WorldWideScience

Sample records for atomic spectrometry techniques

  1. Comparison of 4 analytical techniques based on atomic spectrometry for the determination of total tin in canned foodstuffs

    OpenAIRE

    2011-01-01

    Abstract Different techniques for the determination of total tin in beverage and canned food by atomic spectrometry were compared. The performance characteristics of Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Hydride Generation Inductively Coupled Plasma Atomic Emission Spectrometry (HG-ICP-AES), Electrothermal Atomization Atomic Absorption Spectrometry (ETA-AAS) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) were determined in term of linearity, ...

  2. Trends in preconcentration procedures for metal determination using atomic spectrometry techniques

    International Nuclear Information System (INIS)

    Godoi Pereira, M. de; Arruda, M.A.Z.

    2003-01-01

    Methods for metal preconcentration are often described in the literature. However, purposes are often different, depending on whether the methods are applied in environmental, clinical or technological fields. The respective method needs to be efficient, give high sensitivity, and ideally also is selective which is useful when used in combination with atomic spectroscopy. This review presents the actual tendencies in metal preconcentration using techniques such as flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS), hydride generation atomic absorption spectrometry (HGAAS), inductively coupled plasma optical emission spectrometry (ICP OES) and inductively coupled plasma mass spectrometry (ICP-MS). Procedures based on related to electrochemical, coprecipitation/precipitation, liquid-liquid and solid-liquid extraction and atom trapping mechanisms are presented. (author)

  3. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  4. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.

    1980-01-01

    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  5. Element selective detection of molecular species applying chromatographic techniques and diode laser atomic absorption spectrometry.

    Science.gov (United States)

    Kunze, K; Zybin, A; Koch, J; Franzke, J; Miclea, M; Niemax, K

    2004-12-01

    Tunable diode laser atomic absorption spectroscopy (DLAAS) combined with separation techniques and atomization in plasmas and flames is presented as a powerful method for analysis of molecular species. The analytical figures of merit of the technique are demonstrated by the measurement of Cr(VI) and Mn compounds, as well as molecular species including halogen atoms, hydrogen, carbon and sulfur.

  6. [Novel Hyphenated Techniques of Atomic Spectrometry for Metal Species Interaction with Biomolecules].

    Science.gov (United States)

    Li, Yan; Yan, Xiu-ping

    2015-09-01

    Trace metals may be adopted by biological systems to assist in the syntheses and metabolic functions of genes (DNA and RNA) and proteins in the environment. These metals may be beneficial or may pose a risk to humans and other life forms. Novel hybrid techniques are required for studies on the interaction between different metal species and biomolecules, which is significant for biology, biochemistry, nutrition, agriculture, medicine, pharmacy, and environmental science. In recent years, our group dwells on new hyphenated techniques based on capillary electrophoresis (CE), electrothermal atomic absorption spectrometry (ETAAS), and inductively coupled plasma mass spectroscopy (ICP-MS), and their application for different metal species interaction with biomolecules such as DNA, HSA, and GSH. The CE-ETAAS assay and CE-ICP-MS assay allow sensitively probing the level of biomolecules such as DNA damage by different metal species and extracting the kinetic and thermodynamic information on the interactions of different metal species with biomolecules, provides direct evidences for the formation of different metal species--biomolecule adducts. In addition, the consequent structural information were extracted from circular dichroism (CD) and X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The present works represent the most complete and extensive study to date on the interactions between different metal species with biomolecules, and also provide new evidences for and insights into the interactions of different metal species with biomolecules for further understanding of the toxicological effects of metal species.

  7. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  8. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    Science.gov (United States)

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  9. Determination of Mercury in an Assortment of Dietary Supplements Using an Inexpensive Combustion Atomic Absorption Spectrometry Technique

    OpenAIRE

    Levine, Keith E.; Levine, Michael A.; Weber, Frank X.; Hu, Ye; Perlmutter, Jason; Grohse, Peter M.

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a res...

  10. Inductively coupled plasma-atomic emission spectrometry: analytical assessment of the technique at the beginning of the 90's

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1991-01-01

    The main application of the inductively coupled plasma (ICP) today is in atomic emission spectroscopy (AES), as an excitation spectrochemical source, although uses of an ICP for fluorescence as just an atomizer, and specially for mass spectrometry, as an ionization source, are rocketing in the last few years. Since its inception, only a quarter of a century ago, ICP-AES has rapidly evolved to one of the preferred routine analytical techniques for convenient determination of many elements with high speed, at low levels and in the most varied samples. Perhaps its comparatively high kinetic temperature (capable of atomizing virtually every compound of any sample), its high excitation and ionization temperatures, and its favourable spatial structure at the core of the ICP success. By now, the ICP-AES can be considered as having achieved maturity in that a huge amount of analytical problems can be tackled with this technique, while no major or fundamental changes have been adopted for several years. Despite this fact, important driving forces are still in operation to further improve the ICP-AES sensitivity, selectivity, precision, sample throughput, etc. Moreover, proposals to extend the scope of the technique to traditionally elusive fields (e.g. non-metals and organic compound analysis) are also appearing in the recent literature. In this paper the 'state of the art', the last developments and the expectations in trying to circumvent the limitations of the ICP-AES (on the light of literature data and personal experience) are reviewed. (author)

  11. Atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Haswell, S.J.

    1991-01-01

    Atomic absorption spectroscopy is now well established and widely used technique for the determination of trace and major elements in a wide range analyte types. There have been many advances in the atomic spectroscopy over the last decade and for this reason and to meet the demand, it was felt that there was a need for an updated book. Whilst interest in instrumental design has tended to dominate the minds of the spectrocopist, the analyst concerned with obtaining reliable and representative data, in diverse areas of application, has been diligently modifying and developing sample treatment and instrumental introduction techniques. Such methodology is de fundamental part of analysis and form the basis of the fourteen application chapters of this book. The text focuses in the main on AAS; however, the sample handling techniques described are in many cases equally applicable to ICP-OES and ICP-MS analysis. (author). refs.; figs.; tabs

  12. Sample Preprocessing For Atomic Spectrometry

    International Nuclear Information System (INIS)

    Kim, Sun Tae

    2004-08-01

    This book gives descriptions of atomic spectrometry, which deals with atomic absorption spectrometry such as Maxwell-Boltzmann equation and Beer-Lambert law, atomic absorption spectrometry for solvent extraction, HGAAS, ETASS, and CVAAS and inductively coupled plasma emission spectrometer, such as basic principle, generative principle of plasma and device and equipment, and interferences, and inductively coupled plasma mass spectrometry like device, pros and cons of ICP/MS, sample analysis, reagent, water, acid, flux, materials of experiments, sample and sampling and disassembling of sample and pollution and loss in open system and closed system.

  13. Determination of mercury in an assortment of dietary supplements using an inexpensive combustion atomic absorption spectrometry technique.

    Science.gov (United States)

    Levine, Keith E; Levine, Michael A; Weber, Frank X; Hu, Ye; Perlmutter, Jason; Grohse, Peter M

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 mug per week.

  14. Atomic electron spectrometry with synchrotron radiation

    International Nuclear Information System (INIS)

    Sorensen, S.L.

    1989-01-01

    Techniques of atomic electron spectrometry were applied to atoms in the gaseous and solid states to derive information about fundamental atomic properties. A new method was developed to measure Coster-Kronig yields in metals by photoionization with synchrotron radiation. Photon-energy sensitive Si L-VV Auger satellites were investigated via electron spectrometry. The krypton 1s photoionization spectrum was measured in an experiment which was motivated by the need to understand the krypton 1s satellite spectrum for calibration of an experiment to measure the mass of the electron antineutrino

  15. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  16. Semi-automated technique for the separation and determination of barium and strontium in surface waters by ion exchange chromatography and atomic emission spectrometry

    International Nuclear Information System (INIS)

    Pierce, F.D.; Brown, H.R.

    1977-01-01

    A semi-automated method for the separation and the analysis of barium and strontium in surface waters by atomic emission spectrometry is described. The method employs a semi-automated separation technique using ion exchange and an automated aspiration-analysis procedure. Forty specimens can be prepared in approximately 90 min and can be analyzed for barium and strontium content in 20 min. The detection limits and sensitivities provided by the described technique are 0.003 mg/l and 0.01 mg/l respectively for barium and 0.00045 mg/l and 0.003 mg/l respectively for strontium

  17. Assessment of elemental pollution in soil of Islamabad city using instrumental neutron activation analysis and atomic absorption spectrometry techniques

    International Nuclear Information System (INIS)

    Daud, M.; Wasim, M.; Khalid, N.; Zaidi, J.H.; Iqbal, J.

    2009-01-01

    The soil samples of nine different sites in Islamabad were studied for their elemental composition. Instrumental neutron activation analysis and atomic absorption spectrometry were employed and 33 elements were determined. The acquired data were analyzed using descriptive statistics, principal component analysis, cluster analysis, pollution level index and enrichment factor. A perusal of results shows a distribution of elemental concentration in two major groups, one along the highway and the other in industrial area of Islamabad. The soil along the highway sites was found to be relatively less polluted than at the sites in the industrial area. The enrichment factor indicates the presence of As, Pb, Sb, Se and Sn at higher levels. The method validation was done by analyzing IAEA reference materials SL-1 (lake sediment) and S7 (soil). (orig.)

  18. Noise-immune cavity-enhanced analytical atomic spectrometry — NICE-AAS — A technique for detection of elements down to zeptogram amounts

    International Nuclear Information System (INIS)

    Axner, Ove; Ehlers, Patrick; Hausmaninger, Thomas; Silander, Isak; Ma, Weiguang

    2014-01-01

    Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful technique for detection of molecular compounds in gas phase that is based on a combination of two important concepts: frequency modulation spectroscopy (FMS) for reduction of noise, and cavity enhancement, for prolongation of the interaction length between the light and the sample. Due to its unique properties, it has demonstrated unparalleled detection sensitivity when it comes to detection of molecular constituents in the gas phase. However, despite these, it has so far not been used for detection of atoms, i.e. for elemental analysis. The present work presents an assessment of the expected performance of Doppler-broadened (Db) NICE-OHMS for analytical atomic spectrometry, then referred to as noise-immune cavity-enhanced analytical atomic spectrometry (NICE-AAS). After a description of the basic principles of Db-NICE-OHMS, the modulation and detection conditions for optimum performance are identified. Based on a previous demonstrated detection sensitivity of Db-NICE-OHMS of 5 × 10 −12 cm −1 Hz −1∕2 (corresponding to a single-pass absorbance of 7 × 10 −11 over 10 s), the expected limits of detection (LODs) of Hg and Na by NICE-AAS are estimated. Hg is assumed to be detected in gas phase directly while Na is considered to be atomized in a graphite furnace (GF) prior to detection. It is shown that in the absence of spectral interferences, contaminated sample compartments, and optical saturation, it should be feasible to detect Hg down to 10 zg/cm 3 (10 fg/m 3 or 10 −5 ng/m 3 ), which corresponds to 25 atoms/cm 3 , and Na down to 0.5 zg (zg = zeptogram = 10 −21 g), representing 50 zg/mL (parts-per-sextillion, pps, 1:10 21 ) in liquid solution (assuming a sample of 10 μL) or solely 15 atoms injected into the GF, respectively. These LODs are several orders of magnitude lower (better) than any previous laser-based absorption technique previously demonstrated

  19. Noise-immune cavity-enhanced analytical atomic spectrometry - NICE-AAS - A technique for detection of elements down to zeptogram amounts

    Science.gov (United States)

    Axner, Ove; Ehlers, Patrick; Hausmaninger, Thomas; Silander, Isak; Ma, Weiguang

    2014-10-01

    Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful technique for detection of molecular compounds in gas phase that is based on a combination of two important concepts: frequency modulation spectroscopy (FMS) for reduction of noise, and cavity enhancement, for prolongation of the interaction length between the light and the sample. Due to its unique properties, it has demonstrated unparalleled detection sensitivity when it comes to detection of molecular constituents in the gas phase. However, despite these, it has so far not been used for detection of atoms, i.e. for elemental analysis. The present work presents an assessment of the expected performance of Doppler-broadened (Db) NICE-OHMS for analytical atomic spectrometry, then referred to as noise-immune cavity-enhanced analytical atomic spectrometry (NICE-AAS). After a description of the basic principles of Db-NICE-OHMS, the modulation and detection conditions for optimum performance are identified. Based on a previous demonstrated detection sensitivity of Db-NICE-OHMS of 5 × 10- 12 cm- 1 Hz- 1/2 (corresponding to a single-pass absorbance of 7 × 10- 11 over 10 s), the expected limits of detection (LODs) of Hg and Na by NICE-AAS are estimated. Hg is assumed to be detected in gas phase directly while Na is considered to be atomized in a graphite furnace (GF) prior to detection. It is shown that in the absence of spectral interferences, contaminated sample compartments, and optical saturation, it should be feasible to detect Hg down to 10 zg/cm3 (10 fg/m3 or 10- 5 ng/m3), which corresponds to 25 atoms/cm3, and Na down to 0.5 zg (zg = zeptogram = 10- 21 g), representing 50 zg/mL (parts-per-sextillion, pps, 1:1021) in liquid solution (assuming a sample of 10 μL) or solely 15 atoms injected into the GF, respectively. These LODs are several orders of magnitude lower (better) than any previous laser-based absorption technique previously demonstrated under atmospheric

  20. Atomic absorption spectrometry using tungsten and molybdenum tubes as metal atomizer

    International Nuclear Information System (INIS)

    Kaneco, Satoshi; Katsumata, Hideyuki; Ohta, Kiyohisa; Suzuki, Tohru

    2007-01-01

    We have developed a metal tube atomizer for the electrothermal atomization atomic absorption spectrometry (ETA-AAS). Tungsten, molybdenum, platinum tube atomizers were used as the metal atomizer for ETA-AAS. The atomization characteristics of various metals using these metal tube atomizers were investigated. The effects of heating rate of atomizer, atomization temperature, pyrolysis temperature, argon purge gas flow rate and hydrogen addition on the atomic absorption signal were investigated for the evaluation of atomization characteristics. Moreover, ETA-AAS with metal tube atomizer has been combined with the slurry-sampling techniques. Ultrasonic slurry-sampling ETA-AAS with metal tube atomizer were effective for the determination of trace metal elements in biological materials, calcium drug samples, herbal medicine samples, vegetable samples and fish samples. Furthermore, a preconcentration method of trace metals involving adsorption on a metal wire has been applied to ETA-AAS with metal tube atomizer. (author)

  1. Atom counting with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Kutschera, Walter

    1995-01-01

    A brief review of the current status and some recent applications of accelerator mass spectrometry (AMS) are presented. Some connections to resonance ionization mass spectroscopy (RIS) as the alternate atom counting method are discussed

  2. Atomization mechanisms for barium in furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Styris, D.L.

    1984-01-01

    Atomic absorption spectrometry and mass spectrometry are used simultaneously in order to elucidate atomization mechanisms of barium dichloride in pyrolytic graphite, vitreous carbon, and tantalum furnaces. Gas-phase barium dicarbide is observed to appear concurrently with the free barium. Barium oxide and barium dihydroxide precursors appear with the chlorides. Surface reactions involving species that are absorbed on the various furnaces are postulated to explain the appearances of the species that are observed in the gas phase. 49 references, 4 figures, 1 table

  3. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    Science.gov (United States)

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Development of an analytical model for the determination of 60Co in aqueous samples by atomic absorption and gamma spectrometry techniques

    International Nuclear Information System (INIS)

    Solis A, N. A.

    2015-01-01

    The applications of the nuclear energy in industry and medicine generate radioactive wastes that must be isolated and confined in order to limit its spread in the biosphere. These types of wastes are generated in hospitals, industry, research centers and nuclear power plants (during de fuel cycle). The radioactive elements (radionuclides) cannot be destroyed by any known method, either chemical or mechanical. Its final destruction is produced by radioactive decay, which makes them stable isotopes, or nuclear transmutation being bombarded with atomic particles. Consequently, the radioactive waste management is to control the radioactive discharges and reduce to tolerable limits, eliminating of effluents and wastes the radionuclides of interest, concentrating them so they can be stored or evacuated so that later not appear in dangerous concentration in the biosphere. In Mexico, the main generators of radioactive wastes are the nuclear power plant of Laguna Verde in Veracruz, Hospitals of the public and private sector, in addition Instituto Nacional de Investigaciones Nucleares (ININ) some institutes and facilities of the UNAM and Instituto Politecnico Nacional (IPN) and industries among others. The aqueous radioactive wastes, particularly those from the nuclear power plants contain traces of cobalt-60. Currently there is no model or analytical technique for the separation of this radionuclide, so it became necessary to develop an analytical model for separation and facilitate their disposal. In this paper was shown that atomic absorption and gamma spectrometry techniques can separate the active concentration of the inactive, which is important because the total concentration can be associated through direct relationships with the wear of metal parts of the nuclear reactor, since the metal alloys of the same reactor containing a fraction of cobalt. Also this analytical and mathematical model that can be reproducible and applicable to full sets of samples and that this

  5. Spectrometry techniques for radioactivity measurements

    International Nuclear Information System (INIS)

    Anilkumar, S.

    2016-01-01

    The energy of the radiation emission following the nuclear decay is unique and the characteristic of the radio nuclide which undergoes decay. Thus measurement of the energy of the radiation offers a method of identifying the radio nuclides. The prime requirement of the energy measurement is a suitable detector which shows response proportional to the energy of the radiation rather than the presence of the radiation. The response from such detectors are suitably processed and distributed with respect to the signal strength which is proportional to incident energy. This distribution is normally referred as energy spectrum and is recorded in the multichannel analyser. The measurement of energy and intensity of radiation from the spectrum is called radiation spectrometry. Thus the radiation spectrometry allows the identification and quantification of radioactive isotopes in variety of matrices. The radiation spectrometry has now become a popular radioanalytical technique in wide area of nuclear fuel cycle programs. The popular spectrometry techniques commonly used for the radioactivity measurement and analysis are Alpha spectrometry, Gamma ray spectrometry and Beta spectrometry

  6. Ultrasound-assisted extraction technique for establishing selenium contents in breast cancer biopsies by Zeeman-electrothermal atomic absorption spectrometry using multi-injection

    International Nuclear Information System (INIS)

    Lavilla, I.; Mosquera, A.; Millos, J.; Cameselle, J.; Bendicho, C.

    2006-01-01

    A solid-liquid extraction method is developed to establish the contents of selenium in breast cancer biopsies. The method is based on the ultrasound-assisted extraction of selenium from pretreated biopsies prior to Se determination by atomic absorption spectrometry with longitudinal-Zeeman background correction. Fifty-one breast biopsies were collected from the Cies Hospital (Vigo, Spain), 32 of which correspond to tumor tissue and 19 to normal tissue (parenchyma). Difficulties arising from the samples analyzed, i.e. small samples mass (50-100 mg), extremely low Se contents and sample texture modification including tissue hardening due to formaldehyde preservation are addressed and overcome. High intensity sonication using a probe together with addition of hydrogen peroxide succeeded in completely extracting Se from biopsies. The multiple injection technique was useful to tackle the low Se contents present in some biopsies. The detection limit was 25 ng g -1 of Se and the precision, expressed as relative standard deviation, was less than 10%. Se contents ranged from 0.08 to 0.4 μg g -1 for parenchyma samples and from 0.09 to 0.8 μg g -1 for tumor samples. In general, Se levels in tumor biopsies were higher as compared with the adjacent normal tissue in 19 patients by a factor of up to 6. Analytical data confirmed Se accumulation in the breast tumors

  7. Analysis of heavy metals and minerals elements in the turmeric using Total-Reflection X-ray Fluorescence analysis technique and Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Andriamisetra, V.M.Z.

    2014-01-01

    Currently, many studies demonstrate anti-cancer and anti-inflammatory benefits of turmeric. The aims of this work is to perform analysis of metals such as calcium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, bromine, rubidium, strontium, cadmium and lead in the turmeric collected from various places in Madagascar. The analysis by total reflection X-ray fluorescence technique is used to determine the concentrations of heavy metals, while the atomic absorption spectrometry is used for the determination of trace elements. Analysis results show that the concentration of calcium in the turmeric is very high, its average concentration is 1025.8 mg.kg -1 . The average concentrations of manganese, of copper and of iron are respectively 44.7 mg.kg -1 ; 19.7 mg.kg -1 and 53.6 mg.kg -1 . The average concentrations of zinc, of rubidium and of strontium are respectively 17.3 mg.kg -1 ; 35.2 mg.kg -1 and 21.7 mg.kg -1 [fr

  8. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Science.gov (United States)

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  9. Optimization of Flame Atomic Absorption Spectrometry for ...

    African Journals Online (AJOL)

    Optimization of Flame Atomic Absorption Spectrometry for Measurement of High Concentrations of Arsenic and Selenium. ... This procedure allowed a rapid determination of As from minimum 4.462 mg/L to higher concentrations without sample pretreatment. Besides As, this method successfully measured Se concentrations ...

  10. Trends in tungsten coil atomic spectrometry

    Science.gov (United States)

    Donati, George L.

    Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective

  11. Derivative flame atomic absorption spectrometry and its application in trace analysis

    International Nuclear Information System (INIS)

    Sun, H. W.; Li, L. Q.

    2005-01-01

    Flame atomic absorption spectrometry is an accepted and widely used method for the determination of trace elements in a great variety of samples. But its sensitivity doesn't meet the demands of trace and ultra-trace analysis for some samples. The derivative signal processing technique, with a very high capability for enhancing sensitivity, was developed for flame atomic absorption spectrometry. The signal models of conventional flame atomic absorption spectrometry are described. The equations of derivative signals are established for flame atomic absorption spectrometry, flow injection atomic absorption spectrometry (FI-FAAS) and atom trapping flame atomic absorption spectrometry (AT-FAAS). The principle and performance of the derivative atomic absorption spectrometry are evaluated. The derivative technique based on determination of variation rate of signal intensity with time (dl/dt) is different from the derivative spectrophotometry based on determination of variation rate of signal intensity with wavelength (dl/dhλ). Derivative flame atomic absorption spectrometry has higher sensitivity, lower detection limits and better accuracy. It has been applied to the direct determination of trace elements without preconcentration. If the derivative technique was combined with several preconcentration techniques, the sensitivity would be enhanced further for ultra-trace analysis with good linearity. The applications of derivative flame atomic absorption spectroscopy are reviewed for trace element analysis in biological, pharmaceutical, environmental and food samples

  12. A low-cost vaporization-atomization system for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bruhn F, C.G.; Ambiado V, F.; Woerner V, R.

    1990-01-01

    A low-cost vaporization-atomization system for atomic absorption spectrometry is developed as an alternative to the use of a graphite furnace in electrothermal atomic absorption spectrometry. (Author)

  13. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    spectrometry as alternative method for trace analysis of ... Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry .... Methods comparison and validation .... plasma-optical emission spectrometry.

  14. Mass spectrometry. [review of techniques

    Science.gov (United States)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  15. Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography – atomic fluorescence spectrometry after microwave extraction

    Energy Technology Data Exchange (ETDEWEB)

    Pelcová, Pavlína, E-mail: pavlina.pelcova@mendelu.cz; Dočekalová, Hana, E-mail: hana.docekalova@mendelu.cz; Kleckerová, Andrea, E-mail: andrea.kleckerova@mendelu.cz

    2015-03-25

    Highlights: • DGT–MAE–LC–CV-AFS method was developed for determination of four mercury species. • The microwave extraction was used for isolation of mercury species from resin gels. • Optimized DGT–MAE–LC–CV-AFS method provides low detection limits (13–38 ng L{sup −1}). • The diffusion coefficients of four mercury species were simultaneously determined. - Abstract: A diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg{sup 2+}, CH{sub 3}Hg{sup +}, C{sub 2}H{sub 5}Hg{sup +}, and C{sub 6}H{sub 5}Hg{sup +}). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6 M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively. The extraction efficiency was higher than 95.0% (RSD 3.5%). The mercury species were separated with a mobile phase containing 6.2% methanol + 0.05% 2-mercaptoethanol + 0.02 M ammonium acetate with a stepwise increase of methanol content up to 80% in the 16th min on a Zorbax C18 reverse phase column. The LODs of DGT–MAE–LC–CV-AFS method were 38 ng L{sup −1} for CH{sub 3}Hg{sup +}, 13 ng L{sup −1} for Hg{sup 2+}, 34 ng L{sup −1} for C{sub 2}H{sub 5}Hg{sup +} and 30 ng L{sup −1} for C{sub 6}H{sub 5}Hg{sup +} for 24 h DGT accumulation at 25 °C.

  16. Study on the GaAs(110) surface using emitted atom spectrometry

    International Nuclear Information System (INIS)

    Gayone, J.E.; Sanchez, E.A.; Grizzi, O.; Universidad Nacional de Cuyo, Mendoza

    1998-01-01

    The facilities implemented at Bariloche for the ion scattering spectrometry is described, and recent examples of the technique application to determine the atomic structure and the composition of metallic and semiconductor surfaces, pure and with different adsorbates. The surface analysis technique using emitted atom spectrometry is discussed. The sensitivity to the GaAs(110) surface atomic relaxation is presented, and the kinetic of hydrogen adsorption by the mentioned surface is studied

  17. On the expression 'external calibration' in atomic spectrometry

    International Nuclear Information System (INIS)

    Kantor, Tibor

    2008-01-01

    The expressions 'calibration' and 'external calibration' appear together in the present literature of atomic spectrometry resulting in a dilemma of understanding and correct use. It is examined how the IUPAC can provide a guidance to the solution of this problem by recalling the definitions of related terms of optical, mass and X-ray atomic spectrometry techniques. The introduction and definition of these expressions in widely used text books are investigated and statistically evaluated for the articles published during the last 30 years in the periodical Spectrochimica Acta Part B. For the elimination of the literary difficulties with the use of the term 'calibration', attributes are proposed to express the degree of matrix matching of standards and samples

  18. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    Science.gov (United States)

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  19. A novel separation/preconcentration technique based on ultrasonic dispersion liquid-liquid microextraction for determination of trace cobalt by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Jingci Li

    2012-12-01

    Full Text Available An improved method for the determination of trace cobalt in water samples has been developed using ultrasonic dispersion liquid-liquid microextraction (US-DLLME prior to flame atomic absorption spectrometry (FAAS analysis. In this method, cobalt was extracted into the fine droplets of carbon tetrachloride after chelate formation with the water soluble ligand, ammonium pyrrolidine dithiocarbamate (APDC. The fine droplets of carbon tetrachloride were formed and dispersed in the aqueous sample with the help of ultrasonic waves which accelerated the formation of the fine cloudy solution without using disperser solvents. Under optimum conditions, the calibration curve was linear in the range of 2.5-500 μg L-1, with a detection limit of 0.8 μg L-1. The relative standard deviation (RSD for ten replicate measurements of 20 and 500 μg L-1 of cobalt were 3.3 and 2.2%. This proposed method was successfully applied to tap water, river water, and sea water, and accuracy was assessed through the analysis of certified reference water or recovery experiments. Operation simplicity, low cost, high enrichment factor, and low consumption of the extraction solvent are the main advantages of the proposed method.DOI: http://dx.doi.org/10.4314/bcse.v26i1.2

  20. Liquid scintillation alpha spectrometry techniques

    International Nuclear Information System (INIS)

    McKlveen, J.W.; McDowell, W.J.

    1984-01-01

    Accurate, quantitative determinations of alpha emitting nuclides by conventional plate counting methods are difficult, because of sample self-absorption problems in counting and because of non-reproducible losses in conventional sample separation methods. Liquid scintillation alpha spectrometry offers an attractive alternative with no sample self-absorption or geometry problems and with 100% counting efficiency. Sample preparation may include extraction of the alpha emitter of interest by a specific organic phase-soluble compound directly into the liquid scintillation counting medium. Detection electronics use energy and pulse-shape discrimination, to yield alpha spectra without beta and gamma background interference. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium and colonium assay. Possibilities for a large number of other applications exist. Accuracy and reproducibility are typically in the 1% range. Backgrounds of the order of 0.01 cpm are readily achievable. The paper will present an overview of liquid scintillation alpha counting techniques and some of the results achieved for specific applications. (orig.)

  1. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  2. Symposium on fast atom and ion induced mass spectrometry of nonvolatile organic solids

    International Nuclear Information System (INIS)

    McNeal, C.J.

    1982-01-01

    The mechanisms of molecular and fragment ion production and the various parameters affecting ion yields were discussed by 6 invited speakers from Europe, Canada, and the US at this symposium. The work reported was almost equally divided between that using low-energy (keV) primary ion (or atom) beams, e.g. fast atom bombardment mass spectrometry (FABMS) and secondary ion mass spectrometry (SIMS) and that using high energy (MeV) particles, e.g. heavy ion induced mass spectrometry (HIIDMS) and 252 Cf-plasma desorption mass spectrometry ( 252 Cf-PDMS). Both theoretical foundations and observed experimental results for both techniques are included

  3. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry (GFAAS) and hydride generation atomic absorption spectrometry (HGAAS) for trace analysis of arsenic (As) in natural herbal products (NHPs). Method: Arsenic analysis in natural herbal products and standard reference ...

  4. Spectral interferences in atomic absorption spectrometry, (5)

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1979-01-01

    Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)

  5. Atomic spectrometry based on metallic tube atomizers heated by flame: Innovative strategies from fundamentals to analysis

    International Nuclear Information System (INIS)

    Arruda, Marco Aurelio Zezzi; Figueiredo, Eduardo Costa

    2009-01-01

    This review describes recent developments in atomic absorption spectrometry using metallic tube atomizers heated by flames. Sample introduction in spray or gaseous form is emphasized, describing some proposed systems for this task and the fundamentals involved in each context. The latest challenges and future possibilities for use of metallic tubes in atomic/mass spectrometry are also considered.

  6. Uranium determination using atomic spectrometric techniques: An overview

    International Nuclear Information System (INIS)

    Santos, Juracir S.; Teixeira, Leonardo S.G.; Santos, Walter N.L. dos; Lemos, Valfredo A.; Godoy, Jose M.; Ferreira, Sergio L.C.

    2010-01-01

    This review focuses on the determination of uranium using spectroanalytical techniques that are aimed at total determination such as flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma optical emission spectrometry (ICP-OES); and inductively coupled plasma mass spectrometry (ICP-MS) that also enables the determination of uranium isotopes. The advantages and shortcomings related to interferences, precision, accuracy, sample type and equipment employed in the analysis are taken into account, as well as the complexity and costs (i.e., acquisition, operation and maintenance) associated with each of the techniques. Strategies to improve their performance that employ separation and/or preconcentration steps are considered, with an emphasis given to solid-phase extraction because of its advantages compared to other preconcentration procedures.

  7. Quantifying uncertainty in measurement of mercury in suspended particulate matter by cold vapor technique using atomic absorption spectrometry with hydride generator.

    Science.gov (United States)

    Singh, Nahar; Ahuja, Tarushee; Ojha, Vijay Narain; Soni, Daya; Tripathy, S Swarupa; Leito, Ivo

    2013-01-01

    As a result of rapid industrialization several chemical forms of organic and inorganic mercury are constantly introduced to the environment and affect humans and animals directly. All forms of mercury have toxic effects; therefore accurate measurement of mercury is of prime importance especially in suspended particulate matter (SPM) collected through high volume sampler (HVS). In the quantification of mercury in SPM samples several steps are involved from sampling to final result. The quality, reliability and confidence level of the analyzed data depends upon the measurement uncertainty of the whole process. Evaluation of measurement uncertainty of results is one of the requirements of the standard ISO/IEC 17025:2005 (European Standard EN IS/ISO/IEC 17025:2005, issue1:1-28, 2006). In the presented study the uncertainty estimation in mercury determination in suspended particulate matter (SPM) has been carried out using cold vapor Atomic Absorption Spectrometer-Hydride Generator (AAS-HG) technique followed by wet chemical digestion process. For the calculation of uncertainty, we have considered many general potential sources of uncertainty. After the analysis of data of seven diverse sites of Delhi, it has been concluded that the mercury concentration varies from 1.59 ± 0.37 to 14.5 ± 2.9 ng/m(3) with 95% confidence level (k = 2).

  8. Atomic fluorescence spectrometry with the inductively coupled plasma

    International Nuclear Information System (INIS)

    Omenetto, N.; Winefordner, J.D.

    1987-01-01

    Atomic fluorescence spectrometry (AFS) is based on the radiational activation of atoms and ions produced in a suitable atomizer (ionizer) and the subsequent measurement of the resulting radiational deactivation, called fluorescence. Atomic fluorescence spectrometry has been of considerable interest to researchers in atomic spectrometry because of its use for both analytical and diagnostic purposes. Unfortunately, the analytical applications of AFS have suffered from the lack of commercial instrumentation until the recent marketing of the Baird multiple-element, hollow cathode lamp-excited inductively coupled plasma system. This chapter is concerned strictly with the use of the inductively coupled plasma (ICP) as a cell and as a source for AFS. Many of the major references concerning the ICP in analytical AFS are categorized in Table 9.1, along with several reviews and diagnostical studies. For more detailed discussions of the fundamental aspects of AFS, the reader is referred to previous reviews

  9. The role of atomic absorption spectrometry in geochemical exploration

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.

    1992-01-01

    In this paper we briefly describe the principles of atomic absorption spectrometry (AAS) and the basic hardware components necessary to make measurements of analyte concentrations. Then we discuss a variety of methods that have been developed for the introduction of analyte atoms into the light path of the spectrophotometer. This section deals with sample digestion, elimination of interferences, and optimum production of ground-state atoms, all critical considerations when choosing an AAS method. Other critical considerations are cost, speed, simplicity, precision, and applicability of the method to the wide range of materials sampled in geochemical exploration. We cannot attempt to review all of the AAS methods developed for geological materials but instead will restrict our discussion to some of those appropriate for geochemical exploration. Our background and familiarity are reflected in the methods we discuss, and we have no doubt overlooked many good methods. Our discussion should therefore be considered a starting point in finding the right method for the problem, rather than the end of the search. Finally, we discuss the future of AAS relative to other instrumental techniques and the promising new directions for AAS in geochemical exploration. ?? 1992.

  10. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    Science.gov (United States)

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Toward improved understanding and control in analytical atomic spectrometry

    Science.gov (United States)

    Hieftje, Gary M.

    1989-01-01

    As with most papers which attempt to predict the future, this treatment will begin with a coverage of past events. It will be shown that progress in the field of analytical atomic spectrometry has occurred through a series of steps which involve the addition of new techniques and the occasional displacement of established ones. Because it is difficult or impossible to presage true breakthroughs, this manuscript will focus on how such existing methods can be modified or improved to greatest advantage. The thesis will be that rational improvement can be accomplished most effectively by understanding fundamentally the nature of an instrumental system, a measurement process, and a spectrometric technique. In turn, this enhanced understanding can lead to closer control, from which can spring improved performance. Areas where understanding is now lacking and where control is most greatly needed will be identified and a possible scheme for implementing control procedures will be outlined. As we draw toward the new millennium, these novel procedures seem particularly appealing; new high-speed computers, the availability of expert systems, and our enhanced understanding of atomic spectrometric events combine to make future prospects extremely bright.

  12. Spray deposition using impulse atomization technique

    International Nuclear Information System (INIS)

    Ellendt, N.; Schmidt, R.; Knabe, J.; Henein, H.; Uhlenwinkel, V.

    2004-01-01

    A novel technique, impulse atomization, has been used for spray deposition. This single fluid atomization technique leads to different spray characteristics and impact conditions of the droplets compared to gas atomization technique which is the common technique used for spray deposition. Deposition experiments with a Cu-6Sn alloy were conducted to evaluate the appropriateness of impulse atomization to produce dense material. Based on these experiments, a model has been developed to simulate the thermal history and the local solidification rates of the deposited material. A numerical study shows how different cooling conditions affect the solidification rate of the material

  13. Auger spectrometry of atoms and molecules

    International Nuclear Information System (INIS)

    Krause, M.O.

    1994-01-01

    The author discusses the importance of Auger spectrometry at synchrotron radiation centers. First, he explains how a high energy photon source such as the APS (Advanced Photon Source) could be used to help provide missing spectral information about the shell structure of some elements. The missing data occurs mainly at higher energies in the 1--10 keV ranges as for the K-shells of Z = 30 to 60 elements and the L-shells for Z = 30 to 100 elements. He explains how even though Auger electron spectrometry does not depend on synchrotron radiation it can greatly benefit from this variable photon source as it allows one to select the Auger line group that is most suitable for a specific purpose. Most significantly, a continuous photon source becomes indispensable when one is interested in threshold effects. Lastly, he discusses coherence effects between different inner-shell vacancy states by way of some recent work done at Daresbury

  14. Quantification of steroid conjugates using fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Gaskell, S.J.

    1990-01-01

    Fast atom bombardment/mass spectrometry or liquid secondary ion mass spectrometry provides the capability for direct analysis of steroid conjugates (sulfates, glucuronides) without prior hydrolysis or derivatization. During the analysis of biologic extracts, limitations on the sensitivity of detection arise from the presence of co-extracted material which may suppress or obscure the analyte signal. A procedure is described for the quantitative determination of dehydroepiandrosterone sulfate in serum which achieved selective isolation of the analyte using immunoadsorption extraction and highly specific detection using tandem mass spectrometry. A stable isotope-labeled analog [( 2H2]dehydroepiandrosterone sulfate) was used as internal standard. Fast atom bombardment of dehydroepiandrosterone sulfate yielded abundant [M-H]- ions that fragmented following collisional activation to give HSO4-; m/z 97. During fast atom bombardment/tandem mass spectrometry of serum extracts, a scan of precursor ions fragmenting to give m/z 97 detected dehydroepiandrosterone sulfate and the [2H2]-labeled analog with a selectivity markedly superior to that observed using conventional mass spectrometry detection. Satisfactory agreement was observed between quantitative data obtained in this way and data obtained by gas chromatography/mass spectrometry of the heptafluorobutyrates of dehydroepiandrosterone sulfate and [2H2]dehydroepiandrosterone sulfate obtained by direct derivatization. 21 refs

  15. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    International Nuclear Information System (INIS)

    Ataman, O. Yavuz

    2008-01-01

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C 0 , where the change in characteristic mass, m 0 , can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E max , maximum enhancement factor; E t , enhancement for 1.0 minute sampling and E v , enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps

  16. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    Energy Technology Data Exchange (ETDEWEB)

    Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C{sub 0}, where the change in characteristic mass, m{sub 0}, can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E{sub max}, maximum enhancement factor; E{sub t}, enhancement for 1.0 minute sampling and E{sub v}, enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps.

  17. Determination of heavy metals in polar snow and ice by laser-excited atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Bolshov, M.A.; Boutron, C.F.

    1994-01-01

    The new laser-excited atomic fluorescence spectrometry technique offers unrivalled sensitivity for the determination of trace metals in a wide variety of samples. This has allowed the direct determination of Pb, Cd and Bi in Antarctic and Greenland snow and ice down to the sub pg/g level. (authors). 11 refs., 2 figs

  18. Determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Usenko, S.I.; Prorok, M.M.

    1992-01-01

    A method of direct determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization was developed. Concomitant elements Si, K, Mg, Na, present in natural waters in the concentration of 0.05-100 mg/cv 3 , do not produce effect on the value of boron atomic absorption. Boron determination limit constituted 0.02 mg/cm 3 for 25 ml of solution introduced

  19. Determination of hafnium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yoshida, Isao; Kobayashi, Hiroshi; Ueno, Keihei.

    1977-01-01

    Optimum conditions for atomic absorption spectrophotometric determination of hafnium were investigated by use of a Jarrel-Ash AA-1 instrument which was equipped with a premixed gas burner slotted 50 mm in length and 0.4 mm in width. Absorption of hafnium, which was atomized in an nitrous oxide-acetylene flame, was measured on a resonance line at 307.29 nm. The absorption due to hafnium was enhanced in the presence of ammonium fluoride and iron(III) ion, as shown in Figs. 2 and 3, depending on their concentration. The highest absorption was attained by the addition of (0.15 -- 0.3)M ammonium fluoride, 0.07 M of iron(III) ion and 0.05 M of hydrochloric acid. An excess of the additives decreased the absorption. The presence of zirconium, which caused a significant interference in the ordinary analytical methods, did not affect the absorption due to hafnium, if the zirconium concentration is less than 0.2 M. A standard procedure was proposed; A sample containing a few mg of hafnium was dissolved in a 25-ml volumetric flask, and ammonium fluoride, ferric nitrate and hydrochloric acid were added so that the final concentrations were 0.3, 0.07 and 0.05 M, respectively. Atomic absorption was measured on the aqueous solution in a nitrous oxide-acetylene flame and the hafnium content was calculated from the absorbance. Sensitivity was as high as 12.5 μg of Hf/ml/l% absorption. The present method is especially recommendable to the direct determination of hafnium in samples containing zirconium. (auth.)

  20. Atomic and molecular gas phase spectrometry

    Science.gov (United States)

    Winefordner, J. D.

    1985-10-01

    The major goals of this research have been to develop diagnostical spectroscopic methods for measuring spatial/temporal temperatures and species of combustion flames and plasmas and to develop sensitive, selective, precise, reliable, rapid spectrometric methods of trace analysis of elements present in jet engine lubricating oils, metallurgical samples, and engine exhausts. The diagnostical approaches have been based upon the measurement of metal probes introduced into the flame or plasmas and the measurement of OH in flames. The measurement approaches have involved the use of laser-excited fluorescence, saturated absorption, polarization, and linear absorption. The spatial resolution in most studies is less than 1 cu mm and the temporal resolution is less than 10 ns with the use of pulsed lasers. Single pulse temperature and species measurements have also been carried out. Other diagnostical studies have involved the measurement of collisional redistribution of radiatively excited levels of Na and Tl in acetylene/02/Ar flames and the measurement of lifetimes and quantum efficiencies of atoms and ions in the inductively coupled plasmas, ICP. The latter studies indicate that the high electron number densities in ICPs are not efficient quenchers of excited atoms/ions. Temperatures of microwave atmospheric plasmas produced capacitatively and cool metastable N2 discharge produced by a dielectric discharge have also been measured.

  1. Recent trends in atomic spectrometry with microwave-induced plasmas

    International Nuclear Information System (INIS)

    Broekaert, Jose A.C.; Siemens, Volker

    2004-01-01

    The state-of-the-art and trends of development in atomic spectrometry with microwave-induced plasmas (MIPs) since the 1998s are presented and discussed. This includes developments in devices for producing microwave plasma discharges, with reference also to miniaturized systems as well as to progress in sample introduction for microwave-induced plasmas, such as pneumatic and ultrasonic nebulization using membrane desolvation, to the further development of gaseous analyte species generation systems and to both spark and laser ablation (LA). The features of microwave-induced plasma mass spectrometry (MIP-MS) as an alternative to inductively coupled plasma (ICP)-MS are discussed. Recent work on the use of microwave-induced plasma atomic spectrometry for trace element determinations and monitoring, their use as tandem sources and for particle sizing are discussed. Recent applications of the coupling of gas chromatography and MIP atomic spectrometry for the determination of organometallic compounds of heavy metals such as Pb, Hg, Se and Sn are reviewed and the possibilities of trapping for sensitivity enhancement, as required for many applications especially in environmental work, are showed at the hand of citations from the recent literature

  2. Integration of Solid-phase Extraction with Electrothermal Atomic Absorption Spectrometry for Determination of Trace Elements

    OpenAIRE

    NUKATSUKA, Isoshi; OHZEKI, Kunio

    2006-01-01

    An enrichment step in a sample treatment is essential for trace analysis to improve the sensitivity and to eliminate the matrix of the sample. Solid-phase extraction (SPE) is one of the widely used enrichment technique. Electrothermal atomic absorption spectrometry (ETAAS) is a well-established determination technique for trace elements. The integration of SPE with ETAAS leads to further improvement of sensitivity, an automation of the measurement and the economy in the sample size, amounts o...

  3. Electrochemically assisted fast-atom-bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Phillips, L.R.

    1988-01-01

    The hybridization of electrochemistry and fast atom bombardment (FAB) mass spectrometry (MS) creates a new hyphenated technique, referred to as electrochemically assisted FAB (EFAB) MS, which improves the applicability of FAB MS in selectivity and extends the range of compounds to include low polarity molecules, and also reduces mass spectral complications due to matrix-related artifacts. FAB MS has proven to be indispensable in analysis of samples that are otherwise too intractable for conventional MS, such as peptides, oligosaccharides, and oligonucleotides, due to low volatility and ready thermal degradation. There are limits on its applicability, however, in that it works best with samples that are already ionic, or predisposed to become so by simple proton transfer to or from the matrix. A wide range of chemical substances can be ionized/analyzed by electrochemical methods. Therefore, a possible approach towards improving applicability of FAB MS is through its hybridization with electrochemistry. Samples are activated by electrolysis, carried out directly in the sample matrix through use of a modified FAB sample probe which was constructed containing a small electrolytic cell on the tip. In operation, one electrode is held at normal sample-probe/ion-source voltage, while the other electrode can be continuously varied ±15 volts to create electrochemical potentials. Several chemical substances, known to be unresponsive to FAB MS, have been examined by EFAB MS. Resultant spectra generally show a dramatic increases in signal/chemical noise ratio of structurally significant ions when compared to normal FAB spectra

  4. Photoion spectroscopy of atoms using coincidence techniques

    International Nuclear Information System (INIS)

    Hayaishi, Tatsuji

    1990-01-01

    Interaction of atoms or molecules with photons causes many effects which are often obscured because of many decay paths from the event. To pick up an effect in the mixed-up ones, it is necessary to observe the decay path arising the effect alone. There is a coincidence technique in one of experimental means for the purpose of observing the decay path. In this article, two coincidence measurements are presented; a photoelectron-photoion coincidence technique and a threshold photoelectron-photoion coincidence technique. Furthermore, experimental facts of rare gases atoms obtained by the techniques are reviewed. (author)

  5. Atomization of volatile compounds for atomic absorption and atomic fluorescence spectrometry: On the way towards the ideal atomizer

    International Nuclear Information System (INIS)

    Dedina, Jiri

    2007-01-01

    This review summarizes and discusses the individual atomizers of volatile compounds. A set of criteria important for analytical praxis is used to rank all the currently existing approaches to the atomization based on on-line atomization for atomic absorption (AAS) and atomic fluorescence spectrometry (AFS) as well as on in-atomizer trapping for AAS. Regarding on-line atomization for AAS, conventional quartz tubes are currently the most commonly used devices. They provide high sensitivity and low baseline noise. Running and investment costs are low. The most serious disadvantage is the poor resistance against atomization interferences and often unsatisfactory linearity of calibration graphs. Miniature diffusion flame (MDF) is extremely resistant to interferences, simple, cheap and user-friendly. Its essential disadvantage is low sensitivity. A novel device, known as a multiatomizer, was designed to overcome disadvantages of previous atomizers. It matches performance of conventional quartz tubes in terms of sensitivity and baseline noise as well as in running and investment costs. The multiatomizer, however, provides much better (i) resistance against atomization interferences and (ii) linearity of calibration graphs. In-atomizer trapping enhances the sensitivity of the determination and eliminates the effect of the generation kinetics and of surges in gas flow on the signal shape. This is beneficial for the accuracy of the determination. It could also be an effective tool for reducing some interferences in the liquid phase. In-situ trapping in graphite furnaces (GF) is presently by far the most popular approach to the in-atomizer trapping. Its resistance against interferences is reasonably good and it can be easily automated. In-situ trapping in GF is a mature method well established in various application fields. These are the reasons to rank in-situ trapping in GF as currently the most convenient approach to hydride atomization for AAS. The recently suggested

  6. Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry.

    Science.gov (United States)

    Donati, George L; Pharr, Kathryn E; Calloway, Clifton P; Nóbrega, Joaquim A; Jones, Bradley T

    2008-09-15

    Cadmium concentrations in human urine are typically at or below the 1 microgL(-1) level, so only a handful of techniques may be appropriate for this application. These include sophisticated methods such as graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. While tungsten coil atomic absorption spectrometry is a simpler and less expensive technique, its practical detection limits often prohibit the detection of Cd in normal urine samples. In addition, the nature of the urine matrix often necessitates accurate background correction techniques, which would add expense and complexity to the tungsten coil instrument. This manuscript describes a cloud point extraction method that reduces matrix interference while preconcentrating Cd by a factor of 15. Ammonium pyrrolidinedithiocarbamate and Triton X-114 are used as complexing agent and surfactant, respectively, in the extraction procedure. Triton X-114 forms an extractant coacervate surfactant-rich phase that is denser than water, so the aqueous supernatant is easily removed leaving the metal-containing surfactant layer intact. A 25 microL aliquot of this preconcentrated sample is placed directly onto the tungsten coil for analysis. The cloud point extraction procedure allows for simple background correction based either on the measurement of absorption at a nearby wavelength, or measurement of absorption at a time in the atomization step immediately prior to the onset of the Cd signal. Seven human urine samples are analyzed by this technique and the results are compared to those found by the inductively coupled plasma mass spectrometry analysis of the same samples performed at a different institution. The limit of detection for Cd in urine is 5 ngL(-1) for cloud point extraction tungsten coil atomic absorption spectrometry. The accuracy of the method is determined with a standard reference material (toxic metals in freeze-dried urine) and the determined values agree with

  7. A new atomization cell for trace metal determinations by tungsten coil atomic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Donati, G.L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Wildman, R.B.; Jones, B.T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2011-02-28

    A new metallic atomization cell is used for trace metal determinations by tungsten coil atomic absorption spectrometry and tungsten coil atomic emission spectrometry. Different protecting gas mixtures are evaluated to improve atomic emission signals. Ar, N{sub 2}, CO{sub 2} and He are used as solvents, and H{sub 2} and C{sub 2}H{sub 2} as solutes. A H{sub 2}/Ar mixture provided the best results. Parameters such as protecting gas flow rate and atomization current are also optimized. The optimal conditions are used to determine the figures of merit for both methods and the results are compared with values found in the literature. The new cell provides a better control of the radiation reaching the detector and a small, more isothermal environment around the atomizer. A more concentrated atomic cloud and a smaller background signal result in lower limits of detection using both methods. Cu (324.7 nm), Cd (228.8 nm) and Sn (286.3 nm) determined by tungsten coil atomic absorption spectrometry presented limits of detection as low as 0.6, 0.1, and 2.2 {mu}g L{sup -1}, respectively. For Cr (425.4 nm), Eu (459.4 nm) and Sr (460.7 nm) determined by tungsten coil atomic emission spectrometry, limits of detection of 4.5, 2.5, and 0.1 {mu}g L{sup -1} were calculated. The method is used to determine Cu, Cd, Cr and Sr in a water standard reference material. Results for Cu, Cd and Cr presented no significant difference from reported values in a 95% confidence level. For Sr, a 113% recovery was obtained.

  8. Alternative approaches to correct interferences in the determination of boron in shrimps by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pasias, I.N.; Pappa, Ch.; Katsarou, V.; Thomaidis, N.S., E-mail: ntho@chem.uoa.gr; Piperaki, E.A.

