WorldWideScience

Sample records for atomic shells

  1. Atomic inner-shell transitions

    Science.gov (United States)

    Crasemann, B.; Chen, M. H.; Mark, H.

    1984-01-01

    Atomic inner-shell processes have quite different characteristics, in several important aspects, from processes in the optical regime. Energies are large, e.g., the 1s binding energy reaches 100 keV at Z = 87; relativistic and quantum-electrodynamic effects therefore are strong. Radiationless transitions vastly dominate over photon emission in most cases. Isolated inner-shell vacancies have pronounced single-particle character, with correlations generally contributing only approximately 1 eV to the 1s and 2p binding energies; the structure of such systems is thus well tractable by independent-particle self-consistent-field atomic models. For systems containing multiple deep inner-shell vacancies, or for highly stripped ions, the importance of relativistic intermediate coupling and configuration interaction becomes pronounced. Cancellation of the Coulomb interaction can lead to strong manifestations of the Breit interaction in such phenomena as multiplet splitting and hypersatellite X-ray shifts. Unique opportunities arise for the test of theory.

  2. Exotic atoms and their electron shell

    Energy Technology Data Exchange (ETDEWEB)

    Simons, L.M.; Abbot, D.; Bach, B.; Bacher, R.; Badertscher, A.; Bluem, P.; DeCecco, P.; Eades, J.; Egger, J.; Elsener, K.; Gotta, D.; Hauser, P.; Heitlinger, K.; Horvath, D.; Kottmann, F.; Morenzoni, E.; Missimer, J.; Reidy, J.J.; Siegel, R.; Taqqu, D.; Viel, D. (Paul Scherrer Inst., Villigen (Switzerland) Coll. of William and Mary, Williamsburg, VA (United States) Kernforschungszentrum Karlsruhe GmbH, Inst. fuer Kernphysik, Karlsruhe (Germany) Inst. fuer Experimentelle Kernphysik, Univ. Karlsruhe (Germany) CERN, Geneva (Switzerland) Forschungszentrum Juelich GmbH, Inst. fuer Kernphysik (Germany) KFKI Research Inst. for Particle and Nuclear Physics, Budapest (Hungary) Univ. Pisa (Italy) INFN - Pisa (Italy) ETH Zuerich, Villigen (Switzerland) Physics Dept., Univ. of Mississippi, University, MS (United States))

    1994-04-01

    Progress in the field of exotic atoms seems to increase proportionally with the number of exotic atoms produced and the increase in energy resolution with which the transition energies are determined. Modern experiments use high resolution crystal spectrometers or even aim at laser spectroscopy. The accuracy of these methods is limited by the interaction of the exotic atoms with their surroundings. The most important source of errors is the energy shift caused by the not well known status of the atomic electron shell. A novel method to eliminate these sources of error is presented and the possibilities for further high precision experiments is outlined. (orig.)

  3. Exotic atoms and their electron shell

    Science.gov (United States)

    Simons, L. M.; Abbot, D.; Bach, B.; Bacher, R.; Badertscher, A.; Blüm, P.; DeCecco, P.; Eades, J.; Egger, J.; Elsener, K.; Gotta, D.; Hauser, P.; Heitlinger, K.; Horváth, D.; Kottmann, F.; Morenzoni, E.; Missimer, J.; Reidy, J. J.; Siegel, R.; Taqqu, D.; Viel, D.

    1994-04-01

    Progress in the field of exotic atoms seems to increase proportionally with the number of exotic atoms produced and the increase in energy resolution with which the transition energies are determined. Modern experiments use high resolution crystal spectrometers or even aim at laser spectroscopy. The accuracy of these methods is limited by the interaction of the exotic atoms with their surroundings. The most important source of errors is the energy shift caused by the not well known status of the atomic electron shell. A novel method to eliminate these sources of error is presented and the possibilities for further high precision experiments is outlined.

  4. Inner-shell excitation of alkali-metal atoms

    International Nuclear Information System (INIS)

    Inner-shell excitation of alkali-metal atoms, which leads to auto-ionization, is reviewed. The validity of quantum mechanical approximation is analyzed and the importance of exchange and correlation is demonstrated. Basic difficulties in making accurate calculations for inner-shell excitation process are discussed. Suggestions are made for further study of inner-shell process in atoms and ions. (author). 26 refs, 4 figs, 1 tab

  5. Atomic shell structure from the Single-Exponential Decay Detector

    International Nuclear Information System (INIS)

    The density of atomic systems is analysed via the Single-Exponential Decay Detector (SEDD). SEDD is a scalar field designed to explore mathematical, rather than physical, properties of electron density. Nevertheless, it has been shown that SEDD can serve as a descriptor of bonding patterns in molecules as well as an indicator of atomic shells [P. de Silva, J. Korchowiec, and T. A. Wesolowski, ChemPhysChem 13, 3462 (2012)]. In this work, a more detailed analysis of atomic shells is done for atoms in the Li–Xe series. Shell populations based on SEDD agree with the Aufbau principle even better than those obtained from the Electron Localization Function, which is a popular indicator of electron localization. A link between SEDD and the local wave vector is given, which provides a physical interpretation of SEDD

  6. K-shell ionization in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mehler, G.; Soff, G.; Rumrich, K.; Greiner, W.

    1989-08-01

    We present calculations of K-shell ionization probabilities in asymmetric ion-atom collisions at relativistic velocities of the projectile. The time-dependent Dirac equation is represented as a system of coupled differential equations. The transition probabilities are determined using the coordinate space method. This necessitates an extension of the angular momentum coupling compared with nonrelativistic collision systems. Effects of the relativistic projectile motion on the coupling matrix elements and their consequences on K-shell ionization are discussed. (orig.).

  7. K-shell ionization in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mehler, G.; Rumrich, K.; Greiner, W.; Soff, G.

    1989-02-01

    We present calculations of K-shell ionization probabilities in asymmetric ion-atom collisions at relativistic velocities of the projectile. The time-dependent Dirac equation is represented as a system of coupled differential equations. The transition probabilities are determined using the coordinate space method. This necessitates an extension of the angular momentum coupling compared with nonrelativistic collision systems. Effects of the relativistic projectile motion on the coupling matrix elements and their consequences on K-shell ionization are discussed.

  8. Double K-shell photoionization of atomic beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Yip, F. L. [Departamento de Quimica, Modulo 13, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Martin, F. [Departamento de Quimica, Modulo 13, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Instituto Madrilen(tilde sign)o de Estudios Avanzados en Nanociencia, Cantoblanco, E-28049 Madrid (Spain); McCurdy, C. W. [Department of Chemistry, University of California, Davis, California 95616 (United States); Lawrence Berkeley National Laboratory, Chemical Sciences, and Ultrafast X-ray Science Laboratory, Berkeley, California 94720 (United States); Rescigno, T. N. [Lawrence Berkeley National Laboratory, Chemical Sciences, and Ultrafast X-ray Science Laboratory, Berkeley, California 94720 (United States)

    2011-11-15

    Double photoionization of the core 1s electrons in atomic beryllium is theoretically studied using a hybrid approach that combines orbital and grid-based representations of the Hamiltonian. The {sup 1} S ground state and {sup 1} P final state contain a double occupancy of the 2s valence shell in all configurations used to represent the correlated wave function. Triply differential cross sections are evaluated, with particular attention focused on a comparison of the effects of scattering the ejected electrons through the spherically symmetric valence shell with similar cross sections for helium, representing a purely two-electron target with an analogous initial-state configuration.

  9. Inner-shell Photoionization Studies of Neutral Atomic Nitrogen

    Science.gov (United States)

    Stolte, W. C.; Jonauskas, V.; Lindle, D. W.; Sant'Anna, M. M.; Savin, D. W.

    2016-02-01

    Inner-shell ionization of a 1s electron by either photons or electrons is important for X-ray photoionized objects such as active galactic nuclei and electron-ionized sources such as supernova remnants. Modeling and interpreting observations of such objects requires accurate predictions for the charge state distribution (CSD), which results as the 1s-hole system stabilizes. Due to the complexity of the complete stabilization process, few modern calculations exist and the community currently relies on 40-year-old atomic data. Here, we present a combined experimental and theoretical study for inner-shell photoionization of neutral atomic nitrogen for photon energies of 403-475 eV. Results are reported for the total ion yield cross section, for the branching ratios for formation of N+, {{{N}}}2+, and {{{N}}}3+, and for the average charge state. We find significant differences when comparing to the data currently available to the astrophysics community. For example, while the branching ratio to {{{N}}}2+ is somewhat reduced, that for N+ is greatly increased, and that to {{{N}}}3+, which was predicted to be zero, grows to ≈ 10% at the higher photon energies studied. This work demonstrates some of the shortcomings in the theoretical CSD data base for inner-shell ionization and points the way for the improvements needed to more reliably model the role of inner-shell ionization of cosmic plasmas.

  10. The shells of atomic structure in metallic glasses

    Science.gov (United States)

    Pan, S. P.; Feng, S. D.; Qiao, J. W.; Dong, B. S.; Qin, J. Y.

    2016-02-01

    We proposed a scheme to describe the spatial correlation between two atoms in metallic glasses. Pair distribution function in a model iron was fully decomposed into several shells and can be presented as the spread of nearest neighbor correlation via distance. Moreover, angle distribution function can also be decomposed into groups. We demonstrate that there is close correlation between pair distribution function and angle distribution function for metallic glasses. We think that our results are very helpful understanding the atomic structure of metallic glasses.

  11. The role of fullerene shell upon stuffed atom polarization potential

    Science.gov (United States)

    Amusia, Miron; Chernysheva, Larissa

    2016-05-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering upon endohedrals that are formed when Ne and Ar atom are stuffed inside fullerene C60. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes polarizability into the endohedrals polarization potential. By applying this approach, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross-sections due to effect of fullerene polarization upon the endohedral polarization potential. Using concrete examples we have demonstrated that the elastic scattering of electrons upon endohedrals is an entirely quantum mechanical process, where addition of even a single atom can qualitatively alter the multi-particle cross-section.

  12. Scattering of low-energy neutrinos on atomic shells

    International Nuclear Information System (INIS)

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold

  13. Multiphoton inner-shell ionization of the carbon atom

    OpenAIRE

    Rey, H. F.; Hart, H W

    2015-01-01

    We apply time-dependent R-matrix theory to study inner-shell ionization of C atoms in ultra-short high-frequency light fields with a photon energy between 170 and 245 eV. At an intensity of 1017 W/cm2, ionization is dominated by single-photon emission of a 2l electron, with two-photon emission of a 1s electron accounting for about 2-3% of all emission processes, and two-photon emission of 2l contributing about 0.5-1%. Three-photon emission of a 1s electron is estimated to contribute about 0.0...

  14. Time delay in valence shell photoionization of noble gas atoms

    CERN Document Server

    Kheifets, A S

    2013-01-01

    We use the non-relativistic random phase approximation with exchange to perform calculations of valence shell photoionization of Ne, Ar, Kr and Xe from their respective thresholds to photon energy of 200 eV. The energy derivative of the complex phase of the photoionization matrix elements is converted to the photoelectron group delay that can be measured in attosecond streaking or two-photon transitions interference experiments. Comparison with reported time delay measurements in Ne and Ar at a few selected photon energies is made. Systematic mapping of time delay across a wide range of photon energies in several atomic targets allows to highlight important aspects of fundamental atomic physics that can be probed by attosecond time delay measurements.

  15. Simultaneous K plus L shell ionized atoms during heavy-ion collision process

    Indian Academy of Sciences (India)

    G A V Ramana Murty; G J Naga Raju; V Vijayan; T Ranjan Rautray; B Seetharami Reddy; S Lakshminarayana; K L Narasimham; S Bhuloka Reddy

    2004-06-01

    The fraction of simultaneous K plus L shell ionized atoms is estimated in Fe, Co and Cu elements using carbon ions at different projectile energies. The present results indicate that the fraction of simultaneous K plus L shell ionization probability decreases with increase in projectile energy as well as with increase in the atomic number of the targets atoms.

  16. The role of fullerene shell upon stuffed atom polarization potential

    CERN Document Server

    Amusia, M Ya

    2015-01-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes polarizability into the Neon and Argon endohedrals polarization potential. As a result, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross-sections due to effect of fullerene polarization upon the endohedral polarization potential.

  17. Multiphoton inner-shell ionization of the carbon atom

    CERN Document Server

    Rey, H F

    2015-01-01

    We apply time-dependent R-matrix theory to study inner-shell ionization of C atoms in ultra-short high-frequency light fields with a photon energy between 170 and 245 eV. At an intensity of 10$^{17}$ W/cm$^2$, ionization is dominated by single-photon emission of a $2\\ell$ electron, with two-photon emission of a 1s electron accounting for about 2-3\\% of all emission processes, and two-photon emission of $2\\ell$ contributing about 0.5-1\\%. Three-photon emission of a 1s electron is estimated to contribute about 0.01-0.03\\%. Around a photon energy of 225 eV, two-photon emission of a 1s electron, leaving C$^+$ in either 1s2s2p$^3$ or 1s2p$^4$ is resonantly enhanced by intermediate 1s2s$^2$2p$^3$ states. The results demonstrate the capability of time-dependent R-matrix theory to describe inner-shell ionization processes including rearrangement of the outer electrons.

  18. K-shell auger decay of atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.C.; Lu, Y.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydberg analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.

  19. Notes from the Nordic Spring Symposium on atomic inner shell phenomena

    International Nuclear Information System (INIS)

    The purpose of the symposium was to bring together scientists from those various fields of physics that involve atomic inner shell processes. Vol. 2 contains the submitted complete lecture notes in chronological order. (JIW)

  20. Nuclear shell energies and deformations in atomic mass formula

    International Nuclear Information System (INIS)

    Our group has for several years been studying a method of calculating nuclear shell energies and incorporating them into a mass formula. This method is characterized by the calculation of single-particle levels in an extended spherical Woods-Saxon potential, the extraction of crude shell energy, the refinement of crude shell energy due to residual interactions, and the incorporation into a mass formula. Here, we report the advance of this work focusing especially on nuclear deformations, and give some preliminary results and remarks. (author)

  1. An Empirical Formula of Atomic K-Shell Ionization Cross Sections by Electron Impact

    Institute of Scientific and Technical Information of China (English)

    唐昶环; 安竹; 罗正明; 范晓强

    2001-01-01

    An empirical formula is proposed to describe the K-shell ionization cross sections by electron impact over a wide range of atomic numbers and overvoltages U (the ratio between the electron incident energy and the bindingenergy of the electrons in the K-shell). The study is based on the analysis of existing experimental data of K-shell ionization cross sections. The expression shows the results in good agreement with the data for Z<6 atoms as well as for 6<Z<79.

  2. Four shells atomic model to computer the counting efficiency of electron-capture nuclides

    International Nuclear Information System (INIS)

    The present paper develops a four-shells atomic model in order to obtain the efficiency of detection in liquid scintillation courting, Mathematical expressions are given to calculate the probabilities of the 229 different atomic rearrangements so as the corresponding effective energies. This new model will permit the study of the influence of the different parameters upon the counting efficiency for nuclides of high atomic number. (Author) 7 refs

  3. Many-body interaction and deformation of the atomic electron shells in the lattice dynamics of compressed atomic cryocrystals

    Science.gov (United States)

    Troitskaya, E. P.; Gorbenko, Ie. Ie.; Pilipenko, E. A.

    2016-05-01

    The lattice dynamics of compressed atomic cryocrystals are based on ab initio quantum-mechanical theories of deformable and polarizable atoms (Tolpygo model), while taking into account the many-body interaction. The parameters of the three-particle interaction and deformation of the atomic electron shells, which are calculated in terms of the overlap integrals of atomic orbitals and their derivatives, have the same order of magnitude thus demonstrating that they must be considered in tandem. Accounting for the deformation effects of the electron shells in the dipole approximation when calculating phonon frequencies leads to a "softening" of the longitudinal modes at points L and X, for an entire series of Ne-Xe crystals, and of the transverse modes in the directions Σ and Λ for Xe, under high compression. It is shown that it impossible to adequately reproduce the observed deviation from the Cauchi relation δ(p) for compressed atomic cryocrystals, without accounting for the deformation of electron shells of atoms in a quadrupole approximation. The inputs from a three-particle and quadrupole interaction for Ne, Kr, and Xe crystals are mutually compensated, which provides a weak dependence on pressure for δ(p). We found a good agreement between the calculated phonon frequencies, Birch and Fuchs elastic moduli, the deviation from the Cauchi relation for the total number of Ne-Xe crystals in a wide range of pressures, and existing experiments.

  4. Wigner’s phase-space function and atomic structure: II. Ground states for closed-shell atoms

    DEFF Research Database (Denmark)

    Springborg, Michael; Dahl, Jens Peder

    1987-01-01

    display and analyze the function for the closed-shell atoms helium, beryllium, neon, argon, and zinc in the Hartree-Fock approximation. The quantum-mechanical exact results are compared with those obtained with the approximate Thomas-Fermi description of electron densities in phase space....

  5. The Casimir-Polder interaction an atom with spherical shell

    OpenAIRE

    Khusnutdinov, Nail

    2014-01-01

    The Casimir-Polder and van der Waals interaction energy of an atom with infinitely thin sphere with finite conductivity is investigated in the framework of the hydrodynamic approach. We put the sphere into spherical cavity inside the infinite dielectric media, then calculate the energy of vacuum fluctuations in the context of the zeta-function approach. The energy for a single atom is obtained by rarefying media. The Casimir-Polder expression for an atom and plate is recovered in the limit of...

  6. Generalized oscillator strengths for some higher valence-shell excitations of krypton atom

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The valence-shell excitations of krypton atom have been investigated by fast electron impact with an angle-resolved electron-energy-loss spectrometer. The generalized oscillator strengths for some higher mixed valence-shell excitations in 4d, 4f, 5p, 5d, 6s, 6p, 7s ← 4p of krypton atom have been determined. Their profiles are discussed, and the generalized oscillator strengths for the electric monopole and quadrupole excitations in 5p ← 4p are compared with the calculations of Amusia et al. (Phys. Rev. A 67 022703 (2003)). The differences between the experimental results and theoretical calculations show that more studies are needed.

  7. K-shell ionization of atoms and ions by relativistic projectiles

    International Nuclear Information System (INIS)

    We evaluate the total cross section for the single K-shell ionization of atoms and ions by the impact of relativistic electrons. The study is performed to leading orders of the QED perturbation theory with respect to the parameters αZ and 1/Z. The results obtained are in good agreement with experimental data for different atomic targets. In the case of moderate values of the nuclear charge Z, the total cross section is described by a simple analytic formula. The K-shell ionization by relativistic heavy particles is also considered.

  8. van der Waals coefficients for positronium interactions with closed-shell atoms

    CERN Document Server

    Swann, A R; Gribakin, G F

    2015-01-01

    The random-phase approximation with exchange (RPAE) is used with a $B$-spline basis to compute dynamic dipole polarizabilities of noble-gas atoms and several other closed-shell atoms (Be, Mg, Ca, Zn, Sr and Cd). From these, values of the van der Waals $C_6$ constants for positronium interactions with these atoms are determined and compared with existing data. Our best predictions of $C_6$ for Ps--noble-gas pairs are expected to be accurate to within 1%, and to within few per cent for the alkaline earths. Implications of increased $C_6$ values for more polarizable atoms are discussed.

  9. X-ray emission from heavy atomic collisions : couplings of inner shells in superheavy quasimolecules

    OpenAIRE

    Verma, Punita

    2010-01-01

    Overcritical electromagnetic fields with a coupling strength of ZUA greater than or equal to 1/alpha (=137, with alpha being the fine structure constant) can be experienced in superheavy quasimolecules (atomic number ZUA = Z1+Z2) formed transiently in close collisions of two very heavy atomic partners (Z1, Z2) at velocities (vion) smaller compared to the orbital velocity of the innermost electrons of concern (ve-). The inner shell processes in these collisions are governed approximately by th...

  10. Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    DEFF Research Database (Denmark)

    Özen, C.; Zinner, Nikolaj Thomas

    2014-01-01

    The physics of a two-component cold fermi gas is now frequently addressed in laboratories. Usually this is done for large samples of tens to hundreds of thousands of particles. However, it is now possible to produce few-body systems (1-100 particles) in very tight traps where the shell structure...... of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two......-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method...

  11. Ultrafast atomic process in X-ray emission by using inner-shell ionization method for sodium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-07-01

    An ultrafast inner-shell ionization process with X-ray emission stimulated by high-intensity short-pulse X-ray is studied. Carbon and sodium atoms are treated as target matter. It is shown that atomic processes of the target determine the necessary X-ray intensity for X-ray laser emission as well as the features of X-ray laser such as wavelength and duration time. The intensity also depends on the density of initial atoms. Furthermore, we show that as the intensity of X-ray source becomes high, the multi-inner-shell ionization predominates, leading to the formation of hollow atoms. As the density of hollow atoms is increased by the pumping X-ray power, the emission of X-rays is not only of significance for high brightness X-ray measurement but also is good for X-ray lasing. New classes of experiments of pump X-ray probe and X-ray laser are suggested. (author)

  12. Anomalous elastic scattering of x-ray photon by an atom with an open shell

    International Nuclear Information System (INIS)

    In the non-relativistic approximation for the wavefunctions of the one-electron states and in the dipole approximation for the scattering amplitude the effect of relaxation of atomic shells in the field of core vacancies, multiplet splitting, Auger and radiative vacancy decays and virtual processes of one-photon double excitation/ionization from the atomic ground state on the differential cross section of anomalous elastic scattering of the linearly polarized x-ray photon by the copper atom near its 1s-shell ionization threshold are studied. The results of calculations are found to be in agreement with the high-precision synchrotron radiation experiment by Arp et al (1993 J. Phys. B: At. Mol. Opt. Phys. 26 4381)

  13. Anomalous elastic scattering of x-ray photon by an atom with an open shell

    Energy Technology Data Exchange (ETDEWEB)

    Hopersky, A N; Petrov, I D; Nadolinsky, A M; Yavna, V A; Koneev, R V [Rostov State University of Transport Communication, Chair of Mathematics, Rostov-on-Don, 344038 (Russian Federation)

    2004-08-28

    In the non-relativistic approximation for the wavefunctions of the one-electron states and in the dipole approximation for the scattering amplitude the effect of relaxation of atomic shells in the field of core vacancies, multiplet splitting, Auger and radiative vacancy decays and virtual processes of one-photon double excitation/ionization from the atomic ground state on the differential cross section of anomalous elastic scattering of the linearly polarized x-ray photon by the copper atom near its 1s-shell ionization threshold are studied. The results of calculations are found to be in agreement with the high-precision synchrotron radiation experiment by Arp et al (1993 J. Phys. B: At. Mol. Opt. Phys. 26 4381)

  14. Photoionization of the valence shells of the neutral tungsten atom

    CERN Document Server

    Ballance, Connor P

    2015-01-01

    Results from large-scale theoretical cross section calculations for the total photoionization of the 4f, 5s, 5p and 6s orbitals of the neutral tungsten atom using the Dirac Coulomb R-matrix approximation (DARC: Dirac-Atomic R-matrix codes) are presented. Comparisons are made with previous theoretical methods and prior experimental measurements. In previous experiments a time-resolved dual laser approach was employed for the photo-absorption of metal vapours and photo-absorption measurements on tungsten in a solid, using synchrotron radiation. The lowest ground state level of neutral tungsten is $\\rm 5p^6 5d^4 6s^2 \\; {^5}D_{\\it J}$, with $\\it J$=0, and requires only a single dipole matrix for photoionization. To make a meaningful comparison with existing experimental measurements, we statistically average the large-scale theoretical PI cross sections from the levels associated with the ground state $\\rm 5p^6 5d^4 6s^2 \\; {^5}D_{\\it J}[{\\it J}=0,1,2,3,4]$ levels and the $\\rm 5d^56s \\; ^7S_3$ excited metastable...

  15. Discovery of a Shell of Neutral Atomic Hydrogen Surrounding the Carbon Star IRC+10216

    CERN Document Server

    Matthews, L D; Bertre, T Le

    2015-01-01

    We have used the Robert C. Byrd Green Bank Telescope to perform the most sensitive search to date for neutral atomic hydrogen (HI) in the circumstellar envelope (CSE) of the carbon star IRC+10216. Our observations have uncovered a low surface brightness HI shell of diameter ~1300" (~0.8 pc), centered on IRC+10216. The HI shell has an angular extent comparable to the far ultraviolet-emitting astrosphere of IRC+10216 previously detected with the GALEX satellite, and its kinematics are consistent with circumstellar matter that has been decelerated by the local interstellar medium. The shell appears to completely surround the star, but the highest HI column densities are measured along the leading edge of the shell, near the location of a previously identified bow shock. We estimate a total mass of atomic hydrogen associated with IRC+10216 CSE of M_HI~3x10e-3 M_sun. This is only a small fraction of the expected total mass of the CSE (<1%) and is consistent with the bulk of the stellar wind originating in molec...

  16. An extended empirical model for L- and M-shell ionizations of atoms

    CERN Document Server

    Talukder, M R

    2011-01-01

    An extension of the analytical model of Talukder et al (Int. J. Mass Spectrom. 269 (2008) 118) is proposed to estimate electron impact single L- and M-shell ionization cross sections of atoms with incident energy from threshold to ultra-relativistic range. Comparisons are made with other theoretical calculations. It is found that this model agrees well with the experimental data and quantum calculations.

  17. Core-Shell Magneto-Optical Trap for Alkaline-Earth-Metal-Like Atoms

    CERN Document Server

    Lee, Jeongwon; Noh, Jiho; Mun, Jongchul

    2014-01-01

    We propose and demonstrate a new magneto-optical trap (MOT) for alkaline-earth-metal-like (AEML) atoms where the narrow $^{1}S_{0}\\rightarrow$$^{3}P_{1}$ transition and the broad $^{1}S_{0}\\rightarrow$$^{1}P_{1}$ transition are spatially arranged into a core-shell configuration. Our scheme resolves the main limitations of previously adopted MOT schemes, leading to a significant increase in both the loading rate and the steady state atom number. We apply this scheme to $^{174}$Yb MOT, where we show about a hundred-fold improvement in the loading rate and ten-fold improvement in the steady state atom number compared to reported cases that we know of to date. This technique could be readily extended to other AEML atoms to increase the statistical sensitivity of many different types of precision experiments.

  18. Inner-shell Annihilation of Positrons in Argon, Iron and Copper Atoms

    CERN Document Server

    Abdel-Raouf, M A; El-Bakry, S Y

    2007-01-01

    The annihilation parameters of positrons with electrons in different shells of Argon, Iron and Copper atoms are calculated below the positronium (Ps) formation thresholds. Quite accurate ab initio calculations of the bound state wavefunctions of Argon, Iron and Copper orbitals are obtained from Cowan computer code. A least-squares variational method (LSVM) is used for determining the wavefunction of the positrons. The program is employed for calculating the s-wave partial cross sections of positrons scattered by Iron and Copper atoms. Our results of the effective charge are compared with available experimental and theoretical ones. --

  19. Ultra fast atomic process in X-ray emission by inner-shell ionization

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Tajima, T.

    1998-03-01

    An ultra-fast atomic process together with X-ray emission by inner-shell ionization using high intensity (10{sup 18} W/cm{sup 2}) short pulse (20fs) X-ray is studied. A new class of experiment is proposed and a useful pumping source is suggested. In this method, it is found that the gain value of X-ray laser amounts to larger than 1000(1/cm) with use of the density of 10{sup 22}/cm{sup 3} of carbon atom. Electron impact ionization effect and initial density effect as well as intensity of pumping source effect are also discussed. (author)

  20. Two-photon excitation/ionization of the 1s-shell of the argon atom

    CERN Document Server

    Novikov, S A

    2002-01-01

    The absolute values and the shape of the two-photon excitation/ionization cross section of the 1s-shell of the argon atom are calculated with inclusion of the many-particle effects, i.e., the relaxation of the atomic residue in the field of the vacancies created, and the decay of the vacancies into the channels of Auger and (or) radiative types. The wavefunctions of the one-particle states are calculated in non-relativistic approximation. The calculations are performed for both linear and circular polarization of the laser beam.

  1. Two-photon excitation/ionization of the 1s-shell of the argon atom

    International Nuclear Information System (INIS)

    The absolute values and the shape of the two-photon excitation/ionization cross section of the 1s-shell of the argon atom are calculated with inclusion of the many-particle effects, i.e., the relaxation of the atomic residue in the field of the vacancies created, and the decay of the vacancies into the channels of Auger and (or) radiative types. The wavefunctions of the one-particle states are calculated in non-relativistic approximation. The calculations are performed for both linear and circular polarization of the laser beam.

