Ballonet String Model of Molecules
Directory of Open Access Journals (Sweden)
Gavril NIAC
2008-06-01
Full Text Available Strings of ballonets, modelling rows of orbitals, are assembled to molecule models by crossing them properly. The ballonets at the ends of the strings of 2, 3, 4 or 5 spheres represent bonding orbitals of hydrogen with other elements like C, N or O (the proton being inside the sphere, as well as nonbonding orbitals. The ballonets between them are modelling bonding orbitals among elements other than hydrogen - except the double bond in diborane, the atomic cores laying at the junction of two or more spheres.Advantages of elastic sphere models range from self-adjusting bond angles to resistance when closing cycles like cyclopropane or modeling double bonds.Examples comprise alkanes, including platonic hydrocarbons, ethene, acetylene, and some inorganic molecules.
Coherent Backscattering of Light Off One-Dimensional Atomic Strings
Sørensen, H. L.; Béguin, J.-B.; Kluge, K. W.; Iakoupov, I.; Sørensen, A. S.; Müller, J. H.; Polzik, E. S.; Appel, J.
2016-09-01
We present the first experimental realization of coherent Bragg scattering off a one-dimensional system—two strings of atoms strongly coupled to a single photonic mode—realized by trapping atoms in the evanescent field of a tapered optical fiber, which also guides the probe light. We report nearly 12% power reflection from strings containing only about 1000 cesium atoms, an enhancement of 2 orders of magnitude compared to reflection from randomly positioned atoms. This result paves the road towards collective strong coupling in 1D atom-photon systems. Our approach also allows for a straightforward fiber connection between several distant 1D atomic crystals.
String order via Floquet interactions in atomic systems
Lee, Tony E.; Joglekar, Yogesh N.; Richerme, Philip
2016-08-01
We study the transverse-field Ising model with interactions that are modulated in time. In a rotating frame, the system is described by a time-independent Hamiltonian with many-body interactions, similar to the cluster Hamiltonians of measurement-based quantum computing. In one dimension, there is a three-body interaction, which leads to string order instead of conventional magnetic order. We show that the string order is robust to power-law interactions that decay with the cube of distance. In two and three dimensions, there are five- and seven-body interactions. We discuss adiabatic preparation of the ground state as well as experimental implementation with trapped ions, Rydberg atoms, and polar molecules.
Coherent backscattering of light off one-dimensional atomic strings
Sørensen, H L; Kluge, K W; Iakoupov, I; Sørensen, A S; Müller, J H; Polzik, E S; Appel, J
2016-01-01
Bragg scattering, well known in crystallography, has become a powerful tool for artificial atomic structures such as optical lattices. In an independent development photonic waveguides have been used successfully to boost quantum light-matter coupling. We combine these two lines of research and present the first experimental realisation of coherent Bragg scattering off a one-dimensional (1D) system - two strings of atoms strongly coupled to a single photonic mode - realised by trapping atoms in the evanescent field of a tapered optical fibre (TOF), which also guides the probe light. We report nearly 12% power reflection from strings containing only about one thousand caesium atoms, an enhancement of more than two orders of magnitude compared to reflection from randomly positioned atoms. This result paves the road towards collective strong coupling in 1D atom-photon systems. Our approach also allows for a straightforward fibre connection between several distant 1D atomic crystals.
String Interactions in c=1 Matrix Model
De Boer, J; Verlinde, E; Yee, J T; Boer, Jan de; Sinkovics, Annamaria; Verlinde, Erik; Yee, Jung-Tay
2004-01-01
We study string interactions in the fermionic formulation of the c=1 matrix model. We give a precise nonperturbative description of the rolling tachyon state in the matrix model, and discuss S-matrix elements of the c=1 string. As a first step to study string interactions, we compute the interaction of two decaying D0-branes in terms of free fermions. This computation is compared with the string theory cylinder diagram using the rolling tachyon ZZ boundary states.
Brane World Models Need Low String Scale
Antoniadis, Ignatios; Calmet, Xavier
2011-01-01
Models with large extra dimensions offer the possibility of the Planck scale being of order the electroweak scale, thus alleviating the gauge hierarchy problem. We show that these models suffer from a breakdown of unitarity at around three quarters of the low effective Planck scale. An obvious candidate to fix the unitarity problem is string theory. We therefore argue that it is necessary for the string scale to appear below the effective Planck scale and that the first signature of such models would be string resonances. We further translate experimental bounds on the string scale into bounds on the effective Planck scale.
QCD strings as constrained grassmannian sigma model
Viswanathan, K S; Viswanathan, K S; Parthasarathy, R
1995-01-01
We present calculations for the effective action of string world sheet in R3 and R4 utilizing its correspondence with the constrained Grassmannian sigma model. Minimal surfaces describe the dynamics of open strings while harmonic surfaces describe that of closed strings. The one-loop effective action for these are calculated with instanton and anti-instanton background, reprsenting N-string interactions at the tree level. The effective action is found to be the partition function of a classical modified Coulomb gas in the confining phase, with a dynamically generated mass gap.
A Matrix Model for Type 0 Strings
Peñalba, J P
1999-01-01
A matrix model for type 0 strings is proposed. It consists in making a non-supersymmetric orbifold projection in the Yang-Mills theory and identifying the infrared configurations of the system at infinite coupling with strings. The correct partition function is calculated. Also, the usual spectrum of branes is found. Both type A and B models are constructed. The model in a torus contains all the degrees of freedom and interpolates between the four string theories (IIA, IIB, 0A, 0B) and the M theory as different limits are taken.
On Dimer Models and Closed String Theories
Sarkar, Tapobrata
2007-01-01
We study some aspects of the recently discovered connection between dimer models and D-brane gauge theories. We argue that dimer models are also naturally related to closed string theories on non compact orbifolds of $\\BC^2$ and $\\BC^3$, via their twisted sector R charges, and show that perfect matchings in dimer models correspond to twisted sector states in the closed string theory. We also use this formalism to study the combinatorics of some unstable orbifolds of $\\BC^2$.
A rotating string model versus baryon spectra
Sonnenschein, Jacob
2014-01-01
We continue our program of describing hadrons as rotating strings with massive endpoints. In this paper we propose models of baryons and confront them with the baryon Regge trajectories. We show that these are best fitted by a model of a single string with a quark at one endpoint and a diquark at the other. This model is preferred over the Y-shaped string model with a quark at each endpoint. We show how the model follows from a stringy model of the holographic baryon which includes a baryonic vertex connected with $N_c$ strings to flavor probe branes. From fitting to baryonic data we find that there is no clear evidence for a non-zero baryonic vertex mass, but if there is such a mass it should be located at one of the string endpoints. The available baryon trajectories in the angular momentum plane $(J,M^2)$, involving light, strange, and charmed baryons, are rather well fitted when adding masses to the string endpoints, with a single universal slope $\\alp = 0.95$ GeV$^{-2}$. Most of the results for the quark...
Spontaneous excitation of a static atom in a thermal bath in cosmic string spacetime
Cai, Huabing; Yu, Hongwei; Zhou, Wenting
2015-10-01
We study the average rate of change of energy for a static atom immersed in a thermal bath of electromagnetic radiation in the cosmic string spacetime and separately calculate the contributions of thermal fluctuations and radiation reaction. We find that the transition rates are crucially dependent on the atom-string distance and polarization of the atom and they in general oscillate as the atom-string distance varies. Moreover, the atomic transition rates in the cosmic string spacetime can be larger or smaller than those in Minkowski spacetime contingent upon the atomic polarization and position. In particular, when located on the string, ground-state atoms can make a transition to excited states only if they are polarizable parallel to the string, whereas ground-state atoms polarizable only perpendicular to the string are stable as if they were in a vacuum, even if they are immersed in a thermal bath. Our results suggest that the influence of a cosmic string is very similar to that of a reflecting boundary in Minkowski spacetime.
Spontaneous excitation of a static atom in a thermal bath in cosmic string spacetime
Cai, Huabing; Zhou, Wenting
2015-01-01
We study the average rate of change of energy for a static atom immersed in a thermal bath of electromagnetic radiation in the cosmic string spacetime and separately calculate the contributions of thermal fluctuations and radiation reaction. We find that the transition rates are crucially dependent on the atom-string distance and polarization of the atom and they in general oscillate as the atom-string distance varies. Moreover, the atomic transition rates in the cosmic string spacetime can be larger or smaller than those in Minkowski spacetime contingent upon the atomic polarization and position. In particular, when located on the string, ground-state atoms can make a transition to excited states only if they are polarizable parallel to the string, whereas ground state atoms polarizable only perpendicular to the string are stable as if they were in a vacuum, even if they are immersed in a thermal bath. Our results suggest that the influence of a cosmic string is very similar to that of a reflecting boundary ...
The strings connection: MSSM-like models from strings
Energy Technology Data Exchange (ETDEWEB)
Nilles, Hans Peter [Bethe Center for Theoretical Physics (BCTP) and Physikalisches Institut der Universitaet Bonn, Bonn (Germany)
2014-05-15
String theory constructions towards the MSSM allow us to identify some general properties that could be relevant for tests at the LHC. They originate from the geometric structure of compactification and the location of fields in extra-dimensional space. Within the framework of the heterotic MiniLandscape we extract some generic lessons for supersymmetric model building. Among them is a specific pattern of SUSY breakdown based on mirage mediation and remnants of extended supersymmetry. This leads to a split spectrum with heavy scalars of the first two families of quarks and leptons and suppressed masses for gauginos, top partners and Higgs bosons. The models exhibit some specific form of hidden supersymmetry consistent with the high mass of the Higgs boson and all presently available experimental constraints. The most compelling picture is based on precision gauge coupling unification that might be in the kinematic reach of the LHC. (orig.)
Kahler stabilized, modular invariant heterotic string models
Energy Technology Data Exchange (ETDEWEB)
Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.
2007-03-19
We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.
Gauge Unification from Split Supersymmetric String Models
Kokorelis, Christos
2016-01-01
We discuss the unification of gauge coupling constants in non-supersymmetric open string vacua that possess the properties of Split Supersymmetry, namely the Standard Model with Higgsinos at low energies and where the Standard model spectrum is always accompanied by right handed neutrinos. These vacua achieve partial unification of two out of three (namely SU(3)$_c$, SU(2), U(1)) running gauge couplings, possess massive gauginos and light Higgsinos at low energies and also satisfy $sin^2\\theta_w (M_s) = 3/8$. These vacua are based on four dimensional orbifold $Z_3 \\times Z_3$ compactifications of string IIA orientifolds with D6-branes intersecting at angles, where the (four dimensional) chiral fermions of the Standard Model appear as opens strings streching between the intersections of seven dimensional objects the so called D6-branes.
String Field Equations from Generalized Sigma Model
Energy Technology Data Exchange (ETDEWEB)
Bardakci, K.; Bernardo, L.M.
1997-01-29
We propose a new approach for deriving the string field equations from a general sigma model on the world-sheet. This approach leads to an equation which combines some of the attractive features of both the renormalization group method and the covariant beta function treatment of the massless excitations. It has the advantage of being covariant under a very general set of both local and non-local transformations in the field space. We apply it to the tachyon, massless and first massive level, and show that the resulting field equations reproduce the correct spectrum of a left-right symmetric closed bosonic string.
String coupling and interactions in type IIB matrix model
Kitazawa, Yoshihisa
2008-01-01
We investigate the interactions of closed strings in IIB matrix model. The basic interaction of the closed superstring is realized by the recombination of two intersecting strings. Such interaction is investigated in IIB matrix model via two dimensional noncommutative gauge theory in the IR limit. By estimating the probability of the recombination, we identify the string coupling g_s in IIB matrix model. We confirm that our identification is consistent with matrix string theory.
Bianchi type IX string cosmological model in general relativity
Indian Academy of Sciences (India)
Raj Bali; Shuchi Dave
2001-04-01
We have investigated Bianchi type IX string cosmological models in general relativity. To get a determinate solution, we have assumed a condition ρ= i.e. rest energy density for a cloud of strings is equal to the string tension density. The various physical and geometrical aspects of the models are also discussed.
Semiclassical string spectrum in a string model dual to large N QCD
Pons, J M; Talavera, P
2004-01-01
We explore the string spectrum in the Witten QCD model by considering classical string configurations, thereby obtaining energy formulas for quantum states with large excitation quantum numbers representing glueballs and Kaluza-Klein states. In units of the string tension, the energies of all states increase as the 't Hooft coupling $\\lambda $ is decreased, except the energies of glueballs corresponding to strings lying on the horizon, which remain constant. We argue that some string solutions can be extrapolated to the small $\\lambda $ regime. We also find the classical mechanics description of supergravity glueballs in terms of point-like string configurations oscillating in the radial direction, and reproduce the glueball energy formula previously obtained by solving the equation for the dilaton fluctuation.
c=1 String as a Topological Model
Ishikawa, H
1994-01-01
The discrete states in the $c=1$ string are shown to be the physical states of a certain topological sigma model. We define a set of new fields directly from $c=1$ variables, in terms of which the BRST charge and energy-momentum tensor are rewritten as those of the topological sigma model. Remarkably, ground ring generator $x$ turns out to be a coordinate of the sigma model. All of the discrete states realize a graded ring which contains ground ring as a subset.
String Models, Stability and Regge Trajectories for Hadron States
Sharov, G S
2013-01-01
Various string models of mesons and baryons include a string carrying 2 or 3 massive points (quarks or antiquarks). Rotational states (planar uniform rotations) of these systems generate quasilinear Regge trajectories and may be used for describing excited hadron states on these trajectories. For different string models of baryon we are to solve the problem of choice between them and the stability problem for their rotational states. An unexpected result is that for the Y string baryon model these rotations are unstable with respect to small disturbances on the classical level. This instability has specific feature, disturbances grow linearly, whereas for the linear string baryon model they grow exponentially and may increase predictions for baryon's width $\\Gamma$. The classical instability of rotational states and nonstandard Regge slope are the arguments in favor of the stable simplest model of string with massive ends both for baryons and mesons. Rotational states of this model with two types of spin-orbi...
A matrix model from string field theory
Directory of Open Access Journals (Sweden)
Syoji Zeze
2016-09-01
Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.
A matrix model from string field theory
Zeze, Syoji
2016-09-01
We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N) vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large N matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.
McLeod, Roger David; McLeod, David Matthew
2009-05-01
Our hydrogen atom interacts with a neutron star. Its stringy TW/SW electron is cut by a neutrino scissor that instantly becomes its end anti-node. The string has one extra neutrino in 100,000. Antimatter remains concealed. Our Dumbo Proton of a TW state is similarly cut. Inside the star, electron string/spring compresses 100,000 and 1836 times more, to proton's linear mass density. Electrostatics encourages that caboose, stringy electron, to couple with a cut proton. Linear charge densities neutralize while composite length contracts 20%. The writhing string evicts an antineutrino at closure on Pauli's authority, becoming Mickey Neutron, with looped quarks. Unstable Mickey Neutron has his ear notch forced into an ear notch of stable Dumbo Proton, achieving immortality in this deuteron marriage. Tritium is in a m'enage a trois. Alpha Nucleus has a # grid. Meta state Ne-20 predicts alpha eviction to O-16. Schr"odinger finally prevails, so string theory and Wave Mechanics can prosper.
Willden, Jeff
2001-01-01
"Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…
An Inflationary Model in String Theory
Iizuka, N; Iizuka, Norihiro; Trivedi, Sandip P.
2004-01-01
We construct a model of inflation in string theory after carefully taking into account moduli stabilization. The setting is a warped compactification of Type IIB string theory in the presence of D3 and anti-D3-branes. The inflaton is the position of a D3-brane in the internal space. By suitably adjusting fluxes and the location of symmetrically placed anti-D3-branes, we show that at a point of enhanced symmetry, the inflaton potential V can have a broad maximum, satisfying the condition V''/V << 1 in Planck units. On starting close to the top of this potential the slow-roll conditions can be met. Observational constraints impose significant restrictions. As a first pass we show that these can be satisfied and determine the important scales in the compactification to within an order of magnitude. One robust feature is that the scale of inflation is low, H = O(10^{10}) GeV. Removing the observational constraints makes it much easier to construct a slow-roll inflationary model. Generalizations and conseque...
With string model to time series forecasting
Pinčák, Richard; Bartoš, Erik
2015-10-01
Overwhelming majority of econometric models applied on a long term basis in the financial forex market do not work sufficiently well. The reason is that transaction costs and arbitrage opportunity are not included, as this does not simulate the real financial markets. Analyses are not conducted on the non equidistant date but rather on the aggregate date, which is also not a real financial case. In this paper, we would like to show a new way how to analyze and, moreover, forecast financial market. We utilize the projections of the real exchange rate dynamics onto the string-like topology in the OANDA market. The latter approach allows us to build the stable prediction models in trading in the financial forex market. The real application of the multi-string structures is provided to demonstrate our ideas for the solution of the problem of the robust portfolio selection. The comparison with the trend following strategies was performed, the stability of the algorithm on the transaction costs for long trade periods was confirmed.
String networks with junctions in competition models
Avelino, P P; Losano, L; Menezes, J; de Oliveira, B F
2016-01-01
In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to $t^{1/2}$, where $t$ is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.
String networks with junctions in competition models
Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.
2017-03-01
In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to t 1 / 2, where t is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.
Some exact solutions of magnetized viscous model in string cosmology
Indian Academy of Sciences (India)
C P Singh
2014-07-01
In this paper, we study anisotropic Bianchi-V Universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state (EoS) for a cloud of strings, and a relationship between bulk viscous coefficient and scalar expansion. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of evolution of the Universe. This paper presents different string models like geometrical (Nambu string), Takabayasi (p-string) and Reddy string models by taking certain physical conditions. We discuss the nature of classical potential for viscous fluid with and without magnetic field. The presence of bulk viscosity stops the Universe from becoming empty in its future evolution. It is observed that the Universe expands with decelerated rate in the presence of viscous fluid with magnetic field whereas, it expands with marginal inflation in the presence of viscous fluid without magnetic field. The other physical and geometrical aspects of each string model are discussed in detail.
Observational Equivalence of Discrete String Models and Market Models
Kerkhof, F.L.J.; Pelsser, A.
2002-01-01
In this paper we show that, contrary to the claim made in Longsta, Santa-Clara, and Schwartz (2001a) and Longsta, Santa-Clara, and Schwartz (2001b), discrete string models are not more parsimonious than market models.In fact, they are found to be observationally equivalent.We derive that, for the es
Three Family Models from the Heterotic String
Raby, S
2005-01-01
In this talk I outline work done in collaboration with R.J. Zhang and T. Kobayashi. We show how to construct the equivalent of three family orbifold GUTs in five dimensions from the heterotic string. I focus on one particular model with E(6) gauge symmetry in 5D, the third family and Higgs doublet coming from the 5D bulk and the first two families living on 4D SO(10) branes. Note the E(6) gauge symmetry is broken to Pati-Salam in 4D which subsequently breaks to the Standard Model gauge symmetry via the Higgs mechanism. The model has two flaws, one fatal and one perhaps only unaesthetic. The model has a small set of vector-like exotics with fractional electromagnetic charge. Unfortunately not all of these states obtain mass at the compactification scale. This flaw is fatal. The second problem is R parity violating interactions. These problems may be avoidable in alternate orbifold compactification schemes. It is these problems which we discuss in this talk.
Signatures of low-scale string models at the LHC
Hashi, Manami
2011-01-01
Low-scale string models, in which the string scale M_s is of the order of TeV with large extra dimensions, can solve the problems of scale hierarchy and non-renormalizable quantum gravity in the standard model. String excited states of the standard model particles are possibly observed as resonances in the dijet invariant mass distribution at the LHC. There are two properties to distinguish whether the resonances are due to low-scale string or some other "new physics". One is a characteristic angular distribution in dijet events at the resonance due to spin degeneracy of string excited states, and the other is an appearance of the second resonance at a characteristic mass of second string excited states. We investigate a possibility to observe these evidences of low-scale string models by Monte Carlo simulations with a reference value of M_s = 4 TeV at sqrt{s} = 14 TeV. It is shown that spin degeneracy at the dijet resonance can be observed by looking the chi-distribution with integrated luminosity of 20 fb^-...
Cold, warm, and composite (cool) cosmic string models
Carter, B
1994-01-01
The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension $T$ below the constant value $T=m^2$ say that characterizes the simple, longitudinally Lorentz invariant, Goto Nambu string model in terms of a fixed mass scale $m$ whose magnitude depends on that of the Higgs field responsible for the existence of the string. Such a reduction occurs in the standard "hot" cosmic string model in which the effect of thermal perturbations of a simple Goto Nambu model is expressed by the formula $T^2=m^2(m^2-2\\pi\\Theta^2/3)$, where $\\Theta$ is the string temperature. A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in "cold" conducting cosmic string models where the role of the temperature is played by an effective chemical potential $\\mu$ that is constructed as the magnitude of the phase $\\phi$ of a bosonic condensate of the kind whose existence was first proposed by Witten. The present article describes the construction...
Banerjee, D; Dalmonte, M; Müller, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P
2012-10-26
Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.
Banerjee D.; Dalmonte M.; Muller M; Rico E.; Stebler P.; Wiese U.-J.; Zoller P.
2012-01-01
Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in ...
Open strings in the SL(2, R) WZWN model with solution for a rigidly rotating string
DEFF Research Database (Denmark)
Lomholt, Michael Andersen; Larsen, A.L.
2003-01-01
Boundary conditions and gluing conditions for open strings and D-branes in the SL(2, R) WZWN model, corresponding to AdS , are discussed. Some boundary conditions and gluing conditions previously considered in the literature are shown to be incompatible with the variation principle. We then consi...
Bianchi-IX string cosmological model in Lyra geometry
Indian Academy of Sciences (India)
F Rahaman; S Chakraborty; N Begum; M Hossain; M Kalam
2003-06-01
A class of cosmological solutions of massive strings for the Bianchi-IX space-time are obtained within the framework of Lyra geometry. Various physical and kinematical properties of the models are discussed.
A light Z′ heterotic-string derived model
Directory of Open Access Journals (Sweden)
Alon E. Faraggi
2015-06-01
Full Text Available The existence of an extra Z′ inspired from heterotic-string theory at accessible energy scales attracted considerable interest in the particle physics literature. Surprisingly, however, the construction of heterotic-string derived models that allow for an extra Z′ to remain unbroken down to low scales has proven to be very difficult. The main reason being that the U(1 symmetries that are typically discussed in the literature are either anomalous or have to be broken at a high scale to generate light neutrino masses. In this paper we use for that purpose the self-duality property under the spinor vector duality, which was discovered in free fermionic heterotic string models. The chiral massless states in the self-dual models fill complete 27 representations of E6. The anomaly free gauge symmetry in the effective low energy field theory of our string model is SU(4C×SU(2L×SU(2R×U(1ζ, where U(1ζ is the family universal U(1 symmetry that descends from E6, and is typically anomalous in other free fermionic heterotic-string models. Our model therefore allows for the existence of a low scale Z′, which is a combination of B−L, U(1ζ and T3R. The string model is free of exotic fractionally charged states in the massless spectrum. It contains exotic SO(10 singlet states that carry fractional, non-E6 charge, with respect to U(1ζ. These non-E6 string states arise in the model due to the breaking of the E6 symmetry by discrete Wilson lines. They represent a distinct signature of the string vacua. They may provide viable dark matter candidates.
Institute of Scientific and Technical Information of China (English)
Zhang Jin-Lu; Wang Li-Na; Zhao Xing-Yu; Zhang Li-Li; Zhou Heng-Wei; Wei Lai; Huang Yi-Neng
2011-01-01
The string model for the glass transition can quantitatively describe the universal α-relaxation in glassformers. The string relaxation equation (SRE) of the model simplifies the well-known Debye and Rouse-Zimm relaxation equations at high and low enough temperatures, respectively. However, its initial condition, necessary to the further model predictions of glassy dynamics, has not been solved. In this paper, the general initial condition of the SRE for stochastically spatially configurative strings is solved exactly based on the obtained special initial condition of the SRE for straight strings in a previous paper (J. L. Zhang et al. 2010 Chin. Phya. B 19, 056403).
Production mechanisms of charm hadrons in the string model
Norrbin, E; Norrbin, Emanuel; Sjöstrand, Torbjörn
1998-01-01
In the hadroproduction of charm in the context of string fragmentation, the pull of a beam remnant at the other end of a string may give a charm hadron more energy than the perturbatively produced charm quark. The collapse of a low-mass string to a single hadron is the extreme case in this direction, and gives rise to asymmetries between charm and anticharm hadron spectra. We study these phenomena, and develop models that describe the characteristics not only of the charm hadrons but also of the associated event.
String networks in ZN Lotka-Volterra competition models
Avelino, P. P.; Bazeia, D.; Menezes, J.; de Oliveira, B. F.
2014-01-01
In this Letter we give specific examples of ZN Lotka-Volterra competition models leading to the formation of string networks. We show that, in order to promote coexistence, the species may arrange themselves around regions with a high number density of empty sites generated by predator-prey interactions between competing species. These configurations extend into the third dimension giving rise to string networks. We investigate the corresponding dynamics using both stochastic and mean field theory simulations, showing that the coarsening of these string networks follows a scaling law which is analogous to that found in other physical systems in condensed matter and cosmology.
String Models for the Heavy Quark-Antiquark Bound States.
Tse, Sze-Man
1988-12-01
The heavy quark-antiquark bound state is examined in the phenomenological string models. Specifically, the Nambu-Goto model and the Polyakov's smooth string model are studied in the large-D limit, D being the number of transverse space-time dimensions. The static potential V(R) is extracted in both models in the large-D limit. In the former case, this amounts to the usual saddle point calculation. In the latter case, the renormalized, physical string tension is expressed in terms of the bare string tension and the extrinsic curvature coupling. A systematic loop expansion of V(R) is developed and carried out explicitly to one loop order, with the two loops result presented without detail. For large separations R, the potential is linear in R with corrections of order 1/R. The coefficient of the 1/R Luscher term has the universal value -piD/24 to any finite order in the loop expansion. For very small separations R, the potential V(R) is also proportional to 1/R with a coefficient twice that of Luscher's term. The corrections are logarithmically small. Polyakov's smooth string model is extended to the finite temperature situation. The temperature dependence of the string tension is investigated in the large-D limit. The effective string tension is calculated to the second order in the loop expansion. At low temperature, it differs from that of the Nambu-Goto model only by terms that fall exponentially with inverse temperature. Comparison of the potential V(R) in the smooth string model with lattice gauge calculation and hadron spectroscopy data yields a consistent result.
Modeling Harpsichord Plucking: The Plectrum and the String
Perng, Jack; Rossing, Thomas; Smith, Julius
2011-11-01
The harpsichord is a plucked string keyboard instrument that was popular during the Renaissance and Baroque music eras. Although it was later replaced by the more expressive piano, it has mounted a comeback due to the early music movement today. A physical model of the harpsichord's plucking mechanism is presented, detailing the plectrum-string interaction which illustrates many aspects of the harpsichord's characteristic sound.
String cosmological models in the Brans-Dicke theory for five-dimensional space-time
Institute of Scientific and Technical Information of China (English)
Koijam Manihar Singh; Kangujam Priyokumar Singh
2012-01-01
Five-dimensional space-time string cosmological models generated by a cloud of strings with particles attached to them are studied in the Brans-Dicke theory.We obtain two types of interesting models by taking up the cases of geometric strings (or Nambu strings) and p-strings (Takabayasi strings),and study their different physical and dynamical properties.The roles of the scalar field in getting different phases,such as the inflationary phase and the string-dominated phase,are discussed.An interesting feature obtained here is that in one of the models there is a "bounce" at a particular instant of its evolution.
Matrix models, topological strings, and supersymmetric gauge theories
Dijkgraaf, Robbert; Vafa, Cumrun
2002-11-01
We show that B-model topological strings on local Calabi-Yau threefolds are large- N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover ( p, q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.
Directory of Open Access Journals (Sweden)
Eger Steffen
2016-04-01
Full Text Available We consider the isolated spelling error correction problem as a specific subproblem of the more general string-to-string translation problem. In this context, we investigate four general string-to-string transformation models that have been suggested in recent years and apply them within the spelling error correction paradigm. In particular, we investigate how a simple ‘k-best decoding plus dictionary lookup’ strategy performs in this context and find that such an approach can significantly outdo baselines such as edit distance, weighted edit distance, and the noisy channel Brill and Moore model to spelling error correction. We also consider elementary combination techniques for our models such as language model weighted majority voting and center string combination. Finally, we consider real-world OCR post-correction for a dataset sampled from medieval Latin texts.
Dense String Networks and the One Scale Model with Friction
Aulakh, Charanjit S; Soni, V; Aulakh, Charanjit S.; Nagasawa, Michiyasu; Soni, Vikram
1999-01-01
We examine the behaviour of string networks with the initial string length densities ($ \\sim T_c^2$) and velocities ($ \\sim 1$) expected on the basis of the Kibble mechanism for string formation during a second order phase transition at $T_c$ in the context of the one scale model with friction. The inclusion of friction and use of the natural initial conditions modifies the current picture of string networks in a basic way.We find that a novel transient regime takes the initially dense and fast network to a sparse (string length density $\\sim T_c^3/M_P$) and slow ($v \\sim (T_c/M_P)^{1/2}$) state in a very short time $\\sim 0.1 t_c$ (where $t_c$ is the time of the phase transition that produces the strings). This allows it to join smoothly on to the well known Kibble Regime which prevails at late times in the friction dominated epoch (with the network scale $L\\sim t^{5/4}$ while the network r.m.s velocity $v \\sim t^{1/4}$) which requires initial conditions of this magnitude. Thus essentially irrespective of str...
Muon anomalous magnetic moment in string inspired extended family models
Kephart, T W
2002-01-01
We propose a standard model minimal extension with two lepton weak SU(2) doublets and a scalar singlet to explain the deviation of the measured anomalous magnetic moment of the muon from the standard model expectation. This scheme can be naturally motivated in string inspired models such as E_6 and AdS/CFT.
Super no-scale models in string theory
Kounnas, Costas
2016-01-01
We consider "super no-scale models" in the framework of the heterotic string, where the N=4,2,1 --> 0 spontaneous breaking of supersymmetry is induced by geometrical fluxes realizing a stringy Scherk-Schwarz perturbative mechanism. Classically, these backgrounds are characterized by a boson/fermion degeneracy at the massless level, even if supersymmetry is broken. At the 1-loop level, the vacuum energy is exponentially suppressed, provided the supersymmetry breaking scale is small, m_{3/2} << M_{string}. We show that the "super no-scale string models" under consideration are free of Hagedorn-like tachyonic singularities, even when the supersymmetry breaking scale is large, m_{3/2} ~ M_{string}. The vacuum energy decreases monotonically and converges exponentially to zero, when m_{3/2} varies from M_{string} to 0. We also show that all Wilson lines associated to asymptotically free gauge symmetries are dynamically stabilized by the 1-loop effective potential, while those corresponding to non-asymtoticall...
String networks in generalized May-Leonard models
Avelino, P P; Menezes, J; de Oliveira, B F
2013-01-01
Generalized May-Leonard models have proven to be a powerful tool in the study of the dynamics complex biological and ecological systems. In this letter we give specific examples of models leading to the formation of string networks. We show that, in order to promote coexistence, the species may arrange themselves around regions with a high number density of empty sites generated by predator-prey interactions between competing species. These configurations extend into the third dimension giving rise to string networks. We investigate the corresponding dynamics using both stochastic and mean field theory simulations, showing that the coarsening of these string networks follows a scaling law which is analogous to that found in other physical systems in condensed matter and cosmology.
String Cosmological Models in Five-Dimensional Spacetimes
Institute of Scientific and Technical Information of China (English)
Sanjay Oli
2009-01-01
We present some classes of solutions for dust matter coupled to the string cloud in five-dimensional Kaluza-Klein spacetimes. The solutions have one or two distinct singularities depending upon the sign of the constant of integration. Some of the classes of models exhibit inflation in the initial stage. The behaviour of associated parameters has been discussed in detail.
Numerical Study of the Simplest String Bit Model
Chen, Gaoli
2016-01-01
String bit models provide a possible method to formulate string as a discrete chain of point-like string bits. When the bit number $M$ is large, a chain behaves as a continuous string. We study the simplest case that has only one bosonic bit and one fermionic bit. The creation and annihilation operators are adjoint representations of $U\\left(N\\right)$ color group. We show that the supersymmetry reduces the parameter number of a Hamiltonian from seven to three and, at $N=\\infty$, ensures continuous energy spectrum, which implies the emergence of one spatial dimension. The Hamiltonian $H_{0}$ is constructed so that in large $N$ limit it produces a worldsheet spectrum with one grassmann worldsheet field. We concentrate on numerical study of the model in finite $N$. For the Hamiltonian $H_{0}$, we find that the would-be ground energy states disappear at $N=\\left(M-1\\right)/2$ for odd $M\\leq11$. Such a simple pattern is spoiled if $H$ has an additional term $\\xi\\Delta H$ which does not affect the result of $N=\\inf...
Dynamics in Nonlocal Cosmological Models Derived from String Field Theory
Joukovskaya, Liudmila
2007-01-01
A general class of nonlocal cosmological models is considered. A new method for solving nonlocal Friedmann equations is proposed, and solutions of the Friedmann equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed. Especially indicated is $p$-adic cosmological model in which we have obtained nonsingular bouncing solution and string field theory tachyon model in which we have obtained full solution of nonlocal Friedmann equations with $w=...
String-like dual models for scalar theories
Baadsgaard, Christian; Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob; Damgaard, Poul H.
2016-12-01
We show that all tree-level amplitudes in φ p scalar field theory can be represented as the α ' → 0 limit of an SL(2, ℝ)-invariant, string-theory-like dual model integral. These dual models are constructed according to constraints that admit families of solutions. We derive these dual models, and give closed formulae for all tree-level amplitudes of any φ p scalar field theory.
String-Like Dual Models for Scalar Theories
Baadsgaard, Christian; Bourjaily, Jacob L; Damgaard, Poul H
2016-01-01
We show that all tree-level amplitudes in $\\varphi^p$ scalar field theory can be represented as the $\\alpha'\\to0$ limit of an $SL(2,R)$-invariant, string-theory-like dual model integral. These dual models are constructed according to constraints that admit families of solutions. We derive these dual models, and give closed formulae for all tree-level amplitudes of any $\\varphi^p$ scalar field theory.
Matrix Models, Topological Strings, and Supersymmetric Gauge Theories
Dijkgraaf, R; Dijkgraaf, Robbert; Vafa, Cumrun
2002-01-01
We show that B-model topological strings on local Calabi-Yau threefolds are large N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover (p,q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.
Matrix models, topological strings, and supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, Robbert E-mail: rhd@science.uva.nl; Vafa, Cumrun
2002-11-11
We show that B-model topological strings on local Calabi-Yau threefolds are large-N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover (p,q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.
Bianchi type-V string cosmological models in general relativity
Indian Academy of Sciences (India)
Anil Kumar Yadav; Vineet Kumar Yadav; Lallan Yadav
2011-04-01
Bianchi type-V string cosmological models in general relativity are investigated. To get the exact solution of Einstein’s ﬁeld equations, we have taken some scale transformations used by Camci et al [Astrophys. Space Sci. 275, 391 (2001)]. It is shown that Einstein’s ﬁeld equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. Some physical and geometrical aspects of the models are discussed.
Nielsen, Holger B
2014-01-01
Bosonic string theory with the possibility for an arbitrary number of strings - i.e. a string ?eld theory - is formulated by a Hilbert space (a Fock space), which is just that for massless noninteracting scalars. We earlier presented this novel type of string ?eld theory, but now we show that it leads to scattering just given by the Veneziano model amplitude. Generalization to strings with fermion modes would presumably be rather easy. It is characteristic for our formulation /model that: 1) We have thrown away some null set of information compared to usual string ?eld theory, 2)Formulated in terms of our \\objects" (= the non-interacting scalars) there is no interaction and essentially no time development(Heisenberg picture), 3) so that the S-matrix is in our Hilbert space given as the unit matrix, S=1, and 4) the Veneziano scattering amplitude appear as the overlap between the initial and the ?nal state described in terms of the \\objects". 5) The integration in the Euler beta function making up the Veneziano...
Gauge and Matter Condensates in Realistic String Models
Kalara, S; Pages, D N
1992-01-01
We examine the inter-relationship of the superpotential containing hidden and observable matter fields and the ensuing condensates in free fermionic string models. These gauge and matter condensates of the strongly interacting hidden gauge groups play a crucial role in the determination of the physical parameters of the observable sector. Supplementing the above information with the requirement of modular invariance, we find that a generic model with only trilinear superpotential allows for a degenerate (and sometimes pathological) set of vacua. This degeneracy may be lifted by higher order terms in the superpotential. We also point out some other subtle points that may arise in calculations of this nature. We exemplify our observations by computing explicitly the modular invariant gaugino and matter condensates in the flipped $SU(5)$ string model with hidden gauge group $SO(10)\\times SU(4)$.
On the nonlinear models of the vibrating string
Watzky, Alexandre
2005-09-01
Vibrations of strings (threads, wires, cables...) are of great interest because of their various domains of application. In musical acoustics, phenomena which could have been neglected elsewhere take a particular importance since perception, which is very sensitive to nonlinear effects, is involved. Some phenomena can also be emphasized when a string is coupled to a sound-radiating structure. Reliable physical models are thus necessary to account for these phenomena, and to understand the true behavior of a vibrating string. Despite the fact that the first nonlinear models were published more than one century ago, and that accurate equations of motion can be naturally achieved within a finite displacement continuum mechanics framework, general models never received the attention they deserved, most authors focusing on particular phenomena and often settling on approximate models. This can be explained by the awkward multiplicity of the involved phenomena. The aim of this presentation is to discuss the consequences of some common assumptions and the true nature of some observed couplings. Particular attention will be paid to the preponderance of the spatial shape of the modes, which are usually underestimated with respect to their temporal form.
Stability of string defects in models of non-Abelian symmetry breaking
Thatcher, M J
1999-01-01
In this paper we describe a new type of topological defect, called a homilia string, which is stabilized via interactions with the string network. Using analytical and numerical techniques, we investigate the stability and dynamics of homilia strings, and their implications for cosmology. In SU(N) models of symmetry breaking, monopoles are identified with the intersection of two homilia strings. Due to repulsive forces, the homilia strings seperate, resulting in monopole annihilation. Homilia string loops cannot stabilize as vortons, which circumvents the adverse cosmological consequences of stable loops. In principle, measurments of the cosmic microwave background can distinguish between the smaller fluctuations induced by a homilia string network and those due to primordial cosmic strings.
Dilaton Stabilization in Three-generation Heterotic String Model
Beye, Florian; Kuwakino, Shogo
2016-01-01
We study dilaton stabilization in heterotic string models. By utilizing the asymmetric orbifold construction, we construct an explicit three-generation model whose matter content in the visible sector is the supersymmetric standard model with additional vectorlike matter. This model does not contain any geometric moduli fields except the dilaton field. Model building at a symmetry enhancement point in moduli space enlarges the rank of the hidden gauge group. By analyzing multiple hidden gauge sectors, the dilaton field is stabilized by the racetrack mechanism. We also discuss a supersymmetry breaking scenario and F-term uplifting.
Dilaton stabilization in three-generation heterotic string model
Directory of Open Access Journals (Sweden)
Florian Beye
2016-09-01
Full Text Available We study dilaton stabilization in heterotic string models. By utilizing the asymmetric orbifold construction, we construct an explicit three-generation model whose matter content in the visible sector is the supersymmetric standard model with additional vectorlike matter. This model does not contain any geometric moduli fields except the dilaton field. Model building at a symmetry enhancement point in moduli space enlarges the rank of the hidden gauge group. By analyzing multiple hidden gauge sectors, the dilaton field is stabilized by the racetrack mechanism. We also discuss a supersymmetry breaking scenario and F-term uplifting.