    2014-02-01

    The aim of this study is to propose alternative techniques and methods in combination with the classical chemical modification to correct the major matrix interferences in the determination of boron in shrimps. The performance of an internal standard (Ge) for the determination of boron by the simultaneous multi-element atomic absorption spectrometry was tested. The use of internal standardization increased the recovery from 85.9% to 101% and allowed a simple correction of errors during sampling preparation and heating process. Furthermore, a new preparation procedure based on the use of citric acid during digestion and dilution steps improved the sensitivity of the method and decreased the limit of detection. Finally, a comparative study between the simultaneous multi-element atomic absorption spectrometry with a longitudinal Zeeman-effect background correction system, equipped with a transversely-heated graphite atomizer and the single element atomic absorption spectrometry with a D{sub 2} background correction system, equipped with an end-heated graphite atomizer was undertaken to investigate the different behavior of boron in both techniques. Different chemical modifiers for the determination of boron were tested with both techniques. Ni-citric acid and Ca were the optimal chemical modifiers when simultaneous multi-element atomic absorption spectrometry and single-element atomic absorption spectrometry were used, respectively. By using the single-element atomic absorption spectrometry, the calculated characteristic mass was 220 pg and the calculated limit of detection was 370 μg/kg. On the contrary, with simultaneous multi-element atomic absorption spectrometry, the characteristic mass was 2200 pg and the limit of detection was 5.5 mg/kg. - Highlights: • New approaches were developed to cope with interferences of B determination by ETAAS • Ge was used as internal standard for the determination of B by simultaneous ETAAS • Citric acid was used during

  9. SOME SPECIATION STUDIES IN FOODSTUFF BY ATOMIC ABSORPTION SPECTROMETRY

    OpenAIRE

    Gücer, S

    2000-01-01

    There has been increasing interest in speciation studies of essentialelements in foods. The main limitation of this studies, their levels in foodsamples and the difficulties for the determination in their own differentforms without any changes in their original forms.Atomic Absorption Spectrometry (AAS) coupled with separation methodswould be outline in this presentation. Analytical scheme was given for tea, olive and garlic samples forManganese, Magnesium and Selenium respectively. Activated...

  10. Limit of quantitation in atomic spectrometry: An unambiguous concept?

    International Nuclear Information System (INIS)

    Mermet, Jean-Michel

    2008-01-01

    This document presents a tutorial description of several concepts and definitions of limits of quantitation, such as the so-called 10 s, the RSD net , the method limit, the lower limit of the calibration graph and the uncertainty approaches. Use, advantages, limitations and complexity of the various approaches are illustrated with some examples taken from atomic spectrometry, using ICP-AES, ICP-MS and LIBS. Information that can be deduced from the calibration graph is emphasized

  11. Determination of lead and cadmium in urine by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Vasil'eva, L.A.; Grinshtejn, I.L.; Gucher, Sh.; Izgi, B.

    2008-01-01

    The applicability of a DETATA sorbent to the preconcentration of lead and cadmium followed by the determination of these elements in urine using atomic absorption spectrometry with electrothermal atomization was demonstrated. After preconcentration by a factor of 10, the limits of detection were 0.01 and 0.2 μg/l for cadmium and lead, respectively. The accuracy of the results was supported by the analysis of Seronorm TM Trace Elements Urine Batch no.101021 [ru

  12. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Arslan, Y.; Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan; Dědina, Jiří

    103-104, JAN-FEB (2015), s. 155-163 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : gold * volatile species generation * quartz atomizers * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  13. New experiments in organic, fast-atom-bomdardment, and secondary-ion mass spectrometry

    International Nuclear Information System (INIS)

    DiDonato, G.C.

    1987-01-01

    The goal of research presented in this dissertation is the creative use of new ionization and instrumental techniques in mass spectrometry. This goal manifests itself in three areas of mass spectrometry. In the first portion, modern, state-of-the-art instrumentation and new experiments were used to re-examine the mass spectra of transition-metal acetates and acetylacetonates. High resolution, chemical ionization, negative chemical ionization, and extended-mass-range mass spectrometry uncovered a wealth of new gas-phase ionic species. Energy-resolved mass spectrometry/mass spectrometry was applied to the characterization of molecular and fragment ion first-row transition-metal acetylacetonates, and comprises the second portion of the thesis. Studies in fast-atom-bombardment mass spectrometry are the subject of the third portion of the dissertation. Since fast-atom bombardment samples a liquid matrix, absolute and relative abundances of sputtered secondary ions are influenced by solution chemistry. The design and construction of an imaging secondary-ion mass spectrometer is the subject of the final portion of the thesis. This instrument provides for direct mass-spectrometric analysis of thin-layer and paper chromatograms and electrophoretograms

  14. Organic solvents as interferents in arsenic determination by hydride generation atomic absorption spectrometry with flame atomization

    Czech Academy of Sciences Publication Activity Database

    Karadjova, I.B.; Lampugnani, L.; Dědina, Jiří; D'Ulivo, A.; Onor, M.; Tsalev, D.L.

    2006-01-01

    Roč. 61, č. 5 (2006), s. 525-531 ISSN 0584-8547 R&D Projects: GA AV ČR IAA400310507 Institutional research plan: CEZ:AV0Z40310501 Keywords : hydride generation * atomic absorption spectrometry * interferences Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.092, year: 2006

  15. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    Czech Academy of Sciences Publication Activity Database

    Duben, Ondřej; Boušek, J.; Dědina, Jiří; Kratzer, Jan

    2015-01-01

    Roč. 111, SEP (2015), s. 57-63 ISSN 0584-8547 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation-atomic absorption spectrometry * selenium Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  16. Inductively coupled plasma as atomization, excitation and ionization sources in analytical atomic spectrometry

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi

    1996-01-01

    Studies on inductively coupled plasma (ICP) for atomic emission and mass spectrometry accomplished in our laboratory since 1978 are reviewed. In emission spectrometry, the characteristics of the plasma are studied concerning the spatial profiles of spectral line intensity, axial profiles of gas and excitation temperatures, spectral line widths and matrix effect. The studies are particularly emphasized on the instrumentation such as developments of plasma generator, emission spectrometers, water-cooled torches and sample introduction methods. A slew-scan type spectrometer developed in these works represents a predecessor of the current commercial spectrometers. An ICP mass spectrometer was first developed in Japan in this laboratory in 1984. Non-spectroscopic interference of this method was found to have the correlation with the atomic weight of the matrix element. Plasma gases other than argon such as nitrogen and oxygen were used for the ICP to evaluate their performance in mass spectrometry as for the sensitivity and interferences. (author). 63 refs

  17. Atomic spectrometry methods for wine analysis: A critical evaluation and discussion of recent applications

    Energy Technology Data Exchange (ETDEWEB)

    Grindlay, Guillermo, E-mail: guillermo.grindlay@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080 Alicante (Spain); Mora, Juan; Gras, Luis [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080 Alicante (Spain); Loos-Vollebregt, Margaretha T.C. de [Delft University of Technology, Faculty of Applied Sciences, Analytical Biotechnology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2011-04-08

    The analysis of wine is of great importance since wine components strongly determine its stability, organoleptic or nutrition characteristics. In addition, wine analysis is also important to prevent fraud and to assess toxicological issues. Among the different analytical techniques described in the literature, atomic spectrometry has been traditionally employed for elemental wine analysis due to its simplicity and good analytical figures of merit. The scope of this review is to summarize the main advantages and drawbacks of various atomic spectrometry techniques for elemental wine analysis. Special attention is paid to interferences (i.e. matrix effects) affecting the analysis as well as the strategies available to mitigate them. Finally, latest studies about wine speciation are briefly discussed.

  18. Atomic spectrometry methods for wine analysis: a critical evaluation and discussion of recent applications.

    Science.gov (United States)

    Grindlay, Guillermo; Mora, Juan; Gras, Luis; de Loos-Vollebregt, Margaretha T C

    2011-04-08

    The analysis of wine is of great importance since wine components strongly determine its stability, organoleptic or nutrition characteristics. In addition, wine analysis is also important to prevent fraud and to assess toxicological issues. Among the different analytical techniques described in the literature, atomic spectrometry has been traditionally employed for elemental wine analysis due to its simplicity and good analytical figures of merit. The scope of this review is to summarize the main advantages and drawbacks of various atomic spectrometry techniques for elemental wine analysis. Special attention is paid to interferences (i.e. matrix effects) affecting the analysis as well as the strategies available to mitigate them. Finally, latest studies about wine speciation are briefly discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Atomic spectrometry methods for wine analysis: A critical evaluation and discussion of recent applications

    International Nuclear Information System (INIS)

    Grindlay, Guillermo; Mora, Juan; Gras, Luis; Loos-Vollebregt, Margaretha T.C. de

    2011-01-01

    The analysis of wine is of great importance since wine components strongly determine its stability, organoleptic or nutrition characteristics. In addition, wine analysis is also important to prevent fraud and to assess toxicological issues. Among the different analytical techniques described in the literature, atomic spectrometry has been traditionally employed for elemental wine analysis due to its simplicity and good analytical figures of merit. The scope of this review is to summarize the main advantages and drawbacks of various atomic spectrometry techniques for elemental wine analysis. Special attention is paid to interferences (i.e. matrix effects) affecting the analysis as well as the strategies available to mitigate them. Finally, latest studies about wine speciation are briefly discussed.

  20. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri A., E-mail: katskovda@tut.ac.za [Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Sadagov, Yuri M. [All-Russian Scientific Research Institute of Optical and Physical Measurements (VNIIOFI), Ozernaya St. 46, Moscow 119361 (Russian Federation)

    2011-06-15

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a 'platform' effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 {sup o}C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element

  1. Determination of cobalt in human liver by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Caldas, E.D.; Gine-Rosias, M.F.; Dorea, J.G.

    1991-01-01

    A detailed study of the use of electrothermal atomic absorption spectrometry for the determination of cobalt in human liver is described. Comparisons of sample digestion using nitric acid or nitric acid plus perchloric acid, atomization procedures and the application of palladium and magnesium nitrate chemical modifiers were studied using NBS SRM 1577a Bovine Liver. The best results were achieved with sample decomposition in nitric acid, atomization from the tube wall and no chemical modifier. Cobalt was determined in 90 samples of livers from foetuses and deceased newborns using the standard addition method with an average recovery of 99.8%. (author). 30 refs.; 4 figs.; 2 tabs

  2. Determination of five trace elements in leaves in Nanfang sweet orange by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li Fangqing

    2006-01-01

    The five trace elements of copper, zinc, manganese, iron and cobalt in leaves of Nanfang sweet orange are determined by flame atomic absorption spectrometry. The technique is simple, precise and sensitive. The effect of the type of digesting solution (mixed acid), the ratio of mixed acid, the volume of digesting solution and the time of digesting are investigated in details. The results show that leaves of Nanfang sweet orange contain higher amount of iron and zinc. (authors)

  3. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: A comparative study

    International Nuclear Information System (INIS)

    Cabon, J.Y.; Giamarchi, P.; Le Bihan, A.

    2010-01-01

    Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L -1 (20 μL, 3σ) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3σ) of 3 ng L -1 (i.e. 54 pM) for total Fe concentration with the use a 20 μL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 μg L -1 ) seawater sample were in good agreement with the certified values.

  4. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: a comparative study.

    Science.gov (United States)

    Cabon, J Y; Giamarchi, P; Le Bihan, A

    2010-04-07

    Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L(-1) (20 microL, 3sigma) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3sigma) of 3 ng L(-1) (i.e. 54 pM) for total Fe concentration with the use a 20 microL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 microg L(-1)) seawater sample were in good agreement with the certified values. Copyright 2010 Elsevier B.V. All rights reserved.

  5. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    International Nuclear Information System (INIS)

    Montaser, A.

    1993-01-01

    In this research, new high-temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. During the period January 1993--December 1993, emphasis was placed on (a) analytical investigations of atmospheric-pressure helium inductively coupled plasma (He ICP) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies; (b) simulation and computer modeling of plasma sources to predict their structure and fundamental and analytical properties without incurring the enormous cost of experimental studies; (c) spectrosopic imaging and diagnostic studies of high-temperature plasmas; (d) fundamental studies of He ICP discharges and argon-nitrogen plasma by high-resolution Fourier transform spectrometry; and (e) fundamental and analytical investigation of new, low-cost devices as sample introduction systems for atomic spectrometry and examination of new diagnostic techniques for probing aerosols. Only the most important achievements are included in this report to illustrate progress and obstacles. Detailed descriptions of the authors' investigations are outlined in the reprints and preprints that accompany this report. The technical progress expected next year is briefly described at the end of this report

  6. Paleodiet characterisation of an Etrurian population of Pontecagnano (Italy) by Isotope Ratio Mass Spectrometry (IRMS) and Atomic Absorption Spectrometry (AAS)(#).

    Science.gov (United States)

    Scarabino, Carla; Lubritto, Carmine; Proto, Antonio; Rubino, Mauro; Fiengo, Gilda; Marzaioli, Fabio; Passariello, Isabella; Busiello, Gaetano; Fortunato, Antonietta; Alfano, Davide; Sabbarese, Carlo; Rogalla, Detlef; De Cesare, Nicola; d'Onofrio, Antonio; Terrasi, Filippo

    2006-06-01

    Human bones recovered from the archaeological site of Pontecagnano (Salerno, Italy) have been studied to reconstruct the diet of an Etrurian population. Two different areas were investigated, named Library and Sant' Antonio, with a total of 44 tombs containing human skeletal remains, ranging in age from the 8th to the 3rd century B.C. This time span was confirmed by 14C dating obtained using Accelerator Mass Spectrometry (AMS) on one bone sample from each site. Atomic Absorption Spectrometry (AAS) was used to extract information about the concentration of Sr, Zn, Ca elements in the bone inorganic fraction, whilst stable isotope ratio measurements (IRMS) were carried out on bone collagen to obtain the delta13C and delta15N. A reliable technique has been used to extract and separate the inorganic and organic fractions of the bone remains. Both IRMS and AAS results suggest a mixed diet including C3 plant food and herbivore animals, consistent with archaeological indications.

  7. Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Welz, Bernhard; Heitmann, Uwe

    2007-01-01

    The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal

  8. Determination of metals in atmospheric particulates using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Alduan, F.A.; Capdevila, C.

    1979-01-01

    Nineteen trace metals in atmospheric samples have been determined by atomic absorption spectrometry, using a graphite furnace for most elements. Paper filters have been used to collect air samples. The sample preparation procedure involves the removal of organic matter and the conversion of the metals to soluble salts by ashing the filters in an oxygen plasma at 125 deg C for 6 h. and by subsequent dissolution in HN0 3 HCl solution. The sensitivities achieved are in the range of 2,5.10 -5 and 6,3.10 -3 μg/m 3 , for an air volume of 2000 m 3 . (author)

  9. Determination of cadmium in aluminium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Batistoni, D.A.; Erlijman, L.H.

    1978-12-01

    A direct method for the determination of cadmium in elemental aluminium is described. Metal samples are dissolved in diluted hydrochloric acid and cadmium is determined by atomic absorption spectrometry in an air-acetylene flame. Interference by non-specific absorption observed at the analytical wavelength incorrected for by means of a non-absorbing line emitted by the hollow-cathode lamp. Relatively large amounts of arsenic do not interfere. The minimun determinable concentration of cadmium for this procedure is 2-3 ppm, expressed on aluminium basis. (author) [es

  10. Determination of technetium by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kaye, J.H.; Ballou, N.E.

    1978-01-01

    A detection limit of 6 x 10 -11 g has been achieved for measurement of technetium by graphite furnace atomic absorption spectrometry. A commercially available, demountable, hollow cathode lamp was used and both argon and neon were used as fill gases for the lamp. The range of applicability of the method, when the unresolved 2614.23 to 2615.87 A doublet is used for analysis, is from 60 pg to at least 3 ng of technetium per aliquot analyzed. 3 figures, 1 table

  11. Investigation of chemical modifiers for phosphorus in a graphite furnace using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lepri, Fabio G.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Borges, Daniel L.G.; Welz, Bernhard; Heitmann, Uwe

    2006-01-01

    Phosphorus is not one of the elements that are typically determined by atomic absorption spectrometry, but this technique nevertheless offers several advantages that make it attractive, such as the relatively great freedom from interferences. As the main resonance lines for phosphorus are in the vacuum-ultraviolet, inaccessible by conventional atomic absorption spectrometry equipment, L'vov and Khartsyzov proposed to use the non-resonance doublet at 213.5 / 213.6 nm. Later it turned out that with conventional equipment it is necessary to use a chemical modifier in order to get reasonable sensitivity, and lanthanum was the first one suggested for that purpose. In the following years more than 30 modifiers have been proposed for the determination of this element, and there is no consensus about the best one. In this work high-resolution continuum source atomic absorption spectrometry has been used to investigate the determination of phosphorus without a modifier and with the addition of selected modifiers of very different nature, including the originally recommended lanthanum modifier, several palladium-based modifiers and sodium fluoride. As high-resolution continuum source atomic absorption spectrometry is revealing the spectral environment of the analytical line at high resolution, it became obvious that without the addition of a modifier essentially no atomic phosphorus is formed, even at 2700 deg. C . The absorption measured with line source atomic absorption spectrometry in this case is due to the PO molecule, the spectrum of which is overlapping with the atomic line. Palladium, with or without the addition of calcium or ascorbic acid, was found to be the only modifier to produce almost exclusively atomic phosphorus. Lanthanum and particularly sodium fluoride produced a mixture of P and PO, depending on the atomization temperature. This fact can explain at least some of the discrepancies found in the literature and some of the phenomena observed in the

  12. Electrochemical preconcentration and hydride generation methods for trace determination of selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bye, R.

    1986-01-01

    The use of atomic absorption spectrometry in combination with two different preconcentration/separation techniques for the determination of trace concentrations of selenium is described. Electrochemical preconcentration onto a platinum electrode with a subsequent atomization of selenium is discussed briefly. Several parameters are considered such as the presence of depolarizers, and the temperature of the electrolyzed solutions. Special attention is payed to the efficiency of the atomization step, and a method to improve this is proposed. Applications of the technique to real samples are also reported. Secondly, the separation of the selenium as the volatile selenium hydride from the sample solution is considered. Several papers in this thesis deal with commonly occurring interferants as nickel and copper and with ways of minimizing or avoiding the interferring effects, whereas other papers relate to more theoretical aspects of the hydride generation process. New methods for the determination of selenium in technical samples with high contents of nickel and copper are also presented

  13. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  14. Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods.

    Science.gov (United States)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto

    2003-01-01

    A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min(-1), elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L(-1) using ETAAS and 12, 122, 3.4, 17, and 21 ng L(-1) using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-microg L(-1) concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater).

  15. Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods

    Energy Technology Data Exchange (ETDEWEB)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto [Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso, 31-16146, Genoa (Italy)

    2003-01-01

    A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min{sup -1}, elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L{sup -1} using ETAAS and 12, 122, 3.4, 17, and 21 ng L{sup -1} using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-{mu}g L{sup -1} concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater). (orig.)

  16. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Politechn Poznanska, Poznan (Poland)

    2007-03-15

    The analytical performance of coupled hydride generation - integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H{sub 2}Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangernents (a water-cooled single silica tube, double-slotted quartz tube or an 'integrated trap') was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3{sigma}), was 0.9 ng mL{sup -1} for Te. For a 2 min in situ preconcentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  17. Precise atomic mass measurements by deflection mass spectrometry

    CERN Document Server

    Barber, R C

    2003-01-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 sup 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  18. New Isotope Analysis Method: Atom Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young

    2011-01-01

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Some fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of artificially produced radioactive isotopes has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10 -10 . In general, radio-chemical method has been applied to detect ultra-trace radio isotopes. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The Accelerator Mass Spectrometer has high isotope selectivity, but the system is huge and its selectivity is affected by isobars. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) has the advantage of isobar-effect free characteristics. But the system size is still huge for high isotope selective system. Recently, ATTA (Atom Trap Trace Analysis) has been successfully applied to detect ultra-trace isotope, Kr-81 and Kr-85. ATTA is the isobar-effect free detection with high isotope selectivity and the system size is small. However, it requires steady atomic beam source during detection, and is not allowed simultaneous detection of several isotopes. In this presentation, we introduce new isotope detection method which is a coupled method of Atom Trap Mass Spectrometry (ATMS). We expect that it can overcome the disadvantage of ATTA while it has both advantages of ATTA and mass spectrometer. The basic concept and the system design will be presented. In addition, the experimental status of ATMS will also be presented

  19. Comparison of electrothermal atomization diode laser Zeeman- and wavelength-modulated atomic absorption and coherent forward scattering spectrometry

    International Nuclear Information System (INIS)

    Blecker, Carlo R.; Hermann, Gerd M.

    2009-01-01

    Atomic absorption and coherent forward scattering spectrometry by using a near-infrared diode laser with and without Zeeman and wavelength modulation were carried out with graphite furnace electrothermal atomization. Analytical curves and limits of detection were compared. The magnetic field was modulated with 50 Hz, and the wavelength of the diode laser with 10 kHz. Coherent forward scattering was measured with crossed and slightly uncrossed polarizers. The results show that the detection limits of atomic absorption spectrometry are roughly the same as those of coherent forward scattering spectrometry with crossed polarizers. According to the theory with bright flicker noise limited laser sources the detection limits and linear ranges obtained with coherent forward scattering spectrometry with slightly uncrossed polarizers are significantly better than those obtained with crossed polarizers and with atomic absorption spectrometry. This is due to the fact that employing approaches of polarization spectroscopy reduce laser intensity fluctuations to their signal carried fractions

  20. Bismuth as a general internal standard for lead in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bechlin, Marcos A.; Fortunato, Felipe M.; Ferreira, Edilene C.; Neto, José A. Gomes; Nóbrega, Joaquim A.; Donati, George L.; Jones, Bradley T.

    2014-01-01

    Highlights: • Single internal standard is commonly proposed for definite application in AAS. • Internal standard for general use in AAS techniques is original. • Bi showed efficiency as internal standard for Pb determinations by FAAS and GFAAS. • Assorted samples were analyzed and accurate results were found. - Abstract: Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A Pb /A Bi versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52–118% (without IS) to 97–109% (IS, LS FAAS); 74–231% (without IS) to 96–109% (IS, HR-CS FAAS); and 36–125% (without IS) to 96–110% (IS, LS GFAAS). The relative standard deviations (n = 12) were reduced from 0.6–9.2% (without IS) to 0.3–4.3% (IS, LS FAAS); 0.7–7.7% (without IS) to 0.1–4.0% (IS, HR-CS FAAS); and 2.1–13% (without IS) to 0.4–5.9% (IS, LS GFAAS)

  1. In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies

    International Nuclear Information System (INIS)

    Kılınç, Ersin; Bakırdere, Sezgin; Aydın, Fırat; Ataman, O. Yavuz

    2013-01-01

    Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL −1 and 0.51 ng mL −1 , respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL −1 for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e. - Highlights: • Further increasing in sensitivity of SQT-AT-FAAS was obtained by using a W coated SQT. • 613 fold sensitivity enhancement was achieved by W coated SQT-AT-FAAS versus FAAS. • A sensitive, rapid and simple technique for Bi was developed with an LOD of 0.51 ng mL −1 . • The technique is suggested for laboratories equipped with only a flame AA spectrometer

  2. Analysis of nuclear grade uranium oxides by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Batistoni, D.A.; Erlijman, L.H.; Pazos, A.L.

    1986-01-01

    The application of atomic absorption spectrometry for the determination of five trace impurities in nuclear grade uranium oxides is described. The elements were separated from the uranium matrix by extraction chromatography and determined in 5.5 M nitric acid by electrothermal atomization using pyrolytic graphite coated tubes. Two elements, cadmium and chromium, with different volatility characteristics were employed to investigate the operating conditions. Drying and ashing conditions were studied for both elements. Ramp and constant potential (step) heating modes have also been studied and compared. Good reproducibility and a longer life of graphite tubes were obtained with ramp atomization. Detection limits (in micrograms per gram of uranium) were: Cd 0.01; Cr 0.1; Cu 0.4; Mn 0.04 and Ni 0.2. (author) [es

  3. Determination of microquantities of cesium in leaching tests by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Crubellati, R.O.; Di Santo, N.R.

    1988-01-01

    An original method for cesium determinations by atomic absorption spectrometry with electrothermal atomization is described. The effect of foreign ions (alkali and earth alkaline metals) present in leaching test of glasses with incorporated radioactive wastes was studied. The effect of different mineral acids was also investigated. A comparison between the flame excitation method and the electrothermal atomization one was made. Under optimum conditions, cesium in quantities down to 700 ng in 1000 ml of sample could be determined. The calibration curve was linear in the range of 0.7 - 15 ng/mL. The fact that the proposed determinations can be performed in a short time and that a small sample volume is required are fundamental advantages of this method, compared with the flame excitation procedure. Besides, it is adaptable to be applied in hot cells and glove boxes. (Author) [es

  4. Laser-excited atomic-fluorescence spectrometry with electrothermal tube atomization.

    Science.gov (United States)

    Vera, J A; Leong, M B; Stevenson, C L; Petrucci, G; Winefordner, J D

    1989-12-01

    The performance of graphite-tube electrothermal atomizers is evaluated for laser-excited atomic-fluorescence spectrometry for several elements. Three pulsed laser systems are used to pump tunable dye lasers which subsequently are used to excite Pb, Ga, In, Fe, Ir, and Tl atoms in the hot graphite tube. The dye laser systems used are pumped by nitrogen, copper vapour and Nd:YAG lasers. Detection limits in the femtogram and subfemtogram range are typically obtained for all elements. A commercial graphite-tube furnace is important for the successful utilization of the laser-based method when the determination of trace elements is intended, especially when complicated matrices may be present.

  5. Lithium determination in whole blood by flame atomic emission spectrometry

    International Nuclear Information System (INIS)

    Rahman, S.; Khalid, N.; Nasimullah; Iqbal, M.Z.

    2003-01-01

    A simple and rapid method for the determination of lithium in whole blood using Flame atomic emission spectrometry is described. No sample preparation was required apart from dilution with 0.02 N HNO/sub 3/. The reliability of the method was determined by analyzing Standard Reference Material (SRM) under identical experimental conditions and comparing the determined lithium concentration with the reported value. These were in good agreement with each other. The determined range of lithium in the whole blood of fifty-six healthy adult volunteers (28 males and 28 females) were 13.1 - 47.8 mg L-1. The determined average concentration of lithium in whole blood was compared with the reported values of other countries. The data was statistically analyzed with respect to sex and different age groups. (author)

  6. Modular L-design of hydride atomizers for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Rezacova, Olga; Dedina, Jiri

    2009-01-01

    A novel modular L-shaped design of hydride atomizer for atomic absorption spectrometry is described. It makes it possible to replace the optical tube of the atomizer and, mainly, to employ optical tubes made also from other materials than fused quartz. The design is useful mainly for further improvement of hydride atomizers based on the multiatomizer concept. Employing selenium hydride as the analyte and arsine as the interferent, a preliminary evaluation of performance of three types of L-shaped multiatomizers based on various optical tubes in terms of sensitivity, linearity of calibration graph and resistance to atomization interferences is made. The 'classical' T-shaped multiatomizer was employed as a reference. The L-shaped multiatomizer with the optical tube analogous to that employed in the 'classical' T-shaped multiatomizer offers virtually the same performance as the reference multiatomizer. Optical tube made of fused quartz with holes with smaller diameters does not offer significantly better performance compared to the reference T-shaped multiatomizer. However, the L-shaped multiatomizer with optical tube fabricated from porous quartz glass overpowers all the other multiatomizers substantially in terms of the resistance against interferences: even the maximum As interferent concentration of 5 μg ml - 1 does not significantly influence the observed signal. This should be compared with multiatomizers based on plain fused quartz tubes with holes: tolerance limit around 0.5 μg ml - 1 ; interferent concentration of 1 μg ml - 1 causing 20% signal depression.

  7. Quantitative determination of impurities in nuclear grade aluminum by Flame-Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Jat, J.R.; Nayak, A.K.; Balaji Rao, Y.; Ravindra, H.R.

    2013-01-01

    The paper deals with quantitative determination of impurity elements in nuclear grade aluminum, used as fin tubes in research reactors, by Flame-Atomic Absorption Spectrometry (F-AAS). The results have been compared with those obtained by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) method. Experimental conditions used in both the methods are given in the paper. (author)

  8. Identification of bacteria using mass spectrometry techniques

    Czech Academy of Sciences Publication Activity Database

    Krásný, Lukáš; Hynek, R.; Hochel, I.

    2013-01-01

    Roč. 353, NOV 2013 (2013), s. 67-79 ISSN 1387-3806 R&D Projects: GA ČR GAP503/10/0664 Institutional support: RVO:61388971 Keywords : Mass spectrometry * Bacteria * Identification Subject RIV: EE - Microbiology, Virology Impact factor: 2.227, year: 2013

  9. Test of atomic theory by photoelectron spectrometry with synchrotron radiation

    International Nuclear Information System (INIS)

    Krause, M.O.

    1984-01-01

    The successful combination of synchrotron radiation with electron spectrometry, accomplished at Daresbury, England and Orsay, France, made it possible to investigate sigma/sub x/ and β/sub x/ continuously over the very soft x-ray or the uv range of photon energies. The detailed and highly differentiated data resulting from this advanced experimentation put theory to a stringent test. In the interplay between theory and experiment, sophisticated Hartree Fock (HF) based models were developed which included both relativistic and many-electron effects. These theoretical models have provided us with a better insight than previously possible into the physics of the photon-atom interaction and the electronic structure and dynamics of atoms. However, critical experiments continue to be important for further improvements of theory. A number of such experiments are discussed in this presentation. The dynamic properties determined in these studies include in addition to sigma/sub x/ and β/sub x/ the spin polarization parameters. As a result the comparison between theory and experiment becomes rigorous, detailed and comprehensive. 46 references, 6 figures

  10. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    International Nuclear Information System (INIS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH 4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l −1 and 1.0 ng l −1 , respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l −1

  11. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  12. Small sample analysis using sputter atomization/resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Christie, W.H.; Goeringer, D.E.

    1986-01-01

    We have used secondary ion mass spectrometry (SIMS) to investigate the emission of ions via argon sputtering from U metal, UO 2 , and U 3 O 8 samples. We have also used laser resonance ionization techniques to study argon-sputtered neutral atoms and molecules emitted from these same samples. For the case of U metal, a significant enhancement in detection sensitivity for U is obtained via SA/RIMS. For U in the fully oxidized form (U 3 O 8 ), SA/RIMS offers no improvement in U detection sensitivity over conventional SIMS when sputtering with argon. 9 refs., 1 fig., 2 tabs

  13. Speciation of protein-bound trace elements by gel electrophoresis and atomic spectrometry.

    Science.gov (United States)

    Ma, Renli; McLeod, Cameron W; Tomlinson, Kerry; Poole, Robert K

    2004-08-01

    The metabolism of trace elements, in particular their binding to proteins in biological systems is of great importance in biochemical, toxicological, and pharmacological studies. As a result there has been a sustained interest over the last two decades in the speciation of protein-bound metals. Various analytical approaches have been employed, combining efficient separation of metalloproteins by liquid chromatography or electrophoresis with high-sensitivity elemental detection. Slab-gel electrophoresis (GE) is a key platform for high-resolution protein separation, and has been combined with autoradiography and various atomic spectrometric techniques for in-gel determination of protein-bound metals. Recently, the combination of GE with state-of-the-art inductively coupled plasma-mass spectrometry (ICP-MS), particularly when linked to laser ablation (LA) for direct gel interrogation, has opened up new opportunities for rapid characterization of metalloproteins. The use of GE and atomic spectrometry for the speciation of protein-bound trace elements is reviewed in this paper. Technical requirements for gel electrophoresis/atomic spectrometric measurement are considered in terms of method compatibilities, detection capability and potential usefulness. The literature is also surveyed to illustrate current status and future trends. Copyright 2004 Wiley-VCH Verlag GmbH and Co.

  14. Ultratrace determination of lead in whole blood using electrothermal atomization laser-excited atomic fluorescence spectrometry.

    Science.gov (United States)

    Wagner, E P; Smith, B W; Winefordner, J D

    1996-09-15

    Laser-excited atomic fluorescence has been used to detect lead that was electrothermally atomized from whole blood in a graphite furnace. A 9 kHz repetition rate copper vapor laser pumped dye laser was used to excite the lead at 283.3 nm, and the resulting atomic fluorescence was detected at 405.8 nm. No matrix modification was used other than a 1:21 dilution of the whole blood with high-purity water. Using the atomic fluorescence peak area as the analytical measure and a background correction technique based upon a simultaneous measurement of the transmitted laser intensity, excellent agreement for NIST and CDC certified whole blood reference samples was obtained with aqueous standards. A limit of detection in blood of 10 fg/mL (100 ag absolute) was achieved.

  15. Flow Injection and Atomic Absorption Spectrometry (FI-AAS) -

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    One of the advantages of the flow injection (FI) concept is that it is compatible with virtually all detection techniques. Being a versatile vehicle for enhancing the performance of the individual detection devices, the most spectacular results have possibly been obtained in conjunction with atomic...... the point of sample injection/introduction to the point of detection. Hence, in FI-fAAS this feature allows not only to obtain improved repeatability but also improved accuracy, and because the wash to sample ratio is high it permits the handling of samples with elevated salt contents - which...

  16. Modular L-design of hydride atomizers for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rezacova, Olga [Institute of Analytical Chemistry of the ASCR, v.v.i., Laboratory of Trace Element Analysis, Videnska 1083, CZ-142 20 Prague (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, Prague 2, CZ 128 43 (Czech Republic); Dedina, Jiri [Institute of Analytical Chemistry of the ASCR, v.v.i., Laboratory of Trace Element Analysis, Videnska 1083, CZ-142 20 Prague (Czech Republic)], E-mail: dedina@biomed.cas.cz

    2009-07-15

    A novel modular L-shaped design of hydride atomizer for atomic absorption spectrometry is described. It makes it possible to replace the optical tube of the atomizer and, mainly, to employ optical tubes made also from other materials than fused quartz. The design is useful mainly for further improvement of hydride atomizers based on the multiatomizer concept. Employing selenium hydride as the analyte and arsine as the interferent, a preliminary evaluation of performance of three types of L-shaped multiatomizers based on various optical tubes in terms of sensitivity, linearity of calibration graph and resistance to atomization interferences is made. The 'classical' T-shaped multiatomizer was employed as a reference. The L-shaped multiatomizer with the optical tube analogous to that employed in the 'classical' T-shaped multiatomizer offers virtually the same performance as the reference multiatomizer. Optical tube made of fused quartz with holes with smaller diameters does not offer significantly better performance compared to the reference T-shaped multiatomizer. However, the L-shaped multiatomizer with optical tube fabricated from porous quartz glass overpowers all the other multiatomizers substantially in terms of the resistance against interferences: even the maximum As interferent concentration of 5 {mu}g ml{sup - 1} does not significantly influence the observed signal. This should be compared with multiatomizers based on plain fused quartz tubes with holes: tolerance limit around 0.5 {mu}g ml{sup - 1}; interferent concentration of 1 {mu}g ml{sup - 1} causing 20% signal depression.

  17. Atomic absorption spectrometry of the leaves of Newbouldia Laevis (Bignoniaceae)

    International Nuclear Information System (INIS)

    Mohammed, L.; Musa, A.; Isma'il, M. B.; Ahmed, Y. A.; Okunade, I.O.; Garba, M. A.

    2011-01-01

    In this study, fresh leaves samples of Newbouldia laevis, a medicinal plant, popularly known as African Border tree used traditionally for the treatment of a number of diseases, were collected in Dakace, (Lat. 11degree05'N Long. 7degree46'E) Zaria, Kaduna State, North-Central Nigeria, during the wet season (October to November) of 2008. The samples were digested using a tri-acid mixture (HNO 3 , HCIO 4 , and H 2 SO 4 ) in the ratio of 25:4:2 respectively. The concentrations of essential trace elements including magnesium, copper, iron, zinc, and cobalt in the samples were determined by Atomic Absorption Spectrometry (AAS). The results obtained showed that Fe has the highest mean concentration of 8.2481±3.689μg/g; whereas Co has the least mean concentration of 0.111±0.055μg/g. The study also revealed that the mean concentrations of Mg, Cu and Zn exceed the recommended limit set by FAO.

  18. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  19. Plutonium determination in urine by techniques of mass spectrometry

    International Nuclear Information System (INIS)

    Hernandez M, H.; Yllera de Ll, A.

    2013-10-01

    The objective of this study was to develop an analytic method for quantification and plutonium reappraisal in plane tables of alpha spectrometry be means of the mass spectrometry technique of high resolution with plasma source inductively coupled and desolvator Aridus (Aridus-Hr-Icp-Ms) and mass spectrometry with accelerator (AMS). The obtained results were, the recovery percentage of Pu in the plane table was of ∼ 90% and activity minimum detectable obtained with Aridus-Hr-Icp-Ms and AMS was of ∼ 3 and ∼ 0.4 f g of 239 Pu, respectively. Conclusion, the results demonstrate the aptitude of the Aridus-Hr-Icp-Ms and AMS techniques in the Pu reappraisal in plane tables with bigger speed and precision, improving the values notably of the activity minimum detectable that can be obtained with the alpha spectrometry (∼ 50 f g of 239 Pu). (author)

  20. Determination of molybdenum in human urine by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Pita Calvo, C.; Bermejo Barrera, P.; Bermejo Barrera, A.

    1995-01-01

    Various matrix modifiers were investigated for the determination of molybdenum in human urine samples by electrothermal atomization atomic absorption spectrometry. Methods with nitric acid, barium difluoride, magnesium nitrate, palladium-magnesium nitrate and palladium-hydroxylamine hydrochloride were studied by introducing the urine samples directly into the graphite furnace with 0.3% Triton X-100. The charring and atomization curves, the amount of modifier and the calibration and addition graphs were studied in all instances. The precision, accuracy and chemical interferences of the methods were also investigated. The matrix interferences have been removed with the modifiers barium difluoride, palladium-magnesium nitrate and palladium-hydroxylamine hydrochloride. The limits of detection and quantification were 0.2 and 0.7 μg l -1 , respectively, for these modifiers. The characteristic masses were 14.1, 18.0 and 14.9 pg of Mo for palladium-magnesium nitrate, palladium-hydroxylamine hydrochloride and barium difluoride, respectively. The method with palladium-magnesium nitrate has been applied to the study of the amount of molybdenum in human urine samples. The molybdenum levels found lie between 4.8-205.6 μg l -1

  1. High sensitivity detection of selenium by laser excited atomic fluorescence spectrometry using electrothermal atomization

    International Nuclear Information System (INIS)

    Heitmann, U.; Hese, A.; Schoknecht, G.; Gries, W.

    1995-01-01

    The high sensitivity detection of the trace element selenium is reported. The analytical method applied is Laser Excited Atomic Fluorescence Spectrometry using Electrothermal Atomization within a graphite furnace atomizer. For the production of tunable laser radiation in the VUV spectral region a laser system was developed which consists of two dye lasers pumped by a Nd:YAG laser. The laser radiations are subsequently frequency doubled and sum frequency mixed by nonlinear optical KDP or BBO crystals, respectively. The system works with a repetition rate of 20 Hz and provides output energies of up to 100 μJ in the VUV at a pulse duration of 5 ns. The analytical investigations were focused on the detection of selenium in aqueous solutions and samples of human whole blood. From measurements on aqueous standards detection limits of 1.5 ng/l for selenium were obtained, with corresponding absolute detected masses of only 15 fg. The linear dynamic range spanned six orders of magnitude and good precision was achieved. In case of human whole blood samples the recovery was found to be within the range of 96% to 104%. The determination of the selenium content yielded medians of [119.5 ± 17.3] μg/l for 200 frozen blood samples taken in 1988 and [109.1 ± 15.6] μg/l for 103 fresh blood samples. (author)

  2. In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies

    Energy Technology Data Exchange (ETDEWEB)

    Kılınç, Ersin, E-mail: kilincersin@gmail.com [Medical Laboratory Techniques, Vocational Higher School of Healthcare Studies, Mardin Artuklu University, 47200 Mardin (Turkey); Bakırdere, Sezgin [Yıldız Technical University, Art and Science Faculy, Department of Chemistry, Esenler, TR 34220 İstanbul (Turkey); Aydın, Fırat [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbakır (Turkey); Ataman, O. Yavuz [Middle East Technical University, Faculty of Arts and Sciences, Department of Chemistry, 06800 Ankara (Turkey)

    2013-11-01

    Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL{sup −1} and 0.51 ng mL{sup −1}, respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL{sup −1} for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e. - Highlights: • Further increasing in sensitivity of SQT-AT-FAAS was obtained by using a W coated SQT. • 613 fold sensitivity enhancement was achieved by W coated SQT-AT-FAAS versus FAAS. • A sensitive, rapid and simple technique for Bi was developed with an LOD of 0.51 ng mL{sup −1}. • The technique is suggested for laboratories equipped with only a flame AA spectrometer.

  3. Multiple microflame quartz tube atomizer: Study and minimization of interferences in quartz tube atomizers in hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moraes Flores, Erico Marlon de [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil)], E-mail: flores@quimica.ufsm.br; Medeiros Nunes, Adriane; Luiz Dressler, Valderi [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Dedina, Jiri [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, CZ-142 20 Prague (Czech Republic)

    2009-02-15

    A systematic study was performed to evaluate the performance of a multiple microflame (MM) quartz tube atomizer (QTA) for minimizing interferences and to improve the extent of the calibration range using a batch system for hydride generation atomic absorption spectrometry (HG AAS). A comparison of the results with conventional QTA on the determination of antimony, arsenic, bismuth and selenium was performed. The interference of As, Bi, Se, Pb, Sn and Sb was investigated using QTA and MMQTA atomizers. Better performance was found for MMQTA, and no loss of linearity was observed up to 160 ng for Se and Sb and 80 ng for As, corresponding to an enhancement of two times for both analytes when compared to QTA (analyte mass refers to a volume of 200 {mu}l). For Bi, the linear range was the same for QTA and MMQTA (140 ng). With the exception of Bi, the tolerance limits for hydride-forming elements were improved more than 50% in comparison to the conventional QTA system, especially for the interferences of As, Sb and Se. However, for Sn as an interferent, no difference was observed in the determination of Se and Sb using the MMQTA system. The use of MMQTA-HG AAS complied with the relatively high sensitivity of conventional QTA and also provided better performance for interferences and the linear range of calibration.

  4. The application of atomic absorption spectrometry to chemical analysis

    International Nuclear Information System (INIS)

    Walsh, A.

    1980-01-01

    YhThe history of the development of atomic absorption methods of elemental analysis is outlined. The theoretical basis of atomic absorption methods is discussed and the principle of modern methods of atomic absorption measurements is described. The advantages, scope and limations of these methods are discussed. Related methods based on the measurement of atomic fluorescence are also described

  5. Determination of antimony by using tungsten trap atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Titretir, Serap [Department of Chemistry, Inoenue University, 44065 Malatya (Turkey); Kenduezler, Erdal [Department of Primary Education, Faculty of Education, Ahi Evran University, 40100 Kirsehir (Turkey); Arslan, Yasin [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey); Kula, Ibrahim [Department of Chemistry, Mugla University, 48000 Mugla (Turkey); Bakirdere, Sezgin [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey); Ataman, O. Yavuz. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH{sub 3} is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 deg. C. Following the preconcentration step, the trap is heated to 895 deg. C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH{sub 4} solutions, H{sub 2} and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l{sup -1} using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17.

  6. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    Science.gov (United States)

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Determination of trace elements in soy milk using ICP atomic emission spectrometry

    International Nuclear Information System (INIS)

    Tanaka, Satoko; Chayama, Kenji

    2009-01-01

    The present study investigated the optimal method for the multi-element quantification of 9 elements in soy milk: calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc. Results obtained using ICP atomic emission spectrometry were compared with those obtained by atomic absorption spectrometry, which is the standard method. The same sample was measured using both ICP atomic emission spectrometry and atomic absorption spectrometry. The percentage of minerals recovered by ICP atomic emission spectrometry ranged from 99.3% to 102%, which was equivalent to that by atomic absorption spectrometry. Therefore, a good result with standard deviation was obtained. The mineral contents of 16 samples of commercially-available soy milk products were measured. The Cu content was significantly proportional to the amount of soybean solids (P < 0.001). Moreover, although relation-ships did not attain statistical significance, the consents of Fe, Zn, K, Mg and P were proportional to the amount of soybean solids, and were highest in soy milk, followed by prepared soy milk and so milk beverage. The Ca content of modified soy milk was significantly higher than that of soy milk and soy milk-based beverages (P < 0.001). Furthermore, the Na content in soy milk was significantly lower. (author)

  8. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří

    2002-01-01

    Roč. 57, č. 12 (2002), s. 2069-2079 ISSN 0584-8547 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride atomization * hydride generation * atomic absortion spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.695, year: 2002

  9. Simultaneous determination of arsenic and antimony by hydride generation atomic fluorescence spectrometry with dielectric barrier discharge atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhi [Department of Chemistry, Key Laboratory for Atomic and Molecular Nanosciences of the Education Ministry, Tsinghua University, Beijing 100084 (China); Kuermaiti, Biekesailike [Department of Chemistry, Key Laboratory for Atomic and Molecular Nanosciences of the Education Ministry, Tsinghua University, Beijing 100084 (China); Products Quality Inspection Institute, Yili, Xinjiang 835000 (China); Wang Juan; Han Guojun; Zhang Sichun [Department of Chemistry, Key Laboratory for Atomic and Molecular Nanosciences of the Education Ministry, Tsinghua University, Beijing 100084 (China); Zhang Xinrong, E-mail: xrzhang@mail.tsinghua.edu.cn [Department of Chemistry, Key Laboratory for Atomic and Molecular Nanosciences of the Education Ministry, Tsinghua University, Beijing 100084 (China)

    2010-12-15

    Simultaneous determination of As and Sb by hydride generation atomic fluorescence spectrometry was developed with the dielectric barrier discharge plasma as the hydride atomizer. The low-temperature and atmospheric-pressure micro-plasma was generated in a quartz cylindrical configuration device, which was constructed by an axial internal electrode and an outer electrode surrounding outside of the tube. The optimization of the atomizer construction and parameters for hydride generation and fluorescence detection systems were carried out. Under the optimized conditions, the detection limits for As and Sb were 0.04 and 0.05 {mu}g L{sup -1}, respectively. In addition, the applicability of the present method was confirmed by the detection of As and Sb in reference materials of quartz sandstone (GBW07106) and argillaceous limestone (GBW07108). The present work provided a new approach to exploit the miniaturized hydride generation dielectric barrier discharge atomic fluorescence spectrometry system for simultaneous multi-element determination.

  10. Simultaneous determination of arsenic and antimony by hydride generation atomic fluorescence spectrometry with dielectric barrier discharge atomizer

    International Nuclear Information System (INIS)

    Xing Zhi; Kuermaiti, Biekesailike; Wang Juan; Han Guojun; Zhang Sichun; Zhang Xinrong

    2010-01-01

    Simultaneous determination of As and Sb by hydride generation atomic fluorescence spectrometry was developed with the dielectric barrier discharge plasma as the hydride atomizer. The low-temperature and atmospheric-pressure micro-plasma was generated in a quartz cylindrical configuration device, which was constructed by an axial internal electrode and an outer electrode surrounding outside of the tube. The optimization of the atomizer construction and parameters for hydride generation and fluorescence detection systems were carried out. Under the optimized conditions, the detection limits for As and Sb were 0.04 and 0.05 μg L -1 , respectively. In addition, the applicability of the present method was confirmed by the detection of As and Sb in reference materials of quartz sandstone (GBW07106) and argillaceous limestone (GBW07108). The present work provided a new approach to exploit the miniaturized hydride generation dielectric barrier discharge atomic fluorescence spectrometry system for simultaneous multi-element determination.

  11. Sample preparation techniques for (p, X) spectrometry

    International Nuclear Information System (INIS)

    Whitehead, N.E.

    1985-01-01

    Samples are ashed at low temperature, using oxygen plasma; a rotary evaporator, and freeze drying speeded up the ashing. The new design of apparatus manufactured was only 10 watt but was as efficient as a 200 watt commercial machine; a circuit diagram is included. Samples of hair and biopsy samples of skin were analysed by the technique. A wool standard was prepared for interlaboratory comparison exercises. It was based on New Zealand merino sheep wool and was 2.9 kg in weight. A washing protocol was developed, which preserves most of the trace element content. The wool was ground in liquid nitrogen using a plastic pestle and beaker, driven by a rotary drill press. (author)

  12. Accelerator mass spectrometry-current status in techniques and applications

    International Nuclear Information System (INIS)

    Imamura, Mineo; Nagai, Hisao; Kobayashi, Koichi.

    1991-01-01

    Accelerator mass spectrometry (AMS) is the mass spectrometry by incorporating an accelerator. After samples are ionized, they are accelerated to a certain energy, and mass, energy, nuclear charge (atomic number) are distinguished, and ion counting is made one by one with a heavy ion detector. For the measurement of long half-life radioisotopes, mass spectrometry has been used because of the high sensitivity, but in low energy mass spectrometry, there are the difficulties due to the mixing of the molecular ions having nearly same mass and the existence of isobars. One of the methods solving these difficulties is an accelerator which enables background-free measurement. The progress of AMS is briefly described, and at present, it is carried out in about 30 facilities in the world. In AMS, the analysis is carried out in the order of the ionization of samples, the acceleration of beam, the electron stripping with a thin film, the sorting of the momentum and energy of beam and the identification of particles. The efficiency, sensitivity and accuracy of detection and the application are reported. (K.I.)

  13. The determination of magnesium in simulated PWR coolant by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gatford, C.; Torrance, K.

    1988-06-01

    The determination of magnesium in simulated PWR coolant has been investigated by graphite furnace atomic absorption spectrometry with atomization from a L'vov platform. The presence of boric acid in the coolant suppresses the magnesium absorption to such an extent that removal of the boron is necessary and three variations of a methyl borate volatilization technique for the in situ removal of boron from the sample platform were investigated. This work has shown that dilution of the sample with an equal volume of acidified methanol and volatilization of the methyl borate was adequate for the determination of magnesium in coolant samples containing up to 2000 mg 1 -1 of boron. In simulated coolant samples containing 25 and 4 μg 1 -1 of magnesium, positive biases of about 2 and 0.5 μg 1 -1 were measured and these errors were considered to be due to contamination. The limit of detection in the presence of 100 and 2000 mg 1 -1 boron were 0.14 and 0.93 μg 1 -1 respectively. These performance characteristics suggest the method is completely acceptable for monitoring the chemical purity of PWR coolant and associated waters containing boric acid. If, however, more precise analyses were to be required for research purposes then any significant improvement in the above figures would require increased purity of reagents, clean-room conditions to reduce contamination and a more versatile atomic absorption spectrophotometer. (author)

  14. Practical aspects of the uncertainty and traceability of spectrochemical measurement results by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duta, S.; Robouch, P.; Barbu, L.; Taylor, P.

