation.

  14. Trapping cold molecules and atoms: Simultaneous magnetic deceleration and trapping of cold molecular Oxygen with Lithium atoms

    Science.gov (United States)

    Akerman, Nitzan; Karpov, Michael; Segev, Yair; Bibelink, Natan; Narevicius, Julia; Narevicius, Edvardas

    2016-05-01

    Cooling molecules to the ultra-cold regime remains a major challenge in the growing field of cold molecules. The molecular internal degrees of freedom complicate the effort of direct application of laser cooling. An alternative and general path towards ultra-cold molecules relies on sympathetic cooling via collisions with laser-cooled atoms. Here, we demonstrate the first step towards application of sympathetic cooling by co-trapping of molecular Oxygen with Lithium atoms in a magnetic trap at a temperature of 300 mK. Our experiment begins with a pulsed supersonic beam which is a general source for cold high-flux atomic and molecular beams. Although the supersonic expansion efficiently cools the beam to temperatures below 1K, it also accelerates the beam to high mean velocities. We decelerate a beam of O2 in a moving magnetic trap decelerator from 375 m/s to a stop. We entrained the molecular beam with Li atoms by laser ablation prior to deceleration. The deceleration ends with loading the molecules and atoms into a static quadrupole trap, which is generated by two permanent magnets. We estimate 109 trapped molecules with background limited lifetime of 0.6 Sec. Our achievement enables application of laser cooling on the Li atoms in order to sympathetically cool the O2.

  15. Compaction of LiBH4-LiAlH4 nanoconfined in activated carbon nanofibers

    DEFF Research Database (Denmark)

    Plerdsranoy, Praphatsorn; Javadian, Payam; Jensen, Nicholai Daugaard

    2017-01-01

    To enhance volumetric hydrogen capacity for on-board fuel cells, compaction of LiAlH4-LiBH4 nanoconfined in activated carbon nanofibers (ACNF) is for the first time proposed. Loose powders of milled and nanoconfined LiAlH4-LiBH4 samples are compacted under 976 MPa to obtain the pellet samples...... content liberated from milled LiAlH4-LiBH4 pellet is 65% of theoretical capacity in the temperature range of 80–475 °C, while that of nanoconfined LiAlH4-LiBH4 pellet is up to 80% at lower temperature of 100–400 °C. Besides, nanoconfined LiAlH4-LiBH4 pellet shows significant reduction of activation energy...

  16. Atomic vapor density monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.; Harris, W.; Beeler, R.; Wooldridge, J.; Chen, H.L.

    1986-09-01

    This report presents information on the Atomic Vapor Density Monitor (AVDM) system that measures the density of a vapor by measuring the absorption of light from a swept-wavelength laser that passes through an atomic vapor stream.

  17. Depinning of the ferroelectric domain wall in congruent LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghwa, E-mail: donghwa96@jnu.ac.kr [School of Materials Science and Engineering, Chonnam National University, Gwangju 61186 (Korea, Republic of); Gopalan, Venkatraman [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2016-08-22

    The high coercive field, E{sub c}, of congruent LiNbO{sub 3} can be reduced by doping with Mg or Zn atoms, or by increasing the temperature above a threshold value. The physical origin for this reduction is not currently understood. Here, density functional theory calculations illustrate the atomic origin of the change in the switching field of the congruent LiNbO{sub 3}. They show that the high E{sub c} in the congruent LiNbO{sub 3} is a result of niobium antisite atoms on the lithium sublattice, pinning the motion of the domain walls. Thus, the healing of antisites by diffusion can significantly reduce the coercive field. In addition, this work demonstrates that the migration of these niobium antisites can be enhanced by doping or by changing the temperature. Thus, the depinning process of the congruent LiNbO{sub 3} is understood by the migration of the niobium antisite defect across the domain wall.