Dilaton stabilization in three-generation heterotic string model
Beye, Florian; Kobayashi, Tatsuo; Kuwakino, Shogo
2016-09-01
We study dilaton stabilization in heterotic string models. By utilizing the asymmetric orbifold construction, we construct an explicit three-generation model whose matter content in the visible sector is the supersymmetric standard model with additional vectorlike matter. This model does not contain any geometric moduli fields except the dilaton field. Model building at a symmetry enhancement point in moduli space enlarges the rank of the hidden gauge group. By analyzing multiple hidden gauge sectors, the dilaton field is stabilized by the racetrack mechanism. We also discuss a supersymmetry breaking scenario and F-term uplifting.
Non Self-conjugate Strings, Singular Strings and Rigged Configurations in the Heisenberg Model
Deguchi, Tetsuo
2014-01-01
It is observed that there exists a different kind of string solutions in the isotropic Heisenberg spin 1/2 chain starting from $N=12$, where the central rapidity of the odd strings become complex making the strings non self conjugate individually. We show that there are at most (N-2)/2 singular highest weight solutions for M=4, M=5, and for N\\geq 2M and at most (N^2-6N+8)/8 singular solutions for M=6 , M=7 and for N\\geq 2M in an even length chain. Correspondence of the non self conjugate string as well as singular string solutions with the Rigged configurations is also discussed.
Model of Polyakov duality: String field theory Hamiltonians from Yang-Mills theories
Periwal, Vipul
2000-08-01
Polyakov has conjectured that Yang-Mills theory should be equivalent to a noncritical string theory. I point out, based on the work of Marchesini, Ishibashi, Kawai and collaborators, and Jevicki and Rodrigues, that the loop operator of the Yang-Mills theory is the temporal gauge string field theory Hamiltonian of a noncritical string theory. The consistency condition of the string interpretation is the zig-zag symmetry emphasized by Polyakov. I explicitly show how this works for the one-plaquette model, providing a consistent direct string interpretation of the unitary matrix model for the first time.
A matrix model for Misner universe and closed string tachyons
Energy Technology Data Exchange (ETDEWEB)
She Jianhuang [Institute of Theoretical Physics, Chinese Academy of Science, P.O.Box 2735, Beijing 100080 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100080 (China)
2006-01-15
We use D-instantons to probe the geometry of Misner universe, and calculate the world volume field theory action, which is of the 1+0 dimensional form and highly non-local. Turning on closed string tachyons, we see from the deformed moduli space of the D-instantons that the spacelike singularity is removed and the region near the singularity becomes a fuzzy cone, where space and time do not commute. When realized cosmologically there can be controllable trans-planckian effects. And the infinite past is now causally connected with the infinite future, thus also providing a model for big crunch/big bang transition. In the spirit of IKKT matrix theory, we propose that the D-instanton action here provides a holographic description for Misner universe and time is generated dynamically. In addition we show that winding string production from the vacua and instability of D-branes have simple uniform interpretations in this second quantized formalism.
Variable Tension, Large Deflection Ideal String Model For Transverse Motions
Ciblak, Namik
2013-01-01
In this study a new approach to the problem of transverse vibrations of an ideal string is presented. Unlike previous studies, assumptions such as constant tension, inextensibility, constant crosssectional area, small deformations and slopes are all removed. The main result is that, despite such relaxations in the model, not only does the final equation remain linear, but, it is exactly the same equation obtained in classical treatments. First, an "infinitesimals" based analysis, similar to historical methods, is given. However, an alternative and much stronger approach, solely based on finite quantities, is also presented. Furthermore, it is shown that the same result can also be obtained by Lagrangian mechanics, which indicates the compatibility of the original method with those based on energy and variational principles. Another interesting result is the relation between the force distribution and string displacement in static cases, which states that the force distribution per length is proportional to th...
Abelian cosmic string in the extended Starobinsky model of gravity
Graça, J P Morais
2016-01-01
We analyze numerically the behaviour of the solutions corresponding to an Abelian cosmic string taking into account an extension of the Starobinsky model, where the action of general relativity is replaced by $f(R) = R - 2\\Lambda + \\eta R^2 + \\rho R^m$, with $m > 2$. As an interesting result, we find that the angular deficit which characterizes the cosmic string decreases as the parameters $\\eta$ and $\\rho$ increase. We also find that the cosmic horizon due to the presence of a cosmological constant is affected in such a way that it can grows or shrinks, depending on the vacuum expectation value of the scalar field and on the value of the cosmological constant
A matrix model for Misner universe and closed string tachyons
She, Jian-Huang
2006-01-01
We use D-instantons to probe the geometry of Misner universe, and calculate the world volume field theory action, which is of the 1+0 dimensional form and highly non-local. Turning on closed string tachyons, we see from the deformed moduli space of the D-instantons that the spacelike singularity is removed and the region near the singularity becomes a fuzzy cone, where space and time do not commute. When realized cosmologically there can be controllable trans-planckian effects. And the infinite past is now causally connected with the infinite future, thus also providing a model for big crunch/big bang transition. In the spirit of IKKT matrix theory, we propose that the D-instanton action here provides a holographic description for Misner universe and time is generated dynamically. In addition we show that winding string production from the vacua and instability of D-branes have simple uniform interpretations in this second quantized formalism.
A Model of Graceful Exit in String Cosmology
Brustein, Ram; Brustein, Ram; Madden, Richard
1998-01-01
We construct, for the first time, a model of graceful exit transition from a dilaton-driven inflationary phase to a decelerated Friedman-Robertson-Walker era. Exploiting a demonstration that classical corrections can stabilize a high curvature string phase while the evolution is still in the weakly coupled regime, we show that if additional terms of the type that may result from quantum corrections to the string effective action exist, and induce violation of the null energy condition, then evolution towards a decelerated Friedman-Robertson-Walker phase is possible. We also observe that stabilizing the dilaton at a fixed value, either by capture in a potential minimum or by radiation production, may require that these quantum corrections are turned off, perhaps by non-perturbative effects or higher order contributions which overturn the null energy condition violation.
Phenomenological Hints from a Class of String Motivated Model Constructions
Directory of Open Access Journals (Sweden)
Hans Peter Nilles
2015-01-01
Full Text Available We use string theory constructions towards the generalisation of the supersymmetric standard model of strong and electroweak interactions. Properties of the models depend crucially on the location of fields in extradimensional compact space. This allows us to extract some generic lessons for the phenomenological properties of the low energy effective action. Within this scheme we present a compelling model based on local grand unification and mirage mediation of supersymmetry breakdown. We analyse the properties of the specific model towards its possible tests at the LHC and the complementarity to direct dark matter searches.
Bianchi Type Ⅲ String Cosmological Model with Bulk Viscosity
Institute of Scientific and Technical Information of China (English)
WANGXing-Xiang
2004-01-01
The Bianchi type Ⅲ cosmological model for a cloud string with bulk viscosity are presented. To obtain a determinate model, an equation of state ρ=kλ and a relation between metric potentials B = Cn are assumed. The physical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuously expanding universe with a big-bang start, and the relation between the coefficient of bulk viscosity and the energy density is ζ∝ρ1/2.
Bianchi Type Ⅲ String Cosmological Model with Bulk Viscosity
Institute of Scientific and Technical Information of China (English)
WANG Xing-Xiang
2004-01-01
The Bianchi type Ⅲ cosmological model for a cloud string with bulk viscosity are presented. To obtaina determinate model, an equation of state p = κλ and a relation between metric potentials B = Cn are assumed. Thephysical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuouslyexpanding universe with a big-bang start, and the relation between the coefficient of bulk viscosity and the energy densityis ζ∝1 p1/2.
Detectability of the second resonance of low-scale string models at the LHC
Hashi, Manami
2012-01-01
Low-scale string models are phenomenological models in String Theory, in which the string scale M_s is of the order of TeV. String excited states which are characteristic modes in low-scale string models can be observed as resonances in dijet invariant mass distributions at the LHC. If a new heavy resonance is discovered at the LHC, it is important to investigate whether the resonance comes from low-scale string models. In this work, two analyses are performed: One is observing higher spin degeneracy of string excited states by an angular distribution analysis on the resonance, since the string resonance consists of several degenerate states with different spins. The other is observing second string excited states by a search for a second resonance in dijet invariant mass distributions, since second string excited states have characteristic masses of sqrt{2} times of masses of first string excited states. As the result of Monte Carlo simulations assuming the 14 TeV LHC, we give required luminosities for 5 sig...
Non self-conjugate strings, singular strings and rigged configurations in the Heisenberg model
Deguchi, Tetsuo; Ranjan Giri, Pulak
2015-02-01
We observe a different type of complex solutions in the isotropic spin-1/2 Heisenberg chain starting from N = 12, where the central rapidity of some of the odd-length strings becomes complex so that not all the strings self-conjugate individually. We show that there are at most (N - 2)/2 singular solutions for M = 4, M = 5 down-spins and at most (N2 - 6N + 8)/8 singular solutions for M = 6, M = 7 down-spins in an even-length chain with N ⩾ 2M. Correspondence of the non self-conjugate string solutions and the singular string solutions to the rigged configurations has also been shown.
From topological strings to minimal models
Foda, Omar
2015-01-01
We glue four refined topological vertices to obtain a $U(2)$ web partition function $\\mathcal{W}_{\\, \\bf V \\, W \\, \\Delta} [q, t, R]$, where ${\\bf V}$ and ${\\bf W}$ are two pairs of Young diagrams, ${\\bf \\Delta}$ is a set of K\\"ahler parameters, $q$ and $t$ are deformation parameters, and $R$ is the radius of the $M$-theory circle. We show that there is 1. a choice of ${\\bf \\Delta}$, $q$ and $t$ as functions of $R$ and two co-prime integers $p$ and $p^{\\prime}$ , and 2. a restriction of ${\\bf V}$ and ${\\bf W}$ to partition pairs that obey $p$- and $p^{\\prime}$-dependent conditions, such that we obtain a restricted version of $\\mathcal{W}_{\\, \\bf V \\, W \\, \\Delta} [q, t, R]$ that 1. is manifestly free of non-physical singularities, and 2. reduces in the $R \\! \\rightarrow \\! 0$ limit to a building block of restricted versions of the 4D $U(2)$ quiver instanton partition functions. The latter are equal, using the AGT correspondence, to conformal blocks of Virasoro $A$-series minimal models parameterised by $p$ an...
Perturbation theory for string sigma models
Bianchi, Lorenzo
2016-01-01
In this thesis we investigate quantum aspects of the Green-Schwarz superstring in various AdS backgrounds relevant for the AdS/CFT correspondence, providing several examples of perturbative computations in the corresponding integrable sigma-models. We start by reviewing in details the supercoset construction of the superstring action in $AdS_5 \\times S^5$, pointing out the limits of this procedure for $AdS_4$ and $AdS_3$ backgrounds. For the $AdS_4 \\times CP^3$ case we give a thorough derivation of an alternative action, based on the double-dimensional reduction of eleven-dimensional super-membranes. We then consider the expansion about the BMN vacuum and the S-matrix for the scattering of worldsheet excitations in the decompactification limit. To evaluate its elements efficiently we describe a unitarity-based method resulting in a very compact formula yielding the cut-constructible part of any one-loop two-dimensional S-matrix. In the second part of this review we analyze the superstring action on $AdS_4 \\ti...
Super no-scale models in string theory
Kounnas, Costas; Partouche, Hervé
2016-12-01
We consider "super no-scale models" in the framework of the heterotic string, where the N = 4 , 2 , 1 → 0 spontaneous breaking of supersymmetry is induced by geometrical fluxes realizing a stringy Scherk-Schwarz perturbative mechanism. Classically, these backgrounds are characterized by a boson/fermion degeneracy at the massless level, even if supersymmetry is broken. At the 1-loop level, the vacuum energy is exponentially suppressed, provided the supersymmetry breaking scale is small, m3/2 ≪Mstring. We show that the "super no-scale string models" under consideration are free of Hagedorn-like tachyonic singularities, even when the supersymmetry breaking scale is large, m3/2 ≃Mstring. The vacuum energy decreases monotonically and converges exponentially to zero, when m3/2 varies from Mstring to 0. We also show that all Wilson lines associated to asymptotically free gauge symmetries are dynamically stabilized by the 1-loop effective potential, while those corresponding to non-asymptotically free gauge groups lead to instabilities and condense. The Wilson lines of the conformal gauge symmetries remain massless. When stable, the stringy super no-scale models admit low energy effective actions, where decoupling gravity yields theories in flat spacetime, with softly broken supersymmetry.
Sequestered String Models: Supersymmetry Breaking and Cosmological Applications
Muia, Francesco
2016-01-01
In the present thesis I studied the phenomenology arising from a class of string models called sequestered compactifications, which were born with the aim of getting low-energy SUSY from strings. This is not an easy task if combined with cosmological constraints, since the mechanism of moduli stabilization fixes both the scale of supersymmetric particles and the scale of moduli, which tend to be of the same order. However, if on the one hand supersymmetric particles with TeV mass are desired in order to address the hierarchy problem, on the other hand the cosmological moduli problem requires the moduli to be heavier than 100 TeV. The specific setup of sequestered compactifications makes this hierarchy achievable, at least in principle: as in these models the visible sector is located on a stack of D3-branes at singularities, a physical separation between the visible degrees of freedom and the SUSY-breaking sources takes place. Such decoupling translates into a hierarchy between the scale of SUSY-breaking and ...
Resolution of overlapping ambiguity strings based on maximum entropy model
Institute of Scientific and Technical Information of China (English)
ZHANG Feng; FAN Xiao-zhong
2006-01-01
The resolution of overlapping ambiguity strings (OAS) is studied based on the maximum entropy model.There are two model outputs,where either the first two characters form a word or the last two characters form a word.The features of the model include one word in context of OAS,the current OAS and word probability relation of two kinds of segmentation results.OAS in training text is found by the combination of the FMM and BMM segmentation method.After feature tagging they are used to train the maximum entropy model.The People Daily corpus of January 1998 is used in training and testing.Experimental results show a closed test precision of 98.64% and an open test precision of 95.01%.The open test precision is 3,76% better compared with that of the precision of common word probability method.
Supersymmetric standard model from the heterotic string (II)
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamaguchi, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Tokyo Univ. (Japan). Dept. of Physics; Lebedev, O.; Ratz, M. [Bonn Univ. (Germany). Physikalisches Inst.
2006-06-15
We describe in detail a Z{sub 6} orbifold compactification of the heterotic E{sub 8} x E{sub 8} string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)
A numerical study of the string function using a primitive equation ocean model
Tyler, R. H.; Käse, R.
We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.
Energy Technology Data Exchange (ETDEWEB)
Altsybeev, Igor [St. Petersburg State University (Russian Federation)
2016-01-22
In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions.
Zörnig, Peter
2015-08-01
We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.
The Consensus String Problem and the Complexity of Comparing Hidden Markov Models
DEFF Research Database (Denmark)
Lyngsø, Rune Bang; Pedersen, Christian Nørgaard Storm
2002-01-01
The basic theory of hidden Markov models was developed and applied to problems in speech recognition in the late 1960s, and has since then been applied to numerous problems, e.g. biological sequence analysis. Most applications of hidden Markov models are based on efficient algorithms for computing...... the probability of generating a given string, or computing the most likely path generating a given string. In this paper we consider the problem of computing the most likely string, or consensus string, generated by a given model, and its implications on the complexity of comparing hidden Markov models. We show...... that computing the consensus string, and approximating its probability within any constant factor, is NP-hard, and that the same holds for the closely related labeling problem for class hidden Markov models. Furthermore, we establish the NP-hardness of comparing two hidden Markov models under the L∞- and L1...
Detailed string stability analysis for bi-directional optimal velocity model
Institute of Scientific and Technical Information of China (English)
郑亮
2015-01-01
The class of bi-directional optimal velocity models can describe the bi-directional looking effect that usually exists in the reality and is even enhanced with the development of the connected vehicle technologies. Its combined string stability condition can be obtained through the method of the ring-road based string stability analysis. However, the partial string stability about traffic fluctuation propagated backward or forward was neglected, which will be analyzed in detail in this work by the method of transfer function and its H∞norm from the viewpoint of control theory. Then, through comparing the conditions of combined and partial string stabilities, their relationships can make traffic flow be divided into three distinguishable regions, displaying various combined and partial string stability performance. Finally, the numerical experiments verify the theoretical results and find that the final displaying string stability or instability performance results from the accumulated and offset effects of traffic fluctuations propagated from different directions.
Heat string model of bi-dimensional dc Glidarc
Pellerin, S.; Richard, F.; Chapelle, J.; Cormier, J.-M.; Musiol, K.
2000-10-01
The gliding arc discharge (`Glidarc') is the subject of renewed interest in application to a variety of chemical reactions. The gliding arc creates a weakly ionized gas `string' between two horn-shaped electrodes. In this paper, we present a simple model for a bi-dimensional dc Glidarc working in air, in which the conducting zone of the discharge that is heated by the Joule effect is considered as a hot wire cooled by an air flow. Inside this wire, the heat transfer results from thermal conduction. The exchange of heat between the hot wire and the air flow is assured by convection and depends on the wire radius and the relative velocity of the arc with respect to the gas flow. The model correctly describes experimental results and allows us to predict the working parameters of the Glidarc in different experimental situations.
Spinors, strings, integrable models, and decomposed Yang-Mills theory
Ioannidou, Theodora; Jiang, Ying; Niemi, Antti J.
2014-07-01
This paper deals with various interrelations between strings and surfaces in three-dimensional ambient space, two-dimensional integrable models, and two-dimensional and four-dimensional decomposed SU(2) Yang-Mills theories. Initially, a spinor version of the Frenet equation is introduced in order to describe the differential geometry of static three-dimensional stringlike structures. Then its relation to the structure of the su_(2) Lie algebra valued Maurer-Cartan one-form is presented, while by introducing time evolution of the string a Lax pair is obtained, as an integrability condition. In addition, it is shown how the Lax pair of the integrable nonlinear Schrödinger equation becomes embedded into the Lax pair of the time extended spinor Frenet equation, and it is described how a spinor-based projection operator formalism can be used to construct the conserved quantities, in the case of the nonlinear Schrödinger equation. Then the Lax pair structure of the time extended spinor Frenet equation is related to properties of flat connections in a two-dimensional decomposed SU(2) Yang-Mills theory. In addition, the connection between the decomposed Yang-Mills and the Gauß-Codazzi equation that describes surfaces in three-dimensional ambient space is presented. In that context the relation between isothermic surfaces and integrable models is discussed. Finally, the utility of the Cartan approach to differential geometry is considered. In particular, the similarities between the Cartan formalism and the structure of both two-dimensional and four-dimensional decomposed SU(2) Yang-Mills theories are discussed, while the description of two-dimensional integrable models as embedded structures in the four-dimensional decomposed SU(2) Yang-Mills theory are presented.
Affleck-Dine Baryogenesis in Type IIB String Models
Allahverdi, Rouzbeh; Muia, Francesco
2016-01-01
We present a viable string embedding of Affleck-Dine baryogenesis in type IIB sequestered models where the late-time decay of the lightest modulus reheats the universe to relatively low temperatures. We show that if inflation is driven by a blow-up Kaehler modulus, the Affleck-Dine field can become tachyonic during inflation if the Kaehler metric for matter fields has an appropriate inflaton-dependent contribution. We find that the Affleck-Dine mechanism can generate the observed baryon asymmetry for natural values of the underlying parameters which lead also to successful inflation and low-energy gaugino masses in a split supersymmetry scenario. The reheating temperature from the lightest modulus decay is high enough to allow thermal Higgsino-like dark matter.
Affleck-Dine baryogenesis in type IIB string models
Allahverdi, Rouzbeh; Cicoli, Michele; Muia, Francesco
2016-06-01
We propose a possible string embedding of Affleck-Dine baryogenesis in type IIB sequestered models where the late-time decay of the lightest modulus reheats the universe to relatively low temperatures. We show that if inflation is driven by a blow-up Kähler modulus, the Affleck-Dine field can become tachyonic during inflation if the Kähler metric for matter fields has an appropriate inflaton-dependent contribution. We find that the Affleck-Dine mechanism can generate the observed baryon asymmetry for natural values of the underlying parameters which lead also to successful inflation and low-energy gaugino masses in a split supersymmetry scenario. The reheating temperature from the lightest modulus decay is high enough to allow thermal Higgsino-like dark matter.
Discussing string extensions of the Standard Model in D brane world
Di Vecchia, P
2009-01-01
In this talk we will describe the problems that one encounters when one tries to connect string theory with particle phenomenology. Then, in order to have chiral matter describing quarks and leptons, we introduce the magnetized D branes. Finally, as an explicit example of a string extension of the Standard Model, we will describe the one constructed by Ibanez, Marchesano and Rabadan.
Discussing string extensions of the Standard Model in D brane world
Energy Technology Data Exchange (ETDEWEB)
Di Vecchia, Paolo [Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen O (Denmark); NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)
2009-01-15
In this talk we will describe the problems that one encounters when one tries to connect string theory with particle phenomenology. Then, in order to have chiral matter describing quarks and leptons, we introduce the magnetized D branes. Finally, as an explicit example of a string extension of the Standard Model, we will describe the one constructed by Ibanez, Marchesano and Rabadan.
Noncommutative-geometry model for closed bosonic strings
Sen, Siddhartha; Holman, R.
1987-01-01
It is shown how Witten's (1986) noncommutative geometry may be extended to describe the closed bosonic string. For closed strings, an explicit representation is provided of the integral operator needed to construct an action and of an associative product on string fields. The proper choice of the action of the integral operator and the associative product in order to give rise to a reasonable theory is explained, and the consequences of such a choice are discussed. It is shown that the ghost numbers of the operator and associative product can be chosen arbitrarily for both open and closed strings, and that this construct can be used as an action for interacting closed bosonic strings.
LRS Bianchi type-II string cosmological models in a modified theory of gravitation
Kanakavalli, T.; Ananda Rao, G.; Reddy, D. R. K.
2017-03-01
This paper is devoted to the investigation of spatially homogeneous anisotropic LRS Bianchi type-II cosmological models with string source in a modified theory of gravitation formulated by Harko et al. (Phys. Rev. D 84:024020, 2011) which is universally known as f( R, T) gravity. Here R is the Ricci scalar and T is the trace of the energy momentum tensor. By solving the field equation we have presented massive string and Takabyasi or p-string models in this theory. However it is interesting to note that geometric string in this space-time does not exist in this theory. Physical and geometrical properties of the strings obtained are also discussed.
Integrable Models, SUSY Gauge Theories, and String Theory
Nam, S
1996-01-01
We consider the close relation between duality in N=2 SUSY gauge theories and integrable models. Vario us integrable models ranging from Toda lattices, Calogero models, spinning tops, and spin chains are re lated to the quantum moduli space of vacua of N=2 SUSY gauge theories. In particular, SU(3) gauge t heories with two flavors of massless quarks in the fundamental representation can be related to the spec tral curve of the Goryachev-Chaplygin top, which is a Nahm's equation in disguise. This can be generaliz ed to the cases with massive quarks, and N_f = 0,1,2, where a system with seven dimensional phas e space has the relevant hyperelliptic curve appear in the Painlevé test. To understand the stringy o rigin of the integrability of these theories we obtain exact nonperturbative point particle limit of ty pe II string compactified on a Calabi-Yau manifold, which gives the hyperelliptic curve of SU(2) QCD w ith N_f =1 hypermultiplet.
Model dependence of baryon decay enhancement by cosmic strings
Fewster, C J
1993-01-01
Cosmic strings arising from GUTs can catalyse baryon decay processes with strong interaction cross sections. We examine the mechanism by which the cross section is enhanced and find that it depends strongly on the details of the distribution of gauge fields within the string core. We propose a calculational scheme for estimating wavefunction amplification factors and also a physical understanding of the nature of the enhancement process.
Tsekov, R
2014-01-01
The finite size effect of electron and nucleus is accounted for in the model of atom. Due to their hard sphere repulsion the energy of the 1s orbital decreases and the corrections amount up to 8 % in Uranium. Several models for boundary conditions on the atomic nucleus surface are discussed as well.
Asymptotic freedom in a string model of high temperature QCD
Awada, M
1995-01-01
Recently we have shown that a phase transition occurs in the leading and subleading approximation of the large N limit in rigid strings coupled to long range Kalb-Ramond interactions. The disordered phase is essentially the Nambu-Goto-Polyakov string theory while the ordered phase is a new theory. In this letter we compute the free energy per unit length of the interacting rigid string at finite temperature. We show that the mass of the winding states solves that of QCD strings in the limit of high temperature. We obtain a precise identification of the QCD coupling constant and those of the interacting rigid string. The relation we obtain is Ng_{QCD}^2 = ({8\\pi^2 (D-2)\\over 9})^2{1\\over 3\\kappa} where \\kappa = {D t \\alpha\\over \\pi \\mu_{c}} is the ratio of the extrinsic curvature coupling constant t, the Kalb-Ramond coupling constant \\alpha, and the critical string tension \\mu_{c}. The running beta function of \\kappa reproduces correctly the asymptotic behaviour of QCD.
The Simplest, String-Derivable, Supergravity Model and its Experimental Predictions
López, J; Zichichi, A
1994-01-01
We present the simplest, string-derivable, supergravity model and discuss its experimental consequences. This model is a new string-inspired flipped $SU(5)$ which unifies at the string scale $M_U=10^{18}\\GeV$ due to the introduction of an additional pair of \\r{10},\\rb{10} flipped $SU(5)$ representations which contain new intermediate scale `gap' particles. We study various model-building issues which should be addressed in string-derived incarnations of this model. We focus our study on the no-scale supergravity mechanism and explore thoroughly the three-dimensional parameter space of the model ($m_{\\tilde g},m_t,\\tan\\beta$), thus obtaining several simple relationships among the particle masses, such as: $m_{\\tilde q}\\approx m_{\\tilde g}$, $m_{\\tilde e_L}\\approx m_{\\tilde\
Bianchi type-VIh string cloud cosmological models with bulk viscosity
Tripathy, Sunil K.; Behera, Dipanjali
2010-11-01
String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.
General Analysis of Dark Radiation in Sequestered String Models
Cicoli, Michele
2015-01-01
We perform a general analysis of axionic dark radiation produced from the decay of the lightest modulus in the sequestered LARGE Volume Scenario. We discuss several cases depending on the form of the Kahler metric for visible sector matter fields and the mechanism responsible for achieving a de Sitter vacuum. The leading decay channels which determine dark radiation predictions are to hidden sector axions, visible sector Higgses and SUSY scalars depending on their mass. We show that in most of the parameter space of split SUSY-like models squarks and sleptons are heavier than the lightest modulus. Hence dark radiation predictions previously obtained for MSSM-like cases hold more generally also for split SUSY-like cases since the decay channel to SUSY scalars is kinematically forbidden. However the inclusion of string loop corrections to the Kahler potential gives rise to a parameter space region where the decay channel to SUSY scalars opens up, leading to a significant reduction of dark radiation production. ...
String networks in Z{sub N} Lotka–Volterra competition models
Energy Technology Data Exchange (ETDEWEB)
Avelino, P.P., E-mail: Pedro.Avelino@astro.up.pt [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Bazeia, D. [Instituto de Física, Universidade de São Paulo, 05314-970 São Paulo, SP (Brazil); Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Menezes, J. [Centro de Física do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Caixa Postal 1524, 59072-970 Natal, RN (Brazil); Oliveira, B.F. de [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR (Brazil)
2014-01-17
In this Letter we give specific examples of Z{sub N} Lotka–Volterra competition models leading to the formation of string networks. We show that, in order to promote coexistence, the species may arrange themselves around regions with a high number density of empty sites generated by predator–prey interactions between competing species. These configurations extend into the third dimension giving rise to string networks. We investigate the corresponding dynamics using both stochastic and mean field theory simulations, showing that the coarsening of these string networks follows a scaling law which is analogous to that found in other physical systems in condensed matter and cosmology.
Institute of Scientific and Technical Information of China (English)
LIM; C.W.
2010-01-01
Nonlinear combination parametric resonance is investigated for an axially accelerating viscoelastic string.The governing equation of in-planar motion of the string is established by introducing a coordinate transform in the Eulerian equation of a string with moving boundaries.The string under investigation is constituted by the standard linear solid model in which the material,not partial,time derivative was used.The governing equation leads to the Mote model for transverse vibration by omitting the longitudinal component and higher order terms.The Kirchhoff model is derived from the Mote model by replacing the tension with the averaged tension over the string.The two models are respectively analyzed via the method of multiple scales for principal parametric resonance.The amplitudes and the existence conditions of steady-state response and its stability can be numerically determined.Numerical calculations demonstrate the effects of the string material parameters,the initial tension,and the axial speed fluctuation amplitude.The outcomes of the two models are qualitatively and quantitatively compared.
Directory of Open Access Journals (Sweden)
Zhanghua Lian
2015-03-01
Full Text Available Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, open differential-pressure sliding sleeve, and open ball-injection sliding sleeve under a hold-down packer. Moreover, mathematical models were respectively built for the above three cases. According to the Lame formula and Von Mises stress calculation formula for the thick-walled cylinder in the theory of elastic mechanics, a mathematical model was also established to calculate the equivalent stress for tubing string safety evaluation when the fracturing string was under the combined action of inner pressure, external squeezing force and axial stress, and another mathematical model was built for the mechanical strength and safety evaluation of multi-stage fracturing strings. In addition, a practical software was developed for the mechanical safety evaluation of horizontal well multi-stage fracturing strings according to the mathematical model developed for the mechanical calculation of the multi-packer string in horizontal wells. The research results were applied and verified in a gas well of Tahe Oilfield in the Tarim Basin with excellent effects, providing a theoretical basis and a simple and reliable technical means for optimal design and safety evaluation of safe operational parameters of multi-stage fracturing strings in horizontal wells.
Zhanghua Lian; Ying Zhang; Xu Zhao; Shidong Ding; Tiejun Lin
2015-01-01
Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, ...
SU(4) string tensions from the fat-center-vortices model
Deldar, S; Deldar, Sedigheh; Rafibakhsh, Shahnoosh
2004-01-01
Fat-Center-Vortices model has been applied to calculate potentials between static sources of various SU(4) representations. For intermediate distances, a linear potential is achieved. For this region string tensions agree better with flux tube counting than Casimir scaling especially for higher representations. In addition, our results confirm the existence of two different string tensions for non zero 4-ality representations at large distances. In this area zero 4-ality representations are screened.
Ristad, E S; Ristad, Eric Sven; Yianilos, Peter N.
1996-01-01
In many applications, it is necessary to determine the similarity of two strings. A widely-used notion of string similarity is the edit distance: the minimum number of insertions, deletions, and substitutions required to transform one string into the other. In this report, we provide a stochastic model for string edit distance. Our stochastic model allows us to learn a string edit distance function from a corpus of examples. We illustrate the utility of our approach by applying it to the difficult problem of learning the pronunciation of words in conversational speech. In this application, we learn a string edit distance with one fourth the error rate of the untrained Levenshtein distance. Our approach is applicable to any string classification problem that may be solved using a similarity function against a database of labeled prototypes. Keywords: string edit distance, Levenshtein distance, stochastic transduction, syntactic pattern recognition, prototype dictionary, spelling correction, string correction, ...
Axially symmetric anisotropic string cosmological models in Saez-Ballester theory of gravitation
Kanakavalli, T.; Rao, G. Ananda; Reddy, D. R. K.
2017-02-01
Field equations of a scalar-tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986) are derived with the help of a spatially homogeneous axially symmetric anisotropic Bianchi type metric in the presence of cosmic string source. To obtain determinate solutions of the field equations we have used the fact that the scalar expansion is proportional to shear scalar and the equations of state which correspond to geometric, Takabayasi and massive strings. It is found that geometric and massive strings do not coexist with the Saez-Ballester Scalar field. However, Takabayasi string which survives has been determined. Also, physical discussion of the dynamical parameters of the model is presented.
A note on probabilistic models over strings: the linear algebra approach.
Bouchard-Côté, Alexandre
2013-12-01
Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.
Bianchi Type-Ⅲ String Cosmological Model with Bulk Viscosity in General Relativity
Institute of Scientific and Technical Information of China (English)
WANG Xing-Xiang
2005-01-01
The Bianchi type-Ⅲcosmological model for a cloud string with bulk viscosity are studied. To obtain a determinate solution, it is assumed that the coefficient of bulk viscosity is a power function of the scalar of expansion ζ = kθm and the shear scalar is proportional to scalar of expansion σ∝θ, which leads to the relation between metric potentials B = Cn. The physical features of the model are also discussed. It is found that the power index mhas significant influence on the string model. There is a "big bang" start in the model when m ≤ 1 but there is no the big-bang start when m ＞ 1. In the special case m = 0, the model reduces to the string model of constant coefficient of bulk viscosity that was the result previously given in the literature.
Stochastic models for atomic clocks
Barnes, J. A.; Jones, R. H.; Tryon, P. V.; Allan, D. W.
1983-01-01
For the atomic clocks used in the National Bureau of Standards Time Scales, an adequate model is the superposition of white FM, random walk FM, and linear frequency drift for times longer than about one minute. The model was tested on several clocks using maximum likelihood techniques for parameter estimation and the residuals were acceptably random. Conventional diagnostics indicate that additional model elements contribute no significant improvement to the model even at the expense of the added model complexity.
Proton Stability, Gauge Coupling Unification and a Light $Z^\\prime$ in Heterotic-string Models
Faraggi, Alon E
2013-01-01
We explore the phenomenological viability of a light $Z^\\prime$ in heterotic-string models, whose existence has been motivated by proton stability arguments. A class of quasi-realistic string models that produce such a viable $Z^\\prime$ are the Left-Right Symmetric (LRS) heterotic-string models in the free fermionic formulation. A key feature of these models is that the matter charges under $U(1)_{Z^\\prime}$ do not admit an $E_6$ embedding. The light $Z^\\prime$ in the LRS heterotic-string models forbids baryon number violating operators, while allowing lepton number violating operators, hence suppressing proton decay yet allowing for sufficiently small neutrino masses via a seesaw mechanism. We show that the constraints imposed by the gauge coupling data and heterotic-string coupling unification nullify the viability of a light $Z^\\prime$ in these models. We further argue that agreement with the gauge coupling data necessitates that the $U(1)_{Z^\\prime}$ charges admit an $E_6$ embedding. We discuss how viable...
Supersymmetry and string theory beyond the standard model
Dine, Michael
2015-01-01
The past decade has witnessed dramatic developments in the fields of experimental and theoretical particle physics and cosmology. This fully updated second edition is a comprehensive introduction to these recent developments and brings this self-contained textbook right up to date. Brand new material for this edition includes the groundbreaking Higgs discovery, results of the WMAP and Planck experiments. Extensive discussion of theories of dynamical electroweak symmetry breaking and a new chapter on the landscape, as well as a completely rewritten coda on future directions gives readers a modern perspective on this developing field. A focus on three principle areas: supersymmetry, string theory, and astrophysics and cosmology provide the structure for this book which will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password-protected solutions will be available to lecturers at www.cambrid...
Frequency-Zooming ARMA Modeling for Analysis of Noisy String Instrument Tones
Directory of Open Access Journals (Sweden)
Paulo A. A. Esquef
2003-09-01
Full Text Available This paper addresses model-based analysis of string instrument sounds. In particular, it reviews the application of autoregressive (AR modeling to sound analysis/synthesis purposes. Moreover, a frequency-zooming autoregressive moving average (FZ-ARMA modeling scheme is described. The performance of the FZ-ARMA method on modeling the modal behavior of isolated groups of resonance frequencies is evaluated for both synthetic and real string instrument tones immersed in background noise. We demonstrate that the FZ-ARMA modeling is a robust tool to estimate the decay time and frequency of partials of noisy tones. Finally, we discuss the use of the method in synthesis of string instrument sounds.
String and string-inspired phenomenology
López, J L
1994-01-01
In these lectures I review the progress made over the last few years in the subject of string and string-inspired phenomenology. I take a practical approach, thereby concentrating more on explicit examples rather than on formal developments. Topics covered include: introduction to string theory the free-fermionic formulation and its general features, generic conformal field theory properties, SU(5)\\times U(1) GUT and string model-building, supersymmetry breaking, the bottom-up approach to string-inspired models, radiative electroweak symmetry breaking, the determination of the allowed parameter space of supergravity models and the experimental constraints on this class of models, and prospects for direct and indirect tests of string-inspired models. (Lectures delivered at the XXII ITEP International Winter School of Physics, Moscow, Russia, February 22 -- March 2, 1994)
New Developments in String Gravity and String Cosmology.A Summary Report
Sánchez, N G
2002-01-01
New Developments in String Gravity and String Cosmology are reported: 1-String driven cosmology and its Predictions. 2-The primordial gravitational wave background in string cosmology. 3-Non-singular string cosmologies from Exact Conformal Field Theories. 4-Quantum Field Theory, String Temperature and the String Phase of de Sitter space-time, 5-Hawking Radiation in String Theory and the String Phase of Black Holes. 6-New Dual Relation between Quantum Field Theory regimes and String regimes in Curved Backgrounds, and the 'QFT/String Tango'. 7- New Coherent String States and Minimal Uncertainty Principle in WZWN models
Integrable String Models in Terms of Chiral Invariants of SU(n, SO(n, SP(n Groups
Directory of Open Access Journals (Sweden)
Victor D. Gershun
2008-05-01
Full Text Available We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativity equation to construct new integrable string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents in first case. We used the invariant local chiral currents of principal chiral models for SU(n, SO(n, SP(n groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor nonlocal currents to construct new nonlocal string equation.
Directory of Open Access Journals (Sweden)
Riionheimo Janne
2003-01-01
Full Text Available We describe a technique for estimating control parameters for a plucked string synthesis model using a genetic algorithm. The model has been intensively used for sound synthesis of various string instruments but the fine tuning of the parameters has been carried out with a semiautomatic method that requires some hand adjustment with human listening. An automated method for extracting the parameters from recorded tones is described in this paper. The calculation of the fitness function utilizes knowledge of the properties of human hearing.
A Quantum Model of Atoms (the Energy Levels of Atoms).
Rafie, Francois
2001-01-01
Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)
A matrix model for the topological string I: Deriving the matrix model
Eynard, Bertrand; Marchal, Olivier
2010-01-01
We construct a matrix model that reproduces the topological string partition function on arbitrary toric Calabi-Yau 3-folds. This demonstrates, in accord with the BKMP "remodeling the B-model" conjecture, that Gromov-Witten invariants of any toric Calabi-Yau 3-fold can be computed in terms of the spectral invariants of a spectral curve. Moreover, it proves that the generating function of Gromov-Witten invariants is a tau-function for an integrable hierarchy. In a follow-up paper, we will explicitly construct the spectral curve of our matrix model and argue that it equals the mirror curve of the toric Calabi-Yau manifold.
Topological open string amplitudes on local toric del Pezzo surfaces via remodeling the B-model
Manabe, Masahide
2009-01-01
We study topological strings on local toric del Pezzo surfaces by a method called remodeling the B-model which was recently proposed by Bouchard, Klemm, Marino and Pasquetti. For a large class of local toric del Pezzo surfaces we prove a functional formula of the Bergman kernel which is the basic constituent of the topological string amplitudes by the topological recursion relation of Eynard and Orantin. Because this formula is written as a functional of the period, we can obtain the topological string amplitudes at any point of the moduli space by a simple change of variables of the Picard-Fuchs equations for the period. By this formula and mirror symmetry we calculate the A-model amplitudes on K_{F_2}, and predict the open orbifold Gromov-Witten invariants of C^3/Z_4.