    2007-01-01

    The determination of trace elements concentration in water by electrothermal atomic absorption spectrometry (ETAAS) is a common and well established technique in many chemical testing laboratories. However, the evaluation of measurement uncertainty results is not systematically implemented. The paper presents an easy step-by-step example leading to the evaluation of the combined standard uncertainty of copper determination in water using ETAAS. The major contributors to the overall measurement uncertainty are identified due to amount of copper in water sample that mainly depends on the absorbance measurements, due to certified reference material and due to auto-sampler volume measurements. The practical aspects how the traceability of copper concentration in water can be established and demonstrated are also pointed out

  15. Practical aspects of the uncertainty and traceability of spectrochemical measurement results by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duta, S. [Institute for Reference Materials and Measurements, Joint Research Centre, European Commission, Retieseweg 111, B-2440 Geel (Belgium); National Institute of Metrology, 042122 Vitan Barzesti 11, sector 4 Bucharest (Romania)], E-mail: steluta.duta@inm.ro; Robouch, P. [Institute for Reference Materials and Measurements, Joint Research Centre, European Commission, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: Piotr.Robouch@ec.europa.eu; Barbu, L. [Coca-Cola Entreprise, Analytical Department, Bucharest (Romania); Taylor, P. [Institute for Reference Materials and Measurements, Joint Research Centre, European Commission, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: Philip.Taylor@ec.europa.eu

    2007-04-15

    The determination of trace elements concentration in water by electrothermal atomic absorption spectrometry (ETAAS) is a common and well established technique in many chemical testing laboratories. However, the evaluation of measurement uncertainty results is not systematically implemented. The paper presents an easy step-by-step example leading to the evaluation of the combined standard uncertainty of copper determination in water using ETAAS. The major contributors to the overall measurement uncertainty are identified due to amount of copper in water sample that mainly depends on the absorbance measurements, due to certified reference material and due to auto-sampler volume measurements. The practical aspects how the traceability of copper concentration in water can be established and demonstrated are also pointed out.

  16. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    Science.gov (United States)

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Czech Academy of Sciences Publication Activity Database

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    Roč. 109, JUL (2015), s. 16-23 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : hydride generation * arsenic * atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  18. Use of a discharge in an hollow cathode as neutral atom source for resonant ionization mass spectrometry

    International Nuclear Information System (INIS)

    Berthoud, T.; Briand, A.; Khelifa, N.; Mauchien, P.

    1987-01-01

    The resonance ionization mass spectrometry in our laboratory is aimed at simplification of isotope measurements of elements present in mixtures and at measurement of very small isotopes. An atomization source which produces an atomic beam collimated from a discharge in a hollow cathode has been developed. First results of this spectrometry with an uranium atomic jet are presented [fr

  19. Theory of analytical curves in atomic fluorescence flame spectrometry

    NARCIS (Netherlands)

    Hooymayers, H.P.

    An explicit expression for the intensity of atomic resonance fluorescence as a function of atomic concentration in a flame is derived under certain idealized conditions. The expression is generally valid for a pure Doppler absorption line profile as well as for a combined Doppler and collisional

  20. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    Science.gov (United States)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  1. Development of an analytical model for the determination of {sup 60}Co in aqueous samples by atomic absorption and gamma spectrometry techniques; Elaboracion de un modelo analitico para la determinacion de {sup 60}Co en muestras acuosas mediante tecnicas de absorcion atomica y espectrometria gamma

    Energy Technology Data Exchange (ETDEWEB)

    Solis A, N. A.

    2015-07-01

    The applications of the nuclear energy in industry and medicine generate radioactive wastes that must be isolated and confined in order to limit its spread in the biosphere. These types of wastes are generated in hospitals, industry, research centers and nuclear power plants (during de fuel cycle). The radioactive elements (radionuclides) cannot be destroyed by any known method, either chemical or mechanical. Its final destruction is produced by radioactive decay, which makes them stable isotopes, or nuclear transmutation being bombarded with atomic particles. Consequently, the radioactive waste management is to control the radioactive discharges and reduce to tolerable limits, eliminating of effluents and wastes the radionuclides of interest, concentrating them so they can be stored or evacuated so that later not appear in dangerous concentration in the biosphere. In Mexico, the main generators of radioactive wastes are the nuclear power plant of Laguna Verde in Veracruz, Hospitals of the public and private sector, in addition Instituto Nacional de Investigaciones Nucleares (ININ) some institutes and facilities of the UNAM and Instituto Politecnico Nacional (IPN) and industries among others. The aqueous radioactive wastes, particularly those from the nuclear power plants contain traces of cobalt-60. Currently there is no model or analytical technique for the separation of this radionuclide, so it became necessary to develop an analytical model for separation and facilitate their disposal. In this paper was shown that atomic absorption and gamma spectrometry techniques can separate the active concentration of the inactive, which is important because the total concentration can be associated through direct relationships with the wear of metal parts of the nuclear reactor, since the metal alloys of the same reactor containing a fraction of cobalt. Also this analytical and mathematical model that can be reproducible and applicable to full sets of samples and that this

  2. Recent advances in on-line coupling of capillary electrophoresis to atomic absorption and fluorescence spectrometry for speciation analysis and studies of metal-biomolecule interactions

    International Nuclear Information System (INIS)

    Li Yan; Yin Xuebo; Yan Xiuping

    2008-01-01

    Speciation information is vital for the understanding of the toxicity, mobility and bioavailability of elements in environmental or biological samples. Hyphenating high resolving power of separation techniques and element-selective detectors provides powerful tools for studying speciation of trace elements in environmental and biological systems. During the last five years several novel hybrid techniques based on capillary electrophoresis (CE) and atomic spectrometry have been developed for speciation analysis and metal-biomolecule interaction study in our laboratory. These techniques include CE on-line coupled with atomic fluorescence spectrometry (AFS), chip-CE on-line coupled with AFS, CE on-line coupled with flame heated quartz furnace atomic absorption spectrometry (FHF-AAS), and CE on-line coupled with electrothermal atomic absorption spectrometry (ETAAS). The necessity for the development of these techniques, their interface design, and applications in speciation analysis and metal-biomolecule interaction study are reviewed. The advantages and limitations of the developed hybrid techniques are critically discussed, and further development is also prospected

  3. Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlioglu, Ipek; Korkmaz, Deniz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2007-01-15

    The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3{sigma} limit of detection was estimated as 0.053 {mu}g l{sup -1} for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat CRM-TMDW and Metals on Soil/Sediment 4, IRM-008.

  4. Skis to demonstrate new atomic techniques

    International Nuclear Information System (INIS)

    1969-01-01

    Skis in which part of the material consists of birch wood impregnated with the basic chemicals of plastic and then irradiated are now undergoing tests. They are a demonstration of the new material created when this technique is applied to wood and fibres. (author)

  5. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Yasin [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Mehmet Akif Ersoy University, Faculty of Arts & Sciences, Chemistry Department, 15030 Burdur (Turkey); Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Dědina, Jiří, E-mail: dedina@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-01-01

    The on-line atomization of gold volatile species was studied and the results were compared with thermodynamic calculations in several quartz atomizers, namely: diffusion flame, flame-in-gas-shield, flame-in-plain-tube, externally heated T-tube and externally heated flame-in-T-tube. Atomization mechanism in the explored devices is proposed, where volatile species are converted to thermodynamically stable AuH at elevated temperature over 500 °C and then atomized by an interaction with a cloud of hydrogen radicals. Because of its inherent simplicity and robustness, diffusion flame was employed as a reference atomizer. It yielded atomization efficiency of 70 to 100% and a very good long time reproducibility of peak area sensitivity: 1.6 to 1.8 s μg{sup −1}. Six and eleven times higher sensitivity, respectively, was provided by atomizers with longer light paths in the observation volume, i.e. externally heated T-tube and externally heated flame-in-T-tube. The latter one, offering limit of detection below 0.01 μg ml{sup −1}, appeared as the most prospective for on-line atomization. Insight into the mechanism of atomization of gold volatile species, into the fate of free atoms and into subsequent analyte transfer allowed to assess possibilities of in-atomizer preconcentration of gold volatile species: it is unfeasible with quartz atomizers but a sapphire tube atomizer could be useful in this respect. - Highlights: • On-line atomization of gold volatile species for AAS in quartz devices was studied. • Atomization mechanism was proposed and atomization efficiency was estimated. • Possibilities of in-atomizer preconcentration of gold volatile species were assessed.

  6. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sardans, Jordi; Montes, Fernando; Penuelas, Josep

    2010-01-01

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at μg L -1 levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages of

  7. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sardans, Jordi, E-mail: j.sardans@creaf.uab.ca [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain); Montes, Fernando [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/ Senda del Rey 9. 28040 Madrid (Spain); Penuelas, Josep [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain)

    2010-02-15

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at mug L{sup -1} levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages

  8. Evaluation of a method for the determination of chromium in urine by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Garcia, M.; Sardinas, O.; Castaneda, I.; Sanchez, R.

    1990-01-01

    A method for the determination of chromium in urine by atomic absorption spectrometry, using electrothermic atomization with pyrolytic graphite tubes, is proposed. The determinations are performed by standard addition. The method is applicable to biologic monitoring of populations with different degrees of exposition. It is also used in the analysis of chromium in sediments. Results of chromium in urine of a population group non-exposed to the metal are presented. 11 refs

  9. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free analyte atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    D'Ulivo, Alessandro; Dedina, Jiri

    2002-01-01

    The mechanism at the origin of double peaks formation in quartz hydride atomizers were investigated by continuous flow hydride generation atomic absorption spectrometry. Arsenic and selenium were used as model analytes. The effect of atomization mode (flame-in-gas-shield (FIGS), miniature diffusion flame and double flame (DF)) and some experimental parameters as oxygen supply rate for microflame and the distance from atomization to free atoms detection point, were investigated on the shape of both analytical signals and calibration graphs. Rollover of calibration graphs and double peak formation are strictly related each to the other and could be observed only in FIGS atomizer mode under some particular conditions. A mechanism based on incomplete atomization of hydrides cannot explain the collected experimental evidences because the microflame of FIGS is able to produce quantitative atomization of large amount of hydrides even at supply rate of oxygen close to extinction threshold of microflame. The heterogeneous gas-solid reactions between finely dispersed particles, formed by free atom recombination, and the free atoms in the gaseous phase are at the origin of double peak formation

  10. Critical evaluation of analytical performance of atomic absorption spectrometry and inductively coupled plasma mass spectrometry for mercury determination

    International Nuclear Information System (INIS)

    Krata, A.; Bulska, E.

    2005-01-01

    The analytical performance of cold vapor atomic absorption spectrometry (CV AAS), graphite furnace atomic absorption spectrometry (GF AAS) and inductively coupled plasma mass spectrometry (ICP-MS) for mercury determination have been investigated with the use of two reference materials SRM 2710 Montana I Soil and BCR-144R (sewage sludge from domestic origin). The digestion conditions and their influence on determination of mercury have been studied. Samples were decomposed by microwave digestion in closed vessels with the use of HCl alone or mixture of HCl+HNO 3 +HF. The digestion solutions were analyzed by CV AAS using NaBH 4 as a reducing agent, by GF AAS with Pd or mixture of Pd/Rh as modifiers and by ICP-MS with Rh as internal standard. In the case of CV AAS, results were not dependent on digestion conditions. In the case of GF AAS and ICP-MS, results depended significantly on digestion conditions; in both cases, the use of the mixture of acids as defined above suppressed the signal of mercury. Therefore, in those cases, the microwave digestion with HCl is recommended. Detection limits of 0.003, 0.01 and 0.2 μg g -1 were achieved by ICP-MS, CV AAS and GF AAS, respectively

  11. THE STUDY OF HEAVY METAL FROM ENVIRONMENTAL SAMPLES BY ATOMIC TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Ion V. POPESCU

    2011-05-01

    Full Text Available Using the Atomic Absorption Spectrometry (AAS and Energy Dispersive X-ray spectrometry (EDXRF techniques we analyzed the contents of heavy metals ( Cd, Cr, Ni, Pb, Ti, Sr, Co, Bi from eight wild mushrooms and soil substrate samples (48 samples of eight fungal species and 32 underlying soil samples, collected from ten forest sites of Dambovița County Romania. It was determined that the elements, especially heavy metals, in soil were characteristic of the acidic soils of the Romanian forest lands and are influenced by industrial pollution. Analytical possibilities of AAS and EDXRF analytical techniques have been compared and the heavy metal transfer from substrate to mushrooms has been studied. The coefficient of accumulation of essential and heavy metals has been calculated as well. Heavy metal contents of all analyzed mushrooms were generally higher than previously reported in literature.

  12. Development of accelerator mass spectrometry in China Institute of Atomic Energy

    International Nuclear Information System (INIS)

    He Ming; Jiang Shan; Dong Kejun; Qiu Jiuzi; Peng Bo; Guan Yongjing; Yin Xinyi; Wu Shaoyong; Li Shihong; Zhou Duo

    2005-01-01

    The measurement method for some radio isotope such as 99 Tc, 182 Hf, 151 Sm is developing in China Institute of Atomic Energy (CIAE) accelerator mass spectrometry (AMS) system, and applications in the fields of nuclear physics, geosciences, life science and materials science is carried out. The brief introduction of these methods and applications are described in this paper. (authors)

  13. Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vojtková, Blanka; Dočekal, Bohumil

    2005-01-01

    Roč. 99, S (2005), s489-s491 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.09.2005-22.09.2005] Institutional research plan: CEZ:AV0Z40310501 Keywords : solid sampling * electrothermal atomic absorption spectrometry * trace analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.445, year: 2005

  14. Rapid accurate analysis of metal (oxide)-on-silica catalysts by atomic absorption spectrometry

    NARCIS (Netherlands)

    Jütte, B.A.H.G.; Heikamp, A.; Agterdenbos, J.

    1979-01-01

    The catalysts, which contain 10–60% copper, chromium, nickel and silicon, are decomposed in sealed Teflon-lined vessels and analyzed by atomic absorption spectrometry. Matrix matching and bracketing standards are applied. The RSD of a single determination is about 1% for all components.

  15. COMPREHENSIVE ANALYSIS OF BIOLOGICALLY RELEVANT ARSENICALS BY PH-SELECTIVE HYDRIDE GENERATION-ATOMIC ABSORPTION SPECTROMETRY

    Science.gov (United States)

    A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...

  16. Emerging mass spectrometry techniques for the direct analysis of microbial colonies

    OpenAIRE

    Fang, Jinshu; Dorrestein, Pieter C.

    2014-01-01

    One of the emerging areas in microbiology is detecting specialized metabolites produced by microbial colonies and communities with mass spectrometry. In this review/perspective, we illustrate the emerging mass spectrometry methodologies that enable the interrogation of specialized metabolites directly from microbial colonies. Mass spectrometry techniques such as imaging mass spectrometry and real-time mass spectrometry allow two and three dimensional visualization of the distri...

  17. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  18. Vapor generation – atomic spectrometric techniques. Expanding frontiers through specific-species preconcentration. A review

    International Nuclear Information System (INIS)

    Gil, Raúl A.; Pacheco, Pablo H.; Cerutti, Soledad; Martinez, Luis D.

    2015-01-01

    This article reviews 120 articles found in SCOPUS and specific Journal cites corresponding to the terms ‘preconcentration’; ‘speciation’; ‘vapor generation techniques’ and ‘atomic spectrometry techniques’ in the last 5 years. - Highlights: • Recent advances in vapor generation and atomic spectrometry were reviewed. • Species-specific preconcentration strategies after and before VG were discussed. • New preconcentration and speciation analysis were evaluated within this framework. - Abstract: We review recent progress in preconcentration strategies associated to vapor generation techniques coupled to atomic spectrometric (VGT-AS) for specific chemical species detection. This discussion focuses on the central role of different preconcentration approaches, both before and after VG process. The former was based on the classical solid phase and liquid–liquid extraction procedures which, aided by automation and miniaturization strategies, have strengthened the role of VGT-AS in several research fields including environmental, clinical, and others. We then examine some of the new vapor trapping strategies (atom-trapping, hydride trapping, cryotrapping) that entail improvements in selectivity through interference elimination, but also they allow reaching ultra-low detection limits for a large number of chemical species generated in conventional VG systems, including complete separation of several species of the same element. This review covers more than 100 bibliographic references from 2009 up to date, found in SCOPUS database and in individual searches in specific journals. We finally conclude by giving some outlook on future directions of this field

  19. Vapor generation – atomic spectrometric techniques. Expanding frontiers through specific-species preconcentration. A review

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Raúl A.; Pacheco, Pablo H.; Cerutti, Soledad [Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Martinez, Luis D., E-mail: ldm@unsl.edu.ar [Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina)

    2015-05-22

    This article reviews 120 articles found in SCOPUS and specific Journal cites corresponding to the terms ‘preconcentration’; ‘speciation’; ‘vapor generation techniques’ and ‘atomic spectrometry techniques’ in the last 5 years. - Highlights: • Recent advances in vapor generation and atomic spectrometry were reviewed. • Species-specific preconcentration strategies after and before VG were discussed. • New preconcentration and speciation analysis were evaluated within this framework. - Abstract: We review recent progress in preconcentration strategies associated to vapor generation techniques coupled to atomic spectrometric (VGT-AS) for specific chemical species detection. This discussion focuses on the central role of different preconcentration approaches, both before and after VG process. The former was based on the classical solid phase and liquid–liquid extraction procedures which, aided by automation and miniaturization strategies, have strengthened the role of VGT-AS in several research fields including environmental, clinical, and others. We then examine some of the new vapor trapping strategies (atom-trapping, hydride trapping, cryotrapping) that entail improvements in selectivity through interference elimination, but also they allow reaching ultra-low detection limits for a large number of chemical species generated in conventional VG systems, including complete separation of several species of the same element. This review covers more than 100 bibliographic references from 2009 up to date, found in SCOPUS database and in individual searches in specific journals. We finally conclude by giving some outlook on future directions of this field.

  20. Influence of Na, K, Ca and Mg on lead atomization by tungsten coil atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Oliveira Pedro V. de

    2000-01-01

    Full Text Available The atomization of lead in an electrothermal tungsten coil atomizer in the presence and absence of Na+, K+, Ca2+ and Mg2+ was investigated with the objective of understanding the interference processes. The lead atomization was less affected by Ca2+ and Mg2+ than by Na+ and K+. In the absence of concomitants, lead atomization efficiency was improved by the presence of H2 (10% v/v in the purge gas composition, during pyrolysis and atomization steps. The interference caused by Na+ and Ca2+ was negligible when the pyrolysis step was accomplished without H2 in the purge gas composition. The results showed that Na+, K+, Ca2+ and Mg2+ are directly involved in competition reactions for H2 in condensed phase.

  1. Determination of mercury in microwave-digested soil by laser-excited atomic fluorescence spectrometry with electrothermal atomization.

    Science.gov (United States)

    Pagano, S T; Smith, B W; Winefordner, J D

    1994-12-01

    A sample digestion procedure was developed which employs microwave heating of soil and sediment in concentrated nitric acid in a high-pressure closed vessel. Complete dissolution of mercury into the sample solution occurs within 5 min at 59 W/vessel without loss of analyte through overpressurization. Laser-excited atomic fluorescence spectrometry with electrothermal atomization (LEAFS-ETA) was used as the detection method. The scheme uses a two-step excitation, with lambda(1) = 253.7 nm and lambda(2) = 435.8 nm. Direct line fluorescence was measured at 546.2 nm. The absolute instrumental limit of detection was 14 fg; 1.4 pg/ml with a 10 mul sample injection. The recoveries of mercury in two spiked samples were 94 and 98%. The SRM 8406 (Mercury in River Sediment) was digested and analyzed for mercury, and the results (58.4 +/- 1.8 ng/g) agreed well with the reference value of 60 ng/g. The results obtained by LEAFS-ETA with microwave sample digestion are in good agreement with those found by cold vapor atomic absorption spectrometry with EPA Series Method 245.5 sample digestion, which is one of the most commonly used methods for the determination of mercury in soil.

  2. Determination of calcium in Mashhad city tap water by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mashhadian, N.V.

    2012-01-01

    Summary: Calcium in drinking water is one of the sources of calcium that may contribute significantly to the daily calcium intake. In this study, the samples of tap water were randomly taken from five zones of Mashhad city. Calcium concentration was determined by flame atomic absorption spectrometry (FAAS) technique. The precision of the method was evaluated. The CV% of 6 replicate determinations at 5 macro g/ml Ca was 4.2 in one day and 4.5, among 6 consecutive days. The recovery of spiked samples (98.7%) also showed that the proposed method is reliable for the determination of amounts of calcium in water samples. The mean of calcium in tap water in the city of Mashhad was 52.61+-12.91 (SD) macro g/ml. At present, the amount of calcium in Mashhad tap waters is within the national standard. However, due to the climate and environmental changes, determination of calcium in tap water of Mashhad in different seasons is recommended. (author)

  3. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Leal, L.O.; Elsholz, O.; Forteza, R.; Cerda, V.

    2006-01-01

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl 2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L -1 . The detection limit (3σ b /S) achieved is 5 ng L -1 . The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L -1 Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples

  4. Inductively coupled plasma--atomic emission spectrometry: trace elements in oil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Charlie Albert [Iowa State Univ., Ames, IA (United States)

    1977-12-01

    The simultaneous determination of up to 20 trace elements in various oil matrices by inductively coupled plasma-atomic emission spectrometry is reported. The oil matrices investigated were lubricating oils (for wear metals), fuel oil, centrifuged coal liquefaction product, crude soybean oil, and commercial edible oils. The samples were diluted with appropriate organic solvents and injected into the plasma as an aerosol generated by a pneumatic nebulization technique. Detection limits of the 28 elements studied ranged from 0.0006 to 9 μg/g with the majority falling in the 0.01 to 0.1 μg/g range. Analytical calibration curves were linear over at least two orders of magnitude and for some elements this linearity extended over 4.5 orders of magnitude. Relevant data on precision and accuracy are included. Because metals often occur as particles in lubricating oil and coal liquefaction products, the effect of particles on the analytical results was examined. Wear metal particles in used oil did not appear to affect the analytical results. However, incomplete recovery relative to organometallic reference solutions was obtained for iron particles with a nominal mean diameter of 3.0 μm suspended in oil. It was shown that the following factors contributed to incomplete recovery for the particles: settling of the suspended particles in the flask, a difference in nebulization efficiency between particle suspensions and organometallic solutions, and indications of incomplete vaporization of the larger particles in the plasma.

  5. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    ROLANDAS KAZLAUSKAS

    2004-05-01

    Full Text Available Simple methods for the determination of Fe in natural and mineral waters by flame atomic absorption spectrometry (AAS are suggested. The results of the investigation of selectivity of the proposed AAS method proved that this procedure is not affected by high concentrations of other metals. The calibration graph for iron was linear at levels near the detection limit up to at least 0.10 mg ml-1. For the determination of microamounts of iron in mineral waters, an extraction AAS technique was developed. Iron was retained as Fe-8-oxyquinoline complex and extracted into chloroform. The optimal conditions for the extraction of the iron complex were determined. The AAS method was applied to the determination of Fe in mineral waters and natural waters from different areas of Lithuania. The accuracy of the developed method was sufficient and evaluated in comparison with a photometric method. The obtained results demonstrated that the procedure could be successfully applied for the analysis of water samples with satisfactory accuracy.

  6. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Calle, Inmaculada de la; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos, E-mail: bendicho@uvigo.es

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. - Highlights: • We review the LPME-GFAAS combination in a comprehensive way. • A brief description of main LPME modes is included. • Effect of experimental parameters in the performance of LPME-GFAAS is discussed. • Main applications for trace element analysis and speciation are reviewed.

  7. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review

    International Nuclear Information System (INIS)

    Calle, Inmaculada de la; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-01-01

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. - Highlights: • We review the LPME-GFAAS combination in a comprehensive way. • A brief description of main LPME modes is included. • Effect of experimental parameters in the performance of LPME-GFAAS is discussed. • Main applications for trace element analysis and speciation are reviewed.

  8. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bentlin, Fabrina R.S. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Pozebon, Dirce [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil)], E-mail: dircepoz@iq.ufrgs.br; Mello, Paola A.; Flores, Erico M.M. [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900 Santa Maria, RS (Brazil)

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO{sub 3}){sub 2} was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 {mu}g g{sup -1} of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  9. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bentlin, Fabrina R.S.; Pozebon, Dirce; Mello, Paola A.; Flores, Erico M.M.

    2007-01-01

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO 3 ) 2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 μg g -1 of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  10. Atomic and nuclear analytical methods. XRF, Moessbauer, XPS, NAA and ion-beam spectroscopic techniques

    International Nuclear Information System (INIS)

    Verma, H.R.

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Moessbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories. (orig.)

  11. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    Science.gov (United States)

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.

  12. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    Science.gov (United States)

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  13. Laser-excited atomic fluorescence spectrometry in a pressure-controlled electrothermal atomizer.

    Science.gov (United States)

    Lonardo, R F; Yuzefovsky, A I; Irwin, R L; Michel, R G

    1996-02-01

    A theoretical model was developed to describe the loss of analyte atoms in graphite furnaces during atomization. The model was based on two functions, one that described the supply of analyte by vaporization, and another that described the removal of the analyte by diffusion. Variation in working pressure was shown to affect the competition between these two processes. Optimal atomization efficiency was predicted to occur at a pressure where the supply of the analyte was maximized, and gas phase interactions between the analyte and matrix were minimized. Experiments to test the model included the direct determination of phosphorus and tellurium in nickel alloys and of cobalt in glass. In all cases, reduction in working pressure from atmospheric pressure to 7 Pa decreased sensitivity by 2 orders of magnitude, but improved temporal peak shape. For the atomization of tellurium directly from a solid nickel alloy, and the atomization of cobalt from an aqueous solution, no change in sensitivity was observed as the working pressure was reduced from atmospheric pressure to approximately 70 kPa. If a reduction in working pressure affected only the diffusion of the analyte, poorer sensitivity should have been obtained. Only a commensurate increase in analyte vaporization could account for maintained sensitivity at lower working pressures. Overall, analyte vaporization was not dramatically improved at reduced working pressures, and maximum atomization efficiency was found to occur near atmospheric pressure.

  14. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    Science.gov (United States)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  15. Surface Ionization and Soft Landing Techniques in Mass Spectrometry

    International Nuclear Information System (INIS)

    Futrell, Jean H.; Laskin, Julia

    2010-01-01

    The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has extended mass spectrometric methods to large molecules and molecular complexes. This both greatly expands applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of large molecule mass spectrometry. A corollary of the much greater number of internal degrees of freedom and high density of states associated with molecular complexity is that internal energies much higher than the dissociation energies for competing fragmentation processes are required for observable fragmentation in time scales sampled by mass spectrometers. This article describes the kinetics of surface-induced dissociation (SID), a particularly efficient activation method for complex ions. Two very important characteristics of SID are very rapid, sub-picosecond activation and precise control of ion internal energy by varying ion collision energy. The nature of the surface plays an important role in SID, determining both efficiency and mechanism of ion activation. Surface composition and morphology strongly influence the relative importance of competing reactions of SID, ion capture (soft-landing), surface reaction and neutralization. The important features of SID and ion soft-landing are described briefly in this review and more fully in the recommended reading list.

  16. Sensitivity improvement for antimony determination by using in-situ atom trapping in a slotted quartz tube and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Titretir, Serap, E-mail: serap.titretir@inonu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Inoenue University, 44280 Malatya (Turkey); S Latin-Small-Letter-Dotless-I k, Ahmet Inanc [Department of Chemistry, Faculty of Arts and Sciences, Inoenue University, 44280 Malatya (Turkey); Arslan, Yasin [Department of Chemistry, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, Istiklal Yerleskesi, 15030 Burdur (Turkey); Ataman, O. Yavuz [Department of Chemistry, Faculty of Arts and Sciences, Middle East Technical University, 06800 Ankara (Turkey)

    2012-11-15

    Significant improvement has been achieved for antimony determination using a slotted quartz tube (SQT) as an atom trap (AT) for in situ preconcentration and flame atomic absorption spectrometry (FAAS). The suggested technique consists of trapping analyte species during ordinary nebulization followed by releasing the collected analyte via introducing organic solvent. Procedures and analytical figures of merit have been presented for the techniques called FAAS, SQT-FAAS and finally SQT-AT-FAAS with the relevant comparisons. Analytical parameters, namely composition of the aqueous medium, sample flow rate, flame conditions, distance between burner head and SQT, sampling period and type of organic solvent and its volume have been optimized. Using SQT-AT-FAAS, a sensitivity enhancement of 369 fold has been obtained, 3 s limit of detection was 3.9 {mu}g L{sup -1} when 25.0 mL of sample was collected in 4.0 min. Interference effects of some elements on antimony signal were studied. - Highlights: Black-Right-Pointing-Pointer Atom trapping in a quartz tube was used for Sb with flame AAS. Black-Right-Pointing-Pointer An inexpensive, simple and sensitive analytical method was suggested for Sb. Black-Right-Pointing-Pointer Almost no background absorption was observed. Black-Right-Pointing-Pointer Range is in microgram per liter level.

  17. Sensitivity improvement for antimony determination by using in-situ atom trapping in a slotted quartz tube and flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Titretir, Serap; Şık, Ahmet İnanç; Arslan, Yasin; Ataman, O. Yavuz

    2012-01-01

    Significant improvement has been achieved for antimony determination using a slotted quartz tube (SQT) as an atom trap (AT) for in situ preconcentration and flame atomic absorption spectrometry (FAAS). The suggested technique consists of trapping analyte species during ordinary nebulization followed by releasing the collected analyte via introducing organic solvent. Procedures and analytical figures of merit have been presented for the techniques called FAAS, SQT-FAAS and finally SQT-AT-FAAS with the relevant comparisons. Analytical parameters, namely composition of the aqueous medium, sample flow rate, flame conditions, distance between burner head and SQT, sampling period and type of organic solvent and its volume have been optimized. Using SQT-AT-FAAS, a sensitivity enhancement of 369 fold has been obtained, 3 s limit of detection was 3.9 μg L −1 when 25.0 mL of sample was collected in 4.0 min. Interference effects of some elements on antimony signal were studied. - Highlights: ► Atom trapping in a quartz tube was used for Sb with flame AAS. ► An inexpensive, simple and sensitive analytical method was suggested for Sb. ► Almost no background absorption was observed. ► Range is in microgram per liter level.

  18. MERCURY QUANTIFICATION IN SOILS USING THERMAL DESORPTION AND ATOMIC ABSORPTION SPECTROMETRY: PROPOSAL FOR AN ALTERNATIVE METHOD OF ANALYSIS

    Directory of Open Access Journals (Sweden)

    Liliane Catone Soares

    2015-08-01

    Full Text Available Despite the considerable environmental importance of mercury (Hg, given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique, were used in validation of the method, which proved to be accurate and precise.

  19. Hydride generation – in-atomizer collection of Pb in a quartz trap-and-atomizer device for atomic absorption spectrometry – an interference study

    Energy Technology Data Exchange (ETDEWEB)

    Novotný, Pavel [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); High School in Hořice, Husova 1414, 508 01 Hořice (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-01-01

    Interferences of selected hydride forming elements (As, Sb, Bi, Se and Sn) on lead determination by hydride generation atomic absorption spectrometry were extensively studied in both on-line atomization and preconcentration (collection) modes. The commonly used on-line atomization mode was found free of significant interferences, whereas strong interference from Bi was observed when employing the preconcentration mode with plumbane collection in a quartz trap-and-atomizer device. Interference of Bi seems to take place in the preconcentration step. Interference of Bi in the collection mode cannot be reduced by increased hydrogen radical amount in the trap and/or the atomizer. - Highlights: ► Interference study on Pb determination by in-atomizer trapping was performed for the first time. ► Bi was found as a severe interferent in the preconcentration mode (Pb:Bi ratio 1:100). ► No interference was found in the on-line atomization (no preconcentration). ► Bi interference occurs during preconcentration.

  20. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  1. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    International Nuclear Information System (INIS)

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-01-01

    Highlights: • The burnup of irradiated AGR-1 TRISO fuel was analyzed using gamma spectrometry. • The burnup of irradiated AGR-1 TRISO fuel was also analyzed using mass spectrometry. • Agreement between experimental results and neutron physics simulations was excellent. - Abstract: AGR-1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR-1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non-destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR-1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs-137 activity and the other based on the ratio of Cs-134 and Cs-137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA (fissions per initial heavy metal atom) for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can be determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP-MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma

  2. New diagnostic technique for Zeeman-compensated atomic beam slowing: technique and results

    NARCIS (Netherlands)

    Molenaar, P.A.; Straten, P. van der; Heideman, H.G.M.; Metcalf, H.

    1997-01-01

    We have developed a new diagnostic tool for the study of Zeeman-compensated slowing of an alkali atomic beam. Our time-of-flight technique measures the longitudinal veloc- ity distribution of the slowed atoms with a resolution below the Doppler limit of 30 cm/s. Furthermore, it can map

  3. Measurements of sulfur compounds in CO2 by diode laser atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Franzke, J.; Stancu, D.G.; Niemax, K.

    2003-01-01

    Two simple methods for the analysis of the total concentration of sulfur in CO 2 by diode laser atomic absorption spectrometry of excited, metastable sulfur atoms in a direct current discharge are presented. In the first method, the CO 2 sample gas is mixed with the plasma gas (Ar or He) while the second is based on reproducible measurements of the sulfur released from the walls in a helium discharge after being deposited as a result of operating the discharge in pure CO 2 sample gas. The detection limits obtained satisfy the requirements for the control of sulfur compounds in CO 2 used in the food and beverage industry

  4. An indirect method for determining phosphorus in aluminium alloys by atomic-absorption spectrometry.

    Science.gov (United States)

    Bernal, J L; Del Nozal, M A; Deban, L; Aller, A J

    1981-07-01

    An indirect method is described for the determination of phosphorus in aluminium alloys. Ammonium molybdate is added to a solution of the aluminium alloy and the molybdophosphoric acid formed is selectively extracted into n-butyl acetate. The twelve molybdenum atoms associated with each phosphate ion are determined by direct atomic-absorption spectrometry with the n-butyl acetate phase in a nitrous oxide-acetylene flame, with measurement at 313.2 nm. The most suitable conditions have been established and the effect of other ions has been studied.

  5. Exploiting flow Injection and sequential injection schemes for trace metal determinations by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Determination of low or trace-level amounts of metals by electrothermal atomic absorption spectrometry (ETAAS) often requires the use of suitable preconcentration and/or separation procedures in order to attain the necessary sensitivity and selectivity. Such schemes are advantageously executed...... by superior performance and versatility. In fact, two approaches are conceivable: The analyte-loaded ion-exchange beads might either be transported directly into the graphite tube where they are pyrolized and the measurand is atomized and quantified; or the loaded beads can be eluted and the eluate forwarded...

  6. Direct determination of selenoproteins in polyvinylidene difluoride membranes by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Sidenius, U; Gammelgaard, Bente

    2000-01-01

    A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual...... were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well...

  7. Enhancement of the atomic absorbance of Cr, Zn, Cd, and Pb in metal furnace atomic absorption spectrometry using absorption tubes

    Directory of Open Access Journals (Sweden)

    Yuya Koike

    2017-03-01

    Full Text Available Trace amounts of Cr, Zn, Cd, and Pb were determined by metal furnace atomic absorption spectrometry using absorption tubes. Various absorption tubes were designed as roof- and tube-types, and fixed above the metal furnace in order to extend the light path length. Aqueous standards and samples were injected in the metal furnace and atomized in a metal atomizer with an absorption tube (6 cm length, 15.5 mm diameter. The used of an absorption tube resulted in an enhancement of the atomic absorbance. The ratios of absorbance values with and without the roof- and tube-type absorption tubes were 1.33 and 1.11 for Cr; 1.42 and 1.99 for Zn; 1.66 and 1.98 for Cd; and 1.31 and 1.16 for Pb, respectively. The use of an absorption tube was effective for Zn and Cd analysis, as the absorbance values for these low boiling point metals doubled. The proposed method was successfully applied in the determination of Zn in tap water.

  8. Determination of trace amounts of selenium in minerals and rocks by flemeless atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Capdevila, C.; Alduan, F.A.

    1980-01-01

    The determination of trace amounts of selenium in silicate rocks and feldspart by solvent extraction and graphite furnace atomic-absorption spectrometry has been studied. Sodium diethyl-ditiocarbamate and ammonium pyrrolidinedithiocarbamate have been tried as chelating agents. The best results are achieved when selenium is extracted into carbon tetrachloride as the sodium diethylditiocarbamate complex. The method allows to detect 0,75 ppm of selenium in the sample. Recoveries are about 100%. (author)

  9. Direct microcomputer controlled determination of zinc in human serum by flow injection atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Nielsen, Bent; Jensen, Arne

    1986-01-01

    A procedure is described for the direct determination of zinc in human serum by fully automated, microcomputer controlled flow injection atomic absorption spectrometry (Fl-AAS). The Fl system is pumpless, using the negative pressure created by the nebuliser. It only consists of a three-way valve......, programmable from the microcomputer, to control the sample volume. No pre-treatment of the samples is necessary. The limit of detection is 0.14 mg l–1, and only small amounts of serum (

  10. Atomic spectrometry and trends in clinical laboratory medicine

    Science.gov (United States)

    Parsons, Patrick J.; Barbosa, Fernando

    2007-09-01

    Increasing numbers of clinical laboratories are transitioning away from flame and electrothermal AAS methods to those based on ICP-MS. Still, for many laboratories, the choice of instrumentation is based upon (a) the element(s) to be determined, (b) the matrix/matrices to be analyzed, and (c) the expected concentration(s) of the analytes in the matrix. Most clinical laboratories specialize in measuring Se, Zn, Cu, and Al in serum, and/or Pb, Cd, Hg, As, and Cr in blood and/or urine, while other trace elements (e.g., Pt, Au etc.) are measured for therapeutic purposes. Quantitative measurement of elemental species is becoming more widely accepted for nutritional and/or toxicological screening purposes, and ICP-MS interfaced with separation techniques, such as liquid chromatography or capillary electrophoresis, offers the advantage of on-line species determination coupled with very low detection limits. Polyatomic interferences for some key elements such as Se, As, and Cr require instrumentation equipped with dynamic reaction cell or collision cell technologies, or might even necessitate the use of sector field ICP-MS, to assure accurate results. Nonetheless, whatever analytical method is selected for the task, careful consideration must be given both to specimen collection procedures and to the control of pre-analytical variables. Finally, all methods benefit from access to reliable certified reference materials (CRMs). While a variety of reference materials (RMs) are available for trace element measurements in clinical matrices, not all can be classified as CRMs. The major metrological organizations (e.g., NIST, IRMM, NIES) provide a limited number of clinical CRMs, however, secondary reference materials are readily available from commercial organizations and organizers of external quality assessment schemes.

  11. Atomic spectrometry and trends in clinical laboratory medicine

    International Nuclear Information System (INIS)

    Parsons, Patrick J.; Barbosa, Fernando

    2007-01-01

    Increasing numbers of clinical laboratories are transitioning away from flame and electrothermal AAS methods to those based on ICP-MS. Still, for many laboratories, the choice of instrumentation is based upon (a) the element(s) to be determined, (b) the matrix/matrices to be analyzed, and (c) the expected concentration(s) of the analytes in the matrix. Most clinical laboratories specialize in measuring Se, Zn, Cu, and Al in serum, and/or Pb, Cd, Hg, As, and Cr in blood and/or urine, while other trace elements (e.g., Pt, Au etc.) are measured for therapeutic purposes. Quantitative measurement of elemental species is becoming more widely accepted for nutritional and/or toxicological screening purposes, and ICP-MS interfaced with separation techniques, such as liquid chromatography or capillary electrophoresis, offers the advantage of on-line species determination coupled with very low detection limits. Polyatomic interferences for some key elements such as Se, As, and Cr require instrumentation equipped with dynamic reaction cell or collision cell technologies, or might even necessitate the use of sector field ICP-MS, to assure accurate results. Nonetheless, whatever analytical method is selected for the task, careful consideration must be given both to specimen collection procedures and to the control of pre-analytical variables. Finally, all methods benefit from access to reliable certified reference materials (CRMs). While a variety of reference materials (RMs) are available for trace element measurements in clinical matrices, not all can be classified as CRMs. The major metrological organizations (e.g., NIST, IRMM, NIES) provide a limited number of clinical CRMs, however, secondary reference materials are readily available from commercial organizations and organizers of external quality assessment schemes

  12. Three axis vector atomic magnetometer utilizing polarimetric technique

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India and Homi Bhabha National Institute, Department of Atomic Energy, Mumbai 400094 (India)

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  13. Bismuth as a general internal standard for lead in atomic absorption spectrometry.

    Science.gov (United States)

    Bechlin, Marcos A; Fortunato, Felipe M; Ferreira, Edilene C; Gomes Neto, José A; Nóbrega, Joaquim A; Donati, George L; Jones, Bradley T

    2014-06-11

    Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A(Pb)/A(Bi)versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52-118% (without IS) to 97-109% (IS, LS FAAS); 74-231% (without IS) to 96-109% (IS, HR-CS FAAS); and 36-125% (without IS) to 96-110% (IS, LS GFAAS). The relative standard deviations (n=12) were reduced from 0.6-9.2% (without IS) to 0.3-4.3% (IS, LS FAAS); 0.7-7.7% (without IS) to 0.1-4.0% (IS, HR-CS FAAS); and 2.1-13% (without IS) to 0.4-5.9% (IS, LS GFAAS). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Redox speciation analysis of antimony in soil extracts by hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Fuentes, Edwar; Pinochet, Hugo; Gregori, Ida de; Potin-Gautier, Martine

    2003-01-01

    A sensitive atomic spectrometric method for the redox speciation analysis of antimony in soils is described. The method is based on the selective generation of stibine from Sb(III) in a continuous flow system using atomic fluorescence spectrometry for detection. Sb(V) is masked by citric or oxalic acid in HCl medium. The procedure was optimized with synthetic solutions of Sb(III) and Sb(V). The effect of carboxylic acid and HCl concentration on the recovery of Sb(III) and Sb(V) species from standard solutions, and on the fluorescence signal were studied. Both species were extracted from soil with H 2 O, 0.05 mol l -1 EDTA and 0.25 mol l -1 H 2 SO 4 . Since the soil samples were collected from sites impacted by copper mining activities, the effect of Cu 2+ on the determination of antimony in synthetic solutions and soil extracts was studied. Cu 2+ decreased the Sb(III) signal, but had no effect on the total antimony determination. Therefore, the selective determination of Sb(III) was carried out in citric acid-HCl medium, using the analyte addition technique. Total antimony in soil extracts was determined using the standard calibration technique after reducing Sb(V) to Sb(III) at room temperature with KI-ascorbic acid. The Sb(V) concentration was calculated from the difference between total antimony and Sb(III). The limits of detection (PS Analytical, Excalibur Millennium model) were 17 and 10 ng l -1 for Sb(III) and total antimony, respectively, and the R.S.D. at the 0.5-μg l -1 level were 2.5 and 2.4%, respectively. The total antimony concentration of soils is in the mg kg -1 range; the Sb recovery from the different soils by the extracting solutions was between less than 0.02% and approximately 10%. Similar recoveries were obtained using EDTA and sulfuric acid solutions. Sb(V) was found to be the main antimony species extracted from soils

  15. New diagnostic technique for Zeeman-compensated atomic beam slowing: technique and results

    OpenAIRE

    Molenaar, P.A.; Straten, P. van der; Heideman, H.G.M.; Metcalf, H.

    1997-01-01

    We have developed a new diagnostic tool for the study of Zeeman-compensated slowing of an alkali atomic beam. Our time-of-flight technique measures the longitudinal veloc- ity distribution of the slowed atoms with a resolution below the Doppler limit of 30 cm/s. Furthermore, it can map the position and velocity distribution of atoms in either ground hyperfine level inside the solenoid without any devices inside the solenoid. The technique reveals the optical pumping ef- fects, and shows in de...

  16. Ion beam analysis and spectrometry techniques for Cultural Heritage studies

    International Nuclear Information System (INIS)

    Beck, L.

    2013-01-01

    The implementation of experimental techniques for the characterisation of Cultural heritage materials has to take into account some requirements. The complexity of these past materials requires the development of new techniques of examination and analysis, or the transfer of technologies developed for the study of advanced materials. In addition, due to precious aspect of artwork it is also necessary to use the non-destructive methods, respecting the integrity of objects. It is for this reason that the methods using radiations and/or particles play a important role in the scientific study of art history and archaeology since their discovery. X-ray and γ-ray spectrometry as well as ion beam analysis (IBA) are analytical tools at the service of Cultural heritage. This report mainly presents experimental developments for IBA: PIXE, RBS/EBS and NRA. These developments were applied to the study of archaeological composite materials: layered materials or mixtures composed of organic and non-organic phases. Three examples are shown: evolution of silvering techniques for the production of counterfeit coinage during the Roman Empire and in the 16. century, the characterization of composites or mixed mineral/organic compounds such as bone and paint. In these last two cases, the combination of techniques gave original results on the proportion of both phases: apatite/collagen in bone, pigment/binder in paintings. Another part of this report is then dedicated to the non-invasive/non-destructive characterization of prehistoric pigments, in situ, for rock art studies in caves and in the laboratory. Finally, the perspectives of this work are presented. (author) [fr

  17. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    Science.gov (United States)

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  18. Spring meeting of the scientific associations for atomic physics, high speed physics, mass spectrometry, molecular physics, plasma physics

    International Nuclear Information System (INIS)

    1996-01-01

    The volume contains the abstracts of the contributions to the Spring Meeting in Rostock with aspects of atomic physics, molecular physics, high speed physics, plasma physics and mass spectrometry. (MM)

  19. Determination of mercury and selenium in herbal medicines and hair by using a nanometer TiO2-coated quartz tube atomizer and hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li, Shun-Xing; Zheng, Feng-Ying; Cai, Shu-Jie; Cai, Tian-Shou

    2011-01-01

    The nanometer TiO 2 particle was coated onto the inner wall of a T-shaped quartz tube atomizer (QTA) and then was used as a new atomizer (NT-QTA) for the determination of Hg and Se by hydride generation atomic absorption spectrometry (HGAAS). After coating 67.4 mg TiO 2 on a quartz tube, the analytical performance of NT-QTA-HGAAS was compared to conventional QTA-HGAAS and it was improved as follows: (a) the linear range of the calibration curves was expanded from 10.0-80.0 ng mL -1 to 5.0-150.0 ng mL -1 for Hg, and from 10.0-70.0 ng mL -1 to 5.0-100.0 ng mL -1 for Se; (b) the characteristic concentration of was decreased from 2.8 ng mL -1 /1% to 1.1 ng mL -1 /1% for Hg and from 1.2 ng mL -1 /1% to 0.8 ng mL -1 /1% for Se; and (c) the interference from the coexistence of As on the determination of Hg and Se could be eliminated. The achieved technique was applied for the determination of Hg and Se in herbal medicines and hair.

  20. Analysis of Dithiocarbamate Fungicides in Vegetable Matrices Using HPLC-UV Followed by Atomic Absorption Spectrometry.

    Science.gov (United States)

    Al-Alam, Josephine; Bom, Laura; Chbani, Asma; Fajloun, Ziad; Millet, Maurice

    2017-04-01

    A simple method combining ion-pair methylation, high-performance liquid chromatography (HPLC) analysis with detection at 272 nm and atomic absorption spectrometry was developed in order to determine 10 dithiocarbamate fungicides (Dazomet, Metam-sodium, Ferbam, Ziram, Zineb, Maneb, Mancozeb, Metiram, Nabam and Propineb) and distinguish ethylenbisdithiocarbamates (EBDTCs) Zineb, Maneb and Mancozeb in diverse matrices. This method associates reverse phase analysis by HPLC analysis with detection at 272 nm, with atomic absorption spectrometry in order to distinguish, with the same extraction protocol, Maneb, Mancozeb and Zineb. The limits of detection (0.4, 0.8, 0.5, 1.25 and 1.97) and quantification (1.18, 2.5, 1.52, 4.2 and 6.52) calculated in injected nanogram, respectively, for Dazomet, Metam-Na, dimethyldithiocarbamates (DMDTCs), EBDTCs and propylenebisdithiocarbamates (PBDTCs) justify the sensitivity of the method used. The coefficients of determination R2 were 0.9985, 0.9978, 0.9949, 0.988 and 0.9794, respectively, for Dazomet, Metam-Na, DMDTCs, EBDTCs and PBDTCs, and the recovery from fortified apple and leek samples was above 90%. Results obtained with the atomic absorption method in comparison with spectrophotometric analysis focus on the importance of the atomic absorption as a complementary specific method for the distinction between different EBDTCs fungicides. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry — Critical review

    Energy Technology Data Exchange (ETDEWEB)

    Bings, N.H., E-mail: bings@uni-mainz.de; Orlandini von Niessen, J.O.; Schaper, J.N.

    2014-10-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally

  2. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry — Critical review

    International Nuclear Information System (INIS)

    Bings, N.H.; Orlandini von Niessen, J.O.; Schaper, J.N.

    2014-01-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally

  3. Mechanism of yttrium atom formation in electrothermal atomization from metallic and metal-carbide surfaces of a heated graphite atomizer in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wahab, H.S.; Chakrabarti, C.L.

    1981-01-01

    Mechanism of Y atom formation from pyrocoated graphite, tantalum and tungsten metal surfaces of a graphite tube atomizer has been studied and a mechanism for the formation for Y atoms is proposed for the first time. (author)

  4. Imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry for determination of mercury in seawater.

    Science.gov (United States)

    Le Bihan, Alain; Cabon, Jean-Yves; Deschamps, Laure; Giamarchi, Philippe

    2011-06-15

    In this study, direct determination of mercury at the nanogram per liter level in the complex seawater matrix by imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry (ITR-ETA-LEAFS) is described. In the case of mercury, the use of a nonresonant line for fluorescence detection with only one laser excitation is not possible. For measurements at the 253.652 nm resonant line, scattering phenomena have been minimized by eliminating the simultaneous vaporization of salts and by using temporal resolution and the imaging mode of the camera. Electrothermal conditions (0.1 M oxalic acid as matrix modifier, low atomization temperature) have been optimized in order to suppress chemical interferences and to obtain a good separation of specific signal and seawater background signal. For ETA-LEAFS, a specific response has been obtained for Hg with the use of time resolution. Moreover, an important improvement of the detection limit has been obtained by selecting, from the furnace image, pixels collecting the lowest number of scattered photons. Using optimal experimental conditions, a detection limit of 10 ng L(-1) for 10 μL of sample, close to the lowest concentration level of total Hg in the open ocean, has been obtained.

  5. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap.

    Science.gov (United States)

    Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz

    2015-06-01

    Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with

  6. Determination of Cu, Cr, and As in preserved wood (Eucalyptus sp.) using x-ray fluorescent spectrometry techniques

    International Nuclear Information System (INIS)

    Sergio Matias Pereira Junior; Vera Akiko Maihara; Edson Goncalves Moreira; Vera Lucia Ribeiro Salvador; Ivone Mulako Sato

    2016-01-01

    Energy dispersive (EDXRF) and Portable (PXRF) X-ray fluorescence techniques are proposed for wood treatment control process and wood waste assortment. In this study, different retentions of chromated copper arsenate preservative were applied to Eucalyptus sp. sapwood samples. Cu, Cr and As were determined by XRF techniques in treated sapwood massive blocks and treated sapwood sawdust samples were analyzed by FAAS spectrometry (Flame Atomic Absorption) and INAA (Instrumental Neutron Activation Analysis). Cu, Cr and As mean values, obtained by FAASS and INAA, showed to be statically equal; however, XRF analysis showed considerable deviations, presenting the absorption and the enhancement effects in analytical lines. (author)

  7. X-ray fluorescence spectrometry and related techniques an introduction

    CERN Document Server

    Margui, Eva

    2013-01-01

    X-ray fluorescence spectrometry (XRF) is a well-established analytical technique for qualitative and quantitative elemental analysis of a wide variety of routine quality control and research samples. Among its many desirable features, it delivers true multi-element character analysis, acceptable speed and economy, easy of automation, and the capacity to analyze solid samples. This remarkable contribution to this field provides a comprehensive and up-to-date account of basic principles, recent developments, instrumentation, sample preparation procedures, and applications of XRF analysis. If you are a professional in materials science, analytic chemistry, or physics, you will benefit from not only the review of basics, but also the newly developed technologies with XRF. Those recent technological advances, including the design of low-power micro- focus tubes and novel X-ray optics and detectors, have made it possible to extend XRF to the analysis of low-Z elements and to obtain 2D or 3D information on a microme...