  2. Study of the K shell photoelectric parameters of Dy, Yb and W atoms using low energy Bremsstrahlung radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hosur, S.B.; Naika, L.R.; Badiger, N.M. [Department of Studies in PhysicsKarnatak University, Dharwad - 580003 (India)

    2011-04-15

    Low energy external Bremsstrahlung (EB) photons were used to estimate the K shell photoelectric parameters; the K shell photoelectric cross section at the K edge, the K shell binding energy, the K shell jump ratio, the K shell jump factors, the Davisson-Kirchner ratio and the K shell oscillator strength for dysprosium (Dy), ytterbium (Yb) and tungsten (W) atoms. The EB photons are produced in the nickel (Ni) target by using the beta particles from a weak beta source of {sup 90}Sr-{sup 90}Y. These photons are made to fall on these elemental targets of our interest and the transmitted spectrum is measured using GMX 10P HPGe detector coupled to an 8K multichannel analyzer. The sharp decrease at the K edge in the measured spectrum is used to determine the K shell photoelectric parameters of these elements. The experimental results are in good agreement with the theoretical values. (authors)

  3. Study of the K shell photoelectric parameters of Dy, Yb and W atoms using low energy Bremsstrahlung radiation

    International Nuclear Information System (INIS)

    Low energy external Bremsstrahlung (EB) photons were used to estimate the K shell photoelectric parameters; the K shell photoelectric cross section at the K edge, the K shell binding energy, the K shell jump ratio, the K shell jump factors, the Davisson-Kirchner ratio and the K shell oscillator strength for dysprosium (Dy), ytterbium (Yb) and tungsten (W) atoms. The EB photons are produced in the nickel (Ni) target by using the beta particles from a weak beta source of 90Sr-90Y. These photons are made to fall on these elemental targets of our interest and the transmitted spectrum is measured using GMX 10P HPGe detector coupled to an 8K multichannel analyzer. The sharp decrease at the K edge in the measured spectrum is used to determine the K shell photoelectric parameters of these elements. The experimental results are in good agreement with the theoretical values. (authors)

  4. Investigation of the structure change of atomic shells due to uranium ionization by the Dirac-Fock-Slater method

    International Nuclear Information System (INIS)

    The influence of outer vacancies in the atomic shells of uranium on the atomic shell structure is claculated by the Dirac-Fock-Slater method. It is found out that the energy of the X-ray transitions increases due to the detachment of the electrons with the lowest binding energies. The electron detachment from the subshells of the 4f level gives rise to negative energy shifts of the X-ray transitions.(author)

  5. Evaluating and interpreting the chemical relevance of the linear response kernel for atoms II: open shell.

    Science.gov (United States)

    Boisdenghien, Zino; Fias, Stijn; Van Alsenoy, Christian; De Proft, Frank; Geerlings, Paul

    2014-07-28

    Most of the work done on the linear response kernel χ(r,r') has focussed on its atom-atom condensed form χAB. Our previous work [Boisdenghien et al., J. Chem. Theory Comput., 2013, 9, 1007] was the first effort to truly focus on the non-condensed form of this function for closed (sub)shell atoms in a systematic fashion. In this work, we extend our method to the open shell case. To simplify the plotting of our results, we average our results to a symmetrical quantity χ(r,r'). This allows us to plot the linear response kernel for all elements up to and including argon and to investigate the periodicity throughout the first three rows in the periodic table and in the different representations of χ(r,r'). Within the context of Spin Polarized Conceptual Density Functional Theory, the first two-dimensional plots of spin polarized linear response functions are presented and commented on for some selected cases on the basis of the atomic ground state electronic configurations. Using the relation between the linear response kernel and the polarizability we compare the values of the polarizability tensor calculated using our method to high-level values. PMID:24837234

  6. Determination of the K shell oscillator strengths and the imaginary form factors of atoms using a weak beta source

    Energy Technology Data Exchange (ETDEWEB)

    Hosur, Savita B; Badiger, N M; Naik, L R [Department of Physics, Karnatak University, Dharwad-580 003 (India)], E-mail: nagappa123@yahoo.co.in

    2008-05-14

    The K shell oscillator strengths and the imaginary form factors of Gd, Hf and Ta atoms have been determined using a novel method. In this method, bremsstrahlung photons produced by beta particles from a weak beta source of {sup 90}Sr-{sup 90}Y in a nickel foil are incident on an elemental target and the transmitted spectrum of photons emerging from the target is measured using an ORTEC make HPGe detector coupled to 8 K multichannel analyser. The recorded spectrum shows a sudden drop at the K shell binding energy of the target atom and an exponential decrease in the intensity above the K shell binding energy. These portions have been used to determine the K shell binding energy, photoelectric cross-section at the K edge, the K shell oscillator strength and the imaginary form factor of the elements Gd, Hf and Ta. Good agreement between the experimental and the theoretical values is observed.

  7. Determination of the K shell oscillator strengths and the imaginary form factors of atoms using a weak beta source

    International Nuclear Information System (INIS)

    The K shell oscillator strengths and the imaginary form factors of Gd, Hf and Ta atoms have been determined using a novel method. In this method, bremsstrahlung photons produced by beta particles from a weak beta source of 90Sr-90Y in a nickel foil are incident on an elemental target and the transmitted spectrum of photons emerging from the target is measured using an ORTEC make HPGe detector coupled to 8 K multichannel analyser. The recorded spectrum shows a sudden drop at the K shell binding energy of the target atom and an exponential decrease in the intensity above the K shell binding energy. These portions have been used to determine the K shell binding energy, photoelectric cross-section at the K edge, the K shell oscillator strength and the imaginary form factor of the elements Gd, Hf and Ta. Good agreement between the experimental and the theoretical values is observed

  8. Relativistic calculations of double $K$-shell photoionization for neutral medium-$Z$ atoms

    CERN Document Server

    Yerokhin, V A; Fritzsche, S

    2014-01-01

    Fully relativistic calculations are presented for the double $K$-shell photoionization cross section for several neutral medium-$Z$ atoms, from magnesium ($Z = 10$) up to silver ($Z = 47$). The calculations take into account all multipoles of the absorbed photon as well as the retardation of the electron-electron interaction. The approach is based on the partial-wave representation of the Dirac continuum states and uses the Green-function technique to represent the full Dirac spectrum of intermediate states. The method is strictly gauge invariant, which is used as an independent cross check of the computational procedure. The calculated ratios of the double-to-single $K$-shell ionization cross sections are compared with the experimental data and with previous computations.

  9. ESR Dosimetry for Atomic Bomb Survivors Using Shell Buttons and Tooth Enamel

    Science.gov (United States)

    Ikeya, Motoji; Miyajima, Junko; Okajima, Shunzo

    1984-09-01

    Atomic bomb radiation doses to humans at Nagasaki and Hiroshima are investigated by electron spin resonance (ESR) from shell buttons and tooth enamel voluntarily supplied by survivors. A shell button gives a dose of 2.1± 0.2 Gy with ESR signals at g=2.001 and g=1.997 while the signal at g=1.997 for the tooth enamel of the same person is 1.9± 0.5 Gy. Other teeth show doses from about 0.5 Gy to 3 Gy. An apparent shielding converted to a concrete thickness is given using the T65D calculated in 1965. Teeth extracted during dental treatment should be preserved for cumulative radiation dosimetry.

  10. Prospects for ultracold polar and magnetic chromium-closed-shell-atom molecules

    CERN Document Server

    Tomza, Michał

    2013-01-01

    The properties of the electronic ground state of the polar and paramagnetic chromium--closed-shell-atom molecules have been investigated. State-of-the-art \\textit{ab initio} techniques have been applied to compute the potential energy curves for the chromium--alkaline-earth-metal-atom, CrX (X = Be, Mg, Ca, Sr, Ba), and chromium--ytterbium, CrYb, molecules in the Born-Oppenheimer approximation for the $X^7\\Sigma^+$ high-spin electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within Douglas-Kroll-Hess Hamiltonian or energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between atoms at large interatomic distances, $C_6$, are also reported. Molecules under investigation are an example of species p...

  11. Inner-shell photoemission from atoms and molecules using synchrotron radiation

    International Nuclear Information System (INIS)

    Photoelectron spectroscopy, in conjunction with synchrotron radiation, has been used to study inner-shell photoemission from atoms and molecules. The time structure of the synchrotron radiation permits the measurements of time-of-flight (TOF) spectra of Auger and photoelectrons, thereby increasing the electron collection efficiency. The double-angle TOF method yielded angle-resolved photoelectron intensities, which were used to determine photoionization cross sections and photoelectron angular distributions in several cases. Comparison to theoretical calculations has been made where possible to help explain observed phenomena in terms of the electronic structure and photoionization dynamics of the systems studied. 154 references, 23 figures, 7 tables

  12. Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Seselj, Nedjeljko; Poreddy, Raju;

    2016-01-01

    We present a facile synthesis protocol for atomically thin platinum (Pt) shells on top of gold (Au) nanoparticles (NPs) (Au@PtNPs) in one pot under mild conditions. The Au@PtNPs exhibited remarkable stability (> 2 years) at room temperature. The synthesis, bimetallic nanostructures and catalytic...... electrooxidation of sustainable fuels (i.e. formic acid, methanol and ethanol), and selective hydrogenation of benzene derivatives. Especially high activity was achieved for formic acid oxidation, 549 mA (mgPt)−1 (at 0.6 V vs. SCE), which is 3.5 fold higher than a commercial < 5 nm PtNP catalyst. Excellent...

  13. Atomically thin spherical shell-shaped superscatterers based on a Bohr model.

    Science.gov (United States)

    Li, Rujiang; Lin, Xiao; Lin, Shisheng; Liu, Xu; Chen, Hongsheng

    2015-12-18

    Graphene monolayers can be used for atomically thin three-dimensional shell-shaped superscatterer designs. Due to the excitation of the first-order resonance of transverse magnetic (TM) graphene plasmons, the scattering cross section of the bare subwavelength dielectric particle is enhanced significantly by five orders of magnitude. The superscattering phenomenon can be intuitively understood and interpreted with a Bohr model. In addition, based on the analysis of the Bohr model, it is shown that contrary to the TM case, superscattering is hard to achieve by exciting the resonance of transverse electric (TE) graphene plasmons due to their poor field confinements.

  14. Atomically thin spherical shell-shaped superscatterers based on Bohr model

    CERN Document Server

    Li, Rujiang; Lin, Shisheng; Liu, Xu; Chen, Hongsheng

    2015-01-01

    Graphene monolayers can be used for atomically thin three-dimensional shell-shaped superscatterer designs. Due to the excitation of the first-order resonance of transverse magnetic (TM) graphene plasmons, the scattering cross section of the bare subwavelength dielectric particle is enhanced significantly by five orders of magnitude. The superscattering phenomenon can be intuitively understood and interpreted with Bohr model. Besides, based on the analysis of Bohr model, it is shown that contrary to the TM case, superscattering is hard to occur by exciting the resonance of transverse electric (TE) graphene plasmons due to their poor field confinements.

  15. Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms.

    Science.gov (United States)

    Pederson, Mark R

    2015-02-14

    A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeit slightly too low. PMID:25681892

  16. Fermi Orbital Derivatives in Self-Interaction Corrected Density Functional Theory: Applications to Closed Shell Atoms

    CERN Document Server

    Pederson, Mark R

    2014-01-01

    A recent modification of the Perdew-Zunger self-interaction-correction (SIC) to the density-functional formalism (Pederson, Ruzsinszky, Perdew) has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Lowdin orthonormalized Fermi-orbitals (Luken et al) which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested here on atoms. Total energies and ionization energies in closed-shell atoms, where correlation is less important, using the PW92 LDA functional are in very good to excellent agreement with experiment and non-relativistic Quantum-Monte-Carlo (QMC) results.

  17. Atomic force microscopy indentation to determine mechanical property for polystyrene–silica core–shell hybrid particles with controlled shell thickness

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang, E-mail: cy.jpu@126.com [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Qian, Cheng [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Miao, Naiming [School of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu 213016 (China)

    2015-03-31

    The positively charged polystyrene (PS) particles with a size of ca. 200 nm were synthesized by soap-free polymerization. The PS cores were coated with silica shells of tunable thickness employing the modified Stöber method. The PS cores were removed by thermal decomposition at 500 °C, resulting in well-defined silica hollow spheres (10–30 nm in shell thickness). The elastic response of the as-synthesized samples was probed by an atomic force microscope (AFM). A point load was applied to the particle surface through a sharp AFM tip, and the force–displacement curves were recorded. Elastic moduli (E) for the PS particles (2.01 ± 0.70 GPa) and the core–shell structured hybrid particles were determined on the basis of Hertzian contact model. The calculated E values of composites exhibited a linear dependence on the silica shell thickness. While the shell thickness increased from ca. 10 to 15 and 20 nm, the E values of composites increased from 4.42 ± 0.27 to 5.88 ± 0.48 and 9.07 ± 0.94 GPa. For core–shell structured organic/inorganic composites, the E values of the hybrid particles were much lower than those of inorganic shells, while these values were much close to those of organic cores. Moreover, the moduli of elasticity of the composites appeared to be determined by the properties of the polymer cores, the species of inorganic shells and the thickness of shells. Besides, the inorganic shells enhanced the mechanical properties of the polymer cores. This work will provide essential experimental and theoretical basis for the design and application of core–shell structured organic/inorganic composite abrasives in chemical mechanical polishing/planarization. - Highlights: • The elastic moduli (E) of the PS/SiO{sub 2} hybrid particles were probed by AFM. • The E values of composites exhibited a linear dependence on the shell thickness. • The elasticity appeared to be determined by the properties of the organic cores. • The E values were affected

  18. Models for L-shell filling of slow hollow atoms moving below a surface

    International Nuclear Information System (INIS)

    A multiple cascade model is used to analyze the filling of L- and K-vacancies of hollow Ne atoms moving in shallow layers of an Al (111) surface. The model requires cross sections for charge transfer into the L-shell of the projectile which were determined from molecular-orbital calculations based on solid-state energies and screening effects. The analysis includes mechanisms of Landau-Zener curve-crossing and Fano-Lichten promotion. Absorption and build-up effects within the solid were taken into account. The results from the cascade model show good agreement with the ratio of L- to K-Auger emission recently measured for Ne9+ incident on Al. (orig.)

  19. Many-body perturbation-theory formulas for energy levels of excited states of closed-shell atoms

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustoglou, E.; Johnson, W.R.; Plante, D.R.; Sapirstein, J.; Sheinerman, S. (Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States)); Blundell, S.A. (University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States))

    1992-11-01

    Many-body perturbation-theory formulas are derived for one-particle--one-hole excited states of closed-shell atoms. Both analytic results and Goldstone diagrams complete through third order are presented, and a sample calculation of a transition energy in neonlike xenon is carried out.

  20. Epitaxial TiO 2/SnO 2 core-shell heterostructure by atomic layer deposition

    KAUST Repository

    Nie, Anmin

    2012-01-01

    Taking TiO 2/SnO 2 core-shell nanowires (NWs) as a model system, we systematically investigate the structure and the morphological evolution of this heterostructure synthesized by atomic layer deposition/epitaxy (ALD/ALE). All characterizations, by X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction and Raman spectra, reveal that single crystalline rutile TiO 2 shells can be epitaxially grown on SnO 2 NWs with an atomically sharp interface at low temperature (250 °C). The growth behavior of the TiO 2 shells highly depends on the surface orientations and the geometrical shape of the core SnO 2 NW cross-section. Atomically smooth surfaces are found for growth on the {110} surface. Rough surfaces develop on {100} surfaces due to (100) - (1 × 3) reconstruction, by introducing steps in the [010] direction as a continuation of {110} facets. Lattice mismatch induces superlattice structures in the TiO 2 shell and misfit dislocations along the interface. Conformal epitaxial growth has been observed for SnO 2 NW cores with an octagonal cross-section ({100} and {110} surfaces). However, for a rectangular core ({101} and {010} surfaces), the shell also derives an octagonal shape from the epitaxial growth, which was explained by a proposed model based on ALD kinetics. The surface steps and defects induced by the lattice mismatch likely lead to improved photoluminescence (PL) performance for the yellow emission. Compared to the pure SnO 2 NWs, the PL spectrum of the core-shell nanostructures exhibits a stronger emission peak, which suggests potential applications in optoelectronics. © The Royal Society of Chemistry 2012.

  1. Quantum-Shell Corrections to the Finite-Temperature Thomas-Fermi-Dirac Statistical Model of the Atom

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, A B

    2003-07-22

    Quantum-shell corrections are made directly to the finite-temperature Thomas-Fermi-Dirac statistical model of the atom by a partition of the electronic density into bound and free components. The bound component is calculated using analytic basis functions whose parameters are chosen to minimize the energy. Poisson's equation is solved for the modified density, thereby avoiding the need to solve Schroedinger's equation for a self-consistent field. The shock Hugoniot is calculated for aluminum: shell effects characteristic of quantum self-consistent field models are fully captures by the present model.

  2. A vortex line for K-shell ionization of a carbon atom by electron impact

    Science.gov (United States)

    Ward, S. J.; Macek, J. H.

    2014-10-01

    We obtained using the Coulomb-Born approximation a deep minimum in the TDCS for K-shell ionization of a carbon atom by electron impact for the electron ejected in the scattering plane. The minimum is obtained for the kinematics of the energy of incident electron Ei = 1801.2 eV, the scattering angle θf = 4°, the energy of the ejected electron Ek = 5 . 5 eV, and the angle for the ejected electron θk = 239°. This minimum is due to a vortex in the velocity field. At the position of the vortex, the nodal lines of Re [ T ] and Im [ T ] intersect. We decomposed the CB1 T-matrix into its multipole components for the kinematics of a vortex, taking the z'-axis parallel to the direction of the momentum transfer vector. The m = +/- 1 dipole components are necessary to obtain a vortex. We also considered the electron to be ejected out of the scattering plane and obtained the positions of the vortex for different values of the y-component of momentum of the ejected electron, ky. We constructed the vortex line for the kinematics of Ei = 1801.2 eV and θf = 4°. S.J.W. and J.H.M. acknowledge support from NSF under Grant No. PHYS- 0968638 and from D.O.E. under Grant Number DE-FG02-02ER15283, respectively.

  3. Fluidized-bed atomic layer deposition reactor for the synthesis of core-shell nanoparticles

    International Nuclear Information System (INIS)

    The design of a fluidized bed atomic layer deposition (ALD) reactor is described in detail. The reactor consists of three parts that have all been placed in one protective cabinet: precursor dosing, reactor, and residual gas treatment section. In the precursor dosing section, the chemicals needed for the ALD reaction are injected into the carrier gas using different methods for different precursors. The reactor section is designed in such a way that a homogeneous fluidized bed can be obtained with a constant, actively controlled, reactor pressure. Furthermore, no filters are required inside the reactor chamber, minimizing the risk of pressure increase due to fouling. The residual gas treatment section consists of a decomposition furnace to remove residual precursor and a particle filter and is installed to protect the pump. In order to demonstrate the performance of the reactor, SiO2 particles have been coated with TiO2 using tetrakis-dimethylamino titanium (TDMAT) and H2O as precursors. Experiments with varying pulse times show that saturated growth can be obtained with TDMAT pulse times larger than 600 s. Analysis of the powder with High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) and energy dispersive X-ray spectroscopy confirmed that after 50 cycles, all SiO2 particles were coated with a 1.6 nm homogenous shell of TiO2

  4. Isolation and Structural Characterization of a Mackay 55-Metal-Atom Two-Shell Icosahedron of Pseudo-Ih Symmetry, Pd55L12(μ3-CO)20 (L = PR3, R = Isopropyl): Comparative Analysis with Interior Two-Shell Icosahedral Geometries in Capped Three-Shell Pd145, Pt-Centered Four-Shell Pd-Pt M165, and Four-Shell Au133 Nanoclusters.

    Science.gov (United States)

    Erickson, Jeremiah D; Mednikov, Evgueni G; Ivanov, Sergei A; Dahl, Lawrence F

    2016-02-10

    We present the first successful isolation and crystallographic characterization of a Mackay 55-metal-atom two-shell icosahedron, Pd55L12(μ3-CO)20 (L = PPr(i)3) (1). Its two-shell icosahedron of pseudo-Ih symmetry (without isopropyl substituents) enables a structural/bonding comparison with interior 55-metal-atom two-shell icosahedral geometries observed within the multi-shell capped 145-metal-atom three-shell Pd145(CO)72(PEt3)30 and 165-metal-atom four-shell Pt-centered (μ12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x ≈ 7) nanoclusters, and within the recently reported four-shell Au133(SC6H4-p-Bu(t))52 nanocluster. DFT calculations carried out on a Pd55(CO)20(PH3)12 model analogue, with triisopropyl phosphine substituents replaced by H atoms, revealed a positive +0.84 e charge for the entire Pd55 core, with a highly positive second-shell Pd42 surface of +1.93 e.

  5. Isolation and Structural Characterization of a Mackay 55-Metal-Atom Two-Shell Icosahedron of Pseudo-Ih Symmetry, Pd55L12(μ3-CO)20 (L = PR3, R = Isopropyl): Comparative Analysis with Interior Two-Shell Icosahedral Geometries in Capped Three-Shell Pd145, Pt-Centered Four-Shell Pd-Pt M165, and Four-Shell Au133 Nanoclusters.

    Science.gov (United States)

    Erickson, Jeremiah D; Mednikov, Evgueni G; Ivanov, Sergei A; Dahl, Lawrence F

    2016-02-10

    We present the first successful isolation and crystallographic characterization of a Mackay 55-metal-atom two-shell icosahedron, Pd55L12(μ3-CO)20 (L = PPr(i)3) (1). Its two-shell icosahedron of pseudo-Ih symmetry (without isopropyl substituents) enables a structural/bonding comparison with interior 55-metal-atom two-shell icosahedral geometries observed within the multi-shell capped 145-metal-atom three-shell Pd145(CO)72(PEt3)30 and 165-metal-atom four-shell Pt-centered (μ12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x ≈ 7) nanoclusters, and within the recently reported four-shell Au133(SC6H4-p-Bu(t))52 nanocluster. DFT calculations carried out on a Pd55(CO)20(PH3)12 model analogue, with triisopropyl phosphine substituents replaced by H atoms, revealed a positive +0.84 e charge for the entire Pd55 core, with a highly positive second-shell Pd42 surface of +1.93 e. PMID:26790717

  6. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhimin; Wang, Qiang, E-mail: wangqiang@njtech.edu.cn; Shan, Xiaoye; Zhu, Hongjun, E-mail: zhuhj@njtech.edu.cn [Department of Applied Chemistry, College of Science, Nanjing Tech University, Nanjing 211816 (China); Li, Wei-qi [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Chen, Guang-hui [Department of Chemistry, Shantou University, Shantou, Guangdong 515063 (China)

    2015-02-21

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs.

  7. Relativistic equation-of-motion coupled-cluster method for the double ionization potentials of the closed-shell atoms

    CERN Document Server

    Pathak, Himadri; Sahoo, B K; Das, B P; Vaval, Nayana; Pal, Sourav

    2014-01-01

    We report the implementation of the relativistic equation-of-motion coupled-cluster method to calculate double ionization spectra (DI-EOMCC) of the closed-shell atomic systems. This method is employed to calculate principal valence double ionization potential values of He and alkaline earth metal (Be, Mg, Ca, Sr and Ba) atoms. Our results are compared with the results available from the national institute of science and technology (NIST) database and other ab initio calculations. We have achieved an accuracy of ~ 0.1%, which is an improvement over the first principles T-matrix calculations [J. Chem. Phys. 123, 144112 (2005)]. We also present results using the second-order many-body perturbation theory and the random -phase approximation in the equation-of-motion framework and these results are compared with the DI-EOMCC results.

  8. Synthesis of Pt–Pd Core–Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yu; Liu, Bin; Lu, Junling; Lobo-Lapidus, Rodrigo J.; Wu, Tianpin; Feng, Hao; Xia, Xiaoxing; Mane, Anil U.; Libera, Joseph A.; Greeley, Jeffrey P.; Miller, Jeffrey T.; Elam, Jeffrey W.

    2012-08-20

    Atomic layer deposition (ALD) was employed to synthesize supported Pt–Pd bimetallic particles in the 1 to 2 nm range. The metal loading and composition of the supported Pt–Pd nanoparticles were controlled by varying the deposition temperature and by applying ALD metal oxide coatings to modify the support surface chemistry. High-resolution scanning transmission electron microscopy images showed monodispersed Pt–Pd nanoparticles on ALD Al2O3- and TiO2-modified SiO2 gel. X-ray absorption spectroscopy revealed that the bimetallic nanoparticles have a stable Pt-core, Pd-shell nanostructure. Density functional theory calculations revealed that the most stable surface configuration for the Pt–Pd alloys in an H2 environment has a Pt-core, Pd-shell nanostructure. Finally, in comparison to their monometallic counterparts, the small Pt–Pd bimetallic core–shell nanoparticles exhibited higher activity in propane oxidative dehydrogenation as compared to their physical mixture.

  9. van der Waals interaction between an atom and a spherical plasma shell

    International Nuclear Information System (INIS)

    The van der Waals interaction energy of an atom with an infinitely thin sphere with finite conductivity is investigated in the framework of the hydrodynamic approach. Thin sphere models the fullerene. We put the sphere into a spherical cavity inside the infinite dielectric media then calculate the energy of vacuum fluctuations in the context of the ζ-function approach. The interaction energy for a single atom is obtained from this expression in the limit of the rare media. The Casimir-Polder expression for an atom and plate is recovered in the limit of the infinite radius of the sphere. Assuming a finite radius of the sphere, the interaction energy of an atom falls down to a third power of distance between the atom and sphere for short distances and to a seventh power for large distances from the sphere. Numerically the interaction energy is 3.8 eV for the hydrogen atom placed on the surface of the sphere with parameters of fullerene C60. We also show that the polarizability of fullerene is merely a cube of its radius.

  10. NARROW-DISPERSED CROSSLINKED CORE-SHELL POLYMER MICROSPHERES PREPARED BY SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Yu-zeng Zhao; Xin-lin Yang; Feng Bai; Wen-qiang Huang

    2005-01-01

    Grafting of polystyrene with narrowly dispersed polymer microspheres through surface-initiated atom transfer radical polymerization (ATRP) was investigated. Polydivinylbenzene (PDVB) microspheres were prepared by dispersion polymerization with poly(N-vinyl pyrrolidone) (PVP) as stabilizer. The surfaces of PDVB microspheres were chloromethylated by chloromethyl methyl ether in the presence of zinc chloride as catalyst to form chloromethylbenzene initiating core sites for subsequent ATRP grafting of styrene using CuC1/bpy as catalytic system. Polystyrene was found to be grafted not only from the particle surfaces but also from within a thin shell layer, resulting in the formation of particles size increased from 2.38-2.58 μm, which can further grow to 2.93 μm during secondary grafting polymerization of styrene. This demonstrates that grafting polymerization proceeds through a typical ATRP procedure with living nature. All of the prepared microspheres have narrow particle size distribution with coefficient of variation around 10%.

  11. The thermal Casimir–Polder interaction of an atom with a spherical plasma shell

    International Nuclear Information System (INIS)

    The van der Waals and Casimir–Polder interaction energy of an atom with an infinitely thin sphere with finite conductivity is investigated in the framework of the hydrodynamic approach at finite temperature. This configuration models the real interaction of an atom with fullerene. The Lifshitz approach is used to find the free energy. We find the explicit expression for the free energy and perform its analysis for (i) high and low temperatures, (ii) large radii of the sphere and (iii) short separation between an atom and sphere. At low temperatures the thermal part of the free energy approaches zero as the fourth power of the temperature, while for high temperatures it is proportional to the first degree of the temperature. The entropy of this system is positive for small radii of the sphere and it becomes negative at low temperatures and for large radii of the sphere. (paper)

  12. Preparations and properties of a tunable void with shell thickness SiO2@SiO2 core-shell structures via activators generated by electron transfer for atom transfer radical polymerization

    Science.gov (United States)

    Ren, Yi-xian; Zhou, Guo-wei; Cao, Pei

    2016-02-01

    Core-shell structure nanoparticles are attracting considerable attention because of their applications in drug delivery, catalysis carrier, and nanomedicine. In this study, SiO2@SiO2 core-shell structure with tunable void and shell thickness was successfully prepared for the first time using SiO2-poly(buty acrylate) (PBA)-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) (SiO2-PBA-b-PDMAEMA) as the template and tetraethoxysilane (TEOS) as the silica source. An amphiphilic copolymer PBA-b-PDMAEMA was first grafted onto the SiO2 nanosphere surface through activators regenerated by electron transfer for atom transfer radical polymerization. TEOS was hydrolyzed along with the PDMAEMA chain through hydrogen bonding, and the core-shell structure of SiO2@SiO2 was obtained through calcination to remove the copolymer. The gradient hydrophilicity of the PBA-b-PDMAEMA copolymer template facilitated the hydrolysis of TEOS molecules along the PDMAEMA to PBA segments, thereby tuning the voids between the SiO2 core and SiO2 shell, as well as the SiO2 shell thickness. The voids were about 10-15 nm and the shell thicknesses were about 4-11 nm when adding different amounts of DMAEMA monomer. SiO2@SiO2 core-shell structures with tunable void and shell thickness were employed as supports for the loading and release of doxorubicin hydrochloride (DOX) in PBS (pH 4.0). The samples demonstrated good loading capacity and controlled release rate of DOX.

  13. The thermal Casimir-Polder interaction of an atom with spherical plasma shell

    OpenAIRE

    Khusnutdinov, Nail R.

    2012-01-01

    The van der Waals and Casimir-Polder interaction energy of an atom with an infinitely thin sphere with finite conductivity is investigated in the framework of the hydrodynamic approach at finite temperature. This configuration models the real interaction of an atom with fullerene. The Lifshitz approach is used to find the free energy. We find the explicit expression for the free energy and perform the analysis of it for i) high and low temperatures, ii) large radii of sphere and ii) short sep...

  14. Cold collisions of an open-shell S-state atom with a (2)Pi molecule : N(S-4) colliding with OH in a magnetic field.

    OpenAIRE

    Skomorowski, Wojciech; Gonzalez-Martinez, Maykel L.; Moszynski, Robert; Hutson, Jeremy M.

    2011-01-01

    We present quantum-theoretical studies of collisions between an open-shell S-state atom and a ^2Pi-state molecule in the presence of a magnetic field. We analyze the collisional Hamiltonian and discuss possible mechanisms for inelastic collisions in such systems. The theory is applied to the collisions of the nitrogen atom (^4S) with the OH molecule, with both collision partners initially in fully spin-stretched (magnetically trappable) states, assuming that the interaction takes place exclus...