Torsional vibrations of helically buckled drill-strings: experiments and FE modelling
Kapitaniak, M.; Hamaneh, V. V.; Wiercigroch, M.
2016-05-01
This paper presents investigations of a complex drill-string vibrations on a novel experimental rig, developed by the Centre for Applied Dynamics Research at the University of Aberdeen. The rig is capable of exhibiting of all major types of drill-string vibrations, including torsional, axial and lateral modes. The importance of this work lies in the fact, that the experimental rig utilizes real industrial drill-bits and rock samples, which after careful identification of Torque On Bit (TOB) speed curves, allows to use an equivalent friction model to accommodate for both frictional and cutting components of the bit-rock interactions. Moreover, the proposed Finite Element model, after a careful calibration, is capable of replicating experimental results, for the prebuckled configuration of the drill-string. This allows us to observe the effect of winding and unwinding of the helical deformation during stick-slip motion.
C(M)LESS-THAN-1 STRING THEORY AS A CONSTRAINED TOPOLOGICAL SIGMA-MODEL
LLATAS, PM; ROY, S
1995-01-01
It has been argued by Ishikawa and Kato that by making use of a specific bosonization, c(M) = 1 string theory can be regarded as a constrained topological sigma model. We generalize their construction for any (p,q) minimal model coupled to two dimensional (2d) gravity and show that the energy-moment
Numerical modelling of longitudinal vibrations of a sucker rod string
Shardakov, I. N.; Wasserman, I. N.
2010-03-01
A new technique for analyzing the dynamic behavior of a sucker rod string used in the oil well industry is presented. The main difficulty in the numerical calculation of the examined structure is a multivalued velocity—force relation determined by Coulomb's friction and by loads generated during operation of pump valves. Both the monotonic and nonmonotonic velocity—force relations are considered. A quasi-variational inequality formulation of the problem is proposed. The solution of the inequality amounts to finding the minimum of a convex nonsmooth functional at each time step by means of the Newmark difference time scheme, successive iterations and finite element discretization. The problem of functional minimization is reduced to construction of a sequence of smooth nonlinear programming problems by introducing the auxiliary variables and applying the augmented Lagrangian method. The proposed approach is used to study the longitudinal vibrations of sucker rod strings under near-real conditions. In such systems the most commonly occurring vibration modes are the stick-slip vibrations and the vibrations with natural force excited twice a cycle. The nonmonotonic character of the friction law leads to intensification of these vibrations. In the case of nonmonotonic friction law the stick-slip vibrations can occur even under the action of constant external forces.
Multidimensional extremal dilatonic black holes in string-like model with cosmological term
Ivashchuk, V D
1996-01-01
A string-like model with the "cosmological constant" \\Lambda is considered. The Maki-Shiraishi multi-black-hole solution \\cite{MS1} is generalized to space-times with a Ricci-flat internal space. For \\Lambda = 0 the obtained solution in the one-black-hole case is shown to coincide with the extreme limit of the charged dilatonic black hole solution \\cite{BI,BM}. The Hawking temperature T_H for the solution \\cite{BI,BM} is presented and its extreme limit is considered. For the string value of dilatonic coupling the temperature T_H does not depend upon the internal space dimension.
CP(N-1) model on a disk and decay of a non-Abelian string
Gorsky, A.; Milekhin, A.
2013-10-01
We consider the role of quantum effects in the nonperturbative decay of the non-Abelian string with orientational moduli in nonsupersymmetric D=4 gauge theory. To this aim the effective action in the CP(N-1) model on a disk at large N has been calculated. It exhibits a phase transition at some radius, the “wrong sign” Luscher term, and a large boundary boojumlike negative contribution. The effect of the θ term and the possibility of the spontaneous creation of the non-Abelian string are briefly discussed.
"Electronium": A Quantum Atomic Teaching Model.
Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John
2002-01-01
Outlines an alternative atomic model to the probability model, the descriptive quantum atomic model Electronium. Discusses the way in which it is intended to support students in learning quantum-mechanical concepts. (Author/MM)
Bianchi Type-I bulk viscous fluid string dust magnetized cosmological model in general relativity
Indian Academy of Sciences (India)
Raj Bali; Anjali
2004-09-01
Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model is investigated. To get a determinate model, we have assumed the conditions and = constant where is the shear, the expansion in the model and the coefficient of bulk viscosity. The behaviour of the model in the presence and absence of magnetic field together with physical and geometrical aspects of the model are also discussed.
The string prediction models as invariants of time series in the forex market
Pincak, R.
2013-12-01
In this paper we apply a new approach of string theory to the real financial market. The models are constructed with an idea of prediction models based on the string invariants (PMBSI). The performance of PMBSI is compared to support vector machines (SVM) and artificial neural networks (ANN) on an artificial and a financial time series. A brief overview of the results and analysis is given. The first model is based on the correlation function as invariant and the second one is an application based on the deviations from the closed string/pattern form (PMBCS). We found the difference between these two approaches. The first model cannot predict the behavior of the forex market with good efficiency in comparison with the second one which is, in addition, able to make relevant profit per year. The presented string models could be useful for portfolio creation and financial risk management in the banking sector as well as for a nonlinear statistical approach to data optimization.
Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory
DEFF Research Database (Denmark)
Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav
Contraction theory is a recently developed nonlinear analysis tool which may be useful for solving a variety of nonlinear control problems. In this paper, using Contraction theory, a nonlinear observer is designed for a general nonlinear cable/string FEM (Finite Element Method) model. The cable...
The Quantum Black Hole as a Hydrogen Atom: Microstates Without Strings Attached
Hooft, Gerard t
2016-01-01
Applying an expansion in spherical harmonics, turns the black hole with its microstates into something about as transparent as the hydrogen atom was in the early days of quantum mechanics. It enables us to present a concise description of the evolution laws of these microstates, linking them to perturbative quantum field theory, in the background of the Schwarzschild metric. Three pieces of insight are obtained: One, we learn how the gravitational back reaction, whose dominant component can be calculated exactly, turns particles entering the hole, into particles leaving it, by exchanging the momentum- and position operators; two, we find out how this effect removes firewalls, both on the future and the past event horizon, and three, we discover that the presence of region II in the Penrose diagram forces a topological twist in the background metric, culminating in antipodal identification. Although a cut-off is required that effectively replaces the transverse coordinates by a lattice, the effect of such a cu...
A Hybrid Resynthesis Model for Hammer-String Interaction of Piano Tones
Directory of Open Access Journals (Sweden)
Jensen Kristoffer
2004-01-01
Full Text Available This paper presents a source/resonator model of hammer-string interaction that produces realistic piano sound. The source is generated using a subtractive signal model. Digital waveguides are used to simulate the propagation of waves in the resonator. This hybrid model allows resynthesis of the vibration measured on an experimental setup. In particular, the nonlinear behavior of the hammer-string interaction is taken into account in the source model and is well reproduced. The behavior of the model parameters (the resonant part and the excitation part is studied with respect to the velocities and the notes played. This model exhibits physically and perceptually related parameters, allowing easy control of the sound produced. This research is an essential step in the design of a complete piano model.
Modeling of wave propagation in drill strings using vibration transfer matrix methods.
Han, Je-Heon; Kim, Yong-Joe; Karkoub, Mansour
2013-09-01
In order to understand critical vibration of a drill bit such as stick-slip and bit-bounce and their wave propagation characteristics through a drill string system, it is critical to model the torsional, longitudinal, and flexural waves generated by the drill bit vibration. Here, a modeling method based on a vibration transfer matrix between two sets of structural wave variables at the ends of a constant cross-sectional, hollow, circular pipe is proposed. For a drill string system with multiple pipe sections, the total vibration transfer matrix is calculated by multiplying all individual matrices, each is obtained for an individual pipe section. Since drill string systems are typically extremely long, conventional numerical analysis methods such as a finite element method (FEM) require a large number of meshes, which makes it computationally inefficient to analyze these drill string systems numerically. The proposed "analytical" vibration transfer matrix method requires significantly low computational resources. For the validation of the proposed method, experimental and numerical data are obtained from laboratory experiments and FEM analyses conducted by using a commercial FEM package, ANSYS. It is shown that the modeling results obtained by using the proposed method are well matched with the experimental and numerical results.
Open topological strings and integrable hierarchies: Remodeling the A-model
Brini, Andrea
2011-01-01
We set up, purely in A-model terms, a novel formalism for the global solution of the open and closed topological A-model on toric Calabi-Yau threefolds. The starting point is to build on recent progress in the mathematical theory of open Gromov-Witten invariants of orbifolds; we interpret the localization formulae as relating D-brane amplitudes to closed string amplitudes perturbed with twisted masses through an analogue of the "loop insertion operator" of matrix models. We first generalize this form of open/closed string duality to general toric backgrounds in all chambers of the stringy Kaehler moduli space; secondarily, we display a neat connection of the (gauged) closed string side to tau functions of 1+1 Hamiltonian integrable hierarchies, and exploit it to provide an effective computation of open string amplitudes. In doing so, we also provide a systematic treatment of the change of flat open moduli induced by a phase transition in the closed moduli space. We test our proposal in detail by providing an ...
The Area Law in Matrix Models for Large N QCD Strings
Anagnostopoulos, K N; Nishimura, J
2002-01-01
We study the question whether matrix models obtained in the zero volume limit of 4d Yang-Mills theories can describe large N QCD strings. The matrix model we use is a variant of the Eguchi-Kawai model in terms of Hermitian matrices, but without any twists or quenching. This model was originally proposed as a toy model of the IIB matrix model. In contrast to common expectations, we do observe the area law for Wilson loops in a significant range of scale of the loop area. Numerical simulations show that this range is stable as N increases up to 768, which strongly suggests that it persists in the large N limit. Hence the equivalence to QCD strings may hold for length scales inside a finite regime.
A matrix model for the topological string II: The spectral curve and mirror geometry
Eynard, Bertrand; Marchal, Olivier
2010-01-01
In a previous paper, we presented a matrix model reproducing the topological string partition function on an arbitrary given toric Calabi-Yau manifold. Here, we study the spectral curve of our matrix model and thus derive, upon imposing certain minimality assumptions on the spectral curve, the large volume limit of the BKMP "remodeling the B-model" conjecture, the claim that Gromov-Witten invariants of any toric Calabi-Yau 3-fold coincide with the spectral invariants of its mirror curve.
Bianchi Type-Ⅲ String Cosmological Model With Bulk Viscosity and Magnetic Field
Institute of Scientific and Technical Information of China (English)
WANG Xing-Xiang
2006-01-01
@@ The Bianchi type-Ⅲ cosmological model for a cloud string in the presence of bulk viscosity and magnetic field are presented. To obtain the determinate model it is assumed that there is an equation of state ρ = kλ and the scalar of expansion is proportional to the shear scalar θ∝σ, which leads to a relation between metric potentials B = mCn. The physical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuously expanding universe with a big-bang start. In the absence of magnetic field, it reduces to the string model with bulk viscosity that was previously given in the literature.
Golubovic, Leonardo; Knudsen, Steven
2017-01-01
We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.
Can atom-surface potential measurements test atomic structure models?
Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D
2011-06-30
van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.
Matrix Models of 2D String Theory in Non--trivial Backgrounds
Koetsier, Arnaud
2005-01-01
After a brief review of critical string theory in trivial backgrounds we begin with introduction to strings in non--trivial backgrounds and noncritical string theory. In particular, we relate the latter to critical string theory in a linear dilaton background. We then show how a black hole background arises from 2D string theory and discuss some of its properties. A time--dependant tachyon background is constructed by perturbing the CFT describing string theory in a linear dilaton background....
Complexity of chromatin folding is captured by the strings and binders switch model.
Barbieri, Mariano; Chotalia, Mita; Fraser, James; Lavitas, Liron-Mark; Dostie, Josée; Pombo, Ana; Nicodemi, Mario
2012-10-02
Chromatin has a complex spatial organization in the cell nucleus that serves vital functional purposes. A variety of chromatin folding conformations has been detected by single-cell imaging and chromosome conformation capture-based approaches. However, a unified quantitative framework describing spatial chromatin organization is still lacking. Here, we explore the "strings and binders switch" model to explain the origin and variety of chromatin behaviors that coexist and dynamically change within living cells. This simple polymer model recapitulates the scaling properties of chromatin folding reported experimentally in different cellular systems, the fractal state of chromatin, the processes of domain formation, and looping out. Additionally, the strings and binders switch model reproduces the recently proposed "fractal-globule" model, but only as one of many possible transient conformations.
Propagation of cosmic rays through the atmosphere in the quark-gluon strings model
Erlykin, A. D.; Krutikova, N. P.; Shabelski, Y. M.
1985-01-01
The quark-gluon strings model succeeds in the description of multiple hadron production in the central rapidity region of nucleon-nucleon interctions. This model was developed for hadron-nucleus interactions and used for calculation of the cosmic ray propagation through the atmosphere. It is shown that at energies 10 to the 11th power to the 12th power eV, this model gives a satisfactory description of experimental data. But with the increase of the energy up to approximately 10 to the 14th power eV, results of calculations and of experiments begin to differ and this difference rises with the energy. It may indicate that the scaling violation in the fragmentation region of inclusive spectra for hadron-nucleus interactions is stronger than in the quark-gluon strings model.
Light-light and heavy-light mesons in the model of QCD string with quarks at the ends
Nefediev, A V
2002-01-01
The variational einbein field method is applied to the model of the QCD string with quarks at the ends for the case of light-light and heavy-light mesons. Special attention is payed to the proper string dynamics. The correct string slope of the Regge trajectories is reproduced for light-light states which comes out from the picture of rotating string. Masses of several low-lying orbitally and radially excited states in the D, D_s, B, and B_s meson spectra are calculated and a good agreement with the experimental data as well as with recent lattice calculations is found. The role of the string correction to the interquark interaction is discussed at the example of the identification of D*'(2637) state recently claimed by DELPHI Collaboration. For the heavy-light mesons the standard constants used in Heavy Quark Effective Theory are extracted and compared to the results of other approaches.
Realistic three-generation models from SO(32) heterotic string theory
Abe, Hiroyuki; Otsuka, Hajime; Takano, Yasufumi
2015-01-01
We search for realistic supersymmetric standard-like models from SO(32) heterotic string theory on factorizable tori with multiple magnetic fluxes. Three chiral ganerations of quarks and leptons are derived from the adjoint and vector representations of SO(12) gauge groups embedded in SO(32) adjoint representation. Massless spectra of our models also include Higgs fields, which have desired Yukawa couplings to quarks and leptons at the tree-level.
Pereira, José A
2014-08-01
Theoretical models designed to test the metabolism-first hypothesis for prebiotic evolution have yield strong indications about the hypothesis validity but could sometimes use a more extensive identification between model objects and real objects towards a more meaningful interpretation of results. In an attempt to go in that direction, the string-based model SSE ("steady state evolution") was developed, where abstract molecules (strings) and catalytic interaction rules are based on some of the most important features of carbon compounds in biological chemistry. The system is open with a random inflow and outflow of strings but also with a permanent string food source. Although specific catalysis is a key aspect of the model, used to define reaction rules, the focus is on energetics rather than kinetics. Standard energy change tables were constructed and used with standard formation reactions to track energy flows through the interpretation of equilibrium constant values. Detection of metabolic networks on the reaction system was done with elementary flux mode (EFM) analysis. The combination of these model design and analysis options enabled obtaining metabolic and catalytic networks showing several central features of biological metabolism, some more clearly than in previous models: metabolic networks with stepwise synthesis, energy coupling, catalysts regulation, SN2 coupling, redox coupling, intermediate cycling, coupled inverse pathways (metabolic cycling), autocatalytic cycles and catalytic cascades. The results strongly suggest that the main biological metabolism features, including the genotype-phenotype interpretation, are caused by the principles of catalytic systems and are prior to modern genetic systems principles. It also gives further theoretical support to the thesis that the basic features of biologic metabolism are a consequence of the time evolution of a random catalyst search working on an open system with a permanent food source. The importance
AdS5×S(5) mirror model as a string sigma model.
Arutyunov, Gleb; van Tongeren, Stijn J
2014-12-31
Doing a double Wick rotation in the world sheet theory of the light cone AdS5×S(5) superstring results in an inequivalent, so-called mirror theory that plays a central role in the field of integrability in the AdS-CFT correspondence. We show that this mirror theory can be interpreted as the light cone theory of a free string on a different background. This background is related to dS5×H(5) by a double T-duality, and has hidden supersymmetry. The geometry can also be extracted from an integrable deformation of the AdS5×S(5) sigma model, and we prove the observed mirror duality of these deformed models at the bosonic level as a byproduct. While we focus on AdS5×S(5), our results apply more generally.
String states, loops and effective actions in noncommutative field theory and matrix models
Directory of Open Access Journals (Sweden)
Harold C. Steinacker
2016-09-01
Full Text Available Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.
Higher spin holography and the AdS string sigma model
Polyakov, Dimitri
2013-05-01
We analyse the cubic spin-3 interaction in AdS space using the higher spin extension of the string-theoretic sigma-model constructed in our previous work, whose low energy limit is described by the AdS vacuum solution. We find that, in the leading order of the cosmological constant, the spin-3 correlator on the AdS4 string theory side reproduces the structure of the three-point function of composite operators, quadratic in free fields, in the dual d = 3 vector model. The cancellation of holography violating terms in d = 3 is related to the value of the Liouville background charge in d = 4. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’.
Models for Small-Scale Structure on Cosmic Strings: II. Scaling and its stability
Vieira, J P P; Shellard, E P S
2016-01-01
We make use of the formalism described in a previous paper [Martins {\\it et al.} Phys. Rev. D90 (2014) 043518] to address general features of wiggly cosmic string evolution. In particular, we highlight the important role played by poorly understood energy loss mechanisms and propose a simple ansatz which tackles this problem in the context of an extended velocity-dependent one-scale model. We find a general procedure to determine all the scaling solutions admitted by a specific string model and study their stability, enabling a detailed comparison with future numerical simulations. A simpler comparison with previous Goto-Nambu simulations supports earlier evidence that scaling is easier to achieve in the matter era than in the radiation era. In addition, we also find that the requirement that a scaling regime be stable seems to notably constrain the allowed range of energy loss parameters.
De Sitter vacua in no-scale supergravities and Calabi-Yau string models
Covi, Laura; Gross, Christian; Louis, Jan; Palma, Gonzalo A; Scrucca, Claudio A
2008-01-01
We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N=1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kahler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the `sGoldstino' masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kahler potential which b...
Decoupling A and B model in open string theory Topological adventures in the world of tadpoles
Bonelli, Giulio; Tanzini, Alessandro; Yang, Jie
2009-01-01
In this paper we analyze the problem of tadpole cancellation in open topological strings. We prove that the inclusion of unorientable worldsheet diagrams guarantees a consistent decoupling of A and B model for open superstring amplitudes at all genera. This is proven by direct microscopic computation in Super Conformal Field Theory. For the B-model we explicitly calculate one loop amplitudes in terms of analytic Ray-Singer torsions of appropriate vector bundles and obtain that the decoupling corresponds to the cancellation of D-brane and orientifold charges. Local tadpole cancellation on the worldsheet then guarantees the decoupling at all loops. The holomorphic anomaly equations for open topological strings at one loop are also obtained and compared with the results of the Quillen formula.
Borel and Stokes Nonperturbative Phenomena in Topological String Theory and c=1 Matrix Models
Pasquetti, Sara
2010-01-01
We address the nonperturbative structure of topological strings and c=1 matrix models, focusing on understanding the nature of instanton effects alongside with exploring their relation to the large-order behavior of the 1/N expansion. We consider the Gaussian, Penner and Chern-Simons matrix models, together with their holographic duals, the c=1 minimal string at self-dual radius and topological string theory on the resolved conifold. We employ Borel analysis to obtain the exact all-loop multi-instanton corrections to the free energies of the aforementioned models, and show that the leading poles in the Borel plane control the large-order behavior of perturbation theory. We understand the nonperturbative effects in terms of the Schwinger effect and provide a semiclassical picture in terms of eigenvalue tunneling between critical points of the multi-sheeted matrix model effective potentials. In particular, we relate instantons to Stokes phenomena via a hyperasymptotic analysis, providing a smoothing of the nonp...
The cancellation of world-sheet anomalies in the D=10 Green-Schwarz heterotic string sigma model
Energy Technology Data Exchange (ETDEWEB)
Lechner, K. [Padua Univ. (Italy). Dipt. di Fisica; Tonin, M. [Padua Univ. (Italy). Dipt. di Fisica
1996-09-16
We determine the two-dimensional Weyl, Lorentz and {kappa}-anomalies in the D=10 Green-Schwarz heterotic string sigma model, in an SO(1,9) Lorentz-covariant background gauge, and prove their cancellation. (orig.).
Complexity of chromatin folding is captured by the strings and binders switch model
Barbieri, Mariano; Chotalia, Mita; Fraser, James; Lavitas, Liron-Mark; Dostie, Josée; Pombo, Ana; Nicodemi, Mario
2012-01-01
Chromatin has a complex spatial organization in the cell nucleus that serves vital functional purposes. A variety of chromatin folding conformations has been detected by single-cell imaging and chromosome conformation capture-based approaches. However, a unified quantitative framework describing spatial chromatin organization is still lacking. Here, we explore the “strings and binders switch” model to explain the origin and variety of chromatin behaviors that coexist and dynamically change wi...
Sources of CP violation from E{sub 6} inspired heterotic string model
Energy Technology Data Exchange (ETDEWEB)
Boussahel, M.; Mebarki, N. [Departement de physique Faculte des sciences Universite de M' sila 28000 (Algeria); Laboratoire de Physique Mathematique et Subatomique Mentouri University, Constantine (Algeria)
2012-06-27
Sources of the weak CP violation from the SU{sub L}(3)x SU{sub R}(3)x SU{sub c}(3) subgroup of the E{sub 6} inspired heterotic string model are discussed. It is shown that the number of the Cabibo-Kobayachi-Maskawa like matrices depends on the spontaneous breakdown of the E{sub 6} gauge symmetry and/or supersymmetry.
Strong $CP$ And Axions In The Heterotic String-Derived Model
Ashfaque, Johar M
2016-01-01
After revisiting the heterotic string-derived low-energy effective model of \\cite{Ashfaque:2016ydg, Athanasopoulos:2014bba, Faraggi:2016xnm, Ashfaque:2016jha} constructed in the four-dimensional free fermionic formulation, we find two axions which are either harmful or massive. As a direct consequence, they can not solve the strong $CP$ problem which is in complete agreement with \\cite{Lopez:1990iq, Halyo:1993xn}.
Production of phi-mesons on nuclear targets in the Quark-Gluon String model
Arakelyan, G H; Shabelski, Yu M
2016-01-01
We consider the experimental data on phi-meson production on nuclear targets, and we find that they present unusually small shadow corrections for the inclusive density in the midrapidity region. We also give a quantitatively consistent description of both the initial energy dependence and the A-dependence of the produced phi-mesons, obtained in the frame of the Quark-Gluon String Model.
Reconnection of Colliding Cosmic Strings
Hanany, A; Hanany, Amihay; Hashimoto, Koji
2005-01-01
For vortex strings in the Abelian Higgs model and D-strings in superstring theory, both of which can be regarded as cosmic strings, we give analytical study of reconnection (recombination, inter-commutation) when they collide, by using effective field theories on the strings. First, for the vortex strings, via a string sigma model, we verify analytically that the reconnection is classically inevitable for small collision velocity and small relative angle. Evolution of the shape of the reconnected strings provides an upper bound on the collision velocity in order for the reconnection to occur. These analytical results are in agreement with previous numerical results. On the other hand, reconnection of the D-strings is not classical but probabilistic. We show that a quantum calculation of the reconnection probability using a D-string action reproduces the nonperturbative nature of the worldsheet results by Jackson, Jones and Polchinski. The difference on the reconnection -- classically inevitable for the vortex...
The stochastic string model as a unifying theory of the term structure of interest rates
Bueno-Guerrero, Alberto; Moreno, Manuel; Navas, Javier F.
2016-11-01
We present the stochastic string model of Santa-Clara and Sornette (2001), as reformulated by Bueno-Guerrero et al. (2015), as a unifying theory of the continuous-time modeling of the term structure of interest rates. We provide several new results, such as: (a) an orthogonality condition for the volatilities in the Heath, Jarrow, and Morton (1992) (HJM) model, (b) the interpretation of multi-factor HJM models as approximations to a full infinite-dimensional model, (c) a result of consistency based on Hilbert spaces, and (d) a theorem for option valuation.
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-04-01
Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.
Exact string theory model of closed timelike curves and cosmological singularities
Johnson, Clifford V.; Svendsen, Harald G.
2004-12-01
We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of α' corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios.
A matrix model for heterotic Spin(32)/Z sub 2 and type I string theory
Krogh, M
1999-01-01
We consider heterotic string theories in the DLCQ. We derive that the matrix model of the Spin(32)/Z sub 2 heterotic theory is the theory living on N D-strings in type I wound on a circle with no Spin(32)/Z sub 2 Wilson line on the circle. This is an O(N) gauge theory. We rederive the matrix model for the E sub 8 xE sub 8 heterotic string theory, explicitly taking care of the Wilson line around the lightlike circle. The result is the same theory as for Spin(32)/Z sub 2 except that now there is a Wilson line on the circle. We also see that the integer N labeling the sector of the O(N) matrix model is not just the momentum around the lightlike circle, but a shifted momentum depending on the Wilson line. We discuss the aspect of level matching, GSO projections and why, from the point of view of matrix theory the E sub 8 xE sub 8 theory, and not the Spin(32)/Z sub 2 , develops an 11th dimension for strong coupling. Furthermore a matrix theory for type I is derived. This is again the O(N) theory living on the D-st...
Infrared Dynamics of a Large N QCD Model, the Massless String Sector and Mesonic Spectra
Dasgupta, Keshav; Mia, Mohammed; Richard, Michael; Trottier, Olivier
2014-01-01
A consistency check for any UV complete model for large N QCD should be, among other things, the existence of a well-defined vector and scalar mesonic spectra. In this paper, we use our UV complete model in type IIB string theory to study the IR dynamics and use this to predict the mesonic spectra in the dual type IIA side. The advantage of this approach is two-fold: not only will this justify the consistency of the supergravity approach, but it will also give us a way to compare the IR spectra and the model with the ones proposed earlier by Sakai and Sugimoto. Interestingly, the spectra coming from the massless stringy sector are independent of the UV physics, although the massive string sector may pose certain subtleties regarding the UV contributions as well as the mappings to actual QCD. Additionally, we find that a component of the string landscape enters the picture: there are points in the landscape where the spectra can be considerably improved over the existing results in the literature. These points...
De Sitter vacua and inflation in no-scale string models
Energy Technology Data Exchange (ETDEWEB)
Gross, Christian
2009-09-15
This thesis studies the question of how de Sitter vacua and slow-roll inflation may be realized in string-motivated models. More specifically, we consider 4d N = 1 supergravity theories (without vector multiplets) with Kaehler potentials which are 'no-scale' at leading order. Such theories frequently arise in the moduli sector of string compactifications. We discuss a condition on the scalar geometry (defined by the Kaehler potential) and on the direction of supersymmetry breaking in the scalar manifold, which has to be met in order for the average of the masses of the sGoldstinos to be positive, and hence for metastable vacua to be possible. This condition also turns out to be necessary for the existence of trajectories admitting slow-roll inflation. Its implications for certain scalar manifolds which arise from Calabi-Yau string compactifications are discussed. In particular, for two-moduli models arising from compactifications of heterotic- and type IIB string theory, a simple criterion on the intersection numbers needs to be satisfied for possible de Sitter phases to exist. In addition, we show that subleading corrections breaking the no-scale property may allow the condition on the scalar geometry to be fulfilled, even when it is violated at leading order. Finally, we develop a procedure to construct superpotentials for a given viable Kaehler potential, such that the scalar potential has a realistic local minimum. We propose two-moduli models, with superpotentials which could arise from flux backgrounds and non-perturbative effects, which have a viable vacuum without employing subleading corrections or an uplifting sector. (orig.)
Institute of Scientific and Technical Information of China (English)
Anirudh Pradhan
2011-01-01
The present study deals with a spatially homogeneous and anisotropic Bianchi-I cosmological models representing massive strings with magnetic field and decaying vacuum energy density A. The energy-momentum tensor,as formulated by Letelier (1983), has been used to construct massive string cosmological models for which we assume the expansion scalar in the models is proportional to one of the components of shear tensor. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter in Bianchi-I space-time. The variation law for Hubble's parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein's field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. We have made a comparative study of accelerating and decelerating models in the presence of string scenario. The study reveals that massive strings dominate in the decelerating universe whereas strings dominate in the accelerating universe. The strings eventually disappear from the universe for sufficiently large times, which is in agreement with current astronomical observations. The cosmological constant A is found to be a positive decreasing function of time which is corroborated by results from recent supernovae Ia observations. The physical and geometric properties of the models have been also discussed in detail.
Early structure formation with cold plus hot dark matter a success of strings plus inflation model
Battye, R A; Weller, J; Battye, Richard A.; Magueijo, Joao; Weller, Jochen
1999-01-01
Quantum fluctuations created during inflation can account for the observed matter distribution in the linear regime if the universe has two components of dark matter, one which is cold and collisionless, and the other which is hot and free streams on small scales. However, this free streaming property of the hot component prevents early structure formation, and since objects, such as damped Lyman-$\\alpha$ systems, have been observed at high redshift, it is necessary to produce more power on small scales. Here, we show that the situation can be improved substantially in models where cosmic strings are formed at the end of inflation, and in which both inflation and strings participate in the generation of structure.
LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry
Directory of Open Access Journals (Sweden)
Raj Bali
2013-01-01
Full Text Available Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( is proportional to the expansion (. This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed.
Semiclassical models for uniform-density Cosmic Strings and Relativistic Stars
Campanelli, M; Campanelli, Manuela; Lousto, Carlos O.
1996-01-01
In this paper we show how quantum corrections, although perturbatively small, may play an important role in the analysis of the existence of some classical models. This, in fact, appears to be the case of static, uniform--density models of the interior metric of cosmic strings and neutron stars. We consider the fourth order semiclassical equations and first look for perturbative solutions in the coupling constants $\\alpha$ and $\\beta$ of the quadratic curvature terms in the effective gravitational Lagrangian. We find that there is not a consistent solution; neither for strings nor for spherical stars. We then look for non--perturbative solutions and find an explicit approximate metric for the case of straight cosmic strings. We finally analyse the contribution of the non--local terms to the renormalized energy--momentum tensor and the possibility of this terms to allow for a perturbative solution. We explicitly build up a particular renormalized energy--momentum tensor to fulfill that end. These state--depend...
LHC Phenomenology and Cosmology of String-Inspired Intersecting D-Brane Models
Anchordoqui, Luis A; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R; Vlcek, Brian
2012-01-01
We discuss the phenomenology and cosmology of a Standard-like Model inspired by string theory, in which the gauge fields are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersection can give rise to chiral fermions. The energy scale associated with string physics is assumed to be near the Planck mass. To develop our program in the simplest way, we work within the construct of a minimal model with gauge-extended sector U (3)_B \\times Sp (1)_L \\times U (1)_{I_R} \\times U (1)_L. The resulting U (1) content gauges the baryon number B, the lepton number L, and a third additional abelian charge I_R which acts as the third isospin component of an SU(2)_R. All mixing angles and gauge couplings are fixed by rotation of the U(1) gauge fields to a basis diagonal in hypercharge Y and in an anomaly free linear combination of I_R and B-L. The anomalous $Z'$ gauge boson obtains a string scale St\\"uckelberg mass via a 4D version of the Green-Schwarz mechanism. To keep the realizatio...
Unitary-matrix models as exactly solvable string theories
Periwal, Vipul; Shevitz, Danny
1990-01-01
Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.
Optimal Packed String Matching
DEFF Research Database (Denmark)
Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany
2011-01-01
In the packed string matching problem, each machine word accommodates – characters, thus an n-character text occupies n/– memory words. We extend the Crochemore-Perrin constantspace O(n)-time string matching algorithm to run in optimal O(n/–) time and even in real-time, achieving a factor – speedup...... over traditional algorithms that examine each character individually. Our solution can be efficiently implemented, unlike prior theoretical packed string matching work. We adapt the standard RAM model and only use its AC0 instructions (i.e., no multiplication) plus two specialized AC0 packed string...
Institute of Scientific and Technical Information of China (English)
BALI Raj; PAREEK Umesh Kumar; PRADHAN Anirudh
2007-01-01
@@ Bianchi type-Ⅰ massive string cosmological model with magnetic field of barotropic perfect fluid distribution through the techniques used by Latelier and Stachel is investigated. To obtain the deterministic model of the universe, it is assumed that the universe is filled with barotropic perfect fluid distribution. The magnetic field is due to electric current produced along the x-axis with infinite electrical condúctivity. The behaviour of the model in the presence and absence of magnetic field together with other physical aspects is further discussed.
On spinors, strings, integrable models and decomposed Yang-Mills theory
Ioannidou, Theodora; Niemi, Antti J
2014-01-01
This paper deals with various interrelations between strings and surfaces in three dimensional ambient space, two dimensional integrable models and two dimensional and four dimensional decomposed SU(2) Yang-Mills theories. Initially, a spinor version of the Frenet equation is introduced in order to describe the differential geometry of static three dimensional string-like structures. Then its relation to the structure of the su(2) Lie algebra valued Maurer-Cartan one-form is presented; while by introducing time evolution of the string a Lax pair is obtained, as an integrability condition. In addition, it is show how the Lax pair of the integrable nonlinear Schroedinger equation becomes embedded into the Lax pair of the time extended spinor Frenet equation and it is described how a spinor based projection operator formalism can be used to construct the conserved quantities, in the case of the nonlinear Schroedinger equation. Then the Lax pair structure of the time extended spinor Frenet equation is related to ...
A Morphographemic Model for Error Correction in Nonconcatenative Strings
Bowden, T; Bowden, Tanya; Kiraz, George Anton
1995-01-01
This paper introduces a spelling correction system which integrates seamlessly with morphological analysis using a multi-tape formalism. Handling of various Semitic error problems is illustrated, with reference to Arabic and Syriac examples. The model handles errors vocalisation, diacritics, phonetic syncopation and morphographemic idiosyncrasies, in addition to Damerau errors. A complementary correction strategy for morphologically sound but morphosyntactically ill-formed words is outlined.
Non-String Pursuit towards Unified Model on the Lattice
Kawamoto, N
1999-01-01
Non-standard overview on the possible formulation towards a unified model on the lattice is presented. It is based on the generalized gauge theory which is formulated by differential forms and thus expected to fit in a simplicial manifold. We first review suggestive known results towards this direction. As a small step of concrete realization of the program, we propose a lattice Chern-Simons gravity theory which leads to the Chern-Simons gravity in the continuum limit via Ponzano-Regge model. We then summarize the quantization procedure of the generalized gauge theory and apply the formulation to the generalized topological Yang-Mills action with instanton gauge fixing. We find N=2 super Yang-Mills theory with Dirac-K{ä}hler fermions which are generated from ghosts via twisting mechanism. The Weinberg-Salam model is formulated by the generalized Yang-Mills action which includes Connes's non-commutative geometry formulation as a particular case. In the end a possible scenario to realize the program is propose...
Cellular Approach to Long-Range $p_t$ and Multiplicity Correlations in the String Fusion Model
Vechernin, V V
2003-01-01
The long-range $p_t$ and multiplicity($n$) correlations in high-energy nuclear collisions are studied in the framework of a simple cellular analog of the string fusion model. Two cases with local and global string fusion is considered. The $p_t$--$n$ and $n$--$n$ correlation functions and correlation coefficients are calculated analytically in some asymptotic cases using suggested Gauss approximation. It's shown that at large string density the $p_t$--$n$ and $n$--$n$ correlation coefficients are connected and the scaling takes place. The behavior of the correlations at small string density is also studied. The asymptotic results are compared with results of the numerical calculations in the framework of proposed cellular approach.
LRS Bianchi type-I string cosmological model in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Sahoo, Pradyumn [Department of Mathematics, Birla Institute of Technology and Science-Pilani, Hyderabad (India)
2016-04-15
In this study the locally rotationally symmetric (LRS) Bianchi type-I (BI) cosmological model has been investigated in the presence of one dimensional cosmic strings in f(R, T) gravity. The exact solutions of the field equations are obtained through the use of constant deceleration parameter [1] and the scalar expansion is proportional to the shear scalar. Considering the accelerating nature of the universe in the present epoch, the physical behavior of the model has been discussed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Bianchi Type V magnetized string dust cosmological models with Petrov-type degenerate
Indian Academy of Sciences (India)
Raj Bali; Umesh K Pareek
2009-05-01
Bianchi Type V massive string cosmological models with free gravitational field of Petrov Type degenerate in the presence of magnetic field with variable magnetic permeability are investigated. The magnetic field is due to an electric current produced along the -axis. The 23 is the only non-vanishing component of electromagnetic field tensor . Maxwell's equations [;] = 0 and $F_{ij}^{ij} = 0$ are satisfied by 23 = constant. The behaviour of the model in the presence and absence of magnetic field and other physical aspects are also discussed.
Elliptic flow in a hadron-string cascade model at 130 GeV energy
Indian Academy of Sciences (India)
P K Sahu; A Ohnishi; M Isse; N Otuka; S C Phatak
2006-08-01
We present the analysis of elliptic flow at $\\sqrt{s} = 130$ A GeV energy in a hadron-string cascade model. We find that the final hadronic yields are qualitatively described. The elliptic flow 2 is reasonably well-described at low transverse momentum (T < 1 GeV/c) in mid-central collisions. On the other hand, this model does not explain 2 at high T or in peripheral collisions and thus generally, it underestimates the elliptic flow at RHIC energy.
Doubled strings, negative strings and null waves
Blair, Chris D A
2016-01-01
We revisit the fundamental string (F1) solution in the doubled formalism. We show that the wave-like solution of double field theory (DFT) corresponding to the F1/pp-wave duality pair is more properly a solution of the DFT action coupled to a doubled sigma model action. The doubled string configuration which sources the pp-wave can be thought of as static gauge with the string oriented in a dual direction. We also discuss the DFT solution corresponding to a vibrating string, carrying both winding and momentum. We further show that the solution dual to the F1 in both time and space can be viewed as a "negative string" solution. Negative branes are closely connected to certain exotic string theories which involve unusual signatures for both spacetime and brane worldvolumes. In order to better understand this from the doubled point of view, we construct a variant of DFT suitable for describing theories in which the fundamental string has a Euclidean worldsheet, for which T-dualities appear to change the spacetim...
de Boer, J.; de Medeiros, P.; El-Showk, S.; Sinkovics, A.
2008-01-01
We consider an open string version of the topological twist previously proposed for sigma-models with G(2) target spaces. We determine the cohomology of open strings states and relate these to geometric deformations of calibrated submanifolds and to flat or anti-self-dual connections on such submani
Masses and Internal Structure of Mesons in the String Quark Model
Soloviev, L D
2000-01-01
The relativistic quantum string quark model, proposed earlier, is applied to all mesons, from pion to $\\Upsilon$, lying on the leading Regge trajectories (i.e., to the lowest radial excitations in terms of the potential quark models). The model describes the meson mass spectrum, and comparison with measured meson masses allows one to determine the parameters of the model: current quark masses, universal string tension, and phenomenological constants describing nonstring short-range interaction. The meson Regge trajectories are in general nonlinear; practically linear are only trajectories for light-quark mesons with non-zero lowest spins. The model predicts masses of many new higher-spin mesons. A new $K^*(1^-)$ meson is predicted with mass 1910 Mev. In some cases the masses of new low-spin mesons are predicted by extrapolation of the phenomenological short-range parameters in the quark masses. In this way the model predicts the mass of $\\eta_b(1S)(0^{-+})$ to be $9500\\pm 30$ MeV, and the mass of $B_c(0^-)$ t...