  8. Comparative study of low-energy neutral atom imaging techniques

    International Nuclear Information System (INIS)

    Funsten, H.O.; McComas, D.J.; Scime, E.E.

    1994-01-01

    Low-energy neutral atom (LENA) imaging promise to be a revolutionary tool for global imaging of space plasmas. The technical challenges of LENA detection include separating them from the intense ambient UV without losing information about their incident trajectories, quantifying their trajectories, and obtaining high-sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid; LENA transmission through an ultra thin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for time-of-flight start pulse generation and/or coincidence). They present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. Transmission methods are shown to be superior for secondary electron emission rather than reflection methods. Furthermore, transmission methods are shown to be a sufficient for LENA imaging at LENA energies of approximately 1 keV to greater than 30 keV. A hybrid instrument using reflection from a low work function surface for LENA ionization and transmission for secondary electron emission is optimal for imaging of LENAs with energies less than approximately 1 keV

  9. Simultaneous determination of Cr, Ga, In and V in soil and water samples by tungsten coil atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Donati, George L.; Kron, Benjamin E. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Jones, Bradley T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States)], E-mail: jonesbt@wfu.edu

    2009-06-15

    Tungsten coil atomic emission spectrometry is employed for the simultaneous determination of Cr, Ga, In, and V. Both V and In are detected by this technique for the first time. The atomizer is a simple, inexpensive tungsten filament extracted from a mass-produced, commercially-available 150 W, 15 V microscope bulb. A 25 {mu}l sample aliquot is placed directly on the coil and a small constant-current power source is used to carefully dry, ash and atomize the sample. Analytical signals are detected with a Czerny-Turner spectrograph and a charge coupled device detector. Multiple emission lines from all 4 elements are monitored simultaneously in a 54 nm spectral window. Concentration limits of detection are in the {mu}g l{sup - 1} range for all elements, and the absolute limits of detection are 0.2, 2, 0.5, and 10 ng for Cr, Ga, In, and V, respectively. Even lower values may be obtained by combining the signals for the multiple emission lines of a single element. The method precision is typically better than 5.0% relative standard deviation, and sometimes as good as 0.95% (Ga). Standard reference materials of soil and water are used to check the method accuracy. After a simple acid extraction, the values determined by the method presented no significant difference from the reported values at the 95% confidence level.

  10. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS...

  11. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    Science.gov (United States)

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  12. Solid phase microextraction capillary gas chromatography combined with furnace atomization plasma emission spectrometry for speciation of mercury in fish tissues

    International Nuclear Information System (INIS)

    Grinberg, Patricia; Campos, Reinaldo C.; Mester, Zoltan; Sturgeon, Ralph E.

    2003-01-01

    The use of solid phase microextraction in conjunction with tandem gas chromatography-furnace atomization plasma emission spectrometry (SPME-GC-FAPES) was evaluated for the determination of methylmercury and inorganic mercury in fish tissue. Samples were digested with methanolic potassium hydroxide, derivatized with sodium tetraethylborate and extracted by SPME. After the SPME extraction, species were separated by GC and detected by FAPES. All experimental parameters were optimized for best separation and analytical response. A repeatability precision of typically 2% can be achieved with long-term (3 months) reproducibility precision of 4.3%. Certified Reference Materials DORM-2, DOLT-2 and TORT-2 from the National Research Council of Canada were analyzed to verify the accuracy of this technique. Detection limits of 1.5 ng g -1 for methylmercury and 0.7 ng g -1 for inorganic mercury in biological tissues were obtained

  13. Fast Atom Bombardment Spectrometry - a novel analytical method for biologically interesting, non-volatile substances

    International Nuclear Information System (INIS)

    Schmid, E.

    1987-03-01

    Today important chemical substances like proteins can be produced easily and in large amounts. The primary structure of proteins can be analysed automatically, however the procedure can take some months of time. A novel method, fast atom bombardment mass spectrometry (FAB-MS) in combination with enzymatic degradation not only decreases the analysis time, but gives also additional information about the primary structure. Especially for the verification of protein structures - which is important for recombinant proteins - FAB-MS is a very useful method. 40 refs., 56 figs. (P.W.)

  14. Experimental evidence of state-selective charge transfer in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2004-01-01

    State-selective charge-transfer behavior was observed for Fe, Cr, Mn and Cu in inductively coupled plasma (ICP)-atomic emission spectrometry. Charge transfer from Ar + to Fe, Cr and Mn is state-selective because of inefficient collisional mixing of the quasiresonant charge-transfer energy levels with nearby levels. This low efficiency is the consequence of differences in electronic configuration of the core electrons. The reason for state-selective charge-transfer behavior to Cu is not clear, although a tentative explanation based on efficiency of intramultiplet and intermultiplet mixing for this special case is offered

  15. [Determination of mercury in Boletus impolitus by flow injection-atomic absorption spectrometry].

    Science.gov (United States)

    Li, Tao; Wang, Yuan-Zhong

    2008-04-01

    Various test conditions and effect factors for the determination of mercury by flow injection-atomic absorption spectrometry were discussed, and a method for the determination of mercury in Boletus impolitus has been developed. The linear range for mercury is 0-60 microg x L(-1). The relative standard deviation is less than 3.0%, and the recovery is 96%-107%. This method is simple, rapid and has been applied to the determination of mercury in Boletus impolitus samples with satisfactory results.

  16. Combination of solid phase extraction and flame atomic absorption spectrometry for trace analysis of cadmium

    OpenAIRE

    Ensafi, Ali A.; Shiraz, Ameneh Zendegi

    2008-01-01

    A new selective method was developed for the separation and preconcentration of Cd(II) ions based on its complex formation with Xylenol orange loaded on activated carbon as a solid support in a mini-column. The preconcentrated ions were eluted by passing 5.0 mL 0.5 mol L-1 HNO3 solution through the solid support and then the Cd(II) contents was measured by flame atomic absorption spectrometry. Conditions for preparation of the modified activated carbon, pH and flow variables were studied, as ...

  17. Determination of trace elements in maifanite by outer cover electrode atomic emission spectrometry

    Institute of Scientific and Technical Information of China (English)

    LI Jianqiang; LU Yiqiang; JIANG Wei

    2005-01-01

    Maifanite is a nature medicinal stone used in many fields for long time. The research on it showed that there are many trace elements in maifanite. In this paper, 36 trace elements in maifanite were determined by outer cover electrode atomic emission spectrometry, and the determination conditions were studied systematically. The results show that the concentrafions of elements, which are beneficial to human health, are higher, and the elements harmful to people health such as As, Cd, Hg, Cr, and Pb are tiny in maifanite. The precision and the accuracy were also discussed.

  18. A double cell for X-ray absorption spectrometry of atomic Zn

    CERN Document Server

    Mihelic, A; Arcon, I; Padeznik-Gomilsek, J; Borowski, M

    2002-01-01

    A high-temperature cell with a double wall design has been constructed for X-ray absorption spectrometry of metal vapors. The inner cell, assembled from a corundum tube and thin plates without welding or reshaping, serves as a container of the vapor sample. It is not vacuum tight: instead, the outer tube provides inert atmosphere. Several spectra of K-edge atomic absorption of Zn were obtained in the stationary working regime below the Zn boiling point. The K-edge profile shows an extremely strong resonance and, above the continuum threshold, coexcitations of the outer electrons.

  19. Determination of trace amounts of cerium in paint by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Wong, K.L.

    1981-01-01

    The determination of Ce in paint by inductively coupled plasma atomic emission spectrometry (ICP-OES) is described, and the detection limit of ICP-OES of 0.0004 ppM is compared with that of other methods. The effects of the major elemental components of paint, Si, Pb, Cr, and Na on the ICP-OES determination of Ce were studied. The interference of 400 ppM of the other ions on the determination of 10 ppM Ce was small (0 to 3% error). The method is applicable to the range of 0.2 to 700 ppM Ce

  20. Development of an electrothermal atomization laser-excited atomic fluorescence spectrometry procedure for direct measurements of arsenic in diluted serum.

    Science.gov (United States)

    Swart, D J; Simeonsson, J B

    1999-11-01

    A procedure for the direct determination of arsenic in diluted serum by electrothermal atomization laser-excited atomic fluorescence spectrometry (ETA-LEAFS) is reported. Laser radiation needed to excite As at 193.696 and 197.197 nm is generated as the second anti-Stokes stimulated Raman scattering output of a frequency-doubled dye laser operating near 230.5 and 235.5 nm, respectively. Two different LEAFS schemes have been utilized and provide limits of detection of 200-300 fg for As in aqueous standards. When measurements of serum samples diluted 1:10 with deionized water are performed, a stable background signal is observed that can be accounted for by taking measurements with the laser tuned off-wavelength. No As is detected in any of the bovine or human serum samples analyzed. Measurements of 100 pg/mL standard additions of As to a diluted bovine serum sample utilizing either inorganic or organic As species demonstrate a linear relationship of the fluorescence signal to As spike concentration, but exhibit a sensitivity of approximately half that observed in pure aqueous standards. The limit of detection for As in 1:10 diluted serum samples is 65 pg/mL or 650 fg absolute mass, which corresponds to 0.65 ng/mL As in undiluted serum. To our knowledge, the ETA-LEAFS procedure is currently the only one capable of directly measuring As in diluted serum at these levels.

  1. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  2. Determination of cobalt in human biological liquids from electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dragan, Felicia [University of Oradea, Faculty of Medicine and Pharmacy, 29 N Jiga, 410028 Oradea (Romania); HIncu, Lucian [University of Medicine and Pharmacy ' Carol Davila' , Faculty of Pharmacy, 6 Traian Vuia, 020956 Bucuresti (Romania); Bratu, Ioan, E-mail: fdragan@uoradea.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    Problems and possibilities of the determination of Co in serum and urine samples by electrothermal atomic absorption spectrometry (ETAAS) are described. Optimal instrumental parameters as well as a suitable atomizer, calibration procedure and hydrogen peroxide as modifier are proposed for direct ETAAS measurement of Co in serum and urine. The detection limit achieved was 0.1 {mu}g L{sup -1} for both matrices and relative standard deviations varied in the range 5-20% depending on the Co concentration in the sample. The validity of the method was verified by the analyses of standard reference materials. For serum samples with Co content lower than the detection limit, a separation and preconcentration procedure based on liquid/liquid extraction is suggested prior to determination of Co in the organic phase by ETAAS. This procedure permits determination of 0.02 {mu}g L{sup -1} Co in serum samples with a relative standard deviation of 10-18%.

  3. Metal oxide collectors for storing matter technique applied in secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Miśnik, Maciej [Institute of Tele and Radio Technology, ul. Ratuszowa 11, 03-450 Warszawa (Poland); Gdańsk University of Technology (Poland); Konarski, Piotr [Institute of Tele and Radio Technology, ul. Ratuszowa 11, 03-450 Warszawa (Poland); Zawada, Aleksander [Institute of Tele and Radio Technology, ul. Ratuszowa 11, 03-450 Warszawa (Poland); Military University of Technology, Warszawa (Poland)

    2016-03-15

    We present results of the use of metal and metal oxide substrates that serve as collectors in ‘storing matter’, the quantitative technique of secondary ion mass spectrometry (SIMS). This technique allows separating the two base processes of secondary ion formation in SIMS. Namely, the process of ion sputtering is separated from the process of ionisation. The technique allows sputtering of the analysed sample and storing the sputtered material, with sub-monolayer coverage, onto a collector surface. Such deposits can be then analysed by SIMS, and as a result, the so called ‘matrix effects’ are significantly reduced. We perform deposition of the sputtered material onto Ti and Cu substrates and also onto metal oxide substrates as molybdenum, titanium, tin and indium oxides. The process of sputtering is carried within the same vacuum chamber where the SIMS analysis of the collected material is performed. For sputtering and SIMS analysis of the deposited material we use 5 keV Ar{sup +} beam of 500 nA. The presented results are obtained with the use of stationary collectors. Here we present a case study of chromium. The obtained results show that the molybdenum and titanium oxide substrates used as collectors increase useful yield by two orders, with respect to such pure elemental collectors as Cu and Ti. Here we define useful yield as a ratio of the number of detected secondary ions during SIMS analysis and the number of atoms sputtered during the deposition process.

  4. Major constituent quantitative determination in uranium alloys by coupled plasma atomic emission spectrometry and X ray fluorescence wavelength dispersive spectrometry

    International Nuclear Information System (INIS)

    Oliveira, Luis Claudio de; Silva, Adriana Mascarenhas Martins da; Gomide, Ricardo Goncalves; Silva, Ieda de Souza

    2013-01-01

    A wavelength-dispersive X-ray fluorescence (WD-XRF) spectrometric method for determination of major constituents elements (Zr, Nb, Mo) in Uranium/Zirconium/Niobium and Uranium/Molybdenum alloy samples were developed. The methods use samples taken in the form of chips that were dissolved in hot nitric acid and precipitate particles melted with lithium tetraborate and dissolved in hot nitric acid and finally analyzed as a solution. Studies on the determination by inductively coupled plasma optic emission spectrometry (ICP OES) using matched matrix in calibration curve were developed. The same samples solution were analyzed in both methods. The limits of detection (LOD), linearity of the calibrations curves, recovery study, accuracy and precision of the both techniques were carried out. The results were compared. (author)

  5. Time-dependence and averaging techniques in atomic photoionization calculations

    International Nuclear Information System (INIS)

    Scheibner, K.F.

    1984-01-01

    Two distinct problems in the development and application of averaging techniques to photoionization calculations are considered. The first part of the thesis is concerned with the specific problem of near-resonant three-photon ionization in hydrogen, a process for which no cross section exists. Effects of the inclusion of the laser pulse characteristics (both temporal and spatial) on the dynamics of the ionization probability and of the metastable state probability are examined. It is found, for example, that the ionization probability can decrease with increasing field intensity. The temporal profile of the laser pulse is found to affect the dynamics very little, whereas the spatial character of the pulse can affect the results drastically. In the second part of the thesis techniques are developed for calculating averaged cross sections directly without first calculating a detailed cross section. Techniques are developed whereby the detailed cross section never has to be calculated as an intermediate step, but rather, the averaged cross section is calculated directly. A variation of the moment technique and a new method based on the stabilization technique are applied successfully to atomic hydrogen and helium

  6. Neutral atom beam technique enhances bioactivity of PEEK

    International Nuclear Information System (INIS)

    Khoury, Joseph; Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C.

    2013-01-01

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants

  7. Determination of trace elements in ground water by two preconcentration methods using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Elhag, A. Y.

    2004-01-01

    This is a comparative study between two different methods of preconcentration done to separate the trace elements cadmium, nickel. chromium, manganese, copper, zinc, and lead in drinking (ground) water samples taken from different locations in Gezira State, central Sudan (the map); these methods are (coprecipitation) with aluminium hydroxide and by Ammonium Pyrrolidine Dithiocarbamate (APDC) using Methyl Isobutyl Ketone (MIBK) as an organic solvent; and subsequent analysis by Atomic Absorption Spectrometry (AAS) for both methods. The result of comparison showed the superiority of the (APDC) coprecipitation method over the aluminium hydroxide coprecipitation method in the total percentage recoveries of the studied trace elements in drinking (ground) water samples, such results confirm previous studies. This study also involves direct analysis of these water samples by atomic absorption spectrometry to determine the concentrations of trace elements Cadmium, Nickel, Chromium, Manganese, Copper, Zinc and Lead and compare it to the corresponding guide line values described by the World Health Organization and the maximum concentrations of trace elements in drinking water permitted by the Sudanese Standards and Metrology Organizations (SSMO), where the concentrations of some elements in some samples were found to be different than the described values by both of the organizations. The study includes a trial to throw light on the effect of the proximity of the water samples sources to the Blue Nile river on its trace elements concentrations; no relation was proved to exist in that respect.(Author)

  8. Speciation analysis of arsenic by selective hydride generation- cryotrapping-atomic fluorescence spectrometry with flame-in-gas- shield atomizer: Achieving extremely low detection limits with inexpensive instrumentation

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Matoušek, Tomáš; Currier, J. M.; Stýblo, M.; Dědina, Jiří

    2014-01-01

    Roč. 86, č. 20 (2014), s. 10422-10428 ISSN 0003-2700 R&D Projects: GA ČR GA14-23532S; GA MŠk LH12040 Institutional support: RVO:68081715 Keywords : speciation analysis of arsenic * selective hydride generation * flame-in-gas-shield atomizer * cryotrapping-atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  9. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zeini Jahromi, Elham; Bidari, Araz; Assadi, Yaghoub; Milani Hosseini, Mohammad Reza; Jamali, Mohammad Reza

    2007-01-01

    Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L -1 with detection limit of 0.6 ng L -1 . The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L -1 of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L -1 are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with

  10. Introduction of Flame Atomic Absorption Spectrometry (FAAS) For River Water Samples Analysis

    International Nuclear Information System (INIS)

    Shakirah Abd Shukor; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman

    2015-01-01

    Metal contamination in water is a major component in the determination of water quality monitoring. In spite of the viability of several other metal ion analysis techniques for river water, atomic absorption spectroscopy (AAS) method is most commonly used due to the reproducibility results, short analysis time, cost effective, lower level detection and robust. Therefore, this article gives an overview on the principles, instrumentation techniques, sample preparations, instrument calibration and data analysis in a simple manner for beginner. (author)

  11. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Nascentes, Clesia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A.Z.; Nogueira, Ana Rita A.; Nobrega, Joaquim A.

    2005-01-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1 , respectively. The relative standard deviations varied from 2.7% to 7.3% (n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1 ; Mn: 110-348 μg l -1 , Pb: 13.0-32.9 μg l -1 , and Zn: 52.7-226 μg l -1 . Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery

  12. Structural analyses of sucrose laurate regioisomers by mass spectrometry techniques

    DEFF Research Database (Denmark)

    Lie, Aleksander; Stensballe, Allan; Pedersen, Lars Haastrup

    2015-01-01

    6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore the physic......6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore.......8, respectively, and Orbitrap HRMS confirmed the mass of [M+Na]+ (m/z 547.2712). ESI-MS/MS on the precursor ion [M+Na]+ resulted in product ion mass spectra showing two high-intensity signals for each sample. 6-O-Lauroyl sucrose produced signals located at m/z 547.27 and m/z 385.21, corresponding to the 6-O...

  13. Flow Injection and Atomic Absorption Spectrometry - An Effective and Attractive Analytical Chemical Combination

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Nielsen, Steffen

    1998-01-01

    One of the advantages of the flow injection (FI) concept is that it is compatible with virtually all detection techniques. Being a versatile vehicle for enhancing the performance of the individual detection devices, the most spectacular results have possibly been obtained in conjunction with atom...

  14. [Determination of acetanilide herbicide residues in tea by gas chromatography-mass spectrometry with two different ionization techniques].

    Science.gov (United States)

    Shen, Weijian; Xu, Jinzhong; Yang, Wenquan; Shen, Chongyu; Zhao, Zengyun; Ding, Tao; Wu, Bin

    2007-09-01

    An analytical method of solid phase extraction-gas chromatography-mass spectrometry with two different ionization techniques was established for simultaneous determination of 12 acetanilide herbicide residues in tea-leaves. Herbicides were extracted from tea-leaf samples with ethyl acetate. The extract was cleaned-up on an active carbon SPE column connected to a Florisil SPE column. Analytical screening was determined by the technique of gas chromatography (GC)-mass spectrometry (MS) in the selected ion monitoring (SIM) mode with either electron impact ionization (EI) or negative chemical ionization (NCI). It is reliable and stable that the recoveries of all herbicides were in the range from 50% to 110% at three spiked levels, 10 microg/kg, 20 microg/kg and 40 microg/kg, and the relative standard deviations (RSDs) were no more than 10.9%. The two different ionization techniques are complementary as more ion fragmentation information can be obtained from the EI mode while more molecular ion information from the NCI mode. By comparison of the two techniques, the selectivity of NCI-SIM was much better than that of EI-SIM method. The sensitivities of the both techniques were high, the limit of quantitative (LOQ) for each herbicide was no more than 2.0 microg/kg, and the limit of detection (LOD) with NCI-SIM technique was much lower than that of EI-SIM when analyzing herbicides with several halogen atoms in the molecule.

  15. Determination of cadmium in human urine by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Shijo, Yoshio; Sakai, Kaoru

    1981-01-01

    A trace amount of cadmium in human urine was determined by graphite furnace atomic absorption spectrometry. A urine sample (25 ml) was digested with 5 ml of HNO 3 and 30 ml of H 2 O 2 in a long-neck flask on a hot-plate (200 0 C), then diluted to 50 ml. The standard addition method was carried out before digesting. Ten μl of the resulted solution was injected into a tube treated with tungsten carbide, and the cadmium signal was measured with the ramp mode atomization. Interference induced by organic materials in urine was avoided by HNO 3 -H 2 O 2 digestion. Interference induced by inorganic salts could be reduced by 2-fold dilution and tungsten carbide treatment. The cadmium signal was separated sufficiently from the molecular absorption due to NaCl etc. by the ramp mode atomization. Since the blank level of H 2 O 2 was relatively high, the determination was limited to about 0.1 μg/l. The coefficient of variation was 1.76% at 0.36 μg/l in 24 h human urine (n = 4). The time required was (8 -- 10)h. The precision of this method was higher than those of direct methods, and the reasonable values of urine levels of cadmium were obtained. (author)

  16. Techniques for measuring the atomic recoil frequency using a grating-echo atom interferometer

    Science.gov (United States)

    Barrett, Brynle

    I have developed three types of time-domain echo atom interferometer (AIs) that use either two or three standing-wave pulses in different configurations. Experiments approaching the transit time limit are achieved using samples of laser-cooled rubidium atoms with temperatures AI. This interferometer uses two standing-wave pulses applied at times t = 0 and t = T 21 to create a superposition of atomic momentum states differing by multiples of the two-photon momentum, ħq = 2 ħk where k is the optical wave number, that interfere in the vicinity of t = 2T 21. This interference or "echo" manifests itself as a density grating in the atomic sample, and is probed by applying a near-resonant traveling-wave "read-out" pulse and measuring the intensity of the coherent light Bragg-scattered in the backward direction. The scattered light from the grating is associated with a λ/2-periodic modulation produced by the interference of momentum states differing by ħq. Interfering states that differ by more than ħq—which produce higher-frequency spatial modulation within the sample—cannot be detected due to the nature of the Bragg scattering detection technique employed in the experiment. The intensity of the scattered light varies in a periodic manner as a function of the standing-wave pulse separation, T21. The fundamental frequency of this modulation is the two-photon atomic recoil frequency, ω q = ħq2/2M, where q = 2k and M is the mass of the atom (a rubidium isotope in this case). The recoil frequency, ω q, is related to the recoil energy, Eq = ħωq, which is the kinetic energy associated with the recoil of the atom after a coherent two-photon scattering process. By performing the experiment on a suitably long time scale ( T21 >> τq = π/ω q ˜32 μs), ωq can be measured precisely. Since ωq contains the ratio of Planck's constant to the mass of the atom, h/M, a precise measurement of ωq can be used as a strict test of quantum theories of the electromagnetic force

  17. Applicability of multisyringe chromatography coupled to cold-vapor atomic fluorescence spectrometry for mercury speciation analysis

    International Nuclear Information System (INIS)

    Guzmán-Mar, J.L.; Hinojosa-Reyes, L.; Serra, A.M.; Hernández-Ramírez, A.; Cerdà, V.

    2011-01-01

    Graphical abstract: An automatic system, based on the applicability of multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) detection is developed for mercury speciation. Highlights: ► The on-line coupling of MSC to CV/AFS was developed for mercury speciation analysis. ► The speciation of MeHg + , Hg 2+ and EtHg + was achieved on a RP C18 monolithic column. ► The hyphenated system provided higher sample throughput compared to HPLC–CV/AFS. ► The limits of detection for mercury species were comparable or better than those reported by HPLC–CV/AFS. ► The developed method also provided low instrumental and operational costs. - Abstract: In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg 2+ ), methylmercury (MeHg + ) and ethylmercury (EtHg + ) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)–acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)–acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3σ) were found to be 0.03, 0.11 and 0.09 μg L −1 for MeHg + , Hg 2+ and EtHg + , respectively. The relative standard deviation (RSD, n = 6) of the peak height for 3, 6 and 3 μg L −1 of MeHg + , Hg 2+ and EtHg + (as Hg) ranged from 2.4 to 4.0%. Compared with the conventional HPLC–CV/AFS hyphenated systems

  18. Multielement determination of rare earth elements by liquid chromatography/inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Sawatari, Hideyuki; Asano, Takaaki; Hu, Xincheng; Saizuka, Tomoo; Itoh, Akihide; Hirose, Akio; Haraguchi, Hiroki

    1995-01-01

    The rapid determination of rare earth elements (REEs) has been investigated by an on-line system of high performance liquid chromatography/multichannel inductively coupled plasma atomic emission spectrometry. In the present system, all REEs could be detected simultaneously in a single chromatographic measurement without spectral interferences. Utilizing a cation exchange column and 2-hydroxy-2-methylpropanoic acid aqueous solution as the mobile phase, the detection limits of 0.4-30 ng ml -1 for all REEs were obtained. The system was applied to the determination of REEs in geological standard rock samples and rare earth impurities in high purity rare earth oxides. The REEs in standard rocks could be determined by the present HPLC/ICP-AES system without pretreatment after acid digestion, although the detection limits were not sufficient for the analysis of rare earth oxides. (author)

  19. Liquid-Liquid Extraction and Determination of Trace Elements in Iron Minerals by Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Taseska, Milena; Stafilov, Trajche; Makreski, Petre; Jacimovic, Radojko; Jovanovski, Gligor

    2006-01-01

    Various trace elements (cadmium, chromium, cobalt, nickel, manganese) in some iron minerals were determined by flame (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). The studied minerals were chalcopyrite (CuFeS 2 ), hematite (Fe 2 O 3 ) and pyrite (FeS 2 ). To avoid the interference of iron, a method for liquid-liquid extraction of iron and determination of investigated elements in the inorganic phase was proposed. Iron was extracted by diisopropyl ether in hydrochloride acid solution and the extraction method was optimized. Some parameters were obtained to be significantly important: Fe mass in the sample should not exceed 0.3 g, the optimal concentration of HCI should be 7.8 mol 1 -1 and ratio of the inorganic and organic phase should be 1: 1. The procedure was verified by the method of standard additions and by its applications to reference standard samples. The investigated minerals originate from various mines in the Republic of Macedonia. (Author)

  20. Some metals determination in beers by atomic emission spectrometry of induced argon plasma

    International Nuclear Information System (INIS)

    Matsushige, I.

    1990-01-01

    It was made the identification and determination of metals in brazilian bottled and canned beer, using atomic emission spectrometry with d.c. are and argon coupled plasma excitation sources. The elements Co, Cr, Cu, Fe, Pb and Zn were determined in beer samples, after treatment with HNO sub(3) conc. /H sub(2) O sub(2) (30%). In the determination of Co, Cr, Cu, Pb and Zn and alternative method using HNO sub(3) conc. /O sub(3) was proved be useful. The results obtained for Co, Cr, Cu, Fe, Pb and Zn were below the limits established by brazilian legislation, showing the good quality of the beer concerning the metals. The results of this work were requested by the previous Ministerio do Meio Ambiente e Urbanismo in order to contribute to review the brazilian legislation in foods and beverages about metals contents. (author)

  1. The coupling of rapidly synergistic cloud point extraction with thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wen, X.; Deng, Q.; Guo, J.; Zhao, X.; Zhao, Y.; Ji, S.

    2012-01-01

    Rapidly synergistic cloud point extraction (RS-CPE) was coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) to result in new CPE patterns and accelerated (1 min) protocols. It is demonstrated, for the case of copper (II) ion, that TS-FF-AAS improves the sampling efficiency and the sensitivity of FAAS determinations. Problems of nebulization associated with previous methods based on the coupling of FAAS and RS-CPE are overcome. TS-FF-AAS also improves sensitivity and gives a limit of detection for copper of 0.20 μg L -1 , which is better by a factor of 32. Compared to direct FAAS, the factor is 114. (author)

  2. Combined discrete nebulization and microextraction process for molybdenum determination by flame atomic absorption spectrometry (FAAS)

    International Nuclear Information System (INIS)

    Oviedo, Jenny A.; Jesus, Amanda M.D. de; Fialho, Lucimar L.; Pereira-Filho, Edenir R.

    2014-01-01

    Simple and sensitive procedures for the extraction/preconcentration of molybdenum based on vortex-assisted solidified floating organic drop microextraction (VA-SFODME) and cloud point combined with flame absorption atomic spectrometry (FAAS) and discrete nebulization were developed. The influence of the discrete nebulization on the sensitivity of the molybdenum preconcentration processes was studied. An injection volume of 200 μ resulted in a lower relative standard deviation with both preconcentration procedures. Enrichment factors of 31 and 67 and limits of detection of 25 and 5 μ L -1 were obtained for cloud point and VA-SFODME, respectively. The developed procedures were applied to the determination of Mo in mineral water and multivitamin samples. (author)

  3. Determination of cadmium in seawater by chelate vapor generation atomic fluorescence spectrometry

    Science.gov (United States)

    Sun, Rui; Ma, Guopeng; Duan, Xuchuan; Sun, Jinsheng

    2018-03-01

    A method for the determination of cadmium in seawater by chelate vapor generation (Che-VG) atomic fluorescence spectrometry is described. Several commercially available chelating agents, including ammonium pyrrolidine dithiocarbamate (APDC), sodium dimethyl dithiocarbamate (DMDTC), ammonium dibutyl dithiophosphate (DBDTP) and sodium O,O-diethyl dithiophosphate (DEDTP), are compared with sodium diethyldithiocarbamate (DDTC) for the Che-VG of cadmium, and results showed that DDTC and DEDTP had very good cadmium signal intensity. The effect of the conditions of Che-VG with DDTC on the intensity of cadmium signal was investigated. Under the optimal conditions, 85 ± 3% Che-VG efficiency is obtained for cadmium. The detection limit (3σ) obtained in the optimal conditions was 0.19 ng ml- 1. The relative standard deviation (RSD, %) for ten replicate determinations at 2 ng ml- 1 Cd was 3.42%. The proposed method was successfully applied to the ultratrace determination of cadmium in seawater samples by the standard addition method.

  4. [Graphite furnace atomic absorption spectrometry for determination of thallium in blood].

    Science.gov (United States)

    Zhang, Q L; Gao, G

    2016-04-20

    Colloidal palladium was used as chemical modifier in the determination of blood thallium by graphite furnace atomic absorption spectrometry. Blood samples were precipitated with 5% (V/V)nitric acid, and then determined by GFAAS with colloidal palladium used as a chemical modifier. 0.2% (W/V)sodium chloride was added in the standard series to improve the matrix matching between standard solution and sample. The detection limit was 0.2 μg/L. The correlation coefficient was 0.9991. The recoveries were between 93.9% to 101.5%.The relative standard deviations were between 1.8% to 2.7%.The certified reference material of whole blood thallium was determined and the result was within the reference range Conclusion: The method is accurate, simple and sensitive, and it can meet the needs of detection thallium in blood entirely.

  5. Determination of rare earth elements by liquid chromatography/inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Yoshida, K.; Haraguchi, H.

    1984-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) interfaced with high-performance liquid chromatography (HPLC) has been applied to the determination of rare earth elements. ICP-AES was used as an element-selective detector for HPLC. The separation of rare earth elements with HPLC helped to avoid erroneous analytical results due to spectral interferences. Fifteen rare earth elements (Y and 14 lanthanides) were determined selectively with the HPLC/ICP-AES system using a concentration gradient method. The detection limits with the present HPLC/ICP-AES system were about 0.001-0.3 μg/mL with a 100-μL sample injection. The calibration curves obtained by the peak height measurements showed linear relationships in the concentration range below 500 μg/mL for all rare earth elements. A USGS rock standard sample, rare earth ores, and high-purity lanthanide reagents (>99.9%) were successfully analyzed without spectral interferences

  6. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    Science.gov (United States)

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  7. Determination of Aluminum in Dialysis Concentrates by Atomic Absorption Spectrometry after Coprecipitation with Lanthanum Phosphate.

    Science.gov (United States)

    Selvi, Emine Kılıçkaya; Şahin, Uğur; Şahan, Serkan

    2017-01-01

    This method was developed for the determination of trace amounts of aluminum(III) in dialysis concentrates using atomic absorption spectrometry after coprecipitation with lanthanum phosphate. The analytical parameters that influenced the quantitative coprecipitation of analyte including amount of lanthanum, amount of phosfate, pH and duration time were optimized. The % recoveries of the analyte ion were in the range of 95-105 % with limit of detection (3s) of 0.5 µg l -1 . Preconcentration factor was found as 1000 and Relative Standard Deviation (RSD) % value obtained from model solutions was 2.5% for 0.02 mg L -1 . The accuracy of the method was evaluated with standard reference material (CWW-TMD Waste Water). The method was also applied to most concentrated acidic and basic dialysis concentrates with satisfactory results.

  8. Calibration in atomic spectrometry: A tutorial review dealing with quality criteria, weighting procedures and possible curvatures

    International Nuclear Information System (INIS)

    Mermet, Jean-Michel

    2010-01-01

    Calibration is required to obtain analyte concentrations in atomic spectrometry. To take full benefit of it, the adequacy of the coefficient of determination r 2 is discussed, and its use is compared with the uncertainty due to the prediction bands of the regression. Also discussed from a tutorial point of view are the influence of the weighting procedure and of different weighting factors, and the comparison between linear and quadratic regression to cope with curvatures. They are illustrated with examples based on the use of ICP-AES with nebulization and laser ablation, and of LIBS. Use of a calibration graph over several orders of magnitude may be problematic as well as the use of a quadratic regression to cope with possible curvatures. Instrument softwares that allow reprocessing of the calibration by selecting standards around the expected analyte concentration are convenient for optimizing the calibration procedure.

  9. Analysis of soil reference materials for vanadium(+5) species by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mandiwana, Khakhathi L.; Panichev, Nikolay

    2010-01-01

    Solid Certified Reference Materials (CRMs) with known vanadium(+5) content are currently not commercially available. Because of this, vanadium species have been determined in solid CRMs of soil, viz. CRM023-50, CRM024-50, CRM049-50, SQC001 and SQC0012. These CRMs are certified with only total vanadium content. Vanadium(+5) was extracted from soil reference materials with 0.1 M Na 2 CO 3 . The quantification of V(+5) was carried out by electrothermal atomic absorption spectrometry (ET-AAS). The concentration of V(+5) in the analyzed CRMs was found to be ranging between 3.60 and 86.0 μg g -1 . It was also found that SQC001 contains approximately 88% of vanadium as V(+5) species. Statistical evaluation of the results of the two methods by paired t-test was in good agreement at 95% level of confidence.

  10. Determination of Te in soldering tin using continuous flowing electrochemical hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jiang Xianjuan; Gan Wuer; Han Suping; He Youzhao

    2008-01-01

    An electrochemical hydride generation system was developed for the detection of Te by coupling an electrochemical hydride generator with atomic fluorescence spectrometry. Since TeH 2 is unstable and easily decomposes in solution, a reticular W filament cathode was used in the present system. The TeH 2 generated on the cathode surface was effectively driven out by sweeping gas from the cathode chamber. In addition, a low temperature electrochemical cell (10 deg. C) was applied to reduce the decomposition of TeH 2 in solution. The limit of detection (LOD) was 2.2 ng ml -1 and the relative standard deviation (RSD) was 3.9% for nine consecutive measurements of standard solution. This method was successfully employed for determination of Te in soldering tin material

  11. High-resolution continuum-source atomic absorption spectrometry: what can we expect?

    Directory of Open Access Journals (Sweden)

    Welz Bernhard

    2003-01-01

    Full Text Available A new instrumental concept has been developed for atomic absorption spectrometry (AAS, using a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator and a CCD array detector, providing a resolution of ~2 pm per pixel. Among the major advantages of the system are: i an improved signal-to-noise ratio because of the high intensity of the radiation source, resulting in improved photometric precision and detection limits; ii for the same reason, there are no more 'weak' lines, i.e. secondary lines can be used without compromises; iii new elements might be determined, for which no radiation source has been available; iv the entire spectral environment around the analytical line becomes 'visible', giving a lot more information than current AAS instruments; v the CCD array detector allows a truly simultaneous background correction close to the analytical line; vi the software is capable of storing reference spectra, e.g. of a molecular absorption with rotational fine structure, and of subtracting such spectra from the spectra recorded for a sample, using a least squares algorithm; vii although not yet realized, the system makes possible a truly simultaneous multi-element AAS measurement when an appropriate two-dimensional detector is used, as is already common practice in optical emission spectrometry; vii preliminary experiments have indicated that the instrumental concept could result in a more rugged analytical performance in the determination of trace elements in complex matrices.

  12. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za

    2015-03-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D{sub 2} and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground

  13. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    International Nuclear Information System (INIS)

    Katskov, Dmitri

    2015-01-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D 2 and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground water

  14. Column leaching experiments of a uranium ore by atomizing irrigation technique

    International Nuclear Information System (INIS)

    Zeng Yingying; Lei Zeyong; Chen Haihui

    2007-01-01

    Column leaching experiments ora uranium ore were made by atomizing irrigation technique. The leaching results are compared with the results obtained by spray irrigation and drip irrigation techniques respectively under the same conditions of column leaching experiments. The results show that the atomizing irrigation technique has more uniform solution distribution, higher leaching rate, shorter leaching period, and less ratio of liquid to solid. Consequently, the atomizing irrigation technique is suitable to the ore. (authors)

  15. Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Pedersen, Gitte Alsing; Larsen, Erik Huusfeldt

    1997-01-01

    An analytical method for the speciation of selenomethionine, selenocystine, selenite and selenate by high performance liquid chromatography (HPLC) with atomic spectrometric detection is presented. An organic polymeric strong anion exchange column was used as the stationary phase in combination...... spectrometry (ICP-MS). The signal-to-noise ratio of the FAAS detector was optimized using a hydrogen-argon entrained-air flame and a slotted-tube atom trap (STAT) in the flame. The limit of detection (3 sigma) achieved by the HPLC-FAAS system was 1 mg L-1 of selenium (100 mu L injections) for each of the four...

  16. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection

    Czech Academy of Sciences Publication Activity Database

    Huber, C. S.; Vale, M. G. R.; Dessuy, M. B.; Svoboda, Milan; Musil, Stanislav; Dědina, Jiří

    2017-01-01

    Roč. 175, DEC (2017), s. 406 -412 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LH15174 Institutional support: RVO:68081715 Keywords : slurry sampling * methyl-substituted arsenic species * hydride generation-cryotrapping-atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.162, year: 2016

  17. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  18. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection

    Czech Academy of Sciences Publication Activity Database

    Huber, C. S.; Vale, M. G. R.; Dessuy, M. B.; Svoboda, Milan; Musil, Stanislav; Dědina, Jiří

    2017-01-01

    Roč. 175, DEC (2017), s. 406-412 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LH15174 Institutional support: RVO:68081715 Keywords : slurry sampling * methyl-substituted arsenic species * hydride generation-cryotrapping-atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.162, year: 2016

  19. Performance of a liquid-junction interface for capillary electrophoresis mass spectrometry using continuous-flow fast-atom bombardment

    NARCIS (Netherlands)

    Reinhoud, N.J.; Niessen, W.M.A.; Tjaden, U.R.; Gramberg, L.G.; Verheij, E.R.; Greef, J. van der

    1989-01-01

    The on-line coupling of capillary electrophoresis and mass spectrometry using a continuous-flow fast-atom bombardment system in combination with a liquid-junction interface is described. The influence of the liquid-junction coupling on the efficiency and the resolution is investigated. Qualitative

  20. Advances in low atomic number element analysis by wavelength dispersive x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Vrebos, B.

    1996-01-01

    Traditionally, the analysis of low atomic number has been a chal1enging task for wavelength dispersive x-ray fluorescence spectrometry. Among the most important factors influencing analysis of the low atomic number elements (from Z=11 downwards) are the fluorescence yield, absorption and the dispersion. The effect of each of these factors on the overall performance will be illustrated. The long wavelengths involved (longer than I nm) used to pose severe problems concerning the monochromator used. Early instruments relied on lead stearate or Blodgett Langmuir soap films for the diffraction of the characteristic radiation. Nowadays, synthetic multilayers are commonly used. The performance of these multilayers is determined by the reflectivity, the resolution and the absorption of the characteristic radiation to be diffracted. These parameters can be optimised by adequately selecting the composition of the materials involved. The sensitivity of the modem instruments is sufficient to allow quantitative analysis. However, this aspect of WDS XRF is still met with considerable scepticism. Examples of quantitative analysis will be given to illustrate the current capability

  1. Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnosis

    International Nuclear Information System (INIS)

    Mermet, J.M.

    1991-01-01

    To optimize atomization and ionization processes in an inductively coupled plasma used as a source in atomic emission spectrometry, the Mg II 280.270-nm/Mg I 285-213-nm line intensity ratio is used. A theoretic ratio is calculated assuming a local thermodynamic equilibrium.A review of previously published experimental values of the ratio is given as a function of the parameters influencing the energy transfer between the plasma and injected species. In particular, the effects of the power, the carrier gas flow-rate, the i.d. of the torch injector, the use of a sheathing gas and the presence of hydrogen are described. Values of the ratio close to the theoretical values are obtained with a high power (>1.4 kW), a lower carrier gas flow-rate ( -1 ) and a large i.d. of the injector (>2 mm). This optimization can also be applied to the minimization of interference effects due to the presence of sodium. (author). 64 refs.; 9 figs.; 1 tab

  2. Quantitation of stable isotopic tracers of calcium by fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Jiang, X.; Smith, D.L.

    1987-01-01

    Instrumentation and methodology developed for quantitation of stable isotopic traces in urine are described. Calcium is isolated from urine as the insoluble oxalate salt which is subsequently dissolved in hydrochloric acid. The isotopic content of the acid solution is determined by use of a conventional mass spectrometer equipped with a fast atom bombardment ion source. Calcium ions are desorbed from the sample surface by a beam of high-energy xenon atoms and detected with a high-resolution mass spectrometer. A data acquisition system has been developed to control the mass spectrometer and record the ion signals. Detailed analysis of potential sources of error indicates that the precision of the method is presently limited primarily by an isotope effect that occurs during ion desorption. Results presented here demonstrate that the relative abundances of calcium isotopes in urine can be determined with high precision (coefficient of variation < 0.2%) and that the method is a viable alternative to conventional thermal ionization mass spectrometry. The method is especially attractive because it uses a conventional high-resolution mass spectrometer which is routinely used for analysis of organic substances

  3. Utilization of electrodeposition for electrothermal atomic absorption spectrometry determination of gold

    International Nuclear Information System (INIS)

    Konecna, Marie; Komarek, Josef

    2007-01-01

    Gold was determined by electrothermal atomic absorption spectrometry after electrochemical preconcentration on the graphite ridge probe used as a working electrode and sample support. The probe surface was electrochemically modified with Pd, Re and the mixture of both. The electrolysis of gold was performed under galvanostatic control at 0.5 mA. Maximum pyrolysis temperature for the probe surface modified with Pd was 1200 deg. C, with Re 1300 deg. C. The relative standard deviation for the determination of 2 μg l -1 Au was not higher than 5.6% (n = 8) for 2 min electrodeposition. The sensitivity of gold determination was reproducible for 300 electrodeposition and atomization cycles. When the probe surface was modified with a mixture of Pd and Re the detection limit was 31 ng l -1 for 2 min electrodeposition, 3.7 ng l -1 for 30 min, 1.5 ng l -1 for 1 h and 0.4 ng l -1 for 4 h electrodeposition, respectively. The procedure was applied to the determination of gold in river water samples. The relative standard deviation for the determination of 2.5 ng l -1 Au at 4 h electrodeposition time at 0.5 mA was 7.5%

  4. Assessment of calibration parameters for an aerial gamma spectrometry system using Monte-Carlo technique

    International Nuclear Information System (INIS)

    Srinivasan, P.; Raman, Anand; Sharma, D.N.

    2009-01-01

    Aerial gamma spectrometry is a very effective method for quickly surveying a large area, which might get contaminated following a nuclear accident, or due to nuclear weapon fallout. The technique not only helps in identifying the contaminating radionuclide but also in assessing the magnitude and the extent of contamination. These two factors are of importance for the authorities to quickly plan and execute effective counter measures and controls if required. The development of Airborne gamma ray spectrometry systems have been reported by different institutions. The application of these systems have been reported by different authors. Radiation Safety Systems Division of the Bhabha Atomic Research Centre has developed an Aerial Gamma Spectrometry System (AGSS) and the surveying methodology. For an online assessment of the contamination levels, it is essential to calibrate the system (AGSS) either flying it over a known contaminated area or over a simulated contaminated surface by deploying sealed sources on the ground. AGSS has been calibrated for different detectors in aerial exercises using such simulated contamination on the ground. The calibration methodology essentially needs net photo-peak counts in selected energy windows to finally arrive at the Air to Ground Correlation Factors at selected flight parameters such as altitude, speed of flight and the time interval at which each spectrum is acquired. This paper describes the methodology to predict all the necessary parameters like photon fluence at various altitudes, the photo-peak counts in different energy windows, Air to Ground Correlation Factors(AGCF), the dose rate at any height due to air scattered gamma ray photons etc. These parameters are predicted for a given source deployment matrix, detector and altitude of flying using the Monte-Carlo code MCNP (Monte Carlo Neutron and Photon Transport Code.CCC-200, RSIC, ORNL, Tennessee, USA). A methodology to generate the completely folded gamma ray count

  5. Measurements of uranium enrichment by four techniques of gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Tojo, Takao

    1983-12-01

    Measurements of uranium enrichment with the uses of the LMRI (France) UO 2 standards have been made by four techniques of gamma-ray spectrometry, in order to examine measurement characteristics of each technique. The following results were obtained by the three techniques based on the direct determination of the peak area of the 186-keV gamma-rays from 235 U, when the standard sample of 6.297 a/o was used for measuring enrichments ranging from 1.4 a/o to 9.6 a/o ; (i) In a LEPS HP Ge gamma-ray spectrometry, standard deviation of the measured enrichments from the certified ones was 1.4 %, (ii) in a Ge(Li) gamma-ray spectrometry, the standard deviation was 2.0 %, (iii) in a NaI(Tl) gamma-ray spectrometry, the standard deviation was 1.2 %. In the fourth technique, the method of multiple single-channel analyzers, enrichments of 1.4 - 9.6 a/o were measured in the standard deviation of 0.51 %, when the most suitable pairs of standard samples were used for each sample. A part of sources of systematic errors which were caused by each technique adopted was revealed throughout the measurements. And also, it was recognized that the LMRI's values of enrichment were certified precisely, and the UO 2 standards were very useful for enrichment measurements in the four techniques of gamma-ray spectrometry used here. (author)

  6. Application of thermospray flame furnace atomic absorption spectrometry for investigation of silver nanoparticles.

    Science.gov (United States)

    Sirirat, Natnicha; Tetbuntad, Kornrawee; Siripinyanond, Atitaya

    2017-03-01

    Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was applied to investigate the time-dependent absorption peak profile of various forms of silver. The thermospray flame furnace was set up with a 10-cm-long nickel tube with six holes, each 2.0 mm in diameter, to allow the flame to enter, and this nickel tube acted as a furnace. A sample of 300 μL was introduced into this furnace by use of water as a carrier at a flow rate of 0.5 mL min -1 through the ceramic capillary (0.5-mm inner diameter and 2.0-mm outer diameter), which was inserted into the front hole of the nickel tube. The system was applied to examine atomization behaviors of silver nanoparticles (AgNPs) with particle sizes ranging from 10 to 100 nm. The atomization rate of AgNPs was faster than that of the dissolved silver ion. With increased amount of silver, the decay time observed from the time-dependent absorption peak profile was shortened in the case of dissolved silver ion, but it was increased in the case of AgNPs. With the particle size ranging from 10 to 100 nm, the detection sensitivity was indirectly proportional to the particle size, suggesting that TS-FF-AAS may offer insights into the particle size of AgNPs provided that the concentration of the silver is known. To obtain quantitative information on AgNPs, acid dissolution of the particles was performed before TS-FF-AAS analysis, and recoveries of 80-110% were obtained.

  7. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  8. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H J; Bouanani, M E; Persson, L; Hult, M; Jonsson, P; Johnston, P N [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M; Zaring, C [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P N; Bubb, I F; Walker, B R; Stannard, W B [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  9. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Bouanani, M.E.; Persson, L.; Hult, M.; Jonsson, P.; Johnston, P.N. [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M. [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M.; Zaring, C. [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P.N.; Bubb, I.F.; Walker, B.R.; Stannard, W.B. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  10. Current medical research with the application of coupled techniques with mass spectrometry

    OpenAIRE

    Ka?u?na-Czapli?ska, Joanna

    2011-01-01

    Summary The most effective methods of analysis of organic compounds in biological fluids are coupled chromatographic techniques. Capillary gas chromatography/mass spectrometry (GC-MS) allows the most efficient separation, identification and quantification of volatile metabolites in biological fluids. Liquid chromatography-mass spectrometry (LC-MS) is especially suitable for the analysis of non-volatile and/or thermally unstable compounds. A major drawback of liquid chromatography-mass spectro...

  11. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  12. Isotope correlation and mass spectrometry techniques for irradiated fuel assay

    International Nuclear Information System (INIS)

    Deron, S.

    1985-01-01

    This paper outlines the methods used to account for fissionable materials in irradiated nuclear fuel elements entering reprocessing plants. Verification is accomplished at three mass balance stations in the plant. Techniques employed fall into two categories: isotopic and isotope dilution analyses by mass spectometry and isotope correlation techniques. These methods are discussed in some detail

  13. Comparison of two methods for blood lead analysis in cattle: graphite-furnace atomic absorption spectrometry and LeadCare(R) II system.

    Science.gov (United States)

    Bischoff, Karyn; Gaskill, Cynthia; Erb, Hollis N; Ebel, Joseph G; Hillebrandt, Joseph

    2010-09-01

    The current study compared the LeadCare(R) II test kit system with graphite-furnace atomic absorption spectrometry for blood lead (Pb) analysis in 56 cattle accidentally exposed to Pb in the field. Blood Pb concentrations were determined by LeadCare II within 4 hr of collection and after 72 hr of refrigeration. Blood Pb concentrations were determined by atomic absorption spectrometry, and samples that were coagulated (n = 12) were homogenized before analysis. There was strong rank correlation (R(2) = 0.96) between atomic absorption and LeadCare II (within 4 hr of collection), and a conversion formula was determined for values within the observed range (3-91 mcg/dl, although few had values >40 mcg/dl). Median and mean blood pb concentrations for atomic absorption were 7.7 and 15.9 mcg/dl, respectively; for LeadCare II, medians were 5.2 mcg/dl at 4 hr and 4.9 mcg/dl at 72 hr, and means were 12.4 and 11.7, respectively. LeadCare II results at 4 hr strongly correlated with 72 hr results (R(2) = 0.96), but results at 72 hr were lower (P atomic absorption. Although there have been several articles that compared LeadCare with other analytical techniques, all were for the original system, not LeadCare II. The present study indicated that LeadCare II results correlated well with atomic absorption over a wide range of blood Pb concentrations and that refrigerating samples for up to 72 hr before LeadCare II analysis was acceptable for clinical purposes.