  18. Li-Ion Localization and Energetics as a Function of Anode Structure.

    Science.gov (United States)

    McNutt, Nicholas W; McDonnell, Marshall; Rios, Orlando; Keffer, David J

    2017-03-01

    In this work, we study the effect of carbon composite anode structure on the localization and energetics of Li-ions. A computational molecular dynamics study is combined with experimental results from neutron scattering experiments to understand the effect of composite density, crystallite size, volume fraction of crystalline carbon, and ion loading on the nature of ion storage in novel, lignin-derived composite materials. In a recent work, we demonstrated that these carbon composites display a fundamentally different mechanism for Li-ion storage than traditional graphitic anodes. The edges of the crystalline and amorphous fragments of aromatic carbon that exist in these composites are terminated by hydrogen atoms, which play a crucial role in adsorption. In this work, we demonstrate how differences in composite structure due to changes in the processing conditions alter the type and extent of the interface between the amorphous and crystalline domains, thus impacting the nature of Li-ion storage. The effects of structural properties are evaluated using a suite of pair distribution functions as well as an original technique to extract archetypal structures, in the form of three-dimensional atomic density distributions, from highly disordered systems. The energetics of Li-ion binding are understood by relating changes in the energy and charge distributions to changes in structural properties. The distribution of Li-ion energies reveals that some structures lead to greater chemisorption, while others have greater physisorption. Carbon composites with a high volume fraction of small crystallites demonstrate the highest ion storage capacity because of the high interfacial area between the crystalline and amorphous domains. At these interfaces, stable H atoms, terminating the graphitic crystallites, provide favorable sites for reversible Li adsorption.

  19. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    Science.gov (United States)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  20. Lições de coisas e ensino das ciências na França no fim do século 19: contribuição a uma história da cultura - Object lessons and science education in France in the late nineteenth century: contribution to a history of the school culture

    Directory of Open Access Journals (Sweden)

    Pierre Kahn, France

    2014-05-01

    Full Text Available Além das grandes reformas realizadas na organização institucional da escola primária, gratuidade, obrigação, laicidade, os republicanos franceses do final do século 19 quiseram operar uma profunda transformação dos conteúdos de ensino e das normas pedagógicas. As ciências experimentais foram imensamente beneficiadas com isso e se tornaram, em 1882, uma disciplina regular da escola primária com os seus programas e a sua carga horária. A lição de coisas, procedimento pedagógico pelo qual os reformadores se entusiasmaram desde 1860, ficará estreita e naturalmente associada a esse ensino. Ela é, inicialmente, de fato, uma lição de observação: onde os alunos encontrarão melhores oportunidades para observar do que nas aulas de história natural ou de física elementar? Assim, ligados entre si, o ensino das ciências e a lição de coisas têm dois aspectos, um prosaico, outro encantador. Contexto prosaico: o ensino das ciências, destinado a alunos que, na sua maioria, não conhecerão outra escola a não ser a primária, deve permanecer prático e usual. A lição de coisas convém especialmente a esse ensino porque ela trata primordialmente das realidades concretas e familiares. Contexto encantador: o ensino das ciências é um instrumento poderoso de educação intelectual, até mesmo de educação moral e política. Ele representa a esperança de uma educação liberal primária tão completa, digna e válida em seu gênero, quanto às humanidades clássicas do secundário. A lição de coisas, ao fazer corresponder a abordagem pedagógica ao próprio método da ciência, o método indutivo, se torna então, por excelência, o que permite esta educação intelectual. Esta tensão não é própria ao ensino das ciências. Essa análise enseja, antes de mais nada, evidenciar o duplo discurso que os republicanos tiveram sobre uma escola que eles transformaram, simultaneamente, em realidade e sonho.Palavras-chave: atividade (do

  1. Thermally stimulated processes in Li and Cu doped alkali fluorides irradiated with electron beams of ultra-high dose

    Science.gov (United States)

    Mamytbekov, Zh K.; Tcherepanov, A. N.; Slesarev, A. I.; Kidibaev, M. M.; Shi, Q.; Ivanovskikh, K. V.; Ivanov, V. Yu; Egamberdieva, A. A.; Shulgin, B. V.

    2017-05-01

    The thermally stimulated luminescence (TSL) and exoemission (TSE) in Li and Cu doped NaF and LiF single crystals irradiated with electron high energy electron beams of (10 MeV, doses 0.75 and 2 MGy) have been investigated. The results obtained reveal important properties that suggest that the crystals have a sufficient radiation stability and sensitivity for high energy electron beams and are promising for application as high-dose detectors of electron radiation.

  2. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  3. Playing Pinball with Atoms

    NARCIS (Netherlands)

    Saedi, A.; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Henricus J.W.