The 750 GeV diphoton LHC excess and Extra Z's in Heterotic-String Derived Models
Faraggi, Alon E
2016-01-01
The ATLAS and CMS collaborations recently recorded possible di-photon excess at 750 GeV and a less significant di-boson excess around 1.9 TeV. Such excesses may be produced in heterotic-string derived Z' models, where the di-photon excess may be connected with the Standard Model singlet scalar responsible for the Z' symmetry breaking, whereas the di-boson excess arises from production of the extra vector boson. Additional vector-like states in the string Z' model are instrumental to explain the relatively large width of the di-photon events and mandated by anomaly cancellation to be in the vicinity of the Z' breaking scale. Wilson line breaking of the non-Abelian gauge symmetries in the string models naturally gives rise to dark matter candidates. Future collider experiments will discriminate between the high-scale heterotic-string models, which preserve the perturbative unification paradigm indicated by the Standard Model data, versus the low scale string models. We also discuss the possibility for the produ...
Nagaoka's atomic model and hyperfine interactions.
Inamura, Takashi T
2016-01-01
The prevailing view of Nagaoka's "Saturnian" atom is so misleading that today many people have an erroneous picture of Nagaoka's vision. They believe it to be a system involving a 'giant core' with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka's model is exactly the same as Rutherford's. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure.
Cache-oblivious String Dictionaries
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Fagerberg, Rolf
2006-01-01
We present static cache-oblivious dictionary structures for strings which provide analogues of tries and suffix trees in the cache-oblivious model. Our construction takes as input either a set of strings to store, a single string for which all suffixes are to be stored, a trie, a compressed trie,...
Kovalenko, Vladimir
2017-03-01
Long-range multiplicity correlations in intervals separated in pseudorapidity and azimuth are studied in the framework of string fusion approach. We applied a Monte Carlo model, in which the string configurations in the transverse plane and rapidity are simulating event-by-event. The string interaction is realized in the lattice string fusion approach with introduction of a grid in the transverse plane. We assumed that the azimuthal anisotropy of particle production is caused by parton energy loss traveling trough the media formed by clusters of fused strings : Δpt/Δx = -α(pt √η)2/3, where η is a string density. In the cellular approach the Bresenham's line algorithm has been applied. It is obtained that in AA collisions, the parton energy loss seems to play considerable role, in particular, by providing large contribution to the correlation of mean transverse momentum with multiplicity. The developed approach provides non-zero values flows in p-Pb collisions at LHC energies and produces the pattern similar to the one of the experimental di-hadron analysis.
Regularities in hadron systematics, Regge trajectories and a string quark model
Energy Technology Data Exchange (ETDEWEB)
Chekanov, S.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Levchenko, B.B. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics
2006-08-15
An empirical principle for the construction of a linear relationship between the total angular momentum and squared-mass of baryons is proposed. In order to examine linearity of the trajectories, a rigorous least-squares regression analysis was performed. Unlike the standard Regge-Chew-Frautschi approach, the constructed trajectories do not have non-linear behaviour. A similar regularity may exist for lowest-mass mesons. The linear baryonic trajectories are well described by a semi-classical picture based on a spinning relativistic string with tension. The obtained numerical solution of this model was used to extract the (di)quark masses. (orig.)
Two dimensional black-hole as a topological coset model of c=1 string theory
Mukhi, S
1993-01-01
We show that a special superconformal coset (with $\\hat c =3$) is equivalent to $c=1$ matter coupled to two dimensional gravity. This identification allows a direct computation of the correlation functions of the $c=1$ non-critical string to all genus, and at nonzero cosmological constant, directly from the continuum approach. The results agree with those of the matrix model. Moreover we connect our coset with a twisted version of a Euclidean two dimensional black hole, in which the ghost and matter systems are mixed.
Leptogenesis in the Light of Super-Kamiokande Data and a Realistic String Model
Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John
1999-01-01
We discuss leptogenesis in the light of indications of neutrino masses and mixings from Super-Kamiokande and other data on atmospheric neutrinos, as well as the solar neutrino deficit. Neutrino masses and mixings consistent with these data may produce in a natural and generic way a lepton asymmetry that is suffient to provide the observed baryon asymmetry, after processing via non-perturbative electroweak effects. We illustrate this discussion in the framework of the string-derived flipped SU(5) model, using particle assignments and choices of vacuum parameters that are known to give realistic masses to quarks and charged leptons. We display one scenario for neutrino masses that also accommodates leptogenesis.
Toda Theories, Matrix Models, Topological Strings, and N=2 Gauge Systems
Dijkgraaf, Robbert
2009-01-01
We consider the topological string partition function, including the Nekrasov deformation, for type IIB geometries with an A_{n-1} singularity over a Riemann surface. These models realize the N=2 SU(n) superconformal gauge systems recently studied by Gaiotto and collaborators. Employing large N dualities we show why the partition function of topological strings in these backgrounds is captured by the chiral blocks of A_{n-1} Toda systems and derive the dictionary recently proposed by Alday, Gaiotto and Tachikawa. For the case of genus zero Riemann surfaces, we show how these systems can also be realized by Penner-like matrix models with logarithmic potentials. The Seiberg-Witten curve can be understood as the spectral curve of these matrix models which arises holographically at large N. In this context the Nekrasov deformation maps to the beta-ensemble of generalized matrix models, that in turn maps to the Toda system with general background charge. We also point out the notion of a double holography for this...
Symmetry-enriched string nets: Exactly solvable models for SET phases
Heinrich, Chris; Burnell, Fiona; Fidkowski, Lukasz; Levin, Michael
2016-12-01
We construct exactly solvable models for a wide class of symmetry-enriched topological (SET) phases. Our construction applies to two-dimensional (2D) bosonic SET phases with finite unitary on-site symmetry group G and we conjecture that our models realize every phase in this class that can be described by a commuting projector Hamiltonian. Our models are designed so that they have a special property: If we couple them to a dynamical lattice gauge field with gauge group G , the resulting gauge theories are equivalent to string-net models. This property is what allows us to analyze our models in generality. As an example, we present a model for a phase with the same anyon excitations as the toric code and with a Z2 symmetry which exchanges the e and m type anyons. We further illustrate our construction with a number of additional examples.
Models of Particle Physics from Type IIB String Theory and F-theory: A Review
Maharana, Anshuman
2012-01-01
We review particle physics model building in type IIB string theory and F-theory. This is a region in the landscape where in principle many of the key ingredients required for a realistic model of particle physics can be combined successfully. We begin by reviewing moduli stabilisation within this framework and its implications for supersymmetry breaking. We then review model building tools and developments in the weakly coupled type IIB limit, for both local D3-branes at singularities and global models of intersecting D7-branes. Much of recent model building work has been in the strongly coupled regime of F-theory due to the presence of exceptional symmetries which allow for the construction of phenomenologically appealing Grand Unified Theories. We review both local and global F-theory model building starting from the fundamental concepts and tools regarding how the gauge group, matter sector and operators arise, and ranging to detailed phenomenological properties explored in the literature.
Supersymmetry and String Theory
Dine, Michael
2016-01-01
Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi-Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang-Mills theory; References; Index.
Mirage Models Confront the LHC: I. Kahler-Stabilized Heterotic String Theory
Kaufman, Bryan L; Gaillard, Mary K
2013-01-01
We begin the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). The case of heterotic string theory, in which the dilaton is stabilized via non-perturbative corrections to the Kahler metric, will be considered first. This model is highly constrained and therefore predictive. We find that much of the reasonable parameter space afforded to the model -- representing the strong dynamics of a presumed gaugino condensation in the hidden sector -- is now observationally disfavored by the LHC results. Most of the theoretically-motivated parameter space that remains can be probed with data that has already been collected, and most of the remainder will be definitively explored within the first year of operation at center of mass energy of 13 TeV. Expected signatures for a number of benchmark points are discussed. We find that the surviving space of the model makes a precise prediction as to the relation of many superpartner masses, a...
Supermassive cosmic string compactifications
Energy Technology Data Exchange (ETDEWEB)
Blanco-Pillado, Jose J.; Reina, Borja; Sousa, Kepa; Urrestilla, Jon, E-mail: josejuan.blanco@ehu.es, E-mail: borja.reina@ehu.es, E-mail: kepa.sousa@ehu.es, E-mail: jon.urrestilla@ehu.es [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain)
2014-06-01
The space-time dimensions transverse to a static straight cosmic string with a sufficiently large tension (supermassive cosmic strings) are compact and typically have a singularity at a finite distance form the core. In this paper, we discuss how the presence of multiple supermassive cosmic strings in the 4d Abelian-Higgs model can induce the spontaneous compactification of the transverse space and explicitly construct solutions where the gravitational background becomes regular everywhere. We discuss the embedding of this model in N = 1 supergravity and show that some of these solutions are half-BPS, in the sense that they leave unbroken half of the supersymmetries of the model.
Supermassive Cosmic String Compactifications
Blanco-Pillado, Jose J; Sousa, Kepa; Urrestilla, Jon
2014-01-01
The space-time dimensions transverse to a static straight cosmic string with a sufficiently large tension (supermassive cosmic strings) are compact and typically have a singularity at a finite distance form the core. In this paper, we discuss how the presence of multiple supermassive cosmic strings in the 4D Abelian-Higgs model can induce the spontaneous compactification of the transverse space and explicitly construct solutions where the gravitational background becomes regular everywhere. We discuss the embedding of this model in N=1 supergravity and show that some of these solutions are half-BPS, in the sense that they leave unbroken half of the supersymmetries of the model.
Intuitionistic Fuzzy Automaton for Approximate String Matching
Directory of Open Access Journals (Sweden)
K.M. Ravi
2014-03-01
Full Text Available This paper introduces an intuitionistic fuzzy automaton model for computing the similarity between pairs of strings. The model details the possible edit operations needed to transform any input (observed string into a target (pattern string by providing a membership and non-membership value between them. In the end, an algorithm is given for approximate string matching and the proposed model computes the similarity and dissimilarity between the pair of strings leading to better approximation.
Physically Inspired Models for the Synthesis of Stiff Strings with Dispersive Waveguides
Directory of Open Access Journals (Sweden)
Testa I
2004-01-01
Full Text Available We review the derivation and design of digital waveguides from physical models of stiff systems, useful for the synthesis of sounds from strings, rods, and similar objects. A transform method approach is proposed to solve the classic fourth-order equations of stiff systems in order to reduce it to two second-order equations. By introducing scattering boundary matrices, the eigenfrequencies are determined and their dependency is discussed for the clamped, hinged, and intermediate cases. On the basis of the frequency-domain physical model, the numerical discretization is carried out, showing how the insertion of an all-pass delay line generalizes the Karplus-Strong algorithm for the synthesis of ideally flexible vibrating strings. Knowing the physical parameters, the synthesis can proceed using the generalized structure. Another point of view is offered by Laguerre expansions and frequency warping, which are introduced in order to show that a stiff system can be treated as a nonstiff one, provided that the solutions are warped. A method to compute the all-pass chain coefficients and the optimum warping curves from sound samples is discussed. Once the optimum warping characteristic is found, the length of the dispersive delay line to be employed in the simulation is simply determined from the requirement of matching the desired fundamental frequency. The regularization of the dispersion curves by means of optimum unwarping is experimentally evaluated.
de Sitter vacua in no-scale supergravities and Calabi-Yau string models
Energy Technology Data Exchange (ETDEWEB)
Covi, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Warsaw Univ. (Poland). Inst. of Theoretical Physics; Gomez-Reino, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gross, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Louis, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik; Palma, G.A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Scrucca, C.A. [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Th. des Phen. Phys.
2008-04-15
We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N = 1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kaehler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the 'sGoldstino' masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kaehler potential which break the no-scale property may allow to lift these masses. (orig.)
One-loop and D-instanton corrections to the effective action of open string models
Energy Technology Data Exchange (ETDEWEB)
Schmidt-Sommerfeld, Maximilian
2009-07-02
Methods for the calculation of certain corrections to effective actions, which comprehend the low-energy physics of string compactifications with open strings, are explained. First the shape of such actions is describes and some examples for compactifications are presented, especially a type I string model to which a dual model on the base of the heterotic string is known. Then corrections on the gauge coupling constant and on the gauge-kinetic function are discussed. general procedures for their calculation are sketched and applied to some models. The explicitly determinded corrections depend non-holomorphically on the moduli of the compactification manifold. It is explained that this is not in disagreement on the holomorphy of the gauge-kinetic function and how the latter can be extracted from the calculated results. Next D-instantons and their influence on the low-energy action are detailedly analyzed, whereby the zero modes of the instantons and global Abelian symmetries play a central role. A formula for the caclulation of scattering matrix elements in instanton sectors is given. It is to be expected that the considered instantons contribute to the superpotential of the low-energy action. However from the formula it becomes not immediately clear, how far this is possible. The mentioned formula seems to lead to expressions, which are in disagreement to the holomorphy of the superpotential. It is shown that non-holomorphic terms partly simplify, partly are so composed that the result is in accordance with the holomorphy of the superpotential. The D-instanton calculus is then used in order to derive the ADS superpotential, which is known from field theory. That this is possible is to be considered as successful test of the instanton calculus. D-instanton corrections to the gauge-kinetic functions are considered. S duality between the type I and the heterotic string is used in order to determine how the structure of the zero modes of the relevant instantons looks
Extra $Z^\\prime$s and $W^\\prime$s in Heterotic--String Derived Models
Faraggi, Alon E
2015-01-01
The ATLAS collaboration recently recorded possible excess in the di--boson production at the di--boson invariant mass at around 2 TeV. Such an excess may be produced if there exist additional $Z^\\prime$ and/or $W^\\prime$ at that scale. We survey the extra $Z^\\prime$s and $W^\\prime$s that may arise from semi--realistic heterotic string vacua in the free fermionic formulation in seven distinct cases including: $U(1)_{Z^\\prime}\\in SO(10)$; family universal $U(1)_{Z^\\prime}$ not in $SO(10)$; non--universal $U(1)_{Z^\\prime}$; hidden sector $U(1)$ symmetries and kinetic mixing; left--right symmetric models; Pati--Salam models; leptophobic and custodial symmetries. Each case has a distinct signature associated with the extra symmetry breaking scale. In one of the cases we explore the discovery potential at the LHC using resonant leptoproduction. Existence of extra vector boson with the reported properties will significantly constrain the space of allowed string vacua.
Searching for features of a string-inspired inflationary model with cosmological observations
Cai, Yi-Fu; Ferreira, Elisa G. M.; Hu, Bin; Quintin, Jerome
2015-12-01
The latest Planck results show a power deficit in the temperature anisotropies near ℓ≈20 in the cosmic microwave background (CMB). This observation can hardly be explained within the standard inflationary Λ -cold-dark-matter (Λ CDM ) scenario. In this paper we consider a string theory inspired inflationary model (axion monodromy inflation) with a step-like modulation in the potential which gives rise to observable signatures in the primordial perturbations. One interesting phenomenon is that the primordial scalar modes experience a sudden suppression at a critical scale when the modulation occurs. By fitting to the CMB data, we find that the model can nicely explain the ℓ≈20 power deficit anomaly as well as predict specific patterns in the temperature-polarization correlation and polarization autocorrelation spectra. Though the significance of the result is not sufficient to claim a detection, our analysis reveals that fundamental physics at extremely high energy scales, namely, some effects inspired by string theory, may be observationally testable in forthcoming cosmological experiments.
Dynamical Electroweak Symmetry Breaking in String Models with D-branes
Kitazawa, Noriaki
2009-01-01
The possibility of dynamical electroweak symmetry breaking by strong coupling gauge interaction in models with D-branes in String Theory is examined. Instead of elementary scalar Higgs doublet fields, the gauge symmetry with strong coupling (technicolor) is introduced. As the first step of this direction, a toy model, which is not fully realistic, is concretely analyzed in some detail. The model consists of D-branes and anti-D-branes at orbifold singularities in (T^2 x T^2 x T^2)/Z_3 which preserves supersymmetry. Supersymmetry is broken through the brane supersymmetry breaking. It is pointed out that the problem of large S parameter in dynamical electroweak symmetry breaking scenario may be solved by natural existence of kinetic term mixings between hypercharge U(1) gauge boson and massive anomalous U(1) gauge bosons. The problems to be solved toward constructing more realistic models are clarified in the analysis.
Positivity of Lyapunov exponents for Anderson-type models on two coupled strings
Directory of Open Access Journals (Sweden)
Hakim Boumaza
2007-03-01
Full Text Available We study two models of Anderson-type random operators on two deterministically coupled continuous strings. Each model is associated with independent, identically distributed four-by-four symplectic transfer matrices, which describe the asymptotics of solutions. In each case we use a criterion by Gol'dsheid and Margulis (i.e. Zariski denseness of the group generated by the transfer matrices in the group of symplectic matrices to prove positivity of both leading Lyapunov exponents for most energies. In each case this implies almost sure absence of absolutely continuous spectrum (at all energies in the first model and for sufficiently large energies in the second model. The methods used allow for singularly distributed random parameters, including Bernoulli distributions.
Bianchi type string cosmological models in f(R,T) gravity
Sahoo, P. K.; Mishra, B.; Sahoo, Parbati; Pacif, S. K. J.
2016-09-01
In this work we have studied Bianchi-III and - VI 0 cosmological models with string fluid source in f( R, T) gravity (T. Harko et al., Phys. Rev. D 84, 024020 (2011)), where R is the Ricci scalar and T the trace of the stress energy-momentum tensor in the context of late time accelerating expansion of the universe as suggested by the present observations. The exact solutions of the field equations are obtained by using a time-varying deceleration parameter. The universe is anisotropic and free from initial singularity. Our model initially shows acceleration for a certain period of time and then decelerates consequently. Several dynamical and physical behaviors of the model are also discussed in detail.
A review of the microscopic modeling of the 5-dim. black hole of IIB string theory
Indian Academy of Sciences (India)
Spenta R Wadia
2001-01-01
We review the theory of the microscopic modeling of the 5-dim. black hole of type IIB string theory in terms of the 1-5 brane system. A detailed discussion of the low energy effective Lagrangian of the brane system is presented and the black hole micro-states are identiﬁed. These considerations are valid in the strong coupling regime of supergravity due to the non-renormalization of the low energy dynamics in this model. Using Maldacena duality and standard statistical mechanics methods one can account for black hole thermodynamics and calculate the absorption cross section and the Hawking radiation rates. Hence, at least in the case of this model black hole, since we can account for black hole properties within a unitary theory, there is no information paradox.
Vachaspati, Tanmay; Steer, Daniele
2015-01-01
This article, written for Scolarpedia, provides a brief introduction into the subject of cosmic strings, together with a review of their main properties, cosmological evolution and observational signatures.
Modeling nonlinear problems in the mechanics of strings and rods the role of the balance laws
O'Reilly, Oliver M
2017-01-01
This book presents theories of deformable elastic strings and rods and their application to broad classes of problems. Readers will gain insights into the formulation and analysis of models for mechanical and biological systems. Emphasis is placed on how the balance laws interplay with constitutive relations to form a set of governing equations. For certain classes of problems, it is shown how a balance of material momentum can play a key role in forming the equations of motion. The first half of the book is devoted to the purely mechanical theory of a string and its applications. The second half of the book is devoted to rod theories, including Euler’s theory of the elastica, Kirchhoff ’s theory of an elastic rod, and a range of Cosserat rod theories. A variety of classic and recent applications of these rod theories are examined. Two supplemental chapters, the first on continuum mechanics of three-dimensional continua and the second on methods from variational calculus, are included to provide relevant ...
Dynamical String Tension in String Theory with Spacetime Weyl Invariance
Bars, Itzhak; Turok, Neil
2014-01-01
The fundamental string length, which is an essential part of string theory, explicitly breaks scale invariance. However, in field theory we demonstrated recently that the gravitational constant, which is directly related to the string length, can be promoted to a dynamical field if the standard model coupled to gravity (SM+GR) is lifted to a locally scale (Weyl) invariant theory. The higher gauge symmetry reveals previously unknown field patches whose inclusion turn the classically conformally invariant SM+GR into a geodesically complete theory with new cosmological and possibly further physical consequences. In this paper this concept is extended to string theory by showing how it can be Weyl lifted with a local scale symmetry acting on target space background fields. In this process the string tension (fundamental string length) is promoted to a dynamical field, in agreement with the parallel developments in field theory. We then propose a string theory in a geodesically complete cosmological stringy backgr...
Frampton, Paul H
2015-01-01
In this note, I recollect a two-week period in September 1968 when I factorized the Veneziano model using string variables in Chicago. Professor Yoichiro Nambu went on to calculate the N-particle dual resonance model and then to factorize it on an exponential degeneracy of states. That was in 1968 and the following year 1969 he discovered the string action. I also include some other reminiscences of Nambu who passed away on July 5, 2105.
Gold bead-strings in silica nanowires: a simple diffusion model
Energy Technology Data Exchange (ETDEWEB)
Fletcher, N H; Elliman, R G; Kim, T-H [Research School of Physics and Engineering, Australian National University, Canberra 0200 (Australia)], E-mail: neville.fletcher@anu.edu.au
2009-02-25
Silica nanowires grown from gold droplets deposited on the surface of a silicon crystal sometimes develop within them a regular series of gold beads distributed along the wire axis in what is often called either a bead-string or a pea-pod structure. This is generally attributed to a 'Rayleigh instability' driven by the surface free energy of the included gold core. Here a new model is proposed in which quasi-conical gold inclusions are developed by the diffusion-limited growth process and are subsequently modified to spherical shape by another diffusion process that is driven by surface free energy. This model provides a possible basis for detailed numerical calculations.
Searching for Features of a String Inspired Inflationary Model with Cosmological Observations
Cai, Yi-Fu; Hu, Bin; Quintin, Jerome
2015-01-01
The latest Planck results show a power deficit in the temperature anisotropies near $\\ell \\approx 20$ in the cosmic microwave background (CMB). This observation can hardly be explained within the standard inflationary $\\Lambda$-cold-dark-matter ($\\Lambda$CDM) scenario. In this Letter we consider a string theory inspired inflationary model (axion monodromy inflation) with a step-like modulation in the potential which gives rise to observable signatures in the primordial perturbations. One interesting phenomenon is that the primordial scalar modes experience a sudden suppression at a critical scale when the modulation occurs. By fitting to the CMB data, we find that the model can nicely explain the $\\ell \\approx 20$ power deficit anomaly as well as predict specific patterns in the temperature-polarization correlation and polarization autocorrelation spectra. Though the significance of the result is not sufficient to claim a detection, our analysis reveals that fundamental physics at extremely high energy scales...
Lake, Matthew J
2015-01-01
We outline a model of abelian-Higgs strings with variable scalar and vector core radii. In general, the functions determining the time and position-dependent core widths may be expressed as arbitrary left or right movers, of which the usual constant values are a particular solution. In this case the string may carry momentum, even if the embedding of its central axis remains fixed, and the resulting objects resemble "necklaces". Some possible astrophysical applications of lumpy strings, including as potential engines for anomalous gamma ray bursts, are also discussed.
The CP(N-1) model on a Disc and Decay of a Non-Abelian String
Gorsky, A
2013-01-01
We consider the role of quantum effects in the non-perturbative decay of non-abelian string with orientational moduli in non-supersymmetric D=4 gauge theory. To this aim the effective action in the $CP(N-1)$ model on a disc at large N has been calculated. It exhibits phase transition at some radius, the "wrong sign" Luscher term and large boundary boojum-like negative contribution. The effect of $\\theta$ - term and the possibility of the spontaneous creation of the non-abelian string are briefly discussed.
Universality and string theory
Bachlechner, Thomas Christian
The first run at the Large Hadron Collider has deeply challenged conventional notions of naturalness, and CMB polarization experiments are about to open a new window to early universe cosmology. As a compelling candidate for the ultraviolet completion of the standard model, string theory provides a prime opportunity to study both early universe cosmology and particle physics. However, relating low energy observations to ultraviolet physics requires knowledge of the metastable states of string theory through the study of vacua. While it is difficult to directly obtain infrared data from explicit string theory constructions, string theory imposes constraints on low energy physics. The study of ensembles of low energy theories consistent with ultra-violet constraints provides insight on generic features we might expect to occur in string compactifications. In this thesis we present a statistical treatment of vacuum stability and vacuum properties in the context of random supergravity theories motivated by string theory. Early universe cosmology provides another avenue to high energy physics. From the low energy perspective large field inflation is typically considered highly unnatural: the scale relevant for the diameter of flat regions in moduli space is sub-Planckian in regions of perturbative control. To approach this problem, we consider generic Calabi-Yau compactifications of string theory and find that super-Planckian diameters of axion fundamental domains in fact arise generically. We further demonstrate that such super-Planckian flat regions are plausibly consistent with theWeak Gravity Conjecture.
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Mathematics; Verlinde, E. [TH-Division, CERN, CH-1211 Geneva 23 (Switzerland)]|[Institute for Theoretical Physics, Universtity of Utrecht, 3508 TA Utrecht (Netherlands); Verlinde, H. [Institute for Theoretical Physics, University of Amsterdam, 1018 XE Amsterdam (Netherlands)
1997-09-01
Via compactification on a circle, the matrix model of M-theory proposed by Banks et al. suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states. (orig.).
Dijkgraaf, R; Verlinde, Herman L
1997-01-01
Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.
Itoyama, H
2016-01-01
This is a brief summary of an introductory lecture for students and scholars in general given by the author at Nambu Memorial Symposium which was held at Osaka City University on September 29, 2015. We review the invention of string theory by Professor Yoichiro Nambu following the discovery of the Veneziano amplitude. We also discuss Professor Nambu's proposal on string theory in the Schild gauge in 1976 which is related to the matrix model of Yang-Mills type.
Students' Mental Models of Atomic Spectra
Körhasan, Nilüfer Didis; Wang, Lu
2016-01-01
Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…
Atomic model of liquid pure Fe
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Using a θ-θX-ray diffractometer, the liquid structure of pure Fewas investigated and the diffraction intensity, structure factor, pair distribution function as well as the coordination number and atomic distance were obtained. The experimental results showed that there was also a pre-peak on the curve of the structure factor of liquid pure Fe. The pre-peak is a mark of medium-range order in melts. According to the characteristics of pre-peak, an atomic model of liquid pure Fe is constructed, namely, the structure of liquid pure Fe is a combination of clusters consisting of bcc cells with shared vertexes and other atoms with random dense atom distribution.
Blanco-Pillado, Jose J; Shlaer, Benjamin
2015-01-01
We analyze the shapes of cosmic string loops found in large-scale simulations of an expanding-universe string network. The simulation does not include gravitational back reaction, but we model that process by smoothing the loop using Lorentzian convolution. We find that loops at formation consist of generally straight segments separated by kinks. We do not see cusps or any cusp-like structure at the scale of the entire loop, although we do see very small regions of string that move with large Lorentz boosts. However, smoothing of the string almost always introduces two cusps on each loop. The smoothing process does not lead to any significant fragmentation of loops that were in non-self-intersecting trajectories before smoothing.
String theory compactifications
Graña, Mariana
2017-01-01
The lectures in this book provide graduate students and non-specialist researchers with a concise introduction to the concepts and formalism required to reduce the ten-dimensional string theories to the observable four-dimensional space-time - a procedure called string compactification. The text starts with a very brief introduction to string theory, first working out its massless spectrum and showing how the condition on the number of dimensions arises. It then dwells on the different possible internal manifolds, from the simplest to the most relevant phenomenologically, thereby showing that the most elegant description is through an extension of ordinary Riemannian geometry termed generalized geometry, which was first introduced by Hitchin. Last but not least, the authors review open problems in string phenomenology, such as the embedding of the Standard Model and obtaining de Sitter solutions.
Energy Technology Data Exchange (ETDEWEB)
Boschi, C Degli Esposti [CNR, Unita CNISM di Bologna, viale Berti-Pichat, 6/2, I-40127, Bologna (Italy); Di Dio, M; Morandi, G [Dipartimento di Fisica dell' Universita di Bologna, viale Berti-Pichat, 6/2, I-40127, Bologna (Italy); Roncaglia, M [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748, Garching (Germany)
2009-02-06
We derive the dominant contribution to the large-distance decay laws of correlation functions towards their asymptotic limits for a spin chain model that exhibits both Haldane and Neel phases in its ground-state phase diagram. The analytic results are obtained by means of an approximate mapping between a spin-1 anisotropic Hamiltonian onto a fermionic model of noninteracting Bogoliubov quasiparticles related in turn (via Jordan-Wigner transformation) to the XY spin-1/2 chain in a transverse field. This approach allows us to express the spin-1 string operators in terms of fermionic operators so that the dominant contribution to the string correlators at large distances can be computed using the technique of Toeplitz determinants. As expected, we find long-range string order both in the longitudinal and in the transverse channel in the Haldane phase, while in the Neel phase only the longitudinal order survives. In this way, the long-range string order can be explicitly related to the components of the magnetization of the XY model. Moreover, apart from the critical line, where the decay is algebraic, we find that in the gapped phases the decay is governed by an exponential tail multiplied by power-law factors. As regards the usual two points correlation functions, we show that the longitudinal one behaves in a 'dual' fashion with respect to the transverse string correlator, namely both the asymptotic values and the decay laws exchange when the transition line is crossed. For the transverse spin-spin correlator, we always find a finite characteristic length which is an unexpected feature at the critical point. The results of this analysis prove some conjectures put forward in the past. We also comment briefly on the entanglement features of the original system versus those of the effective model. The goodness of the approximation and the analytical predictions are checked versus density-matrix renormalization group calculations.
Contemporary models of the atomic nucleus
Nemirovskii, P E
2013-01-01
Contemporary Models of the Atomic Nucleus discusses nuclear structure and properties, expounding contemporary theoretical concepts of the low-energy nuclear processes underlying in nuclear models. This book focuses on subjects such as the optical nuclear model, unified or collective model, and deuteron stripping reaction. Other topics discussed include the basic nuclear properties; shell model; theoretical analysis of the shell model; and radiative transitions and alpha-decay. The deuteron theory and the liquid drop nuclear model with its application to fission theory are also mentioned, but o
Matrix models, 4D black holes and topological strings on non-compact Calabi-Yau manifolds
Danielsson, Ulf H.; Olsson, Martin E.; Vonk, Marcel
2004-11-01
We study the relation between c = 1 matrix models at self-dual radii and topological strings on non-compact Calabi-Yau manifolds. Particularly the special case of the deformed matrix model is investigated in detail. Using recent results on the equivalence of the partition function of topological strings and that of four dimensional BPS black holes, we are able to calculate the entropy of the black holes, using matrix models. In particular, we show how to deal with the divergences that arise as a result of the non-compactness of the Calabi-Yau. The main result is that the entropy of the black hole at zero temperature coincides with the canonical free energy of the matrix model, up to a proportionality constant given by the self-dual temperature of the matrix model.
Constructing de Sitter vacua in no-scale string models without uplifting
Energy Technology Data Exchange (ETDEWEB)
Covi, Laura [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gomez-Reino, Marta [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gross, Christian [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Palma, Gonzalo A. [Leiden Univ. (Netherlands). Lorentz Inst. for Theoretical Physics; Scrucca, Claudio A. [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Theorie des Phenomenes Physiques
2008-12-15
We develop a method for constructing metastable de Sitter vacua in N=1 supergravity models describing the no-scale volume moduli sector of Calabi-Yau string compactifications. We consider both heterotic and orientifold models. Our main guideline is the necessary condition for the existence of metastable vacua coming from the Goldstino multiplet, which constrains the allowed scalar geometries and supersymmetry-breaking directions. In the simplest non-trivial case where the volume is controlled by two moduli, this condition simplifies and turns out to be fully characterised by the intersection numbers of the Calabi-Yau manifold. We analyse this case in detail and show that once the metastability condition is satisfied it is possible to reconstruct in a systematic way the local form of the superpotential that is needed to stabilise all the fields. We apply then this procedure to construct some examples of models where the superpotential takes a realistic form allowed by flux backgrounds and gaugino condensation effects, for which a viable vacuum arises without the need of invoking corrections to the Kaehler potential breaking the noscale property or uplifting terms. We finally discuss the prospects of constructing potentially realistic models along these lines. (orig.)
String Theory at LHC Using Top Quarks From String Balls
Nayak, Gouranga C
2009-01-01
According to string theory, string ball is a highly excited long string which decays to standard model particles at the Hagedorn temperature with thermal spectrum. If there are extra dimensions, the string scale can be ~TeV, and we should produce string balls at CERN LHC. In this paper we study top quark production from string balls at LHC and compare with the parton fusion results at NNLO using pQCD. We find significant top quark production from string balls at LHC which is comparable to standard model NNLO results. We also find that d\\sigma/dp_T of top quarks from string balls does not decrease significantly with increase in p_T, whereas it deceases sharply in case of standard model NNLO scenario. Hence, in the absence of black hole production at LHC, an enhancement in top quark cross section and its abnormal p_T distribution can be a signature of TeV scale string physics at LHC.
A matrix model for strings beyond the c=1 barrier: the spin-s Heisenberg model on random surfaces
Ambjorn, J; Sedrakyan, A
2014-01-01
We consider a spin-s Heisenberg model coupled to two-dimensional quantum gravity. We quantize the model using the Feynman path integral, summing over all possible two-dimensional geometries and spin configurations. We regularize this path integral by starting with the R-matrices defining the spin-s Heisenberg model on a regular 2d Manhattan lattice. 2d quantum gravity is included by defining the R-matrices on random Manhattan lattices and summing over these, in the same way as one sums over 2d geometries using random triangulations in non-critical string theory. We formulate a random matrix model where the partition function reproduces the annealed average of the spin-s Heisenberg model over all random Manhattan lattices. A technique is presented which reduces the random matrix integration in partition function to an integration over their eigenvalues.
Cosmic D-strings as Axionic D-term Strings
Blanco-Pillado, J J; Redi, M; Blanco-Pillado, Jose J.; Dvali, Gia; Redi, Michele
2005-01-01
In this work we derive non-singular BPS string solutions from an action that captures the essential features of a D-brane-anti-D-brane system compactified to four dimensions. The model we consider is a supersymmetric abelian Higgs model with a D-term potential coupled to an axion-dilaton multiplet. The strings in question are axionic D-term strings which we identify with the D-strings of type II string theory. In this picture the Higgs field represents the open string tachyon of the D-Dbar pair and the axion is dual to a Ramond Ramond form. The crucial term allowing the existence of non-singular BPS strings is the Fayet-Iliopoulos term, which is related to the tensions of the D-string and of the parent branes. Despite the presence of the axion, the strings are BPS and carry finite energy, due to the fact that the space gets very slowly decompactified away from the core, screening the long range axion field (or equivalently the theory approaches an infinitely weak 4D coupling). Within our 4D effective action w...
String Derived Exophobic SU(6)xSU(2) GUTs
Bernard, Laura; Glasser, Ivan; Rizos, John; Sonmez, Hasan
2012-01-01
With the apparent discovery of the Higgs boson, the Standard Model has been confirmed as the theory accounting for all sub-atomic phenomena. This observation lends further credence to the perturbative unification in Grand Unified Theories (GUTs) and string theories. The free fermionic formalism yielded fertile ground for the construction of quasi--realistic heterotic--string models, which correspond to toroidal Z2xZ2 orbifold compactifications. In this paper we study a new class of heterotic-string models in which the GUT group is SU(6)xSU(2) at the string level. We use our recently developed fishing algorithm to extract an example of a three generation SU(6)xSU(2) GUT model. We explore the phenomenology of the model and show that it contains the required symmetry breaking Higgs representations. We show that the model admits flat directions that produce a Yukawa coupling for a single family. The novel feature of the SU(6)xSU(2) string GUT models is that they produce an additional family universal anomaly free...
Towards optimal packed string matching
DEFF Research Database (Denmark)
Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany;
2014-01-01
-size string-matching instruction wssm is available in contemporary commodity processors. The other word-size maximum-suffix instruction wslm is only required during the pattern pre-processing. Benchmarks show that our solution can be efficiently implemented, unlike some prior theoretical packed string......In the packed string matching problem, it is assumed that each machine word can accommodate up to α characters, thus an n-character string occupies n/α memory words.(a) We extend the Crochemore–Perrin constant-space O(n)-time string-matching algorithm to run in optimal O(n/α) time and even in real...... matching work.(b) We also consider the complexity of the packed string matching problem in the classical word-RAM model in the absence of the specialized micro-level instructions wssm and wslm. We propose micro-level algorithms for the theoretically efficient emulation using parallel algorithms techniques...
Factorization of Chiral String Amplitudes
Huang, Yu-tin; Yuan, Ellis Ye
2016-01-01
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: As found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.
Factorization of chiral string amplitudes
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
2016-09-01
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.
Splitting strings on integrable backgrounds
Energy Technology Data Exchange (ETDEWEB)
Vicedo, Benoit
2011-05-15
We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)
AUTHOR|(SzGeCERN)673023; Blanco Viñuela, Enrique
In each of eight arcs of the 27 km circumference Large Hadron Collider (LHC), 2.5 km long strings of super-conducting magnets are cooled with superfluid Helium II at 1.9 K. The temperature stabilisation is a challenging control problem due to complex non-linear dynamics of the magnets temperature and presence of multiple operational constraints. Strong nonlinearities and variable dead-times of the dynamics originate at strongly heat-flux dependent effective heat conductivity of superfluid that varies three orders of magnitude over the range of possible operational conditions. In order to improve the temperature stabilisation, a proof of concept on-line economic output-feedback Non-linear Model Predictive Controller (NMPC) is presented in this thesis. The controller is based on a novel complex first-principles distributed parameters numerical model of the temperature dynamics over a 214 m long sub-sector of the LHC that is characterized by very low computational cost of simulation needed in real-time optimizat...
Nonlinear modelling in time domain numerical analysis of stringed instrument dynamics
Bielski, Paweł; Kujawa, Marcin
2017-03-01
Musical instruments are very various in terms of sound quality with their timbre shaped by materials and geometry. Materials' impact is commonly treated as dominant one by musicians, while it is unclear whether it is true or not. The research proposed in the study focuses on determining influence of both these factors on sound quality based on their impact on harmonic composition. Numerical approach has been chosen to allowed independent manipulation of geometrical and material parameters as opposed to experimental study subjected to natural randomness of instrument construction. Distinctive element of this research is precise modelling of whole instrument and treating it as one big vibrating system instead of performing modal analysis on an isolated part. Finite elements model of a stringed instrument has been built and a series of nonlinear time-domain dynamic analyses were executed to obtain displacement signals and perform subsequent spectral analysis. Precision of computations seems sufficient to determine the influence of instrument's macroscopic mechanical parameters on timbre. Further research should focus on implementation of acoustic medium in attempt to include dissipation and synchronization mechanisms. Outside the musical field this kind of research could be potentially useful in noise reduction problems.
Feofilov, Grigory; Kochebina, Olga
2015-01-01
Anomalous centrality evolution of two-particle angular correlations observed in Au-Au collisions at $\\sqrt{s_{NN}} = 62$ and 200 GeV and the onset of ridge structures are considered in the model of interacting quark-gluon strings. We assume that at the given energy of nucleus-nucleus collisions the critical energy density may be reached at the specific centrality. In a string percolation model this might be treated equivalently to a formation of a large cluster of strings characterized by the critical string density, with a size comparable to the whole area of interaction of two nuclei. This hypothesis allows to define some constraints on the string percolation model using data on transitional centralities in Au-Au collisions at these two energies. Results are extrapolated to the LHC energy where high string densities (exceeding the critical value) are confirmed for all classes of centralities in Pb-Pb collisions. Interaction between strings inside large clusters formed in nucleus-nucleus collisions is consid...