  14. Theory and technique of spark source mass spectrometry; Theorie et technique de la spectrometrie de masse a etincelles

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    Trace analysis in solids by spark source mass spectrometry involves complicated phenomena: element ionization in spark and blacking of sensitive emulsion by focused ion beam. However the principal risk of selectivity lies in analyser system, which realizes double focusing only for a part of the ions. Therefore, each analyst has to known ionic optics of his apparatus, for ensuring the transmission of mean energetic ions, which are representative of sample composition. By a careful photometry of mass spectrum, good reproducibility can be obtained. Thereafter accuracy depends on the knowledge of sensitivity coefficients proper to this apparatus. (author) [French] L'analyse de traces dans les solides par spectrometrie de masse a etincelles met en jeu des phenomenes complexes qui sont l'ionisation des elements dans l'etincelle, et le noircissement de l'emulsion sensible par les faisceaux ioniques focalises. Cependant, le risque majeur de selectivite provient de l'ensemble analyseur, qui realise la double focalisation sur une fraction seulement du faisceau d'ions. L'analyste doit donc connaitre en detail l'optique ionique de son appareil, pour assurer le passage de la bande d'energie moyenne des ions, qui seule caracterise quantitativement la composition chimique de l'echantillon. Une exploitation photometrique soignee du spectrogramme donne alors des resultats reproductibles, dont la justesse ne depend plus que des coefficients de sensibilite propres a ce type d'instrument. (auteur)

  15. Determination of total antimony and inorganic antimony species by hydride generation in situ trapping flame atomic absorption spectrometry: a new way to (ultra)trace speciation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Henryk Matusiewicz; Magdalena Krawczyk

    2008-07-01

    The analytical performance of non-chromatographic coupled hydride generation, integrated atom trap (HG-IAT) atomizer flame absorption spectrometry (FAAS) systems were evaluated for the speciation analysis of antimony in environmental samples. Antimony, using formation of stibine (SbH{sub 3}) vapors were atomized in an air-acetylene flame-heated IAT. A new design of HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements was investigated. For the estimation of Sb(III) and Sb(V) concentrations in samples, the difference between the analytical sensitivities of the absorbance signals obtained for antimony hydride without and with previous treatment of samples with L-cysteine can be used. The concentration of Sb(V) was calculated by the difference between total Sb and Sb(III). A dramatic improvement in detection limit was achieved compared with that obtained using either of the atom trapping techniques, presented above, separately. This novel approach decreases the detection limit down to low pg mL{sup -1} levels. The concentration detection limit, defined as 3 times the blank standard deviation was 0.2 ng mL{sup -1}. For a 120 s in situ pre-concentration time , sensitivity enhancement compared to flame AAS, was 550 fold for Sb, using hydride generation-atom trapping technique. The accuracy of the method was verified by the use of certified reference materials (NIST SRM 2704 Buffalo River Sediment, SRM 2710 Montana Soil, SRM 1633a Coal Fly Ash, SRM 1575 Pine Needles, SRM 1643e Trace Elements in Water) and by aqueous standard calibration technique. The measured Sb content, in reference materials, were in satisfactory agreement with the certified values. The hyphenated technique was applied for antimony determinations in soil, sediment, coal fly ash, sewage and river water.

  16. Investigation of artifacts caused by deuterium background correction in the determination of phosphorus by electrothermal atomization using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Borges, Daniel L.G.; Welz, Bernhard; Silva, Marcia M.; Heitmann, Uwe

    2008-01-01

    The artifacts created in the measurement of phosphorus at the 213.6-nm non-resonance line by electrothermal atomic absorption spectrometry using line source atomic absorption spectrometry (LS AAS) and deuterium lamp background correction (D 2 BC) have been investigated using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). The absorbance signals and the analytical curves obtained by LS AAS without and with D 2 BC, and with HR-CS AAS without and with automatic correction for continuous background absorption, and also with least-squares background correction for molecular absorption with rotational fine structure were compared. The molecular absorption due to the suboxide PO that exhibits pronounced fine structure could not be corrected by the D 2 BC system, causing significant overcorrection. Among the investigated chemical modifiers, NaF, La, Pd and Pd + Ca, the Pd modifier resulted in the best agreement of the results obtained with LS AAS and HR-CS AAS. However, a 15% to 100% higher sensitivity, expressed as slope of the analytical curve, was obtained for LS AAS compared to HR-CS AAS, depending on the modifier. Although no final proof could be found, the most likely explanation is that this artifact is caused by a yet unidentified phosphorus species that causes a spectrally continuous absorption, which is corrected without problems by HR-CS AAS, but which is not recognized and corrected by the D 2 BC system of LS AAS

  17. Mechanism of selenium hydride atomization, fate of free atoms and temperature distribution in an argon shielded, highly fuel-rich, hydrogen-oxygen diffusion micro-flame studied by atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří; Lampugnani, L.; Matoušek, Tomáš

    2002-01-01

    Roč. 17, č. 3 (2002), s. 253-257 ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453; GA ČR GA203/98/0754 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride atomization * hydride generation * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.250, year: 2002

  18. Applicability of multisyringe chromatography coupled to cold-vapor atomic fluorescence spectrometry for mercury speciation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guzman-Mar, J.L.; Hinojosa-Reyes, L. [Department of Chemistry Sciences, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, Pedro de Alba s/n, C.P. 66451 San Nicolas de los Garza, Nuevo Leon (Mexico); Serra, A.M. [Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca (Spain); Hernandez-Ramirez, A. [Department of Chemistry Sciences, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, Pedro de Alba s/n, C.P. 66451 San Nicolas de los Garza, Nuevo Leon (Mexico); Cerda, V., E-mail: victor.cerda@uib.es [Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca (Spain)

    2011-12-05

    Graphical abstract: An automatic system, based on the applicability of multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) detection is developed for mercury speciation. Highlights: Black-Right-Pointing-Pointer The on-line coupling of MSC to CV/AFS was developed for mercury speciation analysis. Black-Right-Pointing-Pointer The speciation of MeHg{sup +}, Hg{sup 2+} and EtHg{sup +} was achieved on a RP C18 monolithic column. Black-Right-Pointing-Pointer The hyphenated system provided higher sample throughput compared to HPLC-CV/AFS. Black-Right-Pointing-Pointer The limits of detection for mercury species were comparable or better than those reported by HPLC-CV/AFS. Black-Right-Pointing-Pointer The developed method also provided low instrumental and operational costs. - Abstract: In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg{sup 2+}), methylmercury (MeHg{sup +}) and ethylmercury (EtHg{sup +}) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3{sigma}) were found to be 0.03, 0.11 and 0.09 {mu}g L{sup -1} for MeHg{sup +}, Hg{sup 2+} and EtHg{sup +}, respectively. The relative standard deviation (RSD, n = 6) of the

  19. [Determination of metals in waste bag filter of steel works by microwave digestion-flame atomic absorption spectrometry].

    Science.gov (United States)

    Ning, Xun-An; Zhou, Yun; Liu, Jing-Yong; Wang, Jiang-Hui; Li, Lei; Ma, Xiao-Guo

    2011-09-01

    A method of microwave digestion technique-flame atomic absorption spectrometry was proposed to determine the total contents of Cu, Zn, Pb, Cd, Cr and Ni in five different kinds of waste bag filters from a steel plant. The digestion effects of the six acid systems on the heavy metals digestion were studied for the first time. The relative standard deviation (RSD) of the method was between 1.02% and 9.35%, and the recovery rates obtained by standard addition method ranged from 87.7% to 105.6%. The results indicated that the proposed method exhibited the advantages of simplicity, speediness, accuracy and repeatability, and it was suitable for determining the metal elements of the waste bag filter. The results also showed that different digestion systems should be used according to different waste bag filters. The waste bag filter samples from different production processes had different metal elements content. The Pb and Zn were the highest in the waste bag filters, while the Cu, Ni, Cd and Cr were relatively lower. These determination results provided the scientific data for further treatment and disposal of the waste bag filter.

  20. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Hartmann, Georg; Schuster, Michael

    2013-01-25

    The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 ± 0.06 (particle size 2 nm) to 0.52 ± 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L(-1) is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L(-1). The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L(-1) is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. An introduction to the technique of combined ion mobility spectrometry-mass spectrometry for the analysis of complex biological samples

    International Nuclear Information System (INIS)

    McDowall, Mark A.; Bateman, Robert H.; Bajic, Steve; Giles, Kevin; Langridge, Jim; McKenna, Therese; Pringle, Steven D.; Wildgoose, Jason L.

    2008-01-01

    Full Text: Ultra Performance Liquid Chromatography (UPLC) offers several advantages compared with conventional High Performance Liquid Chromatography (HPLC) as an 'inlet system' for mass spectrometry. UPLC provides improved chromatographic resolution, increased sensitivity and reduced analysis time. This is achieved through the use of sub 2μm particles (stationary phase) combined with high-pressure solvent delivery (up to 15,000 psi). When coupled with orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS), UPLC presents a means to achieve high sample throughput with reduced spectral overlap, increased sensitivity, and exact mass measurement capabilities with high mass spectral resolution (Ca 20,000 FWHM). Dispersive ion mobility spectrometry (IMS) implemented within a traveling-wave ion guide provides an orthogonal separation strategy for ions in the gas phase that can resolve isobaric ions formed by either Electrospray of MALDI ionization typically in Ca 20 mille seconds. All three techniques have the potential to be combined on-line (e.g. UPLC-IMS-MS/MS) in real time to maximize peak capacity and resolving power for the analysis of complex biological mixtures including; intact proteins, modified peptides and endogenous/exogenous metabolites

  2. Surgical techniques for the atomic bomb survivors of thyroid cancer

    International Nuclear Information System (INIS)

    Takeichi, Nobuo; Dohi, Kiyohiko; Noso, Yoshihiro

    2016-01-01

    As for proper surgical techniques for radiation-induced thyroid carcinogenesis, this paper explains with a focus on the Hiroshima University cases, with an addition of the cases of Radiation Effects Research Foundation and Takeichi Clinic. The definitive diagnosis of thyroid cancer is usually carried out by echo-guided aspiration biopsy cytology, but Takeichi Clinic faces the surgery by preparing 'thyroid - cervical lymph node map' by combining this technique with CT and MRI. As the surgery examples at Hiroshima University, 259 cases during 1955-1972 and 363 cases during 1965-1982 were taken up, and the survival rate and cancer death rate classified by tissue types for 10 years after the initial operations were shown in a table. Dead patients were mostly the surgery cases of senior persons of 60 years in age or older, and the death rate for surgery cases of the persons of 19 years old or younger was only 1.9% at 6 cases. Higher cancer death rate was seen in the cases of papillary cancer of more than 5 cm in size, where extra glandular infiltration could not be curated or cut out, and 64/318 cases of patients had a recurrence of cancer at thyroid gland. The mortality rate up to 20 years after the surgery of atomic bomb survivors was not significantly different from that of non-victims. Information on the multicentric cancerous focuses and microscopic cancer in the thyroid gland, as well as the tissue types and high risk of cancer death were described from the cases of Hiroshima University and Takeichi Clinic. The thyroid cancer of radiation exposure victims often results in papillary cancer, and the following are described related with this: (1) selection of ablation method, (2) method to protect the parathyroid tissue, and (3) method to prevent damage to the recurrent laryngeal nerve and superior laryngeal nerve. The surgical procedure to perform the neck outside area lymph node dissection due to the quasi-subtotal or quasi-complete removal of the thyroid gland is

  3. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    Science.gov (United States)

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  4. Critical comparison of performances of inductively coupled plasma atomic emission spectrometry and neutron activation analysis for the determination of elements in human lungs

    International Nuclear Information System (INIS)

    Alimonti, A.; Coni, E.; Caroli, S.; Sabbioni, E.; Nicolaou, G.E.; Pietra, R.

    1989-01-01

    A study was carried out to assess the performance of inductively coupled plasma atomic emission spectrometry (ICP-AES) and neutron activation analysis (NAA) techniques for determining reference values for Al, Cd, Cr, Cu, Mg, Mn, V and Zn in human lungs of urban non-smoking subjects. Experimental data were subjected to the usual basic statistical tests to evaluate the respective merits of the two basically different analytical techniques. Both approaches, if used under carefully optimised experimental conditions, can yield reliable results affected only minimally by systematic and random errors. On the other hand, on a more routine basis, particular attention should be paid to elements such as Al, Cd and V which may pose some problems with both techniques. (author)

  5. Study to determine the content of vanadium, aluminum, nickel, sodium, iron and copper in a catalytic cracking catalyst, by using Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Gomez, J.; Alonso, A.; Tumbarell, O.; Bustanmete, E.

    2003-01-01

    Atomic Absorption Spectrometry (AAS), has the advantage of its simplicity, speed and low cost. All this, together with its high sensibility and selectivity, makes the AAS one the most widely used analytic techniques. The present work shows, the study to determine the content of vanadium, aluminum, nickel, sodium, iron and copper in a catalytic cracking catalyst of a refinery, by using this technique. The results are compared to those of two laboratories which use the ICP-AES and AAS techniques and shows the processing of the statistics with the use of the t of Student and the F of Snedecor. The results using different methods are also shown as well as the recommended application of this results in the chemical characterization of this type of catalysts

  6. Sapphire: a better material for atomization and in situ collection of silver volatile species for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Musil, Stanislav, E-mail: stanomusil@biomed.cas.cz; Matoušek, Tomáš; Dědina, Jiří

    2015-06-01

    Sapphire is presented as a high temperature and corrosion resistant material of an optical tube of an atomizer for volatile species of Ag generated by the reaction with NaBH{sub 4}. The modular atomizer design was employed which allowed to carry out the measurements in two modes: (i) on-line atomization and (ii) in situ collection (directly in the optical tube) by means of excess of O{sub 2} over H{sub 2} in the carrier gas during the trapping step and vice versa in the volatilization step. In comparison with quartz atomizers, the sapphire tube atomizer provides a significantly increased atomizer lifetime as well as substantially improved repeatability of the Ag in situ collection signals shapes. In situ collection of Ag in the sapphire tube atomizer was highly efficient (> 90%). Limit of detection in the on-line atomization mode and in situ collection mode, respectively, was 1.2 ng ml{sup −1} and 0.15 ng ml{sup −1}. - Highlights: • Sapphire was tested as a new material of an atomizer tube for Ag volatile species. • Two measurement modes were investigated: on-line atomization and in situ collection. • In situ collection of Ag was highly efficient (> 90%) with LOD of 0.15 ng ml{sup −1}. • No devitrification of the sapphire tube observed in the course of several months.

  7. Monitoring content of cadmium, calcium, copper, iron, lead, magnesium and manganese in tea leaves by electrothermal and flame atomizer atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Prkić Ante

    2017-08-01

    Full Text Available Due to the simplicity of tea preparation (pouring hot water onto different dried herbs and its high popularity as a beverage, monitoring and developing a screening methodology for detecting the metal content is very important. The concentrations of Cd, Ca, Cu, Fe, Pb, Mg and Mn in 11 different samples of sage (Salvia officinalis L., linden (Tilia L. and chamomile (Matricaria chamomilla L. purchased at local herbal pharmacy were determined using electrothermal atomizer atomic absorption spectrometry (ETAAS and flame atomizer atomic absorption spectrometry (FAAS. The concentrations determined were: Cd (0.012 – 0.470 mg kg−1, Ca (5209 – 16340 mg kg−1, Cu (22.01 – 33.05 mg kg−1, Fe (114.2 – 440.3 mg kg−1, Pb (0.545 – 2.538 mg kg−1, Mg (2649 – 4325 mg kg−1 and Mn (34.00 – 189.6 mg kg−1. Principal Component Analysis (PCA was applied to identify factors (soil and climate influencing the content of the measured elements in herbal samples. The proposed methodology developed in this work was successfully applied to the detection of metals in herbal samples. The analysis showed that the content of toxic metals in herbal teas was below the maximum dose recommended by the World Health Organization (WHO.

  8. Determination of cadmium in real water samples by flame atomic absorption spectrometry after cloud point extraction

    International Nuclear Information System (INIS)

    Naeemullah, A.; Kazi, T.G.

    2011-01-01

    Water pollution is a global threat and it is the leading world wide cause of death and diseases. The awareness of the potential danger posed by heavy metals to the ecosystems and in particular to human health has grown tremendously in the past decades. Separation and preconcentration procedures are considered of great importance in analytical and environmental chemistry. Cloud point is one of the most reliable and sophisticated separation methods for determination of traces quantities of heavy metals. Cloud point methodology was successfully employed for preconcentration of trace quantities of cadmium prior to their determination by flame atomic absorption spectrometry (FAAS). The metals react with 8-hydroxquinoline in a surfactant Triton X-114 medium. The following parameters such as pH, concentration of the reagent and Triton X-114, equilibrating temperature and centrifuging time were evaluated and optimized to enhance the sensitivity and extraction efficiency of the proposed method. Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation and the cadmium content was measured by FAAS. The validation of the procedure was carried out by spiking addition methods. The method was applied for determination of Cd in water samples of different ecosystems (lake and river). (author)

  9. Determination of mercury in rice by cold vapor atomic fluorescence spectrometry after microwave-assisted digestion

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria Jose da [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain); Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Cidade Universitaria, 50740-550 Recife, PE (Brazil); Paim, Ana Paula S. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Cidade Universitaria, 50740-550 Recife, PE (Brazil); Pimentel, Maria Fernanda [Departamento de Engenharia Quimica, Universidade Federal de Pernambuco, Recife, PE (Brazil); Cervera, M. Luisa, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain); Guardia, Miguel de la [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain)

    2010-05-14

    A cold vapor atomic fluorescence spectrometry method (CV-AFS) has been developed for the determination of Hg in rice samples at a few ng g{sup -1} concentration level. The method is based on the previous digestion of samples in a microwave oven with HNO{sub 3} and H{sub 2}O{sub 2} followed by dilution with water containing KBr/KBrO{sub 3} and hydroxylamine and reduction with SnCl{sub 2} in HCl using external calibration. The matrix interferences and the effect of nitrogen oxide vapors have been evaluated and the method validated using a certified reference material. The limit of detection of the method was 0.9 ng g{sup -1} with a recovery percentage of 95 {+-} 4% at an added concentration of 5 ng g{sup -1}. The concentration level of Hg found in 24 natural rice samples from different origin ranged between 1.3 and 7.8 ng g{sup -1}.

  10. Wet sample digestion for quantification of vanadium(V) in serum by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Heinemann, G.; Vogt, W.; Jacob, K.

    1999-01-01

    Three types of pressure digestion systems used prior to the determination of the ultratrace element vanadium by electrothermal atomic absorption spectrometry were evaluated: The high-pressure ashing (HPA) system, the DAB III pressure digestion system and the pressurized microwave digestion (PMD) system. Complete sample digestion and no loss of graphite tube sensitivity as well as reliable vanadium values could only be achieved with HPA digests of freeze-dried serum. The mean recovery rate was 98% and no loss of tube sensitivity could be observed. Using non-lyophilized serum the mean recovery rate was 70%. The DAB III digestion system, vicarious for closed pressure digestion in steel bombs with an allowable temperature up to about 200C, cannot be recommended to mineralize human biological material for vanadium determinations, because the remaining not completely decomposed organic compounds extracted together with the vanadium-cupferron complex caused a marked carbon-buildup and formation of carbides in the graphite tube were found to change the shape of the absorption signals distinctly, and to decline the tube sensitivity strongly (about 25%) so that reliable results cannot be achieved. The recovery rate was too low in general (about 50%). In addition, a subsequent treatment of the DAB III digests with perchloric acid was unsuccessful. The PMD system proved to be not suited, because the samples became highly contaminated by vanadium possibly from the titan seal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.

    Science.gov (United States)

    Gokce, Kaya; Mehmet, Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks.

  12. [Research on optimization of mathematical model of flow injection-hydride generation-atomic fluorescence spectrometry].

    Science.gov (United States)

    Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li

    2014-01-01

    Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions.

  13. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Chan, George C. Y. [Bloomington, IN; Hieftje, Gary M [Bloomington, IN

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  14. Determination of some metal ions in various meat and baby food samples by atomic spectrometry.

    Science.gov (United States)

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2016-04-15

    In this paper, we report a simple and rapid solid phase extraction system for the separation/preconcentration and determination of Cd(II), Co(II), Cu(II), Fe(III), Cr(III), Pb(II), and Zn(II) ions by flame atomic absorption spectrometry (FAAS). This method is based upon the retention of metal ions on a column packed with poly[N-(3-methyl-1H-indole-1-yl)]-2-methacrylamide-co-2-acrylamido-2-methyl-1-propane sulphonic acid-co divinylbenzene] (MMAD) resin as a solid-phase extraction (SPE) sorbent at pH 8. At the optimized conditions, the limits of detection (3 s/b) between 0.12 and 1.6 μg L(-1), preconcentration factor of 100, and the relative standard deviation of ⩽1.8% were achieved (n=10). The accuracy of the method was verified by analyzing certified reference materials (CRMs) and performing recovery experiments. The developed method was successfully applied to the various natural water, meat products and baby food samples. The recoveries of analyte ions were found in added real samples and CRMs from 95% to 102%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Speciation of iron (II) and (III) by using solvent extraction and flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yaman, Mehmet; Kaya, Gokce

    2005-01-01

    A method for speciation, preconcentration and separation of Fe 2+ and Fe 3+ in different matrices was developed using solvent extraction and flame atomic absorption spectrometry. PAN as complexing reagent for Fe 2+ and chloroform as organic solvent were used. The complex of Fe 2+ -PAN was extracted into chloroform phase in the pH range of 0.75-4.0 and Fe 3+ remains in water phase in the pH range 0.75-1.25. The optimum conditions for maximum recovery of Fe 2+ and minimum recovery of Fe 3+ were determined as pH = 1, the stirring time of 20 min, the PAN amount of 0.5 mg and chloroform volume of 8 mL. The developed method was applied to the determination of Fe 2+ and Fe 3+ in tea infusion, fruit juice, cola and pekmez. It is seen that there is high bioavailable iron (Fe 2+ ) in pekmez. The developed method is sensitive, simple and need the shorter time in comparison with other similar studies

  16. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    Science.gov (United States)

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology

  17. Analysis of [U-13C6]glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry compared with two other mass spectrometry techniques

    NARCIS (Netherlands)

    Schierbeek, H.; Moerdijk-Poortvliet, T.C.W.; van den Akker, C.H.P.; te Braake, F.W.J.; Boschker, H.T.S.; van Goudoever, J.B.

    2009-01-01

    The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C-isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques

  18. Determination of silver in fresh water by atomic absorption spectrometry following flotation preconcentration by iron(III) collectors

    Energy Technology Data Exchange (ETDEWEB)

    Cundeva, K.; Stafilov, T. [Institute of Chemistry, Faculty of Science, St. Cyril and Methodius University, Skopje (Yugoslavia)

    1997-08-01

    Colloid precipitate flotation of silver from fresh water is applied for preconcentration and separation. Optimal conditions using hydrated iron(III) oxide and iron(III) tetramethylenedithiocarbamate as collectors were investigated. Various factors affecting the silver recovery, including collector mass, nature of the supporting electrolyte, pH of the working medium, electrokinetic potential of the collector particle surfaces, type of surfactant, induction time etc., were checked. Within the optimal pH range (5.5-6.5) silver was separated quantitatively (94.9- 100.0%) with 30 mg Fe(III) as collector. The content of silver was determined by electrothermal atomic absorption spectrometry and compared to that from inductively coupled plasma-atomic emission spectrometry. The detection limit of silver by the method described is 0.01 {mu}g/L. (orig.) With 2 figs., 3 tabs.

  19. Method Comparison of Neutron Activation Analysis and Atomic Absorption Spectrometry for Determination of Zinc in Food Samples

    International Nuclear Information System (INIS)

    Endah Damastuti; Syukria Kurniawati; Natalia Adventini

    2009-01-01

    Zinc as a micro nutrient, has important roles in human metabolism system. It is required by the body in appropriate amount from food intake. Due to the very low concentration of Zinc in food, high selectivity and sensitivity analysis technique is required for the determination, such as Neutron Activation Analysis (NAA) and Atomic Absorption Spectrometry (AAS). In this experiment, both methods were compared in zinc analysis of food samples. The subject of this experiment is to examine of those methods conformity and improving the technique capability in zinc analysis in food sample. Those methods were validated by analyzing zinc in SRM NIST 1548a Typical Diet and were tested its accuracy and precision. The results of Zn concentration were 25.1 ± 2.14 mg/kg by NAA and 24.1 ± 1.40 mg/kg by AAS while the certificate value was 24.6 ± 1.80 mg/kg. Percentage of relative bias, %CV, μ-test score and HORRAT(Horwitz ratio) value given by NAA were 2%, 8.5%, 0.18 and 0.9 respectively, while %relative bias, %CV, μ-test score and HORRAT value given by AAS were 2%, 5.8 %, 0.20 and 0.6 respectively. The result obtained for Zn concentration in various food samples by NAA and AAS were varied from 13.7 – 29.3 mg/kg with mean value 19.8 mg/kg and 11.2 – 26.0 mg/kg with mean value 17.3 mg/kg (author)

  20. Survey on result promotion of the atomic force technique

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Masato; Okuno, Yumiko [Nikkei Research Inst. of Industry and Markets, Tokyo (Japan)

    1998-02-01

    By change of environment around research and development of atomic force, investigation has been recently executed not only on a theme directing a specific aim, but also on technical development considering some applications to the other field reflected by social needs. Therefore, an effective procedure and program capable of reflecting and promoting results of the atomic fore development to other industrial field were necessary. In this study, methods of evaluation and industrialization on study results of the atomic force were investigated. As a result, in order to promote the study results to other field, it was found to be important that some free reasons and concept engineering to mediate between developing and applying sides were to be present. In addition, it was suggested by some searches that a new atomic industry has a probability to be created by using potential energies such as heat, radiation, pulse, and so on. In this paper, evaluation on industrialization of the atomic force technical resources, and establishment of the industrialization program were described. (G.K.)

  1. Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Choi, Kwang Soon; Moon, Jong Hwa; Kim, Sun Ha; Lim, Jong Myoung; Kim, Young Jin; Quraishi, Shamshad Begum

    2003-05-01

    Elemental analyses for certified reference materials were carried out using instrumental neutron activation analysis and inductively coupled plasma-atomic emission spectrometry. Five Certified Reference Materials (CRM) were selected for the study on comparative analysis of environmental samples. The CRM are Soil (NIST SRM 2709), Coal fly ash (NIST SRM 1633a), urban dust (NIST SRM 1649a) and air particulate on filter media (NIST SRM 2783 and human hair (GBW 09101)

  2. Determination of trace amounts of selenium in minerals and rocks by flame less atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Alduan, F. A.; Capdevilla, C.

    1980-01-01

    The determination of trace amounts of selenium In silicate rocks and feldspar by solvent extraction and graphite furnace atomic-absorption spectrometry has been stu- died. Sodium diethyl-ditio carbamate and ammonium pyrrolidine dithiocarbamate have been tried as chelating agents. The best results are achieved when selenium is extracted Into carbon tetrachloride as the sodium diethyldithiocarbamate complex. The method allows to detect 0,75 ppm of selenium in the sample. Recoveries are about 100%. (Author) 7 refs

  3. Determination of calcium, copper, chromium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.

    1981-01-01

    The direct determinacao of calcium, copper, chomium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry with, air-acetylene flame is proposed. Effects of fuel/oxidant ratio, burner height and water content in the samples were investigated in detail. The method allows the determition of the elements with good precision (r.s.d. -1 for the elements tested. (author) [pt

  4. Mass determination of U-233 and Pu-239 by gamma spectrometry technique

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Pugliesi, R.

    1988-09-01

    The gamma spectrometry technique has been used for masses determinations of uranium-233 and plutonium-239, granted by AERE-HARWELL. A high purity Ge semicondutor detector was used and the total efficiency curve was obtained for the counting system in the energy range 13 KeV to 135 KeV. The calculated values for the masses compared with that obtained by means of gravimetry technique. (author) [pt

  5. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    OpenAIRE

    Becker, Emilene M.; Rampazzo, Roger T.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Silva, Márcia M. da; Welz, Bernhard; Katskov, Dmitri A.

    2011-01-01

    Acesso restrito: Texto completo. In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd+0.03% (m/v) Mg+0.05% (v/v) Triton X-...

  6. Curve resolution and figures of merit estimation for determination of trace elements in geological materials by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Lorber, A.; Harel, A.; Goldbart, Z.; Brenner, I.B.

    1987-01-01

    In geochemical analysis using inductively coupled plasma atomic emission spectrometry (ICP-AES), spectral interferences and background enhancement in response to sample concomitants are the main cause of deterioration of the limit of detection (LOD) and inaccuracy of the determination at the trace and minor element levels. In this account, the authors describe the chemometric procedure of curve resolution for compensating for these sources of error. A newly developed method for calculating figures of merit is used to evaluate the correction procedure, test the statistical significance of the determined concentration, and determine LODs for each sample. The technique involves scanning the vicinity of the spectral line of the analyte. With prior knowledge of potential spectral interferences, deconvolution of the overlapped response is possible. Analytical data for a wide range of geological standard reference materials demonstrate the effectiveness of the chemometric techniques. Separation of 0.002 nm spectral coincidence, employing a 0.02 nm resolution spectrometer, is demonstrated

  7. Speciation analysis of arsenic compounds in seafood by ion chromatography-atomic fluorescence spectrometry

    Science.gov (United States)

    Han, Tingting; Ji, Hongwei; Li, Huixin; Cui, He; Song, Tian; Duan, Xiaojuan; Zhu, Qianlin; Cai, Feng; Zhang, Li

    2017-06-01

    Ion chromatography-ultra violet-hydride generation-Atomic Florescence Spectrometry was applied to detect 5 arsenic species in seafoods. The arsenic species studied include arsenobetaine (AsB), arsenite (As(III)), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and arsenate (As(V)), which were extracted from samples using 2% formic acid. Gradient elution using 33 mmol L-1 CH3COONH4 and 15 mmol L-1 Na2CO3 with 10 mL CH3CH2OH at pH 8.4 allowed the chromatographic separation of all the species on a Hamilton PRP-X100 anion-exchange column in less than 8 min. In this study, an ultrasound extraction method was used to extract arsenic species from seafood. The extraction efficiency was good and the recoveries from spiked samples were in the range of 72.6%-109%; the precision between sample replicates was higher than 3.6% for all determinations. The detection limits were 3.543 μg L-1 for AsB, 0.426 μg L-1 for As(III), 0.216 μg L-1 for DMA, 0.211 μg L-1 for MMA, and 0.709 μg L-1 for As(V), and the linear coefficients were greater than 0.999. We also developed an application of this method for the determination of arsenic species in bonito, Euphausia superba, and Enteromorpha with satisfactory results. Therefore, it was confirmed that this method was appropriate for the detection of arsenic species in seafood.

  8. Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li Xun [Department of Chemistry, Beijing Normal University, Beijing 100875 (China); Department of Chemistry and Life Science, Gannan Teachers College, Ganzhou 341000 (China); Jia Jing [Department of Chemistry, Beijing Normal University, Beijing 100875 (China); Wang Zhenghao [Department of Chemistry, Beijing Normal University, Beijing 100875 (China)]. E-mail: zhwang@bnu.edu.cn

    2006-02-23

    A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l{sup -1} H{sub 2}SO{sub 4}. Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml{sup -1} for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml{sup -1} for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml{sup -1} As(III) and 2.5% for 20 ng ml{sup -1} As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine.

  9. Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li Xun; Jia Jing; Wang Zhenghao

    2006-01-01

    A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l -1 H 2 SO 4 . Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml -1 for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml -1 for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml -1 As(III) and 2.5% for 20 ng ml -1 As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine

  10. Direct determination of beryllium, cadmium, lithium, lead and silver in thorium nitrate solution by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Thulasidas, S.K.; Kulkarni, M.J.; Porwal, N.K.; Page, A.G.; Sastry, M.D.

    1988-01-01

    An electrothermal atomization atomic absorption spectrometric (ET-AAS) method is developed for the direct determination of Ag, Be, Cd, Li and Pb in thorium nitrate solution. The method offers detection of sub-nanogram amounts of these analytes in 100-microgram thorium samples with a precision of around 10%. A number of spiked samples and pre-analyzed ThO 2 samples have been analyzed to evaluate the performance of the analytical methods developed here

  11. Elemental characterization of herbal medicines used in Ghana by instrumental neutron activation analysis and atomic absorption spectrometry and multivariate statistical analysis

    International Nuclear Information System (INIS)

    Ayivor, J.E.; Nyarko, B.J.B.; Dampare, S.B.; Okine, L.K.

    2010-01-01

    k 0 instrumental neutron activation analysis and atomic absorption spectrometry were applied to determine multi elements in thirteen Ghanaian herbal medicines used for the management of various diseases. Concentrations of AI, Cu, Mg, Mn and Na were determined. As, Br, K, CI, and Na were determined by short and medium irradiations at a thermal neutron flux of 5x10ncm -2 s -1 . Fe, Cr, Pb, Co, Ni, Sn, Ca, Ba, Li and Sb were determined using atomic absorption spectrometry. Ba, Cu, Li and V were present at trace levels whereas AI, CI, Na, Ca were present at major levels. K, Br, Mg, Mn, Co, Ni, Fe and Sb were also present at minor levels. The precision and accuracy of the method using real samples and standard reference materials were within ±10% of the reported value. Multivariate analytical techniques, such as cluster analysis and principal component analysis (PCA)/factor analysis (FA), have been applied to evaluate the chemical variations in the herbal medicine dataset. All the 13 samples may be grouped into two statistically significant clusters, reflecting the different chemical compositions. The concentrations of elements were within the recommended daily allowances or maximum permissible levels posing no adverse effects on human health.

  12. UV light-emitting-diode photochemical mercury vapor generation for atomic fluorescence spectrometry.

    Science.gov (United States)

    Hou, Xiaoling; Ai, Xi; Jiang, Xiaoming; Deng, Pengchi; Zheng, Chengbin; Lv, Yi

    2012-02-07

    A new, miniaturized and low power consumption photochemical vapor generation (PVG) technique utilizing an ultraviolet light-emitting diode (UV-LED) lamp is described, and further validated via the determination of trace mercury. In the presence of formic acid, the mercury cold vapor is favourably generated from Hg(2+) solutions by UV-LED irradiation, and then rapidly transported to an atomic fluorescence spectrometer for detection. Optimum conditions for PVG and interferences from concomitant elements were investigated in detail. Under optimum conditions, a limit of detection (LOD) of 0.01 μg L(-1) was obtained, and the precision was better than 3.2% (n = 11, RSD) at 1 μg L(-1) Hg(2+). No obvious interferences from any common ions were evident. The methodology was successfully applied to the determination of mercury in National Research Council Canada DORM-3 fish muscle tissue and several water samples.

  13. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianjuan [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gan Wuer, E-mail: wgan@ustc.edu.cn [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan Lingzhong; Deng Yun; Yang Qinghua; He Youzhao [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH{sub 4} and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL{sup -1} (3{sigma}) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL{sup -1} Sn(IV) standard solution.

  14. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode.

    Science.gov (United States)

    Jiang, Xianjuan; Gan, Wuer; Wan, Lingzhong; Deng, Yun; Yang, Qinghua; He, Youzhao

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH(4) and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL(-1) (3σ) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL(-1) Sn(IV) standard solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable

  16. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Georg, E-mail: georg.hartmann@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany); Schuster, Michael, E-mail: michael.schuster@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. Black-Right-Pointing-Pointer A selective ligand (sodium thiosulphate) is introduced for species separation. Black-Right-Pointing-Pointer A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. Black-Right-Pointing-Pointer Measurement of samples with high natural organic mater content is possible. Black-Right-Pointing-Pointer Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 {+-} 0.06 (particle size 2 nm) to 0.52 {+-} 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L{sup -1} is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L{sup -1}. The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L{sup -1} is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  17. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hartmann, Georg; Schuster, Michael

    2013-01-01

    Highlights: ► We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. ► A selective ligand (sodium thiosulphate) is introduced for species separation. ► A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. ► Measurement of samples with high natural organic mater content is possible. ► Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 ± 0.06 (particle size 2 nm) to 0.52 ± 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L −1 is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L −1 . The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L −1 is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  18. Cloud point extraction for trace inorganic arsenic speciation analysis in water samples by hydride generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shan, E-mail: ls_tuzi@163.com; Wang, Mei, E-mail: wmei02@163.com; Zhong, Yizhou, E-mail: yizhz@21cn.com; Zhang, Zehua, E-mail: kazuki.0101@aliyun.com; Yang, Bingyi, E-mail: e_yby@163.com

    2015-09-01

    A new cloud point extraction technique was established and used for the determination of trace inorganic arsenic species in water samples combined with hydride generation atomic fluorescence spectrometry (HGAFS). As(III) and As(V) were complexed with ammonium pyrrolidinedithiocarbamate and molybdate, respectively. The complexes were quantitatively extracted with the non-ionic surfactant (Triton X-114) by centrifugation. After addition of antifoam, the surfactant-rich phase containing As(III) was diluted with 5% HCl for HGAFS determination. For As(V) determination, 50% HCl was added to the surfactant-rich phase, and the mixture was placed in an ultrasonic bath at 70 °C for 30 min. As(V) was reduced to As(III) with thiourea–ascorbic acid solution, followed by HGAFS. Under the optimum conditions, limits of detection of 0.009 and 0.012 μg/L were obtained for As(III) and As(V), respectively. Concentration factors of 9.3 and 7.9, respectively, were obtained for a 50 mL sample. The precisions were 2.1% for As(III) and 2.3% for As(V). The proposed method was successfully used for the determination of trace As(III) and As(V) in water samples, with satisfactory recoveries. - Highlights: • Cloud point extraction was firstly established to determine trace inorganic arsenic(As) species combining with HGAFS. • Separate As(III) and As(V) determinations improve the accuracy. • Ultrasonic release of complexed As(V) enables complete As(V) reduction to As(III). • Direct HGAFS analysis can be performed.

  19. Comparison of inductively coupled plasma mass spectrometry with inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis for the determination of rare earth elements in Greek bauxites

    International Nuclear Information System (INIS)

    Ochsenkuehn-Petropoulou, Maria; Luck, Joachim

    1991-01-01

    Fore the determination of rare earth elements (REE) in bauxitic materials the techniques of inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and instrumental neutron activation analysis (INAA) were compared. In the NIST (National Institute of Standards and Technology) bauxites SRM 697 Dominican, and SRM 69 b Arkansas, the concentration of some REEs were determined. With the reference bauxite BX-N of the ARNT (Association Nationale de la Recherche Technique) the precision and accuracy of ICP-AES for the determination of REEs in bauxites was tested. Furthermore, Greek bauxites of the Parnassos-Giona area were investigated. In a comparison of the three methods it was possible to calculate from the data series the precision of each method, which showed that the tendency found in the deviations for the different REEs is in accordance with published values. Also the limits of detection for REEs in bauxites were calculated and found to be in the same range as those in the literature. (author)

  20. Determination of arsenic and cadmium in shellfish samples by graphite furnace atomic absorption spectrometry using matrix modifier

    International Nuclear Information System (INIS)

    Cortez Diaz, Mirella del Carmen

    2002-01-01

    Heavy metals are a big source of environmental contamination and are also highly toxic to humans. Since shellfish are bio-accumulators of these metals, proper techniques for quantifying them should be available. This work aims to develop an analytical method for the quantitative determination of heavy metals in biological materials (shellfish), specifically arsenic and cadmium at the trace level, using graphite furnace atomic absorption spectrometry, for which nickel and phosphate solutions were used to modify the modifiers. Prior to the analysis, the sample was diluted with nitric acid in a DAB II pressure digestion system order to destroy the organic matter. The instrument conditions were initially set (wavelength, slit, integration peaks, graphite tube, etc.), then the work range was defined for each element and the most appropriate operational parameters were studied, such as: temperature, ramp times, hold times and internal gas flow, in the different stage of the electrothermal treatment (drying, calcination, atomization) for the furnace program. Once the above mentioned conditions were set and since this was a biological sample, a matrix chemical modifier had to be used, in order to make the elements that accompany the element being studied more volatile. In this way the chemical and spectral interferences decrease together with the high background absorption of the matrix. Therefore, different matrix modifiers were studied for the definition of each analyte. The method validation was done using Certified Oyster Tissue Reference Material N o 1566a from the National Institute of Standards and Technology applying different tests in order to eliminate outliers. Repeatability, uncertainty, sensitivity, lineal range, working range, detection limit and quantification limit were evaluated for each element, and the results were compared with the values for the certified material. The Fisher and Student tests were the statistical tools used. The experimental values

  1. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Science.gov (United States)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6-4.3%), repeatability (4-9%), reproducibility (9-11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as straightforward

  2. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6–4.3%), repeatability (4–9%), reproducibility (9–11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as

  3. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    Science.gov (United States)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  4. Study on the application of electrothermal atomization atomic absorption spectrometry for the determination of metallic Cu, Pb, Zn, Cd traces in sea water samples

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Dung; Doan Thanh Son; Tran Thi Ngoc Diep

    2004-01-01

    The trace amount of some heavy metallic elements (Cu, Zn, Pb, Cd) in sea water samples were determined directly (without separation) and quantitatively by using Electro-Thermal Atomization Atomic Absorption Spectrometry (ETA-AAS). The effect of mainly major constituents such as Na, Mg, Ca, K, and the mutual effect of the trace elements, which were present in the matrix on the absorption intensity of each analyzed element was studied. The adding of a certain chemical modification for each trace element was also investigated in order to eliminate the overall effect of the background during the pyrolysis and atomization. The sea water sample after fitrating through a membrane with 0.45 μm-hole size was injected in to the graphite tube via an autosampler (MPE50). The absorption intensity of each element was then measured on the VARIO-6 under the optimum parameters for spectrometer such as: maximum wavelength, current of hollow cathode lamp, and that for graphite furnace such as dry temperature, pyrolysis temperature, atomization temperature, ect. The analytical procedures were set-up and applied for the determination of these above mentioned elements in the synthesized sea water sample and in the real sea water samples with high precision and accuracy. (author)

  5. Overview of Three-Dimensional Atomic-Resolution Holography and Imaging Techniques: Recent Advances in Local-Structure Science

    Science.gov (United States)

    Daimon, Hiroshi

    2018-06-01

    Local three-dimensional (3D) atomic arrangements without periodicity have not been able to be studied until recently. Recently, several holographies and related techniques have been developed to reveal the 3D atomic arrangement around specific atoms with no translational symmetry. This review gives an overview of these new local 3D atomic imaging techniques.

  6. Sapphire: a better material for atomization and in situ collection of silver volatile species for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Matoušek, Tomáš; Dědina, Jiří

    2015-01-01

    Roč. 108, JUN (2015), s. 61-67 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : silver * volatile species generation * sapphire tube atomizer Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  7. [A comparative study of cadmium, lead, mercury, arsenic, selenium, manganese, copper and zinc in brown rice and fish by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption spectrometry].

    Science.gov (United States)

    Oshima, Harumi; Ueno, Eiji; Saito, Isao; Matsumoto, Hiroshi

    2004-10-01

    A study was conducted to evaluate the applicability of ICP-MS techniques for determination of metals in brown rice and fish. Cadmium, lead, mercury, arsenic, selenium, manganese, copper and zinc were determined by this method. An open digestion with nitric acid (Method A) and a rapid open digestion with nitric acid and hydrochloric acid (Method B) were used to solubilize analytes in samples, and these procedures were followed by ICP-MS analysis. Recovery of certified elements from standard reference materials by Method A and Method B ranged from 92 to 110% except for mercury (70 to 100%). Analytical results of brown rice and fish samples obtained by this ICP-MS agreed with those obtained by atomic absorption spectrometry (AAS). The results of this study demonstrate that quadrupole ICP-MS provides precise and accurate measurements of the elements tested in brown rice and fish samples.

  8. Determination of concentration of heavy metals (Pb, Cd, Fe) in animal tissues using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    RAZAFINTSALAMA, V.T.

    2009-01-01

    Heavy metals are classified among the inorganic compounds. The latter type of metal is found in rocks, fertilizers, urban mud but may also originate from the atmospheric pollution. A particular characteristic of heavy metals is their bioaccumulation in the food chain. Therefore, lead and cadmium, which are classified as heavy metals may be easily found in animal products and can lead to food poisoning if their concentrations are higher than the maximum permissible values as requested by international agencies such as the c odex alimentarius . The values are set down and differ according to types of food for human consuption and the trading companies take action accordingly. Therefore, it is necessary to set up a quality control system through analytical laboratory measurements and testings. This study underlies the method of determination of lead, cadmium and iron in animal tissues by atomic absorption spectrometry. The results showed that the method is sensitive and reliable. For each analyte, the Z-score lies between -2 and 2, indicating that the method is working properly. The analytical results showed that: (i) only beef and chicken meats and beef liver contain lead [0,09μg.g - 1; 0,29μg.g - 1]. The limit value of 0,1μg.g - 1 is almost reached in beef and chicken meats, (ii) as far as cadmium is concerned, the five studied samples contain this analyte [0,02μg.g - 1; 0,9μg.g - 1]. Except the chicken liver of which the concentration (0,15μg.g - 1) exceeds the maximum permissible value (0,1μg.g - 1), the others are in conformity with the standards and appropriate to be consumed,(iii) iron is higher in the liver and kidney samples: beef liver 282mg.g - 1, chicken liver 250 mg.g - 1, pork kidney 247mg.g - 1. The study also showed that the calcium concentration in animal tissues is low and they can be classified as poor-calcium food. [fr

  9. Mass spectrometry techniques in the survey of steroid metabolites as potential disease biomarkers: a review.

    Science.gov (United States)

    Gouveia, Maria João; Brindley, Paul J; Santos, Lúcio Lara; Correia da Costa, José Manuel; Gomes, Paula; Vale, Nuno

    2013-09-01

    Mass spectrometric approaches have been fundamental to the identification of metabolites associated with steroid hormones, yet this topic has not been reviewed in depth in recent years. To this end, and given the increasing relevance of liquid chromatography-mass spectrometry (LC-MS) studies on steroid hormones and their metabolites, the present review addresses this subject. This review provides a timely summary of the use of various mass spectrometry-based analytical techniques during the evaluation of steroidal biomarkers in a range of human disease settings. The sensitivity and specificity of these technologies are clearly providing valuable new insights into breast cancer and cardiovascular disease. We aim to contribute to an enhanced understanding of steroid metabolism and how it can be profiled by LC-MS techniques. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  10. [Evaluation of uncertainty for determination of tin and its compounds in air of workplace by flame atomic absorption spectrometry].

    Science.gov (United States)

    Wei, Qiuning; Wei, Yuan; Liu, Fangfang; Ding, Yalei

    2015-10-01

    To investigate the method for uncertainty evaluation of determination of tin and its compounds in the air of workplace by flame atomic absorption spectrometry. The national occupational health standards, GBZ/T160.28-2004 and JJF1059-1999, were used to build a mathematical model of determination of tin and its compounds in the air of workplace and to calculate the components of uncertainty. In determination of tin and its compounds in the air of workplace using flame atomic absorption spectrometry, the uncertainty for the concentration of the standard solution, atomic absorption spectrophotometer, sample digestion, parallel determination, least square fitting of the calibration curve, and sample collection was 0.436%, 0.13%, 1.07%, 1.65%, 3.05%, and 2.89%, respectively. The combined uncertainty was 9.3%.The concentration of tin in the test sample was 0.132 mg/m³, and the expanded uncertainty for the measurement was 0.012 mg/m³ (K=2). The dominant uncertainty for determination of tin and its compounds in the air of workplace comes from least squares fitting of the calibration curve and sample collection. Quality control should be improved in the process of calibration curve fitting and sample collection.

  11. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    Science.gov (United States)

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  12. Determination of mercury and selenium in herbal medicines and hair by using a nanometer TiO{sub 2}-coated quartz tube atomizer and hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shun-Xing, E-mail: lishunxing@fjzs.edu.cn [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Fujian Province University Key Laboratory of Analytical Science (Zhangzhou Normal University), Zhangzhou 363000 (China); Zheng, Feng-Ying [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Fujian Province University Key Laboratory of Analytical Science (Zhangzhou Normal University), Zhangzhou 363000 (China); Cai, Shu-Jie; Cai, Tian-Shou [Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou 363000 (China)

    2011-05-15

    The nanometer TiO{sub 2} particle was coated onto the inner wall of a T-shaped quartz tube atomizer (QTA) and then was used as a new atomizer (NT-QTA) for the determination of Hg and Se by hydride generation atomic absorption spectrometry (HGAAS). After coating 67.4 mg TiO{sub 2} on a quartz tube, the analytical performance of NT-QTA-HGAAS was compared to conventional QTA-HGAAS and it was improved as follows: (a) the linear range of the calibration curves was expanded from 10.0-80.0 ng mL{sup -1} to 5.0-150.0 ng mL{sup -1} for Hg, and from 10.0-70.0 ng mL{sup -1} to 5.0-100.0 ng mL{sup -1} for Se; (b) the characteristic concentration of was decreased from 2.8 ng mL{sup -1}/1% to 1.1 ng mL{sup -1}/1% for Hg and from 1.2 ng mL{sup -1}/1% to 0.8 ng mL{sup -1}/1% for Se; and (c) the interference from the coexistence of As on the determination of Hg and Se could be eliminated. The achieved technique was applied for the determination of Hg and Se in herbal medicines and hair.

  13. Studies on atom deceleration process by using the Zeeman-tuned technique

    International Nuclear Information System (INIS)

    Bagnato, V.S.

    1990-01-01

    The Zeeman-tuned technique to slow an atomic beam of sodium atoms was detailed studied. A new technique to study the deceleration which consists in monitoring the fluorescence along the deceleration path is used. This allows a direct observation of the process and open possibilities to investigate the adiabatic following of atoms in the magnetic field, and others very important aspects of the process. With a single laser and some modification of the magnetic field profile it is possible stop atoms outside the slower solenoid, which make a lot of experiments much simpler. A systematic study of the optical pumping effects and adiabatic following conditions allow to produce a very strong slow motion atomic beam. (author)

  14. Determination of lead associated with airborne particulate matter by flame atomic absorption and wave-length dispersive x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Talebi, S.M.