  15. Isolation of atomically precise mixed ligand shell PdAu24 clusters

    Science.gov (United States)

    Sels, Annelies; Barrabés, Noelia; Knoppe, Stefan; Bürgi, Thomas

    2016-05-01

    Exposure of PdAu24(2-PET)18 (2-PET: 2-phenylethylthiolate) to BINAS (1,1-binaphthyl-2,2-dithiol) leads to species of composition PdAu24(2-PET)18-2x(BINAS)x due to ligand exchange reactions. The BINAS adsorbs in a specific mode that bridges the apex and one core site of two adjacent S(R)-Au-S(R)-Au-S(R) units. Species with different compositions of the ligand shell can be separated by HPLC. Furthermore, site isomers can be separated. For the cluster with exactly one BINAS in its ligand shell only one isomer is expected due to the symmetry of the cluster, which is confirmed by High-Performance Liquid Chromatography (HPLC). Addition of a second BINAS to the ligand shell leads to several isomers. In total six distinguishable isomers are possible for PdAu24(2-PET)14(BINAS)2 including two pairs of enantiomers concerning the adsorption pattern. At least four distinctive isomers are separated by HPLC. Calculations indicate that one of the six possibilities is energetically disfavoured. Interestingly, diastereomers, which have an enantiomeric relationship concerning the adsorption pattern of chiral BINAS, have significantly different stabilities. The relative intensity of the observed peaks in the HPLC does not reflect the statistical weight of the different isomers. This shows, as supported by the calculations, that the first adsorbed BINAS molecule influences the adsorption of the second incoming BINAS ligand. In addition, experiments with the corresponding Pt doped gold cluster reveal qualitatively the same behaviour, however with slightly different relative abundances of the corresponding isomers. This finding points towards the influence of electronic effects on the isomer distribution. Even for clusters containing more than two BINAS ligands a limited number of isomers were found, which is in contrast to the corresponding situation for monothiols, where the number of possible isomers is much larger.Exposure of PdAu24(2-PET)18 (2-PET: 2-phenylethylthiolate) to BINAS (1

  16. Young’s modulus of PS/CeO2 composite with core/shell structure microspheres measured using atomic force microscopy

    International Nuclear Information System (INIS)

    Organic–inorganic composite microspheres with PS as a core and CeO2 as a shell were synthesized by in situ chemical precipitation method. The size of PS core was 117, 163, 206, and 241 nm, respectively, and the shell thickness was about 10 nm. The CeO2 shell was composed of a large number of nanoparticles, of which the size was 4–6 nm. Atomic force microscopy was employed to probe the mechanical properties of core–shell structured ceria-coated polystyrene (PS/CeO2) composite microspheres. On the basis of Hertz’s theory of contact mechanics, compressive moduli were measured by the analysis of force–displacement curves captured on the microsphere samples. For a fixed CeO2 shell thickness, the Young’s modulus of composite microspheres increased with an increase of PS core size. The calculated Young’s moduli (E) values of composites for 136, 185, 242, and 261 nm in diameter were 5.78 ± 0.9, 7.23 ± 1.3, 11.46 ± 1.7, and 14.54 ± 1.4 GPa, respectively. The results revealed the effect of the CeO2 shell on the elastic deformation of the PS core. This approach will provide fundamental insights into the actual role of organic/inorganic core/shell composite abrasives in chemical mechanical polishing.

  17. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from 55Cs to 80Hg

    Directory of Open Access Journals (Sweden)

    Hiroshi Tatewaki

    2015-06-01

    Full Text Available We consider, for atoms from 55Cs to 80Hg, the effective atomic radius (rear, which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He2. The values of rear are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of rear decreases from 55Cs to 56Ba and undergoes increases and decreases with rising nuclear charge from 57La to 70Y b. In fact rear is understood as comprising two interlaced sequences; one consists of 57La, 58Ce, and 64Gd, which have electronic configuration (4fn−1(5d1(6s2, and the remaining atoms have configuration (4fn(6s2. The sphere defined by rear contains 85%–90% of the 6s electrons. From 71Lu to 80Hg the radius rear also involves two sequences, corresponding to the two configurations 5dn+16s1 and 5dn6s2. The radius rear according to the present methodology is considerably larger than rvdW obtained by other investigators, some of who have found values of rvdW close to .

  18. Inner-shell magnetic dipole transition in Tm atom as a candidate for optical lattice clocks

    CERN Document Server

    Sukachev, D; Tolstikhina, I; Kalganova, E; Vishnyakova, G; Khabarova, K; Tregubov, D; Golovizin, A; Sorokin, V; Kolachevsky, N

    2016-01-01

    We consider a narrow magneto-dipole transition in the $^{169}$Tm atom at the wavelength of $1.14\\,\\mu$m as a candidate for a 2D optical lattice clock. Calculating dynamic polarizabilities of the two clock levels $[\\text{Xe}]4f^{13}6s^2 (J=7/2)$ and $[\\text{Xe}]4f^{13}6s^2 (J=5/2)$ in the spectral range from $250\\,$nm to $1200\\,$nm, we suggest the "magic" wavelength for the optical lattice at $807\\,$nm. Frequency shifts due to black-body radiation (BBR), the van der Waals interaction, the magnetic dipole-dipole interaction and other effects which can perturb the transition frequency are calculated. The transition at $1.14\\,\\mu$m demonstrates low sensitivity to the BBR shift corresponding to $8\\times10^{-17}$ in fractional units at room temperature which makes it an interesting candidate for high-performance optical clocks. The total estimated frequency uncertainty is less than $5 \\times 10^{-18}$ in fractional units. By direct excitation of the $1.14\\,\\mu$m transition in Tm atoms loaded into an optical dipole ...

  19. The thermal Casimir-Polder interaction of an atom with spherical plasma shell

    CERN Document Server

    Khusnutdinov, Nail R

    2012-01-01

    The van der Waals and Casimir-Polder interaction energy of an atom with an infinitely thin sphere with finite conductivity is investigated in the framework of the hydrodynamic approach at finite temperature. The Lifshits approach is used to find the free energy. We find the close expression for the free energy and make the analysis of it for i) high and low temperatures, ii) large radii of sphere and ii) short distance from sphere. At low temperatures the thermal part of the free energy tends to zero as forth power of the temperature while for high temperatures it is proportional to the first degree of the temperature. We show that the entropy of this system is positive for small radii of sphere and it becomes negative at low temperatures and for large radii of the sphere.

  20. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from {sub 55}Cs to {sub 80}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Tatewaki, Hiroshi, E-mail: htatewak@nsc.nagoya-cu.ac.jp [Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi 467-8501 (Japan); Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota, Aichi 470-0393 (Japan); Hatano, Yasuyo [School of Information Science and Technology, Chukyo University, Toyota, Aichi 470-0393 (Japan); Noro, Takeshi [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Yamamoto, Shigeyoshi [School of International Liberal Studies, Chukyo University, Nagoya, Aichi 466-8666 (Japan)

    2015-06-15

    We consider, for atoms from {sub 55}Cs to {sub 80}Hg, the effective atomic radius (r{sub ear}), which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He{sub 2}. The values of r{sub ear} are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of r{sub ear} decreases from {sub 55}Cs to {sub 56}Ba and undergoes increases and decreases with rising nuclear charge from {sub 57}La to {sub 70}Y b. In fact r{sub ear} is understood as comprising two interlaced sequences; one consists of {sub 57}La, {sub 58}Ce, and {sub 64}Gd, which have electronic configuration (4f{sup n−1})(5d{sup 1})(6s{sup 2}), and the remaining atoms have configuration (4f{sup n})(6s{sup 2}). The sphere defined by r{sub ear} contains 85%–90% of the 6s electrons. From {sub 71}Lu to {sub 80}Hg the radius r{sub ear} also involves two sequences, corresponding to the two configurations 5d{sup n+1}6s{sup 1} and 5d{sup n}6s{sup 2}. The radius r{sub ear} according to the present methodology is considerably larger than r{sub vdW} obtained by other investigators, some of who have found values of r{sub vdW} close to .

  1. Anomalous elastic scattering of linearly polarized X-ray radiation by multicharged atomic ions in the range of the ionization threshold of the 1s-shell

    Energy Technology Data Exchange (ETDEWEB)

    Hopersky, A.N. E-mail: phys@rgups.ru; Novikov, S.A.; Chuvenkov, V.V

    2002-04-01

    The absolute values and shape of differential cross-section of the process of the anomalous elastic scattering for non-zero angle are investigated within non-relativistic approximation for linearly polarized X-ray radiation scattered by multicharged atomic ions Ne{sup 6+} in the range of the ionization threshold of 1s-shell. The many-particle effects of radial rearrangement of electron shells in the field of an inner 1s-vacancy and the effect of vacancy stabilization are taken into account. The results of the work are predictions.

  2. Implementation and Application of the Relativistic Equation of Motion Coupled-cluster Method for the Excited States of Closed-shell Atomic Systems

    CERN Document Server

    Nandy, D K; Sahoo, B K

    2014-01-01

    We report the implementation of equation-of-motion coupled-cluster (EOMCC) method in the four-component relativistic framework with the spherical atomic potential to generate the excited states from a closed-shell atomic configuration. This theoretical development will be very useful to carry out high precision calculations of varieties of atomic properties in many atomic systems. We employ this method to calculate excitation energies of many low-lying states in a few Ne-like highly charged ions, such as Cr XV, Fe XVII, Co XVIII and Ni XIX ions, and compare them against their corresponding experimental values to demonstrate the accomplishment of the EOMCC implementation. The considered ions are apt to substantiate accurate inclusion of the relativistic effects in the evaluation of the atomic properties and are also interesting for the astrophysical studies. Investigation of the temporal variation of the fine structure constant (\\alpha) from the astrophysical observations is one of the modern research problems...

  3. Excitation and decay dynamics of ls2s inner-shell double-vacancy states of neon atoms

    Institute of Scientific and Technical Information of China (English)

    Ding Xiao-Bin; Dong Chen-Zhong; Fumihiro Koike; Takako Kato; Stephan Fritzsche

    2008-01-01

    The photo-excitation and Auger decay processes of inner-shell double vacancy states 1s2s2p6(1,3S)3s3p of neutral neon atoms have been studied theoretically.Multi-configuration Dirac-Fock (MCDF) calculations have been carried out,with electron correlation effects taken into consideration.The relaxation of core and excited orbitals and configuration interaction are found to be crucial to creating the double vacancy states by single photo-absorption.The predominant decay paths for the double vacancy states turn out to be of the LLM Auger decay to is 2s22p53s(3p),KLL Auger decay to 1s22s2p43s3p,and KLM Auger decay to 1s22pS3s(3p).They lead to further Auger decay,creating the neon ions of multiple charge states.For both double and single vacancy states the spectator type of Auger process is dominated in all the Auger decay processes.Theoretical Auger electron spectra are presented for further investigations,experimental and theoretical.

  4. Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries

    Science.gov (United States)

    Bai, Ying; Yan, Dong; Yu, Caiyan; Cao, Lina; Wang, Chunlei; Zhang, Jinshui; Zhu, Huiyuan; Hu, Yong-Sheng; Dai, Sheng; Lu, Junling; Zhang, Weifeng

    2016-03-01

    Silicon (Si) has been regarded as next-generation anode for high-energy lithium-ion batteries (LIBs) due to its high Li storage capacity (4200 mA h g-1). However, the mechanical degradation and resultant capacity fade critically hinder its practical application. In this regard, we demonstrate that nanocoating of Si spheres with a 3 nm titanium dioxide (TiO2) layer via atomic layer deposition (ALD) can utmostly balance the high conductivity and the good structural stability to improve the cycling stability of Si core material. The resultant sample, Si@TiO2-3 nm core-shell nanospheres, exhibits the best electrochemical performance of all with a highest initial Coulombic efficiency and specific charge capacity retention after 50 cycles at 0.1C (82.39% and 1580.3 mA h g-1). In addition to making full advantage of the ALD technique, we believe that our strategy and comprehension in coating the electrode and the active material could provide a useful pathway towards enhancing Si anode material itself and community of LIBs.

  5. 18. Within the atom economical electronic "s, p, d, f Type electron hull shell" forming principle and spin Elliptical orbit parameters variation analysis

    Directory of Open Access Journals (Sweden)

    Huang Zhenqiang and Huang Yuxiang

    2013-10-01

    Full Text Available In chapter 16 we have about three of hydrogen, lithium, helium atoms "s type ball shell electron cloud" describes forming principle and calculation. Therefore: each electronic in nucleus and other electronic electric, magnetic field force, not only along the spin elliptical orbits around the nucleus, there are different degrees of lateral additional movement, as shown in figure 18.2, 18.4, 18.6... As shown. It formed the spin elliptical orbit revolving curved surface. When same layer n of rotating ellipsoid surface "electron hull shell" under the action of electric field repelling force symmetry respectively to different space position and direction, were composed "s, p, d, f type electron hull shell". From (1.2-1 type, electronic wave radius:

  6. Open M-shell Opacity of Bromine Plasma in Comparison of the Detailed Level Accounting Model with the Average Atom Model

    Institute of Scientific and Technical Information of China (English)

    JIN Feng-Tao; YUAN Jian-Min

    2005-01-01

    @@ The open M-shell opacity of a hot bromine plasma has been calculated by using a detailed level accounting (DLA )model. One-electron orbitals obtained by solving the fully relativistic Dirac-Fock equations are used to obtain the atomic levels and the radiative transition oscillator strengths. Only the level mixing within the same electron configuration is considered to reduce the complexity of the calculations. Detailed comparisons have been made between the results of the DLA and average atom (AA) models. Good agreements are found for both the M-shell transition arrays and the Planck mean opacity but there are differences for the line positions in the 2p → 3d absorption region due to the statistical treatment for the one-electron orbitals in the AA model.

  7. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  8. K-shell excitation studied for H- and He-like bismuth ions in collisions with low-z target atoms

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, T. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Ionescu, D.C. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Theoretische Physik; Rymuza, P. [Institute for Nuclear Studies, Swierk (Poland); Bosch, F.; Geissel, H.; Kozhuharov, C.; Ludziejewski, T.; Mokler, P.H.; Scheidenberger, C. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Stachura, Z. [Henryk Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland); Warczak, A. [Krakow Univ. (Poland). Inst. of Physics; Dunford, R.W. [Argonne National Lab., IL (United States)

    1997-09-01

    The formation of excited projectile states via Coulomb excitation is investigated for hydrogen- and helium-like bismuth projectiles (Z=83) in relativistic ion-atom collisions. The excitation process was unambiguously identified by observing the radiative decay of the excited levels to the vacant 1s shell in coincidence with ions that did not undergo charge exchange in the reaction target. In particular, owing to the large fine structure splitting of Bi, the excitation cross-sections to the various L-shell sublevels are determined separately. The results are compared with detailed relativistic calculations, showing that both the relativistic character of the bound-state wave-functions and the magnetic interaction are of considerable importance for the K-shell excitation process in high-Z ions like Bi. The experimental data confirm the result of the complete relativistic calculations, namely that the magnetic part of the Lienard-Wiechert interaction leads to a significant reduction of the K-shell excitation cross-section. (orig.) 27 refs.

  9. Computation of triple differential cross-sections with the inclusion of exchange effects in atomic K-shell ionization by relativistic electrons for symmetric geometry

    Indian Academy of Sciences (India)

    S Dhar; M R Alam

    2007-09-01

    The triple differential cross-section for K-shell ionization of silver and copper atoms by relativistic electrons have been computed in the coplanar symmetric geometry with the inclusion of exchange effects following the multiple scattering theory of Das and Seal [1] multiplied by suitable spinors. Present computed results are marginally improved in some cases from the previous computed results [2]. Present results are compared with measured values [3] and with previous computation results [2]. Some other theoretical computational results are also presented here for comparison.

  10. Photoionisation of Be-like and Li-like atomic oxygen{\\it K}-shell photoionisation of O$^{4+}$ and O$^{5+}$ ions : experiment and theory

    CERN Document Server

    McLaughlin, B M; Cubaynes, D; Guilbaud, S; Douix, S; Shorman, M M Al; Ghazaly, M O A El; Sakho, I; Gharaibeh, M F

    2016-01-01

    Absolute cross sections for the {\\it K}-shell photoionisation of Be-like (O$^{4+}$) and Li-like (O$^{5+}$) atomic oxygen ions were measured for the first time (in their respective {\\it K}-shell regions) by employing the ion-photon merged-beam technique at the SOLEIL synchrotron-radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/$\\Delta$E $\\approx$ 3200 ($\\approx$ 170 meV, FWHM)was achieved with photon energy from 550 eV up to 670 eV. Rich resonance structure observed in the experimental spectra is analysed using the R-matrix with pseudo-states (RMPS) method. Results are also compared with the screening constant by unit nuclear charge (SCUNC) calculations. We characterise and identify the strong $\\rm 1s \\rightarrow 2p$ resonances for both ions and the weaker $\\rm 1s \\rightarrow np$ resonances ($ n \\ge 3$) observed in the {\\it K}-shell spectra of O$^{4+}$.

  11. Inner-shell corrections to the Bethe stopping-power formula evaluated from a realistic atomic model

    International Nuclear Information System (INIS)

    Generalized oscillator strengths for K- and L-shell ionization have been calculated using a central potential derived from the Hartree-Slater model. In cases in which an ejected electron carries low kinetic energies, sizable differences with hydrogenic-model calculations are evident

  12. Preparation of (Ba,Sr)TiO{sub 3}-polystrene core-shell nanoparticles by solvent-free surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaowei [State Key Laboratory of Materials-Oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing University of Technology, 5 New model Road, Nanjing 210009 (China); Zeng Yanwei, E-mail: zengyanwei@tom.com [State Key Laboratory of Materials-Oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing University of Technology, 5 New model Road, Nanjing 210009 (China); Cai Tongxiang; Hu Zhenxing [State Key Laboratory of Materials-Oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing University of Technology, 5 New model Road, Nanjing 210009 (China)

    2012-07-15

    The polystyrene shells have been successfully grown on the barium strontium titanate (BST) nanocrystals, which were synthesized by microwave-activated glycothermal method, via a solvent-free surface-initiated atom transfer radical polymerization (SI-ATRP) after the 2-bromo-2-methylpropionic acid molecules (Br-MPA) were anchored at the surface of BST nanocrystals through ligand exchange with hydroxyl groups on their surfaces. These surface modified BST nanocrystals can then be perfectly dispersed in styrene monomer and act as macroinitiators for ATRP to yield BST-PS core-shell structured nanoparticles, which endow the BST nanocrystals with exceptionally good dispersibility and stability in hydrophobic solvents. The BST-PS core-shell structures were characterized by X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), differential scanning calorimetry (DSC) and gel permeation chromatography were also employed to probe the Br-MPA and PS on the BST nanocrystals. It has been shown that after the BST nanocrystals are surface-modified with Br-MPA, the polymerization of styrene can steadily occur at the surface of BST nanocrystals to form a uniform polystyrene shell and its thickness can reach {approx}10 nm when the polymerization reaction is extended to 36 h, while no changes are found to take place with the BST nanocrystals. Compared with typical high molecular weight PS (M{sub n} = 6700), the as-obtained PS possess a relatively low molecular weight (M{sub n} = 5473) and a lower glass transition temperature (T{sub g} {approx} 93 Degree-Sign C). The research results demonstrate a viable strategy for the preparation of polymer-coated functional metal oxides nanocrystals, potentially useful in biological and nanoelectronic applications.

  13. Preparation of (Ba,Sr)TiO3-polystrene core-shell nanoparticles by solvent-free surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    The polystyrene shells have been successfully grown on the barium strontium titanate (BST) nanocrystals, which were synthesized by microwave-activated glycothermal method, via a solvent-free surface-initiated atom transfer radical polymerization (SI-ATRP) after the 2-bromo-2-methylpropionic acid molecules (Br-MPA) were anchored at the surface of BST nanocrystals through ligand exchange with hydroxyl groups on their surfaces. These surface modified BST nanocrystals can then be perfectly dispersed in styrene monomer and act as macroinitiators for ATRP to yield BST-PS core-shell structured nanoparticles, which endow the BST nanocrystals with exceptionally good dispersibility and stability in hydrophobic solvents. The BST-PS core-shell structures were characterized by X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), differential scanning calorimetry (DSC) and gel permeation chromatography were also employed to probe the Br-MPA and PS on the BST nanocrystals. It has been shown that after the BST nanocrystals are surface-modified with Br-MPA, the polymerization of styrene can steadily occur at the surface of BST nanocrystals to form a uniform polystyrene shell and its thickness can reach ∼10 nm when the polymerization reaction is extended to 36 h, while no changes are found to take place with the BST nanocrystals. Compared with typical high molecular weight PS (Mn = 6700), the as-obtained PS possess a relatively low molecular weight (Mn = 5473) and a lower glass transition temperature (Tg ∼ 93 °C). The research results demonstrate a viable strategy for the preparation of polymer-coated functional metal oxides nanocrystals, potentially useful in biological and nanoelectronic applications.

  14. Measurement of atomic L shell Coster-Kronig yields (f12, f23 and f13) for some elements in the atomic number range 59≤Z≤90

    International Nuclear Information System (INIS)

    Non-radiative transitions cause changes in the generation of the intensity of the L lines. In order to investigate the physical quantities relevant to the L lines affected by the non-radiative transitions, experimental measurements were carried out using a Si(Li) x-ray spectrometer. Atomic L shell Coster-Kronig yields (f12, f13 and f23) for some elements in the atomic number range 59≤Z≤90 were determined. These selected measured semi-empirical values were also fitted by least squares to polynomials in Z of the form ΣnanZn (except for f13) and compared with theoretical and with earlier fitted values. (author)

  15. Auger Spectra and Different Ionic Charges Following 3s, 3p and 3d Sub-Shells Photoionization of Kr Atoms

    Directory of Open Access Journals (Sweden)

    Yehia A. Lotfy

    2006-01-01

    Full Text Available The decay of inner-shell vacancy in an atom through radiative and non-radiative transitions leads to final charged ions. The de-excitation decay of 3s, 3p and 3d vacancies in Kr atoms are calculated using Monte-Carlo simulation method. The vacancy cascade pathway resulted from the de-excitation decay of deep core hole in 3s subshell in Kr atoms is discussed. The generation of spectator vacancies during the vacancy cascade development gives rise to Auger satellite spectra. The last transitions of the de-excitation decay of 3s, 3p and 3d holes lead to specific charged ions. Dirac-Fock-Slater wave functions are adapted to calculate radiative and non-radiative transition probabilities. The intensity of Kr^{4+} ions are high for 3s hole state, whereas Kr^{3+} and Kr^{2+} ions have highest intensities for 3p and 3d hole states, respectively. The present results of ion charge state distributions agree well with the experimental data.

  16. Origin and shape evolution of core-shell nanoparticles in Au-Pd: from few atoms to high Miller index facets

    Energy Technology Data Exchange (ETDEWEB)

    Bhattarai, Nabraj; Casillas, Gilberto; Khanal, Subarna; Velazquez Salazar, J. Jesus; Ponce, Arturo; Jose-Yacaman, Miguel, E-mail: miguel.yacaman@utsa.edu [University of Texas at San Antonio, Department of Physics and Astronomy (United States)

    2013-06-15

    Au-Pd core-shell nanocubes and triangular nanoparticles were systematically synthesized from a few Pd layers up to fully grown morphologies by a modified seed-mediated growth method. The shape evolution of Au-Pd core-shell nanoparticles from single crystal and singly twinned seed to final concave nanocube and triangular plates are presented at atomic level by Cs-corrected scanning transmission electron microscopy (STEM). The growth mechanism of both morphologies was studied throughout different sizes. It was found that the concave nanocubes grew from octahedral Au seeds due to fast growth along Left-Pointing-Angle-Bracket 111 Right-Pointing-Angle-Bracket directions; while the triangular nanoparticles grew from singly twinned Au seeds, growing twice as fast in Left-Pointing-Angle-Bracket 110 Right-Pointing-Angle-Bracket directions along the twin boundary; compared to the Left-Pointing-Angle-Bracket 111 Right-Pointing-Angle-Bracket direction perpendicular to the twin boundary. Both the concave nanocubes and triangular nanoparticles presented high index facet (HIF) surfaces that will increase the catalytic activity of different reactions.

  17. Time-resolved fluorescence spectroscopy of matrix-isolated silver atoms after pulsed excitation of inner-shell transitions

    Science.gov (United States)

    Hebert, T.; Wiggenhauser, H.; Schriever, U.; Kolb, D. M.

    1990-02-01

    The energy dissipation in matrix-isolated silver atoms after pulsed vacuum ultraviolet (VUV) excitation of 4d-5p transitions has been studied by time-resolved fluorescence spectroscopy. The decay behavior of the various fluorescence bands has been analyzed and a model for the relaxation process proposed within the framework of a two-dimensional configuration-coordinate diagram. If minute quantities of Ag2 are present in the matrix, the analysis requires consideration of energy transfer between silver atoms and dimers.

  18. Algebraic tools for dealing with the atomic shell model. I. Wavefunctions and integrals for hydrogen-like ions

    Science.gov (United States)

    Surzhykov, Andrey; Koval, Peter; Fritzsche, Stephan

    2005-01-01

    Today, the 'hydrogen atom model' is known to play its role not only in teaching the basic elements of quantum mechanics but also for building up effective theories in atomic and molecular physics, quantum optics, plasma physics, or even in the design of semiconductor devices. Therefore, the analytical as well as numerical solutions of the hydrogen-like ions are frequently required both, for analyzing experimental data and for carrying out quite advanced theoretical studies. In order to support a fast and consistent access to these (Coulomb-field) solutions, here we present the DIRAC program which has been developed originally for studying the properties and dynamical behavior of the (hydrogen-like) ions. In the present version, a set of MAPLE procedures is provided for the Coulomb wave and Green's functions by applying the (wave) equations from both, the nonrelativistic and relativistic theory. Apart from the interactive access to these functions, moreover, a number of radial integrals are also implemented in the DIRAC program which may help the user to construct transition amplitudes and cross sections as they occur frequently in the theory of ion-atom and ion-photon collisions. Program summaryTitle of program:DIRAC Catalogue number: ADUQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUQ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Computer for which the program is designed and has been tested: All computers with a license of the computer algebra package MAPLE [1] Program language used: Maple 8 and 9 No. of lines in distributed program, including test data, etc.:2186 No. of bytes in distributed program, including test data, etc.: 162 591 Distribution format: tar gzip file CPC Program Library subprograms required: None Nature of the physical problem: Analytical solutions of the hydrogen atom are widely used in very different fields of physics [2,3]. Despite of the rather simple structure

  19. Improved characteristics of near-band-edge and deep-level emissions from ZnO nanorod arrays by atomic-layer-deposited Al2O3 and ZnO shell layers

    Directory of Open Access Journals (Sweden)

    He Jr-Hau

    2011-01-01

    Full Text Available Abstract We report on the characteristics of near-band-edge (NBE emission and deep-level band from ZnO/Al2O3 and ZnO/ZnO core-shell nanorod arrays (NRAs. Vertically aligned ZnO NRAs were synthesized by an aqueous chemical method, and the Al2O3 and ZnO shell layers were prepared by the highly conformal atomic layer deposition technique. Photoluminescence measurements revealed that the deep-level band was suppressed and the NBE emission was significantly enhanced after the deposition of Al2O3 and ZnO shells, which are attributed to the decrease in oxygen interstitials at the surface and the reduction in surface band bending of ZnO core, respectively. The shift of deep-level emissions from the ZnO/ZnO core-shell NRAs was observed for the first time. Owing to the presence of the ZnO shell layer, the yellow band associated with the oxygen interstitials inside the ZnO core would be prevailed over by the green luminescence, which originates from the recombination of the electrons in the conduction band with the holes trapped by the oxygen vacancies in the ZnO shell. PACS 68.65.Ac; 71.35.-y; 78.45.+h; 78.55.-m; 78.55.Et; 78.67.Hc; 81.16.Be; 85.60.Jb.

  20. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Ruiqi

    2016-03-04

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  1. QUARK DYNAMICS IN ATOMIC NUCLEI AND QUARK SHELLS Динамика кварков в атомных ядрах и кварковые оболочки

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2013-02-01

    Full Text Available In this paper we consider a system of Dirac equations describing the dynamics of quarks in the metric of the atomic nuclei. We found out, that the binding energy of the nucleons for all known nuclides depends on the content of the quarks. The resulting dependence of the energy of the nucleons shows a quark shells, similar to electron shells. Our basic assumption is that each nucleon in the nucleus loses its individuality by dissociation to individual quarks that form quark shells. These shells are filled sequentially, just as filled electron shells. Since the nucleons are composed of two types of quarks, there are two types of shells that are filled with u and d quarks, respectively. In this case, the binding energy per nucleon depends on the concentration of quarks in the shells and the energy of the interaction of quarks.