Symmetries and Interactions in Matrix String Theory
Hacquebord, F.H.
1999-01-01
This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory
The Minimal SUSY $B-L$ Model: Simultaneous Wilson Lines and String Thresholds
Deen, Rehan; Purves, Austin
2016-01-01
In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY $B-L$ model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two ${\\mathbb Z}_{3}\\times {\\mathbb Z}_{3}$ Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional "left-right" sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an "average unification" mass $\\left$. The present analysis is 1) more "natural" than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects--particularly heavy string thresholds, which we calculate st...
The minimal SUSY B - L model: simultaneous Wilson lines and string thresholds
Deen, Rehan; Ovrut, Burt A.; Purves, Austin
2016-07-01
In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B - L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two Z_3× Z_3 Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional "left-right" sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an "average unification" mass . The present analysis is 1) more "natural" than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from to the electroweak scale — being subjected, sequentially, to the requirement of radiative B - L and electroweak symmetry breaking, the present experimental lower bounds on the B - L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ˜125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.
Jaynes-Cummings model with a collective atomic mode
Zheng, Shi-Biao
2012-01-01
We study the dynamics of a single control atom and an atomic sample interacting with a nonresonant cavity mode. The control atom is driven by an auxiliary classical field. Under certain conditions, the coherent energy exchange between the control atom and the atomic sample induced by the cavity mode is described by the Jaynes-Cummings model. The idea provides a possibility for quantum-state engineering and reconstruction for collective atomic modes.
Perspectives on string phenomenology
Kane, Gordon; Kumar, Piyush
2015-01-01
The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M Theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model. This book contains perspectives on stri...
Haghighat, Babak; Iqbal, Amer; Kozçaz, Can; Lockhart, Guglielmo; Vafa, Cumrun
2015-03-01
M2 branes suspended between adjacent parallel M5 branes lead to light strings, the `M-strings'. In this paper we compute the elliptic genus of M-strings, twisted by maximally allowed symmetries that preserve 2 d (2, 0) supersymmetry. In a codimension one subspace of parameters this reduces to the elliptic genus of the (4, 4) supersymmetric A n-1 quiver theory in 2 d. We contrast the elliptic genus of N M-strings with the (4, 4) sigma model on the N-fold symmetric product of . For N = 1 they are the same, but for N > 1 they are close, but not identical. Instead the elliptic genus of (4, 4) N M-strings is the same as the elliptic genus of (4, 0) sigma models on the N-fold symmetric product of , but where the right-moving fermions couple to a modification of the tangent bundle. This construction arises from a dual A n-1 quiver 6 d gauge theory with U(1) gauge groups. Moreover, we compute the elliptic genus of domain walls which separate different numbers of M2 branes on the two sides of the wall.
Haghighat, Babak; Kozcaz, Can; Lockhart, Guglielmo; Vafa, Cumrun
2013-01-01
M2 branes suspended between adjacent parallel M5 branes lead to light strings, the `M-strings'. In this paper we compute the elliptic genus of M-strings, twisted by maximally allowed symmetries that preserve 2d (2,0) supersymmetry. In a codimension one subspace of parameters this reduces to the elliptic genus of the (4,4) supersymmetric A_{n-1} quiver theory in 2d. We contrast the elliptic genus of N M-strings with the (4,4) sigma model on the N-fold symmetric product of R^4. For N=1 they are the same, but for N>1 they are close, but not identical. Instead the elliptic genus of (4,4) N M-strings is the same as the elliptic genus of (4,0) sigma models on the N-fold symmetric product of R^4, but where the right-moving fermions couple to a modification of the tangent bundle. This construction arises from a dual A_{n-1} quiver 6d gauge theory with U(1) gauge groups. Moreover we compute the elliptic genus of domain walls which separate different numbers of M2 branes on the two sides of the wall.
Energy Technology Data Exchange (ETDEWEB)
Engquist, J. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University (Netherlands); Sundell, P. [INFN, Pisa (Italy); Scuola Normale Superiore, Pisa (Italy); Tamassia, L. [Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium)
2007-05-15
The group theoretical structure underlying physics in anti de Sitter (AdS) spacetime is intrinsically different with respect to the flat case, due to the presence of special ultra-short representations, named singletons, that do not admit a flat space limit. The purpose of this collaboration is to exploit this feature in the study of string and brane dynamics in AdS spacetime, in particular while trying to establish a connection between String Theory in AdS backgrounds (in the tensionless limit) and Higher-Spin Gauge Theory. (orig.)
Fermilab Tevatron and CERN LEP II probes of minimal and string-motivated supergravity models
Baer, Howard W; Kao, C; Pois, H
1995-01-01
We explore the ability of the Tevatron to probe Minimal Supersymmetry with high energy scale boundary conditions motivated by supersymmetry breaking in the context of supergravity/superstring theory. A number of boundary condition possibilities are considered: dilaton-like string boundary conditions applied at the standard GUT unification scale or alternatively at the string scale; and extreme (``no-scale'') minimal supergravity boundary conditions imposed at the GUT scale or string scale. For numerous specific cases within each scenario the sparticle spectra are computed and then fed into ISAJET 7.07 so that explicit signatures can be examined in detail. We find that, for some of the boundary condition choices, large regions of parameter space can be explored via same-sign dilepton and isolated trilepton signals. For other choices, the mass reach of Tevatron collider experiments is much more limited. We also compare mass reach of Tevatron experiments with the corresponding reach at LEP 200.
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1992-01-01
The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.
Atom-Role-Based Access Control Model
Cai, Weihong; Huang, Richeng; Hou, Xiaoli; Wei, Gang; Xiao, Shui; Chen, Yindong
Role-based access control (RBAC) model has been widely recognized as an efficient access control model and becomes a hot research topic of information security at present. However, in the large-scale enterprise application environments, the traditional RBAC model based on the role hierarchy has the following deficiencies: Firstly, it is unable to reflect the role relationships in complicated cases effectively, which does not accord with practical applications. Secondly, the senior role unconditionally inherits all permissions of the junior role, thus if a user is under the supervisor role, he may accumulate all permissions, and this easily causes the abuse of permission and violates the least privilege principle, which is one of the main security principles. To deal with these problems, we, after analyzing permission types and role relationships, proposed the concept of atom role and built an atom-role-based access control model, called ATRBAC, by dividing the permission set of each regular role based on inheritance path relationships. Through the application-specific analysis, this model can well meet the access control requirements.
Indian Academy of Sciences (India)
S D Katore; R S Rane; K S Wankhade
2011-04-01
Bianchi type-I massive string cosmological model for perfect ﬂuid distribution in the presence of magnetic ﬁeld is investigated in Rosen’s [Gen. Relativ. Gravit. 4, 435 (1973)] bimetric theory of gravitation. To obtain the deterministic model in terms of cosmic time, we have used the condition $A = (B C)^n$, where n is a constant, between the metric potentials. The magnetic ﬁeld is due to the electric current produced along the -axis with inﬁnite electrical conductivity. Some physical and geometrical properties of the exhibited model are discussed and studied.
Making It Visual: Creating a Model of the Atom
Pringle, Rose M.
2004-01-01
This article describes a lesson in which students construct Bohr's planetary model of the atom. Niels Bohr's atomic model provides a framework for discussing with middle and high school students the historical development of our understanding of the structure of the atom. The model constructed in this activity will enable students to visualize the…
Cipolla, Laura; Ferrari, Lia A.
2016-01-01
A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).
NMR microimaging of fluid flow in model string-type reactors
Koptyug, I.V.; Kovtunov, K.V.; Gerkema, E.; Kiwi-Minskerc, L.; Sagdeev, R.Z.
2007-01-01
Magnetic resonance microimaging (MRM) was employed to obtain quantitative velocity maps of water flowing in the channels possessing unconventional cross-section shapes formed by a bundle of parallel fibers within a tubular string-type reactor. The maps obtained demonstrate the presence of large amou
2007-01-01
"How can the nature of basic particles be defined beyond the mechanisms presiding over their creation? Besides the standard model of particle physics - resulting from the postulations of quantum mechanics - contemporary science has pinned its hopes on the totally new unifying notion provided by the highly mathematical string theory."(2 pages)
Cosmic Acceleration and the String Coupling
Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John
2005-01-01
In the context of a cosmological string model describing the propagation of strings in a time-dependent Robertson-Walker background space-time, we show that the asymptotic acceleration of the Universe can be identified with the square of the string coupling. This allows for a direct measurement of the ten-dimensional string coupling using cosmological data. We conjecture that this is a generic feature of a class of non-critical string models that approach asymptotically a conformal (critical) sigma model whose target space is a four-dimensional space-time with a dilaton background that is linear in sigma-model time. The relation between the cosmic acceleration and the string coupling does not apply in critical strings with constant dilaton fields in four dimensions.
Computer Model Of Fragmentation Of Atomic Nuclei
Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.
1995-01-01
High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.
Directory of Open Access Journals (Sweden)
Guoli Wang
2013-09-01
Full Text Available The finite element model of the 1000kV Ultra High Voltage (UHV AC transmission line porcelain insulator string voltage distribution and grading ring surface electric field distribution calculation has the characteristics of large size, complicated structure and various mediums. To insure the accuracy, related influencing factors should be considered to simplify the model reasonably for improving computational efficiency. A whole model and a simplified 3D finite element model of UHV AC transmission line porcelain insulator string were built. The influencing factors including tower, phase conductors, hardware fittings, yoke plate and phase interaction were considered in the analysis. And finally, the rationality of the simplified model was validated. The results comparison show that building a simplified model of three-phase bundled conductors within a certain length, simplifying the tower reasonably, omitting the hardware fittings and yoke plate and containing only single-phase insulator string model is feasible. The simplified model could replace the whole model to analyze the voltage distribution along the porcelain insulator string and the electric field distribution on the grading ring surface, and it can reduce the calculation scale, improve optimization efficiency of insulators string and grading ring parameters.
Improving cosmic string network simulations
Hindmarsh, Mark; Tenkanen, Tuomas V I; Weir, David J
2014-01-01
In real-time lattice simulations of cosmic strings in the Abelian Higgs model, the broken translational invariance introduces lattice artefacts; relativistic strings therefore decelerate and radiate. We introduce two different methods to construct a moving string on the lattice, and study in detail the lattice effects on moving strings. We find that there are two types of lattice artefact: there is an effective maximum speed with which a moving string can be placed on the lattice, and a moving string also slows down, with the deceleration approximately proportional to the exponential of the velocity. To mitigate this, we introduce and study an improved discretisation, based on the tree-level L\\"{u}scher-Weisz action, which is found to reduce the deceleration by an order of magnitude, and to increase the string speed limit by an amount equivalent to halving the lattice spacing. The improved algorithm is expected to be very useful for 3D simulations of cosmic strings in the early universe, where one wishes to s...
Improving cosmic string network simulations
Hindmarsh, Mark; Rummukainen, Kari; Tenkanen, Tuomas V. I.; Weir, David J.
2014-08-01
In real-time lattice simulations of cosmic strings in the Abelian Higgs model, the broken translational invariance introduces lattice artifacts; relativistic strings therefore decelerate and radiate. We introduce two different methods to construct a moving string on the lattice, and study in detail the lattice effects on moving strings. We find that there are two types of lattice artifact: there is an effective maximum speed with which a moving string can be placed on the lattice, and a moving string also slows down, with the deceleration approximately proportional to the exponential of the velocity. To mitigate this, we introduce and study an improved discretization, based on the tree-level Lüscher-Weisz action, which is found to reduce the deceleration by an order of magnitude, and to increase the string speed limit by an amount equivalent to halving the lattice spacing. The improved algorithm is expected to be very useful for 3D simulations of cosmic strings in the early Universe, where one wishes to simulate as large a volume as possible.
Progress in string theory research
2016-01-01
At the first look, the String Theory seems just an interesting and non-trivial application of the quantum mechanics and the special relativity to vibrating strings. By itself, the quantization of relativistic strings does not call the attention of the particle physicist as a significant paradigm shift. However, when the string quantization is performed by applying the standard rules of the perturbative Quantum Field Theory, one discovers that the strings in certain states have the same physical properties as the gravity in the flat space-time. Chapter one of this book reviews the construction of the thermal bosonic string and D-brane in the framework of the Thermo Field Dynamics (TFD). It briefly recalls the wellknown light-cone quantization of the bosonic string in the conformal gauge in flat space-time, and gives a bird’s eye view of the fundamental concepts of the TFD. Chapter two examines a visual model inspired by string theory, on the system of interacting anyons. Chapter three investigate the late-ti...
A Novel String Field Theory Solving String Theory by Liberating Left and Right Mover
Nielsen, Holger B
2012-01-01
We put forward ideas to a novel string field theory based on making some "objects" that essentially describe "liberated" left- and right- mover fields $X^{\\mu}_{L}(\\tau + \\sigma)$ and $X^{\\mu}_{R}(\\tau - \\sigma)$ on the string. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. An interesting detail is that we have to dispense of a species doubler caused by the discretization we introduced in our string field theory of the string right- and left- mover variables. We finally suggest how to obtain the Veneziano amplitude in our model.
Calculation of Al-Zn diagram from central atoms model
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
A slightly modified central atoms model was proposed. The probabilities of various clusters with the central atoms and their nearest neighboring shells can be calculated neglecting the assumption of the param eter of energy in the central atoms model in proportion to the number of other atoms i (referred with the central atom). A parameter Pα is proposed in this model, which equals to reciprocal of activity coefficient of a component, therefore, the new model can be understood easily. By this model, the Al-Zn phase diagram and its thermodynamic properties were calculated, the results coincide with the experimental data.
p-adic string theories provide lattice Discretization to the ordinary string worldsheet.
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p-->1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
The two-atom Jaynes-Cummings model's dynamic properties
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The model of two two-level atoms interact with a single-mode cavity was investigated. The formulation of the time evolution operator for the two-atom Jaynes-Cummings model is pressented by the bare-states approach. Besides, the time evolution of the two-atom common population probabilities is studied, and some novel features are obtained.
D-Branes at Singularities A Bottom-Up Approach to the String Embedding of the Standard Model
Aldazabal, G; Quevedo, Fernando; Uranga, Angel M
2000-01-01
We propose a bottom-up approach to the building of particle physics models from string theory. Our building blocks are Type II D-branes which we combine appropriately to reproduce desirable features of a particle theory model: 1) Chirality ; 2) Standard Model group ; 3) N=1 or N=0 supersymmetry ; 4) Three quark-lepton generations. We start such a program by studying configurations of D=10, Type IIB D3-branes located at singularities. We study in detail the case of Z_N, N=1,0 supersymmetric orbifold singularities leading to the SM group or some left-right symmetricextension. In general, tadpole cancellation conditions require the presence of additional branes, e.g. D7-branes. For the N=1 supersymmetric case the unique twist leading to three quark-lepton generations is Z_3, predicting $\\sin^2\\theta_W=3/14=0.21$. The models obtained are the simplest semirealistic string models ever built. In the non-supersymmetric case there is a three-generation model for each Z_N, N>4, but the Weinberg angle is in general too ...
Institute of Scientific and Technical Information of China (English)
N. P. Gaikwad; M. S. Borkar; S. S. Charjan
2011-01-01
@@ We investigate the Bianchi type-I massive string magnetized barotropic perfect fluid cosmological model in Rosen's bimetric theory of gravitation with and without a magnetic field by applying the techniques used by Latelier(1979,1980) and Stachel(1983).To obtain a deterministic model of the universe, it is assumed that the universe is filled with barotropic perfect fluid distribution.The physical and geometrical significance of the model are discussed.By comparing our model with the model of Bali et al.(2007), it is realized that there are no big-bang and big-crunch singularities in our model and T＝0 is not the time of the big bang, whereas the model of Bali et al.starts with a big bang at T=0.Further, our model is in agreement with Bali et al.(2007) as time increases in the presence, as well as in the absence, of a magnetic field.
The 750 GeV di-photon LHC excess and extra Z's in heterotic-string derived models
Energy Technology Data Exchange (ETDEWEB)
Faraggi, Alon E. [University of Liverpool, Department of Mathematical Sciences, Liverpool (United Kingdom); Rizos, John [University of Ioannina, Department of Physics, Ioannina (Greece)
2016-03-15
The ATLAS and CMS collaborations recently recorded possible di-photon excess at 750 GeV and a less significant di-boson excess around 1.9 TeV. Such excesses may be produced in heterotic string derived Z' models, where the di-photon excess may be connected with the Standard Model singlet scalar responsible for the Z' symmetry breaking, whereas the di-boson excess arises from production of the extra vector boson. Additional vector-like states in the string Z' model are instrumental to explain the relatively large width of the di-photon events and mandated by anomaly cancellation to be in the vicinity of the Z' breaking scale. Wilson line breaking of the non-Abelian gauge symmetries in the string models naturally gives rise to dark matter candidates. Future collider experiments will discriminate between the high-scale heterotic-string models, which preserve the perturbative unification paradigm indicated by the Standard Model data, versus the low scale string models.We also discuss the possibility for the production of the diphoton events with high scale U(1){sub Z'} breaking. (orig.)
Introduction to the relativistic string theory
Barbashov, B M
1990-01-01
This book presents a systematic and detailed account of the classical and quantum theory of the relativistic string and some of its modifications. Main attention is paid to the first-quantized string theory with possible applications to the string models of hadrons as well as to the superstring approach to unifications of all the fundamental interactions in the elementary particle physics and to the "cosmic" strings. Some new aspects are provided such as the consideration of the string in an external electromagnetic field and in the space-time of constant curvature (the de Sitter universe), th
Ultrasensitive string-based temperature sensors
DEFF Research Database (Denmark)
Larsen, Tom; Schmid, Silvan; Gronberg, L.;
2011-01-01
Resonant strings are a promising concept for ultra sensitive temperature detection. We present an analytical model for the sensitivity with which we optimize the temperature response of resonant strings by varying geometry and material. The temperature sensitivity of silicon nitride and aluminum...... microstrings was measured. The relative change in resonant frequency per temperature change of -1.74 +/- 0.04%/ degrees C of the aluminum strings is more than one order of magnitude higher than of the silicon nitride strings and of comparable state-of-the-art AuPd strings....
Energy Technology Data Exchange (ETDEWEB)
Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC; Witten, Edward; /Princeton, Inst. Advanced Study
2006-06-09
In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for Fa to be well below the GUT scale.
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
Full Text Available This work focuses on the formulation of a constitutive equation to predict Mullins and residual strain effects of buna-N, silicone, and neoprene rubber strings subjected to small transverse vibrations. The nonmonotone behavior exhibited by experimental data is captured by the proposed material model through the inclusion of a phenomenological non-monotonous softening function that depends on the strain intensity between loading and unloading cycles. It is shown that theoretical predictions compare well with uniaxial experimental data collected from transverse vibration tests.
Gauge Mediation in String Theory
Kawano, Teruhiko; Ooguri, Hirosi; Ookouchi, Yutaka
2007-01-01
We show that a large class of phenomenologically viable models for gauge mediation of supersymmetry breaking based on meta-stable vacua can be realized in local Calabi–Yau compactifications of string theory.
Energy Technology Data Exchange (ETDEWEB)
Ashfaque, J. [University of Liverpool, Department of Mathematical Sciences, Liverpool (United Kingdom); Delle Rose, L. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Faraggi, A.E. [Rutherford Appleton Laboratory, Department of Particle Physics, Chilton, Didcot (United Kingdom); Marzo, C. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' Ennio De Giorgi' ' , Lecce (Italy); INFN, Lecce (Italy)
2016-10-15
A di-photon excess at the LHC can be explained as a Standard Model singlet that is produced and decays by heavy vector-like colour triplets and electroweak doublets in one-loop diagrams. The characteristics of the required spectrum are well motivated in heterotic-string constructions that allow for a light Z{sup '}. Anomaly cancellation of the U(1){sub Z'} symmetry requires the existence of the Standard Model singlet and vector-like states in the vicinity of the U(1){sub Z'} breaking scale. In this paper we show that the agreement with the gauge coupling data at one-loop is identical to the case of the Minimal Supersymmetric Standard Model, owing to cancellations between the additional states. We further show that effects arising from heavy thresholds may push the supersymmetric spectrum beyond the reach of the LHC, while maintaining the agreement with the gauge coupling data. We show that the string-inspired model can indeed produce an observable signal and discuss the feasibility of obtaining viable scalar mass spectrum. (orig.)
Ashfaque, J; Faraggi, A E; Marzo, C
2016-01-01
The di-photon excess observed at the LHC can be explained as a Standard Model singlet that is produced and decays by heavy vector-like colour triplets and electroweak doublets in one-loop diagrams. The characteristics of the required spectrum are well motivated in heterotic-string constructions that allow for a light $Z^\\prime$. Anomaly cancellation of the $U(1)_{Z^\\prime}$ symmetry requires the existence of the Standard Model singlet and vector-like states in the vicinity of the $U(1)_{Z^\\prime}$ breaking scale. In this paper we show that the agreement with the gauge coupling data at one-loop is identical to the case of the Minimal Supersymmetric Standard Model, owing to cancellations between the additional states. We further show that effects arising from heavy thresholds may push the supersymmetric spectrum beyond the reach of the LHC, while maintaining the agreement with the gauge coupling data. We show that the string inspired model can indeed account for the observed signal and discuss the feasibility o...
LHC Phenomenology for String Hunters
Anchordoqui, Luis A; Lüst, Dieter; Nawata, Satoshi; Stieberger, Stephan; Taylor, Tomasz R
2009-01-01
We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we discuss possible signals of string physics at the Large Hadron Collider (LHC). In previous works, direct channel excitations of Regge recurrences in parton-parton scattering supplied the outstanding new signature. The present work considers the deviation from standard model expectations for the 4-fermion processes qq\\to qq and qq' \\to qq', in which the s-channel excitation of string resonances is absent. In this case, we find that Kaluza-Klein recurrences at masses somewhat less than the string scale generate effective 4-fermion contact terms which can significantly enhance the dijet R ratio above its QCD value of about 0.6. The simultaneous observation of a nearby resonant structure ...
CMB Constraints on Cosmic Strings and Superstrings
Charnock, Tom; Copeland, Edmund J; Moss, Adam
2016-01-01
We present the first complete MCMC analysis of cosmological models with evolving cosmic (super)string networks, using the Unconnected Segment Model in the unequal-time correlator formalism. For ordinary cosmic string networks, we derive joint constraints on {\\Lambda}CDM and string network parameters, namely the string tension G{\\mu}, the loop-chopping efficiency c_r and the string wiggliness {\\alpha}. For cosmic superstrings, we obtain joint constraints on the fundamental string tension G{\\mu}_F, the string coupling g_s, the self-interaction coefficient c_s, and the volume of compact extra dimensions w. This constitutes the most comprehensive CMB analysis of {\\Lambda}CDM cosmology + strings to date. For ordinary cosmic string networks our updated constraint on the string tension is, in relativistic units, G{\\mu}<1.1x10^-7, while for cosmic superstrings our constraint on the fundamental string tension is G{\\mu}_F<2.8x10^-8, both obtained using Planck2015 temperature and polarisation data.
Harmonic oscillator model for the helium atom
Carlsen, Martin
2015-01-01
A harmonic oscillator model in four dimensions is presented for the helium atom to estimate the distance to the inner and outer electron from the nucleus, the angle between electrons and the energy levels. The method is algebraic and is not based on the choice of correct trial wave function. Three harmonic oscillators and thus three quantum numbers are sufficient to describe the two-electron system. We derive a simple formula for the energy in the general case and in the special case of the Wannier Ridge. For a set of quantum numbers the distance to the electrons and the angle between the electrons are uniquely determined as the intersection between three surfaces. We show that the excited states converge either towards ionization thresholds or towards extreme parallel or antiparallel states and provide an estimate of the ground state energy.
Atomic force microscopy of model lipid membranes.
Morandat, Sandrine; Azouzi, Slim; Beauvais, Estelle; Mastouri, Amira; El Kirat, Karim
2013-02-01
Supported lipid bilayers (SLBs) are biomimetic model systems that are now widely used to address the biophysical and biochemical properties of biological membranes. Two main methods are usually employed to form SLBs: the transfer of two successive monolayers by Langmuir-Blodgett or Langmuir-Schaefer techniques, and the fusion of preformed lipid vesicles. The transfer of lipid films on flat solid substrates offers the possibility to apply a wide range of surface analytical techniques that are very sensitive. Among them, atomic force microscopy (AFM) has opened new opportunities for determining the nanoscale organization of SLBs under physiological conditions. In this review, we first focus on the different protocols generally employed to prepare SLBs. Then, we describe AFM studies on the nanoscale lateral organization and mechanical properties of SLBs. Lastly, we survey recent developments in the AFM monitoring of bilayer alteration, remodeling, or digestion, by incubation with exogenous agents such as drugs, proteins, peptides, and nanoparticles.
Operation of the computer model for microenvironment atomic oxygen exposure
Bourassa, R. J.; Gillis, J. R.; Gruenbaum, P. E.
1995-01-01
A computer model for microenvironment atomic oxygen exposure has been developed to extend atomic oxygen modeling capability to include shadowing and reflections. The model uses average exposure conditions established by the direct exposure model and extends the application of these conditions to treat surfaces of arbitrary shape and orientation.
Sumitomo, Yoske; Wong, Sam S C
2013-01-01
We study a racetrack model in the presence of the leading alpha'-correction in flux compactification in Type IIB string theory, for the purpose of getting conceivable de-Sitter vacua in the large compactified volume approximation. Unlike the K\\"ahler Uplift model studied previously, the alpha'-correction is more controllable for the meta-stable de-Sitter vacua in the racetrack case since the constraint on the compactified volume size is very much relaxed. We find that the vacuum energy density \\Lambda for de-Sitter vacua approaches zero exponentially as the volume grows. We also analyze properties of the probability distribution of \\Lambda in this class of models. As in other cases studied earlier, the probability distribution again peaks sharply at \\Lambda=0. We also study the Racetrack K\\"ahler Uplift model in the Swiss-Cheese type model.
An atomic model for neutral and singly ionized uranium
Maceda, E. L.; Miley, G. H.
1979-01-01
A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.
A novel string field theory solving string theory by liberating left and right movers
Energy Technology Data Exchange (ETDEWEB)
Nielsen, Holger B. [Niels Bohr Institute, University of Copenhagen,17 Belgdamsvej, DK 2100 (Denmark); Ninomiya, Masao [Okayama Institute for Quantum Physics,Kyoyama 1-9-1 Kita-ku, Okayama-city 700-0015 (Japan)
2014-05-08
We put forward ideas to a novel string field theory based on making some “objects” that essentially describe “liberated” left- and right- mover fields X{sub L}{sup μ}(τ+σ) and X{sub R}{sup μ}(τ−σ) on the string. Our novel string field theory is completely definitely different from any other string theory in as far as a “null set” of information in the string field theory Fock space has been removed relatively, to the usual string field theories. So our theory is definitely new. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. We finally suggest how to obtain the Veneziano amplitude in our model.
Effect of energetic oxygen atoms on neutral density models.
Rohrbaugh, R. P.; Nisbet, J. S.
1973-01-01
The dissociative recombination of O2(+) and NO(+) in the F region results in the production of atomic oxygen and atomic nitrogen with substantially greater kinetic energy than the ambient atoms. In the exosphere these energetic atoms have long free paths. They can ascend to altitudes of several thousand kilometers and can travel horizontally to distances of the order of the earth's radius. The distribution of energetic oxygen atoms is derived by means of models of the ion and neutral densities for quiet and disturbed solar conditions. A distribution technique is used to study the motion of the atoms in the collision-dominated region. Ballistic trajectories are calculated in the spherical gravitational field of the earth. The present calculations show that the number densities of energetic oxygen atoms predominate over the ambient atomic oxygen densities above 1000 km under quiet solar conditions and above 1600 km under disturbed solar conditions.
Silverstein, Eva
2015-01-01
Following the 2015 Planck release, we briefly comment on the status and some ongoing opportunities in the interface between inflationary cosmology, string theory, and CMB data. The constraints in the $r$-$n_s$ plane introduce a new parameter into inflationary cosmology relative to the simplest quadratic inflation model, in a direction which fits well with couplings to heavy fields as occurs in string theory. The precision of the data permits further searches for and constraints on additional model-dependent features, such as oscillatory $N$-spectra, a program requiring specific theoretically motivated shapes. Since the perturbations can easily be affected by additional sectors and couplings, null results can usefully bound such contributions. We also review the broader lessons string theory has contributed to our understanding of primordial inflation, and close with some approaches to a more complete framework. Published in a special volume of Comptes Rendus on Inflation: Theoretical and Observational Status.
String moduli inflation. An overview
Energy Technology Data Exchange (ETDEWEB)
Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quevedo, Fernando [Cambridge Univ. (United Kingdom). DAMTP/CMS; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)
2011-06-15
We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the {eta}-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)
Rohrbach, F; Vesztergombi, G
1997-01-01
In the near future, the computer performance will be completely determined by how long it takes to access memory. There are bottle-necks in memory latency and memory-to processor interface bandwidth. The IRAM initiative could be the answer by putting Processor-In-Memory (PIM). Starting from the massively parallel processing concept, one reached a similar conclusion. The MPPC (Massively Parallel Processing Collaboration) project and the 8K processor ASTRA machine (Associative String Test bench for Research \\& Applications) developed at CERN \\cite{kuala} can be regarded as a forerunner of the IRAM concept. The computing power of the ASTRA machine, regarded as an IRAM with 64 one-bit processors on a 64$\\times$64 bit-matrix memory chip machine, has been demonstrated by running statistical physics algorithms: one-dimensional stochastic cellular automata, as a simple model for dynamical phase transitions. As a relevant result for physics, the damage spreading of this model has been investigated.
Institute of Scientific and Technical Information of China (English)
刘洪毓
2007-01-01
Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what
Tadpole Resummations in String Theory
Kitazawa, Noriaki
2008-01-01
While R-R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in "wrong" vacua. In this letter we investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from ...
Toward A Nonperturbative Topological String
Neitzke, A
2005-01-01
We discuss three examples of nonperturbative phenomena in the topological string. First, we consider the computation of amplitudes in N = 4 super Yang-Mills theory using the B model topological string as proposed by Witten. We give an argument suggesting that the computations using connected or disconnected D-instantons of the B model are in fact equivalent. Second, we formulate a conjecture that the squared modulus of the open topological string partition function can be defined nonperturbatively as the partition function of a mixed ensemble of BPS states in d = 4. This conjecture is an extension of a recent proposal for the closed topological string. In a particular example involving a non-compact Calabi- Yau threefold, we show that the conjecture passes some basic checks, and that the square of the open topological string amplitude has a natural interpretation in terms of 2-dimensional Yang-Mills theory, again generalizing known results for the closed string case. Third, we discuss an action for an abel...
Indian Academy of Sciences (India)
C P Burgess
2004-12-01
The inflationary paradigm provides a robust description of the peculiar initial conditions which are required for the success of the hot Big Bang model of cosmology, as well as of the recent precision measurements of temperature fluctuations within the cosmic microwave background. Furthermore, the success of this description indicates that inflation is likely to be associated with physics at energies considerably higher than the weak scale, for which string theory is arguably our most promising candidate. These observations strongly motivate a detailed search for inflation within string theory, although it has (so far) proven to be a hunt for a fairly elusive quarry. This article summarizes some of the recent efforts along these lines, and draws some speculative conclusions as to what the difficulty in finding inflation might mean.
Cosmic strings with twisted magnetic flux lines and wound-strings in extra dimensions
Lake, Matthew
2012-01-01
We consider a generalization of the Nielsen-Olesen ansatz, in the abelian-Higgs model, which describes strings with twisted magnetic flux lines in the vortex core. The solution does not possess cylindrical symmetry, which leads to the existence of components of conserved momentum, both around the core-axis and along the length of the string. In addition, we consider a model of F-strings with rotating, geodesic windings in the compact space of the Klebanov-Strassler geometry and determine matching conditions which ensure energy and momentum conservation when loops chop off from the long-string network. We find that the expressions for the constants of motion, which determine the macroscopic string dynamics, can be made to coincide with those for the twisted flux line string, suggesting that extra- dimensional effects for F-strings may be mimicked by field-theoretic structure in topological defects.
Thermodynamical string fragmentation
Fischer, Nadine; Sjöstrand, Torbjörn
2017-01-01
The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.
Thermodynamical String Fragmentation
Fischer, Nadine
2016-01-01
The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from...
A Construction of String 2-Group Models using a Transgression-Regression Technique
Waldorf, Konrad
2012-01-01
In this note we present a new construction of the string group that ends optionally in two different contexts: strict diffeological 2-groups or finite-dimensional Lie 2-groups. It is canonical in the sense that no choices are involved; all the data is written down and can be looked up (at least somewhere). The basis of our construction is the basic gerbe of Gawedzki-Reis and Meinrenken. The main new insight is that under a transgression-regression procedure, the basic gerbe picks up a multiplicative structure coming from the Mickelsson product over the loop group. The conclusion of the construction is a relation between multiplicative gerbes and 2-group extensions for which we use recent work of Schommer-Pries.
INFERNO - A better model of atoms in dense plasmas
Liberman, D. A.
1982-03-01
A self-consistent field model of atoms in dense plasmas has been devised and incorporated in a computer program. In the model there is a uniform positive charge distribution with a hole in it and at the center of the hole an atomic nucleus. There are electrons, in both bound and continuum states, in sufficient number to form an electrically neutral system. The Dirac equation is used so that high Z atoms can be dealt with. A finite temperature is assumed, and a mean field (average atom) approximation is used in statistical averages. Applications have been made to equations of states and to photoabsorption.
The Quantum Atomic Model "Electronium": A Successful Teaching Tool.
Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John
2002-01-01
Focuses on the quantum atomic model Electronium. Outlines the Bremen teaching approach in which this model is used, and analyzes the learning of two students as they progress through the teaching unit. (Author/MM)
Cosmic Strings Stabilized by Quantum Fluctuations
Weigel, H.
2017-03-01
Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.
Cosmic Strings Stabilized by Quantum Fluctuations
Weigel, H
2016-01-01
We compute fermion quantum corrections to the energy of cosmic strings. A number of rather technical tools is needed to formulate this correction and we employ isospin and gauge invariance to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. We find that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.
Exotic Non-relativistic String
Casalbuoni, Roberto; Longhi, Giorgio
2007-01-01
We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.
Kim, Joonho; Lee, Kimyeong
2015-01-01
We explore 6d (1,0) superconformal field theories with SU(3) and SU(2) gauge symmetries which cascade after Higgsing to the E-string theory on a single M5 near an $E_8$ wall. Specifically, we study the 2d $\\mathcal{N}=(0,4)$ gauge theories which describe self-dual strings of these 6d theories. The self-dual strings can be also viewed as instanton string solitons of 6d Yang-Mills theories. We find the 2d anomaly-free gauge theories for self-dual strings, amending the naive ADHM gauge theories which are anomalous, and calculate their elliptic genera. While these 2d theories respect the flavor symmetry of each 6d SCFT only partially, their elliptic genera manifest the symmetry fully as these functions as BPS index are invariant in strongly coupled IR limit. Our consistent 2d (0,4) gauge theories also provide new insights on the non-linear sigma models for the instanton strings, providing novel UV completions of the small instanton singularities. Finally, we construct new 2d quiver gauge theories for the self-dua...
Atomic quantum simulation of a three-dimensional U(1) gauge-Higgs model
Kuno, Yoshihito; Sakane, Shinya; Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2016-12-01
In this paper, we study theoretically atomic quantum simulations of a U(1) gauge-Higgs model on a three-dimensional (3D) spatial lattice by using an extended Bose-Hubbard model with intersite repulsions on a 3D optical lattice. Here, the phase and density fluctuations of the boson variable on each site of the optical lattice describe the vector potential and the electric field on each link of the gauge-model lattice, respectively. The target gauge model is different from the standard Wilson-type U(1) gauge-Higgs model because it has plaquette and Higgs interactions with asymmetric couplings in the space-time directions. Nevertheless, the corresponding quantum simulation is still important as it provides us with a platform to study unexplored time-dependent phenomena characteristic of each phase in the general gauge-Higgs models. To determine the phase diagram of the gauge-Higgs model at zero temperature, we perform Monte Carlo simulations of the corresponding 3+1-dimensional U(1) gauge-Higgs model, and obtain the confinement and Higgs phases. To investigate the dynamical properties of the gauge-Higgs model, we apply the Gross-Pitaevskii equations to the extended Bose-Hubbard model. We simulate the time evolution of an electric flux that initially is put on a straight line connecting two external point charges. We also calculate the potential energy between this pair of charges and obtain the string tension in the confinement phase. Finally, we propose a feasible experimental setup for the atomic simulations of this quantum gauge-Higgs model on the 3D optical lattice. These results may serve as theoretical guides for future experiments.
On Exceptional Instanton Strings
Del Zotto, Michele
2016-01-01
According to a recent classification of 6d (1,0) theories within F-theory there are only 5 "pure" 6d gauge theories which have a UV superconformal fixed point. The corresponding gauge groups are $SU(3),SO(8),F_4,E_6,E_7$, and $E_8$. These exceptional models have BPS strings which are also instantons for the corresponding gauge groups. For $G$ simply-laced, we determine the 2d $\\mathcal{N}=(0,4)$ worldsheet theories of such BPS instanton strings by a simple geometric engineering argument. These are given by a twisted $S^2$ compactification of the 4d $\\mathcal{N}=2$ theories of type $H_2, D_4, E_6, E_7$ and $E_8$ (and their higher rank generalizations), where the 6d instanton number is mapped to the rank of the corresponding 4d SCFT. This determines their anomaly polynomials and, via topological strings, establishes an interesting relation among the corresponding $T^2 \\times S^2$ partition functions and the Hilbert series for moduli spaces of $G$ instantons. Such relations allow to bootstrap the corresponding e...
2009-03-06
needed. 5A Unicode code-point is different from a grapheme , which is closer to what end-users consider as characters. For example a character with a...dieresis (e.g., ä) is a grapheme , but could be encoded as two Unicode code points. 9 String constraint Abstract String Syntax STRCMP(s1,s2) = 0
Cosmic R-string in thermal history
Energy Technology Data Exchange (ETDEWEB)
Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ohashi, Keisuke [Osaka City Univ. (Japan). Dept. of Mathematics and Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research
2013-03-15
We study stabilization of an unstable cosmic string associated with spontaneously broken U(1){sub R} symmetry, which otherwise causes a dangerous roll-over process. We demonstrate that in a gauge mediation model, messengers can receive enough corrections from the thermal plasma of the supersymmetric standard model particles to stabilize the unstable modes of the string.
Dando, O; Dando, Owen; Gregory, Ruth
1998-01-01
We examine the field equations of a self-gravitating global string in low energy superstring gravity, allowing for an arbitrary coupling of the global string to the dilaton. Massive and massless dilatons are considered. For the massive dilaton the spacetime is similar to the recently discovered non-singular time-dependent Einstein self-gravitating global string, but the massless dilaton generically gives a singular spacetime, even allowing for time-dependence. We also demonstrate a time-dependent non-singular string/anti-string configuration, in which the string pair causes a compactification of two of the spatial dimensions, albeit on a very large scale.
Closed String Amplitudes from Gauge Fixed String Field Theory
Drukker, Nadav
2002-01-01
Closed string diagrams are derived from cubic open string field theory using a gauge fixed kinetic operator. The basic idea is to use a string propagator that does not generate a boundary to the world sheet. Using this propagator and the closed string vertex, the moduli space of closed string surfaces is covered, so closed string scattering amplitudes should be reproduced. This kinetic operator could be a gauge fixed form of the string field theory action around the closed string vacuum.
Project Physics Tests 5, Models of the Atom.