    1997-01-01

    The lead content of airborne particulate matter was determined by flame atomic absorption spectrometry (FAAS) following digestion with a mixture of nitric acid and hydrogen peroxide and also by wave-length dispersive x-ray fluorescence (WDXRF). The extraction procedure was checked by analyzing a standard reference material of airborne particulate matter (NIST, SRM -1648). It was concluded that lead can quantitatively (98%) be extracted from airborne particulate matter by the leaching process. A five-stage sequential extraction was performed to assess the potential mobility of lead associated with airborne particulate matter. Comparison of the airborne particulate lead measured by WDXRF to that measured by FAAS showed good agreement. The WDXRF method requires no time-consuming sample preparation or use of environmentally unfriendly solvents. The technique is suggested for direct determination of lead in airborne particulate matter in air pollution studies. (author)

  15. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Emilene; Rampazzo, Roger T.; Dessuy, Morgana B. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Silva, Marcia M. da [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Welz, Bernhard [Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Katskov, Dmitri A. [Tshwane University of Technology (TUT), Faculty of Science, Chemistry Department, Pretoria 0001 (South Africa)

    2011-05-15

    In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd + 0.03% (m/v) Mg + 0.05% (v/v) Triton X-100 was used as the chemical modifier for both atomizers. The samples (naphtha, gasoline and petroleum condensate) were stabilized in the form of a three-component solution (detergentless microemulsion) with the sample, propan-1-ol and 0.1% (v/v) HNO{sub 3} in a ratio of 3.0:6.4:0.6. The characteristic mass of 13 pg found in the THFA was about a factor of two better than that of 28 pg obtained with the THPA; however, the limits of detection (LOD) and quantification (LOQ) were essentially the same for both atomizers (1.9 and 6.2 {mu}g L{sup -1}, respectively, for THPA, and 1.8 and 5.9 {mu}g L{sup -1}, respectively, for THFA) due to the increased noise observed with the THFA. A possible explanation for that is a partial blockage of the radiation from the hollow cathode lamp by the narrow inner diameter of this tube and the associated loss of radiation energy. Due to the lack of an appropriate certified reference material, recovery tests were carried out with inorganic and organic arsenic standards and the results were between 89% and 111%. The only advantage of the THFA found in this work was a reduction of the total analysis time by about 20% due to the 'hot injection' that could be realized with this furnace. The arsenic concentrations varied from < LOQ to 43.3 {mu}g L{sup -1} in the samples analyzed in this work.

  16. On the possibilities of high-resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple atomic lines

    International Nuclear Information System (INIS)

    Resano, M.; Rello, L.; Florez, M.; Belarra, M.A.

    2011-01-01

    This paper explores the potential of commercially available high-resolution continuum source graphite furnace atomic absorption spectrometry instrumentation for the simultaneous or sequential monitoring of various atomic lines, in an attempt to highlight the analytical advantages that can be derived from this strategy. In particular, it is demonstrated how i) the monitoring of multiplets may allow for the simple expansion of the linear range, as shown for the measurement of Ni using the triplet located in the vicinity of 234.6 nm; ii) the use of a suitable internal standard may permit improving the precision and help in correcting for matrix-effects, as proved for the monitoring of Ni in different biological samples; iii) direct and multi-element analysis of solid samples may be feasible on some occasions, either by monitoring various atomic lines that are sufficiently close (truly simultaneous monitoring, as demonstrated in the determination of Co, Fe and Ni in NIST 1566a Oyster tissue) or, alternatively, by opting for a selective and sequential atomization of the elements of interest during every single replicate. Determination of Cd and Ni in BCR 679 White cabbage is attempted using both approaches, which permits confirming that both methods can offer very similar and satisfactory results. However, it is important to stress that the second approach provides more flexibility, since analysis is no longer limited to those elements that show very close atomic lines (closer than 0.3 nm in the ultraviolet region) with a sensitivity ratio similar to the concentration ratio of the analytes in the samples investigated.

  17. Determination of Heavy Metals in Meat, Intestine, Liver, Eggs, and Chicken Using Neutron Activation Analysis and Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Surtipanti, S.; Suwirma, S.; Yumiarti, S.; Mellawati, Yune

    1995-01-01

    The elements As, Cd, Co, Cr, Fe, Hg, Ni, Pb, Sb, se and Zn in meat, intestine, and liver of cow and goat, as well as in broiler, local breed chicken and eggs have been determined using Neutron Activation Analysis and Atomic Absorption Spectrometry. Mercury was determined after being separated radiochemically. The results showed that concentration of the essential elements studied i.e. Cr, Cu, Fe, Zn, Co, and Ni were higher in liver and intestine than in the meat, but still in the normal range, while toxic elements As, Cd, and Pb were undetectable in all samples. (author). 8 refs., 6 tabs

  18. Determination of Heavy Metals in Meat, Intestine, Liver, Eggs, and Chicken Using Neutron Activation Analysis and Atomic Absorption Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Surtipanti, S; Suwirma, S; Yumiarti, S; Mellawati, Yune [National Atomic Energy Agency, Jakarta (Indonesia), Center for the Application of Isotopes Radiation

    1995-01-01

    The elements As, Cd, Co, Cr, Fe, Hg, Ni, Pb, Sb, se and Zn in meat, intestine, and liver of cow and goat, as well as in broiler, local breed chicken and eggs have been determined using Neutron Activation Analysis and Atomic Absorption Spectrometry. Mercury was determined after being separated radiochemically. The results showed that concentration of the essential elements studied i.e. Cr, Cu, Fe, Zn, Co, and Ni were higher in liver and intestine than in the meat, but still in the normal range, while toxic elements As, Cd, and Pb were undetectable in all samples. (author). 8 refs., 6 tabs.

  19. Determination of gold in copper-bearing sulphide ores and metallurgical flotation products by atomic-absorption spectrometry.

    Science.gov (United States)

    Strong, B; Murray-Smith, R

    1974-12-01

    A method is described which is specific for the determination of gold in sulphide copper ores and concentrates. Direct decomposition with aqua regia was found to be incomplete. A carefully controlled roasting stage followed by treatment with hydrochloric acid and then aqua regia was effective for dissolving all the gold. The gold is extracted into 4-methylpentan-2-one (methyli-sobutylketone) then aspirated into a very lean air-acetylene flame and the gold determined by atomic-absorption spectrometry. No interferences were observed from large concentrations of copper, iron or nickel.

  20. Evaluation of three gas chromatography and two direct mass spectrometry techniques for aroma analysis of dried red bell peppers

    NARCIS (Netherlands)

    Ruth, van S.M.; Boscaini, E.; Mayr, D.; Pugh, J.; Posthumus, M.A.

    2003-01-01

    Three gas chromatography methods and two direct mass spectrometry techniques were compared for the analysis of the aroma of rehydrated diced red bell peppers. Gas chromatography methods included systems with olfactometry detection (GC-O), flame ionisation detection (GC-FID) and mass spectrometry

  1. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    International Nuclear Information System (INIS)

    Papadopoulou, D.N.; Zachariadis, G.A.; Anthemidis, A.N.; Tsirliganis, N.C.; Stratis, J.A.

    2004-01-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level)

  2. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, D.N. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece); Zachariadis, G.A. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece); Anthemidis, A.N. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece); Tsirliganis, N.C. [Archaeometry Laboratory, Cultural and Educational Technology Institute, Tsimiski 58, GR-67100, Xanthi (Greece); Stratis, J.A. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece)]. E-mail: jstratis@chem.auth.gr

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level)

  3. Sequential determination of arsenic, selenium, antimony, and tellurium in foods via rapid hydride evolution and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fiorino, J.A.; Jones, J.W.; Capar, S.G.

    1976-01-01

    Analysis of acid digests of foods for As, Se, Sb, and Te was semiautomated. Hydrides generated by controlled addition of base stabilized NaBH 4 solution to acid digests are transported directly into a shielded, hydrogen (nitrogen diluted), entrained-air flame for atomic absorption spectrophotometric determination of the individual elements. The detection limits, based on 1 g of digested sample, are approximately 10 to 20 ng/g for all four elements. Measurement precision is 1 to 2 percent relative standard deviation for each element measured at 0.10 μg. A comparison is made of results of analysis of lyophilized fish tissues for As and Se by instrumental neutron activation (INAA), hydride generation with atomic absorption spectrometry, fluorometry, and spectrophotometry. NBS standard reference materials (orchard leaves and bovine liver) analyzed for As, Se, and Sb by this method show excellent agreement with certified values and with independent NAA values

  4. A New Cross-Shaped Graphite Furnace with Ballast Body for Reduction of Interferences in Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    A. A. Asweisi

    2010-01-01

    Full Text Available A new crossed graphite furnace for atomic absorption spectrometry (GFAAS was designed and installed in heated graphite atomizer (HGA500 combined with Perkin-Elmer spectrometer (AAS1100. The Tungsten ballast body was inserted inside one part of the crossed furnace in a way perpendicular to light path. The analyzed sample was injected manually on the ballast body inside the cross and pushed into the measuring zone using the original inner and additional purge gas. The sample was adsorbed strongly on the ballast and evaporated and transferred with different rates at different temperatures during the temperature program allowing the separation of analyte and matrix signals. Analysis of middle volatile element such as copper and manganese in standard urine sample (seronorm 2525 showed complete separation of analyte and background signals with good sensitivity and repeatability.

  5. Standardization of digestion procedure for the determination of heavy metals in biological materials by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Khalid, N.; Chaudhri, S.A.

    1999-01-01

    Proper decomposition of the sample is one of the basic requirements of the atomic absorption spectroscopic analysis. In the present studies, heavy metals (Cu, Fe, Mn and Zn) were determined in biological samples by designating them in a mixture of nitric acid and perchloric acid. The quantification was made with atomic absorption spectrometry using an air-acetylene flame. The reliability of the procedure used was checked by analysing standard reference materials from NBS and IAEA, such as Rice flour (NBS-SRM-1568), Horse Kidney (IAEA H-8), Mixed Human diet(IAEA H-9), Copepod (IAEA MA-A-1) and fish flesh (IAEA MA-A-2) under identical conditions. A good agreement was observed between determined and the certified values reported by NBS and IAEA. (author)

  6. Determination of the elemental composition of cyanobacteria cells and cell fractions by atomic emission and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sedykh, Eh.M.; Lyabusheva, O.A.; Bannykh, L.N.; Tambiev, A.Kh.

    2005-01-01

    An approach to studying the elemental composition of cyanobacteria Spirulina platensis and Nostoc commune using a set of complementary analytical methods (ICP-AES, PAAS, and ETAAS) was proposed . The procedures were adapted for the determination of macro- and microelements (Na, K, Mg, Ca, Fe, Mn, Cu, Mo, Zn, B, and Se) in the biomass of cyanobacteria and separated cell fractions (chloroform and water-methanol extracts and precipitates). The conditions for the mineralization of biological materials were optimized for autoclave and microwave sample preparation procedures. The evaporation and atomization of Se and Mo in a graphite furnace in the presence of chloroform and methanol were studied [ru

  7. Development of High Resolution Resonance Ionization Mass Spectrometry for Neutron Dosimetry Technique with93Nb(n,n'93mNb Reaction

    Directory of Open Access Journals (Sweden)

    Tomita Hideki

    2016-01-01

    Full Text Available We have proposed an advanced technique to measure the 93mNb yield precisely by Resonance Ionization Mass Spectrometry, instead of conventional characteristic X-ray spectroscopy. 93mNb-selective resonance ionization is achievable by distinguishing the hyperfine splitting of the atomic energy levels between 93Nb and 93mNb at high resolution. In advance of 93mNb detection, we could successfully demonstrate high resolution resonant ionization spectroscopy of stable 93Nb using an all solid-state, narrow-band and tunable Ti:Sapphire laser system operated at 1 kHz repetition rate.

  8. Comparison of the sensitivity of mass spectrometry atmospheric pressure ionization techniques in the analysis of porphyrinoids.

    Science.gov (United States)

    Swider, Paweł; Lewtak, Jan P; Gryko, Daniel T; Danikiewicz, Witold

    2013-10-01

    The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free-base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography-MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry.

    Science.gov (United States)

    Baghdady, Yehia Z; Schug, Kevin A

    2016-01-01

    Accurate and specific analysis of target molecules in complex biological matrices remains a significant challenge, especially when ultra-trace detection limits are required. Liquid chromatography with mass spectrometry is often the method of choice for bioanalysis. Conventional sample preparation and clean-up methods prior to the analysis of biological fluids such as liquid-liquid extraction, solid-phase extraction, or protein precipitation are time-consuming, tedious, and can negatively affect target recovery and detection sensitivity. An alternative or complementary strategy is the use of an off-line or on-line in situ derivatization technique. In situ derivatization can be incorporated to directly derivatize target analytes in their native biological matrices, without any prior sample clean-up methods, to substitute or even enhance the extraction and preconcentration efficiency of these traditional sample preparation methods. Designed appropriately, it can reduce the number of sample preparation steps necessary prior to analysis. Moreover, in situ derivatization can be used to enhance the performance of the developed liquid chromatography with mass spectrometry-based bioanalysis methods regarding stability, chromatographic separation, selectivity, and ionization efficiency. This review presents an overview of the commonly used in situ derivatization techniques coupled to liquid chromatography with mass spectrometry-based bioanalysis to guide and to stimulate future research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a

  11. Matrix digestion of soil and sediment samples for extraction of lead, cadmium and antimony and their direct determination by inductively coupled plasma-mass spectrometry and atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chattopadhyay, P.; Fisher, A.S.; Henon, D.N.; Hill, S.J.

    2004-01-01

    An environmentally friendly and simple method has been developed for complete digestion of lead, cadmium and antimony from soil samples using a magnesium nitrate assisted dry ashing procedure. Statistical data for a series of experiments with standard reference materials are presented, and precision values are found to be comparable for inductively coupled plasma-mass spectrometry and for inductively coupled plasma-atomic emission spectrometry. From a single digest solution all analytes are quantified without involving any preconcentration routes. Inter-method comparison of inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) shows that the probability of the results being different is less than 99 %. (author)

  12. Computational techniques in tribology and material science at the atomic level

    Science.gov (United States)

    Ferrante, J.; Bozzolo, G. H.

    1992-01-01

    Computations in tribology and material science at the atomic level present considerable difficulties. Computational techniques ranging from first-principles to semi-empirical and their limitations are discussed. Example calculations of metallic surface energies using semi-empirical techniques are presented. Finally, application of the methods to calculation of adhesion and friction are presented.

  13. In Situ Analytical Characterization of Contaminated Sites Using Nuclear Spectrometry Techniques. Review of Methodologies and Measurements

    International Nuclear Information System (INIS)

    2017-01-01

    Past and current human activities can result in the contamination of sites by radionuclides and heavy metals. The sources of contamination are various. The most important sources for radionuclide release include global fallout from nuclear testing, nuclear and radiological accidents, waste production from nuclear facilities, and activities involving naturally occurring radioactive material (NORM). Contamination of the environment by heavy metals mainly originates from industrial applications and mineralogical background concentration. Contamination of sites by radionuclides and heavy metals can present a risk to people and the environment. Therefore, the estimation of the contamination level and the identification of the source constitute important information for the national authorities with the responsibility to protect people and the environment from adverse health effects. In situ analytical techniques based on nuclear spectrometry are important tools for the characterization of contaminated sites. Much progress has been made in the design and implementation of portable systems for efficient and effective monitoring of radioactivity and heavy metals in the environment directly on-site. Accordingly, the IAEA organized a Technical Meeting to review the current status and trends of various applications of in situ nuclear spectrometry techniques for analytical characterization of contaminated sites and to support Member States in their national environmental monitoring programmes applying portable instrumentation. This publication represents a comprehensive review of the in situ gamma ray spectrometry and field portable X ray fluorescence analysis techniques for the characterization of contaminated sites. It includes papers on the use of these techniques, which provide useful background information for conducting similar studies, in the following Member States: Argentina, Australia, Brazil, Czech Republic, Egypt, France, Greece, Hungary, Italy, Lithuania

  14. Optimization of trace elements determination (Arsenic and chromium) in blood and serum of human by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ahmadi Faghih, M. A.; Aflaki, F.

    2003-01-01

    Trace elements play an important role in the bio physiology of cells by affecting their growth and contributions to various biological processes such as wound healing. Determination of toxic trace elements in biological fluids is an important subject of interest for toxicological purposes. Increasing the concentration of these elements in the blood levels, cause serious diseases in patients. Recently instrumental analysis procedures such as atomic absorption spectrometry have been used in clinical measurements for determination of many toxic trace elements in the biological samples. In this paper we are reporting the study of various methods of blood and serum samples preparation for determining the toxic trace elements of Arsenic and Chromium. The measurement of this elements performed by using electrothermal atomic absorption spectrometry. The best and reliable results for Chromium analysis was achieved by injection of diluted serum samples, where the samples were diluted with H CI 0.1N. In Arsenic analysis, the best results obtained by extraction with aqueous solution of TCA. For determining all of these elements the RSD% was less than 5%

  15. Green method for ultrasensitive determination of Hg in natural waters by electrothermal-atomic absorption spectrometry following sono-induced cold vapor generation and 'in-atomizer trapping'

    International Nuclear Information System (INIS)

    Gil, Sandra; Lavilla, Isela; Bendicho, Carlos

    2007-01-01

    Sono-induced cold vapor generation (SI-CVG) has been used for the first time in combination with a graphite furnace atomizer for determination of Hg in natural waters by electrothermal-atomic absorption spectrometry after in situ trapping onto a noble metal-pretreated platform (Pd, Pt or Rh) inserted into a graphite tube. The system allows 'in-atomizer trapping' of Hg without the use of conventional reduction reactions based on sodium borohydride or tin chloride in acid medium for cold vapor generation. The sono-induced reaction is accomplished by applying ultrasound irradiation to the sample solution containing Hg(II) in the presence of an organic compound such as formic acid. As this organic acid is partly degraded upon ultrasound irradiation to yield CO, CO 2 , H 2 and H 2 O, the amount of lab wastes is minimized and a green methodology is achieved. For this purpose, experimental variables influencing the generation/trapping process are fully investigated. The limit of detection for a 10 min trapping time and 10 mL sample volume was 0.03 μg L -1 (Integrated absorbance) and the repeatability expressed as relative standard deviation was about 3%. Carbonates and chlorides at 100 mg L -1 level caused a signal depression by 20-30%. The enhanced trapping efficiency observed with the sono-induced cold vapor generation as compared with 'in-atomizer trapping' methods employing chemical vapor generation is discussed. A reaction pathway for SI-CVG is proposed on the basis of the current knowledge for synthesis of noble metal nanoparticles by ultrasound

  16. [Atomic/ionic fluorescence in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp-europium atomic/ionic fluorescence spectrometry].

    Science.gov (United States)

    Gong, Z; Liang, F; Yang, P; Jin, Q; Huang, B

    1999-06-01

    Eu atomic and ionic fluorescence spectrometry in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL-MPT AFS/IFS) was studied. Operating conditions were optimized. The best detection limits for AFS and IFS obtained with a desolvated ultrasonic nebulization system were 42.0 ng/mL for Eu I 462.7 nm and 21.8 ng/mL for Eu II 381.97 nm, respectively, both were better than those given by the instruction manual of a Baird ICP AFS-2000 spectrometer using pneumatic concentric nebulizer with desolvation for AFS, but were significantly higher than those obtained by using the Baird spectrometer with a mini-monochromator and a ultrasonic nebulzer system.

  17. Investigation of ultraviolet photolysis vapor generation with in-atomizer trapping graphite furnace atomic absorption spectrometry for the determination of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jeremy T. [Department of Chemistry, Biochemistry, and Physics, Marist College, 3399 North Road, Poughkeepsie, NY 12601 (United States); Fitzgerald, Neil [Department of Chemistry, Biochemistry, and Physics, Marist College, 3399 North Road, Poughkeepsie, NY 12601 (United States)], E-mail: neil.fitzgerald@marist.edu

    2009-09-15

    Generation of mercury vapor by ultraviolet irradiation of mercury solutions in low molecular weight organic acid solutions prior to measurement by Atomic Absorption Spectrometry is a cheap, simple and green method for determination of trace concentrations of mercury. In this work mercury vapor generated by ultraviolet photolysis was trapped onto a palladium coated graphite furnace significantly improving the detection limit of the method. The system was optimized and a detection limit of 0.12 {mu}g L{sup - 1} (compared to 2.1 {mu}g L{sup - 1} for a previously reported system in the absence of trapping) with a precision of 11% for a 10 {mu}g L{sup - 1} mercury standard (RSD, N = 5)

  18. Three-dimensional time-dependent computer modeling of the electrothermal atomizers for analytical spectrometry

    Science.gov (United States)

    Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.

    2016-02-01

    A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.

  19. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.

    Science.gov (United States)

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-06-20

    Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1  Sb) is comparable to that observed in QTA (0.14 ng mL -1  Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Improved detection limit for {sup 59}Ni using the technique of accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Per; Erlandsson, Bengt; Hellborg, Ragnar; Kiisk, Madis; Larsson, Ragnar; Skog, Goeran; Stenstroem, Kristina [Lund Univ. (Sweden). Dept. of Nuclear Physics

    2002-11-01

    59 Ni is produced by neutron activation in the stainless steel close to the core of a nuclear reactor. To be able to classify the different parts of the reactor with respect to their content of long-lived radionuclides before final storage it is important to measure the 59 Ni level. Accelerator mass spectrometry is an ultra-sensitive method for counting atoms, suitable for 59 Ni measurements. Improvements in the reduction of the background and in the chemical reduction of cobalt, the interfering isobar, have been made. This chemical purification is essential when using small tandem accelerators, <3 MV, combined with the detection of characteristic projectile X-rays. These improvements have lowered the detection limit for 59 Ni by a factor of twenty compared with the first value reported for the Lund AMS facility. Material from the Swedish nuclear industry has been analysed and examples of the results are presented.

  1. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    Science.gov (United States)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  2. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  3. Atmospheric pressure surface sampling/ionization techniques for direct coupling of planar separations with mass spectrometry.

    Science.gov (United States)

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-06-18

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Application of Plackett-Burman and Doehlert designs for optimization of selenium analysis in plasma with electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    El Ati-Hellal, Myriam; Hellal, Fayçal; Hedhili, Abderrazek

    2014-10-01

    The aim of this study was the optimization of selenium determination in plasma samples with electrothermal atomic absorption spectrometry using experimental design methodology. 11 variables being able to influence selenium analysis in human blood plasma by electrothermal atomic absorption spectrometry (ETAAS) were evaluated with Plackett-Burman experimental design. These factors were selected from sample preparation, furnace program and chemical modification steps. Both absorbance and background signals were chosen as responses in the screening approach. Doehlert design was used for method optimization. Results showed that only ashing temperature has a statistically significant effect on the selected responses. Optimization with Doehlert design allowed the development of a reliable method for selenium analysis with ETAAS. Samples were diluted 1/10 with 0.05% (v/v) TritonX-100+2.5% (v/v) HNO3 solution. Optimized ashing and atomization temperatures for nickel modifier were 1070°C and 2270°C, respectively. A detection limit of 2.1μgL(-1) Se was obtained. Accuracy of the method was checked by the analysis of selenium in Seronorm™ Trace element quality control serum level 1. The developed procedure was applied for the analysis of total selenium in fifteen plasma samples with standard addition method. Concentrations ranged between 24.4 and 64.6μgL(-1), with a mean of 42.6±4.9μgL(-1). The use of experimental designs allowed the development of a cheap and accurate method for selenium analysis in plasma that could be applied routinely in clinical laboratories. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  5. A simple and fast method for assessment of the nitrogen–phosphorus–potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; Moutinho da Silva, Ricardo; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta, E-mail: anchieta@iq.unesp.br

    2014-11-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500–5000 mg L{sup −1} N (r = 0.9994), 100–2000 mg L{sup −1} P (r = 0.9946), and 100–2500 mg L{sup −1} K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97–105% (NO{sub 3}{sup −}-N), 95–103% (NH{sub 4}{sup +}-N), 93–103% (urea-N), 99–108% (P), and 99–102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively. - Highlights: • A single technique is proposed to analyze NPK fertilizer. • HR-CS FAAS is proposed for the first time for N, P and K determination in fertilizers. • The method employs the same sample preparation and dilution for the three analytes. • Addition of H{sub 2}O{sub 2} allows analysis of fertilizers with different nitrogen species. • Proposal provides advantages over traditional methods in terms of cost and time.

  6. A simple and fast method for assessment of the nitrogen–phosphorus–potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    International Nuclear Information System (INIS)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; Moutinho da Silva, Ricardo; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2014-01-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500–5000 mg L −1 N (r = 0.9994), 100–2000 mg L −1 P (r = 0.9946), and 100–2500 mg L −1 K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97–105% (NO 3 − -N), 95–103% (NH 4 + -N), 93–103% (urea-N), 99–108% (P), and 99–102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively. - Highlights: • A single technique is proposed to analyze NPK fertilizer. • HR-CS FAAS is proposed for the first time for N, P and K determination in fertilizers. • The method employs the same sample preparation and dilution for the three analytes. • Addition of H 2 O 2 allows analysis of fertilizers with different nitrogen species. • Proposal provides advantages over traditional methods in terms of cost and time

  7. Extraction and preconcentration of trace levels of cobalt using functionalized magnetic nanoparticles in a sequential injection lab-on-valve system with detection by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wang Yang; Luo Xiaoyu; Tang Jie; Hu Xiaoya; Xu Qin; Yang Chun

    2012-01-01

    Graphical abstract: An approach to performing extraction and preconcentration employing functionalized magnetic particles for the determination of cobalt in the sequential injection lab-on-valve system using detection by electrothermal atomic absorption spectrometry. Highlights: ► New SPE method for cobalt separation/preconcentration was reported. ► Functionalized magnetic nanoparticles were used as adsorbent. ► Extraction, elution, and detection procedures were performed in the LOV system. ► This automatic extraction technique provided a good platform for metal analysis. - Abstract: A new approach to performing extraction and preconcentration employing functionalized magnetic nanoparticles for the determination of trace metals is presented. Alumina-coated iron oxide nanoparticles were synthesized and used as the solid support. The nanoparticles were functionalized with sodium dodecyl sulfate and used as adsorbents for solid phase extraction of the analyte. Extraction, elution, and detection procedures were performed sequentially in the sequential injection lab-on-valve (SI-LOV) system followed by electrothermal atomic absorption spectrometry (ETAAS). Mixtures of hydrophobic analytes were successfully extracted from solution using the synthesized magnetic adsorbents. The potential use of the established scheme was demonstrated by taking cobalt as a model analyte. Under the optimal conditions, the calibration curve showed an excellent linearity in the concentration range of 0.01–5 μg L −1 , and the relative standard deviation was 2.8% at the 0.5 μg L −1 level (n = 11). The limit of detection was 6 ng L −1 with a sampling frequency of 18 h −1 . The present method has been successfully applied to cobalt determination in water samples and two certified reference materials.

  8. Study of different filtering techniques applied to spectra from airborne gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Emilien; Gutierrez, Sebastien; Reboli, Anne; Menard, Stephanie; Nourreddine, Abdel-Mjid [Commissariat a l' Energie Atomique et aux energies alternatives - CEA, DAM, DIF F-91297 Arpajon (France); Arbor, Nicolas [Institut Pluridisciplinaire Hubert Curien, UMR 7178 Universite de Strasbourg-CNRS, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France)

    2015-07-01

    One of the features of spectra obtained by airborne gamma spectrometry is low counting statistics due to the short acquisition time (1 s) and the large source-detector distance (40 m). It leads to considerable uncertainty in radionuclide identification and determination of their respective activities from the windows method recommended by the IAEA, especially for low-level radioactivity. The present work compares the results obtained with filters in terms of errors of the filtered spectra with the window method and over the whole gamma energy range. The results are used to determine which filtering technique is the most suitable in combination with some method for total stripping of the spectrum. (authors)

  9. Chemical vapor generation of silver for atomic absorption spectrometry with the multiatomizer: Radiotracer efficiency study and characterization of silver species

    Energy Technology Data Exchange (ETDEWEB)

    Musil, Stanislav [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4 (Czech Republic); Charles University in Prague, Faculty of Science, Dept. of Analytical Chemistry, Albertov 8, 128 43 Prague 2 (Czech Republic); Kratzer, Jan; Vobecky, Miloslav [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4 (Czech Republic); Hovorka, Jan [Charles University in Prague, Faculty of Science, Institute for Environmental Studies, Benatska 2, 128 01 Prague 2 (Czech Republic); Benada, Oldrich [Institute of Microbiology of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4 (Czech Republic); Matousek, Tomas, E-mail: matousek@biomed.cas.c [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4 (Czech Republic)

    2009-11-15

    Volatile Ag species were generated in flow injection arrangement from nitric acid environment in the presence of surfactants (Triton X-100 and Antifoam B) and permanent Pd deposits as the reaction modifiers. Atomic absorption spectrometry (AAS) with multiple microflame quartz tube atomizer heated to 900 deg. C was used for atomization; evidence was found for thermal mechanism of atomization. Relative and absolute limits of detection (3sigma, 250 mul sample loop) measured under optimized conditions were: 1.4 mug l{sup -1} and 0.35 ng, respectively. The efficiency of chemical vapor generation (CVG) as well as spatial distribution of residual analyte in the apparatus was studied by {sup 111}Ag radioactive indicator (half-life 7.45 days) of high specific activity. It was found out that 23% of analyte was released into the gaseous phase. However, only 8% was found on filters placed at the entrance to the atomizer due to transport losses. About 40% of analyte remained in waste liquid, whereas the rest was found deposited over the CVG system. Presented study follows the hypothesis that the 'volatile' Ag species are actually metallic nanoparticles formed upon reduction in liquid phase and then released with good efficiency to the gaseous phase. Number/charge size distributions of dry aerosol were determined by Scanning Mobility Particle Sizer. Ag was detected in 40-45 nm particles holding 10 times more charge if compared to Boltzmann equilibrium. At the same time, Ag was also present on 150 nm particles, the main size mode of the CVG generator. The increase of Ag in standards was reflected by proportional increase in particle number/charge for 40-45 nm size particles only. Transmission electron microscopy revealed particles of 8 +- 2 nm sampled from the gaseous phase, which were associated in isolated clusters of few to few tens of nanometres. Ag presence in those particles was confirmed by Energy Dispersive X-ray Spectroscopy (EDS) analysis.

  10. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer

    Czech Academy of Sciences Publication Activity Database

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-01-01

    Roč. 1010, JUN (2018), s. 11-19 ISSN 0003-2670 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * Stibane * atomization and preconcentration Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  11. Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse

    International Nuclear Information System (INIS)

    Kılınç, Ersin; Bakırdere, Sezgin; Aydın, Fırat; Ataman, O. Yavuz

    2012-01-01

    Sensitivity of flame atomic absorption spectrometry (FAAS) for Bi determination was improved by slotted quartz tube (SQT) that was used also for atom trapping (AT). The trapped analyte was released by aspirating a small volume of organic solvent after a reasonable analyte collection time. Sensitivity was improved by 2.9 times by SQT-FAAS and 256 times by SQT-AT-FAAS with respect to FAAS. Optimum trapping period was found to be 6.0 min (36.0 mL of solution). Limit of detection (LOD) for SQT-AT-FAAS was found to be 1.6 ng mL −1 . %RSD was calculated as 4.0% for five replicate measurements of 7.5 ng mL −1 Bi by SQT-AT-FAAS. Accuracy of the method developed was checked by analyzing a standard reference material of simulated fresh water (NIST 1643e) and result found was in good agreement with the certified one. The method can be applied in any laboratory equipped with a flame AA spectrometer. The consumption of time and sample volume is fairly low and application is simple and easy.

  12. Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse

    Energy Technology Data Exchange (ETDEWEB)

    K Latin-Small-Letter-Dotless-I l Latin-Small-Letter-Dotless-I nc, Ersin, E-mail: ekilinc@dicle.edu.tr [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbak Latin-Small-Letter-Dotless-I r (Turkey); Bak Latin-Small-Letter-Dotless-I rdere, Sezgin [Y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I z Technical University, Faculty of Education, Department of Science Education, TR 34210 Esenler-Istanbul (Turkey); Ayd Latin-Small-Letter-Dotless-I n, F Latin-Small-Letter-Dotless-I rat [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbak Latin-Small-Letter-Dotless-I r (Turkey); Ataman, O. Yavuz [Middle East Technical University, Faculty of Arts and Sciences, Department of Chemistry, 06800 Ankara (Turkey)

    2012-07-15

    Sensitivity of flame atomic absorption spectrometry (FAAS) for Bi determination was improved by slotted quartz tube (SQT) that was used also for atom trapping (AT). The trapped analyte was released by aspirating a small volume of organic solvent after a reasonable analyte collection time. Sensitivity was improved by 2.9 times by SQT-FAAS and 256 times by SQT-AT-FAAS with respect to FAAS. Optimum trapping period was found to be 6.0 min (36.0 mL of solution). Limit of detection (LOD) for SQT-AT-FAAS was found to be 1.6 ng mL{sup -1}. %RSD was calculated as 4.0% for five replicate measurements of 7.5 ng mL{sup -1} Bi by SQT-AT-FAAS. Accuracy of the method developed was checked by analyzing a standard reference material of simulated fresh water (NIST 1643e) and result found was in good agreement with the certified one. The method can be applied in any laboratory equipped with a flame AA spectrometer. The consumption of time and sample volume is fairly low and application is simple and easy.

  13. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Vilar Farinas, M. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Barciela Garcia, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Garcia Martin, S. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Pena Crecente, R. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Herrero Latorre, C. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain)]. E-mail: cherrero@lugo.usc.es

    2007-05-22

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO{sub 3}){sub 2} and (NH{sub 4})H{sub 2}PO{sub 4}-Mg(NO{sub 3}){sub 2}] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 {mu}g L{sup -1}), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged

  14. Nickel and strontium nitrates as modifiers for the determination of selenium in wine by Zeeman electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, J. [Inst. of Agriculture, Skopje (Yugoslavia); Stafilov, T. [Inst. of Chemistry, Faculty of Science Sts. Cyril and Methodius Univ., Skopje (Yugoslavia); Mihajlovic, D. [RZ Tehnicka Kontrola, Skopje (Yugoslavia)

    2001-08-01

    A mixed matrix modifier of nickel and strontium nitrates was used as a chemical modifier for the determination of selenium in wines by Zeeman electrothermal atomic absorption spectrometry. Wine samples were heated on a boiling water bath with small amounts of nitric acid and hydrogen peroxide. For complete elimination of interference, especially from sulfates and phosphates, selenium is complexed with ammonium pyrolidinedithiocarbamate (APDTC), extracted into methyl isobutyl ketone (MIBK), and measured by ETAAS. The graphite furnace temperature program was optimized for both aqueous and organic solutions. Pyrolysis temperatures of 1300 C and 800 C were chosen for aqueous and organic solutions, respectively; 2700 C and 2100 C were used as optimum atomization temperatures for aqueous and organic solutions, respectively. The optimum modifier mass established is markedly lower than those presented in the literature. The platform atomization ensures pretreatment stabilization up to 1100 C and 1600 C, respectively, for organic and aqueous selenium solutions. The procedure was verified by the method of standard addition. The investigated wine samples originated from the different regions of the Republic of Macedonia. The selenium concentration varied from not detectable to 0.93 {mu}g L{sup -1}. (orig.)

  15. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    International Nuclear Information System (INIS)

    Vilar Farinas, M.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.; Herrero Latorre, C.

    2007-01-01

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO 3 ) 2 and (NH 4 )H 2 PO 4 -Mg(NO 3 ) 2 ] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 μg L -1 ), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged -1

  16. Atmospheric-pressure solution-cathode glow discharge: A versatile ion source for atomic and molecular mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Andrew J. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Williams, Kelsey L. [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Hieftje, Gary M. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Shelley, Jacob T., E-mail: shellj@rpi.edu [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States)

    2017-01-15

    An atmospheric-pressure solution-cathode glow discharge (SCGD) has been evaluated as an ion source for atomic, molecular, and ambient desorption/ionization mass spectrometry. The SCGD consists of a direct-current plasma, supported in the ambient air in the absence of gas flows, and sustained upon the surface of a flowing liquid cathode. Analytes introduced in the flowing liquid, as an ambient gas, or as a solid held near the plasma are vaporized and ionized by interactions within or near the discharge. Introduction of acidic solutions containing metal salts produced bare elemental ions as well as H{sub 2}O, OH{sup −} and NO{sub 3}{sup −} adducts. Detection limits for these elemental species ranged from 0.1 to 4 ppb, working curves spanned more than 4 orders of linear dynamic range, and precision varied between 5 and 16% relative standard deviation. Small organic molecules were also efficiently ionized from solution, and both the intact molecular ion and fragments were observed in the resulting SCGD mass spectra. Fragmentation of molecular species was found to be tunable; high discharge currents led to harder ionization, while low discharge currents produced stronger molecular-ion signals. Ambient gases and solids, desorbed by the plasma from a glass probe, were also readily ionized by the SCGD. Indeed, strong analyte signals were obtained from solid samples placed at least 2 cm from the plasma. These findings indicate that the SCGD might be useful also for ambient desorption/ionization mass spectrometry. Combined with earlier results that showed the SCGD is useful for ionization of labile biomolecules, the results here indicate that the SCGD is a highly versatile ion source capable of providing both elemental and molecular mass-spectral information. - Highlights: • Solution-cathode glow discharge used as an ionization source for mass spectrometry. • SCGD-MS can provide atomic as well as intact molecular mass spectra. • Atomic limits of detection range

  17. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  18. Atomization in graphite-furnace atomic absorption spectrometry. Peak-height method vs. integration method of measuring absorbance: carbon rod atomizer 63

    International Nuclear Information System (INIS)

    Sturgeon, R.E.; Chakrabarti, C.L.; Maines, I.S.; Bertels, P.C.

    1975-01-01

    Oscilloscopic traces of transient atomic absorption signals generated during continuous heating of a Carbon Rod Atomizer model 63 show features which are characteristic of the element being atomized. This research was undertaken to determine the significance and usefulness of the two analytically significant parameters, absorbance maximum and integrated absorbance. For measuring integrated absorbance, an electronic integrating control unit consisting of a timing circuit, a lock-in amplifier, and a digital voltmeter, which functions as a direct absorbance x second readout, has been designed, developed, and successfully tested. Oscilloscopic and recorder traces of the absorbance maximum and digital display of the integrated absorbance are simultaneously obtained. For the elements studied, Cd, Zn, Cu, Al, Sn, Mo, and V, the detection limits and the precision obtained are practically identical for both methods of measurements. The sensitivities by the integration method are about the same as, or less than, those obtained by the peak-height method, whereas the calibration curves by the former are generally linear over wider ranges of concentrations. (U.S.)

  19. Laser desorption ionization mass spectrometry: Recent progress in matrix-free and label-assisted techniques.

    Science.gov (United States)

    Mandal, Arundhoti; Singha, Monisha; Addy, Partha Sarathi; Basak, Amit

    2017-10-13

    The MALDI-based mass spectrometry, over the last three decades, has become an important analytical tool. It is a gentle ionization technique, usually applicable to detect and characterize analytes with high molecular weights like proteins and other macromolecules. The earlier difficulty of detection of analytes with low molecular weights like small organic molecules and metal ion complexes with this technique arose due to the cluster of peaks in the low molecular weight region generated from the matrix. To detect such molecules and metal ion complexes, a four-prong strategy has been developed. These include use of alternate matrix materials, employment of new surface materials that require no matrix, use of metabolites that directly absorb the laser light, and the laser-absorbing label-assisted LDI-MS (popularly known as LALDI-MS). This review will highlight the developments with all these strategies with a special emphasis on LALDI-MS. © 2017 Wiley Periodicals, Inc.

  20. Determination of total uranium by mass spectrometry utilizing the isotopic dilution technique

    International Nuclear Information System (INIS)

    Cretella, R.F.; Noutary, C.J.; Servant, R.E.

    1981-01-01

    The isotopic dilution associated to mass spectrometry is a high-sensitivity technique that allows to work with microquantities of the sample, making it possible to analize the content in highly radioactive solutions with excellent accuracy and minimum risk. The proposed technique is described and its results are discussed through the analysis of: 1) A synthetic sample that simulates dissolved spent fuel elements; 2) Uranium dioxide of nuclear purity and 3) Uranium concentrate. 233 U(ORNL) was employed as a tracer and a Nuclide 12-90-SU mass spectrometer of simple magnetic focus as measurement instrument. The accuracy reached in the analyses is better than 0.5% with a reliability of 95%. The analysis of the errors shows that their main contributing source are the errors in the measurement of the isotopic ratios. (M.E.L.) [es

  1. Análise direta de sólidos por espectrometria de absorção atômica com atomização em forno de grafite: uma revisão Solid sampling graphite furnace atomic absorption spectrometry: a review

    Directory of Open Access Journals (Sweden)

    Cassiana Seimi Nomura

    2008-01-01

    Full Text Available This is a review of direct analysis using solid sampling graphite furnace atomic absorption spectrometry. Greater emphasis is dedicated to sample preparation, sample homogeneity, calibration and its application to microanalysis and micro-homogeneity studies. The main advantages and some difficulties related to the applicability of this technique are discussed. A literature search on the application of solid sampling graphite furnace atomic absorption spectrometry in trace element determination in many kinds of samples, including biological, clinical, technological and environmental ones, is also presented.

  2. Study of some Ayurvedic Indian medicinal plants for the essential trace elemental contents by instrumental neutron activation analysis and atomic absorption spectroscopy techniques

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Singare, P.U.; Andhele, M.L.; Acharya, R.; Nair, A.G.C.; Reddy, A.V.R.

    2009-01-01

    Elemental analysis of some medicinal plants used in the Indian Ayurvedic system was performed by employing instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS) techniques. The samples were irradiated with thermal neutrons in a nuclear reactor and the induced activity was counted by gamma ray spectrometry using an efficiency calibrated high resolution high purity germanium (HPGe) detector. Most of the medicinal plants were found to be rich in one or more of the elements under study. The variation in elemental concentration in same medicinal plants samples collected in summer, winter and rainy seasons was studied and the biological effects of these elements on human beings are discussed. (orig.)

  3. Application of methane as a gaseous modifier for the determination of silicon using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Hans-Joachim, E-mail: hans-joachim.heinrich@bam.de; Kipphardt, Heinrich

    2012-04-15

    For determination of silicon in aqueous solutions by electrothermal atomic absorption spectrometry methane/argon mixtures as a gaseous modifier were applied during the pyrolysis step to improve the analytical performance. The beneficial effects observed on thermal stabilization, signal enhancement and shape of absorbance signals were attributed to the thermal decomposition products of methane, which were hydrogen and carbon black (soot). Using a 5% CH{sub 4} mixture with argon, the optimized pyrolysis and atomization temperatures were 1350 Degree-Sign C and 2450 Degree-Sign C, respectively. A flushing step following the pyrolysis was mandatory to avoid background absorption and accelerated deposition of pyrolytic graphite. Characteristic masses of 50 and 30 pg were obtained for standard transversely heated graphite atomizer (THGA) tubes and end-capped THGA tubes, respectively, which were lower than with other previously applied modifiers. A limit of detection of 0.2 {mu}g L{sup -1} (3 s, n = 10) has been obtained. In addition, this gaseous modifier did not contribute to contamination which often was significant when a liquid modifier solution was co-injected. The proposed method has been applied to the determination of silicon in ultrapure water, nitric and hydrochloric acids. - Highlights: Black-Right-Pointing-Pointer CH{sub 4}/Ar gas mixtures act as new modifier in the determination of Si using ET AAS. Black-Right-Pointing-Pointer CH{sub 4} improved thermal stabilization, atomization efficiency and signal shape of Si. Black-Right-Pointing-Pointer Optimum performance by addition of 5% CH{sub 4} during pyrolysis at 1350 Degree-Sign C. Black-Right-Pointing-Pointer Gaseous modifier does not contribute to blank values. Black-Right-Pointing-Pointer Optimized method suitable for determination of Si in ultrapure reagents.

  4. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Nanocluster formation by spin coating : quantitative atomic force microscopy and Rutherford backscattering spectrometry analysis

    NARCIS (Netherlands)

    Partridge, A.; Toussaint, S.L.G.; Flipse, C.F.J.; IJzendoorn, van L.J.; Oetelaar, van den L.C.A.

    1996-01-01

    A recently developed spin coating method has been employed to produce a homogeneous distribution of nanometer-sized metal clusters onto a flat oxidic support. The particle size and distribution, and the total amount of material deposited has been studied by comparing the results of atomic force

  6. Direct determination of sodium, potassium, chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dancsak, Stacia E. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Silva, Sidnei G.; Nóbrega, Joaquim A. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, São Carlos, SP (Brazil); Jones, Bradley T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Donati, George L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2014-01-02

    Graphical abstract: -- Highlights: •Direct analysis of biodiesel on a tungsten coil atomizer. •Determination of Na, K, Cr and V by tungsten coil atomic emission spectrometry. •Sample dilution with methanol or ethanol. •Ten-microliter sample aliquots and limits of detection between 20 and 90 μg kg{sup −1}. •Low consumption of reagents, samples and gases in a 140 s per run procedure. -- Abstract: High levels of sodium and potassium can be present in biodiesel fuel and contribute to corrosion, reduced performance and shorter engine lifetime. On the other hand, trace amounts of chromium and vanadium can increase the emission of pollutants during biodiesel combustion. Sample viscosity, immiscibility with aqueous solutions and high carbon content can compromise biodiesel analyzes. In this work, tungsten filaments extracted from microscope light bulbs are used to successively decompose biodiesel's organic matrix, and atomize and excite the analytes to determine sodium, potassium, chromium and vanadium by tungsten coil atomic emission spectrometry (WCAES). No sample preparation other than simple dilution in methanol or ethanol is required. Direct analysis of 10-μL sample aliquots using heating cycles with less than 150 s results in limits of detection (LOD) as low as 20, 70, 70 and 90 μg kg{sup −1} for Na, K, Cr and V, respectively. The procedure's accuracy is checked by determining Na and K in a biodiesel reference sample and carrying out spike experiments for Cr and V. No statistically significant differences were observed between reference and determined values for all analytes at a 95% confidence level. The procedure was applied to three different biodiesel samples and concentrations between 6.08 and 95.6 mg kg{sup −1} for Na and K, and between 0.22 and 0.43 mg kg{sup −1} for V were obtained. The procedure is simple, fast and environmentally friendly. Small volumes of reagents, samples and gases are used and no residues are generated

  7. Direct determination of sodium, potassium, chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry

    International Nuclear Information System (INIS)

    Dancsak, Stacia E.; Silva, Sidnei G.; Nóbrega, Joaquim A.; Jones, Bradley T.; Donati, George L.

    2014-01-01

    Graphical abstract: -- Highlights: •Direct analysis of biodiesel on a tungsten coil atomizer. •Determination of Na, K, Cr and V by tungsten coil atomic emission spectrometry. •Sample dilution with methanol or ethanol. •Ten-microliter sample aliquots and limits of detection between 20 and 90 μg kg −1 . •Low consumption of reagents, samples and gases in a 140 s per run procedure. -- Abstract: High levels of sodium and potassium can be present in biodiesel fuel and contribute to corrosion, reduced performance and shorter engine lifetime. On the other hand, trace amounts of chromium and vanadium can increase the emission of pollutants during biodiesel combustion. Sample viscosity, immiscibility with aqueous solutions and high carbon content can compromise biodiesel analyzes. In this work, tungsten filaments extracted from microscope light bulbs are used to successively decompose biodiesel's organic matrix, and atomize and excite the analytes to determine sodium, potassium, chromium and vanadium by tungsten coil atomic emission spectrometry (WCAES). No sample preparation other than simple dilution in methanol or ethanol is required. Direct analysis of 10-μL sample aliquots using heating cycles with less than 150 s results in limits of detection (LOD) as low as 20, 70, 70 and 90 μg kg −1 for Na, K, Cr and V, respectively. The procedure's accuracy is checked by determining Na and K in a biodiesel reference sample and carrying out spike experiments for Cr and V. No statistically significant differences were observed between reference and determined values for all analytes at a 95% confidence level. The procedure was applied to three different biodiesel samples and concentrations between 6.08 and 95.6 mg kg −1 for Na and K, and between 0.22 and 0.43 mg kg −1 for V were obtained. The procedure is simple, fast and environmentally friendly. Small volumes of reagents, samples and gases are used and no residues are generated. Powers of detection are

  8. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  9. Application of radiochemical neutron activation and atomic absorption spectrometry methods for the study of nutrition-pollution interactions in children

    Energy Technology Data Exchange (ETDEWEB)

    Tran Bang Diep [Institute for Nuclear Science and Technique, VAEC, P.O. Box 5T-160, Hanoi (Viet Nam)]. E-mail: tranfbangdiepj@yahoo.com; Tran Dai Nghiep [Institute for Nuclear Science and Technique, VAEC, P.O. Box 5T-160, Hanoi (Viet Nam)]. E-mail: tdnghiep@vaec.gov.vn

    2005-07-01

    The application of radiochemical neutron activation analysis (RNAA) and atomic absorption spectrometry (AAS) is expected to aid in understanding and evaluating the effects of environmental pollution on the nutritional status of children already exposed to marginal malnutrition. Samples of placenta, of low-weight and control newborns groups, were collected for determination of nutritional elements and pollutants. The mean ratios of pollutants and nutrients such as Cd/Zn, Hg/Se and Pb/Ca were evaluated for both groups. All these ratios in the placenta of the low-weight newborns are higher than that of the healthy group. The degree of the nutrient-pollutant interaction is evaluated by quantity R, with mercury considered as the most active pollutant while calcium the most active nutrient among the involved elements in process of the interaction. (author)

  10. Determination of daily intake of elements from Philippine total diet samples using inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Leon, G.C. de; Shiraishi, K.; Kawamura, H.; Igaraishi, Y.; Palattao, M.V.; Azanon, E.M.

    1990-10-01

    Total diet samples were analyzed for major elements (Na, K, Ca, Mg, P) and some minor trace elements (Fe, Zn, Mn, Al, Sr, Cu, Ba, Yt) using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Samples analyzed were classified into sex and age groups. Results for some elements (Na, K, Mg, Zn, Cu, Mn) were compared with values from Bataan dietary survey calculated using the Philippine composition table. Exceot for Na, analytical results were similar to calculated values. Analytical results for Ca and Fe were also compared with the values from Food and Nutrition Research Institute. In general, values obtained in the study were lower than the FNRI values. Comparison of the analytical and calculated results with the Japanese and ICRP data showed that Philippine values were lower than foreign values. (Auth.). 22 refs., 9 tabs

  11. Determination of total selenium in nutritional supplements and selenised yeast by Zeeman-effect graphite furnace atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Ekelund, J.

    1989-01-01

    A method for the determination of total selenium in nutritional supplements and selenised yeast is described. The samples were ashed in nitric acid. Hydrochloric acid was used to prevent precipitation of, in particular, iron salts. After appropriate dilutions, the selenium was determined by Zeeman......-effect background corrected graphite furnace atomic absorption spectrometry. A furnace ashing step at 1100 °C was necessary in order to obtain a total recovery of selenium when present in the organic form. Palladium nitrate-magnesium nitrate was used as a matrix modifier. Independent methods were used to determine...... the content of selenium in a selenised yeast check sample. Accuracy was assured using this sample and by recovery experiments. Between-day random error showed a coefficient of variation of 4.2%. Results from the analysis of eight different commercial supplements were in good agreement with declared contents....