  2. Design of an experimental setup to measure the K-shell photoelectric cross sections and other atomic parameters at K edge

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Alvarez, J.A.; Lopez-Pino, N.; Rizo, O. Diaz; Corrales, Y.; Padilla-Cabal, F.; Perez-Liva, M.; Alessandro, K.D.; Maidana, N.L. [Instituto Superior de Tecnologia y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2010-07-01

    Full text: An experimental setup to measure the K shell jump ratio, jump factor and the ratio of total to K-shell photo-electric cross section at K edge was designed with Monte Carlo (MC) simulations, using the MCNPX V 2.6 code. In our arrangement, Bremsstrahlung photons, produced by beta particles from a {sup 90}Sr- {sup 90}Y source (activity - 0.1 mCi) hitting a thin Nickel converter, were used to irradiate the targets. The incident and transmitted spectra were measured with an HPGe detector coupled to conventional electronics. A sharp decrease in intensity at the K-shell binding energy was observed in the transmitted spectra, which, after corrections for photon attenuation, showed the known behavior for the photoelectric cross section as function of photon energy. The photon beam divergence effects were corrected with a calibration curve calculated with MC from simulations of a parallel and a divergent beam. Targets of Dy, Ta, Pt and Au were used to test the setup. The obtained data were processed by fitting either the total cross section to a sigmoidal function or the cross section branches around the K edge to the empirical law {sigma} = (A/E){sup n}. The results obtained using the first method show the influence of detector energy resolution in the data, because the measured jump at the K edge is not so sharp as it should be. Furthermore, additional calculations were done to obtain the anomalous scattering factors and the K-shell oscillator strengths. The values obtained for the K-shell photoelectric cross sections were compared with theoretical and other experimental data. In most cases, relative deviations below 10% were found. (author)

  3. Measurement of K-Shell Ionization Cross Sections of Cr, Ni and Cu Atoms by 7.5-25 keV Electron Impact

    Institute of Scientific and Technical Information of China (English)

    安竹; 唐昶环; 罗正明

    2001-01-01

    The K-shell ionization cross sections of Cr, Ni and Cu elements by 7.5-25 keV electron impact have been measured.The experimental data have also been compared with the theoretical predictions of the Hippler and Mayol-Salvat models. In general, it seems that the Mayol-Salvat model can provide a better description to our experimental data.

  4. Inner-shell ionization of heavy atoms by slow ions. A study of electronic relativistic effects and projectile Coulomb deflection in the Semiclassical Approximation

    International Nuclear Information System (INIS)

    Several investigations have been made on K and L shell ionization of the heavy collision partner in slow asymmetric collisions based on the SCA. The use of the SCA can only be defended for slow collisions if the projectile has a charge much less than the target. Thus this approximation should first be tested for proton impact on very heavy target elements. For these elements the inner shell electrons move sufficiently fast for a relativistic description to be mandatory. These relativistic effects are in themselves of some interest, as they can be quite large. After discussion of the formulation of the SCA used throughout this work, a further introduction is given on relativistic effects in Coulomb ionisation. Two papers on electronic relativistic effects in K and L shell ionization follow. The next two papers discuss calculations with an exact Coulomb projectile path. The latter of these also touches upon the inclusion of corrections to the SCA from terms beyond first order perturbation theory. In the last paper of this thesis it is shown how the theoretical apparatus developed for the SCA- calculations can immediately be used also for making calculations of more symmetric systems with the Briggs model. Thus, at least for direct ionization in very slow collisions a unification of the SA and MO approaches has apparently been reached. (JIW)

  5. The study of the action of self-friction field on the atom and molecular structures by using combined Hartree-Fock-Roothaan theory for closed and open shells of any symmetry

    Science.gov (United States)

    Mamedov, B. A.; Çopuroğlu, E.

    2016-06-01

    In this work, we study the effects of self-friction field on the states of a single configuration of closed and open shells by using the Combined Hartree-Fock-Roothaan equations for atomic-molecular and nuclear systems. Here, we present a program that implements the evaluation of the various properties of atoms and molecular systems with respect to the various values of self-friction quantum numbers. An especially fast and accurate algorithm for the calculation of the self-friction multicenter molecular integrals is obtained by using one-range addition theorems. To demonstrate the action of self-friction field on the atomic and molecular systems we have performed the calculations of H2O, CH3, CH2 and NH3 molecules. For the derivations of the orbital, kinetic and total energies and linear combination coefficients, the results are given for various values of self-friction quantum numbers. For various values of self-friction quantum numbers the obtained results of the orbital, kinetic and total energies and linear combination coefficients have been analyzed.

  6. Linear Depenedences of Van Der Waals, Covalent and Valence Shell Radii of Atoms of Groups 1a - 8a on their Bohr Radii

    OpenAIRE

    Heyrovska, Raji

    2007-01-01

    An earlier finding that the van der waals radii are related to their de broglie wavelengths for some non-metallic elements has been extended here to show that in fact, they vary linearly with the ground state bohr radii for all the elements of groups 1a to 8 a. Similarly, the valence shell radii and the covalent radii are shown to be linearly dependent on the bohr radii. One table of data and 5 figures have been provided here showing that all the above radii are sums of two lengths, one of wh...

  7. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  8. Shelled opisthobranchs.

    Science.gov (United States)

    Mikkelsen, Paula M

    2002-01-01

    In his contributions to the monographic series "Manual of Conchology", Henry Pilsbry reviewed the subgroup Tectibranchiata, comprising those opisthobranch snails that (at least primitively) still possess a shell (Pilsbry, 1894-1896). Exemplified by the Cephalaspidea (bubble shells), others included in this group at Pilsbry's time and since were Anaspidea (sea hares) and the shelled members of Notaspidea (side-gilled slugs) and Sacoglossa (leaf slugs). Pilsbry (and others since his time) considered tectibranchs to be the "root stock" from which more advanced gastropods such as Nudibranchia and Pulmonata were derived. Tectibranch systematics is firmly based on conchology and most species were originally described from empty shells. However, soft-anatomical characters were acknowledged quite early on as equally important in tectibranchs, due to the reduction of their shells and their evolutionary proximity to unshelled gastropods. Today, Tectibranchiata is not recognized as a natural taxon although the word "tectibranch" (like "prosobranch" and "mesogastropod") continues in vernacular use. Shelled opisthobranchs have been redistributed among various taxa, including several new ones--the unresolved basal opisthobranchs (Architectibranchia) and the "lower Heterobranchia", an enigmatic and currently much-studied group of families considered basal to all of Euthyneura (Opisthobranchia and landsnails (Pulmonata)). Despite their polyphyletic status, shelled opisthobranchs remain important subjects in evolutionary studies of gastropods--as the most basal members of nearly every opisthobranch clade and as organisms with mosaic combinations of primitive and derived features within evolutionary "trends" (e.g., loss of the shell, detorsion, concentration of the nervous system, ecological specialization, etc.). Although they play a pivotal role, the shelled opisthobranchs have received minimal attention in more comprehensive gastropod studies, often relegated to token

  9. Linear Depnedences of Van Der Waals, Covalent and Valence Shell Radii of Atoms of Groups 1a - 8a on their Bohr Radii

    CERN Document Server

    Heyrovska, Raji

    2007-01-01

    An earlier finding that the van der waals radii are related to their de broglie wavelengths for some non-metallic elements has been extended here to show that in fact, they vary linearly with the ground state bohr radii for all the elements of groups 1a to 8 a. Similarly, the valence shell radii and the covalent radii are shown to be linearly dependent on the bohr radii. One table of data and 5 figures have been provided here showing that all the above radii are sums of two lengths, one of which is a multiple of the bohr radius and the other, a positive or negative constant for each group of elements.

  10. Particles and Shells

    CERN Document Server

    Palazzi, P

    2003-01-01

    The current understanding of particle masses in terms of quarks and their binding energy is not satisfactory. Both in atoms and in nuclei the organizing principle of stability is the shell structure, while this does not seem to play any role for particles. In order to explore the possibility that shells might also be relevant at this inner level of aggregation, atomic and nuclear stability are expressed by "stablines", alignments of the 1/3 power of the total number of constituents of the most stable configurations. Could similar patterns be found in the particle spectrum? By analyzing the distribution of particle lifetimes as a function of mass, stability peaks are recognized for mesons and for baryons and indeed the cube roots of their masses follow two distinct stablines. Such alignments would be a strong indication that the particles themselves are shell structured assuming only that each constituent contributes a constant amount to the total mass. This is incompatible with the prevalent view that the par...

  11. Strontium clusters: electronic and geometry shell effects

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2008-01-01

    charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, and spectra of the density of electronic states (DOS). It is demonstrated that the size-evolution of structural and electronic properties of strontium clusters...... is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It is shown that the excessive charge essentially affects the optimized geometry...

  12. Fabrication of 3D core-shell multiwalled carbon nanotube@RuO2 lithium-ion battery electrodes through a RuO2 atomic layer deposition process.

    Science.gov (United States)

    Gregorczyk, Keith E; Kozen, Alexander C; Chen, Xinyi; Schroeder, Marshall A; Noked, Malachi; Cao, Anyuan; Hu, Liangbing; Rubloff, Gary W

    2015-01-27

    Pushing lithium-ion battery (LIB) technology forward to its fundamental scaling limits requires the ability to create designer heterostructured materials and architectures. Atomic layer deposition (ALD) has recently been applied to advanced nanostructured energy storage devices due to the wide range of available materials, angstrom thickness control, and extreme conformality over high aspect ratio nanostructures. A class of materials referred to as conversion electrodes has recently been proposed as high capacity electrodes. RuO2 is considered an ideal conversion material due to its high combined electronic and ionic conductivity and high gravimetric capacity, and as such is an excellent material to explore the behavior of conversion electrodes at nanoscale thicknesses. We report here a fully characterized atomic layer deposition process for RuO2, electrochemical cycling data for ALD RuO2, and the application of the RuO2 to a composite carbon nanotube electrode scaffold with nucleation-controlled RuO2 growth. A growth rate of 0.4 Å/cycle is found between ∼ 210-240 °C. In a planar configuration, the resulting RuO2 films show high first cycle electrochemical capacities of ∼ 1400 mAh/g, but the capacity rapidly degrades with charge/discharge cycling. We also fabricated core/shell MWCNT/RuO2 heterostructured 3D electrodes, which show a 50× increase in the areal capacity over their planar counterparts, with an areal lithium capacity of 1.6 mAh/cm(2).

  13. Shell worlds

    Science.gov (United States)

    Roy, Kenneth I.; Kennedy, Robert G., III; Fields, David E.

    2013-02-01

    The traditional concept of terraforming assumes ready availability of candidate planets with acceptable qualities: orbiting a star in its "Goldilocks zone", liquid water, enough mass, years longer than days, magnetic field, etc. But even stipulating affordable interstellar travel, we still might never find a good candidate elsewhere. Whatever we found likely would require centuries of heavy terraforming, just as Mars or Venus would here. Our increasing appreciation of the ubiquity of life suggests that any terra nova would already possess it. We would then face the dilemma of introducing alien life forms (us, our microbes) into another living world. Instead, we propose a novel method to create habitable environments for humanity by enclosing airless, sterile, otherwise useless planets, moons, and even large asteroids within engineered shells, which avoids the conundrum. These shells are subject to two opposing internal stresses: compression due to the primary's gravity, and tension from atmospheric pressure contained inside. By careful design, these two cancel each other resulting in zero net shell stress. Beneath the shell an Earth-like environment could be created similar in almost all respects to that of Home, except for gravity, regardless of the distance to the sun or other star. Englobing a small planet, moon, or even a dwarf planet like Ceres, would require astronomical amounts of material (quadrillions of tons) and energy, plus a great deal of time. It would be a quantum leap in difficulty over building Dyson Dots or industrializing our solar system, perhaps comparable to a mission across interstellar space with a living crew within their lifetime. But when accomplished, these constructs would be complete (albeit small) worlds, not merely large habitats. They could be stable across historic timescales, possibly geologic. Each would contain a full, self-sustaining ecology, which might evolve in curious directions over time. This has interesting implications

  14. High efficiency n-Si/ p-Cu2O core-shell nanowires photodiode prepared by atomic layer deposition of Cu2O on well-ordered Si nanowires array

    Science.gov (United States)

    Kim, Hangil; Kim, Soo-Hyun; Ko, Kyung Yong; Kim, Hyungjun; Kim, Jaehoon; Oh, Jihun; Lee, Han-Bo-Ram

    2016-05-01

    A highly efficient n-Si/ p-Cu2O core-shell (C-S) nanowire (NW) photodiode was fabricated using Cu2O grown by atomic layer deposition (ALD) on a well-ordered Si NW array. Ordered Si nanowires arrays were fabricated by nano-sphere lithography to pattern metal catalysts for the metal-assisted etching of silicon, resulting in a Si NW arrays with a good arrangement, smooth surface and small diameter distribution. The ALD-Cu2O thin films were grown using a new non-fluorinated Cu precursor, bis(1-dimethylamino-2-methyl-2-butoxy)copper (C14H32N2O2Cu), and water vapor (H2O) at 140°C. Transmission electron microscopy equipped with an energy dispersive spectrometer confirmed that p-Cu2O thin films had been coated over arrayed Si NWs with a diameter of 150 nm (aspect ratio of ˜7.6). The C-S NW photodiode exhibited more sensitive photodetection performance under ultraviolet illumination as well as an enhanced photocurrent density in the forward biasing region than the planar structure diode. The superior performance of C-S NWs photodiode was explained by the lower reflectance of light and the effective carrier separation and collection originating from the C-S NWs structure. [Figure not available: see fulltext.

  15. Shell corrections in stopping powers

    Science.gov (United States)

    Bichsel, H.

    2002-05-01

    One of the theories of the electronic stopping power S for fast light ions was derived by Bethe. The algorithm currently used for the calculation of S includes terms known as the mean excitation energy I, the shell correction, the Barkas correction, and the Bloch correction. These terms are described here. For the calculation of the shell corrections an atomic model is used, which is more realistic than the hydrogenic approximation used so far. A comparison is made with similar calculations in which the local plasma approximation is utilized. Close agreement with the experimental data for protons with energies from 0.3 to 10 MeV traversing Al and Si is found without the need for adjustable parameters for the shell corrections.

  16. Study on atomic layer deposition preparation of core-shell structured nanometer materials%原子层沉积方法制备核-壳型纳米材料研究

    Institute of Scientific and Technical Information of China (English)

    李勇; 李惠琪; 夏洋; 刘邦武

    2013-01-01

    Monocrystal Pt nanoparticles, amorphous Al2O3 thin film, polycrystalline ZnO and TiO2 thin films were fabricated on black carbon nanoparticles by means of atomic layer deposition (ALD). Using high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometer (XPS), energy dispersive spectroscopy (EDS), We have characterized and analyzed the surface morphology, crystal structure and composition of the ranopasticles and thin filins. Results indicate that the ALD method is an ideal method to prepare core-shell stuctured nanometer materials. In addition, the reasons why the formation of ALD films with different crystal morphologies, such as monocrystal, amorphous, polycrystalline, were discussed.%采用原子层沉积方法在碳黑纳米颗粒表面分别沉积Al2 O3, ZnO, TiO2和Pt,成功制备出核-壳型纳米材料。通过高分辨率透射电子显微镜、X射线光电子能谱仪、能谱仪对材料的表面形貌、晶体结构、薄膜成分进行了表征和分析。结果表明,原子层沉积方法是制备核壳型纳米材料的理想方法。此外,还分析了采用原子层沉积方法沉积不同材料,所生长的薄膜材料有单晶、多晶、非晶等多种存在形式的形成原因。

  17. Atomic inner shell ionization: a new method of nuclear interaction lifetimes in the range 10-16-10-18 second. Lifetime measurement of the compound nucleus in the reaction 106Cd+p (Ep=10 and 12 MeV)

    International Nuclear Information System (INIS)

    A new method to measure the lifetime of the compound nucleus formed in the reaction 106Cd+p at Ep=10 and 12 MeV is described. The nuclear lifetime is compared to the known lifetime of an atomic inner shell vacancy created in the entrance channel of the nuclear reaction. If the ionization probability in he way-in of the nuclear reaction is kown the compound nucleus lifetime is deduced by a simple relation from the number of compound X-rays measured in coincidence with one of the reaction products. A large number of ionization probability values measured in very small impact parameter collisions induced by H+, He+, D+ on Al, Cu, S, Ti, Si, Ag, Cd are reported. The data are interpreted in terms of the corrected SCA theory of ionization. New effects such as angular dependence and trajectory effect (hair-pin-curve effect) are shown experimentally. The influence of a nuclear delay time on the ionization probability value is considered; the effect on a nuclear reaction of the energy losses by the projectile during the ionization process is analysed in detail. The yield curve of the resonant nuclear reaction 27Al(p,γ)28Si is taken as an example. A detailed analysis of the compound nucleus 107In lifetimes is given. Attention has been paid to competitive processes leading to X ray emission of same energy as the compound X rays. Extensions of the method to measure compound nucleus lifetimes in collision induced by heavy ions and to separate the shape elastic and compound elastic mechanisms are presented

  18. Interaction of a slow monopole with a hydrogen atom

    OpenAIRE

    Shnir, Ya. M.

    1996-01-01

    The electric dipole moment of the hydrogen-like atom induced by a monopole moving outside the electron shell is calculated. The correction to the energy of the ground state of the hydrogen atom due to this interaction is calculated.

  19. Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of the projectile charge and velocity; Ionisation et excitation de l'atome de lithium par impact de particules chargees rapides: Identification des mecanismes de creation de deux lacunes en couche K du lithium en fonction de la charge et de la vitesse du projectile

    Energy Technology Data Exchange (ETDEWEB)

    Rangama, J

    2002-11-01

    Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of projectile charge and velocity. Auger electron spectroscopy is used for an experimental investigation of ionization and excitation of lithium atoms by ions (Kr34{sup +} and Ar18{sup +}) and electrons at high impact velocities (from 6 to 60 a.u.). In particular, relative contributions of the mechanisms responsible for lithium K-shell ionization-excitation are determined for various projectile charges Zp and velocities vp. A large range of perturbation parameters |Zp|/vp is explored (|Zp|/vp = 0,05 - 0,7 a.u.). From single K-shell excitation results, it appears that the projectile-electron interaction gives mainly rise to a dipole-like transition 1s -> np Concerning K-shell ionization-excitation, the separation of the TS2 (two independent projectile-electron interactions) and TS1 (one projectile-electron interaction) mechanisms responsible for the formation of the 2snp 1,3P and 2sns 1,3S lithium states is performed. In TS1 process, the projectile-electron interaction can be followed by an electron-electron interaction (dielectronic process) or by an internal rearrangement of the residual target after a sudden potential change (shake process). From Born theory, ab initio calculations are performed. The good agreement between theoretical and experimental results confirms the mechanism identification. For the production of P states, TS1 is found to be strongly dominant for small |Zp|/vp values and TS2 is found to be most important for large |Zp|/vp values. Since P states cannot be formed significantly via a shake process, the TS1 and TS2 separation provides a direct signature of the dielectronic process. On the other hand, the TS1 process is shown to be the unique process for producing the S states. At the moment, only the shake aspect of the TS1 process can explain the fact that the 2s3s configuration is

  20. Simple and Onion-type Fullerenes shells as resonators and amplifiers

    CERN Document Server

    Amusia, M Ya

    2009-01-01

    We discuss the influence of a single or double fullerenes shell upon photoionization and vacancy decay of an atom, stuffed inside the fullerenes construction. The main manifestations of this influence are additional structures in the photoionization cross-section and variation of the vacancy decay probability. The main mechanisms, with which fullerenes shells affect the processes in caged atoms is the scattering of the outgoing electrons by the fullerenes shell and modification of the photon beam due to fullerenes shell polarization. General consideration will be illustrated by numeric calculations where C60 and C240 will be chosen as fullerenes and Ar and Xe as caged atoms.

  1. Atomic physics with highly charged ions

    International Nuclear Information System (INIS)

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations

  2. Atomic physics with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  3. Simple and Onion-type Fullerenes shells as resonators and amplifiers

    OpenAIRE

    Amusia, M. Ya.

    2009-01-01

    We discuss the influence of a single or double fullerenes shell upon photoionization and vacancy decay of an atom, stuffed inside the fullerenes construction. The main manifestations of this influence are additional structures in the photoionization cross-section and variation of the vacancy decay probability. The main mechanisms, with which fullerenes shells affect the processes in caged atoms is the scattering of the outgoing electrons by the fullerenes shell and modification of the photon ...

  4. Observation of shell effects in nanowires for the noble metals copper, silver and gold

    OpenAIRE

    Mares, A. I.; van Ruitenbeek, J. M.

    2005-01-01

    We extend our previous shell effect observation in gold nanowires at room temperature under ultra high vacuum to the other two noble metals: silver and copper. Similar to gold, silver nanowires present two series of exceptionally stable diameters related to electronic and atomic shell filling. This observation is in concordance to what was previously found for alkali metal nanowires. Copper however presents only electronic shell filling. Remarkably we find that shell structure survives under ...

  5. Fisher Information and Atomic Structure

    CERN Document Server

    Chatzisavvas, K Ch; Panos, C P; Moustakidis, Ch C

    2013-01-01

    We present a comparative study of several information and statistical complexity measures in order to examine a possible correlation with certain experimental properties of atomic structure. Comparisons are also carryed out quantitatively using Pearson correlation coefficient. In particular, we show that Fisher information in momentum space is very sensitive to shell effects, and is directly associated with some of the most characteristic atomic properties, such as atomic radius, ionization energy, electronegativity, and atomic dipole polarizability. Finally we present a relation that emerges between Fisher information and the second moment of the probability distribution in momentum space i.e. an energy functional of interest in (e,2e) experiments.

  6. Photoexcitation of K-shell and L-shell Hollow Beryllium

    International Nuclear Information System (INIS)

    We have observed K-shell and L-shell hollow beryllium atoms (2s22p3s and 1s3s23p) created by photoexcitation using synchrotron radiation. Resonance shapes were fitted to the Fano profile and the parameters were deduced. A Dirac-Fock calculation was performed to identify the configuration of the peaks and to predict other hollow atomic peaks. The results of the calculation were in good agreement with the experimental data. The comparison of the transition strength has revealed that the three-electron photoexcitation to the 1s3s23p configuration is stronger than the two-electron photoexcitation to the 2s22p3s configuration. This is attributed to the large overlap between the 2s orbital of the ground state (1s22s2) with the 3s orbital of the L-shell hollow state (1s3s23p)

  7. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  8. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  9. Conversion probabilities of low-energy (ℎω≤3 keV) nuclear transitions in the electron shells of free atoms. Article translated from Journal Yadernye Konstanty (Nuclear Constants). Series: Nuclear Constants, Issue No. 1, 1987

    International Nuclear Information System (INIS)

    Conversion of some low-energy transitions (ℎω≤3 keV) in the nuclei 90Nb, 99Tc, 103Ru, 110Ag, 140Pr, 142Pr, 153Gd, 159Gd, 160Tb, 165Tm, 171Lu, 173W, 188Re, 193Pt, 201Hg, 205Pb, 236Pa and 250Bk are investigated for the case of an isolated atom. The conversion transition probabilities are calculated using the electron wave functions, obtained through numerical integration of the Dirac equations in the atomic field within the framework of the Hartree-Fock-Slater method. The calculation is carried out for the normal configuration of the valence band of the aforementioned atoms. The calculation results are tabulated in this paper. (author)

  10. Synthesis and Characterization of Monodisperse Metallodielectric SiO2@Pt@SiO2 Core-Shell-Shell Particles.

    Science.gov (United States)

    Petrov, Alexey; Lehmann, Hauke; Finsel, Maik; Klinke, Christian; Weller, Horst; Vossmeyer, Tobias

    2016-01-26

    Metallodielectric nanostructured core-shell-shell particles are particularly desirable for enabling novel types of optical components, including narrow-band absorbers, narrow-band photodetectors, and thermal emitters, as well as new types of sensors and catalysts. Here, we present a facile approach for the preparation of submicron SiO2@Pt@SiO2 core-shell-shell particles. As shown by transmission and scanning electron microscopy, the first steps of this approach allow for the deposition of closed and almost perfectly smooth platinum shells onto silica cores via a seeded growth mechanism. By choosing appropriate conditions, the shell thickness could be adjusted precisely, ranging from ∼3 to ∼32 nm. As determined by X-ray diffraction, the crystalline domain sizes of the polycrystalline metal shells were ∼4 nm, regardless of the shell thickness. The platinum content of the particles was determined by atomic absorption spectroscopy and for thin shells consistent with a dense metal layer of the TEM-measured thickness. In addition, we show that the roughness of the platinum shell strongly depends on the storage time of the gold seeds used to initiate reductive platinum deposition. Further, using polyvinylpyrrolidone as adhesion layer, it was possible to coat the metallic shells with very homogeneous and smooth insulating silica shells of well-controlled thicknesses between ∼2 and ∼43 nm. After depositing the particles onto silicon substrates equipped with interdigitated electrode structures, the metallic character of the SiO2@Pt particles and the insulating character of the SiO2 shells of the SiO2@Pt@SiO2 particles were successfully demonstrated by charge transport measurements at variable temperatures.

  11. Synthesis and Characterization of Monodisperse Metallodielectric SiO2@Pt@SiO2 Core-Shell-Shell Particles.

    Science.gov (United States)

    Petrov, Alexey; Lehmann, Hauke; Finsel, Maik; Klinke, Christian; Weller, Horst; Vossmeyer, Tobias

    2016-01-26

    Metallodielectric nanostructured core-shell-shell particles are particularly desirable for enabling novel types of optical components, including narrow-band absorbers, narrow-band photodetectors, and thermal emitters, as well as new types of sensors and catalysts. Here, we present a facile approach for the preparation of submicron SiO2@Pt@SiO2 core-shell-shell particles. As shown by transmission and scanning electron microscopy, the first steps of this approach allow for the deposition of closed and almost perfectly smooth platinum shells onto silica cores via a seeded growth mechanism. By choosing appropriate conditions, the shell thickness could be adjusted precisely, ranging from ∼3 to ∼32 nm. As determined by X-ray diffraction, the crystalline domain sizes of the polycrystalline metal shells were ∼4 nm, regardless of the shell thickness. The platinum content of the particles was determined by atomic absorption spectroscopy and for thin shells consistent with a dense metal layer of the TEM-measured thickness. In addition, we show that the roughness of the platinum shell strongly depends on the storage time of the gold seeds used to initiate reductive platinum deposition. Further, using polyvinylpyrrolidone as adhesion layer, it was possible to coat the metallic shells with very homogeneous and smooth insulating silica shells of well-controlled thicknesses between ∼2 and ∼43 nm. After depositing the particles onto silicon substrates equipped with interdigitated electrode structures, the metallic character of the SiO2@Pt particles and the insulating character of the SiO2 shells of the SiO2@Pt@SiO2 particles were successfully demonstrated by charge transport measurements at variable temperatures. PMID:26731341

  12. Thin shell model revisited

    CERN Document Server

    Gao, Sijie

    2014-01-01

    We reconsider some fundamental problems of the thin shell model. First, we point out that the "cut and paste" construction does not guarantee a well-defined manifold because there is no overlap of coordinates across the shell. When one requires that the spacetime metric across the thin shell is continuous, it also provides a way to specify the tangent space and the manifold. Other authors have shown that this specification leads to the conservation laws when shells collide. On the other hand, the well-known areal radius $r$ seems to be a perfect coordinate covering all regions of a spherically symmetric spacetime. However, we show by simple but rigorous arguments that $r$ fails to be a coordinate covering a neighborhood of the thin shell if the metric across the shell is continuous. When two spherical shells collide and merge into one, we show that it is possible that $r$ remains to be a good coordinate and the conservation laws hold. To make this happen, different spacetime regions divided by the shells must...

  13. New polymer target-shell properties and characterizations

    International Nuclear Information System (INIS)

    A method for characterizing ICF target shells is presented, based on measurement of the gas released from a single shell into a small volume. It utilizes cryogenic permeation systems developed in connection with our work on ICF targets containing nuclear spin-polarized deuterium. Permeation rates for polystyrene and parylene-coated-polystyrene shells are measured at temperatures from 350K down to 180K. Burst or implosion pressure can be determined over a full temperature range down to 20K. Shell temperature is calculated from its gas leakage rate, calibrated by permeation measurements over the temperature range. Lag of shell temperature compared with sample-chamber temperature during warming of the latter is attributed to the weakness of the thermal link provided by both radiative heat transfer and free molecular conduction with small accommodation coefficients for helium and deuterium gas at the structure to which the shell is conductively linked, or at the surface of a conductively isolated shell. Quantification of this lag can provide a measure of atomic scale roughness of the shell outer surface. Also presented are reversible pre-rupture leakage phenomena for polystyrene and parylene-coated-polystyrene shells

  14. Measurement of vacancy transfer probability from K to L shell using K-shell fluorescence yields

    Indian Academy of Sciences (India)

    Ö Söğüt; E Büyükkasap; A Küçükönder; T Tarakçioğlu

    2009-10-01

    The vacancy transfer probabilities from K to L shell through radiative decay, KL , have been deduced for the elements in the range 19 ≤ ≤ 58 using K-shell fluorescence yields. The targets were irradiated with photons at 59.5 keV from a 75mCi 241Am annular source. The K X-rays from different targets were detected with a high resolution Si(Li) detector. The measurement of vacancy transfer probabilities are least-squared fitted to second-order polynomials to obtain analytical relations that represent these probabilities as a function of atomic number. The obtained results agree with theoretical and fitted values.

  15. Elastic platonic shells.

    Science.gov (United States)

    Yong, Ee Hou; Nelson, David R; Mahadevan, L

    2013-10-25

    On microscopic scales, the crystallinity of flexible tethered or cross-linked membranes determines their mechanical response. We show that by controlling the type, number, and distribution of defects on a spherical elastic shell, it is possible to direct the morphology of these structures. Our numerical simulations show that by deflating a crystalline shell with defects, we can create elastic shell analogs of the classical platonic solids. These morphologies arise via a sharp buckling transition from the sphere which is strongly hysteretic in loading or unloading. We construct a minimal Landau theory for the transition using quadratic and cubic invariants of the spherical harmonic modes. Our approach suggests methods to engineer shape into soft spherical shells using a frozen defect topology.