    2009-01-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely

  4. Mechanistic origin of low polarization in aprotic Na-O2 batteries.

    Science.gov (United States)

    Ma, Shunchao; McKee, William C; Wang, Jiawei; Guo, Limin; Jansen, Martin; Xu, Ye; Peng, Zhangquan

    2017-05-21

    Research interest in aprotic sodium-air (Na-O2) batteries is growing because of their considerably high theoretical specific energy and potentially better reversibility than lithium-air (Li-O2) batteries. While Li2O2 has been unequivocally identified as the major discharge product in Li-O2 batteries containing relatively stable electrolytes, a multitude of discharge products, including NaO2, Na2O2 and Na2O2·2H2O, have been reported for Na-O2 batteries and the corresponding cathodic electrochemistry remains incompletely understood. Herein, we provide molecular-level insights into the key mechanistic differences between Na-O2 and Li-O2 batteries based on gold electrodes in strictly dry, aprotic dimethyl sulfoxide electrolytes through a combination of in situ spectroelectrochemistry and density functional theory based modeling. While like Li-O2 batteries, the formation of oxygen reduction products (i.e., O2-, NaO2 and Na2O2) in Na-O2 batteries depends critically on the electrode potential, two factors lead to a better reversibility of Na-O2 electrochemistry, and are therefore highly beneficial to a viable rechargeable metal-air battery design: (i) only O2- and NaO2, and no Na2O2, form down to as low as ∼1.5 V vs. Na/Na+ during discharge; (ii) solid NaO2 is quite soluble and its formation and oxidation can proceed through micro-reversible EC (a chemical reaction of the product after the electron transfer) and CE (a chemical reaction preceding the electron transfer) processes, respectively, with O2- as the key intermediate.

  5. First-principles study of the structural and dynamic properties of the liquid and amorphous Li-Si alloys

    Science.gov (United States)

    Chiang, Han-Hsin; Lu, Jian-Ming; Kuo, Chin-Lung

    2016-01-01

    We have performed density functional theory calculations and ab initio molecular dynamics to investigate the structures and dynamic properties of the liquid and amorphous LixSi alloys over a range of composition from x = 1.0 - 4.8. Our results show that Si atoms can form a variety of covalently bonded polyanions with diverse local bonding structures in the liquid alloys. Like in c-LiSi, Si atoms can form a continuous bond network in liquid Li1.0Si at 1050 K, while it gradually disintegrates into many smaller Si polyanions as the Li content increases in the alloys. The average sizes of Si polyanions in these liquid alloys were found to be relatively larger than those in their crystalline counterparts, which can even persist in the highly lithiated Li4.81Si alloy at 1500 K. Our results also show that amorphous LixSi alloys have similar local bonding structures but a largely increased short-range order as compared to their liquid counterparts. The differences between the average coordination number of each atomic pair in amorphous solids and that in the liquids are less than 1.1. Furthermore, our calculations reveal that Li and Si atoms can exhibit very distinct dynamic behaviors in the liquids and their diffusivities appear to be largely dependent on the chemical composition of the alloys. The diffusivity of Li was found to increase with the Li content in the alloys primarily because of the reduced interactions between Li and Si atoms, while the Si diffusivity also increases due to the gradual disintegration of the strongly interconnected Si bond network. The diffusivity of Li in amorphous LixSi was predicted to lie in the range between 10-7 and 10-9 cm2/s at 300 K, which is more than 20-fold larger than that of Si over the composition range considered. Our calculations further show that the diffusivities of both Li and Si can increase by two orders of magnitude as x increases from 1.0 to 3.57 in amorphous LixSi, indicating a more profound dependence on the alloy

  6. Effect of Glucose on Structure and Properties of LiFePO4 Cathode Material Prepared by Microwave Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    XIA Ao

    2016-10-01

    Full Text Available Orthorhombic LiFePO4/C composite material with olivine structure was prepared by microwave hydrothermal method using FeSO4·7H2O, LiOH·H2O and H3PO4 as raw materials, with glucose as carbon source and modifier. The influence of glucose on the composition, structure, morphology and electrochemical performance of LiFePO4 was investigated by means of XRD, SEM, EDS and constant current charge-discharge cycling. The results show that the as-obtained LiFePO4/C exhibits stronger bonding among Fe, P and O atoms, finer particle size and improved electrochemical properties than the pristine LiFePO4. From the SEM image, the LiFePO4 is coated by carbon in the LiFePO4/C composite. The LiFePO4/C shows the initial discharge capacity of 125.6mAh/g at 0.1C. Even at a rate of 1.0C, it still can deliver a discharge capacity of 106.2mAh/g, the capacity retention is 91.3% after 30 cycles.