  12. Application of radiochemical neutron activation and atomic absorption spectrometry methods for the study of nutrition-pollution interactions in children

    International Nuclear Information System (INIS)

    Tran Bang Diep; Tran Dai Nghiep

    2005-01-01

    The application of radiochemical neutron activation analysis (RNAA) and atomic absorption spectrometry (AAS) is expected to aid in understanding and evaluating the effects of environmental pollution on the nutritional status of children already exposed to marginal malnutrition. Samples of placenta, of low-weight and control newborns groups, were collected for determination of nutritional elements and pollutants. The mean ratios of pollutants and nutrients such as Cd/Zn, Hg/Se and Pb/Ca were evaluated for both groups. All these ratios in the placenta of the low-weight newborns are higher than that of the healthy group. The degree of the nutrient-pollutant interaction is evaluated by quantity R, with mercury considered as the most active pollutant while calcium the most active nutrient among the involved elements in process of the interaction. (author)

  13. Accuracy and Precision in Elemental Analysis of Environmental Samples using Inductively Coupled Plasma-Atomic Emission Spectrometry

    International Nuclear Information System (INIS)

    Quraishi, Shamsad Begum; Chung, Yong-Sam; Choi, Kwang Soon

    2005-01-01

    Inductively Coupled Plasma-Atomic Emission Spectrometry followed by micro-wave digestion have been performed on different environmental Certified Reference Materials (CRMs). Analytical results show that accuracy and precision in ICP-AES analysis were acceptable and satisfactory in case of soil and hair CRM samples. The relative error of most of the elements in these two CRMs is within 10% with few exceptions and coefficient of variation is also less than 10%. Z-score as an analytical performance was also within the acceptable range (±2). ICP-AES was found as an inadequate method for Air Filter CRM due to incomplete dissolution, low concentration of elements and very low mass of the sample. However, real air filter sample could have been analyzed with high accuracy and precision by increasing sample mass during collection. (author)

  14. Proton Induced X-Rays Emission (PIXE) and Atomic Absorption Spectrometry (AAS) applied in the environmental sample analysis

    International Nuclear Information System (INIS)

    Popescu, Ion V.; Iordan, M.; Stihi, C.; Bancuta, A.; Dima, G.; Busuioc, G.; Ciupina, V.; Belc, M.; Badica, T.

    2003-01-01

    The aim of this work is to determine the elemental composition of tree leaves using Proton-Induced X-Rays Emission (PIXE) and Atomic Absorption Spectrophotometry (AAS) methods. By PIXE Spectrometry we identified and determined the concentration of S, Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu Zn, As, Br, Sr and by AAS method the concentration of elements: Cr, Mn, Fe, Co, Cu, Zn, Se, Cd. Pb was identified in only 2 samples from 29. For tree leave samples collected at a large distance to the polluting source the Sr concentration decreased and the Mg, Ca, Se, Zn and Fe concentrations increased. Also, we can observe a small affinity of these leaves for the environmental Pb which was detected for two samples at a small distance to polluting source. (authors)

  15. Semi-automatic determination of tin in marine materials by continuous flow hydride generation inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Feng Yonglai; Narasaki, Hisataki; Chen Hongyuan; Tian Liching

    1997-01-01

    A semi-automated continuous flow hydride generation system with inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for the determination of tin in marine materials. The effects of acids (H 2 SO 4 and HCl) were studied. The analytical parameters were thoroughly investigated. Under optimized conditions, the detection limit is 0.4 ng/ml. Interferences from transition elements were investigated and seven masking reagents were tested. L-cysteine hydrochloride monohydrate (1%) was used to mask the interferences from foreign ions. Finally, the accuracy, checked with a marine standard reference material obtained from the National Research Council (NRC), was within the certified value. (orig.). With 6 figs., 4 tabs

  16. Determination of lead in water by electrothermal atomic absorption spectrometry with a nickel(II)-ammonium tartrate modifier

    International Nuclear Information System (INIS)

    Sekerka, I.; Lechner, J.F.

    1991-01-01

    A method is described for the determination of low concentrations of lead in water samples. Atomic absorption spectrometry is used with a tungsten ribbon furnace and Zeeman background correction. Interferences are eliminated by the addition of ammonium tartrate and nickel(II) nitrate to the samples to act as a matrix modifier and adjust the pH. The results show the superior performance of this modifier over other types used conventionally. The detection limit is 1 μg l -1 relative standard deviation of -1 can be obtained. The instrumentation is simple and the method is efficient for the determination of lead in various water samples. 25 refs.; 7 figs.; 6 tabs

  17. Analysis of aluminium by atomic absorption spectrometry and analysis of thorium and uranium by alpha spectrometry in the black sand of Egypt

    International Nuclear Information System (INIS)

    Hannachi, Dhouha; Mathlouthi, Nadia

    2008-01-01

    Throughout the period of our project of end of study carried out in the Center ; main road Sciences and Nuclear Engineering's CNSTN in one is tallied took one Egypt black sand simple with an aim has of knowing the activities of the existing radio elements and especially Uranium and Thorium. In the same mining, we try to take another Egypt black sand simple an aim has knowing the mass of aluminum by using a techniques in Atomique Absorption Spectrophotometer. After the radio chemical and Spectrometry analysis of the black sand sample we found the results following: - Egypt black sand is contains isotopes of Uranium such as 234 U and 238 U; - The Egypt black sand is contains isotopes of Thorium such as 230 Th and 232 Th. - L' Aluminum is a major. (Author)

  18. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    International Nuclear Information System (INIS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; Furtado da Silva, Alessandra; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson Jose

    2005-01-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 deg. C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 deg. C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1

  19. Plutonium determination in urine by techniques of mass spectrometry; Determinacion de plutonio en orina por tecnicas de espectrometria de masas

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, H. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Yllera de Ll, A., E-mail: hector.hernandez520@gmail.com [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Departamento de Medio Ambiente, Av. Complutense 22, 28040 Madrid (Spain)

    2013-10-15

    The objective of this study was to develop an analytic method for quantification and plutonium reappraisal in plane tables of alpha spectrometry be means of the mass spectrometry technique of high resolution with plasma source inductively coupled and desolvator Aridus (Aridus-Hr-Icp-Ms) and mass spectrometry with accelerator (AMS). The obtained results were, the recovery percentage of Pu in the plane table was of ∼ 90% and activity minimum detectable obtained with Aridus-Hr-Icp-Ms and AMS was of ∼ 3 and ∼ 0.4 f g of {sup 239}Pu, respectively. Conclusion, the results demonstrate the aptitude of the Aridus-Hr-Icp-Ms and AMS techniques in the Pu reappraisal in plane tables with bigger speed and precision, improving the values notably of the activity minimum detectable that can be obtained with the alpha spectrometry (∼ 50 f g of {sup 239}Pu). (author)

  20. Graphene oxide sheets immobilized polystyrene for column preconcentration and sensitive determination of lead by flame atomic absorption spectrometry.

    Science.gov (United States)

    Islam, Aminul; Ahmad, Hilal; Zaidi, Noushi; Kumar, Suneel

    2014-08-13

    A novel solid-phase extractant was synthesized by coupling graphene oxide (GO) on chloromethylated polystyrene through an ethylenediamine spacer unit to develop a column method for the preconcentration/separation of lead prior to its determination by flame atomic absorption spectrometry. It was characterized by Fourier transform infrared spectroscopy, far-infrared spectroscopy, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, energy-dispersive spectrometry, and transmission electron microscopy. The abundant oxygen-containing surface functional groups form a strong complex with lead, resulting in higher sorption capacity (227.92 mg g(-1)) than other nanosorbents used for sorption studies of the column method. Using the column procedure here is an alternative to the direct use of GO, which restricts irreversible aggregation of GO and its escape into the ecosystem, making it an environmentally sustainable method. The column method was optimized by varying experimental variables such as pH, flow rate for sorption/desorption, and elution condition and was observed to exhibit a high preconcentration factor (400) with a low preconcentration limit (2.5 ppb) and a high degree of tolerance for matrix ions. The accuracy of the proposed method was verified by determining the Pb content in the standard reference materials and by recovery experiments. The method showed good precision with a relative standard deviation <5%. The proposed method was successfully applied for the determination of lead in tap water, electroplating wastewater, river water, and food samples after preconcentration.

  1. Liquid separation techniques coupled with mass spectrometry for chiral analysis of pharmaceuticals compounds and their metabolites in biological fluids.

    Science.gov (United States)

    Erny, G L; Cifuentes, A

    2006-02-24

    Determination of the chiral composition of drugs is nowadays a key step in order to determine purity, activity, bioavailability, biodegradation, etc., of pharmaceuticals. In this article, works published for the last 5 years on the analysis of chiral drugs by liquid separation techniques coupled with mass spectrometry are reviewed. Namely, chiral analysis of pharmaceuticals including, e.g., antiinflammatories, antihypertensives, relaxants, etc., by liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry are included. The importance and interest of the analysis of the enantiomers of the active compound and its metabolites in different biological fluids (plasma, urine, cerebrospinal fluid, etc.) are also discussed.

  2. Liquid separation techniques coupled with mass spectrometry for chiral analysis of pharmaceuticals compounds and their metabolites in biological fluids.

    OpenAIRE

    Erny, Guillaume L.; Cifuentes, Alejandro

    2006-01-01

    Determination of the chiral composition of drugs is nowadays a key step in order to determine purity, activity, bioavailability, biodegradation, etc, of pharmaceuticals. In this manuscript, works published for the last 5 years on the analysis of chiral drugs by liquid separation techniques coupled with mass spectrometry are reviewed. Namely, chiral analysis of pharmaceuticals including e.g., antiinflammatories, antihypertensives, relaxants, etc, by liquid chromatography-mass spectrometry and ...

  3. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    Hidalgo, A.

    2003-01-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  4. Cobalt as chemical modifier to improve chromium sensitivity and minimize matrix effects in tungsten coil atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei G. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil); Donati, George L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Santos, Luana N. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil); Jones, Bradley T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Nóbrega, Joaquim A. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil)

    2013-05-30

    Graphical abstract: -- Highlights: •Charge transfer reactions increase the population of Cr{sup +}. •Chromium ions and electrons recombine to form excited-state Cr atoms. •A 10-fold improvement in LOD is observed for Cr emission measurements. •The two-step ionization/excitation mechanism improves sensitivity and accuracy. •High concentrations of Co also minimize matrix effects. -- Abstract: Cobalt is used as chemical modifier to improve sensitivity and minimize matrix effects in Cr determinations by tungsten coil atomic emission spectrometry (WCAES). The atomizer is a tungsten filament extracted from microscope light bulbs. A solid-state power supply and a handheld CCD-based spectrometer are also used in the instrumental setup. In the presence of 1000 mg L{sup −1} Co, WCAES limit of detection for Cr (λ = 425.4 nm) is calculated as 0.070 mg L{sup −1}; a 10-fold improvement compared to determinations without Co modifier. The mechanism involved in such signal enhancement is similar to the one observed in ICP OES and ICP-MS determinations of As and Se in the presence of C. Cobalt increases the population of Cr{sup +} by charge transfer reactions. In a second step, Cr{sup +}/e{sup −} recombination takes place, which results in a larger population of excited-state Cr atoms. This alternative excitation route is energetically more efficient than heat transfer from atomizer and gas phase to analyte atoms. A linear dynamic range of 0.25–10 mg L{sup −1} and repeatability of 3.8% (RSD, n = 10) for a 2.0 mg L{sup −1} Cr solution are obtained with this strategy. The modifier high concentration also contributes to improving accuracy due to a matrix-matching effect. The method was applied to a certified reference material of Dogfish Muscle (DORM-2) and no statistically significant difference was observed between determined and certified Cr values at a 95% confidence level. Spike experiments with bottled water samples resulted in recoveries between 93% and

  5. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins.

    Science.gov (United States)

    Lakbub, Jude C; Shipman, Joshua T; Desaire, Heather

    2018-04-01

    Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass

  6. Determination of arsenic in geological materials by electrothermal atomic-absorption spectrometry after hydride generation

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.; Welsch, E.P.

    1979-01-01

    Rock and soil samples are decomposed with HClO4-HNO3; after further treatment, arsine is generated and absorbed in a dilute silver nitrate solution. Aliquots of this solution are injected into a carbon rod atomizer. Down to 1 ppm As in samples can be determined and there are no significant interferences, even from chromium in soils. Good results were obtained for geochemical reference samples. ?? 1979.

  7. Flame emission spectrometry using atomic absorption apparatus. I. Determination of Sr in sea water

    International Nuclear Information System (INIS)

    Aizawa, S.; Yoshimura, E.; Hamachi, M.; Haraguchi, H.; Dokiya, Y.; Fuwa, K.

    1976-01-01

    Flame emission determination of Sr in seawater was studied using an ordinary atomic absorption apparatus. The analytical line 4607 A was used with a background correction at 4616 A. The ionization was negligible in an air acetylene flame with seawater, and the interference of H 2 SO 4 was eliminated using the higher part of the flame. Sr concentration of seawater of Tokyo Bay and Sagami Bay has been determined

  8. Mass spectrometry in oceanography

    International Nuclear Information System (INIS)

    Aggarwal, Suresh K.

    2000-01-01

    Mass spectrometry plays an important role in oceanography for various applications. Different types of inorganic as well as organic mass spectrometric techniques are being exploited world-wide to understand the different aspects of marine science, for palaeogeography, palaeoclimatology and palaeoecology, for isotopic composition and concentrations of different elements as well as for speciation studies. The present paper reviews some of the applications of atomic mass spectrometric techniques in the area of oceanography

  9. Development of inductively coupled plasma atomic emission spectrometry for palladium and Rhodium determination in platinum-based alloy

    International Nuclear Information System (INIS)

    Kovacevic, R.; Todorovic, M.; Manojlovic, D.; Mutic, J.

    2008-01-01

    Inductively coupled plasma atomic emission spectroscopy with internal standardization was applied for the analysis of an in-house reference platinum alloy containing palladium and rhodium (approximately 5% by weight). In order to compensate for variations in signal recovery due to matrix interferences, and therefore to improve the precision, platinum. the major component, was chosen as an internal standard. Quantitative analysis was based on calibration using a set of matrix-matched calibration standards with and without employing the internal standard. These results were compared with those obtained by X-ray fluorescence spectroscopy. The results for both techniques were in a good agreement, although the precision was slightly better in the inductively coupled plasma atomic emission spectroscopy technique, with or without the internal standard

  10. Salt-assisted liquid-liquid microextraction of Cr(VI) ion using an ionic liquid for preconcentration prior to its determination by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Majidi, B.; Shemirani, F.

    2012-01-01

    We report on the salt-assisted liquid-liquid microextraction of cationic complexes of Cr(VI) ion using the hydrophilic ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoraborate and potassium hydrogen phosphate. This is a novel, simple, non-toxic and effective technique for sample pretreatment technique that displays large extraction efficiency and represents a new platform where Cr(VI) is complexed with 1,5-diphenylcarbazide (DPC) in sulfuric acid medium. It was applied to the extraction of Cr(VI) in the form of the Cr(VI)-DPC complex prior to its determination by flame atomic absorption spectrometry. Cr(III) ion also can be determined by this procedure after oxidation to Cr(VI). Extraction is mainly affected by the amount of water-soluble IL, the kind and quantity of inorganic salts, by pH and the concentration of DPC. Calibration plots are linear in the range from 3 to 150 μg L -1 of Cr(VI), and the limit of detection is 1. 25 μg L -1 . The method was successfully applied to the speciation and determination of trace levels of Cr(III) and Cr(VI) in environmental water samples containing high levels of dissolved salts or food grade salts. (author)

  11. Immersed single-drop microextraction interfaced with sequential injection analysis for determination of Cr(VI) in natural waters by electrothermal-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Pena, Francisco; Lavilla, Isela; Bendicho, Carlos

    2008-01-01

    Single-drop microextraction (SDME) and sequential injection analysis have been hyphenated for ultratrace metal determination by Electrothermal-Atomic Absorption Spectrometry (ETAAS). The novel method was targeted on extraction of the Cr(VI)-APDC chelate and encompasses the potential of SDME as a miniaturized and virtually solvent-free preconcentration technique, the ability of sequential injection analysis to handle samples and the versatility of furnace autosamplers for introducing microliter samples in ETAAS. The variables influencing the microextraction of Cr(VI) onto an organic solvent drop, i.e., type of organic solvent, microextraction time, stirring rate of the sample solution, drop volume, immersion depth of the drop, salting-out effect, temperature of the sample, concentration of the complexing agent and pH of the sample solution were fully investigated. For a 5 and 20 min microextraction time, the preconcentration factors were 20 and 70, respectively. The detection limit was 0.02 μg/L of Cr(VI) and the repeatability expressed as relative standard deviation was 7%. The SDME-SIA-ETAAS technique was validated against BCR CRM 544 (lyophilized solution) and applied to ultrasensitive determination of Cr(VI) in natural waters

  12. Immersed single-drop microextraction interfaced with sequential injection analysis for determination of Cr(VI) in natural waters by electrothermal-atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Francisco; Lavilla, Isela [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende, s/n, 36310 Vigo (Spain); Bendicho, Carlos [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende, s/n, 36310 Vigo (Spain)], E-mail: bendicho@uvigo.es

    2008-04-15

    Single-drop microextraction (SDME) and sequential injection analysis have been hyphenated for ultratrace metal determination by Electrothermal-Atomic Absorption Spectrometry (ETAAS). The novel method was targeted on extraction of the Cr(VI)-APDC chelate and encompasses the potential of SDME as a miniaturized and virtually solvent-free preconcentration technique, the ability of sequential injection analysis to handle samples and the versatility of furnace autosamplers for introducing microliter samples in ETAAS. The variables influencing the microextraction of Cr(VI) onto an organic solvent drop, i.e., type of organic solvent, microextraction time, stirring rate of the sample solution, drop volume, immersion depth of the drop, salting-out effect, temperature of the sample, concentration of the complexing agent and pH of the sample solution were fully investigated. For a 5 and 20 min microextraction time, the preconcentration factors were 20 and 70, respectively. The detection limit was 0.02 {mu}g/L of Cr(VI) and the repeatability expressed as relative standard deviation was 7%. The SDME-SIA-ETAAS technique was validated against BCR CRM 544 (lyophilized solution) and applied to ultrasensitive determination of Cr(VI) in natural waters.

  13. Spatial discrimination against background with different optical systems for collection of fluorescence in laser-excited atomic fluorescence spectrometry with a graphite tube electrothermal atomizer.

    Science.gov (United States)

    Yuzefovsky, A I; Lonardo, R F; Michel, R G

    1995-07-01

    A single 90 degrees off-axis ellipsoidal mirror fragment was used in a dispersive detection system for electrothermal atomization laser-excited atomic fluorescence spectrometry. The performance of the new optical arrangement was compared with those of optical arrangements that employed a plane mirror in combination with biconvex or plano-convex lenses. All the optical arrangements collected fluorescence in a scheme called front surface illustration. BEAM-4, an optical ray tracing program, was used for calculations of spatial ray distributions and optical collection efficiency for the various optical configurations. Experimentally, the best collection efficiency was obtained by use of the ellipsoidal mirror, in qualitative agreement with simulations done by use of the BEAM-4 software. The best detection limit for cobalt with the new optical arrangement was 20 fg, which was a factor of 5 better than that obtained with conventional optical arrangements with otherwise the same instrumentation. The signal-to-background ratio and the fluorescence collection efficiency were also studied as a function of position of the optical components for the various optical arrangements. For both cobalt and phosphorus, the signal-to-background ratio with the new optical arrangement remained stable within 10-20% during +/- 8 mm shifts in the position of the detection system from the focal plane of the optics. Overall, the new optical arrangement offered high collection efficiency, excellent sensitivity, and facile optical alignment due to efficient spatial separation between the fluorescence signal and the background radiation. The advantages of the new optical arrangement were particularly important during measurements in the presence of high levels of blackbody radiation.

  14. Determination of bismuth by dielectric barrier discharge atomic absorption spectrometry coupled with hydride generation: Method optimization and evaluation of analytical performance

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Boušek, J.; Sturgeon, R. E.; Mester, Z.; Dědina, Jiří

    2014-01-01

    Roč. 86, č. 19 (2014), s. 9620-9625 ISSN 0003-2700 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  15. International comparison of Cd content in a quality control material of Navajuelas (Tagelus dombeii) determined by anodic stripping voltammetry, atomic absorption spectrometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Queirolo, F.; Forschungszentrum Juelich GmbH; Universidad de Extremadura, Badajoz; Ostapczuk, P.; Valenta, P.; Stegen, S.; Universidad de Extremadura, Badajoz; Marin, C.; Vinagre, F.; Sanchez, A.

    1991-01-01

    The determination of Cd was performed by neutron activation analysis (NAA), atomic absorption spectrometry (AAS) with flame or in the electrothermal mode and anodic stripping voltammetry in the differential pulse mode (DPASV) and the square wave mode (SWASV). (orig./EF)

  16. Ambient-temperature trap/release of arsenic by dielectric barrier discharge and its application to ultratrace arsenic determination in surface water followed by atomic fluorescence spectrometry

    Science.gov (United States)

    A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HGAFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical m...

  17. Evaluation of an inductively-coupled plasma with an extended-sleeve torch as an atomization cell for laser-excited fluorescence spectrometry.

    Science.gov (United States)

    Kosinski, M A; Uchida, H; Winefordner, J D

    1983-05-01

    An inductively-coupled plasma (ICP) with an extended-sleeve torch has been evaluated as an atomization cell for laser-excited fluorescence spectrometry. Limits of detection for 20 lines are given. The detection power is almost equivalent to that obtained by excitation with a hollow-cathode lamp. Interelement effects and spectral interferences are discussed.

  18. Investigations into the Role of Modifiers for Entrapment of Hydrides in Flow Injection Hydride Generation Electrothermal Atomic Absorption Spectrometry as Exemplified for the Determination of Germanium

    DEFF Research Database (Denmark)

    Hilligsøe, Bo; Andersen, Jens Enevold Thaulov; Hansen, Elo Harald

    1997-01-01

    Pd-conditioned graphite tubes, placed in the furnace of an atomic absorption spectrometry instrument, are used for entrapment of germane as generated in an associated flow injection system. Two different approaches are tested with the ultimate aim to allow multiple determinations, that is...

  19. Combination of atomic force microscopy and mass spectrometry for the detection of target protein in the serum samples of children with autism spectrum disorders

    Science.gov (United States)

    Kaysheva, A. L.; Pleshakova, T. O.; Kopylov, A. T.; Shumov, I. D.; Iourov, I. Y.; Vorsanova, S. G.; Yurov, Y. B.; Ziborov, V. S.; Archakov, A. I.; Ivanov, Y. D.

    2017-10-01

    Possibility of detection of target proteins associated with development of autistic disorders in children with use of combined atomic force microscopy and mass spectrometry (AFM/MS) method is demonstrated. The proposed method is based on the combination of affine enrichment of proteins from biological samples and visualization of these proteins by AFM and MS analysis with quantitative detection of target proteins.

  20. Surfactant/oil/water system for the determination of selenium in eggs by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Ieggli, C. V. S.; Bohrer, D.; Noremberg, S.; do Nascimento, P. C.; de Carvalho, L. M.; Vieira, S. L.; Reis, R. N.

    2009-06-01

    An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 µg L - 1 . The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.

  1. Surfactant/oil/water system for the determination of selenium in eggs by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ieggli, C.V.S. [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil); Bohrer, D. [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil)], E-mail: ndenise@quimica.ufsm.br; Noremberg, S.; Nascimento, P.C. do; Carvalho, L.M. de [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil); Vieira, S.L.; Reis, R.N. [Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 7712, CEP 90540-000, Porto Alegre (Brazil)

    2009-06-15

    An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 {mu}g L{sup - 1}. The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.

  2. Determination of arsenic in petroleum refinery streams by electrothermal atomic absorption spectrometry after multivariate optimization based on Doehlert design

    Science.gov (United States)

    Cassella, Ricardo J.; de Sant'Ana, Otoniel D.; Santelli, Ricardo E.

    2002-12-01

    This paper reports the development of a methodology for the determination of arsenic in petroleum refinery aqueous streams containing large amounts of unknown volatile organic compounds, employing electrothermal atomic absorption spectrometry with polarized Zeeman-effect background correction. In order to make the procedure applicable, the influence of chemical modification and the drying step was examined. Also, pyrolysis and atomization temperatures and the amount of nitric acid added to the sample were optimized using a multivariate approach based on Doehlert matrix. Obtained results indicate that, in this kind of sample, arsenic must be determined by standard addition procedure with a careful control of the drying step temperature and ramp pattern. In order to evaluate the accuracy of the procedure, a test was performed in six spiked samples of petroleum refinery aqueous streams and the relative errors verified in the analysis of such samples (added As between 12.5 and 190 μg l -1) ranged from -7.2 to +16.7%. The detection limit and the relative standard deviation were also calculated and the values are 68 pg and 7.5% (at 12.5 μg l -1 level), respectively.

  3. Determination of arsenic in petroleum refinery streams by electrothermal atomic absorption spectrometry after multivariate optimization based on Doehlert design

    International Nuclear Information System (INIS)

    Cassella, Ricardo J.; Sant'Ana, Otoniel D. de; Santelli, Ricardo E.

    2002-01-01

    This paper reports the development of a methodology for the determination of arsenic in petroleum refinery aqueous streams containing large amounts of unknown volatile organic compounds, employing electrothermal atomic absorption spectrometry with polarized Zeeman-effect background correction. In order to make the procedure applicable, the influence of chemical modification and the drying step was examined. Also, pyrolysis and atomization temperatures and the amount of nitric acid added to the sample were optimized using a multivariate approach based on Doehlert matrix. Obtained results indicate that, in this kind of sample, arsenic must be determined by standard addition procedure with a careful control of the drying step temperature and ramp pattern. In order to evaluate the accuracy of the procedure, a test was performed in six spiked samples of petroleum refinery aqueous streams and the relative errors verified in the analysis of such samples (added As between 12.5 and 190 μg l -1 ) ranged from -7.2 to +16.7%. The detection limit and the relative standard deviation were also calculated and the values are 68 pg and 7.5% (at 12.5 μg l -1 level), respectively

  4. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry.

    Science.gov (United States)

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S; Korn, Maria G A; Bezerra, Marcos A

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L(-1) nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 microg L(-1), respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 microg L(-1). The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  5. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S.; Korn, Maria G.A.; Bezerra, Marcos A.

    2009-01-01

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L -1 nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 μg L -1 , respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 μg L -1 . The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish

  6. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Soylak, Mustafa [Department of Chemistry, Erciyes University, 38039 Kayseri (Turkey)], E-mail: soylak@erciyes.edu.tr; Citak, Demirhan [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Ferreira, Hadla S.; Korn, Maria G.A. [Universidade Federal da Bahia, Instituto de Quimica, 40170-290 Salvador (Brazil); Bezerra, Marcos A. [Universidade Estadual do Sudoeste da Bahia, 45200-190 Jequie (Brazil)

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L{sup -1} nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 {mu}g L{sup -1}, respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 {mu}g L{sup -1}. The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  7. On-line preconcentration and determination of mercury in biological and environmental samples by cold vapor-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ferrua, N.; Cerutti, S.; Salonia, J.A.; Olsina, R.A.; Martinez, L.D.

    2007-01-01

    An on-line procedure for the determination of traces of total mercury in environmental and biological samples is described. The present methodology combines cold vapor generation associated to atomic absorption spectrometry (CV-AAS) with preconcentration of the analyte on a minicolumn packed with activated carbon. The retained analyte was quantitatively eluted from the minicolumn with nitric acid. After that, volatile specie of mercury was generated by merging the acidified sample and sodium tetrahydroborate(III) in a continuous flow system. The gaseous analyte was subsequently introduced via a stream of Ar carrier into the atomizer device. Optimizations of both, preconcentration and mercury volatile specie generation variables were carried out using two level full factorial design (2 3 ) with 3 replicates of the central point. Considering a sample consumption of 25 mL, an enrichment factor of 13-fold was obtained. The detection limit (3σ) was 10 ng L -1 and the precision (relative standard deviation) was 3.1% (n = 10) at the 5 μg L -1 level. The calibration curve using the preconcentration system for mercury was linear with a correlation coefficient of 0.9995 at levels near the detection limit up to at least 1000 μg L -1 . Satisfactory results were obtained for the analysis of mercury in tap water and hair samples

  8. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    Science.gov (United States)

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.

  9. Broadening the applications of the atom probe technique by ultraviolet femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Hono, K., E-mail: kazuhiro.hono@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Ohkubo, T. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Chen, Y.M.; Kodzuka, M. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Oh-ishi, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Sepehri-Amin, H. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Li, F. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Kinno, T. [Corporate R and D Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582 (Japan); CREST, Japan Science and Technology Agency (Japan); Tomiya, S.; Kanitani, Y. [Advanced Materials Laboratory, Sony Corporation, Atsugi, Kanagawa 243-0021 (Japan)

    2011-05-15

    Laser assisted field evaporation using ultraviolet (UV) wavelength gives rise to better mass resolution and signal-to-noise ratio in atom probe mass spectra of metals, semiconductors and insulators compared to infrared and green lasers. Combined with the site specific specimen preparation techniques using the lift-out and annular Ga ion milling in a focused ion beam machine, a wide variety of materials including insulating oxides can be quantitatively analyzed by the three-dimensional atom probe using UV laser assisted field evaporation. After discussing laser irradiation conditions for optimized atom probe analyses, recent atom probe tomography results on oxides, semiconductor devices and grain boundaries of sintered magnets are presented. -- Research highlights: {yields} Application of ultraviolet (UV) femtosecond pulsed laser in a three dimensional atom probe (3DAP). {yields} Improved mass resolution and signal-to-noise ratio in atom probe mass spectra using UV laser. {yields} UV laser facilitates 3DAP analysis of insulating oxides. {yields} Quantitative analysis of wide variety of materials including insulating oxides using UV femotosecond laser.

  10. Application of gamma ray spectrometry and atomic absorption spectrometry for monitoring some radionuclides and heavy metals in sediments from the sudanese red sea coast

    International Nuclear Information System (INIS)

    Idris, A. M.; Eltayeb, M. A.

    2004-01-01

    A total of 31 surface sediment samples were collected from port-sudan harbour, sawakin harbour and the fringing reefs area that are located along the Sudanese coast of the red sea. The sampling was performed to provide good spatial coverage taking into account man's activity in port-sudan harbour and the fringing reefs area. the bulk samples were analyzed for some natural and anthropogenic radionuclides ( 226 Ra, 228 Ra, 40 K, 137 Cs) using direct gamma-ray spectrometry. Concentration of some heavy metals were determined in five fractions with grain-size of 1.000-0.500 m lm, 0.500-0.250 m lm, 0.250-0.125 m lm, 0.125-0.063 m lm and less than 0.063 m lm. The fractionation process was performed using dry sieving method. A total of 155 sub-samples (fractions) were digested by wet digestion method and analyzed for Mn, Fe, Ni, Cu, Zn, and Pb using flame atomic absorption spectrometry. Quality assurance of the obtained data was achieved through the analysis of certified reference materials. the radioactivity concentration ranges of ( 226 Ra, 228 Ra, and 40 K,) are 2.5-25.1b/kg, 2.1-13.1b q/kg,21.6- 429 Bq/kg, respectively. For ( 137 Cs)measurements, the highest value is 8.3 Bq/kg while most of samples were below the detection limits of the system. The concentration ranges of Mn, Fe, Cu, Zn, and Pb are 53.3-819 mg/kg, 1.4-51 mg/g, 8-131 mg/kg 9.5-113 mg/kg, 18.4-142 mg/kg, and 4.0-26.6 mg/kg, respectively. The granulometric normalization shows that some samples were subjected to anthropogenic activities. This finding was reinforced by results that were obtained from enrichment factor calculations and statistical multivariate analysis that is principal component analysis (Pca), also the Pca indicates that silt/clay fraction (>0.063 m lm ) is the dominant source for the emission of anthropogenic activities. From viewpoint of mineralogical composition the cluster analysis has distributed the samples into tow clusters. Dominant elements in sediments (Mn and Fe ) recorded

  11. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  12. Ionization techniques in capillary electrophoresis-mass spectrometry: principles, design, and application.

    Science.gov (United States)

    Hommerson, Paul; Khan, Amjad M; de Jong, Gerhardus J; Somsen, Govert W

    2011-01-01

    A major step forward in the development and application of capillary electrophoresis (CE) was its coupling to ESI-MS, first reported in 1987. More than two decades later, ESI has remained the principal ionization technique in CE-MS, but a number of other ionization techniques have also been implemented. In this review the state-of-the-art in the employment of soft ionization techniques for CE-MS is presented. First the fundamentals and general challenges of hyphenating conventional CE and microchip electrophoresis with MS are outlined. After elaborating on the characteristics and role of ESI, emphasis is put on alternative ionization techniques including sonic spray ionization (SSI), thermospray ionization (TSI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), matrix-assisted laser desorption ionization (MALDI) and continuous-flow fast atom bombardment (CF-FAB). The principle of each ionization technique is outlined and the experimental set-ups of the CE-MS couplings are described. The strengths and limitations of each ionization technique with respect to CE-MS are discussed and the applicability of the various systems is illustrated by a number of typical examples. Copyright © 2011 Wiley Periodicals, Inc.

  13. Use of Atomic and Nuclear Techniques in Elemental and Isotopic Analysis

    International Nuclear Information System (INIS)

    2008-01-01

    This book is divided into four chapters which were presented by six authors of the best Arab specialists who have used the atomic and nuclear techniques for a long time and recognized their importance and capabilities in scientific researches. Atomic and Nuclear techniques are very successful in the field of analysis because they are the only way to proceed the analysis process with the requested accuracy and they are the cheapest at the same time. A number of these techniques were collected in this book on the basis of their accuracy and the abundance of using them in the analysis of material components, specially when these elements exist with insignificant percentage as in the case of poisons science, archaeology, nutrition, medicine and other applications.

  14. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries.

    Science.gov (United States)

    de Oliveira, Tatiane Milão; Augusto Peres, Jayme; Lurdes Felsner, Maria; Cristiane Justi, Karin

    2017-08-15

    Milk is an important food in the human diet due to its physico-chemical composition; therefore, it is necessary to monitor contamination by toxic metals such as Pb. Milk sample slurries were prepared using Triton X-100 and nitric acid for direct analysis of Pb using graphite furnace atomic absorption spectrometry - GF AAS. After dilution of the slurries, 10.00µl were directly introduced into the pyrolytic graphite tube without use of a chemical modifier, which acts as an advantage considering this type of matrix. The limits of detection and quantification were 0.64 and 2.14µgl -1 , respectively. The figures of merit studied showed that the proposed methodology without pretreatment of the raw milk sample and using external standard calibration is suitable. The methodology was applied in milk samples from the Guarapuava region, in Paraná State (Brazil) and Pb concentrations ranged from 2.12 to 37.36µgl -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Investigation of spectral interferences in the determination of lead in fertilizers and limestone samples using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Becker, Emilene M.; François, Luciane L.; Jesus, Alexandre de [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2014-11-01

    In the present work, spectral interferences on the determination of lead in fertilizer and limestone samples were investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry at the main analytical lines: 217.001 and 283.306 nm. For these investigations, samples were introduced into the furnace as slurry together with a mixture of Pd and Mg as chemical modifier. Spectral interferences were observed for some samples at both analytical lines. In order to verify whether a wet digestion procedure would avoid these interferences, a reference method for wet digestion of fertilizers was employed as an alternative sample preparation procedure. However, the same interferences were also observed in the digested samples. In order to identify and eliminate the fine-structured background using a least-squares background correction, reference spectra were generated using the combination of different species. The use of the latter technique allowed the elimination of spectral interferences for most of the investigated samples, making possible the determination of lead in fertilizer and limestone samples free of interferences. The best results were found using a reference spectrum of NH{sub 4}H{sub 2}PO{sub 4} at 217.001 nm, and a mixture of H{sub 2}SO{sub 4} + Ca and HNO{sub 3} + Ca at the 283.306 nm line. The accuracy of the method was evaluated using a certified reference material “Trace Elements in Multi-Nutrient Fertilizer”. Similar results were obtained using line source graphite furnace atomic absorption spectrometry with Zeeman-effect background correction, indicating that the latter technique was also capable to correct the spectral interferences, at least in part. - Highlights: • Spectral interferences on the determination of lead in fertilizers and limestone. • The analytical lines at 217.001 nm and 283.306 nm using HR-CS GF AAS. • Various combinations of compounds were used to create reference spectra. • LSBC

  16. Direct determination of lead in human urine and serum samples by electrothermal atomic absorption spectrometry and permanent modifiers

    International Nuclear Information System (INIS)

    Andrada, Daniel; Pinto, Frederico G.; Magalhaes, Cristina Goncalves; Nunes, Berta R.; Silva, Jose Bento Borba da; Franco, Milton B.

    2006-01-01

    The object of the present study was the development of alternative methods for the direct determination of lead in undigested samples of human urine and serum by electrothermal atomic absorption spectrometry (ETAAS). Thus, some substances have been investigated to act as chemical modifiers. Volumes of 20 μL of diluted samples, 1 + 1, v/v for urine and 1 + 4, v/v for serum, with HNO 3 1% v/v and 0.02% v/v of cetyl trimethyl ammonium chloride (CTAC) were prepared directly in the autosampler cups and placed into the graphite furnace. For modifiers in solutions 10 μL were used. Pyrolysis and atomization temperature curves were used in all optimizations in the matrixes diluted as exposed. For urine with permanent iridium (500 μg), the best pyrolysis and atomization temperatures were 900 and 1600 deg C, respectively, with a characteristic mass of 12 pg (recommended of 10 pg), with symmetrical absorption pulses and corrected background. Spiked urine samples presented recoveries between 86 and 112% for Ir permanent. The analysis results of certified urine samples are in agreement with certified values (95% of confidence) for two levels of the metal. For serum, good results were obtained with the mixture of Zr+Rh or Ir+Rh as permanent modifiers, with characteristic masses of 9.8 and 8.1 pg, respectively. Recoveries from spiked serum samples varied between 98.6 and 100.1% (Ir+Rh) and between 93.9 and 105.2% (Zr+Rh). In both recovery studies, the relative standard deviation (n=3) was lower than 7%. Calibration for both samples were made with aqueous calibration curves and presented r 2 higher than 0.99. The limits of detection were 0.7 μg L -1 for serum samples, with Zr+Rh permanent, and 1.0 μg L -1 for urine with iridium permanent. (author)

  17. Direct determination of lead in human urine and serum samples by electrothermal atomic absorption spectrometry and permanent modifiers

    Directory of Open Access Journals (Sweden)

    Andrada Daniel

    2006-01-01

    Full Text Available The object of the present study was the development of alternative methods for the direct determination of lead in undigested samples of human urine and serum by electrothermal atomic absorption spectrometry (ET AAS. Thus, some substances have been investigated to act as chemical modifiers. Volumes of 20 µL of diluted samples, 1 + 1, v/v for urine and 1 + 4, v/v for serum, with HNO3 1% v/v and 0.02% v/v of cetil trimethyl ammonium chloride (CTAC were prepared directly in the autosampler cups and placed into the graphite furnace. For modifiers in solutions 10 µL were used. Pyrolysis and atomization temperature curves were used in all optimizations in the matrixes diluted as exposed. For urine with permanent iridium (500 µg, the best pyrolysis and atomization temperatures were 900 and 1600 ºC, respectively, with a characteristic mass of 12 pg (recommended of 10 pg, with symmetrical absorption pulses and corrected background. Spiked urine samples presented recoveries between 86 and 112% for Ir permanent. The analysis results of certified urine samples are in agreement with certified values (95% of confidence for two levels of the metal. For serum, good results were obtained with the mixture of Zr+Rh or Ir+Rh as permanent modifiers, with characteristic masses of 9.8 and 8.1 pg, respectively. Recoveries from spiked serum samples varied between 98.6 and 100.1% (Ir+Rh and between 93.9 and 105.2% (Zr+Rh. In both recovery studies, the relative standard deviation (n=3 was lower than 7%. Calibration for both samples were made with aqueous calibration curves and presented r² higher than 0.99. The limits of detection were 0.7 µg L-1 for serum samples, with Zr+Rh permanent, and 1.0 µg L-1 for urine with iridium permanent.

  18. Development of a 2D temperature measurement technique for combustion diagnostics using 2-line atomic fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Johan

    2001-01-01

    The present thesis is concerned with the development and application of a novel planar laser-induced fluorescence (PLIF) technique for temperature measurements in a variety of combusting flows. Accurate measurement of temperature is an essential task in combustion diagnostics, since temperature is one of the most fundamental quantities for the characterization of combustion processes. The technique is based on two-line atomic fluorescence (TLAF) from small quantities of atomic indium (In) seeded into the fuel. It has been developed from small-scale experiments in laboratory flames to the point where practical combustion systems can be studied. The technique is conceptually simple and reveals temperature information in the post-flame regions. The viability of the technique has been tested in three extreme measurement situations: in spark ignition engine combustion, in ultra-lean combustion situations such as lean burning aero-engine concepts and, finally, in fuel-rich combustion. TLAF was successfully applied in an optical Sl engine using isooctane as fuel. The wide temperature sensitivity, 700 - 3000 K, of the technique using indium atoms allowed measurements over the entire combustion cycle in the engine to be performed. In applications in lean combustion a potential problem caused by the strong oxidation processes of indium atoms was encountered. This limits measurement times due to deposits of absorbing indium oxide on measurement windows. The seeding requirement is a disadvantage of the technique and can be a limitation in some applications. The results from experiments performed in sooting flames are very promising for thermometry measurements in such environments. Absorption by hydrocarbons and other native species was found to be negligible. Since low laser energies and low seeding concentrations could be used, the technique did not, unlike most other incoherent optical thermometry techniques, suffer interferences from LII of soot particles or LIF from PAH

  19. Matrix modifiers application during microimpurities determination in complex samples by electrothermal atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Bejzel', N.F.; Daaman, F.I.; Fuks-Pol', G.R.; Yudelevich, I.G.

    1993-01-01

    The review covers publications of primarily last 5 years and is devoted to the use of matrix modifiers (MM) for the determinations of trace impurities in complex samples by electrothermal atomic-absorption analysis. The role of MM in analytical process has been discussed as well as MM influence on all the elements of analytical system; factors, determining the effectiveness of MM action, the basis types of MM have been described. A great body of information is tabulated on the use of different MM for the determination of particular analysis in geological, medicobiological, technological, ecological samples and in pure materials and chemicals

  20. Matrix modification for determination of microimpurities in complex samples by electrothermal atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Bejzel', N.F.; Daaman, F.I.; Fuks-Pol', G.R.; Yudelevich, I.G.

    1993-01-01

    The review covers publications of primarily last 5 years and is devoted to the use of matrix modifiers (MM) for the determinations of trace impurities in complex samples by electrothermal atomic-absorption analysis. The role of MM in analytical process has been discussed as well as MM influence on all the elements of analytical system; factors, determining the effectiveness of MM action, the basis types of MM have been described. A great body of information is tabulated on the use of different MM for the determination of particular analysis in geological, medicobiological, technological, ecological samples and in pure materials and chemicals

  1. Evaluation of the natural radioactivity using thermoluminescence, gamma spectrometry and neutron activation techniques

    International Nuclear Information System (INIS)

    Fausto, A.M.; Otsubo, S.M.; Paes, W.S.; Yoshimura, E.M.; Okuno, E.; Hiodo, F.; Marques, L.S.; Alcala, A.L.

    1996-01-01

    The evaluation of the radiation dose in the living species due to the natural radioactivity is the main objective of this paper. The region that had been monitored was Intrusive Suite of Itu near to Sao Paulo city. Lateral[and depth distributions of natural radioactivity of the soil were determined using the techniques of thermoluminescence gamma spectrometry and neutron[activation. From the concentration in the soil of K-40 and radioactive elements of U and Th series experimentally determined, the dose due to gamma rays in air at 1 m from the soil was evaluated and the results compared with the direct dose measured with the portable rate-meter. (authors). 11 refs., 3 figs

  2. The Diagnosis of Plasma Parameters in Surface Alloying Technique by Optical Emission Spectrometry

    International Nuclear Information System (INIS)

    Fu Yabo; Zhang Yuefei; Chen Qiang; Zhang Guangqiu; Gao Yuan; Wang Jianzhong; Kui Xiaoyun

    2006-01-01

    Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH 4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1.71x10 15 /cm 3 to 6.64x10 15 /cm 3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma

  3. Feedback control of persistent-current oscillation based on the atomic-clock technique

    Science.gov (United States)

    Yu, Deshui; Dumke, Rainer

    2018-05-01

    We propose a scheme of stabilizing the persistent-current Rabi oscillation based on the flux qubit-resonator-atom hybrid structure. The low-Q L C resonator weakly interacts with the flux qubit and maps the persistent-current Rabi oscillation of the flux qubit onto the intraresonator electric field. This oscillating electric field is further coupled to a Rydberg-Rydberg transition of the 87Rb atoms. The Rabi-frequency fluctuation of the flux qubit is deduced from measuring the atomic population via the fluorescence detection and stabilized by feedback controlling the external flux bias. Our numerical simulation indicates that the feedback-control method can efficiently suppress the background fluctuations in the flux qubit, especially in the low-frequency limit. This technique may be extensively applicable to different types of superconducting circuits, paving a way to long-term-coherence superconducting quantum information processing.

  4. Atomic structure of large angle grain boundaries determined by quantitative X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Fitzsimmons, M.R.; Sass, S.L.

    1988-01-01

    Quantitative X-ray diffraction techniques have been used to determine the atomic structure of the Σ = 5 and 13 [001] twist boundaries in Au with a resolution of 0.09 Angstrom or better. The reciprocal lattices of these boundaries were mapped out using synchrotron radiation. The atomic structures were obtained by testing model structures against the intensity observations with a chi square analysis. The boundary structure were modeled using polyhedra, including octahedra, special configurations of tetrahedra and Archimedian anti-prisms, interwoven together by the boundary symmetry. The results of this work point to the possibility of obtaining general rules for grain boundary structure based on X-ray diffraction observations that give the atomic positions with high resolution

  5. An investigation of polarized atomic photofragments using the ion imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Bracker, A.S.

    1997-12-01

    This thesis describes measurement and analysis of the recoil angle dependence of atomic photofragment polarization (atomic v-J correlation). This property provides information on the electronic rearrangement which occurs during molecular photodissociation. Chapter 1 introduces concepts of photofragment vector correlations and reviews experimental and theoretical progress in this area. Chapter 2 described the photofragment ion imaging technique, which the author has used to study the atomic v-J correlation in chlorine and ozone dissociation. Chapter 3 outlines a method for isolating and describing the contribution to the image signal which is due exclusively to angular momentum alignment. Ion imaging results are presented and discussed in Chapter 4. Chapter 5 discusses a different set of experiments on the three-fragment dissociation of azomethane. 122 refs.

  6. Recent development in mass spectrometry and its hyphenated techniques for the analysis of medicinal plants.

    Science.gov (United States)

    Zhu, Ming-Zhi; Chen, Gui-Lin; Wu, Jian-Lin; Li, Na; Liu, Zhong-Hua; Guo, Ming-Quan

    2018-04-23

    Medicinal plants are gaining increasing attention worldwide due to their empirical therapeutic efficacy and being a huge natural compound pool for new drug discovery and development. The efficacy, safety and quality of medicinal plants are the main concerns, which are highly dependent on the comprehensive analysis of chemical components in the medicinal plants. With the advances in mass spectrometry (MS) techniques, comprehensive analysis and fast identification of complex phytochemical components have become feasible, and may meet the needs, for the analysis of medicinal plants. Our aim is to provide an overview on the latest developments in MS and its hyphenated technique and their applications for the comprehensive analysis of medicinal plants. Application of various MS and its hyphenated techniques for the analysis of medicinal plants, including but not limited to one-dimensional chromatography, multiple-dimensional chromatography coupled to MS, ambient ionisation MS, and mass spectral database, have been reviewed and compared in this work. Recent advancs in MS and its hyphenated techniques have made MS one of the most powerful tools for the analysis of complex extracts from medicinal plants due to its excellent separation and identification ability, high sensitivity and resolution, and wide detection dynamic range. To achieve high-throughput or multi-dimensional analysis of medicinal plants, the state-of-the-art MS and its hyphenated techniques have played, and will continue to play a great role in being the major platform for their further research in order to obtain insight into both their empirical therapeutic efficacy and quality control. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Chemically assisted release of transition metals in graphite vaporizers for atomic spectrometry

    International Nuclear Information System (INIS)

    Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2006-01-01

    The processes associated with the vaporization of microgram samples and modifiers in a graphite tube ET AAS were investigated by the example of transition metals. The vapor absorption spectra and vaporization behavior of μg-amounts Cd, Zn, Cu, Ag, Au, Ni, Co, Fe, Mn and Cr were studied using the UV spectrometer with CCD detector, coupled with a continuum radiation source. The pyrocoated, Ta or W lined tubes, with Ar or He as internal gases, and filter furnace were employed in the comparative experiments. It was found that the kinetics of atomic vapor release changed depending on the specific metal-substrate-gas combination; fast vaporization at the beginning was followed by slower 'tailing.' The absorption continuum, overlapped by black body radiation at longer wavelengths, accompanied the fast vaporization mode for all metals, except Cd and Zn. The highest intensity of the continuum was observed in the pyrocoated tube with Ar. For Cu and Ag the molecular bands overlapped the absorption continuum; the continuum and bands were suppressed in the filter furnace. It is concluded that the exothermal interaction of sample vapor with the material of the tube causes the energy evolution in the gas phase. The emitted heat is dispersed near the tube wall in the protective gas and partially transferred back to the surface of the sample, thus facilitating the vaporization. The increased vapor flow causes over-saturation and gas-phase condensation in the absorption volume at some distance from the wall, where the gas temperature is not affected by the reaction. The condensation is accompanied by the release of phase transition energy via black body radiation and atomic emission. The particles of condensate and molecular clusters cause the scattering of light and molecular absorption; slow decomposition of the products of the sample vapor-substrate reaction produces the 'tailing' of atomic absorption signal. The interaction of graphite with metal vapor or oxygen, formed in the

  8. Quenching of the OH and nitrogen molecular emission by methane addition in an Ar capacitively coupled plasma to remove spectral interference in lead determination by atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frentiu, T., E-mail: ftibi@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Ponta, M., E-mail: mponta@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Mihaltan, A.I., E-mail: alinblaj2005@yahoo.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Darvasi, E., E-mail: edarvasi@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Frentiu, M., E-mail: frentiu.maria@yahoo.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Cordos, E., E-mail: emilcordos@gmail.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania)

    2010-07-15

    A new method is proposed to remove the spectral interference on elements in atomic fluorescence spectrometry by quenching of the molecular emission of the OH radical (A{sup 2{Sigma}+} {yields} X{sup 2{Pi}}) and N{sub 2} second positive system (C{sup 3{Pi}}{sub u} {yields} B{sup 3{Sigma}}{sub g}) in the background spectrum of medium power Ar plasmas. The experiments were carried out in a radiofrequency capacitively coupled plasma (275 W, 27.12 MHz) by CH{sub 4} addition. The quenching is the result of the high affinity of OH radical for a hydrogen atom from the CH{sub 4} molecule and the collisions of the second kind between nitrogen excited molecules and CH{sub 4}, respectively. The decrease of the emission of N{sub 2} second positive system in the presence of CH{sub 4} is also the result of the deactivation of the metastable argon atoms that could excite the nitrogen molecules. For flow rates of 0.7 l min{sup -1} Ar with addition of 7.5 ml min{sup -1} CH{sub 4}, the molecular emission of OH and N{sub 2} was completely removed from the plasma jet spectrum at viewing heights above 60 mm. The molecular emission associated to CH and CH{sub 2} species was not observed in the emission spectrum of Ar/CH{sub 4} plasma in the ultraviolet range. The method was experimented for the determination of Pb at 283.31 nm by atomic fluorescence spectrometry with electrodeless discharge lamp and a multichannel microspectrometer. The detection limit was 35 ng ml{sup -1}, 2-3 times better than in atomic emission spectrometry using the same plasma source, and similar to that in hollow cathode lamp microwave plasma torch atomic fluorescence spectrometry.