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…
Ab initio calculations and modelling of atomic cluster structure
DEFF Research Database (Denmark)
Solov'yov, Ilia; Lyalin, Andrey G.; Greiner, Walter
2004-01-01
framework for modelling the fusion process of noble gas clusters is presented. We report the striking correspondence of the peaks in the experimentally measured abundance mass spectra with the peaks in the size-dependence of the second derivative of the binding energy per atom calculated for the chain...... of the noble gas clusters up to 150 atoms....
100th anniversary of Bohr's model of the atom.
Schwarz, W H Eugen
2013-11-18
In the fall of 1913 Niels Bohr formulated his atomic models at the age of 27. This Essay traces Bohr's fundamental reasoning regarding atomic structure and spectra, the periodic table of the elements, and chemical bonding. His enduring insights and superseded suppositions are also discussed.
Analytic Solutions of Three-Level Dressed-Atom Model
Institute of Scientific and Technical Information of China (English)
WANG Zheng-Ling; YIN Jian-Ping
2004-01-01
On the basis of the dressed-atom model, the general analytic expressions for the eigenenergies, eigenstates and their optical potentials of the A-configuration three-level atom system are derived and analysed. From the calculation of dipole matrix element of different dressed states, we obtain the spontaneous-emission rates in the dressed-atom picture. We find that our general expressions of optical potentials for the three-level dressed atom can be reduced to the same as ones in previous references under the approximation of a small saturation parameter. We also analyse the dependences of the optical potentials of a three-level 85Rb atom on the laser detuning and the dependences of spontaneous-emission rates on the radial position in the dark hollow beam, and discuss the probability (population) evolutions of dressed-atomic eigenstates in three levels in the hollow beam.
DEFF Research Database (Denmark)
Schäfer, Mirko; Greiner, Martin
Chaotic strings are coupled Tchebyscheff maps on a ring-network. With a well-specified empirical prescription they are able to explain the coupling constants of the standard model of elementary particle physics. This empirical relationship is tested further by introducing a tunable disorder to ch...... of the standard model of elementary particle physics. For the electromagnetic sector it is found that already a small disorder pushes the associated energy scale of the running coupling constant far away from the result without disorder....
A String-Inspired Model for the Low-$\\ell$ CMB
Kitazawa, N
2015-01-01
We present a semi--analytic exploration of some low--$\\ell$ angular power spectra inspired by "Brane Supersymmetry Breaking". This mechanism splits Bose and Fermi excitations in String Theory, leaving behind an exponential potential that is just too steep for the inflaton to emerge from the initial singularity while descending it. As a result, the scalar generically bounces against the exponential wall, which typically introduces an infrared depression and a pre--inflationary peak in the power spectrum of scalar perturbations. We elaborate on a possible link between this phenomenon and the low--$\\ell$ CMB. For the first 32 multipoles, combining the hard exponential with a milder one leading to $n_s\\simeq 0.96$ and with a small gaussian bump we have attained a reduction of $\\chi^{\\,2}$ to about 46% of the standard $\\Lambda$CDM setting, with both WMAP9 and PLANCK 2013 data. This result corresponds to a $\\chi^{\\,2}/DOF$ of about 0.45, to be compared with a $\\Lambda$CDM value of about 0.85. The preferred choices ...
Hot QCD, k-strings and the adjoint monopole gas model
Altes, C P K; Altes, Chris P. Korthals; Meyer, Harvey B.
2005-01-01
When the magnetic sector of hot QCD, 3D SU(N) Yang-Mills theory, is described as a dilute gas of non-Abelian monopoles in the adjoint representation of the magnetic group, Wilson loops of N-ality k are known to obey a periodic k(N-k) law. Lattice simulations have confirmed this prediction to a few percent for N=4 and 6. We describe in detail how the magnetic flux of the monopoles produces different area laws for spatial Wilson k-loops. A simple physical argument is presented, why the predicted and observed Casimir scaling is allowed in the large-N limit by usual power-counting arguments. The same scaling is also known to hold in two-loop perturbation theory for the spatial 't Hooft loop, which measures the electric flux. We then present new lattice data for 3D N=8 k-strings as long as 3`fm' that provide further confirmation. Finally we suggest new tests in theories with spontaneous breaking and in SO(4n+2) gauge groups.
Woo Kim, Hyun; Rhee, Young Min
2012-07-30
Recently, many polarizable force fields have been devised to describe induction effects between molecules. In popular polarizable models based on induced dipole moments, atomic polarizabilities are the essential parameters and should be derived carefully. Here, we present a parameterization scheme for atomic polarizabilities using a minimization target function containing both molecular and atomic information. The main idea is to adopt reference data only from quantum chemical calculations, to perform atomic polarizability parameterizations even when relevant experimental data are scarce as in the case of electronically excited molecules. Specifically, our scheme assigns the atomic polarizabilities of any given molecule in such a way that its molecular polarizability tensor is well reproduced. We show that our scheme successfully works for various molecules in mimicking dipole responses not only in ground states but also in valence excited states. The electrostatic potential around a molecule with an externally perturbing nearby charge also exhibits a near-quantitative agreement with the reference data from quantum chemical calculations. The limitation of the model with isotropic atoms is also discussed to examine the scope of its applicability.
String fragmentation; La fragmentation des cordes
Energy Technology Data Exchange (ETDEWEB)
Drescher, H.J.; Werner, K. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France)
1997-10-01
The classical string model is used in VENUS as a fragmentation model. For the soft domain simple 2-parton strings were sufficient, whereas for higher energies up to LHC, the perturbative regime of the QCD gives additional soft gluons, which are mapped on the string as so called kinks, energy singularities between the leading partons. The kinky string model is chosen to handle fragmentation of these strings by application of the Lorentz invariant area law. The `kinky strings` model, corresponding to the perturbative gluons coming from pQCD, takes into consideration this effect by treating the partons and gluons on the same footing. The decay law is always the Artru-Menessier area law which is the most realistic since it is invariant to the Lorentz and gauge transformations. For low mass strings a manipulation of the rupture point is necessary if the string corresponds already to an elementary particle determined by the mass and the flavor content. By means of the fragmentation model it will be possible to simulate the data from future experiments at LHC and RHIC 3 refs.
On Approximating String Selection Problems with Outliers
Boucher, Christina; Levy, Avivit; Pritchard, David; Weimann, Oren
2012-01-01
Many problems in bioinformatics are about finding strings that approximately represent a collection of given strings. We look at more general problems where some input strings can be classified as outliers. The Close to Most Strings problem is, given a set S of same-length strings, and a parameter d, find a string x that maximizes the number of "non-outliers" within Hamming distance d of x. We prove this problem has no PTAS unless ZPP=NP, correcting a decade-old mistake. The Most Strings with Few Bad Columns problem is to find a maximum-size subset of input strings so that the number of non-identical positions is at most k; we show it has no PTAS unless P=NP. We also observe Closest to k Strings has no EPTAS unless W[1]=FPT. In sum, outliers help model problems associated with using biological data, but we show the problem of finding an approximate solution is computationally difficult.
The social structure of experimental'' strings at Fermilab; a physics and detector driven model
Energy Technology Data Exchange (ETDEWEB)
Bodnarczuk, M.
1990-12-12
Physicists in HEP have been forced to organize large scientific projects without a well defined organizational or sociological model to guide them. In the absence of such models, what structures do experimentalists use to develop social structures in HEP In this paper, I claim that physicists organize around what they know best, the physics problems they study and the detectors and devices they study them with. After describing the advent of management'' in HEP, I use a case study of 4 Fermilab experiments as the base upon which to propose a physics and detector driven model of social structure for experiments. In addition, I show how this model can be extended to describe strings'' of experiments, where continuities of physics interests, spectrometer design, and a core group of physicists become a definable sociological unit that can exist for over 15 years. A dominate theme that emerges from my analysis is the conscious attempt on the part of experimenters to remove the uncertainties that are part of the practice of HEP.
A PROBABILISTIC APPROACH TO STRING TRANSFORMATION
Directory of Open Access Journals (Sweden)
V. Vinothh
2015-10-01
Full Text Available The string model has been applied to a wide range of problems, including spelling correction. These models consist of two components: a source model and a channel model. Very little research has gone into improving the channel model for spelling correction. We Describes a new channel model for spelling correction, based on generic string to string edits. Using this model gives significant performance improvements compared to previously proposed models. We propose a novel and probabilistic approach to string transformation, which is both accurate and efficient. In this approach includes the use of a log linear model, a method for training the model, and an algorithm for generating the top k candidates, whether there is or is not a predefined dictionary. Log linear model is defined as a conditional probability distribution of an output string and a rule set for the transformation conditioned on an input string. The string generation algorithm based on pruning is guaranteed to generate the optimal top k candidates. The proposed method is applied to correction of spelling errors in queries as well as reformulation of queries in web search. Experimental results on large scale data show that the proposed approach is very accurate and efficient improving upon existing methods in terms of accuracy and efficiency in different settings.
Ooguri, H; Ooguri, Hirosi; Yin, Zheng
1996-01-01
These lecture notes are based on a course on string theories given by Hirosi Ooguri in the first week of TASI 96 Summer School at Boulder, Colorado. It is an introductory course designed to provide students with minimum knowledge before they attend more advanced courses on non-perturbative aspects of string theories in the School. The course consists of five lectures: 1. Bosonic String, 2. Toroidal Compactifications, 3. Superstrings, 4. Heterotic Strings, and 5. Orbifold Compactifications.
2015-10-01
UNCLASSIFIED AD-E403 689 Technical Report ARWSE-TR-14026 STD ::STRING APPEND Tom Nealis...DATES COVERED (From – To) 4. TITLE AND SUBTITLE STD ::STRING APPEND 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...two or more strings together while developing a C++ application is a very common task. For std ::strings, there are two primary ways to achieve the
Conlon, Joseph
2016-01-01
Is string theory a fraud or one of the great scientific advances? Why do so many physicists work on string theory if it cannot be tested? This book provides insight into why such a theory, with little direct experimental support, plays such a prominent role in theoretical physics. The book gives a modern and accurate account of string theory and science, explaining what string theory is, why it is regarded as so promising, and why it is hard to test.
Energy Technology Data Exchange (ETDEWEB)
Cordero, Ruben; Granados, Victor D [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del IPN, Unidad Profesional Adolfo Lopez Mateos, Edificio 9, 07738 Mexico DF (Mexico); Mota, Roberto D, E-mail: cordero@esfm.ipn.mx, E-mail: granados@esfm.ipn.mx, E-mail: rmotae@ipn.mx [Departamento de ICE de la Escuela Superior de IngenierIa Mecanica y Electrica del IPN, Unidad Culhuacan. Av. Santa Ana No 1000, San Francisco Culhuacan, Coyoacan Mexico DF, CP 04430 (Mexico)
2011-09-21
We find the full symmetries of the Wheeler-DeWitt equation for the Hawking and Page wormhole model and an axion-dilaton string cosmology. We show that the Wheeler-DeWitt Hamiltonian admits a U(1, 1) hidden symmetry for the Hawking and Page model and U(2, 1) for the axion-dilaton string cosmology. If we consider the existence of matter-energy renormalization, for each of these models we find that the Wheeler-DeWitt Hamiltonian accepts an additional SL(2, R) dynamical symmetry. In this case, we show that the SL(2, R) dynamical symmetry generators transform the states from one energy Hilbert eigensubspace to another. Some new wormhole-type solutions for both models are found.
Fields, Strings, Matrices and Symmetric Products
Dijkgraaf, R.
1999-01-01
In these notes we review the role played by the quantum mechanics and sigma models of symmetric product spaces in the light-cone quantization of quantum field theories, string theory and matrix theory. Lectures given at the Institute for Theoretical Physics, UC Santa Barbara, January 1998 and the Spring School on String Theory and Mathematics, Harvard University, May 1998.
A liquid drop model for embedded atom method cluster energies
Finley, C. W.; Abel, P. B.; Ferrante, J.
1996-01-01
Minimum energy configurations for homonuclear clusters containing from two to twenty-two atoms of six metals, Ag, Au, Cu, Ni, Pd, and Pt have been calculated using the Embedded Atom Method (EAM). The average energy per atom as a function of cluster size has been fit to a liquid drop model, giving estimates of the surface and curvature energies. The liquid drop model gives a good representation of the relationship between average energy and cluster size. As a test the resulting surface energies are compared to EAM surface energy calculations for various low-index crystal faces with reasonable agreement.
Paraquantum strings in noncommutative space-time
Seridi, M. A.; Belaloui, N.
2015-10-01
A parabosonic string is assumed to propagate in a total noncommutative target phase space. Three models are investigated: open strings, open strings between two parallel Dp-Dq branes and closed ones. This leads to a generalization of the oscillators algebra of the string and the corresponding Virasoro algebra. The mass operator is no more diagonal in the ordinary Fock space, a redefinition of this later will modify the mass spectrum, so that, neither massless vector state nor massless tensor state are present. The restoration of the photon and the graviton imposes specific forms of the noncommutativity parameter matrices, partially removes the mass degeneracy and gives new additional ones. In particular, for the D-branes, one can have a tachyon free model with a photon state when more strict conditions on these parameters are imposed, while, the match level condition of the closed string model induces the reduction of the spectrum.
[The string of Einthoven's string galvanometer].
Wyers, P J
1996-01-01
The Dutch physiologist Willem Einthoven (1860-1927) published in 1901 his construction of a string galvanometer. With this apparatus he opened the era for electrocardiography. As the quality of his instrument largely depended on the string of the string galvanometer it is surprising to note that in his publications Einthoven never mentioned the exact way of producing the string. However, Einthoven's hand written laboratory notes are preserved at the Museum Boerhaave in Leiden. From these notes it comes clear what problems Einthoven had with the string. To get a very thin thread of quarts he first used the method of shooting the thread as was described by Boys (1887), later the blowing method of Nichols (1894). The silvering of the thread was done first chemically, later by cathode spray. In all cases premature breaking of the thread was a nuisance. Because of these failures Einthoven might have decided not to publish any details.
The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.
Cardona, Biel; Pons, Josep M
2016-01-01
We construct the canonical action of a Carroll string doing the Carroll limit of a canonical relativistic string. We also study the Killing symmetries of the Carroll string, which close under an infinite dimensional algebra. The tensionless limit and the Carroll $p$-brane action are also discussed.
Muller, Christophe; Marcou, Gilles; Horvath, Dragos; Aires-de-Sousa, João; Varnek, Alexandre
2012-12-21
Machine learning (SVM and JRip rule learner) methods have been used in conjunction with the Condensed Graph of Reaction (CGR) approach to identify errors in the atom-to-atom mapping of chemical reactions produced by an automated mapping tool by ChemAxon. The modeling has been performed on the three first enzymatic classes of metabolic reactions from the KEGG database. Each reaction has been converted into a CGR representing a pseudomolecule with conventional (single, double, aromatic, etc.) bonds and dynamic bonds characterizing chemical transformations. The ChemAxon tool was used to automatically detect the matching atom pairs in reagents and products. These automated mappings were analyzed by the human expert and classified as "correct" or "wrong". ISIDA fragment descriptors generated for CGRs for both correct and wrong mappings were used as attributes in machine learning. The learned models have been validated in n-fold cross-validation on the training set followed by a challenge to detect correct and wrong mappings within an external test set of reactions, never used for learning. Results show that both SVM and JRip models detect most of the wrongly mapped reactions. We believe that this approach could be used to identify erroneous atom-to-atom mapping performed by any automated algorithm.
Pokorski, Witold; Pokorski, Witold; Ross, Graham G.
1998-01-01
We consider the phenomenological implications of a class of compactified string theories which naturally reproduces the flavour multiplet structure of the Standard Model. The implications for gauge unification depends on which of three possibilities is realised for obtaining light Higgs multiplets. The more conventional one leads to predictions for the gauge couplings close to that of the MSSM but with an increased value of the unification scale. The other two cases offer a mechanism for bringing the prediction for the strong coupling into agreement with the measured value while still increasing the unification scale. The various possibilities lead to different expectations for the structure of the quark masses.
Topological Strings and Integrable Hierarchies
Aganagic, M; Klemm, A D; Marino, M; Vafa, C; Aganagic, Mina; Dijkgraaf, Robbert; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun
2006-01-01
We consider the topological B-model on local Calabi-Yau geometries. We show how one can solve for the amplitudes by using W-algebra symmetries which encodes the symmetries of holomorphic diffeomorphisms of the Calabi-Yau. In the highly effective fermionic/brane formulation this leads to a free fermion description of the amplitudes. Furthermore we argue that topological strings on Calabi-Yau geometries provide a unifying picture connecting non-critical (super)strings, integrable hierarchies, and various matrix models. In particular we show how the ordinary matrix model, the double scaling limit of matrix models, and Kontsevich-like matrix model are all related and arise from studying branes in specific local Calabi-Yau three-folds. We also show how A-model topological string on P^1 and local toric threefolds (and in particular the topological vertex) can be realized and solved as B-model topological string amplitudes on a Calabi-Yau manifold.
Topological Strings and Integrable Hierarchies
Aganagic, Mina; Dijkgraaf, Robbert; Klemm, Albrecht; Mariño, Marcos; Vafa, Cumrun
2006-01-01
We consider the topological B-model on local Calabi-Yau geometries. We show how one can solve for the amplitudes by using -algebra symmetries which encode the symmetries of holomorphic diffeomorphisms of the Calabi-Yau. In the highly effective fermionic/brane formulation this leads to a free fermion description of the amplitudes. Furthermore we argue that topological strings on Calabi-Yau geometries provide a unifying picture connecting non-critical (super)strings, integrable hierarchies, and various matrix models. In particular we show how the ordinary matrix model, the double scaling limit of matrix models, and Kontsevich-like matrix model are all related and arise from studying branes in specific local Calabi-Yau three-folds. We also show how an A-model topological string on P1 and local toric threefolds (and in particular the topological vertex) can be realized and solved as B-model topological string amplitudes on a Calabi-Yau manifold.
From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.
Pepe, M; Wiese, U-J
2009-05-15
We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.
Toward an anisotropic atom-atom model for the crystalline phases of the molecular S8 compound
Pastorino, C.; Gamba, Z.
2000-01-01
We analize two anisotropic atom-atom models used to describe the crystalline alpha,beta and gamma phases of S8 crystals, the most stable compound of elemental sulfur in solid phases, at ambient pressure and T
String Resonances at Hadron Colliders
Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R
2014-01-01
[Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...
Dando, Owen; Gregory, Ruth
1998-07-01
We examine the field equations of a self-gravitating global string in low energy superstring gravity, allowing for an arbitrary coupling of the global string to the dilaton. Massive and massless dilatons are considered. For the massive dilaton the spacetime is similar to the recently discovered non-singular time-dependent Einstein self-gravitating global string, but the massless dilaton generically gives a singular spacetime, even allowing for time dependence. We also demonstrate a time-dependent non-singular string-antistring configuration, in which the string pair causes a compactification of two of the spatial dimensions, albeit on a very large scale.
Energy Technology Data Exchange (ETDEWEB)
Faraggi, A.E. [Univ. of Florida, Gainesville, FL (United States). Dept. of Physics; Pati, J.C. [Univ. of Maryland, College Park, MD (United States). Dept. of Physics
1997-12-01
Recently a promising mechanism for supersymmetry breaking that utilizes both an anomalous U(1) gauge symmetry and an effective mass term m {approx} 1TeV of certain relevant fields has been proposed. In this paper we examine whether such a mechanism can emerge in superstring derived free fermionic models. We observe that certain three generation string solutions, though not all, lead to an anomalous U(1) which couples universally to all three families. The advantages of this three-family universality of U(1){sub A}, compared to the two-family case, proposed in earlier works, in yielding squark degeneracy, while avoiding radiative breaking of color and charge, are noted. The root cause of the flavor universality of U(1){sub A} is the cyclic permutation symmetry that characterizes the Z{sub 2} x Z{sub 2} orbifold compactification with standard embedding, realized in the free fermionic models by the NAHE set. It is shown that nonrenormalizable terms which contain hidden-sector condensates, generate the required suppression of the relevant mass term m, compared to the Planck scale. While the D-term of the family universal U(1){sub A} leads to squark degeneracy, those of the family dependent U(1)`s, remarkably enough, are found to vanish for the solutions considered, owing to minimization of the potential.
Institute of Scientific and Technical Information of China (English)
Wang Li-Na; Zhao Xing-Yu; Zhang Li-Li; Huang Yi-Neng
2012-01-01
The relaxation dynamics of liquids is one of the fundamental problems in liquid physics,and it is also one of the key issues to understand the glass transition mechanism.It will undoubtedly provide enlightenment on understanding and calculating the relaxation dynamics if the molecular orientation flipping images and relevant microparameters of liquids are studied.In this paper,we first give five microparameters to describe the individual molecular string (MS) relaxation based on the dynamical Hamiltonian of the MS model,and then simulate the images of individual MS ensemble,and at the same time calculate the parameters of the equilibrium state.The results show that the main molecular orientation flipping image in liquids (including supercooled liquid) is similar to the random walk.In addition,two pairs of the parameters are equal,and one can be ignored compared with the other.This conclusion will effectively reduce the difficulties in calculating the individual MS relaxation based on the single-molecule orientation flipping rate of the general Glauber type,and the computer simulation time of interaction MS relaxation.Moreover,the conclusion is of reference significance for solving and simulating the multi-state MS model.
Alpha-cluster model of atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Sosin, Zbigniew; Kallunkathariyil, Jinesh [Jagiellonian University, M. Smoluchowski Institute of Physics, Krakow (Poland); Blocki, Jan [NCBJ, Theoretical Physics Division (BP2), Swierk (Poland); Lukasik, Jerzy; Pawlowski, Piotr [IFJ PAN, Krakow (Poland)
2016-05-15
The description of a nuclear system in its ground state and at low excitations based on the equation of state (EoS) around normal density is presented. In the expansion of the EoS around the saturation point, additional spin polarization terms are taken into account. These terms, together with the standard symmetry term, are responsible for the appearance of the α-like clusters in the ground-state configurations of the N=Z even-even nuclei. At the nuclear surface these clusters can be identified as alpha particles. A correction for the surface effects is introduced for atomic nuclei. Taking into account an additional interaction between clusters the binding energies and sizes of the considered nuclei are very accurately described. The limits of the EoS parameters are established from the properties of the α, {sup 3}He and t particles. (orig.)
Topological open strings on orbifolds
Bouchard, Vincent; Marino, Marcos; Pasquetti, Sara
2008-01-01
We use the remodeling approach to the B-model topological string in terms of recursion relations to study open string amplitudes at orbifold points. To this end, we clarify modular properties of the open amplitudes and rewrite them in a form that makes their transformation properties under the modular group manifest. We exemplify this procedure for the C^3/Z_3 orbifold point of local P^2, where we present results for topological string amplitudes for genus zero and up to three holes, and for the one-holed torus. These amplitudes can be understood as generating functions for either open orbifold Gromov-Witten invariants of C^3/Z_3, or correlation functions in the orbifold CFT involving insertions of both bulk and boundary operators.
Strings, paths, and standard tableaux
Dasmahapatra, S
1996-01-01
For the vacuum sectors of regime-III ABF models, we observe that two sets of combinatorial objects: the strings which parametrize the row-to-row transfer matrix eigenvectors, and the paths which parametrize the corner transfer matrix eigenvectors, can both be expressed in terms of the same set of standard tableaux. Furthermore, the momenta of the strings, the energies of the paths, and the charges of the tableaux are such that there is a weight-preserving bijection between the two sets of eigenvectors, wherein the tableaux play an interpolating role. This bijection is so natural, that we conjecture that it exists in general.
Dvali, Gia; Van Proeyen, A; Dvali, Gia; Van Proeyen, Antoine
2004-01-01
We study the embedding of cosmic strings, related to the Abrikosov-Nielsen-Olesen vortex solution, into d=4, N=1 supergravity. We find that the local cosmic string solution which saturates the BPS bound of supergravity with the D-term potential for the Higgs field and with the constant Fayet--Iliopoulos term, has 1/2 of supersymmetry unbroken. We observe an interesting relation between the gravitino supersymmetry transformation, positive energy condition and the deficit angle of the cosmic string. We argue that the string solutions with the magnetic flux with F-term potential cannot be supersymmetric, which leads us to a conjecture that D1-strings of string theory in the effective 4d supergravity may be described by the D-term strings, which we study in this paper.
Entanglement in a two-dimensional string theory
Donnelly, William
2016-01-01
What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider entanglement entropy in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large $N$. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space, giving a precise state-counting interpretation to the entropy, including its leading $O(N^2)$ piece. In the process we reinterpret the sphere partition function as a thermal ensemble of of open strings whose endpoints are anchored to an object at the entangling surface that we call an E-brane.
Interacting Strings in Matrix String Theory
Bonelli, G.
1998-01-01
It is here explained how the Green-Schwarz superstring theory arises from Matrix String Theory. This is obtained as the strong YM-coupling limit of the theory expanded around its BPS instantonic configurations, via the identification of the interacting string diagram with the spectral curve of the relevant configuration. Both the GS action and the perturbative weight $g_s^{-\\chi}$, where $\\chi$ is the Euler characteristic of the world-sheet surface and $g_s$ the string coupling, are obtained.
String Phenomenology: Past, Present and Future Perspectives
Directory of Open Access Journals (Sweden)
Alon E. Faraggi
2014-04-01
Full Text Available The observation of a scalar resonance at the Large Hadron Collider (LHC, compatible with perturbative electroweak symmetry breaking, reinforces the Standard Model (SM parameterisation of all subatomic data. The logarithmic evolution of the SM gauge and matter parameters suggests that this parameterisation remains viable up to the Planck scale, where gravitational effects are of comparable strength. String theory provides a perturbatively consistent scheme to explore how the parameters of the Standard Model may be determined from a theory of quantum gravity. The free fermionic heterotic string models provide concrete examples of exact string solutions that reproduce the spectrum of the Minimal Supersymmetric Standard Model. Contemporary studies entail the development of methods to classify large classes of models. This led to the discovery of exophobic heterotic-string vacua and the observation of spinor-vector duality, which provides an insight to the global structure of the space of (2,0 heterotic-string vacua. Future directions entail the study of the role of the massive string states in these models and their incorporation in cosmological scenarios. A complementary direction is the formulation of quantum gravity from the principle of manifest phase space duality and the equivalence postulate of quantum mechanics, which suggest that space is compact. The compactness of space, which implies intrinsic regularisation, may be tightly related to the intrinsic finite length scale, implied by string phenomenology.
Henrot-Versillé, Sophie; Leroy, Nicolas; Plaszczynski, Stéphane; Arnaud, Nicolas; Bizouard, Marie-Anne; Cavalier, Fabien; Christensen, Nelson; Couchot, François; Franco, Samuel; Hello, Patrice; Huet, Dominique; Kasprzack, Marie; Perdereau, Olivier; Spinelli, Marta; Tristram, Matthieu
2014-01-01
The production of a primordial stochastic gravitational-wave background by processes occuring in the early Universe is expected in a broad range of models. Observing this background would open a unique window onto the Universe's evolutionary history. Probes like the Cosmic Microwave Background (CMB) or the Baryon Acoustic Oscillations (BAO) can be used to set upper limits on the stochastic gravitational-wave background energy density $\\Omega_{GW}$ for frequencies above $10^{-15}$ Hz. We perform a profile likelihood analysis of the Planck CMB temperature anisotropies and gravitational lensing data combined with WMAP low-$\\ell$ polarization, BAO, South Pole Telescope and Atacama Cosmology Telescope data. We find that $\\Omega_{GW}h_{0}^{2} < 3.8 \\times 10^{-6}$ at 95\\% confidence level for adiabatic initial conditions which improves over the previous limit by a factor 2.3. Assuming that the primordial gravitational waves have been produced by a network of cosmic strings, we have derived exclusion limits in th...
Metastable Quivers in String Compactifications
Energy Technology Data Exchange (ETDEWEB)
Diaconescu, Duiliu-Emanuel; /Rutgers U., Piscataway; Donagi, Ron; /Pennsylvania U. /SLAC; Florea, Bogdan; /SLAC
2007-01-08
We propose a scenario for dynamical supersymmetry breaking in string compactifications based on geometric engineering of quiver gauge theories. In particular we show that the runaway behavior of fractional branes at del Pezzo singularities can be stabilized by a flux superpotential in compact models. Our construction relies on homological mirror symmetry for orientifolds.
Matrix Strings, Compactification Scales and Hagedorn Transition
Meana, M L; Meana, Marco Laucelli; Peñalba, Jesús Puente
1999-01-01
In this work we use the Matrix Model of Strings in order to extract some non-perturbative information on how the Hagedorn critical temperature arises from eleven-dimensional physics. We study the thermal behavior of M and Matrix theories on the compactification backgrounds that correspond to string models. We obtain some information that allows us to state that the Hagedorn temperature is not unique for all Matrix String models and we are also able to sketch how the $S$-duality transformation works in this framework.
On closed-string twist-field correlators and their open-string descendants
Anastasopoulos, Pascal; Richter, Robert
2011-01-01
In a recent paper we have proposed the possibility that the lightest massive string states could be identified with open strings living at intersections of D-branes forming small angles. In this note, we reconsider the relevant twist-field correlation functions and perform the analysis of the sub-dominant physical poles in the various channels. Our derivation is new in that it is based on the algebraic procedure for the construction of open string models starting from their closed-string `parents' rather than on the stress-tensor method. We also indicate possible generalizations and diverse applications of our approach.
An extension of dynamic droplet deformation models to secondary atomization
Bartz, F.O.; Schmehl, R.; Koch, R.; Bauer, H.J.
2010-01-01
A detailed model for secondary atomization of liquid droplets by aerodynamic forces is presented. As an empirical extension of dynamic droplet deformation models, it accounts for temporal variations of the relative velocity between droplet and gas phase during the deformation and breakup process and
Hirshfeld atom refinement for modelling strong hydrogen bonds.
Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon
2014-09-01
High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.
Physically representative atomistic modeling of atomic-scale friction
Dong, Yalin
Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the
Modeling noncontact atomic force microscopy resolution on corrugated surfaces
Directory of Open Access Journals (Sweden)
Kristen M. Burson
2012-03-01
Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.
Sadrzadeh, M.; Haghshenas, R.; Jahromi, S. S.; Langari, A.
2016-12-01
We investigate the ground-state nature of the transverse field Ising model on the J1-J2 square lattice at the highly frustrated point J2/J1=0.5 . At zero field, the model has an exponentially large degenerate classical ground state, which can be affected by quantum fluctuations for nonzero field toward a unique quantum ground state. We consider two types of quantum fluctuations, harmonic ones by using linear spin-wave theory (LSWT) with single-spin-flip excitations above a long-range magnetically ordered background and anharmonic fluctuations, by employing a cluster-operator approach (COA) with multispin cluster-type fluctuations above a nonmagnetic cluster-ordered background. Our findings reveal that the harmonic fluctuations of LSWT fail to lift the extensive degeneracy as well as signaling a violation of the Hellmann-Feynman theorem. However, the string-type anharmonic fluctuations of COA are able to lift the degeneracy toward a string valence-bond-solid (VBS) state, which is obtained from an effective theory consistent with the Hellmann-Feynman theorem as well. Our results are further confirmed by implementing numerical tree tensor network simulation. The emergent nonmagnetic string VBS phase is gapped and breaks lattice rotational symmetry with only twofold degeneracy, which bears a continuous quantum phase transition at Γ /J1≅0.50 to the quantum paramagnet phase of high fields. The critical behavior is characterized by ν ≅1.0 and γ ≅0.33 exponents.
Topological M-strings and supergroup Wess-Zumino-Witten models
Okazaki, Tadashi; Smith, Douglas J.
2016-09-01
We study the boundary conditions in topologically twisted Chern-Simons matter theories with the Lie 3-algebraic structure. We find that the supersymmetric boundary conditions and the gauge-invariant boundary conditions can be unified as complexified gauge-invariant boundary conditions which lead to supergroup Wess-Zumino-Witten (WZW) models. We propose that the low-energy effective field theories on the two-dimensional intersection of multiple M2-branes on a holomorphic curve inside K3 with two nonparallel M5-branes on the K3 are supergroup WZW models from the topologically twisted Bagger-Lambert-Gustavson model and the Aharony-Bergman-Jafferis-Maldacena model.
String Theory, Cosmology And Brany Geometry
Pokotilov, A
2005-01-01
Motivated by cosmological applications in this thesis we describe several string theory based models of the early Universe. The major property of these models is that they lead to inflationary-like expansion for early times. The interaction properties of fundamental strings, leading to the velocity dependent potentials are used to describe this accelerating expansion rate. Other types of extended objects such as fivebranes dual to fundamental strings are shown to lead to the similar cosmological implications. Our findings are consistent with recent astronomical observations of an accelerated expansion of the Universe and predict an asymptotically constant late time expansion rate.
Superconducting Electroweak Strings
Volkov, M S
2007-01-01
Classical solutions describing strings endowed with an electric charge and carrying a constant electromagnetic current are constructed within the bosonic sector of the Electroweak Theory. For any given ratio of the Higgs boson mass to W boson mass and for any Weinberg's angle, these strings comprise a family that can be parameterized by values of the current through their cross section, $I_3$, by their electric charge per unit string length, $I_0$, and by two integers. These parameters determine the electromagnetic and Z fluxes, as well as the angular momentum and momentum densities of the string. For $I_0\\to 0$ and $I_3\\to 0$ the solutions reduce to Z strings, or, for solutions with $I_0=\\pm I_3$, to the W-dressed Z strings whose existence was discussed some time ago.
Sigma models for bundles on Calabi-Yau: a proposal for matrix string compactifications
Hofman, C.; Park, J.-S.
2001-01-01
W e describe a class of supersymmetric gauged linear sigma-model, whose target space is the infinite dimensional space of bundles on a Calabi-Y au 3- or 2-fold. This target space can be considered the configuration space of D-branes wrapped around the Calabi-Yau. We propose that this model can be us
The 750 GeV LHC diphoton excess from a baryon number conserving string model
Kokorelis, Christos
2016-01-01
We propose an explanation of the LHC data excess resonance of 750 GeV in the diphoton distribution using D-brane models, with gauged baryon number, which accommodate the Standard Model together with vector like exotics. We identify the 750 GeV scalar as either the sneutrino (${\\tilde \
Cosmic String Universes Embedded with Viscosity
Institute of Scientific and Technical Information of China (English)
Koijam Manihar Singh; Kangujam Priyokumar Singh
2011-01-01
We study string cosmological models with attached particles in LRS BI type space time.The dynamical and physical properties of such universes are studied,and the possibility that during the evolution of the universe the strings disappear,leaving only the particles,is also discussed.It is found that bulk viscosity plays a large role in the evolution of the universe.In these models we find critical instances of when there was a “Bounce”.The studied models are found to be of an inflationary type,and since a desirable feature of a meaningful string cosmological model is the presence of an inflationary epoch in the very early stages of evolution,our models can be thought of as realistic universes.The origin of the universe and the early stages of formation are still interesting areas of research.The concept of string theory was developed to describe the events of the early stages of the evolution of the universe.The universe can be described as a collection of extended (non point) objects.Thus,“string dust” cosmology will provide us with a model to investigate the properties related to this fact.%We study string cosmological models with attached particles in LRS BI type space time. The dynamical and physical properties of such universes are studied, and the possibility that during the evolution of the universe the strings disappear, leaving only the particles, is also discussed. It is found that bulk viscosity plays a large role in the evolution of the universe. In these models we find critical instances of when there was a "Bounce". The studied models are found to be of an inflationary type, and since a desirable feature of a meaningful string cosmological model is the presence of an inflationary epoch in the very early stages of evolution, our models can be thought of as realistic universes.
Gas Atomization of Aluminium Melts: Comparison of Analytical Models
Directory of Open Access Journals (Sweden)
Georgios Antipas
2012-06-01
Full Text Available A number of analytical models predicting the size distribution of particles during atomization of Al-based alloys by N2, He and Ar gases were compared. Simulations of liquid break up in a close coupled atomizer revealed that the finer particles are located near the center of the spray cone. Increasing gas injection pressures led to an overall reduction of particle diameters and caused a migration of the larger powder particles towards the outer boundary of the flow. At sufficiently high gas pressures the spray became monodisperse. The models also indicated that there is a minimum achievable mean diameter for any melt/gas system.
Modeling sympathetic cooling of molecules by ultracold atoms
Lim, Jongseok; Hutson, Jeremy M; Tarbutt, M R
2015-01-01
We model sympathetic cooling of ground-state CaF molecules by ultracold Li and Rb atoms. The molecules are moving in a microwave trap, while the atoms are trapped magnetically. We calculate the differential elastic cross sections for CaF-Li and CaF-Rb collisions, using model Lennard-Jones potentials adjusted to give typical values for the s-wave scattering length. Together with trajectory calculations, these differential cross sections are used to simulate the cooling of the molecules, the heating of the atoms, and the loss of atoms from the trap. We show that a hard-sphere collision model based on an energy-dependent momentum transport cross section accurately predicts the molecule cooling rate but underestimates the rates of atom heating and loss. Our simulations suggest that Rb is a more effective coolant than Li for ground-state molecules, and that the cooling dynamics are less sensitive to the exact value of the s-wave scattering length when Rb is used. Using realistic experimental parameters, we find th...
String Scale Cosmological Constant
Chalmers, Gordon
2006-01-01
The cosmological constant is an unexplained until now phenomena of nature that requires an explanation through string effects. The apparent discrepancy between theory and experiment is enourmous and has already been explained several times by the author including mechanisms. In this work the string theory theory of abolished string modes is documented and given perturbatively to all loop orders. The holographic underpinning is also exposed. The matching with the data of the LIGO and D0 experi...
Atomic-scale modeling of cellulose nanocrystals
Wu, Xiawa
Cellulose nanocrystals (CNCs), the most abundant nanomaterials in nature, are recognized as one of the most promising candidates to meet the growing demand of green, bio-degradable and sustainable nanomaterials for future applications. CNCs draw significant interest due to their high axial elasticity and low density-elasticity ratio, both of which are extensively researched over the years. In spite of the great potential of CNCs as functional nanoparticles for nanocomposite materials, a fundamental understanding of CNC properties and their role in composite property enhancement is not available. In this work, CNCs are studied using molecular dynamics simulation method to predict their material' behaviors in the nanoscale. (a) Mechanical properties include tensile deformation in the elastic and plastic regions using molecular mechanics, molecular dynamics and nanoindentation methods. This allows comparisons between the methods and closer connectivity to experimental measurement techniques. The elastic moduli in the axial and transverse directions are obtained and the results are found to be in good agreement with previous research. The ultimate properties in plastic deformation are reported for the first time and failure mechanism are analyzed in details. (b) The thermal expansion of CNC crystals and films are studied. It is proposed that CNC film thermal expansion is due primarily to single crystal expansion and CNC-CNC interfacial motion. The relative contributions of inter- and intra-crystal responses to heating are explored. (c) Friction at cellulose-CNCs and diamond-CNCs interfaces is studied. The effects of sliding velocity, normal load, and relative angle between sliding surfaces are predicted. The Cellulose-CNC model is analyzed in terms of hydrogen bonding effect, and the diamond-CNC model compliments some of the discussion of the previous model. In summary, CNC's material properties and molecular models are both studied in this research, contributing to
Scaling properties of cosmic (super)string networks
Martins, C J A P
2013-01-01
I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings.
Savvidy, G K
1998-01-01
We discuss the basic properties of the gonihedric string and the problem of its formulation in continuum. We propose a generalization of the Dirac equation and of the corresponding gamma matrices in order to describe the gonihedric string. The wave function and the Dirac matrices are infinite-dimensional. The spectrum of the theory consists of particles and antiparticles of increasing half-integer spin lying on quasilinear trajectories of different slope. Explicit formulas for the mass spectrum allow to compute the string tension and thus demonstrate the string character of the theory.