  16. Dynamic Analysis of Shells

    Directory of Open Access Journals (Sweden)

    Charles R. Steele

    1995-01-01

    Full Text Available Shell structures are indispensable in virtually every industry. However, in the design, analysis, fabrication, and maintenance of such structures, there are many pitfalls leading to various forms of disaster. The experience gained by engineers over some 200 years of disasters and brushes with disaster is expressed in the extensive archival literature, national codes, and procedural documentation found in larger companies. However, the advantage of the richness in the behavior of shells is that the way is always open for innovation. In this survey, we present a broad overview of the dynamic response of shell structures. The intention is to provide an understanding of the basic themes behind the detailed codes and stimulate, not restrict, positive innovation. Such understanding is also crucial for the correct computation of shell structures by any computer code. The physics dictates that the thin shell structure offers a challenge for analysis and computation. Shell response can be generally categorized by states of extension, inextensional bending, edge bending, and edge transverse shear. Simple estimates for the magnitudes of stress, deformation, and resonance in the extensional and inextensional states are provided by ring response. Several shell examples demonstrate the different states and combinations. For excitation frequency above the extensional resonance, such as in impact and acoustic excitation, a fine mesh is needed over the entire shell surface. For this range, modal and implicit methods are of limited value. The example of a sphere impacting a rigid surface shows that plastic unloading occurs continuously. Thus, there are no short cuts; the complete material behavior must be included.

  17. Continuum Shell Model

    OpenAIRE

    Volya, Alexander; Zelevinsky, Vladimir

    2005-01-01

    The Continuum Shell Model is an old but recently revived method that traverses the boundary between nuclear many-body structure and nuclear reactions. The method is based on the non-Hermitian energy-dependent effective Hamiltonian. The formalism, interpretation of solutions and practical implementation of calculations are discussed in detail. The results of the traditional shell model are fully reproduced for bound states; resonance parameters and cross section calculations are presented for ...

  18. Atom Chips

    CERN Document Server

    Folman, R; Cassettari, D; Hessmo, B; Maier, T; Schmiedmayer, J; Folman, Ron; Krüger, Peter; Cassettari, Donatella; Hessmo, Björn; Maier, Thomas

    1999-01-01

    Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems.

  19. Shells in the Magellanic System

    OpenAIRE

    Stanimirovic, Snezana

    2006-01-01

    The Magellanic System harbors >800 expanding shells of neutral hydrogen, providing a unique opportunity for statistical investigations. Most of these shells are surprisingly young, 2--10 Myr old, and correlate poorly with young stellar populations. I summarize what we have learned about shell properties and particularly focus on the puzzling correlation between the shell radius and expansion velocity. In the framework of the standard, adiabatic model for shell evolution this tight correlation...

  20. Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization

    International Nuclear Information System (INIS)

    Highlights: • The damage-free polishing mechanism of core/shell composite abrasive was explored. • The organic core is help to decrease surface roughness and mechanical damages. • The inorganic shell is in favor of improving material removal rate. • The enhanced CMP behavior is due to the synergistic effect between core and shell. - Abstract: Core/shell structured organic/inorganic composite microspheres has an important potential application in efficient and damage-free chemical mechanical planarization/polishing (CMP) as a kind of novel abrasive due to its uniform non-rigid mechanical property. However, the synergistic effect of material removal between organic cores and inorganic shells of composite abrasives is ambiguous. In this work, oxide-CMP performances of various slurries, containing polystyrene (PS) spheres, solid abrasives (SiO2 or CeO2), mixed abrasives ((PS + SiO2) or (PS + CeO2)), core/shell composites (PS/SiO2 or PS/CeO2), were investigated by atomic force microscopy. Experiment results indicated that the surfaces polished by composite abrasives exhibited lower surface roughness, fewer scratches as well as lower topographical variations than those by other type of abrasives. The core/shell structure of composite abrasives plays an important role in improving CMP behavior. Moreover, the organic cores are mainly beneficial to decrease surface roughness and mechanical damages, and the inorganic shells are in favor of improving material removal rate

  1. Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang, E-mail: cy.jpu@126.com [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Li, Zhina [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Miao, Naiming [School of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu 213016 (China)

    2014-09-30

    Highlights: • The damage-free polishing mechanism of core/shell composite abrasive was explored. • The organic core is help to decrease surface roughness and mechanical damages. • The inorganic shell is in favor of improving material removal rate. • The enhanced CMP behavior is due to the synergistic effect between core and shell. - Abstract: Core/shell structured organic/inorganic composite microspheres has an important potential application in efficient and damage-free chemical mechanical planarization/polishing (CMP) as a kind of novel abrasive due to its uniform non-rigid mechanical property. However, the synergistic effect of material removal between organic cores and inorganic shells of composite abrasives is ambiguous. In this work, oxide-CMP performances of various slurries, containing polystyrene (PS) spheres, solid abrasives (SiO{sub 2} or CeO{sub 2}), mixed abrasives ((PS + SiO{sub 2}) or (PS + CeO{sub 2})), core/shell composites (PS/SiO{sub 2} or PS/CeO{sub 2}), were investigated by atomic force microscopy. Experiment results indicated that the surfaces polished by composite abrasives exhibited lower surface roughness, fewer scratches as well as lower topographical variations than those by other type of abrasives. The core/shell structure of composite abrasives plays an important role in improving CMP behavior. Moreover, the organic cores are mainly beneficial to decrease surface roughness and mechanical damages, and the inorganic shells are in favor of improving material removal rate.

  2. Multi-Shell Hollow Nanogels with Responsive Shell Permeability.

    Science.gov (United States)

    Schmid, Andreas J; Dubbert, Janine; Rudov, Andrey A; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I; Richtering, Walter

    2016-03-17

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.

  3. Fabrication of diamond shells

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  4. Shell Biorefinery: Dream or Reality?

    Science.gov (United States)

    Chen, Xi; Yang, Huiying; Yan, Ning

    2016-09-12

    Shell biorefinery, referring to the fractionation of crustacean shells into their major components and the transformation of each component into value-added chemicals and materials, has attracted growing attention in recent years. Since the large quantities of waste shells remain underexploited, their valorization can potentially bring both ecological and economic benefits. This Review provides an overview of the current status of shell biorefinery. It first describes the structural features of crustacean shells, including their composition and their interactions. Then, various fractionation methods for the shells are introduced. The last section is dedicated to the valorization of chitin and its derivatives for chemicals, porous carbon materials and functional polymers. PMID:27484462

  5. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  6. Metal shell technology based upon hollow jet instability

    International Nuclear Information System (INIS)

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. We describe a technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal. We have produced shells in the 0.7--2.0 mm size range using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold--lead--antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise

  7. 正电子碰撞Ag,In,Sn原子L壳层电离截面的理论计算%Theoretical calculation of L-shell ionization cross section of Ag, In, and Sn atoms by positron impact

    Institute of Scientific and Technical Information of China (English)

    何彪; 何建新; 易有根; 江少恩; 郑志坚

    2011-01-01

    在David Botz分析模型的基础上,综合考虑正电子及电子碰撞电离的库仑效应和电子交换效应,引入离子效应和相对论效应修正因子,计算了Ag,In,Sn原子的L壳层电离截面.计算结果表明,引入了修正因子的计算结果明显优于平面波波恩近似和扭曲波波恩近似的计算结果,并和最近文献的实验值符合得较好.其计算结果可为激光等离子体模拟提供准确参数.%Based on the analytical formulas of David Botz, considering the Coulomb effect and exchange effect in the ionization by positron and electron impact, the total cross sections of positron-impact Lshell ionization of Ag? In, Sn atomic are calculated by incorporating both ionic and relativistic corrections in it. In comparison with the quantum mechanical predictions of plane-wave and distorted-wave Born approximations, it is found that the improved analytical formulas are in better agreement with the experimental results. The calculated results can be used to simlate the laser plasma.

  8. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  9. Shell Higher Olefins Process.

    Science.gov (United States)

    Lutz, E. F.

    1986-01-01

    Shows how olefin isomerization and the exotic olefin metathesis reaction can be harnessed in industrial processes. Indicates that the Shell Higher Olefins Process makes use of organometallic catalysts to manufacture alpha-olefins and internal carbon-11 through carbon-14 alkenes in a flexible fashion that can be adjusted to market needs. (JN)

  10. Atom interferometry

    International Nuclear Information System (INIS)

    We will first present a development of the fundamental principles of atom interferometers. Next we will discuss a few of the various methods now available to split and recombine atomic De Broglie waves, with special emphasis on atom interferometers based on optical pulses. We will also be particularly concerned with high precision interferometers with long measurement times such those made with atomic fountains. The application of atom interferometry to the measurement of the acceleration due to gravity will be detailed. We will also develop the atom interferometry based on adiabatic transfer and we will apply it to the measurement of the photon recoil in the case of the Doppler shift of an atomic resonance caused by the momentum recoil from an absorbed photon. Finally the outlook of future developments will be given. (A.C.)

  11. HPAM: Hirshfeld partitioned atomic multipoles

    Science.gov (United States)

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2012-02-01

    molecular charge density ρ(r) is partitioned into Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge densities ρ(r) on a grid. Atomic charges q and multipoles Qlma are calculated from the partitioned atomic charge densities ρ(r) by numerical integration. Solution method: Molecular and isolated atomic grids are generated for the molecule of interest. The ab initio density matrix P and basis functions χ(r) are read in from 'formatted checkpoint' files obtained from the Gaussian 03 or 09 quantum chemistry programs. The ab initio density is evaluated for the molecule and the isolated atoms/atomic ions on grids and used to construct Hirshfeld (HD) and Hirshfeld-I (HD-I) partitioned atomic charges densities ρ(r), which are used to calculate atomic charges q and atomic multipoles Qlma by integration. Restrictions: The ab initio density matrix can be calculated at the HF, DFT, MP2, or CCSD levels with ab initio Gaussian basis sets that include up to s, p, d, f, g functions for either closed shell or open shell molecules. Running time: The running time varies with the size of the molecule, the size of the ab initio basis set, and the coarseness of the desired grid. The run time can range from a minute or less for water to ˜15 minutes for neopentane.

  12. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  13. Simulation for double shell pinch

    Institute of Scientific and Technical Information of China (English)

    Wang Gang-Hua; Hu Xi-Jing; Sun Cheng-Wei

    2004-01-01

    Basic shock phenomena are presented in a composite pinch, a hybrid of the Z-pinch. The successive transfer of current within the plasma structure is demonstrated by our calculations. Properties of the shock wave are described.The current distribution between the two shells after the outer shell hitting the inner shell is also discussed.

  14. Recent Advances in Shell Evolution with Shell-Model Calculations

    CERN Document Server

    Utsuno, Yutaka; Tsunoda, Yusuke; Shimizu, Noritaka; Honma, Michio; Togashi, Tomoaki; Mizusaki, Takahiro

    2014-01-01

    Shell evolution in exotic nuclei is investigated with large-scale shell-model calculations. After presenting that the central and tensor forces produce distinctive ways of shell evolution, we show several recent results: (i) evolution of single-particle-like levels in antimony and cupper isotopes, (ii) shape coexistence in nickel isotopes understood in terms of configuration-dependent shell structure, and (iii) prediction of the evolution of the recently established $N=34$ magic number towards smaller proton numbers. In any case, large-scale shell-model calculations play indispensable roles in describing the interplay between single-particle character and correlation.

  15. Ising nanowires with simple core-shell structure; Their characteristic phenomena

    Science.gov (United States)

    Kaneyoshi, T.

    2016-09-01

    The phase diagrams and magnetizations of Ising nanowires with simple core-shell structure are investigated by the use of the effective field theory with correlations. A lot of characteristic behaviors observed in ferromagnetic and ferrimagnetic materials as well as novel phenomena have been obtained, although one section of the system is consisted of one spin-1/2 surface shell atom and one spin-1/2 core atom and they are coupled with a positive or a negative shell-core exchange interaction.

  16. 7 CFR 51.2002 - Split shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack....

  17. Innershell ionisation at small impactparameters in proton-atom collisions

    International Nuclear Information System (INIS)

    This thesis concentrates on innershell ionisation in proton-atom collisions. An experiment on K-shell ionisation of argon is described, performed in a gasfilled collision chamber under single collision conditions. Further experiments with carbon and aluminium were performed, the K-shell vacancy production in the collision of protons with these atoms being detected through the measurement of Auger-electrons. A spectrometer with a large solid angle was specially constructed for this and its performance is described. K-shell ionisation accompanying nuclear (p,γ) reactions has also been measured using 26Mg and 27Al. (Auth./C.F.)

  18. Fe3O4 and CdS based bifunctional core–shell nanostructure

    International Nuclear Information System (INIS)

    Highlights: ► First report on a room temperature aqueous process for growth of a hybrid core shell nanostructure containing a magnetic core and a semiconducting shell. ► Formation of distinct core shell nanostructure revealed by high resolution transmission electron microscopy. ► A bifunctional nature combining magnetic as well as photoresponce for the as synthesised core shell nanostructures demonstrated. ► A tendency towards self organisation of the core–shell nanostructure. ► Possible applications including purification and isolation of biological materials, drug delivery system, bio-labels, spintronics, etc. -- Abstract: A room temperature solution process for synthesis of Fe3O4 nanoparticles and their hybrid core shell nanostructures using CdS as the shell material has been described. The as grown particles have been characterised using XRD, Rietveld refinement, high resolution transmission electron microscopy, atomic force microscopy, superconducting quantum interference device, optical absorbance and photoluminescence spectroscopy. A superparamagnetic response revealed from the magnetisation measurements of the as synthesised magnetite nanoparticles was retained even after the growth of the CdS shell. From luminescence and high resolution atomic force microscopy measurements, it is shown that the core–shell structures advantageously combine magnetic as well as fluorescence response with a tendency towards self-organization.

  19. Atomic physics

    International Nuclear Information System (INIS)

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 23Po,2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 23Po level of helium-like krypton

  20. Relativistic shell model calculations

    Science.gov (United States)

    Furnstahl, R. J.

    1986-06-01

    Shell model calculations are discussed in the context of a relativistic model of nuclear structure based on renormalizable quantum field theories of mesons and baryons (quantum hadrodynamics). The relativistic Hartree approximation to the full field theory, with parameters determined from bulk properties of nuclear matter, predicts a shell structure in finite nuclei. Particle-hole excitations in finite nuclei are described in an RPA calculation based on this QHD ground state. The particle-hole interaction is prescribed by the Hartree ground state, with no additional parameters. Meson retardation is neglected in deriving the RPA equations, but it is found to have negligible effects on low-lying states. The full Dirac matrix structure is maintained throughout the calculation; no nonrelativistic reductions are made. Despite sensitive cancellations in the ground state calculation, reasonable excitation spectra are obtained for light nuclei. The effects of including charged mesons, problems with heavy nuclei, and prospects for improved and extended calculations are discussed.

  1. Secure shell session resumption

    OpenAIRE

    Kuryla, S. V.

    2009-01-01

    The Secure Shell (SSH) Protocol is a protocol for secure remote login and other secure network services over an insecure network. However, using modern cryptography techniques might be computationally expensive, especially for low-end devices such as wireless access points and DSL routers. Here I present an implementation of a session resumption mechanism that has been proposed earlier to improve the performance of SSI I.

  2. Atomic physics

    CERN Document Server

    Born, Max

    1989-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  3. Properties of few-electron artificial atoms

    OpenAIRE

    Varga, K.; Navratil, P.; Usukura, J.; Suzuki, Y

    2000-01-01

    The spectra of quantum dots of different geometry (``quantum ring'', ``quantum cylinder'', ``spherical square-well'' and ``parabolic confinement'') are studied. The stochastic variational method on correlated Gaussian basis functions and a large scale shell-model approach have been used to investigate these ``artificial'' atoms and their properties in magnetic field. Accurate numerical results are presented for $N$=2-8 electron systems.

  4. Multi-Shell Shell Model for Heavy Nuclei

    OpenAIRE

    Sun, Yang; Wu, Cheng-Li

    2003-01-01

    Performing a shell model calculation for heavy nuclei has been a long-standing problem in nuclear physics. Here we propose one possible solution. The central idea of this proposal is to take the advantages of two existing models, the Projected Shell Model (PSM) and the Fermion Dynamical Symmetry Model (FDSM), to construct a multi-shell shell model. The PSM is an efficient method of coupling quasi-particle excitations to the high-spin rotational motion, whereas the FDSM contains a successful t...

  5. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba+ ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  6. QED theory of the nuclear recoil effect in atoms

    OpenAIRE

    Shabaev, V. M.

    1997-01-01

    The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \\alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.

  7. QED theory of the nuclear recoil effect in atoms

    CERN Document Server

    Shabaev, V M

    1998-01-01

    The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \\alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.

  8. Explanation of the recent results on photoionization of endohedral atoms

    CERN Document Server

    Amusia, M Ya; Drukarev, E G

    2014-01-01

    We suggest an explanation of the recently observed discrepancy between the experimental and theoretical results on ionization of atoms, encapsulated into the fullerenes by photons with the energies of about 80-190eV. On the ground of previous theoretical considerations we conclude that the photoionization of the caged atom without excitation of the fullerene shell has low probability.

  9. Detection of positron-atom bound states through resonant annihilation

    CERN Document Server

    Dzuba, V A; Gribakin, G F

    2010-01-01

    A method is proposed for detecting positron-atom bound states by observing Feshbach resonances in positron annihilation at electron volt energies. The method is applicable to a range of open-shell transition metal atoms which are likely to bind the positron: Si, Fe, Co, Ni, Ge, Tc, Ru, Rh, Sn, Sb, Ta, W, Os, Ir, and Pt.

  10. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  11. Multi-shell effective interactions

    CERN Document Server

    Tsunoda, Naofumi; Hjorth-Jensen, Morten; Otsuka, Takaharu

    2013-01-01

    Background: Effective interactions, either derived from microscopic theories or based on fitting selected properties of nuclei in specific mass regions, are widely used inputs to shell-model studies of nuclei. Until recently, most shell-model calculations have been confined to a single oscillator shell. Recent interest in nuclei away from the stability line, requires however larger shell-model spaces. Since the derivation of microscopic effective interactions has been limited to degenerate model spaces, there are both conceptual and practical limits to present shell-model calculations that utilize such interactions. Purpose: The aim of this work is to present a novel microscopic method to calculate effective interactions for the nuclear shell model. Its main difference from existing theories is that it can be applied not only to degenerate model spaces but also to non-degenerate model spaces. Methods: The formalism is presented in the form of many-body perturbation theory based on the recently developed Exten...

  12. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    This thesis is a study of plate shell structures -- a type of shell structure with a piecewise plane geometry, organized so that the load bearing system is constituted by distributed in-plane forces in the facets. The high stiffness-to-weight ratio of smoothly curved shell structures is mainly due...... to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent...... University, a script has been developed for an automated generation of a given plate shell geometry and a corresponding finite element (FE) model. A suitable FE modelling technique is proposed, suggesting a relatively simple method of modelling the connection detail's stiffness characteristics...

  13. PREONS SHELLS AND ATOMIC STRUCTURE Преоновые оболочки и структура атома

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2013-03-01

    Full Text Available We consider the model of the structure of electrons and quarks, in which these particles are presented consisting of elementary particles preons. From this model, the theory of electron shells, as a continuation of the quark nuclear shells has been proposed

  14. Core-shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters.

    Science.gov (United States)

    Wang, Xinqin; Cui, Yingqi; Yu, Shengping; Zeng, Qun; Yang, Mingli

    2016-04-01

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe)(x)@(CdSe)(y) and their Zn-substituted complexes of x = 2-4 and y = 16-28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn-Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition-structure-property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  15. Core-shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    Science.gov (United States)

    Wang, Xinqin; Cui, Yingqi; Yu, Shengping; Zeng, Qun; Yang, Mingli

    2016-04-01

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe)x@(CdSe)y and their Zn-substituted complexes of x = 2-4 and y = 16-28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn-Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition-structure-property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  16. Opportunities for atomic physics with hard synchrotron radiation

    International Nuclear Information System (INIS)

    The construction of third-generation synchrotron radiation facilities places atomic and molecular scientists at the threshold of extraordinary opportunities. Areas of potential interest for the APS in atomic physics are: (1) exploration of relativistic and QED effects which become prominent in inner shells and at high Z; (2) total photon interaction cross sections; (3) scattering; (4) fluorescence; (5) photo- and Auger-electron spectrometries; and (6) ion spectrometry. A special regime in which the APS will lend access to unprecedented exploration is atomic inner-shell phenomena

  17. 7 CFR 51.2289 - Shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Shell. 51.2289 Section 51.2289 Agriculture Regulations... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2289 Shell. Shell means the outer shell and/or the woody partition from between the halves of the kernel, and any fragments of either....

  18. Shell-structure effects on high-pressure Rankine-Hugoniot shock adiabats

    CERN Document Server

    Pain, J C

    2007-01-01

    Rankine-Hugoniot shock adiabats are calculated in the pressure range 1 Mbar-10 Gbar with two atomic-structure models: the atom in a spherical cell and the atom in a jellium of charges. These quantum self-consistent-field models include shell effects, which have a strong impact on pressure and shock velocity along the shock adiabat. Comparisons with experimental data are presented and quantum effects are interpreted in terms of electronic specific heat. A simple analytical estimate for the maximum compression is proposed, depending on initial density, atomic weight and atomic number.

  19. Strength of protective ferroconcrete shells with an internal explosive load

    International Nuclear Information System (INIS)

    Ferroconcrete cylindrical containment vessels of height equal to the diameter with an elliptical lid are most widely used at Russian atomic power stations. They are designed to withstand the action of internal static pressure. Although the action of explosive internal loads on their internal surface is possible in an accident, no experimental studies of this situation are known. As a first approximation, the integral characteristic K = M/mex used to estimate the permissible explosive load of ferroconcrete explosion chambers was suggested as a first approximation in estimating the dynamic strength of shells under an explosive load; here M is the mass of the shell and mex is the mass of the explosive charge. Practical experience with explosion chambers indicates that they remain intact under multiple explosions if K ≥ 103. In their work, the failure of cylindrical ferroconcrete shells (rings) under an internal explosive load is experimentally studied, and the results are used to predict the explosion stability of the containment vessels of atomic power plants. In the pressure-momentum plane of the load, there are regions corresponding to damage to the ring at three levels: the presence of partial and through cracks and failure of the reinforcement. The boundaries of the regions (isodamage curves) are the geometric loci of all possible combinations of load parameters corresponding to the same final state of the ring on the chosen scale. A procedure has been described for plotting isodamage curves for thin rings of arbitrary radius on the basis of the experimental results. By plotting such curves for the example of a hypothetical cylindrical shell close in size to the cylindrical section of the containment vessel at the fifth unit of the Novo-Voronezh atomic power plant (Ro = 23 m, H = 40 m, σ = 1.2 m), it has been shown that this shell remains intact under the explosion of a TNT charge of mass up to 3.5 ton

  20. Atomic many-body theory

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, I.; Morrison, J.

    1982-01-01

    The unified description of atomic theory provided in this book bridges the gap between elementary books on quantum mechanics and present-day research in the field. Angular-momentum theory and the Hartree-Fock model are developed systematically and then applied to a number of physical problems. The treatment of many-body theory which then follows is based on a general form of the Rayleigh-Schroedinger perturbation theory, applicable to open-shell as well as closed-shell systems. The presentation in the book is based largely on graphical methods. Angular momentum graphs are used to represent the coupling between the spin and orbital angular momenta of the electrons, and the different terms in the perturbation expansion are expressed by means of 'Feynman-like' - or Goldstone - diagrams. These diagrams are evaluated using the angular-momentum graphs developed in the early part of the book. The formalism is applied to a number of problems in atomic physics, such as the electron-correlation energy, the electrostatic term structure and the spin-orbit and hyperfine interactions. The final chapter deals with the exp(S) or coupled-cluster formalism in the pair approximation, which appears to be the most promising approach for accurate calculations of the structure of real atomic and molecular systems.

  1. Expert system development (ESD) shell

    International Nuclear Information System (INIS)

    An Expert System Development (ESD) Shell design implementation is desribed in detail. The shell provides high-level generic facilities for Knowledge Representation (KR) and inferencing and tools for developing user interfaces. Powerful set of tools in the shell relieves much of the programming burden in the ES development. The shell is written in PROLOG under IBM PC/AT. KR facilities are based on two very powerful formalisms namely, frames and rules. Inference Engine (IE) draws most of its power from unification and backward reasoning strategy in PROLOG. This basic mechanism is enhanced further by incorporating both forward and backward chaining of rules and frame-based inferencing. Overall programming style integrates multiple paradigms including logic, object oriented, access-oriented and imperative programming. This permits ES designer a lot of flexibility in organizing inference control. Creation and maintainance of knowledge base is a major activity. The shell, therefore, provides number of facilities to simplify these tasks. Shell design also takes note of the fact that final success of any system depends on end-user satisfaction and hence provides features to build use-friendly interfaces. The shell also provides a set of interfacing predicates so that it can be embedded within any PROLOG program to incorporate functionalilty of the shell in the user program. (author). 10 refs., 8 figs

  2. Atomic secrecy

    International Nuclear Information System (INIS)

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  3. Calculation of Al-Zn diagram from central atoms model

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A slightly modified central atoms model was proposed. The probabilities of various clusters with the central atoms and their nearest neighboring shells can be calculated neglecting the assumption of the param eter of energy in the central atoms model in proportion to the number of other atoms i (referred with the central atom). A parameter Pα is proposed in this model, which equals to reciprocal of activity coefficient of a component, therefore, the new model can be understood easily. By this model, the Al-Zn phase diagram and its thermodynamic properties were calculated, the results coincide with the experimental data.

  4. Shell structure of pancakes and the absorption spectra of quasars

    International Nuclear Information System (INIS)

    The formation of the absorption lines of atomic hydrogen in the spectra of distant quasars is considered. A model is constructed of the formation of shells of a pancake formed in the adiabatic picture of the generation of the large-scale structure of the universe. It is shown that the absorption lines can form doublets and the equivalent widths of the corresponding lines are calculated. The physical conditions corresponding to the observed heavy-element absorption spectra are discussed

  5. Contemporary models of the atomic nucleus

    CERN Document Server

    Nemirovskii, P E

    2013-01-01

    Contemporary Models of the Atomic Nucleus discusses nuclear structure and properties, expounding contemporary theoretical concepts of the low-energy nuclear processes underlying in nuclear models. This book focuses on subjects such as the optical nuclear model, unified or collective model, and deuteron stripping reaction. Other topics discussed include the basic nuclear properties; shell model; theoretical analysis of the shell model; and radiative transitions and alpha-decay. The deuteron theory and the liquid drop nuclear model with its application to fission theory are also mentioned, but o

  6. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  7. Preparation and characterization of antibacterial Au/C core-shell composite

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yanhong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Zhang Nianchun [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Zhong Yuwen [Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Cai Huaihong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Liu Yingliang, E-mail: tliuyl@jnu.edu.cn [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China)

    2010-09-01

    An environment-friendly oxidation-reduction method was used to prepare Au/C core-shell composite using carbon as core and gold as shell. The chemical structures and morphologies of Au/C core-shell composite and carbon sphere were characterized by X-ray diffraction, transmission electron microscope, energy dispersion X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The antibacterial properties of the Au/C core-shell composite against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were examined by the disk diffusion assay and minimal inhibition concentration (MIC) methods. In addition, antibacterial ability of Au/C core-shell composite was observed by atomic force microscope. Results demonstrated that gold homogeneously supported on the surface of carbon spheres without aggregation and showed efficient antibacterial abilities.

  8. Manipulation of individual double-walled carbon nanotubes packed in a casing shell

    International Nuclear Information System (INIS)

    Controlled placement of carbon nanotubes is important for carbon-based nanodevice assembly. However, it is difficult to manipulate individual nanotubes because of their extremely small dimensions. Ultra-fine tubes are often in the form of bundles and are hard to efficiently move on a surface due to the strong adhesion among themselves and between the tubes and the substrate. This paper presents a novel manipulation approach of individual double-walled carbon nanotubes encased in a thick amorphous carbon shell. With an atomic force microscope, we are able to freely displace the nanotubes within a casing shell, and unpack it from the shell on a silicon surface. The theoretical analysis demonstrates that the unpacking process is determined by the difference of the static friction between the shell and the substrate and the resistance force between the shell and the embedded nanotube.

  9. Synthesis of Core-Shell SiOx/Carbon Nano fibers on Silicon Substrates by Ultrasonic Spray Pyrolysis

    International Nuclear Information System (INIS)

    We synthesized the core-shell SiOx/carbon nano fibers with diameters of 200-300 nm using ultrasonic spray pyrolysis with a phosphorus/ethanol mixture. High-resolution transmission electron microscopy (HRTEM) and energy-dispersive spectroscopy (EDS) investigations confirmed the core-shell structure, which consisted of a core of SiOx and a shell of amorphous carbon. The phosphorus atoms corroded the entire silicon substrate surface, and the Si-P liquid-catalyzed the solid-liquid-solid mechanism is proposed to explain the growth of the core-shell SiOx/carbon nano fibers.