  7. Resistive switching phenomena in Li{sub x}CoO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Moradpour, Alec; Auban-Senzier, Pascale; Pasquier, Claude [Laboratoire de Physique des Solides, UMR C8502 CNRS, University Paris-Sud 11, Orsay (France); Schneegans, Olivier; Chretien, Pascal [Laboratoire de Genie Electrique de Paris, UMR 8507 CNRS, Paris VI et Paris-Sud Universities, Supelec, Gif-sur-Yvette (France); Franger, Sylvain; Revcolevschi, Alexandre; Dragos, Oana; Ciomaga, Vasile-Cristian [Institut de Chimie Moleculaire et des Materiaux d' Orsay, Laboratoire de Physico-Chimie de l' Etat Solide, UMR 8182 CNRS, University Paris-Sud, Orsay (France); Salot, Raphael [CEA/LITEN, Grenoble (France); Svoukis, Efthymios; Giapintzakis, John [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia (Cyprus)

    2011-09-22

    A substantial resistive switching of Li{sub x}CoO{sub 2} mixed-conductor thin films is observed for the first time. The occurrence of possible bipolar switching in these oxide thin films is by current-voltage curves, investigated by conducting-probe atomic force microscopy (CP-AFM). The films are incorporated into an {l_brace}Au/Li{sub x}CoO{sub 2}/p++Si{r_brace} device and exhibit a significant resistive-switching process involving a ratio of over four orders of magnitude. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Positronium-alkali atom scattering at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Ajoy [Laban Hrad Vidyapith, AD-369, Salt Lake City, Kolkata 700 064 (India); Basu, Arindam [Department of Physics, Maheshtala College, Chandannagar, South 24 Parganas, Kolkata 700 140 (India); Sarkar, Nirmal K [Sodepur Chandrachur Vidyapith, 1, Desh Bandhu Nagar, Sodepur, 743 174 (India); Sinha, Prabal K [Department of Physics, Bangabasi College, 19, Raj Kumar Chakravorty Sarani, Kolkata 700 009 (India)

    2004-04-28

    We investigate the scattering of orthopositronium (o-Ps) atom off different atomic alkali targets (Na to Cs) at low and medium energies (up to 120 eV). Projectile-elastic and target-elastic close-coupling models have been employed to investigate the systems in addition to the static-exchange model. Elastic, excitation and total cross sections have been reported for all four systems. The magnitude of the alkali excitation cross section increases with increasing atomic number of the target atom while the position of the peak value shifts towards lower incident energies. The magnitudes of the Ps excitation and ionization cross sections increase steadily with atomic number with no change in the peak position. The reported results show regular behaviour with increasing atomic number of the target atom. Scattering parameters for the Ps-Rb and Ps-Cs systems are being reported for the first time.

  9. First principles treatment of structural, optical, and thermoelectric properties of Li{sub 7}MnN{sub 4} as electrode for a Li secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Wilayat, E-mail: walayat76@gmail.com [New Technologies-Research Center, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)

    2015-01-15

    The electronic structure, electronic charge density and linear optical properties of the metallic Li{sub 7}MnN{sub 4} compound, having cubic symmetry, are calculated using the full potential linearized augmented plane wave (FP-LAPW) method. The calculated band structure and density of states using the local density, generalized gradient and Engel–Vosko approximations, depict the metallic nature of the cubic Li{sub 7}MnN{sub 4} compound. The bands crossing the Fermi level in the calculated band structure are mainly from the Mn-d states with small support of N-p states. In addition, the Mn-d states at the Fermi level enhance the density of states, which is very useful for the electronic transport properties. The valence electronic charge density depicts strong covalent bond between Mn and two N atoms and polar covalent bond between Mn and Li atoms. The frequency dependent linear optical properties like real and imaginary part of the dielectric function, optical conductivity, reflectivity and energy loss function are calculated on the basis of the computed band structure. Both intra-band and inter-band transitions contribute to the calculated optical parameters. Using the BoltzTraP code, the thermoelectric properties like electrical and thermal conductivity, Seebeck coefficient, power coefficient and heat capacity of the Li{sub 7}MnN{sub 4} are also calculated as a function of temperature and studied.