Zimmerman Jones, Andrew
2010-01-01
Making Everything Easier!. String Theory for Dummies. Learn:. The basic concepts of this controversial theory;. How string theory builds on physics concepts;. The different viewpoints in the field;. String theory's physical implications. Andrew Zimmerman Jones. Physics Guide, About.com. with Daniel Robbins, PhD in Physics. Your plain-English guide to this complex scientific theory. String theory is one of the most complicated sciences being explored today. Not to worry though! This informative guide clearly explains the basics of this hot topic, discusses the theory's hypotheses and prediction
Gauge fields in a string-cigar braneworld
Energy Technology Data Exchange (ETDEWEB)
Costa, F.W.V., E-mail: wagner@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Caixa Postal 6030, 60455-760, Fortaleza, Ceará (Brazil); FAFIDAM, Universidade Estadual do Ceará, Limoeiro do Norte, Ceará (Brazil); Silva, J.E.G., E-mail: euclides@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Caixa Postal 6030, 60455-760, Fortaleza, Ceará (Brazil); Veras, D.F.S., E-mail: franklin@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Caixa Postal 6030, 60455-760, Fortaleza, Ceará (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Caixa Postal 6030, 60455-760, Fortaleza, Ceará (Brazil)
2015-07-30
In this work, we investigate the properties of the Abelian gauge vector field in the background of a string-cigar braneworld. Both the thin and thick brane limits are considered. The string-cigar scenario can be regarded as an interior and exterior string-like solution. The source undergoes a geometric Ricci flow which is related to a variation of the bulk cosmological constant. The Ricci flow changes the width and amplitude of the massless mode at the brane core and recovers the usual string-like behavior at large distances. By means of suitable numerical methods, we attain the Kaluza–Klein (KK) spectrum for the string-like and the string-cigar models. For the string-cigar model, the KK modes are smooth near the brane and their amplitude are enhanced by the brane core. Furthermore, the analogue Schrödinger potential is also regulated by the geometric flow.
Towards a Theory of the QCD String
Dubovsky, Sergei
2015-01-01
We construct a new model of four-dimensional relativistic strings with integrable dynamics on the worldsheet. In addition to translational modes this model contains a single massless pseudoscalar worldsheet field - the worldsheet axion. The axion couples to a topological density which counts the self-intersection number of a string. The corresponding coupling is fixed by integrability to $Q=\\sqrt{7\\over 16\\pi}\\approx 0.37$. We argue that this model is a member of a larger family of relativistic non-critical integrable string models. This family includes and extends conventional non-critical strings described by the linear dilaton CFT. Intriguingly, recent lattice data in $SU(3)$ and $SU(5)$ gluodynamics reveals the presence of a massive pseudoscalar axion on the worldsheet of confining flux tubes. The value of the corresponding coupling, as determined from the lattice data, is equal to $Q_L\\approx0.38\\pm0.04$.
Model based control of dynamic atomic force microscope.
Lee, Chibum; Salapaka, Srinivasa M
2015-04-01
A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.
Model based control of dynamic atomic force microscope
Energy Technology Data Exchange (ETDEWEB)
Lee, Chibum [Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Salapaka, Srinivasa M., E-mail: salapaka@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2015-04-15
A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H{sub ∞} control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.
String cosmology and the dimension of spacetime
Cleaver, G B; Gerald B Cleaver; Philip J Rosenthal
1994-01-01
The implications of string theory for understanding the dimension of uncompactified spacetime are investigated. Using recent ideas in string cosmology, a new model is proposed to explain why three spatial dimensions grew large. Unlike the original work of Brandenberger and Vafa, this paradigm uses the theory of random walks. A computer model is developed to test the implications of this new approach. It is found that a four-dimensional spacetime can be explained by the proper choice of initial conditions.
String Cosmology and the Dimension of Spacetime
Cleaver, Gerald B.; Rosenthal, Philip J.
1994-01-01
The implications of string theory for understanding the dimension of uncompactified spacetime are investigated. Using recent ideas in string cosmology, a new model is proposed to explain why three spatial dimensions grew large. Unlike the original work of Brandenberger and Vafa, this paradigm uses the theory of random walks. A computer model is developed to test the implications of this new approach. It is found that a four-dimensional spacetime can be explained by the proper choice of initia...
Maximilien Brice
2007-01-01
Mr Ignations Antoniadis have written in the past an article in La Recherche 343 (2001) 25 entitled "Les dimensions cachees de l'univers" and a related article in CERN courier 43N6 (2003) 21 entitled "Testing times for strings".
Modeling and optimizing of the random atomic spin gyroscope drift based on the atomic spin gyroscope
Energy Technology Data Exchange (ETDEWEB)
Quan, Wei; Lv, Lin, E-mail: lvlinlch1990@163.com; Liu, Baiqi [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)
2014-11-15
In order to improve the atom spin gyroscope's operational accuracy and compensate the random error caused by the nonlinear and weak-stability characteristic of the random atomic spin gyroscope (ASG) drift, the hybrid random drift error model based on autoregressive (AR) and genetic programming (GP) + genetic algorithm (GA) technique is established. The time series of random ASG drift is taken as the study object. The time series of random ASG drift is acquired by analyzing and preprocessing the measured data of ASG. The linear section model is established based on AR technique. After that, the nonlinear section model is built based on GP technique and GA is used to optimize the coefficients of the mathematic expression acquired by GP in order to obtain a more accurate model. The simulation result indicates that this hybrid model can effectively reflect the characteristics of the ASG's random drift. The square error of the ASG's random drift is reduced by 92.40%. Comparing with the AR technique and the GP + GA technique, the random drift is reduced by 9.34% and 5.06%, respectively. The hybrid modeling method can effectively compensate the ASG's random drift and improve the stability of the system.
Quan, Wei; Lv, Lin; Liu, Baiqi
2014-11-01
In order to improve the atom spin gyroscope's operational accuracy and compensate the random error caused by the nonlinear and weak-stability characteristic of the random atomic spin gyroscope (ASG) drift, the hybrid random drift error model based on autoregressive (AR) and genetic programming (GP) + genetic algorithm (GA) technique is established. The time series of random ASG drift is taken as the study object. The time series of random ASG drift is acquired by analyzing and preprocessing the measured data of ASG. The linear section model is established based on AR technique. After that, the nonlinear section model is built based on GP technique and GA is used to optimize the coefficients of the mathematic expression acquired by GP in order to obtain a more accurate model. The simulation result indicates that this hybrid model can effectively reflect the characteristics of the ASG's random drift. The square error of the ASG's random drift is reduced by 92.40%. Comparing with the AR technique and the GP + GA technique, the random drift is reduced by 9.34% and 5.06%, respectively. The hybrid modeling method can effectively compensate the ASG's random drift and improve the stability of the system.
Modeling and optimizing of the random atomic spin gyroscope drift based on the atomic spin gyroscope
Quan, Wei; Lv, Lin; Liu, Baiqi
2014-11-01
In order to improve the atom spin gyroscope's operational accuracy and compensate the random error caused by the nonlinear and weak-stability characteristic of the random atomic spin gyroscope (ASG) drift, the hybrid random drift error model based on autoregressive (AR) and genetic programming (GP) + genetic algorithm (GA) technique is established. The time series of random ASG drift is taken as the study object. The time series of random ASG drift is acquired by analyzing and preprocessing the measured data of ASG. The linear section model is established based on AR technique. After that, the nonlinear section model is built based on GP technique and GA is used to optimize the coefficients of the mathematic expression acquired by GP in order to obtain a more accurate model. The simulation result indicates that this hybrid model can effectively reflect the characteristics of the ASG's random drift. The square error of the ASG's random drift is reduced by 92.40%. Comparing with the AR technique and the GP + GA technique, the random drift is reduced by 9.34% and 5.06%, respectively. The hybrid modeling method can effectively compensate the ASG's random drift and improve the stability of the system.
Chen, Chunxia; Depa, Praveen; Sakai, Victoria García; Maranas, Janna K; Lynn, Jeffrey W; Peral, Inmaculada; Copley, John R D
2006-06-21
We compare static and dynamic properties obtained from three levels of modeling for molecular dynamics simulation of poly(ethylene oxide) (PEO). Neutron scattering data are used as a test of each model's accuracy. The three simulation models are an explicit atom (EA) model (all the hydrogens are taken into account explicitly), a united atom (UA) model (CH(2) and CH(3) groups are considered as a single unit), and a coarse-grained (CG) model (six united atoms are taken as one bead). All three models accurately describe the PEO static structure factor as measured by neutron diffraction. Dynamics are assessed by comparison to neutron time of flight data, which follow self-motion of protons. Hydrogen atom motion from the EA model and carbon/oxygen atom motion from the UA model closely follow the experimental hydrogen motion, while hydrogen atoms reinserted in the UA model are too fast. The EA and UA models provide a good description of the orientation properties of C-H vectors measured by nuclear magnetic resonance experiments. Although dynamic observables in the CG model are in excellent agreement with their united atom counterparts, they cannot be compared to neutron data because the time after which the CG model is valid is greater than the neutron decay times.
Modified Penna bit-string network evolution model for scale-free networks with assortative mixing
Kim, Yup; Choi, Woosik; Yook, Soon-Hyung
2012-02-01
Motivated by biological aging dynamics, we introduce a network evolution model for social interaction networks. In order to study the effect of social interactions originating from biological and sociological reasons on the topological properties of networks, we introduce the activitydependent rewiring process. From the numerical simulations, we show that the degree distribution of the obtained networks follows a power-law distribution with an exponentially decaying tail, P( k) ˜ ( k + c)- γ exp(- k/k 0). The obtained value of γ is in the range 2 < γ š 3, which is consistent with the values for real social networks. Moreover, we also show that the degree-degree correlation of the network is positive, which is a characteristic of social interaction networks. The possible applications of our model to real systems are also discussed.
Neutrino Textures in the Light of Super-Kamiokande Data and a Realistic String Model
Ellis, Jonathan Richard; Lola, S; Nanopoulos, Dimitri V
1999-01-01
Motivated by the Super-Kamiokande atmospheric neutrino data, we discuss possible textures for Majorana and Dirac neutrino masses within the see-saw framework. The main purposes of this paper are twofold: first to obtain intuition from a purely phenomenological analysis, and secondly to explore to what extent it may be realized in a specific model. We comment initially on the simplified two-generation case, emphasizing that large mixing is not incompatible with a large hierarchy of mass eigenvalues. We also emphasize that renormalization-group effects may amplify neutrino mixing, presenting semi-analytic expressions for estimating this amplification. Several examples are then given of three-family neutrino mass textures which may also accommodate the persistent solar neutrino deficit, with different assumptions for the neutrino Dirac mass matrices. We comment on a few features of neutrino mass textures arising in models with a U(1) flavour symmetry. Finally, we discuss the possible pattern of neutrino masses i...
Directory of Open Access Journals (Sweden)
Chiara Valeria eMarinellli
2014-12-01
Full Text Available The locus of the deficit of children with dyslexia in dealing with strings of letters may be a deficit at a pre-lexical graphemic level or an inability to bind orthographic and phonological information. We evaluate these alternative hypotheses in two experiments by examining the role of stimulus pronounceability in a lexical decision task and in a forced-choice letter discrimination task (Reicher-Wheeler paradigm. Seventeen 4th grade children with dyslexia and 24 peer control readers participated to two experiments. In the lexical decision task children were presented with high-, low-frequency words, pronounceable pseudowords (such as DASU and unpronounceable non-words (such as RNGM of 4-, 5- or 6- letters. No sign of group by pronounceability interaction was found when overadditivity was taken into account. Children with dyslexia were impaired when they had to process strings, not only of pronounceable stimuli but also of unpronounceable stimuli, a deficit well accounted for by a single global factor. Complementary results were obtained with the Reicher-Wheeler paradigm: both groups of children gained in accuracy in letter discrimination in the context of pronounceable primes (words and pseudowords compared to unpronounceable primes (non-words. No global factor was detected in this task which requires the discrimination between a target letter and a competitor but does not involve simultaneous letter-string processing. Overall, children with dyslexia show a selective difficulty in simultaneously processing a letter string as a whole, independent of its pronounceability; however, when the task involves isolated letter processing, also these children can make use of the ortho-phono-tactic information derived from a previously seen letter string. This pattern of findings is in keeping with the idea that an impairment in pre-lexical graphemic analysis may be a core deficit in developmental dyslexia.
Quantum Geometry of Refined Topological Strings
Aganagic, Mina; Dijkgraaf, Robbert; Krefl, Daniel; Vafa, Cumrun
2011-01-01
We consider branes in refined topological strings. We argue that their wave-functions satisfy a Schr\\"odinger equation depending on multiple times and prove this in the case where the topological string has a dual matrix model description. Furthermore, in the limit where one of the equivariant rotations approaches zero, the brane partition function satisfies a time-independent Schroedinger equation. We use this observation, as well as the back reaction of the brane on the closed string geometry, to offer an explanation of the connection between integrable systems and N=2 gauge systems in four dimensions observed by Nekrasov and Shatashvili.
Quantum geometry of refined topological strings
Aganagic, Mina; Cheng, Miranda C. N.; Dijkgraaf, Robbert; Krefl, Daniel; Vafa, Cumrun
2012-11-01
We consider branes in refined topological strings. We argue that their wavefunctions satisfy a Schrödinger equation depending on multiple times and prove this in the case where the topological string has a dual matrix model description. Furthermore, in the limit where one of the equivariant rotations approaches zero, the brane partition function satisfies a time-independent Schrödinger equation. We use this observation, as well as the back reaction of the brane on the closed string geometry, to offer an explanation of the connection between integrable systems and {N}=2 gauge systems in four dimensions observed by Nekrasov and Shatashvili.
Trautmann, L.; Rabenstein, R.
2004-12-01
The functional transformation method (FTM) is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.
Hindmarsh, M B
1994-01-01
This work is based on a paper with Margaret James, to appear in Phys Rev D. In it we showed that the dipole moment of the sphaleron has its origin in two components: a ring of electric current circulating around the edge of the sphaleron; and also two regions of opposite magnetic charge above and below the ring. This magnetic charge has a partly topological explanation, arising from the fact that the sphaleron is axisymmetric and parity invariant. Here, I discuss the definition of the electromagnetic field and its sources in the Standard Model, comparing the one we use with the better-known one of 't Hooft. I also discuss the resemblance between the sphaleron and Nambu's ``dumb-bell'' -- a segment of Z-string which connects a monopole to an antimonopole.
k-Strings as Fundamental Strings
Giataganas, Dimitrios
2015-01-01
It has been noticed that the k-string observables can be expressed in terms of the fundamental string ones. We identify a sufficient condition for a generic gravity dual background which when satisfied the mapping can be done. The condition is naturally related to a preserved quantity under the T-dualities acting on the Dp-brane describing the high representation Wilson loops. We also find the explicit relation between the observables of the heavy k-quark and the single quark states. As an application to our generic study and motivated by the fact that the anisotropic theories satisfy our condition, we compute the width of the k-string in these theories to find that the logarithmic broadening is still present, but the total result is affected by the anisotropy of the space.
Application of the model of delocalized atoms to metallic glasses
Sanditov, D. S.; Darmaev, M. V.; Sanditov, B. D.
2017-01-01
The parameters of the model of delocalized atoms applied to metallic glasses have been calculated using the data on empirical constants of the Vogel-Fulcher-Tammann equation (for the temperature dependence of viscosity). It has been shown that these materials obey the same glass-formation criterion as amorphous organic polymers and inorganic glasses. This fact qualitatively confirms the universality of the main regularities of the liquid-glass transition process for all amorphous materials regardless of their origin. The energy of the delocalization of an atom in metallic glasses, Δɛ e ≈ 20-25 kJ/mol, coincides with the results obtained for oxide inorganic glasses. It is substantially lower than the activation energies for a viscous flow and for ion diffusion. The delocalization of an atom (its displacement from the equilibrium position) for amorphous metallic alloys is a low-energy small-scale process similar to that for other glass-like systems.
The Observed Diphoton Excess in F-theory Inspired Heterotic String-Derived Model
Ashfaque, Johar M
2016-01-01
The production and the subsequent decay of the SM singlet via heavy vector--like colour triplets and electroweak doublets in one--loop diagrams can shed light on the recent observation of diphoton excess at the LHC. In this paper, the $E_6$ GUT is considered in the F-theory setting where the $E_6$ is broken by making use of the spectral cover construction and by turning on the hypercharge gauge flux. This paper is based on the results presented in \\cite{Athanasopoulos:2014bba, Faraggi:2016xnm, Ashfaque:2016jha} which will be reviewed briefly. Here, by following the F-theory approach, akin to \\cite{Karozas:2016hcp, Leontaris:2016wsy, Das:2016xuc}, we present a study of the flipped $SO(10)$ model embedded completely in the $E_{6}$ GUT but with a different accommodation of the SM representations in the ${\\bf{27}}$ of $E_{6}$.
Theory and modelling of diamond fracture from an atomic perspective.
Brenner, Donald W; Shenderova, Olga A
2015-03-28
Discussed in this paper are several theoretical and computational approaches that have been used to better understand the fracture of both single-crystal and polycrystalline diamond at the atomic level. The studies, which include first principles calculations, analytic models and molecular simulations, have been chosen to illustrate the different ways in which this problem has been approached, the conclusions and their reliability that have been reached by these methods, and how these theory and modelling methods can be effectively used together.
Statistical Inference and String Theory
Heckman, Jonathan J
2013-01-01
In this note we expose some surprising connections between string theory and statistical inference. We consider a large collective of agents sweeping out a family of nearby statistical models for an M-dimensional manifold of statistical fitting parameters. When the agents making nearby inferences align along a d-dimensional grid, we find that the pooled probability that the collective reaches a correct inference is the partition function of a non-linear sigma model in d dimensions. Stability under perturbations to the original inference scheme requires the agents of the collective to distribute along two dimensions. Conformal invariance of the sigma model corresponds to the condition of a stable inference scheme, directly leading to the Einstein field equations for classical gravity. By summing over all possible arrangements of the agents in the collective, we reach a string theory. We also use this perspective to quantify how much an observer can hope to learn about the internal geometry of a superstring com...
2015-01-01
Welcome to String-Math 2015 at Sanya. The conference will be opened in December 31, 2015- January 4, 2016. String theory plays a central role in theoretical physics as a candidate for the quantum theory unifying gravity with other interactions. It has profound connections with broad branches of modern mathematics ever since the birth. In the last decades, the prosperous interaction, built upon the joint efforts from both mathematicians and physicists, has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side. The interplay is two-fold. The mathematics has provided powerful tools to fulfill the physical interconnection of ideas and clarify physical structures to understand the nature of string theory. On the other hand, ideas from string theory and quantum field theory have been a source of sign...
Higher Gauge Theory with String 2-Groups
Demessie, Getachew Alemu
2016-01-01
We give a complete and explicit description of the kinematical data of higher gauge theory on principal 2-bundles with the string 2-group model of Schommer-Pries as structure 2-group. We start with a self-contained review of the weak 2-category Bibun of Lie groupoids, bibundles and bibundle morphisms. We then construct categories internal to Bibun, which allow us to define principal 2-bundles with 2-groups internal to Bibun as structure 2-groups. Using these, we Lie-differentiate the 2-group model of the string group and we obtain the well-known string Lie 2-algebra. Generalizing the differentiation process, we find Maurer-Cartan forms leading us to higher non-abelian Deligne cohomology, encoding the kinematical data of higher gauge theory together with their (finite) gauge symmetries. We end by discussing an example of non-abelian self-dual strings in this setting.
A constructive model potential method for atomic interactions
Bottcher, C.; Dalgarno, A.
1974-01-01
A model potential method is presented that can be applied to many electron single centre and two centre systems. The development leads to a Hamiltonian with terms arising from core polarization that depend parametrically upon the positions of the valence electrons. Some of the terms have been introduced empirically in previous studies. Their significance is clarified by an analysis of a similar model in classical electrostatics. The explicit forms of the expectation values of operators at large separations of two atoms given by the model potential method are shown to be equivalent to the exact forms when the assumption is made that the energy level differences of one atom are negligible compared to those of the other.
Inhomogeneous Einstein-Rosen string cosmology
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-08-01
Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VIh cosmology. The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.
Strings, Fivebranes and an Expanding Universe
2002-01-01
It was recently shown that velocity-dependent forces between parallel fundamental strings moving apart in a $D-$dimensional spacetime implied an accelerating expanding universe in $D-1$-dimensional space-time. Exact solutions were obtained for the early time expansion in $D=5,6$. Here we show that this result also holds for fundamental strings in the background of a fivebrane, and argue that the feature of an accelerating universe would hold for more general $p$-brane-seeded models.
The (Super)String Theories' Problems
Naboulsi, R
2003-01-01
(Super)String theories are theoretical ideas that go beyond the standard model of particle and high energy physics and show promise for unifying all forces in nature including the gravitational one. In this unification a prominent role is played by the duality symmetries which relate different theories. I present a review of these developements and discuss their problems and possible impact in low-energy physics. We explain and discuss some ideas concerning string field theories from noncommutative geometry.
Lewis, R A
2014-01-01
The vibrating string is a source of gravitational waves which requires novel computational techniques, based on the explicit construction of a conserved and renormalized (in a classical sense) energy-momentum tensor. The renormalization is necessary to take into account the effect of external constraints, which affect the emission considerably. Vibrating media offer in general a testing ground for reconciling conflicts between General Relativity and other branches of physics; however, constraints are absent in sources like the Weber bar, for which the standard covariant formalism for elastic bodies can also be applied. Our solution method is based on the linearized Einstein equations, but relaxes other usual assumptions like far-field approximation, spherical or plane wave symmetry, TT gauge and source without internal interference. The string solution is then adapted to give the radiation field of a transversal Alfven wave in a rarefied plasma, where the tension is produced by an external static magnetic fie...
String completion of an SU(3c⊗SU(3L⊗U(1X electroweak model
Directory of Open Access Journals (Sweden)
Andrea Addazi
2016-08-01
Full Text Available The extended electroweak SU(3c⊗SU(3L⊗U(1X symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (unoriented open strings, on Calabi–Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron–antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.
String completion of an $\\mathrm{SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ electroweak model
Addazi, Andrea; Vaquera-Araujo, C A
2016-01-01
The extended electroweak $\\mathrm{SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ symmetry framework "explaining" the number of fermion families is revisited. While $331$-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and R-parity violation strictly forbidden.
String completion of an SU(3)c ⊗ SU(3)L ⊗ U(1)X electroweak model
Addazi, Andrea; Valle, J. W. F.; Vaquera-Araujo, C. A.
2016-08-01
The extended electroweak SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry framework "explaining" the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.
AtomDB and PyAtomDB: Atomic Data and Modelling Tools for High Energy and Non-Maxwellian Plasmas
Foster, Adam; Smith, Randall K.; Brickhouse, Nancy S.; Cui, Xiaohong
2016-04-01
The release of AtomDB 3 included a large wealth of inner shell ionization and excitation data allowing accurate modeling of non-equilibrium plasmas. We describe the newly calculated data and compare it to published literature data. We apply the new models to existing supernova remnant data such as W49B and N132D. We further outline progress towards AtomDB 3.1, including a new energy-dependent charge exchange cross sections.We present newly developed models for the spectra of electron-electron bremsstrahlung and those due to non-Maxwellian electron distributions.Finally, we present our new atomic database access tools, released as PyAtomDB, allowing powerful use of the underlying fundamental atomic data as well as the spectral emissivities.
CHARMM36 united atom chain model for lipids and surfactants.
Lee, Sarah; Tran, Alan; Allsopp, Matthew; Lim, Joseph B; Hénin, Jérôme; Klauda, Jeffery B
2014-01-16
Molecular simulations of lipids and surfactants require accurate parameters to reproduce and predict experimental properties. Previously, a united atom (UA) chain model was developed for the CHARMM27/27r lipids (Hénin, J., et al. J. Phys. Chem. B. 2008, 112, 7008-7015) but suffers from the flaw that bilayer simulations using the model require an imposed surface area ensemble, which limits its use to pure bilayer systems. A UA-chain model has been developed based on the CHARMM36 (C36) all-atom lipid parameters, termed C36-UA, and agreed well with bulk, lipid membrane, and micelle formation of a surfactant. Molecular dynamics (MD) simulations of alkanes (heptane and pentadecane) were used to test the validity of C36-UA on density, heat of vaporization, and liquid self-diffusion constants. Then, simulations using C36-UA resulted in accurate properties (surface area per lipid, X-ray and neutron form factors, and chain order parameters) of various saturated- and unsaturated-chain bilayers. When mixed with the all-atom cholesterol model and tested with a series of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol mixtures, the C36-UA model performed well. Simulations of self-assembly of a surfactant (dodecylphosphocholine, DPC) using C36-UA suggest an aggregation number of 53 ± 11 DPC molecules at 0.45 M of DPC, which agrees well with experimental estimates. Therefore, the C36-UA force field offers a useful alternative to the all-atom C36 lipid force field by requiring less computational cost while still maintaining the same level of accuracy, which may prove useful for large systems with proteins.
Topological Structure in ${\\hat c}=1$ Fermionic String Theory
Hirano, Shinji; Ishikawa, Hiroshi
1994-01-01
$\\chat=1$ fermionic string theory, which is considered as a fermionic string theory in two dimension, is shown to decompose into two mutually independent parts, one of which can be viewed as a topological model and the other is irrelevant for the theory. The physical contents of the theory is largely governed by this topological structure, and the discrete physical spectrum of $\\chat=1$ string theory is naturally explained as the physical spectrum of the topological model. This topological st...
The Dimension of Decompactified Spacetime from String Theory
Cleaver, Gerald B.
1994-01-01
The implications of string theory for understanding the dimension of decompactified spacetime are discussed. Results from a computer model designed to simulate expansion of the early universe during the string dominated phase are presented. This model focuses on the effects of string winding modes on inflation and is based on the theory of random walks. We demonstrate that our decompactified four-dimensional spacetime can be explained by the proper choice of initial conditions.
Vanchurin, V
2005-01-01
We investigate the evolution of finite loops and infinite strings as a part of a complete cosmic string network. We give dynamical arguments showing that the structures on infinite strings should obey a scaling law. We perform a simulation of the network which uses functional forms for the string position and thus is exact to the limits of computer arithmetic. The effective box size of our simulation is at least two orders of magnitude larger than what was previously reached. Our results confirm that the wiggles on the strings obey a scaling law described by universal power spectrum. The average distance between long strings also scales accurately with the time. Production functions of string loops do not show scaling. With low intercommutation probability p the true scaling régime is not reached until very late cosmic times, which makes it difficult to simulate such evolutions. Via the expansion of the box technique, we were able to reach scaling with a wide range of p. The physical correlation ...
DEFF Research Database (Denmark)
Franceschini, A.; Simonovic, M.; Roth, A.
2013-01-01
networks covering >1100 organisms. Here, we describe the update to version 9.1 of STRING, introducing several improvements: (i) we extend the automated mining of scientific texts for interaction information, to now also include full-text articles; (ii) we entirely re-designed the algorithm for transferring...... interactions from one model organism to the other; and (iii) we provide users with statistical information on any functional enrichment observed in their networks. © The Author(s) 2012....
Joining-splitting interaction of non-critical string
Hadasz, L; Hadasz, Leszek; Jaskolski, Zbigniew
2003-01-01
The joining-splitting interaction of non-critical bosonic string is analyzed in the light-cone formulation. The Mandelstam method of constructing tree string amplitudes is extended to the bosonic massive string models of the discrete series. Model independent properties of the dynamics of longitudinal excitations are derived from the requirement of Lorentz covariance of these amplitudes. The properties do not fit the CFT structure usually assumed in the Liouville sector. The results concern in particular the non-critical Nambu-Goto string, leaving open the question of consistent interaction in this model.
Dijkgraaf, Robbert; Verlinde, Herman; Verlinde, Erik
1991-03-01
We calculate correlation functions in minimal topological field theories. These twisted versions of N = 2 minimal models have recently been proposed to describe d < 1 matrix models, once coupled to topological gravity. In our calculation we make use of the Landau-Ginzburg formulation of the N = 2 models, and we find a direct relation between the Landau-Ginzburg superpotential and the KdV differential operator. Using this correspondence we show that the minimal topological models are in perfect agreement with the matrix models as solved in terms of the KdV hierarchy. This proves the equivalence at tree-level of topological and ordinary string thoery in d < 1.
Experimental Charge Density Study of Trichromium Linear Metal String Complex – Cr3(dpa)4Cl2
DEFF Research Database (Denmark)
Wu, Lai-Chin; Cheng, Ming-Chuan; Thomsen, Maja Krüger
An experimental and theoretical charge density study, based on Bader’s Quantum Theory: Atoms in Molecule (QTAIM), on a trichromium metal string complex, Cr3(dpa)4Cl2(C2H5OC2H5)x(CH2Cl2)1-x (1, dpa- = bis(2-pyridyl)amido)) is performed. The structure and multipole model of 1 are performed by using...... experimental X-ray diffraction data which are collected at both 100 K using conventional X-ray source (DS1) and 15 K using synchrotron source (DS2). The three chromium metal string is bridged by four dpa- ligands. These tri-chromium metal ions are bonded to each other and terminated by two Cl- ions on the both...... ends, forming a [Cl(1)Cr(1)Cr(2)Cr(3)Cl(2)] linear string. Each Cr atoms are coordinated by four N atoms of each dpa- ligand. This metal string is slightly unsymmetrical at both data sets. The bond distance, from DS1 (DS2), of Cr(1)Cr(2), 2.3480(2) (2.3669(1)) Å, is 0.03 (0.003) Å shorter than Cr...
Empirical model of atomic nitrogen in the upper thermosphere
Engebretson, M. J.; Mauersberger, K.; Kayser, D. C.; Potter, W. E.; Nier, A. O.
1977-01-01
Atomic nitrogen number densities in the upper thermosphere measured by the open source neutral mass spectrometer (OSS) on Atmosphere Explorer-C during 1974 and part of 1975 have been used to construct a global empirical model at an altitude of 375 km based on a spherical harmonic expansion. The most evident features of the model are large diurnal and seasonal variations of atomic nitrogen and only a moderate and latitude-dependent density increase during periods of geomagnetic activity. Maximum and minimum N number densities at 375 km for periods of low solar activity are 3.6 x 10 to the 6th/cu cm at 1500 LST (local solar time) and low latitude in the summer hemisphere and 1.5 x 10 to the 5th/cu cm at 0200 LST at mid-latitudes in the winter hemisphere.
Extended Hubbard models for ultracold atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Juergensen, Ole
2015-06-05
In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.
Academic Training: String Theory for Pedestrians
2007-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 29, 30, 31 January 2007, from 11:00 to 12:00 Main Auditorium, bldg. 500 on 29 and 30 January, TH Auditorium, Bldg 4, 3-006, on 31 January String Theory for Pedestrians B. ZWIEBACH, MIT, Cambridge, USA In this 3-lecture series I will discuss the basics of string theory, some physical applications, and the outlook for the future. I will begin with the main concepts of the classical theory and the application to the study of cosmic superstrings. Then I will turn to the quantum theory and discuss applications to the investigation of hadronic spectra and the recently discovered quark-gluon plasma. I will conclude with a sketch of string models of particle physics and showing some avenues that may lead to a complete formulation of string theory.
String propagation in a black hole geometry
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R.; Verlinde, H. (Joseph Henry Labs., Princeton Univ., NJ (United States)); Verlinde, E. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States))
1992-03-02
We consider string theory in the background of the two-dimensional black hole as described by the SL(2, R)/U(1) coset theory recently introduced by Witten. We study the spectrum of this conformal field theory, and give explicit representations for the tachyon vertex-operators in terms of SL(2, R) matrix elements. This is used to compute the scattering of strings off the black hole and to show that the string propagator exhibits Hawking radiation. We further discuss the role of winding states and the appearance of bound states in the euclidean solution. We find that target-space duality in the lorentzian theory interchanges the black hole horizon with the space-time singularity. We conclude with a comparison with the non-critical c=1 string and its formulation as a gauged SL(2, R) WZW model. (orig.).
Noncommutative Homotopy Algebras Associated with Open Strings
Kajiura, Hiroshige
We discuss general properties of A∞-algebras and their applications to the theory of open strings. The properties of cyclicity for A∞-algebras are examined in detail. We prove the decomposition theorem, which is a stronger version of the minimal model theorem, for A∞-algebras and cyclic A∞-algebras and discuss various consequences of it. In particular, it is applied to classical open string field theories and it is shown that all classical open string field theories on a fixed conformal background are cyclic A∞-isomorphic to each other. The same results hold for classical closed string field theories, whose algebraic structure is governed by cyclic L∞-algebras.
Amplitudes for left-handed strings
Siegel, W
2015-01-01
We consider a class of string-like models introduced previously where all modes are left-handed, all states are massless, T-duality is manifest, and only a finite number of orders in the string tension can appear. These theories arise from standard string theories by a singular gauge limit and associated change in worldsheet boundary conditions. In this paper we show how to calculate amplitudes by using the gauge parameter as an infrared regulator. The amplitudes produce the Cachazo-He-Yuan delta-functions after some modular integration; the Mason-Skinner string-like action and amplitudes arise from the zero-tension (infinite-slope) limit. However, without the limit the amplitudes have the same problems as found in the Mason-Skinner formalism.
A disintegrating cosmic string
Griffiths, J B
2002-01-01
We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge. (i.e. the background contains a cosmic string.) The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave.
Effective String Theory Simplified
Hellerman, Simeon; Maltz, Jonathan; Swanson, Ian
2014-01-01
In this set of notes we simplify the formulation of the Poincar\\'e invariant effective string theory in D dimensions by adding an intrinsic metric and embedding its dynamics into the Polyakov formalism. We apply this formalism to classify operators order by order in the inverse physical length of the string, in a fully gauge-invariant framework. We use this classification to discuss universality and nonuniversalty of observables up to and including next-to-next-to-leading order in the long string expansion.
Energy Technology Data Exchange (ETDEWEB)
Witten, Edward
2015-10-21
The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.
Liguori, Lucia
2014-01-01
Atomic orbital theory is a difficult subject for many high school and beginning undergraduate students, as it includes mathematical concepts not yet covered in the school curriculum. Moreover, it requires certain ability for abstraction and imagination. A new atomic orbital model "the chocolate shop" created "by" students…
A Comprehensive X-Ray Absorption Model for Atomic Oxygen
Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; de Vries, C. P.; Zatsarinny, O.
2013-01-01
An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.
Grignani, G; Semenoff, Gordon W; Grignani, Gianluca; Orselli, Marta; Semenoff, Gordon W.
2001-01-01
We study the discrete light-cone quantization (DLCQ) of closed strings in the background of Minkowski space-time and a constant Neveu-Schwarz $B$-field. For the Bosonic string, we identify the $B$-dependent part of the thermodynamic free energy to all orders in string perturbation theory. For every genus, $B$ appears in a constraint in the path integral which restricts the world-sheet geometries to those which are branched covers of a certain torus. This is the extension of a previous result where the $B$-field was absent \\cite{Grignani:2000zm}. We then discuss the coupling of a $B$-field to the Matrix model of M-theory. We show that, when we consider this theory at finite temperature and in a finite $B$-field, the Matrix variables are functions which live on a torus with the same Teichm\\"uller parameter as the one that we identified in string theory. We show explicitly that the thermodynamic partition function of the Matrix string model in the limit of free strings reproduces the genus 1 thermodynamic partit...
International conference on string theory
2017-01-01
The Strings 2017 conference is part of the "Strings" series of annual conferences, that bring the entire string theory community together. It will include reviews of major developments in the field, and specialized talks on specific topics. There will also be several public lectures given by conference participants, a pre-Strings school at the Technion, and a post-Strings workshop at the Weizmann Institute.
Supercritical N = 2 string theory
Hellerman, Simeon
2007-01-01
The N=2 string is examined in dimensions above the critical dimension (D=4) in a linear dilaton background. We demonstrate that string states in this background propagate in a single physical time dimension, as opposed to two such dimensions present when the dilaton gradient vanishes in D=4. We also find exact solutions describing dynamical dimensional reduction and transitions from N=2 string theory to bosonic string theory via closed-string tachyon condensation.
International conference on string theory
2016-01-01
The Strings conference is an annual event that brings the entire string theory community together. Since the 1980s, it has grown to be the largest and most important conference in the field. The aim is to review recent developments in string theory and to stimulate scientific exchanges among the participants. This is the second Strings conference organised in Beijing, after Strings 2006. Following the tradition, besides scientific talks, the conference will also include some public lectures open to a general audience.
Topics in Open Topological Strings
Prudenziati, Andrea
2010-01-01
This thesis is based on some selected topics in open topological string theory which I have worked on during my Ph.D. It comprises an introductory part where I have focused on the points most needed for the later chapters, trading completeness for conciseness and clarity. Then, following [12], we discuss tadpole cancellation for topological strings where we mainly show how its implementation is needed for ensuring the same "odd" moduli decoupling encountered in the closed theory. Next we move to analyse how the open and closed effective field theories for the B model interact writing the complete Lagrangian. We first check it deriving some already known tree level amplitudes in term of target space quantities, and then we extend the recipe to new results; later we implement open closed duality from a target field theory perspective. This last subject is also analysed from a worldsheet point of view extending the analysis of [13]. Some ideas for future research are briefly reported.
Four-component united-atom model of bitumen
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt; Lemarchand, Claire; Nielsen, Erik
2013-01-01
We propose a four-component united-atom molecular model of bitumen. The model includes realistic chemical constituents and introduces a coarse graining level that suppresses the highest frequency modes. Molecular dynamics simulations of the model are carried out using graphic-processor-units based...... software in time spans in order of microseconds, which enables the study of slow relaxation processes characterizing bitumen. This paper also presents results of the model dynamics as expressed through the mean-square displacement, the stress autocorrelation function, and rotational relaxation...... the stress autocorrelation function, the shear viscosity and shear modulus are evaluated, showing a viscous response at frequencies below 100 MHz. The model predictions of viscosity and diffusivities are compared to experimental data, giving reasonable agreement. The model shows that the asphaltene, resin...
Chemical domain of QSAR models from atom-centered fragments.
Kühne, Ralph; Ebert, Ralf-Uwe; Schüürmann, Gerrit
2009-12-01
A methodology to characterize the chemical domain of qualitative and quantitative structure-activity relationship (QSAR) models based on the atom-centered fragment (ACF) approach is introduced. ACFs decompose the molecule into structural pieces, with each non-hydrogen atom of the molecule acting as an ACF center. ACFs vary with respect to their size in terms of the path length covered in each bonding direction starting from a given central atom and how comprehensively the neighbor atoms (including hydrogen) are described in terms of element type and bonding environment. In addition to these different levels of ACF definitions, the ACF match mode as degree of strictness of the ACF comparison between a test compound and a given ACF pool (such as from a training set) has to be specified. Analyses of the prediction statistics of three QSAR models with their training sets as well as with external test sets and associated subsets demonstrate a clear relationship between the prediction performance and the levels of ACF definition and match mode. The findings suggest that second-order ACFs combined with a borderline match mode may serve as a generic and at the same time a mechanistically sound tool to define and evaluate the chemical domain of QSAR models. Moreover, four standard categories of the ACF-based membership to a given chemical domain (outside, borderline outside, borderline inside, inside) are introduced that provide more specific information about the expected QSAR prediction performance. As such, the ACF-based characterization of the chemical domain appears to be particularly useful for QSAR applications in the context of REACH and other regulatory schemes addressing the safety evaluation of chemical compounds.