  10. Radiative vacancies decay of endohedral atoms

    Science.gov (United States)

    Amusia, Miron; Baltenkov, Arkadiy

    2006-05-01

    It is demonstrated that the fulleren shell affects dramatically the radiative vacancy decay of an endohedral atom A@C60. It also adds new possibilities to radiative and non-radiative decay by opening a number of new interchannel decays similar to that in ordinary atoms where initial and final state vacancies almost always belong to different subshells. We demonstrate that the radiative width of a vacancy decay due to electron transition in the atom A in A@C60 acquire an additional factor that can be expressed via the polarizability of the C60 at transition energy. In general, it can not only enhance but also totally lock the radiative decay channel. For vacancies in subvalent shells of noble gas atoms N the non-radiative decay is forbidden. For N@C60 this decay is allowed since can proceed due to transition of fulleren shell electron to the vacancy in N. Corresponding width is expressed via the C60 total photoabsorption cross-section at the transition energy.

  11. Evolution of three-shell onion-like and core-shell structures in (AgCo)201 bimetallic clusters

    Institute of Scientific and Technical Information of China (English)

    Wang Qiang; Li Guo-Jian; Li Dong-Gang; Lv Xiao; He Ji-Cheng

    2009-01-01

    This paper studies the structural evolution of (AgCo)201 clusters with different Co concentrations under various temperature conditions by using molecular dynamics with the embedded atom method. The most stable position for Co atoms in the cluster is the subsurface layer at low temperature (lower than 200 K for the Ag200Co1 cluster). The position changes to the core layer with the increase of temperature, but there is an energy barrier in the middle layer. This makes the Ag-Co cluster form an Ag-Co-Ag three-shell onion-like configuration. When the temperature is high enough [higher than 800 K for (AgCo)201 clusters with 50% Co], Co atoms can obtain enough energy to overcome the energy barrier and the duster forms an Ag-Co core-shell configuration. Amorphization for the onion-like and core-shell clusters is induced by the large lattice misfit at Ag-Co interfaces. The structural evolution in the Ag-Co cluster is related to the release of excess energy.

  12. K-shell Photoabsorption of Oxygen Ions

    CERN Document Server

    García, J; Bautista, M A; Gorczyca, T W; Kallman, T R; Palmeri, P

    2004-01-01

    Extensive calculations of the atomic data required for the spectral modelling of the K-shell photoabsorption of oxygen ions have been carried out in a multi-code approach. The present level energies and wavelengths for the highly ionized species (electron occupancies 2 4, lack of measurements, wide experimental scatter, and discrepancies among theoretical values are handicaps in reliable accuracy assessments. The radiative and Auger rates are expected to be accurate to 10% and 20%, respectively, except for transitions involving strongly mixed levels. Radiative and Auger dampings have been taken into account in the calculation of photoabsorption cross sections in the K-threshold region, leading to overlapping lorentzian shaped resonances of constant widths that cause edge smearing. The behavior of the improved opacities in this region has been studied with the XSTAR modelling code using simple constant density slab models, and is displayed for a range of ionization parameters.

  13. Dynamical symmetries of the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P

    2000-07-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  14. Optimum rotationally symmetric shells for flywheel rotors

    Science.gov (United States)

    Blake, Henry W.

    2000-01-01

    A flywheel rim support formed from two shell halves. Each of the shell halves has a disc connected to the central shaft. A first shell element connects to the disc at an interface. A second shell element connects to the first shell element. The second shell element has a plurality of meridional slits. A cylindrical shell element connects to the second shell element. The cylindrical shell element connects to the inner surface of the flywheel rim. A flywheel rim support having a disc connected an outer diameter of a shaft. Two optimally shaped shell elements connect to the optimally shaped disc at an interface. The interface defines a discontinuity in a meridional slope of said support. A cylindrical shell element connects to the two shell elements. The cylindrical shell element has an outer surface for connecting to the inner surface of the flywheel rim. A flywheel rim casing includes an annular shell connected to the central shaft. The annular shell connects to the flywheel rim. A composite shell surrounds the shaft, annular shell and flywheel rim.

  15. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  16. Fe{sub 3}O{sub 4} and CdS based bifunctional core–shell nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Joshy; Nishad, K.K.; Sharma, M.; Gupta, D.K. [Department of Physics, Barkatullah University, Bhopal 462026, MP (India); Singh, R.R. [ITM University, NH 75, Jhansi Road, Gwalior 474001, MP (India); Pandey, R.K., E-mail: prof.rkpandey@gmail.com [ITM University, NH 75, Jhansi Road, Gwalior 474001, MP (India)

    2012-06-15

    Highlights: ► First report on a room temperature aqueous process for growth of a hybrid core shell nanostructure containing a magnetic core and a semiconducting shell. ► Formation of distinct core shell nanostructure revealed by high resolution transmission electron microscopy. ► A bifunctional nature combining magnetic as well as photoresponce for the as synthesised core shell nanostructures demonstrated. ► A tendency towards self organisation of the core–shell nanostructure. ► Possible applications including purification and isolation of biological materials, drug delivery system, bio-labels, spintronics, etc. -- Abstract: A room temperature solution process for synthesis of Fe{sub 3}O{sub 4} nanoparticles and their hybrid core shell nanostructures using CdS as the shell material has been described. The as grown particles have been characterised using XRD, Rietveld refinement, high resolution transmission electron microscopy, atomic force microscopy, superconducting quantum interference device, optical absorbance and photoluminescence spectroscopy. A superparamagnetic response revealed from the magnetisation measurements of the as synthesised magnetite nanoparticles was retained even after the growth of the CdS shell. From luminescence and high resolution atomic force microscopy measurements, it is shown that the core–shell structures advantageously combine magnetic as well as fluorescence response with a tendency towards self-organization.

  17. Recovery of Salmonella from commercial shell eggs by shell rinse and shell crush methodologies.

    Science.gov (United States)

    Musgrove, M T; Jones, D R; Northcutt, J K; Harrison, M A; Cox, N A; Ingram, K D; Hinton, A J

    2005-12-01

    Salmonella is the most important human pathogen associated with shell eggs. Salmonella Enteritidis is the serotype most often implicated in outbreaks, although other serotypes have been recovered from eggs and from the commercial shell egg washing environment. Many sample methods are used to recover microorganisms from eggshells and membranes. A shell rinse and modified shell-and-membrane crush method for recovery of Salmonella were compared. Eggs were collected from 3 commercial shell-washing facilities (X, Y, and Z) during 3 visits. Twelve eggs were collected from each of 10 to 12 locations along the egg processing chain. After being transported back to the laboratory, each egg was sampled first by a shell rinse method and then by a shell crush method. For each technique (rinse or crush), 2 pools of 5 eggs per location sampled were selectively enriched for the recovery of Salmonella. Presumptive samples positive for Salmonella were confirmed serologically. Overall, there were 10.1% (40/396) Salmonella-positive pooled samples. Salmonella were recovered by the shell rinse and shell crush techniques (4.8 vs. 5.3%, respectively). Plant X yielded 21.5% Salmonella positives, whereas less than 5% of samples from plants Y and Z were found to be contaminated with the organism (4.2 and 4.5%, respectively). Salmonella was recovered more often from unwashed eggs (15.8%) than from washed eggs (8.3%). For some eggs, Salmonella was only recovered by one of the methods. Use of both approaches in the same experiment increased sampling sensitivity, although in most cases, crushing provided more sensitive Salmonella recovery. PMID:16479955

  18. Instant Windows PowerShell

    CERN Document Server

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  19. Atomic arias

    Science.gov (United States)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  20. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    Science.gov (United States)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  1. Atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.E.; Kukla, K.; Cheng, S. [Univ. of Toledo, OH (United States)] [and others

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  2. Laboratory Measurement and Theoretical Modeling of K-shell X-ray Lines from Inner-shell Excited and Ionized Ions of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Gu, M; Schmidt, M; Beiersdorfer, P; Chen, H; Thorn, D B; Tr?bert, E; Behar, E; Kahn, S M

    2005-02-05

    We present high resolution laboratory spectra of K-shell X-ray lines from inner-shell excited and ionized ions of oxygen, obtained with a reflection grating spectrometer on the electron beam ion trap (EBIT-I) at the Lawrence Livermore National Laboratory. Only with a multi-ion model including all major atomic collisional and radiative processes, are we able to identify the observed K-shell transitions of oxygen ions from O III to O VI. The wavelengths and associated errors for some of the strongest transitions are given, taking into account both the experimental and modeling uncertainties. The present data should be useful in identifying the absorption features present in astrophysical sources, such as active galactic nuclei and X-ray binaries. They are also useful in providing benchmarks for the testing of theoretical atomic structure calculations.

  3. Rotating Thin-Shell Wormhole

    OpenAIRE

    Ovgun, A.

    2016-01-01

    In this article, we construct rotating thin shell wormhole using a Myers-Perry black hole in five dimensions. The stability of the wormhole is analyzed under perturbations follows from the Darmois-Israel junction conditions. We find that it required exotic matter at the throat to keep throat of wormhole stable. Our analysis shows that the stability of the rotating thin-shell wormhole is available with choosing suitable values of parameters.

  4. 40 Years of Shell Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Shell has been using scenario planning for four decades. During that time these scenarios have helped the company and governments across the world to make better strategic choices. Scenarios provide lenses that help see future prospects more clearly, make richer judgments and be more sensitive to uncertainties. Discover how the Shell Scenarios team has helped guide decision makers at major moments in history and get a peek at the team future focus, including the intricate relationship between energy, water and food.

  5. Oyster shells as history books

    OpenAIRE

    Surge, D.; Milner, N.

    2003-01-01

    [FIRST PARAGRAPH] A collaborative project was established in 2002 that has brought together geochemistry and archaeology in order to investigate environmental change and the harvesting strategies of ancient peoples. The objectives of this study are to decipher the life history and environmental information contained in shells of the European oyster, Ostrea edulis, by analyzing geochemical variations along shell growth. This approach provides an independent measure of age and season of death, ...

  6. Collision patterns on mollusc shells

    OpenAIRE

    P. J. Plath; J. K. Plath; Schwietering, J.

    1997-01-01

    On mollusc shells one can find famous patterns. Some of them show a great resemblance to the soliton patterns in one-dimensional systems. Other look like Sierpinsky triangles or exhibit very irregular patterns. Meinhardt has shown that those patterns can be well described by reaction–diffusion systems [1]. However, such a description neglects the discrete character of the cell system at the growth front of the mollusc shell. We have therefore developed a one-dimensional cellular vector automa...

  7. Collision patterns on mollusc shells

    Directory of Open Access Journals (Sweden)

    P. J. Plath

    1997-01-01

    Full Text Available On mollusc shells one can find famous patterns. Some of them show a great resemblance to the soliton patterns in one-dimensional systems. Other look like Sierpinsky triangles or exhibit very irregular patterns. Meinhardt has shown that those patterns can be well described by reaction–diffusion systems [1]. However, such a description neglects the discrete character of the cell system at the growth front of the mollusc shell.

  8. Nuclear Shell Structure Evolution Theory

    OpenAIRE

    Wang, Zhengda; Wang, Xiaobin; Zhang, Xiaodong; Wang, Xiaochun

    2012-01-01

    The Self-similar-structure shell model (SSM) comes from the evolution of the conventional shell model (SM) and keeps the energy level of SM single particle harmonic oscillation motion. In SM, single particle motion is the positive harmonic oscillation and in SSM, the single particle motion is the negative harmonic oscillation. In this paper a nuclear evolution equation (NEE) is proposed. NEE describes the nuclear evolution process from gas state to liquid state and reveals the relations among...

  9. Atomic physics with highly charged ions. Progress report, FY 1989--91

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  10. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  11. Calculations of electron screening in muonic atoms

    International Nuclear Information System (INIS)

    The electron screening in mounic atoms (O, Al, Fe, In, Ho, Au, Th) has been calculated for p3/2, d5/2 and f7/2 levels with nμ=3/2, d5/2 and f7/2 muons up to nμ=30. Screening corrections are also given for electron configurations with holes in the K and L3 shell. (orig.)

  12. Fisher-like atomic divergences: Mathematical grounds and physical applications

    Science.gov (United States)

    Martín, A. L.; Angulo, J. C.; Antolín, J.

    2013-11-01

    Two different local divergence measures, the Fisher (FD) and the Jensen-Fisher (JFD) ones, are compared in this work by applying them to atomic one-particle densities in position and momentum spaces. They are defined in terms of the absolute and the relative Fisher information functionals. The analysis here afforded includes not only neutral atoms, but also singly-charged cations. The results are interpreted and justified according to (i) shell-filling patterns, (ii) short- and long-range behaviors of the atomic densities, and (iii) the value of the atomic ionization potential. The strengths of the FD measure, as compared to the JFD one, are emphasized.

  13. Atomically precise gold nanocrystal molecules with surface plasmon resonance.

    Science.gov (United States)

    Qian, Huifeng; Zhu, Yan; Jin, Rongchao

    2012-01-17

    Since Faraday's pioneering work on gold colloids, tremendous scientific research on plasmonic gold nanoparticles has been carried out, but no atomically precise Au nanocrystals have been achieved. This work reports the first example of gold nanocrystal molecules. Mass spectrometry analysis has determined its formula to be Au(333)(SR)(79) (R = CH(2)CH(2)Ph). This magic sized nanocrystal molecule exhibits fcc-crystallinity and surface plasmon resonance at approximately 520 nm, hence, a metallic nanomolecule. Simulations have revealed that atomic shell closing largely contributes to the particular robustness of Au(333)(SR)(79), albeit the number of free electrons (i.e., 333 - 79 = 254) is also consistent with electron shell closing based on calculations using a confined free electron model. Guided by the atomic shell closing growth mode, we have also found the next larger size of extraordinarily stability to be Au(~530)(SR)(~100) after a size-focusing selection--which selects the robust size available in the starting polydisperse nanoparticles. This work clearly demonstrates that atomically precise nanocrystal molecules are achievable and that the factor of atomic shell closing contributes to their extraordinary stability compared to other sizes. Overall, this work opens up new opportunities for investigating many fundamental issues of nanocrystals, such as the formation of metallic state, and will have potential impact on condensed matter physics, nanochemistry, and catalysis as well.

  14. ASYMPTOTIC ANALYSIS OF DYNAMIC PROBLEMS FOR LINEARLY ELASTIC SHELLS JUSTIFICATION OF EQUATIONS FOR DYNAMIC KOITER SHELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Under certain conditions, the dynamic equatioins of membrane shells and the dynamic equations of flexural shells are obtained from dynamic equations of Koiter shells by the method of asymptotic analysis.

  15. Radial pressure measurement in core/shell nanocrystals

    Science.gov (United States)

    Ithurria, Sandrine; Guyot-Sionnest, Philippe; Mahler, Benoît; Dubertret, Benoît

    2009-02-01

    Quantum dots are nanometre-sized semiconductor particles exhibiting unique size-dependent electronic properties. In order to passivate the nanocrystals surface and to protect them from oxidation, we grow a shell composed of a second semiconductor with a larger bandgap on the core (for example a core / shell CdS / ZnS). However, the lattice mismatch between the two materials (typically 7% between ZnS and CdS) induces mechanical stress which can lead to dislocations. To better understand these mechanisms, it is important to be able to measure the pressure induced on the semiconductor core. We used a nanocrystal doped with manganese ions Mn2+, which provide a phosphorescence signal depending on the local pressure. A few dopant atoms per nanoparticle were placed at controlled radial positions in a ZnS shell formed layer by layer. The experimental pressure measurements are in very good agreement with a simple spherically symmetric elastic continuum model[1]. Using manganese as a pressure gauge could be used to better understand some structural phenomena observed in these nanocrystals, such as crystalline phases transition, or shell cracking.

  16. Studies on Thin-shells and Thin-shell Wormholes

    CERN Document Server

    Övgün, Ali

    2016-01-01

    The study of traversable wormholes is very hot topic for the past 30 years. One of the best possible way to make traversable wormhole is using the thin-shells to cut and paste two spacetime which has tunnel from one region of space-time to another, through which a traveler might freely pass in wormhole throat. These geometries need an exotic matter which involves a stress-energy tensor that violates the null energy condition. However, this method can be used to minimize the amount of the exotic matter. The goal of this thesis study is to study on thin-shell and thin-shell wormholes in general relativity in 2+1 and 3+1 dimensions. We also investigate the stability of such objects.

  17. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  18. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability.

    Science.gov (United States)

    Jeun, Jeong-Hoon; Park, Kyu-Young; Kim, Dai-Hong; Kim, Won-Sik; Kim, Hong-Chan; Lee, Byoung-Sun; Kim, Honggu; Yu, Woong-Ryeol; Kang, Kisuk; Hong, Seong-Hyeon

    2013-09-21

    SnO2@TiO2 double-shell nanotubes have been facilely synthesized by atomic layer deposition (ALD) using electrospun PAN nanofibers as templates. The double-shell nanotubes exhibited excellent high rate cyclability for lithium ion batteries. The retention of hollow structures during cycling was demonstrated.

  19. Shell Models of Magnetohydrodynamic Turbulence

    CERN Document Server

    Plunian, Franck; Frick, Peter

    2012-01-01

    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accu...

  20. Asymptotic safety goes on shell

    International Nuclear Information System (INIS)

    It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters. (paper)

  1. Asymptotic safety goes on shell

    Science.gov (United States)

    Benedetti, Dario

    2012-01-01

    It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters.

  2. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  3. Stability of core–shell nanowires in selected model solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kalska-Szostko, B., E-mail: kalska@uwb.edu.pl; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-30

    Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  4. Electronic shell and supershell structure in graphene flakes

    CERN Document Server

    Manninen, M; Akola, J

    2008-01-01

    We use a simple tight-binding (TB) model to study electronic properties of free graphene flakes. Valence electrons of triangular graphene flakes show a shell and supershell structure which follows an analytical expression derived from the solution of the wave equation for triangular cavity. However, the solution has different selection rules for triangles with armchair and zigzag edges, and roughly 40000 atoms are needed to see clearly the first supershell oscillation. In the case of spherical flakes, the edge states of the zigzag regions dominate the shell structure which is thus sensitive to the flake diameter and center. A potential well that is made with external gates cannot have true bound states in graphene due to the zero energy band gap. However, it can cause strong resonances in the conduction band.

  5. The elastic scattering of electrons from atoms and ions containing core holes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mulla, S Y Yousif [College of Engineering, University of Boras, S-50190 Boras (Sweden)

    2004-01-28

    Differential cross sections for the elastic scattering of electrons from the ground states of the closed shell atomic systems Ne, Ar and Na{sup +}, and the excited states of the open shell systems containing a highly localized core hole obtained by removing a single electron from any one of the occupied shells of these closed shell systems, have been calculated. Local density approximations to the exchange and correlation potentials have been used in these calculations. A comparison of the calculated results with other experimental and theoretical data is shown and discussed.

  6. The fission time scale measured with an atomic clock

    NARCIS (Netherlands)

    Kravchuk, VL; Wilschut, HW; Hunyadi, M; Kopecky, S; Lohner, H; Rogachevskiy, A; Siemssen, RH; Krasznahorkay, A; Hamilton, JH; Ramayya, AV; Carter, HK

    2003-01-01

    We present a new direct method of measuring the fission absolute time scale using an atomic clock based on the lifetime of a vacancy in the atomic K-shell. We studied the reaction Ne-20 + Th-232 -> O-16 + U-236* at 30 MeV/u. The excitation energy of about 115 MeV in such a reaction is in the range w

  7. Preservation of Concrete Shell Structures

    Directory of Open Access Journals (Sweden)

    J. Mundo-Hernandez

    2016-07-01

    Full Text Available This paper aims to analyse current people’s perception towards concrete shell structures located in the main campus of the University of Puebla, in central Mexico. We are interested in knowing the perception of building academics and architecture and engineering students regarding the use, value and current conditions of concrete shells. This will help us to understand what kind of actions can be taken to preserve those structures, and what factors should be considered during the design of new spatial structures.

  8. Learning Shell scripting with Zsh

    CERN Document Server

    Festari, Gaston

    2014-01-01

    A step-by-step tutorial that will teach you, through real-world examples, how to configure and use Zsh and its various features. If you are a system administrator, developer, or computer professional involved with UNIX who are looking to improve on their daily tasks involving the UNIX shell, ""Learning Shell Scripting with Zsh"" will be great for you. It's assumed that you have some familiarity with an UNIX command-line interface and feel comfortable with editors such as Emacs or vi.

  9. Interplay of electronic and geometry shell effects in properties of neutral and charged Sr clusters

    DEFF Research Database (Denmark)

    Lyalin, Andrey; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2007-01-01

    The optimized structure and electronic properties of neutral, singly, and doubly charged strontium clusters have been investigated using ab initio theoretical methods based on density-functional theory. We have systematically calculated the optimized geometries of neutral, singly, and doubly...... charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, the gap between the highest occupied and the lowest unoccupied molecular orbitals, and spectra of the density of electronic states (DOS). It is demonstrated that the...... size evolution of structural and electronic properties of strontium clusters is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It...

  10. The restructuring of Shell Downstream; La restructuration de Shell Downstream

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, F.

    2005-01-15

    To facing a more and more competitive environment, the Group Shell began a restructuring. While the group was organized on horizontal national lines, it is creating today an integrated downstream activity. The word of this restructuring is profit. (A.L.B.)

  11. Spectral fine structure of the atomic ground states based on full relativistic theory

    Institute of Scientific and Technical Information of China (English)

    Zhenghe Zhu; Yongjian Tang

    2011-01-01

    @@ We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.%We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.

  12. Cross Sections for Inner-Shell Ionization by Electron Impact

    International Nuclear Information System (INIS)

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements

  13. In Situ Generation of Two-Dimensional Au–Pt Core–Shell Nanoparticle Assemblies

    Directory of Open Access Journals (Sweden)

    Khalid Madiha

    2009-01-01

    Full Text Available Abstract Two-dimensional assemblies of Au–Pt bimetallic nanoparticles are generated in situ on polyethyleneimmine (PEI silane functionalized silicon and indium tin oxide (ITO coated glass surfaces. Atomic force microscopy (AFM, UV–Visible spectroscopy, and electrochemical measurements reveal the formation of core–shell structure with Au as core and Pt as shell. The core–shell structure is further supported by comparing with the corresponding data of Au nanoparticle assemblies. Static contact angle measurements with water show an increase in hydrophilic character due to bimetallic nanoparticle generation on different surfaces. It is further observed that these Au–Pt core–shell bimetallic nanoparticle assemblies are catalytically active towards methanol electro-oxidation, which is the key reaction for direct methanol fuel cells (DMFCs.

  14. Relativistic K shell decay rates and fluorescence yields for Zn, Cd and Hg

    OpenAIRE

    C. Casteleiro; Parente, F.; Indelicato, Paul; P. Marques, J.

    2009-01-01

    In this work we use the multiconfiguration Dirac-Fock method to calculate the transition probabilities for all possible decay channels, radiative and radiationless, of a K shell vacancy in Zn, Cd and Hg atoms. The obtained transition probabilities are then used to calculate the corresponding fluorescence yields which are compared to existing theoretical, semi-empirical and experimental results.

  15. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    Science.gov (United States)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  16. Statistical mechanics of thin spherical shells

    CERN Document Server

    Kosmrlj, Andrej

    2016-01-01

    We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes and the local out-of-plane undulations, leads to novel phenomena. In spherical shells thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated "pressure". Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows non-linearly with increasing outward pressure, with the same universal power law expone...

  17. Observability inequalities for thin shells

    Institute of Scientific and Technical Information of China (English)

    柴树根; 姚鹏飞

    2003-01-01

    We consider the exact controllability problem from boundary for thin shells. Under some check-able geometric assumptions on the middle surface, we establish the observability inequalities via the Bochnertechnique for the Dirichlet control and the Neumann control problems. We also give several examples to verifythe geometric assumptions.

  18. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter;

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  19. Applications of Continuum Shell Model

    OpenAIRE

    Volya, Alexander

    2006-01-01

    The nuclear many-body problem at the limits of stability is considered in the framework of the Continuum Shell Model that allows a unified description of intrinsic structure and reactions. Technical details behind the method are highlighted and practical applications combining the reaction and structure pictures are presented.

  20. Nonlinear theory of elastic shells

    International Nuclear Information System (INIS)

    Nonlinear theory of elastic shells is developed which incorporates both geometric and physical nonlinearities and which does not make use of the well known Love-Kirchhoff hypothesis. The resulting equations are formulated in tensorial notation and are reduced to the ones of common use when simplifying assumptions encountered in the especific litterature are taken. (Author)

  1. Starting SCF Calculations by Superposition of Atomic Densities

    NARCIS (Netherlands)

    van Lenthe, J.H.; Zwaans, R.; van Dam, H.J.J.; Guest, M.F.

    2006-01-01

    We describe the procedure to start an SCF calculation of the general type from a sum of atomic electron densities, as implemented in GAMESS-UK. Although the procedure is well-known for closed-shell calculations and was already suggested when the Direct SCF procedure was proposed, the general procedu

  2. Euclidean Approach for Entropy of Black Shells

    CERN Document Server

    S., J Robel Arenas

    2016-01-01

    We introduce the concept of black shell, consisting on a massive thin spherical shell contracting toward its gravitational radius from the point of view of an external observer far from the shell, in order to effectively model the gravitational collapse. Considering complementary description of entanglement entropy of a black shell and according to Gibbons-Hawking Euclidean approach, we calculate the Bekenstein-Hawking entropy retrieving horizon integral and discarding boundary at infinity.

  3. Shell Global Solutions Ready to Benefit China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Thanks to rising oil prices, Global oil giant Royal Dutch Shell has made huge profits - $9 billion - last quarter. Yet the oil giant's main profits come from the exploration of crude oil. Shell Global Solution (SGS),a unit of Shell, is also focusing on providing advanced technology to help Shell's petroleum-related industry segments and its third-party customers to deal with the high price of fossil fuel.

  4. Inner Shell Excitations of Lithium Studied by Fast Electron Impact

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei-Chun; ZHU Lin-Fan; XU Ke-Zun

    2008-01-01

    Electron energy loss spectra for the inner shell excitations of atomic lithium are measured at an incident electron energy of 2500eV and scattering angles of 0°, 2°, 4° and 6°. Two optically forbidden transitions of (1s2s2)2S and (1s2s3S)3s2 S are observed. The generalized oscillator strength ratios for 1s(2s2p3P)2 P0 to 1s(2s2p1P)2P0 were determined, and they are independent of the momentum transfer.

  5. Effective Field Theory and the No-Core Shell Model

    Directory of Open Access Journals (Sweden)

    Stetcua I.

    2010-04-01

    Full Text Available In finite model space suitable for many-body calculations via the no-core shell model (NCSM, I illustrate the direct application of the effective field theory (EFT principles to solving the many-body Schrödinger equation. Two different avenues for fixing the low-energy constants naturally arising in an EFT approach are discussed. I review results for both nuclear and trapped atomic systems, using effective theories formally similar, albeit describing different underlying physics.

  6. Reaction matrix in nuclear shell theory

    Energy Technology Data Exchange (ETDEWEB)

    Macfarlane, M.H.

    1967-09-01

    Lectures are given in which the nuclear shell model is discussed as a link between the properties of complex nuclei and the free-nucleon interaction. A version of the shell model is derived from nuclear many-body theory, and also this version is compared and contrasted with phenomenological shell theory. Attention is focused on oxygen-18 and fluorine-18. 76 references. (JFP)

  7. 21 CFR 886.3800 - Scleral shell.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scleral shell. 886.3800 Section 886.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3800 Scleral shell. (a) Identification. A scleral shell is...

  8. Shell Expands Polystyrene Joint Venture in China

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    @@ Shell China Ltd. and Shell China Holdings BV, both wholly owned subsidiaries and part of the Royal Dutch/Shell Group of Companies, have signed a joint-venture agreement with Jinling Petrochemical Corporation (JPC) on October 17, 1997, in Nanjing, the East China's Jiangsu Province.

  9. 7 CFR 983.29 - Shelled pistachios.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means...

  10. Optical cavity modes in gold shell colloids

    NARCIS (Netherlands)

    Penninkhof, J.J.; Sweatlock, L.A.; Moroz, A.; Atwater, H.A.; van Blaaderen, A.; Polman, A.

    2008-01-01

    Core-shell colloids composed of a dielectric core surrounded by a metal shell show geometric cavity resonances with optical properties that are distinctly different than those of the collective plasmon modes of the metal shell. We use finite-difference time domain calculations on silica colloids wit

  11. Shell China Promotes Localization of Employees

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Shell China Limited's Executive Chairman Lim Haw Kuang is unquestionably an effective reformer for the Beijing-based company. He localized Shell China Limited's leadership team with Chinese employees going from zero to a majority in three years, and engineered the turnaround of Shell's business in China.

  12. Atomic density functions: atomic physics calculations analyzed with methods from quantum chemistry

    CERN Document Server

    Borgoo, Alex; Geerlings, P

    2011-01-01

    This contribution reviews a selection of findings on atomic density functions and discusses ways for reading chemical information from them. First an expression for the density function for atoms in the multi-configuration Hartree--Fock scheme is established. The spherical harmonic content of the density function and ways to restore the spherical symmetry in a general open-shell case are treated. The evaluation of the density function is illustrated in a few examples. In the second part of the paper, atomic density functions are analyzed using quantum similarity measures. The comparison of atomic density functions is shown to be useful to obtain physical and chemical information. Finally, concepts from information theory are introduced and adopted for the comparison of density functions. In particular, based on the Kullback--Leibler form, a functional is constructed that reveals the periodicity in Mendeleev's table. Finally a quantum similarity measure is constructed, based on the integrand of the Kullback--L...

  13. Study of coordination environments around Pd and Pt in a Pd-core Pt-shell nanoparticle during heating

    Science.gov (United States)

    Nishimura, Y. F.; Hamaguchi, T.; Yamaguchi, S.; Takagi, H.; Dohmae, K.; Nonaka, T.; Nagai, Y.