  10. Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yandong [School; Zhang, Bingkai [School; Zheng, Jiaxin [School; Hu, Jiangtao [School; Wen, Jianguo; Miller, Dean J.; Yan, Pengfei [Environmental; Liu, Tongchao [School; Guo, Hua [School; Li, Wen [School; Song, Xiaohe [School; Zhuo, Zengqing [School; Liu, Chaokun [School; Tang, Hanting [School; Tan, Rui [School; Chen, Zonghai; Ren, Yang; Lin, Yuan [School; Yang, Wanli; Wang, Chong-Min [Environmental; Wang, Lin-Wang; Lu, Jun; Amine, Khalil; Pan, Feng [School

    2017-08-03

    Abstract. Due to the enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, reduced cycling stability and total electrode capacity. In this work, we report a size-dependent excess capacity beyond the theoretical value of 170 mAhg-1 in a special carbon coated LiFePO4 composite cathode material, which delivers capacities of 191.2 and 213.5 mAhg-1 with the mean particle sizes of 83 nm and 42 nm, respectively. Moreover, this LiFePO4 composite also shows excellent cycling stability and high rate performance. Our further experimental tests and ab initio calculations reveal that the excess capacity comes from the charge passivation for which the C-O-Fe bonds would lead to charge redistribution on the surface of LiFePO4 and hence to enhance the bonding interaction between surface O atoms and Li-ions. The surface reconstruction for excess Li-ion storage makes full use of the large specific surface area for the nanocrystallites, which can maintain the fast Li-ion transport and enhance the capacity greatly that the nanocrystallites usually suffers.

  11. The reactions of ground and excited state sodium atoms with hydrogen halide molecules

    Science.gov (United States)

    Weiss, P. S.; Mestdagh, J. M.; Covinsky, M. H.; Balko, B. A.; Lee, Y. T.

    1988-10-01

    The reactions of ground and excited state Na atoms with hydrogen halide (HX) molecules have been studied using the crossed molecular beams method. With both increasing translational and increasing electronic energy, the reactive cross sections increase in the reactions of HCl and HBr. From product angular and velocity distributions detailed center-of-mass information is derived. For the reactions of Na (3 2S 1/2, 3 2P 1/2, 4 2D 5/2, 5 2S 1/2) with HCl, the product NaCl is back-scattered with respect to the incoming Na atom in the center-of-mass frame of reference. The reaction of each Na state studied with HCl is direct and proceeds via collinear and near-collinear Na-Cl-H approach geometries. For the Na (3 2P 3/2) and Na (4 2D 5/2) reactions with HCl the predominant transition state symmetry is 2Σ in a collinear (C ∞ν) Na-Cl-H geometry. This is consistent with the reaction proceeding via electron transfer from the Na atom to the halide atom. Absolute reactive cross sections for each state of Na studied with HCl were determined by comparison with both small and large angle elastic scattering. We were unable to observe Na atoms with over 4 eV of electronic energy react with HF up to collision energies of 13 kcal/mole.

  12. Atomization characteristics of a prefilming airblast atomizer

    Science.gov (United States)

    Hayashi, Shigeru; Koito, Atsushi; Hishiki, Manabu

    1992-01-01

    The size distribution of water test sprays generated by a prefilming airblast atomizer used for aeroengines was measured in swirling and non-swirling flows with the well established laser scattering particle sizing technique. Atomizing air velocity (or pressure difference) was varied in a range wider than the conditions of actual engines. The Sauter Mean Diameter (SMD) decreased at approximately a 1.5 power of the atomizing air velocity, being a higher velocity index than the previously reported values of 1 to 1.2. It was unexpectedly found that the effect of the liquid/air flow ratio was small. Since swirling flow increased the SMD at lower air velocities yet decreased it at higher ones, it is suggested that the reverse flow near the nozzle pintle adversely affects atomization.

  13. Atomic scale chemical tomography of human bone

    Science.gov (United States)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows poten