Non-Perturbative Topological Strings And Conformal Blocks
Cheng, Miranda C N; Vafa, Cumrun
2010-01-01
We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to the AGT setup where the dual matrix model has logarithmic potential and is conjecturally equivalent to Liouville conformal field theory. By studying the natural contours of these matrix integrals and their monodromy properties, we propose a precise map between topological string blocks and Liouville conformal blocks. Remarkably, this description makes use of the light-cone diagrams of closed string field theory, where the critical points of the matrix potential correspond to string interaction points.
Non-perturbative topological strings and conformal blocks
Cheng, Miranda C. N.; Dijkgraaf, Robbert; Vafa, Cumrun
2011-09-01
We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to the AGT setup where the dual matrix model has logarithmic potential and is conjecturally equivalent to Liouville conformal field theory. By studying the natural contours of these matrix integrals and their monodromy properties, we propose a precise map between topological string blocks and Liouville conformal blocks. Remarkably, this description makes use of the light-cone diagrams of closed string field theory, where the critical points of the matrix potential correspond to string interaction points.
2008-01-01
String Theory supporters argue that the universe we live in has eleven dimensions, out of which three spacial dimensions and a temporal one, which define the void and the space-time environment we experience daily.
Katz, Sheldon; Klemm, Albrecht; Morrison, David R
2015-01-01
This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.
Aragone, C.
1986-12-01
An action is presented for the free bosonic string on external flat space in terms of an antisymmetric second-rank string background tensor which is classically equivalent to the Nambu-Goto action. Both action and field equations are entirely described in terms of 2D world-sheet forms, without any reference to a 2D metric tensor background. The analysis of its canonical formulation shows how the quadratic Virasoro constraints are generated in this case and what their connection with the Bianchi identities are. Since in the orthonormal gauge the reduced action coincides with the standard one, it has the same critical dimension D = 26. The existence of an interaction term of a purely geometric structure stemming in the extrinsic curvature is pointed out. Its action and the new string field equations are then derived. This polynomial antisymmetric string action is uniformly generalized in order to describe d Apartado 80659, Caracas 1080A, Venezuela.
DEFF Research Database (Denmark)
Szklarczyk, Damian; Franceschini, Andrea; Wyder, Stefan;
2015-01-01
.0 of STRING covers more than 2000 organisms, which has necessitated novel, scalable algorithms for transferring interaction information between organisms. For this purpose, we have introduced hierarchical and self-consistent orthology annotations for all interacting proteins, grouping the proteins...
Atomic collision processes for modelling cool star spectra
Barklem, Paul
2015-05-01
The abundances of chemical elements in cool stars are very important in many problems in modern astrophysics. They provide unique insight into the chemical and dynamical evolution of the Galaxy, stellar processes such as mixing and gravitational settling, the Sun and its place in the Galaxy, and planet formation, to name a just few examples. Modern telescopes and spectrographs measure stellar spectral lines with precision of order 1 per cent, and planned surveys will provide such spectra for millions of stars. However, systematic errors in the interpretation of observed spectral lines leads to abundances with uncertainties greater than 20 per cent. Greater precision in the interpreted abundances should reasonably be expected to lead to significant discoveries, and improvements in atomic data used in stellar atmosphere models play a key role in achieving such advances in precision. In particular, departures from the classical assumption of local thermodynamic equilibrium (LTE) represent a significant uncertainty in the modelling of stellar spectra and thus derived chemical abundances. Non-LTE modelling requires large amounts of radiative and collisional data for the atomic species of interest. I will focus on inelastic collision processes due to electron and hydrogen atom impacts, the important perturbers in cool stars, and the progress that has been made. I will discuss the impact on non-LTE modelling, and what the modelling tells us about the types of collision processes that are important and the accuracy required. More specifically, processes of fundamentally quantum mechanical nature such as spin-changing collisions and charge transfer have been found to be very important in the non-LTE modelling of spectral lines of lithium, oxygen, sodium and magnesium.
Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman
1997-02-01
Via compactification on a circle, the matrix mode] of M-theory proposed by Banks et a]. suggests a concrete identification between the large N limit of two-dimensional N = 8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.
Trzetrzelewski, Maciej
2016-11-01
Starting with a Nambu-Goto action, a Dirac-like equation can be constructed by taking the square-root of the momentum constraint. The eigenvalues of the resulting Hamiltonian are real and correspond to masses of the excited string. In particular there are no tachyons. A special case of radial oscillations of a closed string in Minkowski space-time admits exact solutions in terms of wave functions of the harmonic oscillator.
Manipulating Strings in Python
Directory of Open Access Journals (Sweden)
William J. Turkel
2012-07-01
Full Text Available This lesson is a brief introduction to string manipulation techniques in Python. Knowing how to manipulate strings plays a crucial role in most text processing tasks. If you’d like to experiment with the following lessons, you can write and execute short programs as we’ve been doing, or you can open up a Python shell / Terminal to try them out on the command line.
Energy Technology Data Exchange (ETDEWEB)
Ahlén, Olof, E-mail: olof.ahlen@aei.mpg.de [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, DE-14476 Potsdam (Germany)
2015-12-17
These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.
String Theory - The Physics of String-Bending and Other Electric Guitar Techniques
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880
String theory--the physics of string-bending and other electric guitar techniques.
Directory of Open Access Journals (Sweden)
David Robert Grimes
Full Text Available Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.
String theory--the physics of string-bending and other electric guitar techniques.
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.
Institute of Scientific and Technical Information of China (English)
R. K. Tiwari; Sonia Sharma
2011-01-01
We study the non existence of shear in locally rotationally symmetric Bianchi type-Ⅲ string cosmological models with bulk viscosity and variable cosmological term Λ. Exact solutions of the field equations are obtained by assuming the conditions: the bulk viscosity is proportional to the expansion scalar, ε ∝ θ, expansion scalar is proportional to shear scalar, θ ∝ σ, and Λ is proportional to the Hubble parameter. The coefficient of bulk viscosity is assumed to be a power function of mass density. The corresponding physical interpretations of the cosmological solutions are also discussed.%@@ We study the non existence of shear in locally rotationally symmetric Bianchi type-M string cosmological models with bulk viscosity and variable cosmological term Λ.Exact solutions of the field equations are obtained by assuming the conditions: the bulk viscosity is proportional to the expansion scalar, ξ∝θ, expansion scalar is proportional to shear scalar, θ∝σ, and A is proportional to the Hubble parameter.The coefficient of bulk viscosity is assumed to be a power function of mass density.The corresponding physical interpretations of the cosmological solutions are also discussed.
Model study in chemisorption: atomic hydrogen on beryllium clusters
Energy Technology Data Exchange (ETDEWEB)
Bauschlicher, C.W. Jr.
1976-08-01
The interaction between atomic hydrogen and the (0001) surface of Be metal has been studied by ab initio electronic structure theory. Self-consistent-field (SCF) calculations have been performed using minimum, optimized minimum, double zeta and mixed basis sets for clusters as large as 22 Be atoms. The binding energy and equilibrium geometry (the distance to the surface) were determined for 4 sites. Both spatially restricted (the wavefunction was constrained to transform as one of the irreducible representations of the molecular point group) and unrestricted SCF calculations were performed. Using only the optimized minimum basis set, clusters containing as many as 22 beryllium atoms have been investigated. From a variety of considerations, this cluster is seen to be nearly converged within the model used, providing the most reliable results for chemisorption. The site dependence of the frequency is shown to be a geometrical effect depending on the number and angle of the bonds. The diffusion of atomic hydrogen through a perfect beryllium crystal is predicted to be energetically unfavorable. The cohesive energy, the ionization energy and the singlet-triplet separation were computed for the clusters without hydrogen. These quantities can be seen as a measure of the total amount of edge effects. The chemisorptive properties are not related to the total amount of edge effects, but rather the edge effects felt by the adsorbate bonding berylliums. This lack of correlation with the total edge effects illustrates the local nature of the bonding, further strengthening the cluster model for chemisorption. A detailed discussion of the bonding and electronic structure is included. The remaining edge effects for the Be/sub 22/ cluster are discussed.
Sudden birth of entanglement between two atoms in a double JC model
Institute of Scientific and Technical Information of China (English)
Mingdi Du; Maofa Fang; Xiang Liu
2009-01-01
Sudden birth of entanglement between two initially separate atoms interacting with two entangled photons in a double JC model is investigated,arid the influences of different atomic initial states on entanglement among atoms are discussed.The results show that sudden birth of entanglement can occur when the two atoms are initially in excited states.
Gravity from strings: personal reminiscence on early developments
Yoneya, Tamiaki
2009-01-01
I discuss the early developments of string theory with respect to its connection with gauge theory and general relativity from my own perspective. The period covered is mainly from 1969 to 1974, during which I became involved in research on dual string models as a graduate student. My thinking towards the recognition of string theory as an extended quantum theory of gravity is described. Some retrospective remarks on my later works related to this subject are also given.
Lattice location of dopant atoms: An -body model calculation
Indian Academy of Sciences (India)
N K Deepak
2010-03-01
The channelling and scattering yields of 1 MeV -particles in the $\\langle 1 0 0 \\rangle$, $\\langle 1 1 0 \\rangle and $\\langle 1 1 1 \\rangle$ directions of silicon implanted with bismuth and ytterbium have been simulated using -body model. The close encounter yield from dopant atoms in silicon is determined from the flux density, using the Bontemps and Fontenille method. All previous works reported in literature so far have been done with computer programmes using a statistical analytical expression or by a binary collision model or a continuum model. These results at the best gave only the transverse displacement of the lattice site from the concerned channelling direction. Here we applied the superior -body model to study the yield from bismuth in silicon. The finding that bismuth atom occupies a position close to the silicon substitutional site is new. The transverse displacement of the suggested lattice site from the channelling direction is consistent with the experimental results. The above model is also applied to determine the location of ytterbium in silicon. The present values show good agreement with the experimental results.
Sucker rod string design of the pumping systems
Directory of Open Access Journals (Sweden)
Chun Hua Liu
2015-08-01
Full Text Available The existing design of sucker rod string mainly focuses on the simplifying assumptions that rod string was exposed to simple tension loading. And its goal was to have equal modified stress at the top of each taper. The improved rod design was to have the same degree of safety at each section, and it used a dynamic force distribution that was proportional along the whole string. However, the available procedures did not provide the desired accuracy of its pertinent analysis, and the operators could not identify the specific phenomena that occur in CBM wells. In this paper, the mathematical models of rod loads and string length were developed based on the cyclic nature of rod string loading; the fatigue endurance method is used to design the single rod string; and the tapered rod string is designed to have an equal equivalent stress at the top of each section. Its application characteristics are demonstrated by the example of CBM wells in Ordos Basin. The interpretations of results show that the previous design gave the single rods a larger diameter and the top rods in the string a greater percent than the proposed method. The calculation should concern about inertial, vibration and friction forces to illustrate the elastic force waves travelling in the rod material with the speed of sound. The single string should be designed using fatigue endurance ratings due to asymmetric pulsating tension of rod loading; and the tapered string should involve a balanced design by setting the fatigue endurance at each section equal. A shorter stroke length gives a greater rod taper percentage and an increased load capacity results to an enhanced rod diameter. The rod diameter increases with the pump size and load capacity for the single string, and the rod taper percentage of the top rod strings increases with plunger diameter for the tapered string. The proposed research improves efficiency of the pumping system, assures good operating conditions, and reduces
Atom-field entanglement in two-atom Jaynes-Cummings model with intensity-dependent coupling
Bashkirov, E. K.
2014-01-01
An exact solution of the problem of two-atom one- and two-mode Jaynes-Cummings model with intensity-dependent coupling is presented. Asymptotic solutions for system state vectors are obtained in the approximation of large initial coherent fields. The atom-field entanglement is investigated on the basis of the reduced atomic entropy dynamics. The possibility of the system being initially in a pure disentangled state to revive into this state during the evolution process for both models is show...
Bianchi type I string cosmologies
Indian Academy of Sciences (India)
D N Pant; Sanjay Oli
2003-03-01
By making use of Letelier’s form of energy–momentum tensor for a cloud of stringdust we present some classes of solutions of general relativistic ﬁeld equations which describe cosmological string-dust models in Bianchi type I space-time. Some of the classes of models obey Takabayashi’s equation of state whereas a class of models exhibits inﬂation in the initial stage. Two of the classes presented here have Kasner’s space-time as past asymptote.
Inflation from string field theory
Koshelev, Alexey S; Moniz, Paulo Vargas
2016-01-01
In the framework of string field theory (SFT) a setting where the closed string dilaton is coupled to the open string tachyon at the final stage of an unstable brane or brane-anti-brane pair decay is considered. We show that this configuration can lead to viable inflation by means of the dilaton becoming a non-local (infinite-derivative) inflaton. The structure of non-locality leads to interesting inflationary scenarios. We obtain (i) a class of single field inflation with universal attractor predictions at $n_{s}\\sim0.967$ with any value of $r<0.1$, where the tensor to scalar ratio $r$ can be solely regulated by parameters of the SFT; (ii) a new class of two field conformally invariant models with a peculiar quadratic cross-product of scalar fields. We analyze a specific case where a spontaneously broken conformal invariance leads to Starobinsky like inflation plus creating an uplifted potential minimum which accounts to vacuum energy after inflation.
Quantum Rabi model in the Brillouin zone with ultracold atoms
Felicetti, Simone; Rico, Enrique; Sabin, Carlos; Ockenfels, Till; Koch, Johannes; Leder, Martin; Grossert, Christopher; Weitz, Martin; Solano, Enrique
2017-01-01
The quantum Rabi model describes the interaction between a two-level quantum system and a single bosonic mode. We propose a method to perform a quantum simulation of the quantum Rabi model, introducing an implementation of the two-level system provided by the occupation of Bloch bands in the first Brillouin zone by ultracold atoms in tailored optical lattices. The effective qubit interacts with a quantum harmonic oscillator implemented in an optical dipole trap. Our realistic proposal allows one to experimentally investigate the quantum Rabi model for extreme parameter regimes, which are not achievable with natural light-matter interactions. When the simulated wave function exceeds the validity region of the simulation, we identify a generalized version of the quantum Rabi model in a periodic phase space.
Rotating Black Hole, Twistor-String and Spinning Particle
Burinskii, A
2005-01-01
We discuss basic features of the model of spinning particle based on the Kerr solution. It contains a very nontrivial {\\it real} stringy structure consisting of the Kerr circular string and an axial stringy system. We consider also the complex and twistorial structures of the Kerr geometry and show that there is a {\\it complex} twistor-string built of the complex N=2 chiral string with a twistorial $(x,\\theta)$ structure. By imbedding into the real Minkowski $\\bf M^4$, the N=2 supersymmetry is partially broken and string acquires the open ends. Orientifolding this string, we identify the chiral and antichiral structures. Target space of this string is equivalent to the Witten's `diagonal' of the $\\bf CP^3\\times CP^{*3}.$
Non-perturbative String Theory from Water Waves
Energy Technology Data Exchange (ETDEWEB)
Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.; Pennington, Jeffrey S.; /SLAC
2012-06-14
We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.
Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.
Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W
2015-07-23
A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.
Towards a Non-Supersymmetric String Phenomenology
Abel, Steven; Mavroudi, Eirini
2015-01-01
Over the past three decades, considerable effort has been devoted to studying the rich and diverse phenomenologies of heterotic strings exhibiting spacetime supersymmetry. Unfortunately, during this same period, there has been relatively little work studying the phenomenologies associated with their non-supersymmetric counterparts. The primary reason for this relative lack of attention is the fact that strings without spacetime supersymmetry are generally unstable, exhibiting large one-loop dilaton tadpoles. In this paper, we demonstrate that this hurdle can be overcome in a class of tachyon-free four-dimensional string models realized through coordinate-dependent compactifications. Moreover, as we shall see, it is possible to construct models in this class whose low-lying states resemble the Standard Model (or even potential unified extensions thereof) --- all without any light superpartners, and indeed without supersymmetry at any energy scale. The existence of such models thus opens the door to general stu...
Whitford, Paul C; Noel, Jeffrey K; Gosavi, Shachi; Schug, Alexander; Sanbonmatsu, Kevin Y; Onuchic, José N
2009-05-01
Protein dynamics take place on many time and length scales. Coarse-grained structure-based (Go) models utilize the funneled energy landscape theory of protein folding to provide an understanding of both long time and long length scale dynamics. All-atom empirical forcefields with explicit solvent can elucidate our understanding of short time dynamics with high energetic and structural resolution. Thus, structure-based models with atomic details included can be used to bridge our understanding between these two approaches. We report on the robustness of folding mechanisms in one such all-atom model. Results for the B domain of Protein A, the SH3 domain of C-Src Kinase, and Chymotrypsin Inhibitor 2 are reported. The interplay between side chain packing and backbone folding is explored. We also compare this model to a C(alpha) structure-based model and an all-atom empirical forcefield. Key findings include: (1) backbone collapse is accompanied by partial side chain packing in a cooperative transition and residual side chain packing occurs gradually with decreasing temperature, (2) folding mechanisms are robust to variations of the energetic parameters, (3) protein folding free-energy barriers can be manipulated through parametric modifications, (4) the global folding mechanisms in a C(alpha) model and the all-atom model agree, although differences can be attributed to energetic heterogeneity in the all-atom model, and (5) proline residues have significant effects on folding mechanisms, independent of isomerization effects. Because this structure-based model has atomic resolution, this work lays the foundation for future studies to probe the contributions of specific energetic factors on protein folding and function.
Planck 2013 results. XXV. Searches for cosmic strings and other topological defects
DEFF Research Database (Denmark)
Planck Collaboration,; Ade, P. A. R.; Aghanim, N.
2013-01-01
-Goto cosmic strings, as well as field theory strings for which radiative effects are important, thus spanning the range of theoretical uncertainty in strings models. We have added the angular power spectrum from strings to that for a simple adiabatic model, with the extra fraction defined as $f_{10......Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzmann solvers. We have studied Nambu......}$ at multipole $\\ell=10$. This parameter has been added to the standard six parameter fit using COSMOMC with flat priors. For the Nambu-Goto string model, we have obtained a constraint on the string tension of $G\\mu/c^2
Fully variational average atom model with ion-ion correlations.
Starrett, C E; Saumon, D
2012-02-01
An average atom model for dense ionized fluids that includes ion correlations is presented. The model assumes spherical symmetry and is based on density functional theory, the integral equations for uniform fluids, and a variational principle applied to the grand potential. Starting from density functional theory for a mixture of classical ions and quantum mechanical electrons, an approximate grand potential is developed, with an external field being created by a central nucleus fixed at the origin. Minimization of this grand potential with respect to electron and ion densities is carried out, resulting in equations for effective interaction potentials. A third condition resulting from minimizing the grand potential with respect to the average ion charge determines the noninteracting electron chemical potential. This system is coupled to a system of point ions and electrons with an ion fixed at the origin, and a closed set of equations is obtained. Solution of these equations results in a self-consistent electronic and ionic structure for the plasma as well as the average ionization, which is continuous as a function of temperature and density. Other average atom models are recovered by application of simplifying assumptions.
The bispectrum of matter perturbations from cosmic strings
Regan, Donough
2014-01-01
We present the first calculation of the bispectrum of the matter perturbations induced by cosmic strings. The calculation is performed in two different ways: the first uses the unequal time correlators (UETCs) of the string network - computed using a Gaussian model previously employed for cosmic string power spectra. The second approach uses the wake model, where string density perturbations are concentrated in sheet-like structures whose surface density grows with time. The qualitative and quantitative agreement of the two gives confidence to the results. An essential ingredient in the UETC approach is the inclusion of compensation factors in the integration with the Green's function of the matter and radiation fluids, and we show that these compensation factors must be included in the wake model also. We also present a comparison of the UETCs computed in the Gaussian model, and those computed in the unconnected segment model (USM) used by the standard cosmic string perturbation package CMBACT. We compare nu...
Aspects Of String Phenomenology At The Self Dual Radius
Perkins, J T
2005-01-01
This dissertation is primarily focused on the discussion of heterotic string phenomenology derived from the free fermionic approach. Two models addressing different phenomenological issues, namely optical unification as a solution to the factor of twenty difference between GUT and string scale unification, and observable/hidden sector mirror models that contain an unavoidable gauge (and matter) mirror symmetry breaking for which the broken matter provides a potential dark matter candidate. Lastly, a geometrical interpretation for simultaneous D- and F-flat directions is presented. Chapter two presents the first model constructed from free fermionic strings in which requirements for optical unification [1] may be satisfied. Free fermionic string models generically produce intermediated scale particles, for which specific sets can act as a diverging lens causing the string scale unification point to appear to unify at the GUT scale unification point. In chapter three, a model is discussed in which mirror symmet...
Integrable strings for AdS/CFT
Borsato, R.
2015-01-01
In this thesis we discuss certain models that arise in string theory, motivated by the AdS/CFT correspondence. For these models there exists a notion of “quantum Integrability”. Although this term is very broad, for us it will be used in the sense of factorisation of scattering for models in 1+1 dim
Chapman, Michael S; Trzynka, Andrew; Chapman, Brynmor K
2013-04-01
When refining the fit of component atomic structures into electron microscopic reconstructions, use of a resolution-dependent atomic density function makes it possible to jointly optimize the atomic model and imaging parameters of the microscope. Atomic density is calculated by one-dimensional Fourier transform of atomic form factors convoluted with a microscope envelope correction and a low-pass filter, allowing refinement of imaging parameters such as resolution, by optimizing the agreement of calculated and experimental maps. A similar approach allows refinement of atomic displacement parameters, providing indications of molecular flexibility even at low resolution. A modest improvement in atomic coordinates is possible following optimization of these additional parameters. Methods have been implemented in a Python program that can be used in stand-alone mode for rigid-group refinement, or embedded in other optimizers for flexible refinement with stereochemical restraints. The approach is demonstrated with refinements of virus and chaperonin structures at resolutions of 9 through 4.5 Å, representing regimes where rigid-group and fully flexible parameterizations are appropriate. Through comparisons to known crystal structures, flexible fitting by RSRef is shown to be an improvement relative to other methods and to generate models with all-atom rms accuracies of 1.5-2.5 Å at resolutions of 4.5-6 Å.
On circular strings in (AdS3 × S 3)ϰ
Banerjee, Aritra; Panigrahi, Kamal L.
2016-09-01
The so called one-parameter (often called ϰ) deformed AdS string sigma models have attracted a lot of attention lately in the study of integrability in string theory. We construct various circular string solutions in the (AdS3 × S 3) ϰ background and describe the characteristics of such solutions qualitatively. We study the Bohr-Sommerfeld like quantization for these string states to characterise the motion. Further we find a `long' string limit of such circular strings in the ϰ-deformed AdS3 and find a novel dependence of the oscillation number on the energy in the next to leading order expansion.
On circular strings in $(AdS_3 \\times S^3)_{\\varkappa}$
Banerjee, Aritra
2016-01-01
The so called one-parameter (often called $\\varkappa$) deformed $AdS$ string sigma models have attracted a lot of attention lately in the study of integrability in string theory. We construct various circular string solutions in the $(AdS_3 \\times S^3)_{\\varkappa}$ background and describe the characteristics of such solutions qualitatively. We study the Bohr-Sommerfeld like quantization for these string states to characterise the motion. Further we find a `long' string limit of such circular strings in the $\\varkappa$-deformed $AdS_3$ and find a novel dependence of the oscillation number on the energy in the next to leading order expansion.
Split Supersymmetry in String Theory
Antoniadis, Ignatios
2006-01-01
Type I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with \\sin^2{\\theta_W}=3/8 at the compactification scale of M_{\\rm GUT}\\simeq 2 \\times 10^{16} GeV. I discuss mechanisms for generating gaugino and higgsino masses at the TeV scale, as well as generalizations to models with split extended supersymmetry in the gauge sector.
String Theory and Primordial Cosmology
Gasperini, Maurizio
String cosmology aims at providing a reliable description of the very early Universe in the regime where standard-model physics is no longer appropriate, and where we can safely apply the basic ingredients of superstring models such as dilatonic and axionic forces, duality symmetries, winding modes, limiting sizes and curvatures, higher dimensional interactions among elementary extended object. The sought target is that of resolving (or at least alleviating) the big problems of standard and inflationary cosmology like the spacetime singularity, the physics of the trans-Planckian regime, the initial condition for inflation, and so on.
String theory and primordial cosmology
Gasperini, M
2014-01-01
String cosmology aims at providing a reliable description of the very early Universe in the regime where standard-model physics is no longer appropriate, and where we can safely apply the basic ingredients of superstring models such as dilatonic and axionic forces, duality symmetries, winding modes, limiting sizes and curvatures, higher-dimensional interactions among elementary extended object. The sought target is that of resolving (or at least alleviating) the big problems of standard and inflationary cosmology like the space-time singularity, the physics of the trans-Planckian regime, the initial condition for inflation, and so on.
Ghost Structure and Closed Strings in Vacuum String Field Theory
Gaiotto, D; Sen, A; Zwiebach, B; Gaiotto, Davide; Rastelli, Leonardo; Sen, Ashoke; Zwiebach, Barton
2001-01-01
We complete the construction of vacuum string field theory by proposing a canonical choice of ghost kinetic term -- a local insertion of the ghost field at the string midpoint with an infinite normalization. This choice, supported by level expansion studies in the Siegel gauge, allows a simple analytic treatment of the ghost sector of the string field equations. As a result, solutions are just projectors, such as the sliver, of an auxiliary CFT built by combining the matter part with a twisted version of the ghost conformal theory. Level expansion experiments lead to surprising new projectors -- butterfly surface states, whose analytical expressions are obtained. With the help of a suitable open-closed string vertex we define open-string gauge invariant operators parametrized by on-shell closed string states. We use regulated vacuum string field theory to sketch how pure closed string amplitudes on surfaces without boundaries arise as correlators of such gauge invariant operators.
Analysis and application of the scale effect of flood discharge atomization model
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The phenomenon of discharge atomization occurs as hydraulic structures discharging,which influences the safety of power station,electrical equipment and produces environmental pollution.A series of physical model tests and feedback analysis are adapted to preliminarily study the scale effect of discharge atomization model by use of the field observation data of discharge atomization.The effect of Re and We numbers of flow on the atomization intensity is analyzed.A conversion relationship of atomization intensity between prototype and model results and the similarity criteria of the atomization range are developed. The conclusion is that the surface tension of discharge atomization model could be ignored when the Weber number is larger than 500.Some case studies are given by use of the similitude criteria of the atomization model.
Confinement, NonAbelian monopoles, and 2D ℂPN-1 model on the worldsheet of finite-length strings
Konishi, Kenichi
2017-03-01
Quark confinement is proposed to be dual Meissner effect of nonAbelian kind. Important hints come from physics of strongly-coupled infrared-fixed-point theories in N = 2 supersymmetric QCD, which turn into confining vacua under a small relevant perturbation. The quest for the semiclassical origin of these nonAbelian monopoles, ubiquitous as the infrared degrees of freedom in supersymmetric gauge theories, motivates us to study the quantum dynamics of 2D ℂPN-1 model defined on a finite-width worldstrip, with various boundary conditions. The model is found to possess a unique phase ("confinement phase"), independent of the length of the string, showing the quantum persistence of the nonAbelian monopole.
Confinement, NonAbelian monopoles, and 2D CP(N-1) model on the worldsheet of finite-length strings
Konishi, Kenichi
2016-01-01
Quark confinement is proposed to be a dual Meissner effect of nonAbelian kind. Important hints come from physics of strongly-coupled infrared-fixed-point theories in N=2 supersymmetric QCD, which turn into confining vacua under a small relevant perturbation. The quest for the semiclassical origin of the nonAbelian monopoles, ubiquitous as the infrared degrees of freedom in supersymmetric gauge theories, motivates us to study the quantum dynamics of 2D CP(N-1)model defined on a finite-width worldstrip, with various boundary conditions. The model is found to possess a unique phase ("confinement phase"), independent of the length of the string, showing the quantum persistence of the nonAbelian monopole.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2015-02-01
We compute, via numerical simulations, the nonperturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Pavšič, Matej
2014-01-01
It is shown how a string living in a higher dimensional space can be approximated as a point particle with squared extrinsic curvature. We consider a generalized Howe-Tucker action for such a "rigid particle" and consider its classical equations of motion and constraints. We find that the algebra of the Dirac brackets between the dynamical variables associated with velocity and acceleration contains the spin tensor. After quantization, the corresponding operators can be represented by the Dirac matrices, projected onto the hypersurface that is orthogonal to the direction of 4-momentum. A condition for the consistency of such a representation is that the states must satisfy the Dirac equation with a suitable effective mass. The Pauli-Lubanski vector composed with such projected Dirac matrices is equal to the Pauli-Lubanski vector composed with the usual, non projected, Dirac matrices, and its eigenvalues thus correspond to spin one half states.
De Boer, J; Hori, K; Keurentjes, A; Morgan, J; Morrison, Douglas Robert Ogston; Sethi, S K; Boer, Jan de; Dijkgraaf, Robbert; Hori, Kentaro; Keurentjes, Arjan; Morgan, John; Morrison, David R.; Sethi, Savdeep
2002-01-01
We study string compactifications with sixteen supersymmetries. The moduli space for these compactifications becomes quite intricate in lower dimensions, partly because there are many different irreducible components. We focus primarily, but not exclusively, on compactifications to seven or more dimensions. These vacua can be realized in a number ways: the perturbative constructions we study include toroidal compactifications of the heterotic/type I strings, asymmetric orbifolds, and orientifolds. In addition, we describe less conventional M and F theory compactifications on smooth spaces. The last class of vacua considered are compactifications on singular spaces with non-trivial discrete fluxes. We find a number of new components in the string moduli space. Contained in some of these components are M theory compactifications with novel kinds of ``frozen'' singularities. We are naturally led to conjecture the existence of new dualities relating spaces with different singular geometries and fluxes. As our stu...
Energy Technology Data Exchange (ETDEWEB)
Kiritsis, Elias [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France); Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland); Crete Center for Theoretical Physics, Department of Physics, University of Crete,71003 Heraklion (Greece); Mazzanti, Liuba [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Nitti, Francesco [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France)
2014-02-19
We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.
Kiritsis, E; Nitti, F
2014-01-01
We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.
Development of a Kohn-Sham like potential in the Self-Consistent Atomic Deformation Model
Mehl, M. J.; Boyer, L. L.; Stokes, H. T.
1996-01-01
This is a brief description of how to derive the local ``atomic'' potentials from the Self-Consistent Atomic Deformation (SCAD) model density function. Particular attention is paid to the spherically averaged case.
Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF
Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.
1993-01-01
Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.
气体钻井钻柱损伤疲劳寿命预测模型研究%The Prediction Model of Damage Fatigue Life of String in Gas Drilling
Institute of Scientific and Technical Information of China (English)
李金和; 黄崇君; 席仲君; 刘国昊; 刘勋
2013-01-01
针对气体钻井钻柱频繁断裂失效问题，以现代损伤力学研究为基础，分析钻柱损伤演化过程，建立气体钻井钻柱损伤疲劳寿命预测模型。由钻柱损伤疲劳寿命模型得出损伤度是影响钻柱疲劳寿命的主要因素，引入损伤梯度并进一步通过算例研究钻柱所受轴向载荷、损伤度及应变之间的关系。根据理论与算例分析可得，随着轴向载荷增大，损伤度与应变逐步由空间周期关系转变为类周期关系，出现损伤局部化，导致钻柱的疲劳失效。%Based on the modern damage mechanics research ,aiming at the gas drilling string frequent fracture failure ,the drill string damage evolution process was analyzed .The gas drilling damage fatigue life prediction model of the drill string was established .The gas drill string damage fatigue life model was the main factors influencing the fatigue life of drill string .And damage gradient was introduced to explore the relationship among axial load ,injury tolerance and strain .According to the theory and case analysis ,the relationship between injury tolerance and strain is going through a change from space period to quasi periodic with the axial load increasing .Meanwhile ,damage localization occurs that lead to drill string fatigue failure .
Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity
DEFF Research Database (Denmark)
Gammelmark, S.; Molmer, K.; Alt, W.
2014-01-01
We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian......, the atomic state is determined in a Bayesian manner from the measurement data, and we present an iterative protocol, which determines both the atomic state and the model parameters. As a new element in the treatment of observed quantum systems, we employ a Bayesian approach that conditions the atomic state...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...
Four dimensional non-critical strings
Ferrari, F
2002-01-01
This is a set of lectures on the gauge/string duality and non-critical strings, with a particular emphasis on the discretized, or matrix model, approach. After a general discussion of various points of view, I describe the recent generalization to four dimensional non-critical (or five dimensional critical) string theories of the matrix model approach. This yields fully non-perturbative and explicit definition of string theories with eight (or more) supercharges that are related to four dimensional CFTs and their relevant deformations. The space-time as well as world-sheet dimensions of the supersymmetry preserving world-sheet couplings are obtained. Exact formulas for the central charge of the space-time supersymmetry algebra as a function of these couplings are calculated. They include infinite series of string perturbative contributions as well as all the non-perturbative effects. An important insight on the gauge theory side is that instantons yield a non-trivial 1/N expansion at strong coupling, and gene...
Matrix string partition function
Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre
1998-01-01
We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.
Sjodin, K R P; Vickers, J A
2001-01-01
The field equations for a time dependent cylindrical cosmic string coupled togravity are reformulated in terms of geometrical variables defined on a2+1-dimensional spacetime by using the method of Geroch decomposition. Unlikethe 4-dimensional spacetime the reduced case is asymptotically flat. Anumerical method for solving the field equations which involves conformallycompactifying the space and including null infinity as part of the grid isdescribed. It is shown that the code reproduces the results of a number ofvacuum solutions with one or two degrees of freedom. In the final section theinteraction between the cosmic string and a pulse of gravitational radiation isbriefly described. This will be fully analysed in the sequel.
Instability of colliding metastable strings
Energy Technology Data Exchange (ETDEWEB)
Hiramatsu, Takashi [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research
2013-04-15
We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.
Racetrack Inflation and Cosmic Strings
Brax, Philippe; Davis, Anne-Christine; Davis, Stephen C; Jeannerot, Rachel; Postma, Marieke
2008-01-01
We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation.
Model of spacecraft atomic oxygen and solar exposure microenvironments
Bourassa, R. J.; Pippin, H. G.
1993-01-01
Computer models of environmental conditions in Earth orbit are needed for the following reasons: (1) derivation of material performance parameters from orbital test data, (2) evaluation of spacecraft hardware designs, (3) prediction of material service life, and (4) scheduling spacecraft maintenance. To meet these needs, Boeing has developed programs for modeling atomic oxygen (AO) and solar radiation exposures. The model allows determination of AO and solar ultraviolet (UV) radiation exposures for spacecraft surfaces (1) in arbitrary orientations with respect to the direction of spacecraft motion, (2) overall ranges of solar conditions, and (3) for any mission duration. The models have been successfully applied to prediction of experiment environments on the Long Duration Exposure Facility (LDEF) and for analysis of selected hardware designs for deployment on other spacecraft. The work on these models has been reported at previous LDEF conferences. Since publication of these reports, a revision has been made to the AO calculation for LDEF, and further work has been done on the microenvironments model for solar exposure.
Fast Searching in Packed Strings
DEFF Research Database (Denmark)
Bille, Philip
2009-01-01
. However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let m...
Embellished String Prints. Cover Story.
Smith, Mary Ruth
1999-01-01
Focuses on a printmaking activity in which students create embellished string prints using the relief process of string glued to chip board. Explains that string prints can easily be embellished with oil pastels. Provides a description of the procedure and a list of materials and methods. (CMK)
Fast searching in packed strings
DEFF Research Database (Denmark)
Bille, Philip
2011-01-01
Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth–Morris–Pratt algorithm [SIAM J. Comput. 6 (2) (1977) 323–350] solves the string matching problem in linear time which is optimal if we can only read one character ...
Beyond Modeling: All-Atom Olfactory Receptor Model Simulations
Directory of Open Access Journals (Sweden)
Peter C Lai
2012-05-01
Full Text Available Olfactory receptors (ORs are a type of GTP-binding protein-coupled receptor (GPCR. These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can validate experimental functional studies as well as generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level. Here we have shown the specific advantages of simulating the dynamic environment that is associated with OR-odorant interactions. We present a rigorous methodology that ranges from the creation of a computationally-derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs.
Accidental Inflation in String Theory
Linde, Andrei
2007-01-01
We show that inflation in type IIB string theory driven by the volume modulus can be realized in the context of the racetrack-based Kallosh-Linde model (KL) of moduli stabilization. Inflation here arises through the volume modulus slow-rolling down from a flat hill-top or inflection point of the scalar potential. This situation can be quite generic in the landscape, where by uplifting one of the two adjacent minima one can turn the barrier either to a flat saddle point or to an inflection point supporting eternal inflation. The resulting spectral index is tunable in the range of 0.93 - phi or not.
String cosmology in Bianchi type-VI0 dusty Universe with electromagnetic field
Indian Academy of Sciences (India)
Hassan Amirhashchi
2013-04-01
In this paper, the effect of electromagnetic field in the string Bianchi type-VI0 Universe is investigated. Einstein’s field equations have been solved exactly with suitable physical assumptions for two types of strings: (i) massive strings and (ii) Nambu strings. It is found that when the Universe is dominated by massive strings, the existence of electromagnetic field is necessary as it accelerates the expansion of the Universe. But when our Universe is dominated by Nambu strings, the electromagnetic field does not have significant effect on the evolution of the Universe. We have also shown that the early massive string-dominated Universe got converted to Nambu string-dominated Universe later. Our models are derived from an early deceleration phase to an accelerating phase which is consistent with the recent observations of supernovae type-Ia. The physical and geometrical behaviour of these models are also discussed.
Energy Technology Data Exchange (ETDEWEB)
McAllister, Liam P.; Silverstein, Eva
2007-10-22
We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.
Freidel, Laurent; Pranzetti, Daniele
2016-01-01
In this work we study canonical gravity in finite regions for which we introduce a generalisation of the Gibbons-Hawking boundary term including the Immirzi parameter. We study the canonical formulation on a spacelike hypersuface with a boundary sphere and show how the presence of this term leads to an unprecedented type of degrees of freedom coming from the restoration of the gauge and diffeomorphism symmetry at the boundary. In the presence of a loop quantum gravity state, these boundary degrees of freedom localize along a set of punctures on the boundary sphere. We demonstrate that these degrees of freedom are effectively described by auxiliary strings with a 3-dimensional internal target space attached to each puncture. We show that the string currents represent the local frame field, that the string angular momenta represent the area flux and that the string stress tensor represents the two dimensional metric on the boundary of the region of interest. Finally, we show that the commutators of these broken...
Music Educators Journal, 1979
1979-01-01
Seven string educators respond to questions about repertoire sources for novice players, the teaching of improvisation, weaknesses in current instructional materials, ensemble size, the integration of Suzuki's methods into traditional programs, the problems of a violinist teaching other instruments, and coordination of school and other youth…
Kneipp, Marco A. C.; Liebgott, Paulo J.
2016-12-01
We consider a Yang-Mills-Higgs theory with the gauge group SU (3) broken to its center Z3 by two scalar fields in the adjoint representation and obtain new Z3 strings asymptotic configurations with the gauge field and magnetic field in the direction of the step operators.
Hypermultiplets and topological strings
Rocek, M.; Vafa, C.; Vandoren, S.
2007-01-01
The c-map relates classical hypermultiplet moduli spaces in compactifications of type II strings on a Calabi-Yau threefold to vector multiplet moduli spaces via a further compactification on a circle. We give an off-shell description of the c-map in N = 2 superspace. The superspace Lagrangian for th
Kneipp, Marco A C
2016-01-01
We consider a Yang-Mills-Higgs theory with the gauge group SU(3) broken to its center Z(3) by two scalar fields in the adjoint representation and obtain new Z(3) strings asymptotic configurations with the gauge field and magnetic field in the direction of the step operators.