    2016-05-01

    Local coordination environments around Pd and Pt in a Pd-core Pt-shell nanoparticle (NP) at temperatures ranging from 473 to 873 K was evaluated by utilizing in situ XAFS measurement technique to investigate the temperature range in which a core-shell structure is preserved. The core-shell structure was considered to be kept up to 673 K and start to change at about 773 K. Heating to 873 K accelerated atomic mixing in the core-shell NPs. Catalytic properties of the present Pd-core Pt-shell NP are available in the stoichiometric C3H6-O2 atmosphere at temperatures less than 773 K at most.

  14. Deposition of conductive TiN shells on SiO{sub 2} nanoparticles with a fluidized bed ALD reactor

    Energy Technology Data Exchange (ETDEWEB)

    Didden, Arjen [Delft University of Technology, Faculty of Applied Sciences, Materials for Energy Conversion and Storage (Netherlands); Hillebrand, Philipp; Wollgarten, Markus [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels (Germany); Dam, Bernard; Krol, Roel van de, E-mail: roel.vandekrol@helmholtz-berlin.de [Delft University of Technology, Faculty of Applied Sciences, Materials for Energy Conversion and Storage (Netherlands)

    2016-02-15

    Conductive TiN shells have been deposited on SiO{sub 2} nanoparticles (10–20 nm primary particle size) with fluidized bed atomic layer deposition using TDMAT and NH{sub 3} as precursors. Analysis of the powders confirms that shell growth saturates at approximately 0.4 nm/cycle at TDMAT doses of >1.2 mmol/g of powder. TEM and XPS analysis showed that all particles were coated with homogeneous shells containing titanium. Due to the large specific surface area of the nanoparticles, the TiN shells rapidly oxidize upon exposure to air. Electrical measurements show that the partially oxidized shells are conducting, with apparent resistivity of approximately ∼11 kΩ cm. The resistivity of the powders is strongly influenced by the NH{sub 3} dose, with a smaller dose giving an order-of-magnitude higher resistivity.

  15. Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory

    Science.gov (United States)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.

  16. Controlling interactions between highly-magnetic atoms with Feshbach resonances

    CERN Document Server

    Kotochigova, Svetlana

    2014-01-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic $^7$S$_3$ chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on Dysprosium and Erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  17. Diffusion behaviors of helium atoms at two Pd grain boundaries

    Institute of Scientific and Technical Information of China (English)

    XIA Ji-xing; HU Wang-yu; YANG Jian-yu; AO Bing-yun

    2006-01-01

    The diffusion behaviors of helium atoms at two symmetric grain boundaries (Σ5{210} and Σ3 {112}) of Pd were investigated using molecular dynamics simulations through an analytical embedded-atom method(MAEAM) model. The simulations demonstrate that the interstitial helium atoms are easily trapped at the grain boundaries and precipitated into clusters. Due to the closed-shell electronic configurations of both helium and palladium,Pd grain boundaries yield strong capability of retaining helium atoms. By calculating the mean square displacements(MSD) of an interstitial helium atom at the grain boundaries,the diffusion coefficients were determined,and the linear fits to Arrhenius relation. The diffusion activation energies of interstitial helium atom at these two Pd grain boundaries were also evaluated.

  18. Productions of hollow atoms from solids irradiated by high intensity laser

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, K.; Sasaki, A.; Zhidkov, A. [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Inst. (Japan)

    2001-07-01

    The production of hollow atoms through the collisions of fast electrons with a solid is studied. These electrons are produced by high-intensity short-pulse laser irradiation on a solid. The inner-shell ionization and excitation processes by the fast electron impact are investigated. It is found that ionization processes give more significant contribution to the production of hollow atoms. (orig.)

  19. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  20. Atomic Orbitals for the New Millennium

    CERN Document Server

    Williams, J M

    1999-01-01

    This very short article introduces a set of nested atomic orbitals, called MCAS, to replace the current s, p, d, and f orbitals. The simplest orbital is a tetrahedrally directed, four lobed, mono-orbital instead of the spherical s orbital. All the other orbitals, no matter what their energy (shell) level is, are nested with this one. All the electrons have the same spin and only one electron is allotted to each orbital. Electron spin pairing is accomplished through opposing orbitals instead of actual electron spin reversal. Orbital energy level is maintained by nuclear propulsion through perigee kick. Orbitals hybridize as Aufbau proceeds, in contrast to the inflexible, current building model. The inert gases have completely uniform electronic shells that contain only one orbital type per shell. Since outer completed shells have only one type of orbital, all eight outer electrons are identical rather than being of two types as occurs in the current model; hence, Lewis' electron-dot octet. Hydrogen should resi...

  1. Shell Model Depiction of Isospin Mixing in sd Shell

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Yi Hua; Smirnova, Nadya A. [CENBG (CNRS/IN2P3 - Universite Bordeaux 1) Chemin du Solarium, 33175 Gradignan (France); Caurier, Etienne [IPHC, IN2P3-CNRS et Universite Louis Pasteur, 67037 Strasbourg (France)

    2011-11-30

    We constructed a new empirical isospin-symmetry breaking (ISB) Hamiltonian in the sd(1s{sub 1/2}, 0d{sub 5/2} and 0d{sub 3/2}) shell-model space. In this contribution, we present its application to two important case studies: (i){beta}-delayed proton emission from {sup 22}Al and (ii) isospin-mixing correction to superallowed 0{sup +}{yields}0{sup +}{beta}-decay ft-values.

  2. Core/shell composites with polystyrene cores and meso-silica shells as abrasives for improved chemical mechanical polishing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang, E-mail: cy.jpu@126.com; Qin, Jiawei; Wang, Yayun; Li, Zefeng [Changzhou University, School of Material Science and Engineering (China)

    2015-09-15

    The core/shell-structured organic/inorganic composite abrasive has an important potential application in damage-free chemical mechanical polishing (CMP) due to its non-rigid mechanical property. In this work, the PS/{sub M}SiO{sub 2} composites, containing polystyrene (PS) sphere (211 ± 4 nm) cores and mesoporous silica shells (31 ± 3 nm in thickness) were synthesized through directed surface sol–gel process of tetraethylorthosilicate on the polymer cores in the presence of the cetyltrimethylammonium bromide surfactant. For comparison, the conventional core/shell PS/{sub N}SiO{sub 2} composites with non-porous silica shells were also prepared via a modified Stöber procedure that involved the hydrolysis of TEOS under acidic condition. The physical properties of the samples were examined by small-angle X-ray diffraction, fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, field emission scanning electron microscopy, and nitrogen adsorption–desorption. As novel abrasives, the core/shell-structured PS/{sub M}SiO{sub 2} composites were introduced into the CMP process for silicon oxide films. The oxide-CMP performance among conventional solid silica particles, PS/{sub N}SiO{sub 2} composites, and novel PS/{sub M}SiO{sub 2} composites was explored by atomic force microscopy. Polishing results indicated that the substrate revealed a comparable root-mean-square surface roughness (0.25 ± 0.03 and 0.22 ± 0.02 nm, respectively) after CMP with PS/{sub N}SiO{sub 2} and PS/{sub M}SiO{sub 2} abrasives under the same polishing conditions. However, the material removal rate of the PS/{sub M}SiO{sub 2} composites (123 ± 15 nm/min) was about three times larger than that of the PS/{sub N}SiO{sub 2} composites (47 ± 13 nm/min). The reduced surface roughness and improved removal rate might be due to the optimization of the physical and/or chemical environments in the local contacting region between abrasives

  3. Atomic Energy Basics, Understanding the Atom Series.

    Science.gov (United States)

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  4. Revealing inner shell dynamics with inelastic X-ray scattering

    International Nuclear Information System (INIS)

    One of the many opportunities provided by the Advanced Photon Source (APS) is to extend the study of intra-atomic dynamics. As a means of testing dynamic response, inelastic x-ray scattering is particularly promising since it allows us to independently vary the period of the exciting field in both space and time. As an example of this type of work, the author presents experiments performed at the Cornell High Energy Synchrotron Source (CHESS) laboratory, a prototype for the APS. This was inner shell inelastic scattering with a twist: in order to explore a new distance scale an x-ray fluorescence trigger was employed. Aside for the atomic insight gained, the experiment taught them the importance of the time structure of the synchrotron beam for coincidence experiments which are dominated by accidental events

  5. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    Science.gov (United States)

    Kaçal, Mustafa Recep; Han, Ibrahim; Akman, Ferdi

    2014-10-29

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  6. Recent developments in anisotropic heterogeneous shell theory

    CERN Document Server

    Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G

    2016-01-01

    This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.

  7. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  8. Turbine blade with spar and shell

    Science.gov (United States)

    Davies, Daniel O.; Peterson, Ross H.

    2012-04-24

    A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.

  9. Teach us atom structure

    International Nuclear Information System (INIS)

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  10. Teach us atom structure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Suh Yeon

    2006-08-15

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  11. Absorption spectrum of very low pressure atomic hydrogen

    CERN Document Server

    Moret-Bailly, Jacques

    2015-01-01

    Spectra of quasars result primarily from interactions of natural light with atomic hydrogen. A visible absorption of a sharp and saturated spectral line in a gas requires a low pressure, so a long path without blushing as a cosmological redshift. Burbidge and Karlsson observed that redshifts of quasars result from fundamental redshifts, written 3K and 4K, that cause a shift of absorbed beta and gamma lines of H to alpha gas line. Thus absorbed spectrum is shifted until an absorbed line overlaps with Lyman alpha line of gas: redshift only occurs if an alpha absorption pumps atoms to 2P state. Thus, space is divided into spherical shells centered on the quasar, containing or not 2P atoms. Neglecting collisional de-excitations in absorbing shells, more and more atoms are excited until amplification of a beam having a long path in a shell, thus perpendicular to the observed ray, is large enough for a superradiant flash at alpha frequency. Energy is provided by atoms and observed ray, absorbing a line at local Lym...

  12. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  13. Shell trips over its reserves

    International Nuclear Information System (INIS)

    Some mistakes in the evaluation of the proven reserves of Royal Dutch Shell group, the second world petroleum leader, will oblige the other oil and gas companies to be more transparent and vigilant in the future. The proven reserves ('P90' in petroleum professionals' language) are the most important indicators of the mining patrimony of companies. These strategic data are reported each year in the annual reports of the companies and are examined by the security exchange commission. The evaluation of reserves is perfectly codified by the US energy policy and conservation act and its accountable translation using the FAS 69 standard allows to establish long-term cash-flow forecasts. The revision announced by Shell on January 9 leads to a 20% reduction of its proven reserves. Short paper. (J.S.)

  14. Shell Evolutions and Nuclear Forces

    Directory of Open Access Journals (Sweden)

    Sorlin O.

    2014-03-01

    Full Text Available During the last 30 years, and more specifically during the last 10 years, many experiments have been carried out worldwide using different techniques to study the shell evolution of nuclei far from stability. What seemed not conceivable some decades ago became rather common: all known magic numbers that are present in the valley of stability disappear far from stability and are replaced by new ones at the drip line. By gathering selected experimental results, beautifully consistent pictures emerge, that very likely take root in the properties of the nuclear forces.The present manuscript describes some of these discoveries and proposes an intuitive understanding of these shell evolutions derived from observations. Extrapolations to yet unstudied regions, as where the explosive r-process nucleosynthesis occurs, are proposed. Some remaining challenges and puzzling questions are also addressed.

  15. Shell Evolutions and Nuclear Forces

    CERN Document Server

    Sorlin, O

    2014-01-01

    During the last 30 years, and more specifically during the last 10 years, many experiments have been carried out worldwide using different techniques to study the shell evolution of nuclei far from stability. What seemed not conceivable some decades ago became rather common: all known magic numbers that are present in the valley of stability disappear far from stability and are replaced by new ones at the drip line. By gathering selected experimental results, beautifully consistent pictures emerge, that very likely take root in the properties of the nuclear forces.The present manuscript describes some of these discoveries and proposes an intuitive understanding of these shell evolutions derived from observations. Extrapolations to yet unstudied regions, as where the explosive r-process nucleosynthesis occurs, are proposed. Some remaining challenges and puzzling questions are also addressed.

  16. Shell structure, emerging collectivity, and valence p-n interactions

    Directory of Open Access Journals (Sweden)

    Cakirli R.B.

    2014-03-01

    Full Text Available The structure of atomic nuclei depends on the interactions of its constituents, protons and neutrons. These interactions play a key role in the development of configuration mixing and in the onset of collectivity and deformation, in changes to the single particle energies and magic numbers, and in the microscopic origins of phase transitional behavior. Particularly important are the valence proton-neutron interactions which can be studied experimentally using double differences of binding energies extracted from high-precision mass measurements. The resulting quantities, called δVpn, are average interaction strengths between the last two protons and the last two neutrons. Focusing on the Z=50-82, N=82-126 shells, we have considered a number of aspects of these interactions, ranging from their relation to the underlying orbits, their behaviour near close shells and throughout major shells, their relation to the onset of collectivity and deformation, and the appearance of unexpected spikes in δVpn values for a special set of heavy nuclei with nearly equal numbers of valence protons and neutrons. We have calculated spatial overlaps between proton and neutron Nilsson orbits and compared these with the experimental results. Finally we also address the relation between masses (separation energies, changes in structure and valence nucleon number.

  17. Shell structure of potassium isotopes deduced from their magnetic moments

    CERN Document Server

    Papuga, J; Kreim, K; Barbieri, C; Blaum, K; De Rydt, M; Duguet, T; Garcia Ruiz, R F; Heylen, H; Kowalska, M; Neugart, R; Neyens, G; Nortershauser, W; Rajabali, M M; Sanchez, R; Smirnova, N; Soma, V; Yordanov, D T

    2014-01-01

    $\\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\\\ \\\\ $\\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \\\\ \\\\ $\\textbf{Method:}$ High-resolution collinear laser spectroscopy on bunched atomic beams. \\\\ \\\\ $\\textbf{Results:}$ From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and $\\textit{ab initio}$ framework is al...

  18. Textile forwork for concrete shell

    OpenAIRE

    ADRIAENSSENS, Sigrid; DE TERMMERMAN, Niels; DE LAET, Lars; GULDENTOPS, Laurent; MOLLAERT, Marijke

    2009-01-01

    p. 1743-1754 Fabric formwork is a new application for textile membranes that provides numerous advantages and new opportunities for architecture and engineering compared to well known traditional formworks. The installation of fabric formwork requires less manual labor and has reduced material, storage, and transportation costs. But the most significant advantage of fabric moulds is the form freedom and structural performance they offer to shell design. This paper presents the state...

  19. Shell Models of Superfluid Turbulence

    Science.gov (United States)

    Wacks, Daniel H.; Barenghi, Carlo F.

    2011-12-01

    Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.

  20. Atomic phase diagram

    Institute of Scientific and Technical Information of China (English)

    LI Shichun

    2004-01-01

    Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.

  1. Nonperturbative shell correction to the Bethe-Bloch formula for the energy losses of fast charged particles

    Science.gov (United States)

    Matveev, V. I.; Makarov, D. N.

    2011-09-01

    A simple method including nonperturbative shell corrections has been developed for calculating energy losses on complex atoms. The energy losses of fast highly charged ions on neon, argon, krypton, and xenon atoms have been calculated and compared with experimental data. It has been shown that the inclusion of the non-perturbative shell corrections noticeably improves agreement with experimental data as compared to calculations by the Bethe-Bloch formula with the standard corrections. This undoubtedly helps to reduce the number of fitting parameters in various modifications of the Bethe-Bloch formula, which are usually determined semiempirically.

  2. Fracture mechanics of mollusc shells

    Energy Technology Data Exchange (ETDEWEB)

    Cortie, Michael B. [Institute for Nanoscale Technology, University of Technology, Sydney (Australia)]. E-mail: michael.cortie@uts.edu.au; McBean, Katie E. [Microstructural Analysis Unit, University of Technology, Sydney (Australia); Elcombe, Margaret M. [Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, NSW (Australia)

    2006-11-15

    The shape and structure of the shells of molluscs has attracted considerable attention. One aspect of interest is the comparatively high resistance to fracture of these shells. It is known that they are composite structures of aragonite, other calcereous materials, and up to 5% by volume of protein 'glue'. A large component of their toughening derives from crack tip blunting, deflection and closure, concepts well-known from the field of fracture mechanics. However, the possibility that they might also derive a measure of toughening from a residual stress distribution has been generally overlooked, although Illert first raised this over a decade ago. The optimum situation would be when the inner surface of the shell is maintained in a state of tensile stress, while the outer layers are in the necessarily counter-balancing compressive state. We have examined this hypothesis using a combination of neutron diffraction and scanning electron microscopy and find that it is certainly feasible. However, a definitive proof will require a diffraction study at higher resolution.

  3. Shell evolutions and nuclear forces

    International Nuclear Information System (INIS)

    Combining all experimental discoveries, some remarkable and general shell evolutions can be observed in the chart of nuclides. In the present contribution, the striking analogy between the behavior of the harmonic oscillator gaps N=8, 20 and 40 from the valley of stability to more neutron-rich regions is presented in section 2. The onset of deformation through intruder configurations at N=20 is depicted in section 3 using two recent experimental studies on the 34Si and 32Mg isotones. Section 4 proposes to study the evolution of the neutron single particle energies of the neutron d3/2, f7/2 and p3/2 orbitals between which the N=20 and N=28 gaps are formed. The underlying nuclear forces leading to the disappearance of the N=20 shell gap and the swapping between the f7/2 and p3/2 orbit is described. Section 5 shows that a hierarchy in the nuclear forces is responsible for these drastic shell evolutions. A generalization of this mechanism to other regions of the chart of nuclides (around 60Ca, below 78Ni and below 132Sn where the r-process nucleosynthesis occurs) is also proposed

  4. Asymptotic safety goes on shell

    CERN Document Server

    Benedetti, Dario

    2011-01-01

    It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge-dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector, and a new cut-off scheme. We find a non-trivial fixed point, with a value of the cosmological constant which is independent of the gauge-fixing parameters.

  5. Cold Matter Assembled Atom-by-Atom

    CERN Document Server

    Endres, Manuel; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D

    2016-01-01

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a novel platform for the deterministic preparation of regular arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of over 50 atoms in less than 400 ms. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach enables controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.

  6. Cargo-shell and cargo-cargo couplings govern the mechanics of artificially loaded virus-derived cages

    Science.gov (United States)

    Llauró, Aida; Luque, Daniel; Edwards, Ethan; Trus, Benes L.; Avera, John; Reguera, David; Douglas, Trevor; Pablo, Pedro J. De; Castón, José R.

    2016-04-01

    Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers.Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two

  7. Physical parameters for proton induced K-, L-, and M-shell ionization processes

    Science.gov (United States)

    Shehla; Puri, Sanjiv

    2016-10-01

    The proton induced atomic inner-shell ionization processes comprising radiative and non-radiative transitions are characterized by physical parameters, namely, the proton ionization cross sections, X-ray emission rates, fluorescence yields and Coster-Kronig (CK) transition probabilities. These parameters are required to calculate the K/L/M shell X-ray production (XRP) cross sections and relative X-ray intensity ratios, which in turn are required for different analytical applications. The current status of different physical parameters is presented in this report for use in various applications.

  8. Diffractive imaging of transient electronic core-shell structures in a nanoplasma

    CERN Document Server

    Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Krikunova, Maria; Müller, Jan-Phillipe; Müller, Maria; Oelze, Tim; Ovcharenko, Yevheniy; Sauppe, Mario; Schorb, Sebastian; Wolter, David; Harmand, Marion; Treusch, Rolf; Bostedt, Christoph; Möller, Thomas

    2016-01-01

    We have recorded the coherent diffraction images of individual xenon clusters using intense extreme ultraviolet free-electron laser pulses tuned to atomic and ionic resonances in order to elucidate the influence of light induced electronic changes on the diffraction pattern. The data show the emergence of a transient core-shell structure within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a cluster shell with strongly altered refraction. The presented resonant scattering approach enables the imaging of ultrafast electron dynamics with unprecedented spatial resolution on their natural time scale.

  9. Electron localizability indicators ELI and ELIA: the case of highly correlated wavefunctions for the argon atom.

    Science.gov (United States)

    Bezugly, Viktor; Wielgus, Pawel; Wagner, Frank R; Kohout, Miroslav; Grin, Yuri

    2008-06-01

    Electron localizability indicators based on the same-spin electron pair density and the opposite-spin electron pair density are studied for correlated wavefunctions of the argon atom. Different basis sets and reference spaces are used for the multireference configuration interaction method following the complete active space calculations aiming at the understanding of the effect of local electron correlation when approaching the exact wavefunction. The populations of the three atomic shells of Ar atom in real space are calculated for each case.

  10. Facile synthesis and enhanced luminescent properties of ZnO/HfO2 core-shell nanowires.

    Science.gov (United States)

    Zhang, Yuan; Lu, Hong-Liang; Wang, Tao; Ren, Qing-Hua; Gu, Yu-Zhu; Li, De-Hui; Zhang, David Wei

    2015-10-01

    The morphological, structural and photoluminescence properties of one-dimensional ZnO/HfO2 core-shell nanowires (NWs) with various thicknesses of HfO2 shell layers are studied in detail in this work. The ZnO NWs have been fabricated by a simple hydrothermal method, which are then coated by thin HfO2 shell layers using atomic layer deposition (ALD). The morphological and structural characterization demonstrates that the HfO2 shells with polycrystalline structures grow on the single-crystalline ZnO NWs conformally. Moreover, the ZnO/HfO2 core/shell NWs show remarkable enhanced ultraviolet (UV) emission with increasing thickness of the HfO2 shell layer compared with bare ZnO NWs. The UV emission intensity for the sample with HfO2 shell thickness of ∼16 nm is about 9 times higher than that of bare ZnO NWs. It mainly results from the decreased surface states by surface passivation of the HfO2 shell layer as well as a typical type-I band alignment in the ZnO/HfO2 core/shell structure. A model is also proposed to explain the evolution of the wide visible emission band with the relatively low intensity of the core/shell structures. Our results suggest that the ZnO/HfO2 core/shell structures have potential applications for high-efficiency optoelectronic devices such as UV light-emitting diodes and lasers. PMID:26339774

  11. Shape-tunable core-shell microparticles.

    Science.gov (United States)

    Klein, Matthias K; Saenger, Nicolai R; Schuetter, Stefan; Pfleiderer, Patrick; Zumbusch, Andreas

    2014-10-28

    Colloidal polymer particles are an important class of materials finding use in both everyday and basic research applications. Tailoring their composition, shape, and functionality is of key importance. In this article, we describe a new class of shape-tunable core-shell microparticles. They are composed of a cross-linked polystyrene (PS) core and a poly(methyl methacrylate) (PMMA) shell of varying thickness. In the first step, we prepared highly cross-linked PS cores, which are subsequently transferred into a nonpolar dispersant. They serve as the seed dispersion for a nonaqueous dispersion polymerization to generate the PMMA shell. The shape of the particles can subsequently be manipulated. After the shell growth stage, the spherical PS/PMMA core-shell colloids exhibit an uneven and wrinkled surface. An additional tempering procedure allows for smoothing the surface of the core-shell colloids. This results in polymer core-shell particles with a perfectly spherical shape. In addition to this thermal smoothing of the PMMA shell, we generated a selection of shape-anisotropic core-shell particles using a thermomechanical stretching procedure. Because of the unique constitution, we can selectively interrogate molecular vibrations in the PS core or the PMMA shell of the colloids using nonlinear optical microscopy techniques. This is of great interest because no photobleaching occurs, such that the particles can be tracked in real space over long times.

  12. Subshell resolved L shell ionization of Bi and U induced by 16 - 45 keV electrons

    International Nuclear Information System (INIS)

    Electron induced inner-shell ionization is important for both fundamental and applied research. Ionization of outer atomic energy levels has been studied extensively than for inner levels. Knowledge of inner shell ionization cross sections is important in X-ray and Auger electron spectroscopy and in the fields of astrophysics, plasma physics, surface science and many more. At electron impact energies near the atomic binding energies the distortion of the wave functions from plane wave towards a spherical wave, due to the electrostatic field of the atoms, needs to be considered. The distorted wave Born approximation (DWBA) calculations, taking relativistic effects and exchange interaction into account, is used to estimate the K, L and M-shell ionization cross-section for the atoms. Earlier experiments on electron impact ionization studies focused mainly on K-shell ionization cross-section, while L and M-shell ionization data were hardly reported. A review of the existing L-shell ionization cross-section data shows that, while the X-ray production cross-sections by electron impact were reported quite a few times, the reporting of subshell resolved ionization cross-sections were rarely found near the ionization threshold region. In the present work, we have measured the X ray production cross-sections of different L lines of Bi and U induced by 16-45 keV electrons and converted the obtained values to the subshell specific ionization cross-sections. The experimental data are compared with the theoretical calculations based on the (DWBA) obtained from PENELOPE. To the best of our knowledge, the subshell resolved electron induced ionization cross-sections for the L-shell of Bi and U are reported here for the first time at the energy values near the corresponding ionization threshold. (author)

  13. Fabrication Of Graded Germanium-Doped CH Shells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K C; Huang, H; Nikroo, A; Letts, S A; Cook, R C

    2005-07-07

    One of the current capsule designs for achieving ignition on the National Ignition Facility (NIF) is a 2 mm diameter graded Ge-doped CH shell that has a 160 {micro}m thick wall. The Ge doping is not uniform, but rather is in radial steps. This graded Ge-doped design allows rougher surface finish than the original undoped CH design thus has a less stringent new surface standard. We selected quality mandrel mandrels by coating dozens of mandrel batches to {approx}70 {micro}m thickness to amplify sub-micrometer defects on the mandrels and successively removed inferior batches. The Ge-doping layers are made by introducing (CH{sub 3}){sub 4}Ge to the gas stream. The doping concentrations were determined by performing tryout runs and characterized by X-ray fluorescence analyses and quantitative radiograph calculations, with good agreement between the methods being demonstrated. The precise layer thickness and Ge concentrations were determined by a non-destructive quantitative contact radiograph. The as-coated shell has an inner 10 {micro}m undoped CH layer, followed by a 48 {micro}m thick 0.83 at.% Ge-doped CH, 10 {micro}m thick 0.38 at.% Ge-doped CH and then 90 {micro}m of undoped CH. The shell meets nearly all the NIF design thickness specifications and Ge concentrations. The atomic force microscope power spectrum of the shell meets the new NIF standard. The shells has a root-mean-square surface roughness of {approx}24 nm (modes 100-1000). A few surface flaws are isolated domes of 1 {micro}m tall and 20 {micro}m in diameter. Mandrel was successfully removed by pyrolysis at 305 C for 10-20 h. After pyrolysis, the diameter and wall shrink 0.4% and 5.7%, respectively. The shell's inner surface has root-mean-square roughness ranging from 1.1-6.5 nm by WYKO interferometer measurement.

  14. Cascade of negative muons in atoms

    International Nuclear Information System (INIS)

    A study is made of the evolution of a negative muon captured in an atom and the formalism of energy loss associated with the muonic atom. The principal goals are to calculate reliability the muon x-ray intensities, given the initial population of the muonic orbits, to invert the problem and deduce the initial distribution from the x-ray intensities, to provide a reasonably simple and convenient tool to correlate observations, and finally, to systematize some questions of theoretical interest. The early part of the history of the muon in matter, including the atomic capture and classical phase of the atomic cascade are reviewed. In the quantal treatment of the transition rates, both radiative and electron Auger transitions are considered. In general, multipolarities up to E3 and K, L, and M electronic shells are fully investigated. Multipole radiation is treated in the conventinal way and pesents no special problems. Magnetic type transitions between states with different principal quantum numbers are shown to be small. Auger electron ejection rates are more complicated and several approximations have been adopted. The basic results have been computed in terms of elemetary functions. In the Auger transitions we have shown that magnetic multipoles can be safety neglected. The relative sizes of the rates corresponding to different multipoles are systematically studied. A comparison of results is made with atomic photoelectric effect data and with the nuclear internal conversion coefficients. A general agreement is found, except around shell thresholds. The existing data of muonic x-ray intensities in iron and thallium are analyzed in a systematic way. It is found that for Fe the initial l-distribution is almost flat, whereas that for T1 is weighted towards the high l values, sharper than statistical. As a result of the investigations and in order to make our findings usable, a computer program has been developed. 36 references

  15. Ab Initio No-Core Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, B R; Navratil, P; Vary, J P

    2011-04-11

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The

  16. Ab Initio No-Core Shell Model

    International Nuclear Information System (INIS)

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory (χEFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN

  17. Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles

    KAUST Repository

    Ding, Yong

    2010-09-08

    Using a two-step seed-mediated growth method, we synthesized bimetallic nanoparticles (NPs) having a gold octahedron core and a palladium epitaxial shell with controlled Pd-shell thickness. The mismatch-release mechanism between the Au core and Pd shell of the NPs was systematically investigated by high-resolution transmission electron microscopy. In the NPs coated with a single atomic layer of Pd, the strain between the surface Pd layer and the Au core is released by Shockley partial dislocations (SPDs) accompanied by the formation of stacking faults. For NPs coated with more Pd (>2 nm), the stacking faults still exist, but no SPDs are found. This may be due to the diffusion of Au atoms into the Pd shell layers to eliminate the SPDs. At the same time, a long-range ordered L11 AuPd alloy phase has been identified in the interface area, supporting the assumption of the diffusion of Au into Pd to release the interface mismatch. With increasing numbers of Pd shell layers, the shape of the Au-Pd NP changes, step by step, from truncated-octahedral to cubic. After the bimetallic NPs were annealed at 523 K for 10 min, the SPDs at the surface of the NPs coated with a single atomic layer of Pd disappeared due to diffusion of the Au atoms into the surface layer, while the stacking faults and the L11 Au-Pd alloyed structure remained. When the annealing temperature was increased to 800 K, electron diffraction patterns and diffraction contrast images revealed that the NPs became a uniform Au-Pd alloy, and most of the stacking faults disappeared as a result of the annealing. Even so, some clues still support the existence of the L11 phase, which suggests that the L11 phase is a stable, long-range ordered structure in Au-Pd bimetallic NPs. © 2010 American Chemical Society.