  9. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    Science.gov (United States)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  10. On-line determination of manganese in solid seafood samples by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yebra, M.C.; Moreno-Cid, A.

    2003-01-01

    Manganese is extracted on-line from solid seafood samples by a simple continuous ultrasound-assisted extraction system (CUES). This system is connected to an on-line manifold, which permits the flow-injection flame atomic absorption spectrometric determination of manganese. Optimisation of the continuous leaching procedure is performed by an experimental design. The proposed method allows the determination of manganese with a relative standard deviation of 0.9% for a sample containing 23.4 μg g -1 manganese (dry mass). The detection limit is 0.4 μg g -1 (dry mass) for 30 mg of sample and the sample throughput is ca. 60 samples per hour. Accurate results are obtained by measuring TORT-1 certified reference material. The procedure is finally applied to mussel, tuna, sardine and clams samples

  11. Three-dimensional molecular imaging using mass spectrometry and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wucher, Andreas [Department of Physics, University of Duisburg-Essen, D-47048 Duisburg (Germany)], E-mail: andreas.wucher@uni-due.de; Cheng Juan; Zheng Leiliang; Willingham, David; Winograd, Nicholas [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States)

    2008-12-15

    We combine imaging ToF-SIMS depth profiling and wide area atomic force microscopy to analyze a test structure consisting of a 300 nm trehalose film deposited on a Si substrate and pre-structured by means of a focused 15-keV Ga{sup +} ion beam. Depth profiling is performed using a 40-keV C{sub 60}{sup +} cluster ion beam for erosion and mass spectral data acquisition. A generic protocol for depth axis calibration is described which takes into account both lateral and in-depth variations of the erosion rate. By extrapolation towards zero analyzed lateral area, an 'intrinsic' depth resolution of about 8 nm is found which appears to be characteristic of the cluster-surface interaction process.

  12. Determination of trace amounts of tin in geological materials by atomic absorption spectrometry

    Science.gov (United States)

    Welsch, E.P.; Chao, T.T.

    1976-01-01

    An atomic absorption method is described for the determination of traces of tin in rocks, soils, and stream sediments. A dried mixture of the sample and ammonium iodide is heated to volatilize tin tetraiodide -which is then dissolved in 5 % hydrochloric acid, extracted into TOPO-MIBK, and aspirated into a nitrous oxide-acetylene flame. The limit of determination is 2 p.p.m. tin and the relative standard deviation ranges from 2 to 14 %. Up to 20 % iron and 1000 p.p.m. Cu, Pb, Zn, Mn, Hg, Mo, V, or W in the sample do not interfere. As many as 50 samples can be easily analyzed per man-day. ?? 1976.

  13. Study of uranium matrix interference on ten analytes using inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, A.A.; Qamar, S.; Atta, M.A. (A.Q. Khan Research Labs., Rawalpindi (Pakistan))

    1993-08-01

    Maximum allowable concentrations of 12 elements in uranium hexafluoride feed for enrichment to reactor grade material (about 3%), vary from 1 to 100 ppm ([mu]g/g). Using an inductively coupled plasma atomic emission spectrometer, 51 lines of tine of these elements (B, Cr, Mo, P, Sb, Si, Ta, Ti, V and W) has been studied with a uranium matrix to investigate the matrix interference on the basis of signal to background (SBR), and background to background ratios (BBR). Detection limits and limits of quantitative determination (LQDs) were calculated for these elements in a uranium matrix using SBR and relative standard deviation of the background signal (RSD[sub B]) approach. In almost all cases, the uranium matrix interference reduces the SBRs to the extent that direct trace analysis is impossible. A uranium sample having known concentrations of impurities (around LQDs) was directly analysed with results that showed reasonable accuracy and precision. (Author).

  14. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    Science.gov (United States)

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions.

  15. Achieving 100% Efficient Postcolumn Hydride Generation for As Speciation Analysis by Atomic Fluorescence Spectrometry.

    Science.gov (United States)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2016-04-05

    An experimental setup consisting of a flow injection hydride generator coupled to an atomic fluorescence spectrometer was optimized in order to generate arsanes from tri- and pentavalent inorganic arsenic species (iAs(III), iAs(V)), monomethylarsonic acid (MAs(V)), and dimethylarsinic acid (DMAs(V)) with 100% efficiency with the use of only HCl and NaBH4 as the reagents. The optimal concentration of HCl was 2 mol L(-1); the optimal concentration of NaBH4 was 2.5% (m/v), and the volume of the reaction coil was 8.9 mL. To prevent excessive signal noise due to fluctuations of hydride supply to an atomizer, a new design of a gas-liquid separator was implemented. The optimized experimental setup was subsequently interfaced to HPLC and employed for speciation analysis of arsenic. Two chromatography columns were tested: (i) ion-pair chromatography and (ii) ion exchange chromatography. The latter offered much better results for human urine samples without a need for sample dilution. Due to the equal hydride generation efficiency (and thus the sensitivities) of all As species, a single species standardization by DMAs(V) standard was feasible. The limits of detection for iAs(III), iAs(V), MAs(V), and DMAs(V) were 40, 97, 57, and 55 pg mL(-1), respectively. Accuracy of the method was tested by the analysis of the standard reference material (human urine NIST 2669), and the method was also verified by the comparative analyses of human urine samples collected from five individuals with an independent reference method.

  16. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection.

    Science.gov (United States)

    Huber, Charles S; Vale, Maria Goreti R; Dessuy, Morgana B; Svoboda, Milan; Musil, Stanislav; Dědina, Jiři

    2017-12-01

    A slurry sampling procedure for arsenic speciation analysis in baby food by arsane generation, cryogenic trapping and detection with atomic absorption spectrometry is presented. Several procedures were tested for slurry preparation, including different reagents (HNO 3 , HCl and tetramethylammonium hydroxide - TMAH) and their concentrations, water bath heating and ultrasound-assisted agitation. The best results for inorganic arsenic (iAs) and dimethylarsinate (DMA) were reached when using 3molL -1 HCl under heating and ultrasound-assisted agitation. The developed method was applied for the analysis of five porridge powder and six baby meal samples. The trueness of the method was checked with a certified reference material (CRM) of total arsenic (tAs), iAs and DMA in rice (ERM-BC211). Arsenic recoveries (mass balance) for all samples and CRM were performed by the determination of the tAs by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted digestion and its comparison against the sum of the results from the speciation analysis. The relative limits of detection were 0.44, 0.24 and 0.16µgkg -1 for iAs, methylarsonate and DMA, respectively. The concentrations of the most toxic arsenic species (iAs) in the analyzed baby food samples ranged between 4.2 and 99µgkg -1 which were below the limits of 300, 200 and 100µgkg -1 set by the Brazilian, Chinese and European legislation, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A survey on the application of robot techniques to an atomic power plant

    International Nuclear Information System (INIS)

    Hasegawa, Tsutomu; Sato, Tomomasa; Hirai, Shigeoki; Suehiro, Takashi; Okada, Tokuji

    1982-01-01

    Tasks of workers in atomic power plants have been surveyed from the viewpoint of necessity and possibility of their robotization. The daily tasks are classified into the following: (1) plant operation; (2) periodical examination; (3) patrol and inspection; (4) in-service inspection; (5) maintenance and repaire; (6) examination and production of the fuel; (7) waste disposal; (8) decommission of the plant. The necessity and present status of the robotization in atomic power plants are investigated according to the following classification: (1) inspection robots; (2) patrol inspection/maintenance robots; (3) hot cell robots; (4) plant decommission robots. The following have been made clear through the survey: (1) Various kinds of tasks are necessary for an atomic power plant: (2) Because of most of the tasks taking place in intense radiation environments, it is necessary to introduce robots into atomic power plants: (3) In application of robots in atomic power plant systems, it is necessary to take account of various severe conditions concerning spatial restrictions, radioactive endurance and reliability. Lastly wide applicability of the techniques of knowledge robots, which operate interactively with men, has been confirmed as a result of the survey. (author)

  18. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Pamela C. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Parsons, Patrick J. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Lead Poisoning/Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 (United States)], E-mail: patrick.parsons@wadsworth.org

    2007-03-15

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass (m{sub 0}), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 {+-} 0.6 pg, compared to 16.1 {+-} 0.7 pg for the Z5100, and 23.3 {+-} 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection

  19. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  20. Effect of chemical modification on behavior of various organic vanadium forms during analysis by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kowalewska, Zofia

    2007-01-01

    The behavior of various organic V forms dissolved in xylene during analysis by electrothermal atomic absorption spectrometry (ETAAS) was compared. The investigated analyte forms included compounds with vanadium at the oxidation state III, IV or V, as well as N, O or S atoms in molecules. Another group consisted of petroleum products containing naturally-occurring V species. Although the characteristic mass determined under different analytical conditions was in the very wide range from 11 up to 55 pg, some rules of V behavior were found. In the case of porphyrins and petroleum products, the application of Pd as a chemical modifier (xylene solution of Pd(II) acetylacetonate) seemed to be crucial. It was shown that Pd must be introduced to a furnace together with a sample. Pd injected and thermally pretreated before the sample injection was less effective for porphyrins and the petroleum products, but it increased signals of V compounds containing O as donor atom. The iodine pretreatment followed by the methyltrioctylammonium chloride (MTOACl) pretreatment was advantageous for these V forms. The air ashing in a graphite tube appeared to be important to improve decomposition of the petroleum products. No significant influence of the V oxidation state on the analytical signal was observed. The behavior of V contained in two Conostan oil standards, the single-element and the S21 multielement standard, was different in many situations. Probably, the joint action of other elements is responsible for this effect. In general, chemical modification was applied in the work for two reasons: to reduce the V volatility (in some cases losses at about 300 deg. C were observed) and to enhance the atomization efficiency. For routine analysis air ashing, modification by Pd introduced into the furnace together with the sample solution and petroleum products with known V content as standard is recommended. Using this procedure the characteristic mass varied from 16 to 19 pg for

  1. A novel self-sensing technique for tapping-mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Michael G.; Moheimani, S. O. Reza [The University of Newcastle, University Drive, Callaghan NSW 2308 (Australia)

    2013-12-15

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  2. Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Anawar, Hossain Md

    2012-01-15

    For the past few years many studies have been performed to determine arsenic (As) speciation in drinking water, food chain and other environmental samples due to its well-recognized carcinogenic and toxic effects relating to its chemical forms and oxidation states. This review provides an overview of analytical methods, preconcentration and separation techniques, developed up to now, using HGAAS and ETAAS for the determination of inorganic As and organoarsenic species in environmental samples. Specific advantages, disadvantages, selectivity, sensitivity, efficiency, rapidity, detection limit (DL), and some aspects of recent improvements and modifications for different analytical and separation techniques, that can define their application for a particular sample analysis, are highlighted. HG-AAS has high sensitivity, selectivity and low DL using suitable separation techniques; and it is a more suitable, affordable and much less expensive technique than other detectors. The concentrations of HCl and NaBH(4) have a critical effect on the HG response of As species. Use of l-cysteine as pre-reductant is advantageous over KI to obtain the same signal response for different As species under the same, optimum and mild acid concentration, and to reduce the interference of transition metals on the arsine generation. Use of different pretreatment, digestion, separation techniques and surfactants can determine As species with DL from ngL(-1) to μgL(-1). Out of all the chromatographic techniques coupled with HGAAS/ETAAS, ion-pair reversed-phase chromatography (IP-RP) is the most popular due to its higher separation efficiency, resolution selectivity, simplicity, and ability to separate up to seven As species for both non-ionic and ionic compounds in a signal run using the same column and short time. However, a combination of anion- and cation-exchange chromatography seems the most promising for complete resolution up to eight As species. The ETAAS method using different

  3. Software tool for resolution of inverse problems using artificial intelligence techniques: an application in neutron spectrometry

    International Nuclear Information System (INIS)

    Castaneda M, V. H.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Leon P, A. A.; Hernandez P, C. F.; Espinoza G, J. G.; Ortiz R, J. M.; Vega C, H. R.; Mendez, R.; Gallego, E.; Sousa L, M. A.

    2016-10-01

    The Taguchi methodology has proved to be highly efficient to solve inverse problems, in which the values of some parameters of the model must be obtained from the observed data. There are intrinsic mathematical characteristics that make a problem known as inverse. Inverse problems appear in many branches of science, engineering and mathematics. To solve this type of problem, researches have used different techniques. Recently, the use of techniques based on Artificial Intelligence technology is being explored by researches. This paper presents the use of a software tool based on artificial neural networks of generalized regression in the solution of inverse problems with application in high energy physics, specifically in the solution of the problem of neutron spectrometry. To solve this problem we use a software tool developed in the Mat Lab programming environment, which employs a friendly user interface, intuitive and easy to use for the user. This computational tool solves the inverse problem involved in the reconstruction of the neutron spectrum based on measurements made with a Bonner spheres spectrometric system. Introducing this information, the neural network is able to reconstruct the neutron spectrum with high performance and generalization capability. The tool allows that the end user does not require great training or technical knowledge in development and/or use of software, so it facilitates the use of the program for the resolution of inverse problems that are in several areas of knowledge. The techniques of Artificial Intelligence present singular veracity to solve inverse problems, given the characteristics of artificial neural networks and their network topology, therefore, the tool developed has been very useful, since the results generated by the Artificial Neural Network require few time in comparison to other techniques and are correct results comparing them with the actual data of the experiment. (Author)

  4. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanlin [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia); Adeloju, Samuel B., E-mail: Sam.Adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Successful speciation of inorganic and organic Hg with Fe{sup 3+}, Cu{sup 2+} and thiourea as catalysts. Black-Right-Pointing-Pointer Best sensitivity enhancement and similar sensitivity for MeHg and Hg{sup 2+} with Fe{sup 3+}. Black-Right-Pointing-Pointer Successful use of Hg{sup 2+} as the primary standard for quantification of inorganic and total-Hg. Black-Right-Pointing-Pointer Quantitative extraction of Hg and MeHg with 2 M HCl which contained thiourea. Black-Right-Pointing-Pointer Integration with FIA for rapid analysis with a sample throughput of 180 h{sup -1}. - Abstract: A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH{sub 4} were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe{sup 3+}, Cu{sup 2+} and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu{sup 2+} and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe{sup 3+} gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg{sup 2+}. Due to similarity of resulting sensitivity, Hg{sup 2+} was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury

  5. Lead determination in uranium mineralization soils by atomic absorption spectrometry with graphite oven

    International Nuclear Information System (INIS)

    Teixeira, Gleber Tacio

    2001-01-01

    The contamination of soils by lead has a great environmental importance due to its toxicity to vegetables, animals and humans. In general, the mobility of the lead is small due to its low solubility and strong adsorption in the soil. However, its solubility can be altered by several conditions (pH, redox potential and ionic stronger). Consequently, lead can migrate through the soil and can contaminate superficial and underground waters. The objective of this work was to determine the concentration of total lead in soil samples with uranium mineralization, in an area at Ipora/GO, having been evaluated as economically insuitable the extraction of that mineral. The radiogenic lead appears as a product of natural radioactive elements decay. In the decay series of uranium-238 we found the isotope lead-214 (half-life of 26,8 min), lead-210 (half-life of 22,3 min), and lead-206 that is stable. The sampling was done in profiles around north, south, east and west directions, starting from a reference point (FT), chosen by presenting the largest radiation of that place (4800 cps). A mass of 1 Kg of superficial soil was collected to each 20 m, in each profile, until 150 m of FT. Approximately, 1 g of dry soil, fraction 2 mm, was digested with a mixture of acids HNO 3 /HClO 4 2:1 (v/v), and the resulting solution was analyzed by atomic absorption. An atomic absorption spectrometer was used with graphite furnace, with deuterium arc to background correction and pyrolytic coated tube. Phosphoric acid was used as chemical modifier. The obtained results, using the standard additions method, presented a decrease of the lead concentration, in all profiles, when the distance of FT was increased. It was also made a radiometric screening in each sampling point. The lead concentration variate from 115,1 μg.g -1 in FT, to less than 40 μg.g -1 at 150 m of distance of FT ( 3 ) 2 was used. The method was applied to a certified sample, showing a good agreement between certified and

  6. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zhang Yanlin; Adeloju, Samuel B.

    2012-01-01

    Highlights: ► Successful speciation of inorganic and organic Hg with Fe 3+ , Cu 2+ and thiourea as catalysts. ► Best sensitivity enhancement and similar sensitivity for MeHg and Hg 2+ with Fe 3+ . ► Successful use of Hg 2+ as the primary standard for quantification of inorganic and total-Hg. ► Quantitative extraction of Hg and MeHg with 2 M HCl which contained thiourea. ► Integration with FIA for rapid analysis with a sample throughput of 180 h −1 . - Abstract: A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH 4 were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe 3+ , Cu 2+ and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu 2+ and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe 3+ gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg 2+ . Due to similarity of resulting sensitivity, Hg 2+ was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h −1 .

  7. [Efficiency of hemoperfusion on clearing thallium based on atomic absorption spectrometry].

    Science.gov (United States)

    Tian, Tian; Wang, Yongan; Nie, Zhiyong; Wang, Jiao; Peng, Xiaobo; Yuan, Ye; Li, Wanhua; Qiu, Zewu; Xue, Yanping; Xiong, Yiru

    2015-04-01

    To determine thallium in whole blood by atomic absorption detection method, and to investigate the eliminating effect of hemoperfusion (HP) for thallium in blood. The blood of Beagle dogs which had not exposed to thallium before were obtained for preparation of thallium nitrate ( TlNO3 )-containing solution in three concentrations according to the conversion formula based on animal weight and volume of blood. HP was performed in the simulated in vivo environment. The content of TlNO3 in blood of the next group was determined on the amount of TlNO3 for the last HP of the former dose group. Thallium quantity in different samples was measured with atomic absorption spectrometer blood samples before and after HP. Finally, the thallium concentration in blood was analyzed statistically. Thallium concentrations showed a good linear relationship in the range of 0-200 μg/L (r = 0.998 4). The intra-day precision (RSD) was lower than 4.913%, the intra-day recovery rate was 96.2%-111.9%; the inter-day precision (RSD) was lower than 7.502%, the inter-day recovery rate was 89.6%-105.2%. The concentration of thallium in blood was significantly reduced after HP per time in high, middle, and low dose groups [(453.43 ± 27.80) mg/L to (56.09 ± 14.44) mg/L in high dose group, F = 8.820, P = 0.003; (64.51 ± 13.60) mg/L to (3.19 ± 0.23) mg/L in middle dose group, F = 36.312, P = 0.000; (5.40 ± 0.98) mg/L to (0.38 ± 0.25) mg/L in low dose group, F = 46.240, P = 0.000 ]. The adsorption rate of four times of HP in high, middle and low dose group were (87.63 ± 2.48 )%, (95.06 ± 1.54 )% and (92.76 ± 4.87)%, respectively, without significant difference (F = 4.231, P = 0.070). The method for measuring thallium was established, and it shows a very stable, simple, sensitive for determination of thallium. HP can effectively remove thallium from blood. Thallium concentration can be reduced by 90% after four times of HP. HP is also effective even when thallium concentration is not high.

  8. Electron-capture negative-ion mass spectrometry: a technique for environmental contaminant identification

    International Nuclear Information System (INIS)

    Stemmler, E.A.

    1986-01-01

    Electron capture negative ion mass spectrometry (ECNIMS) is a method used to generate negative ions in a mass spectrometer by electron-molecule reactions. This technique facilitates the sensitive and selective detection of many toxic contaminants in environmental samples. Applications of this technique have been hindered by the limited understanding of instrumental parameters, by the questionable reproducibility of negative ion mass spectra, and by the inability to interpret negative ion mass spectra. Instrumental parameters which were important to control include the ion source temperature, ion source pressure, sample concentration, and the focus lens potential. The ability to obtain reproducible spectra was demonstrated by measurement of the spectrum of decafluorotriphenylphosphine (DFTPP) over a period of one year. Negative ion fragmentation mechanisms were studied by measuring the spectra of structurally related classes of compounds and isotopically labelled compounds. These results were combined with data obtained by other researchers. Fragmentations characteristic of particular functional groups or molecular structures have been summarized. From this data set, guidelines for the interpretation of electron capture negative ion mass spectra have been developed

  9. Mercury speciation in thawed out and refrozen fish samples by gas chromatography coupled to inductively coupled plasma mass spectrometry and atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krystek, Petra; Ritsema, Rob [National Institute for Public Health and the Environment (RIVM), Laboratory for Analytical Chemistry, Bilthoven (Netherlands)

    2005-01-01

    Different sub-sampling procedures were applied for the determination of mercury species (as total mercury Hg, methylmercury MeHg{sup +} and inorganic mercury Hg{sup 2+}) in frozen fish meat. Analyses were carried out by two different techniques. After the sample material was pre-treated by microwave digestion, atomic fluorescence spectroscopy (AFS) was used for the determination of total Hg. Speciation analysis was performed according to the following procedure: dissolution of sample material in tetramethylammonium hydroxide (TMAH), derivatisation with sodium tetraethylborate (NaBEt{sub 4}), extraction into isooctane and measurement with gas chromatography inductively coupled plasma mass spectrometry (GC-ICPMS) for the identification and quantification of methylmercury (MeHg{sup +}) and inorganic mercury (Hg{sup 2+}). The concentration range of total Hg measured in the shark fillets is between 0.9 and 3.6 {mu}g g{sup -1} thawed out shark fillet. Speciation analysis leads to {>=}94% Hg present as MeHg{sup +}. Homogeneity, storage conditions and stability of analytical species and sample materials have great influence on analytical results. Sub-sampling of half-frozen/partly thawed out fish and analysis lead to significantly different concentrations, which are on average a factor of two lower. (orig.)

  10. Preconcentrative separation of chromium(III) species from chromium(VI) by cloud point extraction and determination by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yildiz, Z.; Arslan, G.; Tor, A.

    2011-01-01

    We describe a high-throughput technique for the determination of chromium species in water samples by flame atomic absorption spectrometry (FAAS) after preconcentrative separation of Cr(III) species from Cr(VI) by cloud point extraction (CPE) using diethyldithiocarbamate (DDTC) as the chelating agent and the nonionic surfactant Triton X-100 as the extractant. The Cr(III)-DDTC complex is extracted if the temperature is higher than the CPE temperature of Triton X-100, while Cr(VI) remains in the aqueous phase. The Cr(III) in the surfactant phase was analyzed by FAAS, and the concentration of Cr(VI) was calculated by subtraction of Cr(III) from total chromium which was directly determined by FAAS. The effect of pH, concentration of chelating agent, surfactant, and equilibration temperature were investigated. The detection limit for Cr(III) was 0. 08 μg L -1 with an enrichment factor of 98, and the relative standard deviation was 1. 2% (n = 3, c = 100 μg L -1 ). A certified reference material and several water samples were analyzed with satisfactory results. (author)

  11. Separation and Enrichment of Gold in Water, Geological and Environmental Samples by Solid Phase Extraction on Multiwalled Carbon Nanotubes Prior to its Determination by Flame Atomic Absorption Spectrometry.

    Science.gov (United States)

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2015-01-01

    This study proposes the application of multi-walled carbon nanotubes as a solid sorbent for the preconcentration of gold prior to its flame atomic absorption spectrometry determination. Extraction was achieved by using a glass column (15.0 cm in length and 1.0 cm in diameter). Quantitative recoveries were obtained in the pH range of 2.5-4.0; the elution step was carried out with 5.0 ml of 1.0 mol/L HNO3 in acetone. In the ligand-free study, variables such as pH, eluent type, sample volume, flow rates, and matrix effect were examined for the optimum recovery of gold ions. The gold ions were able to be pre-concentrated by a factor of 150 and their LOD was determined to be 1.71 μg/L. In order to evaluate the accuracy of the developed method, addition-recovery tests were applied for the tap water, mineral water, and sea water samples. Gold recovery studies were implemented using a wet digestion technique for mine and soil samples taken from various media, and this method was also applied for anodic slime samples taken from the factories located in the Kayseri Industrial Zone of Turkey.

  12. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Application of l-cystine modified zeolite for preconcentration and determination of ultra-trace levels of cadmium by flame atomic absorption spectrometry.

    Science.gov (United States)

    Rezvani, Seyyed Ahmad; Soleymanpour, Ahmad

    2016-03-04

    A very convenient, sensitive and precise solid phase extraction (SPE) system was developed for enrichment and determination of ultra-trace of cadmium ion in water and plant samples. This method was based on the retention of cadmium(II) ions by l-cystine adsorbed in Y-zeolite and carry out in a packed mini-column. The retained cadmium ions then were eluted and determined by flame atomic absorption spectrometry. The scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy techniques were applied for the characterization of cystine modified zeolite (CMZ). Some experimental conditions affecting the analytical performance such as pH, eluent type, concentration of sample, eluent flow rate and also the presence of interfering ions were investigated. The calibration graph was linear within the range of 0.1-7.5ngmL(-1) and limit of detection was obtained 0.04ngmL(-1) with the preconcentration factor of 400. The relative standard deviation (RSD) was obtained 1.4%, indicating the excellent reproducibility of this method. The proposed method was successfully applied for the extraction and determination of cadmium(II) ion in black tea, cigarette's tobacco and also various water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Microwave-assisted versus conventional decomposition procedures applied to a ceramic potsherd standard reference material by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, D.N.; Zachariadis, G.A.; Anthemidis, A.N.; Tsirliganis, N.C.; Stratis, J.A

    2004-03-03

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) is a powerful, sensitive analytical technique with numerous applications in chemical characterization including that of ancient pottery, mainly due to its multi-element character, and the relatively short time required for the analysis. A critical step in characterization studies of ancient pottery is the selection of a suitable decomposition procedure for the ceramic matrix. The current work presents the results of a comparative study of six decomposition procedures applied on a standard ceramic potsherd reference material, SARM 69. The investigated decomposition procedures included three microwave-assisted decomposition procedures, one wet decomposition (WD) procedure by conventional heating, one combined microwave-assisted and conventional heating WD procedure, and one fusion procedure. Chemical analysis was carried out by ICP-AES. Five major (Si, Al, Fe, Ca, Mg), three minor (Mn, Ba, Ti) and two trace (Cu, Co) elements were determined and compared with their certified values. Quantitation was performed at two different spectral lines for each element and multi-element matrix-matched calibration standards were used. The recovery values for the six decomposition procedures ranged between 75 and 110% with a few notable exceptions. Data were processed statistically in order to evaluate the investigated decomposition procedures in terms of recovery, accuracy and precision, and eventually select the most appropriate one for ancient pottery analysis.

  15. Feasibility of using in situ fusion for the determination of Co, Cr and Mn in Portland cement by direct solid sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Intima, Danielle Polidorio; de Oliveira, Elisabeth; Oliveira, Pedro Vitoriano

    2009-01-01

    In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 μg of sample. The in situ fusion was accomplished using 10 μL of a flux mixture 4.0% m/v Na 2 CO 3 + 4.0% m/v ZnO + 0.1% m/v Triton (registered) X-100 added over the cement sample and heated at 800 deg. C for 20 s. The resulting mould was completely dissolved with 10 μL of 0.1% m/v HNO 3 . Limits of detection were 0.11 μg g - 1 for Co, 1.1 μg g - 1 for Cr and 1.9 μg g - 1 for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student's t-test, p < 0.05). In general, the relative standard deviation was lower than 12% (n = 5).

  16. Hyperfine structure measurements of neutral iodine atom (127I) using Fourier Transform Spectrometry

    Science.gov (United States)

    Ashok, Chilukoti; Vishwakarma, S. R.; Bhatt, Himal; Ankush, B. K.; Deo, M. N.

    2018-01-01

    We report the hyperfine Structure (hfs) splitting observations of neutral iodine atom (II) in the 6000 - 10,000 cm-1 near infrared spectral region. The measurements were carried out using a high-resolution Fourier Transform Spectrometer (FTS), where an electrodeless discharge lamp (EDL), excited using microwaves, was employed as the light source and InGaAs as the light detector. A specially designed setup was used to lower the plasma temperature of the medium so as to reduce the Doppler width and consequently to increase the spectral resolution of hfs components. A total of 183 lines with hfs splitting have been observed, out of which hfs in 53 spectral lines are reported for the first time. On the basis of hfs analysis, we derived the magnetic dipole and electric quadrupole coupling constants, A and B respectively for 30 even and 30 odd energy levels and are compared with the values available in the literature. New hfs values for 5 even and 4 odd levels are also reported here for the first time.

  17. Determination of essential elements in food and feed materials by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yawar, W.; Rahman, S.

    1993-01-01

    Determination of baseline levels of essential elements like iron, copper, manganese and zinc was carried out in different varieties of animal feeds and in wheat grains by atomic absorption spectrophotometry. Various food articles contain different amount of essential elements. The precision and accuracy have been calculated. The range of values of iron, copper, manganese and zinc in animal feeds in form 389+-12 to 7465+-222 micro g/g; 1.1 to 3.1 +- 0.5 micro g/g; 27 +- to 267 micro g/g and 46 +- 5 to 245 + 12 micro g/g, respectively whereas the range in wheat grains for iron, copper, manganese and zinc is 40 +- 2 to 55 +- micro g/g; 6 +- 0.5 to 16 +- 2 micro g/g; 35 +- 3 to 67 +- 4.3 micro g/g and 38 +- 2.7 to 64 +- 3.34 micro g/g, respectively. In order to check the accuracy, NBs reference materials, SRM-1567 (wheat flour) and SRM-1571 (orchard leaves) were analysed. The values so obtained were found to be in fairly good agreement with the standard values. The results were also compared with other reported values. (author)

  18. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  19. X-ray photoelectron spectroscopy study of pyrolytically coated graphite platforms submitted to simulated electrothermal atomic absorption spectrometry conditions

    International Nuclear Information System (INIS)

    Ruiz, Frine; Benzo, Zully; Quintal, Manuelita; Garaboto, Angel; Albornoz, Alberto; Brito, Joaquin L.

    2006-01-01

    The present work is part of an ongoing project aiming to a better understanding of the mechanisms of atomization on graphite furnace platforms used for electrothermal atomic absorption spectrometry (ETAAS). It reports the study of unused pyrolytic graphite coated platforms of commercial origin, as well as platforms thermally or thermo-chemically treated under simulated ETAAS analysis conditions. X-ray photoelectron spectroscopy (XPS) was employed to study the elements present at the surfaces of the platforms. New, unused platforms showed the presence of molybdenum, of unknown origin, in concentrations up to 1 at.%. Species in two different oxidations states (Mo 6+ and Mo 2+ ) were detected by analyzing the Mo 3d spectral region with high resolution XPS. The analysis of the C 1s region demonstrated the presence of several signals, one of these at 283.3 eV related to the presence of Mo carbide. The O 1s region showed also various peaks, including a signal that can be attributed to the presence of MoO 3 . Some carbon and oxygen signals were consistent with the presence of C=O and C-O- (probably C-OH) groups on the platforms surfaces. Upon thermal treatment up to 2900 deg. C, the intensity of the Mo signal decreased, but peaks due to Mo oxides (Mo 6+ and Mo 5+ ) and carbide (Mo 2+ ) were still apparent. Thermo-chemical treatment with 3 vol.% HCl solutions and heating up to 2900 deg. C resulted in further diminution of the Mo signal, with complete disappearance of Mo carbide species. Depth profiling of unused platforms by Ar + ion etching at increasing time periods demonstrated that, upon removal of several layers of carbonaceous material, the Mo signal disappears suggesting that this contamination is present only at the surface of the pyrolytic graphite platform

  20. Determination of mercury in gasoline by cold vapor atomic absorption spectrometry with direct reduction in microemulsion media

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Geisamanda Pedrini [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S. Vicente, 225, Gavea, 22453-900, Rio de Janeiro, RJ (Brazil); Calixto de Campos, Reinaldo [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S. Vicente, 225, Gavea, 22453-900, Rio de Janeiro, RJ (Brazil)]. E-mail: rccampos@rdc.puc-rio.br; Luna, Aderval Severino [Department of Analytical Chemistry, Rio de Janeiro State University, Rua S. Francisco Xavier, s/n, Maracana, 20550-900, Rio de Janeiro, RJ (Brazil)

    2005-06-30

    The determination of Hg in gasoline by cold vapor atomic absorption spectrometry, after direct aqueous NaBH{sub 4} reduction in a three-component (microemulsion) medium, was investigated. Microemulsions were prepared by mixing gasoline with propan-1-ol and 50% v / v HNO{sub 3} at a 20 : 15 : 1 volume ratio. A long-term homogeneous system was immediately formed this way. After reduction, the Hg vapor generated in a reaction flask was transported to an intermediate K{sub 2}Cr{sub 2}O{sub 7}/H{sub 2}SO{sub 4} trap solution in order to avoid poisoning of the Au-Pt trap by the gasoline vapors. A second reduction step was then conducted and the generated Hg vapor transported to the Au-Pt trap, followed by thermal release of Hg{sup 0} and atomic absorption measurement. Purified N{sub 2} was used as purge and transport gas. After multivariate optimization by central composite design calibration graphs showed coefficients of correlation of 0.9999 and a characteristic mass of 2 ng was obtained. Typical coefficients of variation of 5% and 6% were found for ten consecutive measurements at concentration levels of 1 and 8 {mu}g L{sup -1} of Hg{sup 2+}, respectively. The limit of detection was 0.10 {mu}g L{sup -1} (0.14 {mu}g kg{sup -1}) in the original sample. A total measurement cycle took 11 min, permitting duplicate analysis of 3 samples per hour. The results obtained with the proposed procedure in the analysis of commercial gasoline samples were in agreement with those obtained by a comparative procedure. Gasoline samples of the Rio de Janeiro city have shown Hg concentrations below 0.27 {mu}g L{sup -1}.

  1. The behavior of various chemical forms of nickel in graphite furnace atomic absorption spectrometry under different chemical modification approaches

    International Nuclear Information System (INIS)

    Kowalewska, Zofia

    2012-01-01

    Various organic and inorganic Ni forms were investigated using graphite furnace atomic absorption spectrometry. Experiments without chemical modification showed a wide range of characteristic mass values for Ni (from 6.7 to 29 pg) and the importance of interaction with graphite. With the aim of achieving signal unification of organic Ni forms, different ways of chemical modification were tested. Some rules that govern the behavior of Ni were found and confirmed a significant role of the organic component of the analyte molecule in the analytical process. The application of air as an internal furnace gas in the pyrolysis phase and the Pd modifier injected with the sample solution improved the signal of porphyrins, while the application of iodine and methyltrioctylammonium chloride was required for organic compounds containing oxygen-bound Ni atoms. The Ni signal was strongly diminished when an aqueous solution containing hydrochloric acid was measured with the Pd modifier injected over the sample. Using the developed analytical methods, the range of characteristic mass values for various Ni forms totally dissolved in organic or aqueous solution was 6.5–7.9 pg. - Highlights: ► Some rules that govern behavior of organic Ni forms during GFAAS analysis were found. ► Interaction with graphite can significantly influence evaporation of porphyrins. ► Determination of Ni in form of porphyrins needs Pd organic modifier and air ashing. ► Determination of Ni in O-bound organic compounds needs pretreatment with I2+MTOACl. ► Chemical modification for GFAAS determination of Ni in HCl-containing solution.

  2. Determination of vanadium in sea water by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Sakai, Kaoru

    1981-01-01

    The trace amount of vanadium in sea water was determined by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite. To correct the background absorption, a deuterium lamp with a higher-brilliant thermal cathode was used. The sensitivity for vanadium increased 10 -- 20 fold by the use of the tube coated with pyrolytic graphite, and the utility lifetime of the tube was greatly extended. Vanadium(V) - 4-(2-pyridylazo)resorcinol (PAR) complexes were extracted into chloroform as an ion-pair with benzyldimethyltetradecylammonium (Zephiramine) cation alternatively. The sample of sea water, which was made to 0.1 N in sulfuric acid and 0.1% in hydrogen peroxide, was loaded onto the column of Dowex 1-X 4 resin (SO 4 2- -form). Vanadium was then eluted from the resin with 1 N sulfuric acid-0.1% hydrogen peroxide or 1 N hydrochloric acid-0.1% hydrogen peroxide evaporated to dry. After dissolution of the elute in 0.2 N nitric acid, vanadium was extracted. Secondly, the sample of sea water was adjusted to pH 5.0, and loaded onto the column of Chelex-100 resin. Vanadium was eluted from the resin with 2 N ammonia. The above two methods took much time, but the coprecipitation method was not so and recommended for the determination of vanadium in sea water. Vanadium was coprecipitated with iron(III) hydroxide-hydrous titanium(IV) oxide at pH 6.0. The precipitate was digested with nitric acid-hydrogen peroxide. The solution was diluted to 50 ml with water. The resulting solutions were employed to determine the vanadium concentration by the graphite furnace atomic absorption measurement. The trace amounts of vanadium in various kinds of the coastal sea water were determined by the coprecipitation method. (author)

  3. Technique to measure contact angle of micro/nanodroplets using atomic force microscopy

    International Nuclear Information System (INIS)

    Jung, Yong Chae; Bhushan, Bharat

    2008-01-01

    Contact angle is the primary parameter that characterizes wetting; however, the measurement techniques have been limited to droplets with a diameter as low as about 50 μm. The authors developed an atomic force microscopy-based technique to measure the contact angle of micro- and nanodroplets deposited using a modified nanoscale dispensing tip. The obtained contact angle results were compared with those of a macrodroplet (2.1 mm diameter). It was found that the contact angle on various surfaces decreases with decreasing the droplet size

  4. The alkali halide disk technique in infra-red spectrometry : Anomalous behaviour of some samples dispersed in alkali halide disks

    NARCIS (Netherlands)

    Tolk, A.

    1961-01-01

    Some difficulties encountered in the application of the alkali halide disk technique in infra-red spectrometry are discussed. Complications due to interaction of the sample with the alkali halide have been studied experimentally. It was found that the anomalous behaviour of benzoic acid, succinic

  5. Development, relevance, and applications of 'atom-at-a-time' techniques

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    2012-01-01

    A brief history of the development and some of the first uses of 'atom-at-a-time' techniques to investigate the chemical and nuclear properties of the actinide and transactinide elements are presented. The currently known transactinides (all elements with Z > 103) were discovered using physical (nuclear) techniques rather than chemical separation techniques because of their short half-lives and low production rates and the difficulty in accurately predicting chemical properties of the heaviest elements because of relativistic effects. Some of the constraints on systems suitable for such studies and whether these tracer-scale results can be extended to the macro-scale are discussed. The relevance and importance of the methods and their potential for application to some current problems such as nuclear forensics and proliferation and environmental concerns are considered. The value of graduate research utilizing such techniques in helping to attract and educate the next generation of nuclear scientists is highlighted. (author)

  6. Determination of copper in powdered chocolate samples by slurry-sampling flame atomic-absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Walter N.L. dos; Silva, Erik G.P. da; Fernandes, Marcelo S.; Araujo, Rennan G.O.; Costa, Anto' ' enio C.S.; Ferreira, Sergio L.C. [Nucleo de Excelencia em Quimica Analitica da Bahia, Universidade Federal da Bahia, Instituto de Quimica, Salvador, Bahia (Brazil); Vale, M.G.R. [Instituto de Quimica, Universidade Federal da Bahia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul (Brazil)

    2005-06-01

    Chocolate is a complex sample with a high content of organic compounds and its analysis generally involves digestion procedures that might include the risk of losses and/or contamination. The determination of copper in chocolate is important because copper compounds are extensively used as fungicides in the farming of cocoa. In this paper, a slurry-sampling flame atomic-absorption spectrometric method is proposed for determination of copper in powdered chocolate samples. Optimization was carried out using univariate methodology involving the variables nature and concentration of the acid solution for slurry preparation, sonication time, and sample mass. The recommended conditions include a sample mass of 0.2 g, 2.0 mol L{sup -1} hydrochloric acid solution, and a sonication time of 15 min. The calibration curve was prepared using aqueous copper standards in 2.0 mol L{sup -1} hydrochloric acid. This method allowed determination of copper in chocolate with a detection limit of 0.4 {mu}g g{sup -1} and precision, expressed as relative standard deviation (RSD), of 2.5% (n=10) for a copper content of approximately 30 {mu}g g{sup -1}, using a chocolate mass of 0.2 g. The accuracy was confirmed by analyzing the certified reference materials NIST SRM 1568a rice flour and NIES CRM 10-b rice flour. The proposed method was used for determination of copper in three powdered chocolate samples, the copper content of which varied between 26.6 and 31.5 {mu}g g{sup -1}. The results showed no significant differences with those obtained after complete digestion, using a t-test for comparison. (orig.)

  7. Performance and application of controlled temperature-gradient lamps in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gough, D.S.; Sullivan, J.V.

    1981-01-01

    An improved design of controlled temperature-gradient lamp (CTGL) is suitable for arsenic, cadmium, phosphorus, potassium, rubidium, selenium, sodium, sulphur and zinc. Intensity and linewidth measurements indicate that the CTGL is significantly more intense than an electrodeless discharge lamp (EDL) at the same linewidth. CTGL's also compare favourably with EDL's when used as light sources for a.a.s. Arsenic and selenium can be determined at very low concentrations (ng ml -1 ) by the hydride generation technique. Sulphur and phosphorus can be detected in the vacuum ultra-violet region using nitrogen-separated flames; the limits of detection are 13 and 10 μg ml -1 , respectively. (Auth.)

  8. Preconcentration of lead using solidification of floating organic drop and its determination by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mahmoud Chamsaz

    2013-07-01

    Full Text Available A simple microextraction method based on solidification of a floating organic drop (SFOD was developed for preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry (ETAAS. Ammonium pyrolidinedithiocarbamate (APDC was used as complexing agent, and the formed complex was extracted into a 20 μL of 1-undecanol. The extracted complex was diluted with ethanol and injected into a graphite furnace. An orthogonal array design (OAD with OA16 (45 matrix was employed to study the effects of different parameters such as pH, APDC concentration, stirring rate, sample solution temperature and the exposure time on the extraction efficiency. Under the optimized experimental conditions the limit of detection (based on 3 s and the enhancement factor were 0.058 μg L−1 and 113, respectively. The relative standard deviation (RSD for 8 replicate determinations of 1 μg L−1 of Pb was 8.8%. The developed method was validated by the analysis of certified reference materials and was successfully applied to the determination of lead in water and infant formula base powder samples.

  9. Determination of Inorganic Arsenic in a Wide Range of Food Matrices using Hydride Generation - Atomic Absorption Spectrometry.

    Science.gov (United States)

    de la Calle, Maria B; Devesa, Vicenta; Fiamegos, Yiannis; Vélez, Dinoraz

    2017-09-01

    The European Food Safety Authority (EFSA) underlined in its Scientific Opinion on Arsenic in Food that in order to support a sound exposure assessment to inorganic arsenic through diet, information about distribution of arsenic species in various food types must be generated. A method, previously validated in a collaborative trial, has been applied to determine inorganic arsenic in a wide variety of food matrices, covering grains, mushrooms and food of marine origin (31 samples in total). The method is based on detection by flow injection-hydride generation-atomic absorption spectrometry of the iAs selectively extracted into chloroform after digestion of the proteins with concentrated HCl. The method is characterized by a limit of quantification of 10 µg/kg dry weight, which allowed quantification of inorganic arsenic in a large amount of food matrices. Information is provided about performance scores given to results obtained with this method and which were reported by different laboratories in several proficiency tests. The percentage of satisfactory results obtained with the discussed method is higher than that of the results obtained with other analytical approaches.

  10. Determination of the mineral compositions of in six beans by microwave digestion with inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Yan, Q.; Yang, L.; Chen, S.; Liu, X.; Ma, X.

    2012-01-01

    In the study, microwave digestion procedure optimized was applied for digesting beans. Nineteen mineral element concentrations were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The result indicated detection limits for the 19 elements were less than 0.0998, and relative standard deviations were 1.01% - 5.02% for all the elements, and recoveries were 90.89% - 104.55% by adding standard recovery experiment. The study showed the beans selected were abundant in mineral element contents in human nutrition, determination mineral element contents by ICP-AES with microwave digestion technology were a lot of merits of small environmental pollution, fast and accurate determination result, which could satisfy the examination request of bean samples. The results provided evidence that the six beans were a good source of K, P, Mg and Ca. This study is to give important reference value to people due to individual differences by adjusting the dietary to complement the different mineral elements. (author)

  11. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Sandra [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Fragueiro, Sandra [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Lavilla, Isela [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain); Bendicho, Carlos [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Universidad de Vigo, Facultad de Ciencias (Quimica), As Lagoas-Marcosende s/n, 36200 Vigo (Spain)]. E-mail: bendicho@uvigo.es

    2005-01-10

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-{mu}l volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium.

  12. Discussion of parameters associated with the determination of arsenic by electrothermal atomic absorption spectrometry in slurried environmental samples.

    Science.gov (United States)

    Vassileva, E; Baeten, H; Hoenig, M

    2001-01-02

    A slurry sampling-fast program procedure has been developed for the determination of arsenic in plants, soils and sediments by electrothermal atomic absorption spectrometry. Efficiencies of various single and mixed modifiers for thermal stabilization of arsenic and for a better removal of the matrix during pyrolysis step were compared. The influence of the slurry concentration, amounts of modifier and parameters of the pyrolysis step on the As integrated absorbance signals have been studied and a comparison between fast and conventional furnace programs was also made. The ultrasonic agitation of the slurry followed by a fast electrothermal program using an Ir/Mg modifier provides the most consistent performance in terms of precision and accuracy. The reliability of the whole procedure has been compared with results obtained after application of a wet digestion method with an HF step and validated by analyzing eleven certified reference materials. Arsenic detection and quantitation limits expressed on dry sample matter were about 30 and 100 micrograms kg-1, respectively.

  13. Direct analysis of Antarctic krill by slurry sampling: determination of copper, iron, manganese and zinc by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Alves Flávia L.

    2000-01-01

    Full Text Available Slurry sampling in combination with flame atomic absorption spectrometry was employed for the direct determination of four essential trace elements, namely Cu, Fe, Mn and Zn in Antarctic krill. The effect of instrumental operating conditions and slurry sampling preparation on the analytical signal was investigated. For the determination of Cu, Fe and Zn, samples were suspended in a solution containing 2 mol L-1 HNO3. In the case of Mn, 4 mol L-1 HNO3 was necessary for the preparation of the slurry. The precision between sample replicates was better than 5%. The method was applied to the direct determination of Cu, Fe, Mn and Zn in Antarctic krill samples using aqueous reference solutions to prepare the calibration curves. The results obtained were in good agreement with those achieved by FAAS and ICP-AES after microwave-assisted wet digestion of the krill samples. The detection limits were 4.5, 1.0, 4.9 and 8.4 mug L-1 for Cu, Zn, Mn and Fe, respectively.

  14. The use of slurry sampling for the determination of manganese and copper in various samples by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Tokman, Nilgun

    2007-01-01

    Manganese and copper in multivitamin-mineral supplements and standard reference materials were determined by slurry sampling electrothermal atomic absorption spectrometry. Slurries were prepared in an aqueous solution containing Triton X-100. The effects of different parameters such as ratio of solid to liquid phase volume, total slurry volume and addition of Triton X-100 as a dispersant on the analytical results were investigated. The graphite furnace programs were optimized for slurry sampling depending on the analytes and their concentrations in the samples. The linear calibration method with aqueous standard solutions was used for the quantification. At optimum experimental conditions, R.S.D. values were below 5%. The analytes were determined in the limits of 95% confidence level with respect to certified values in coal and soil standard reference materials and to those found by wet-digestion in multivitamin-mineral supplements. Detection limits (3δ) for Mn and Cu were 0.10 μg L -1 and 1.82 μg L -1 for 10 μL coal standard reference material slurry, respectively

  15. Synthesis of a cyclic fibrin-like peptide and its analysis by fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Young, J.D.; Costello, C.E.; Langenhove, A. van; Haber, E.; Matsueda, G.R.

    1983-01-01

    For immunochemical purposes, a cyclic 12 peptide was synthesized to model the γ-γ-chain cross-link site in human fibrin. The model was based upon the structure proposed by Chen and Doolittle which is characterized by two reciprocating epsilon-(γ-Glu)Lys bonds between adjacent fibrin γ-chains oriented in an antiparallel manner. To achieve the antiparallel orientation of the peptide backbone, Pro and Gly were inserted at positions 6 and 7 of the linear 12-peptide: acetyl-Gly-Glu-Gln-His-His-Pro-Gly-Gly-Gly-Ala-Lys-Gly-amide. The insertions were made to facilitate a reverse turn of the peptide during the last synthetic step, which was formation of the epsilon-(γ-Glu)Lys bond between Glu at position 2 and Lys at position 11 with diphenylphosphorylazide. The resulting cyclic peptide represented half of the symmetrical cross-linked region in clotted fibrin. Following purification by HPLC, both linear and cyclic 12-peptides were analyzed by fast atom bombardment mass spectrometry. Abundant molecular protonated ions were observed for both peptides. In addition, the amino acid sequence of the linear peptide and the location of the epsilon-(γ-Glu)Lys bond in the cyclized peptide could be verified. (author)

  16. Automated system for on-line determination of dimethylarsinic and inorganic arsenic by hydride generation-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro, L.L.; Leal, L.O. [Renewable Energy and Environmental Protection Department, Advanced Materials Research Center (CIMAV), Chihuahua, Chihuahua (Mexico); Ferrer, L.; Cerda, V. [University of the Balearic Islands, Department of Chemistry, Palma de Mallorca (Spain)

    2012-09-15

    A multisyringe flow-injection approach has been coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS) with UV photo-oxidation for dimethylarsinic (DMA), inorganic As and total As determination, depending on the pre-treatment given to the sample (extraction or digestion). The implementation of a UV lamp allows on-line photo-oxidation of DMA and the following arsenic detection, whereas a bypass leads the flow directly to the HG-AFS system, performing inorganic arsenic determination. DMA concentration is calculated by the difference of total inorganic arsenic and measurement of the photo-oxidation step. The detection limits for DMA and inorganic arsenic were 0.09 and 0.47 {mu}g L{sup -1}, respectively. The repeatability values accomplished were of 2.4 and 1.8 %, whereas the injection frequencies were 24 and 28 injections per hour for DMA and inorganic arsenic, respectively. This method was validated by means of a solid reference material BCR-627 (muscle of tuna) with good agreement with the certified values. Satisfactory results for DMA and inorganic arsenic determination were obtained in several water matrices. The proposed method offers several advantages, such as increasing the sampling frequency, low detection limits and decreasing reagents and sample consumption, which leads to lower waste generation. (orig.)

  17. Determination of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid in cereals by hydride generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matos Reyes, M.N. [Department of Analytical Chemistry, University of Valencia, 50 Dr. Moliner Street, 46100 Burjassot, Valencia (Spain); Department of Chemistry, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente, 225, 22453-900, Rio de Janeiro, RJ (Brazil); Cervera, M.L. [Department of Analytical Chemistry, University of Valencia, 50 Dr. Moliner Street, 46100 Burjassot, Valencia (Spain)], E-mail: m.luisa.cervera@uv.es; Campos, R.C. [Department of Chemistry, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente, 225, 22453-900, Rio de Janeiro, RJ (Brazil); Guardia, M. de la [Department of Analytical Chemistry, University of Valencia, 50 Dr. Moliner Street, 46100 Burjassot, Valencia (Spain)

    2007-09-15

    A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L{sup -1} H{sub 3}PO{sub 4} and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g{sup -1} for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species inter