  18. Flow past a porous approximate spherical shell

    Science.gov (United States)

    Srinivasacharya, D.

    2007-07-01

    In this paper, the creeping flow of an incompressible viscous liquid past a porous approximate spherical shell is considered. The flow in the free fluid region outside the shell and in the cavity region of the shell is governed by the Navier Stokes equation. The flow within the porous annulus region of the shell is governed by Darcy’s Law. The boundary conditions used at the interface are continuity of the normal velocity, continuity of the pressure and Beavers and Joseph slip condition. An exact solution for the problem is obtained. An expression for the drag on the porous approximate spherical shell is obtained. The drag experienced by the shell is evaluated numerically for several values of the parameters governing the flow.

  19. Mussel Shell Impaction in the Esophagus

    Directory of Open Access Journals (Sweden)

    Sunmin Kim

    2013-03-01

    Full Text Available Mussels are commonly used in cooking around the world. The mussel shell breaks more easily than other shells, and the edge of the broken mussel shell is sharp. Impaction can ultimately cause erosion, perforation and fistula. Aside from these complications, the pain can be very intense. Therefore, it is essential to verify and remove the shell as soon as possible. In this report we describe the process of diagnosing and treating mussel shell impaction in the esophagus. Physicians can overlook this unusual foreign body impaction due to lack of experience. When physicians encounter a patient with severe chest pain after a meal with mussels, mussel shell impaction should be considered when diagnosing and treating the patient.

  20. MULTIPHOTON IONIZATION OF ATOMS

    OpenAIRE

    Mainfray, G.

    1985-01-01

    Multiphoton ionization of one-electron atoms, such as atomic hydrogen and alkaline atoms, is well understood and correctly described by rigorous theoretical models. The present paper will be devoted to collisionless multiphoton ionization of many-electron atoms as rare gases. It induces removal of several electrons and the production of multiply charged ions. Up to Xe5+ ions are produced in Xe atoms. Doubly charged ions can be produced, either by simultaneous excitation of two electrons, or b...

  1. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  2. Inner-shell ionization and stopping power

    International Nuclear Information System (INIS)

    For better understanding of various aspects in stopping phenomena such as Z13-dependence, shell correction, geometrical effect, direction dependence etc., it seems to be helpful to examine theoretically and experimentally the elementary processes which include plasmon excitation, single electron excitation and inner-shell excitation/ionization. In the present, impact-parameter dependent stopping power is discussed in connection with inner-shell ionization

  3. Instabilities and shape analyses of elastic shells

    OpenAIRE

    Knoche, Sebastian

    2014-01-01

    This thesis presents research results on the deformation of elastic shells, especially concerning buckling and wrinkling instabilities. The theoretical description of such deformations is used to develop methods of shape analysis, which serve to infer material properties from simple experimental observations of deformed shells. When an initially spherical shell is deflated, two successive instabilities can typically be observed. In a first buckling transition, an axisymmetric dimple appears....

  4. Biomineral repair of Abalone shell apertures

    OpenAIRE

    Cusack, M.; Guo, D.; Chung, P.; Kamenos, N. A.

    2013-01-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, ...

  5. A model for planktic foraminiferal shell growth

    OpenAIRE

    Signes, M.; Bijma, Jelle; Hemleben, C.; Ott, R.

    1993-01-01

    In this paper we analyze the laws of growth that control planktic foraminiferal shell morpholoy. We assume that isometry is the key towards the understanding of their ontogeny. Hence, our "null hypothesis" is that these organisms construct isometric shells. To test this hypothesis, geometric models of their shells have been generated with a personal computer. It is demonstrated that early chambers in log-spirally coiled structures can not follow a strict isometric arrangement. In the real wor...

  6. Clustering aspects and the shell model

    CERN Document Server

    Arima, A

    2004-01-01

    In this talk I shall discuss the clustering aspect and the shell model. I shall first discuss the $\\alpha$-cluster aspects based on the shell model calculations. Then I shall discuss the spin zero ground state dominance in the presence of random interactions and a new type of cluster structure for fermions in a single-$j$ shell in the presence of only pairing interaction with the largest multiplicity.

  7. Electron Shell as a Resonator

    International Nuclear Information System (INIS)

    Main principles of the resonance effect arising in the electron shells in interaction of the nuclei with electromagnetic radiation are analyzed and presented in the historical aspect. Principles of NEET are considered from a more general position, as compared to how this is usually presented. Characteristic features of NEET and its reverse, TEEN, as internal conversion processes are analyzed, and ways are offered of inducing them by laser radiation. The ambivalent role of the Pauli exclusion principles in NEET and TEEN processes is investigated.

  8. Design optimization of a torpedo shell structure

    Institute of Scientific and Technical Information of China (English)

    YU De-hai; SONG Bao-wei; LI Jia-wang; YANG Shi-xing

    2008-01-01

    An optimized methodology to design a more robust torpedo shell is proposed. The method has taken into account reliability requirements and controllable and uncontrollable factors such as geometry, load, material properties, manufacturing processes, installation, etc. as well as human and environmental factors. The result is a more realistic shell design. Our reliability optimization design model was developed based on sensitivity analysis. Details of the design model are given in this paper. An example of a torpedo shell design based on this model is given and demonstrates that the method produces designs that are more effective and reliable than traditional torpedo shell designs. This method can be used for other torpedo system designs.

  9. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  10. RESONANCE RADIATION OF SUBMERGED INFINITE CYLINDRICAL SHELL

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The resonance sound radiation from submerged infinite elastic cylindrical shell, excited by internal harmonic line force, is investigated. The shell radiation power is presented in terms of resonant modal radiation derived from resonance radiation theory (RRT). The resonance radiation formulae are derived from classical Rayleigh normal mode solution, which are useful for understanding the mechanism of sound radiation from submerged shells. As an example, numerical calculation of a thin steel cylindrical shell is done by using these two methods. It seems that the results of RRT solutions are in good agreement with that of Rayleigh normal mode solutions.

  11. OPTIMAL THICKNESS OF A CYLINDRICAL SHELL

    Directory of Open Access Journals (Sweden)

    Paul Ziemann

    2015-01-01

    Full Text Available In this paper an optimization problem for a cylindrical shell is discussed. The aim is to look for an optimal thickness of a shell to minimize the deformation under an applied external force. As a side condition, the volume of the shell has to stay constant during the optimization process. The deflection is calculated using an approach from shell theory. The resulting control-to-state operator is investigated analytically and a corresponding optimal control problem is formulated. Moreover, necessary conditions for an optimal solution are stated and numerical solutions are presented for different examples.

  12. On Prediction of 3d Stress State in Elastic Shell by Higher-order Shell Formulations

    OpenAIRE

    Brank, Boštjan; Ibrahimbegović, Adnan; Bohinc, Uroš

    2008-01-01

    In this work we study the accuracy of modem higher-order shell finite element formulations in computation of 3d stress state in elastic shells. In that sense we compare three higher-order shell models: (i) with seven dislacement-like kinematic parameters, and (ii, iii) with six displacement-like kinematic parameters plus one strain-like kinematic parameter introduced by two different versions of enhanced assumed strain (EAS) concept. The finite element approximations of all shell models are b...

  13. Synthesis of porous MnCo2O4microspheres with yolk–shell structure induced by concentration gradient and the effect on their performance in electrochemical energy storage

    DEFF Research Database (Denmark)

    Huang, Guoyong; Yang, Yue; Sun, Hongyu;

    2016-01-01

    In this study, novel spherical yolk–shell MnCo2O4 powders with concentration gradient have been synthesized. The porous microspheres with yolk–shell structure (2.00–3.00 μm in average diameter, ∼200 nm in thickness of shell) are built up by irregular nanoparticles attached to each other....... It is shown that the formation of yolk–shell structure may be induced by the core–shell concentration gradient. And the Co : Mn atomic ratios of core and shell are about 1.65 : 1 and 2.61 : 1, respectively. Interestingly, a similar uniform spherical MnCo2O4 without yolk–shell structure and concentration...

  14. The {\\it ab initio} calculation of spectra of open shell diatomic molecules

    CERN Document Server

    Tennyson, Jonathan; McKemmish, Laura K; Yurchenko, Sergei N

    2016-01-01

    The spectra (rotational, rotation-vibrational or electronic) of diatomic molecules due to transitions involving only closed-shell ($^1\\Sigma$) electronic states follow very regular, simple patterns and their theoretical analysis is usually straightforward. On the other hand, open-shell electronic states lead to more complicated spectral patterns and, moreover, often appear as a manifold of closely lying electronic states, leading to perturbations with even larger complexity. This is especially true when at least one of the atoms is a transition metal. Traditionally these complex cases have been analysed using approaches based on perturbation theory, with semi-empirical parameters determined by fitting to spectral data. Recently the needs of two rather diverse scientific areas have driven the demand for improved theoretical models of open-shell diatomic systems based on an \\emph{ab initio} approach, these areas are ultracold chemistry and the astrophysics of "cool" stars, brown dwarfs and most recently extraso...

  15. Average M shell fluorescence yields for elements with 70≤Z≤92

    Energy Technology Data Exchange (ETDEWEB)

    Kahoul, A., E-mail: ka-abdelhalim@yahoo.fr [Department of Materials Science, Faculty of Sciences and Technology, Mohamed El Bachir El Ibrahimi University, Bordj-Bou-Arreridj 34030 (Algeria); LPMRN laboratory, Department of Materials Science, Faculty of Sciences and Technology, Mohamed El Bachir El Ibrahimi University, Bordj-Bou-Arreridj 34030 (Algeria); Deghfel, B. [Physics Department, Faculty of Sciences, M’Sila University, 28000 M’Sila (Algeria); Laboratory of materials physics and their applications, Physics Department, Faculty of Sciences, University of Mohamed Boudiaf, 28000 M’sila (Algeria); Aylikci, V. [Department of Metallurgical and Materials Engineering, Faculty of Technology, Mustafa Kemal University, Hatay 31040 (Turkey); Aylikci, N. K. [Department of Physics, Faculty of Sciences, Karadeniz Technical University, Trabzon 61080,Turkey (Turkey); Nekkab, M. [Physics Department, Faculty of Sciences, M’Sila University, 28000 M’Sila (Algeria); LESIMS laboratory, Faculty of Sciences, Ferhat Abbas University, Setif,19000 (Algeria)

    2015-03-30

    The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (ω{sup ¯}{sub M}) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70≤Z≤92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement was typically obtained between our result and other works.

  16. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  17. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  18. Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell

    CERN Document Server

    Moroz, A

    2004-01-01

    Frequency shifts, radiative decay rates, the Ohmic loss contribution to the nonradiative decay rates, fluorescence yields, and photobleaching of a two-level atom radiating anywhere inside or outside a complex spherical nanoshell, i.e. a stratified sphere consisting of alternating silica and gold concentric spherical shells, are studied. The changes in the spectroscopic properties of an atom interacting with complex nanoshells are significantly enhanced, often more than two orders of magnitude, compared to the same atom interacting with a homogeneous dielectric sphere. The changes strongly depend on the nanoshell parameters and the atom position. When an atom approaches a metal shell,the radiative decay rates are strongly enhanced and they increase faster than the Ohmic loss contribution to the nonradiative decay rates. However, the majority of the emitted radiation does not escape to spatial infinity but instead is absorbed. The enhancement of the radiative decay rates in a close proximity of metal boundaries...

  19. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-05-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  20. Experimental study of thermohydraulic processes and gas distribution in a model of the containment shell of the AST-500 reactor

    International Nuclear Information System (INIS)

    Experiments were made on a setup consisting of a large-scale twin-assembly model of the primary circuit of an integral reactor and of a model of a containment shell which is a means for confining the outflow of coolant from the reactor. The large-scale model of an AST-500 reactor has vertical dimensions close to the actual dimensions and similar coefficients of hydraulic resistance and volume ratios of the principal elements the circuit with natural circulation. The model of the containment shell is a vertical cylindrical vessel with a size of 426 x 12 mm, a height of 9.78 m, and a volume of 1.24 m3. The volume scale of the reactor model and of the model of the containment shell is 1:170. The elements of the latter model are made from steel 20. The models of the reactor and of the containment shell are joined through two pipelines with a size of 57 x 3.5 mm and shut-off valves with a diameter of 50 mm mounted thereon. A total of 70 experiments were made to simulate leakage of the primary circuit of the integrated reactor and the outflow of coolant into the containment shell. The authors have provided detailed information on the large-scale model, have described the experimental conditions, and have reported on the main results of their study of the development of an accident involving the loss of coolant in the reactor-containment shell system. The present article reports on a study of the thermohydraulic processes and the gas distribution in the containment shell. Since the designs of the model and of the actual containment shell of the AST-500 reactor are not identical, the authors assume that the results reported can be used in appropriate computer programs describing the processes which occur in containment vessels of atomic power stations (containment shells, protective shells, sealed assemblies)

  1. Dealloying-based facile synthesis and highly catalytic properties of Au core/porous shell nanoparticles

    Science.gov (United States)

    Kim, Minho; Ko, Sung Min; Nam, Jwa-Min

    2016-06-01

    Porous nanostructures exhibit excellent catalytic properties due to high surface-to-volume ratio, good surface reactivity and various structural features, but controlling the distribution, size, shape and density of pores and structural features of these particles is highly challenging. Herein, we report a tunable dealloying-based facile synthetic strategy to form highly porous Au core/porous shell nanoparticles (CPS NPs) in high yield by selectively dissolving Ag atoms from Au/Au-Ag core/alloy shell NPs. The CPS NPs exhibit a very short induction time, high conversion rate constant, low activation energy and high turnover frequency due to their catalytically active porous shells containing networked thin ligaments, surface defects, ultra-high porosity and photothermal properties. The CPS NPs are more catalytic Au NPs than other reported Au nanostructures, and the strategy and results open avenues in porous nanostructures and nanocatalysts.Porous nanostructures exhibit excellent catalytic properties due to high surface-to-volume ratio, good surface reactivity and various structural features, but controlling the distribution, size, shape and density of pores and structural features of these particles is highly challenging. Herein, we report a tunable dealloying-based facile synthetic strategy to form highly porous Au core/porous shell nanoparticles (CPS NPs) in high yield by selectively dissolving Ag atoms from Au/Au-Ag core/alloy shell NPs. The CPS NPs exhibit a very short induction time, high conversion rate constant, low activation energy and high turnover frequency due to their catalytically active porous shells containing networked thin ligaments, surface defects, ultra-high porosity and photothermal properties. The CPS NPs are more catalytic Au NPs than other reported Au nanostructures, and the strategy and results open avenues in porous nanostructures and nanocatalysts. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01321j

  2. THE ORNL ATOM PROBE

    OpenAIRE

    Miller, M

    1986-01-01

    The ORNL Atom Probe is a microanalytical tool for studies in materials science. The instrument is a combination of a customized version of the vacuum system of the VG FIM-100 atom probe, an ORNL-designed microcomputer-controlled digital timing system, and a double curved CEMA Imaging Atom Probe detector. The atom probe combines four instruments into one - namely a field ion microscope, an energy compensated time-of-flight mass spectrometer, an imaging atom probe, and a pulsed laser atom probe.

  3. Alternative evaluation of statistical indicators in atoms: The non-relativistic and relativistic cases

    International Nuclear Information System (INIS)

    In this work, the calculation of a statistical measure of complexity and the Fisher-Shannon information is performed for all the atoms in the periodic table. Non-relativistic and relativistic cases are considered. We follow the method suggested in [C.P. Panos, N.S. Nikolaidis, K.Ch. Chatzisavvas, C.C. Tsouros, (arXiv:0812.3963v1)] that uses the fractional occupation probabilities of electrons in atomic orbitals, instead of the continuous electronic wave functions. For the order of shell filling in the relativistic case, we take into account the effect due to electronic spin-orbit interaction. The increasing of both magnitudes, the statistical complexity and the Fisher-Shannon information, with the atomic number Z is observed. The shell structure and the irregular shell filling is well displayed by the Fisher-Shannon information in the relativistic case.

  4. Wide-range shell correction to the Thomas--Fermi theory and equation of state for electrons

    CERN Document Server

    Dyachkov, Sergey

    2016-01-01

    Shell effects reflects irregularities of physical quantities caused by a discrete energy spectrum. The theory of the shell effects by Kirzhnits and Shpatakovskaya is valid only at relatively low densities providing for oscillations of thermodynamic functions. Similar effects for the electronic binding energy of a neutral atom were considered by Englert and Schwinger. In this work we propose a method of calculation of shell effects applicable in a wide range of density and temperature. The model is based on the finite-temperature Thomas-Fermi theory. Shell corrections to thermodynamic functions are obtained by special accounting of semiclassical states of bound electrons in the Thomas-Fermi potential. The results are in good correspondence with the precise Saha approach for the low density plasma and density functional theory simulation at high density.

  5. Synthesis of SnO2-ZnO Core-Shell Nanowires and Their Optoelectronic Properties

    Directory of Open Access Journals (Sweden)

    Ko-Ying Pan

    2012-01-01

    Full Text Available Zinc oxides deposited on Tin dioxide nanowires have been successfully synthesized by atomic layer deposition (ALD. The diameter of SnO2-ZnO core-shell nanowires is 100 nm by ALD 200 cycles. The result of electricity measurements shows that the resistance of SnO2-ZnO core-shell nanowires (ALD: 200 cycles is 925 Ω, which is much lower than pure SnO2 nanowires (3.6 × 106 Ω. The result of UV light test shows that the recovery time of SnO2-ZnO core-shell nanowires (ALD: 200 cycles is 328 seconds, which is lower than pure SnO2 nanowires (938 seconds. These results demonstrated that the SnO2-ZnO core-shell nanowires have potential application as UV photodetectors with high photon-sensing properties.

  6. Near threshold photodetachment cross section of negative atomic oxygen ions

    Institute of Scientific and Technical Information of China (English)

    Wu Jian-Hua(吴建华); Yuan Jian-Min(袁建民); Vo Ky Lan

    2003-01-01

    A 40-target state close-coupling calculation for the photodetachment cross section of negative atomic oxygen near threshold is carried out with core-valence electron correlation by using the R-matrix method. It was shown that after considering the excitations of two electrons from the 2s shell, the electron affinity of O- (2s22p5 2po) agrees with the experimental result much better than that just considering the excitations of electrons only from the 2p shell as well as only one electron from the 2s shell. Total cross section as well as the main contribution of the ionization channels to the partial cross section are illustrated to show the structure near threshold clearly.

  7. Lanthanum(III) and Lutetium(III) in Nitrate-Based Ionic Liquids: A Theoretical Study of Their Coordination Shell.

    Science.gov (United States)

    Bodo, Enrico

    2015-09-01

    By using ab initio molecular dynamics, we investigate the solvent shell structure of La(3+) and Lu(3+) ions immersed in two ionic liquids, ethylammonium nitrate (EAN) and its hydroxy derivative (2-ethanolammonium nitrate, HOEAN). We provide the first study of the coordination properties of these heavy metal ions in such a highly charged nonacqueous environment. We find, as expected, that the coordination in the liquid is mainly due to nitrate anions and that, due to the bidentate nature of the ligand, the complexation shell of the central ion has a nontrivial geometry and a coordination number in terms of nitrate molecules that apparently violates the decrease of ionic radii along the lanthanides series, since the smaller Lu(3+) ion seems to coordinate six nitrate molecules and the La(3+) ion only five. A closer inspection of the structural features obtained from our calculations shows, instead, that the first shell of oxygen atoms is more compact for Lu(3+) than for La(3+) and that the former coordinates 8 oxygen atoms while the latter 10 in accord with the typical lanthanide's trend along the series and that their first solvation shells have a slight irregular and complex geometrical pattern. When moving to the HOEAN solutions, we have found that the solvation of the central ion is possibly also due to the cation itself through the oxygen atom on the side chain. Also, in this liquid, the coordination numbers in terms of oxygen atoms in both solvents is 10 for La(3+) and 8 for Lu(3+).

  8. Inner shell energies: experimental problems

    International Nuclear Information System (INIS)

    Progress in theoretical estimates of single vacancy atomic term values has challenged available experimental data. This brief survey of the experimental situation indicates both conceptual and technical problems which are currently faced. Although these interpretational difficulties are formidable, the emergence of systematic trends in the comparison of theory and experiment appears to invite a simple explication

  9. Dispersion coefficients for the interaction of inert gas atoms with alkali and alkaline earth ions and alkali atoms with their singly ionized ions

    CERN Document Server

    Singh, Sukhjit; Sahoo, B K; Arora, Bindiya

    2016-01-01

    We report the dispersion coefficients for the interacting inert gas atoms with the alkali ions, alkaline earth ions and alkali atoms with their singly charged ions. We use our relativistic coupled-cluster method to determine dynamic dipole and quadrupole polarizabilities of the alkali atoms and singly ionized alkaline earth atoms, whereas a relativistic random phase approximation approach has been adopted to evaluate these quantities for the closed-shell configured inert gas atoms and the singly and doubly ionized alkali and alkaline earth atoms, respectively. Accuracies of these results are adjudged from the comparison of their static polarizability values with their respective experimental results. These polarizabilities are further compared with the other theoretical results. Reason for the improvement in the accuracies of our estimated dispersion coefficients than the data listed in [At. Data and Nucl. Data Tables 101, 58 (2015)] are discussed. Results for some of the atom-ion interacting systems were not...

  10. Novel Spacetime Concept and Dimension Curling up Mechanism in Neon Shell

    CERN Document Server

    Xu, K

    2005-01-01

    Euclidean geometry does not characterize dynamic electronic orbitals satisfactorily for even a single electron in a hydrogen atom is a formidable mathematical task with the Schrodinger equation. Here the author puts forward a new spacetime concept that regards space and time as two orthogonal, symmetric and complementary quantities. They are inherent physical quantities that cannot be divorced from physical objects themselves. In two-dimensional helium shell, space and time are instantiated by two interactive 1s electrons; in four-dimensional neon shell, space and time dimensions blend into four types of curvilinear vectors represented by 2s, 2px, 2py, and 2pz electronic orbitals. The description of electronic orbitals constitutes an explanation of canonical spacetime properties such as harmonic oscillation, electromagnetism, and wave propagation. Through differential and integral operations, the author formulates a precise wavefunction for every electron in an inert neon atom where spacetime, as dimensional ...

  11. Facile preparation of hybrid core-shell nanorods for photothermal and radiation combined therapy

    Science.gov (United States)

    Deng, Yaoyao; Li, Erdong; Cheng, Xiaju; Zhu, Jing; Lu, Shuanglong; Ge, Cuicui; Gu, Hongwei; Pan, Yue

    2016-02-01

    The hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy. Therefore, the as-prepared core-shell nanorods could play an important role in facilitating synergistic therapy between photothermal and radiation therapy to achieve better therapeutic efficacy.The hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy. Therefore, the as-prepared core-shell nanorods could play an important role in facilitating synergistic therapy between photothermal and radiation therapy to achieve better therapeutic efficacy. Electronic supplementary information (ESI) available: Details of general experimental procedures. See DOI: 10.1039/c5nr09102k

  12. Exact internal controllability for shallow shells

    Institute of Scientific and Technical Information of China (English)

    FENG Shaoji; FENG Dexing

    2006-01-01

    The internal control problem is considered, based on the linear displacement equations of shallow shell. It is shown, with some checkable geometric conditions on control region, that the undergoing shallow shell is exactly controllable by using Hilbert uniqueness method (HUM), piecewise multiplier method and Riemannian geometry method. Then some examples are given to show the assumed geometric conditions.

  13. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  14. Thin Shell Wormhole in Heterotic String Theory

    OpenAIRE

    Rahaman, F.; Kalam, M.; S. Chakraborti

    2006-01-01

    Using 'Cut and Paste' technique, we develop a thin shell wormhole in heterotic string theory. We determine the surface stresses, which are localized in the shell, by using Darmois-Israel formalism. The linearized stability of this thin wormhole is also analyzed.

  15. Biomineral repair of abalone shell apertures.

    Science.gov (United States)

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair.

  16. Microsoft Exchange Server PowerShell cookbook

    CERN Document Server

    Andersson, Jonas

    2015-01-01

    This book is for messaging professionals who want to build real-world scripts with Windows PowerShell 5 and the Exchange Management Shell. If you are a network or systems administrator responsible for managing and maintaining Exchange Server 2013, you will find this highly useful.

  17. Closed shells at drip-line nuclei

    OpenAIRE

    Dobaczewski, J.; Nazarewicz, W.; Werner, T. R.

    1994-01-01

    The shell structure of magic nuclei far from stability is discussed in terms of the self-consistent spherical Hartree-Fock-Bogoliubov theory. In particular, the sensitivity of the shell-gap sizes and the two-neutron separation energies to the choice of particle-hole and particle-particle components of the effective interaction is investigated.

  18. A Geometric Theory of Nonlinear Morphoelastic Shells

    Science.gov (United States)

    Sadik, Souhayl; Angoshtari, Arzhang; Goriely, Alain; Yavari, Arash

    2016-08-01

    Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of nonlinear morphoelastic shells that describes both the evolution of the body shape, viewed as an orientable surface, as well as its intrinsic material properties such as its reference curvatures. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell, the so-called material manifold. Geometric quantities attached to the surface, such as the first and second fundamental forms, are obtained from the metric of the three-dimensional body and its evolution. The governing dynamical equations for the body are obtained from variational consideration by assuming that both fundamental forms on the material manifold are dynamical variables in a Lagrangian field theory. In the case where growth can be modeled by a Rayleigh potential, we also obtain the governing equations for growth in the form of kinetic equations coupling the evolution of the first and the second fundamental forms with the state of stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar sheet, the time evolution of a morphoelastic circular cylindrical shell subject to time-dependent internal pressure, and the residual stress of a morphoelastic planar circular shell.

  19. Symmetry-guided large-scale shell-model theory

    Science.gov (United States)

    Launey, Kristina D.; Dytrych, Tomas; Draayer, Jerry P.

    2016-07-01

    In this review, we present a symmetry-guided strategy that utilizes exact as well as partial symmetries for enabling a deeper understanding of and advancing ab initio studies for determining the microscopic structure of atomic nuclei. These symmetries expose physically relevant degrees of freedom that, for large-scale calculations with QCD-inspired interactions, allow the model space size to be reduced through a very structured selection of the basis states to physically relevant subspaces. This can guide explorations of simple patterns in nuclei and how they emerge from first principles, as well as extensions of the theory beyond current limitations toward heavier nuclei and larger model spaces. This is illustrated for the ab initio symmetry-adapted no-core shell model (SA-NCSM) and two significant underlying symmetries, the symplectic Sp(3 , R) group and its deformation-related SU(3) subgroup. We review the broad scope of nuclei, where these symmetries have been found to play a key role-from the light p-shell systems, such as 6Li, 8B, 8Be, 12C, and 16O, and sd-shell nuclei exemplified by 20Ne, based on first-principle explorations; through the Hoyle state in 12C and enhanced collectivity in intermediate-mass nuclei, within a no-core shell-model perspective; up to strongly deformed species of the rare-earth and actinide regions, as investigated in earlier studies. A complementary picture, driven by symmetries dual to Sp(3 , R) , is also discussed. We briefly review symmetry-guided techniques that prove useful in various nuclear-theory models, such as Elliott model, ab initio SA-NCSM, symplectic model, pseudo- SU(3) and pseudo-symplectic models, ab initio hyperspherical harmonics method, ab initio lattice effective field theory, exact pairing-plus-shell model approaches, and cluster models, including the resonating-group method. Important implications of these approaches that have deepened our understanding of emergent phenomena in nuclei, such as enhanced

  20. Cargo-shell and cargo-cargo couplings govern the mechanics of artificially loaded virus-derived cages.

    Science.gov (United States)

    Llauró, Aida; Luque, Daniel; Edwards, Ethan; Trus, Benes L; Avera, John; Reguera, David; Douglas, Trevor; Pablo, Pedro J de; Castón, José R

    2016-04-28

    Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ∼30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ∼20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers. PMID:27091107

  1. Polishing behavior of PS/CeO2 hybrid microspheres with controlled shell thickness on silicon dioxide CMP

    International Nuclear Information System (INIS)

    Organic-inorganic composite microspheres with PS as a core and CeO2 nanoparticles as a shell were synthesized by in situ decomposition reaction of Ce(NO3)3 on the surfaces of PS microspheres prepared through soap-free emulsion polymerization. The shell thickness of the composite microspheres could be turned by varying the concentration of Ce(NO3)3 in the reaction solution. The whole process required neither surface treatment for PS microspheres nor additional surfactant or stabilizer. The as-synthesized PS/CeO2 composite microsphere samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). Oxide chemical mechanical polishing (CMP) performance of the PS/CeO2 composite abrasives with different shell thickness was characterized by atomic force microscopy (AFM). The results indicated that the as-prepared core-shell structured composite microspheres (220-260 nm in diameter) possessed thin shell (10-30 nm) composed of CeO2 nanoparticles (particle diameter of 5-10 nm), and the final CeO2 contents of the composite microspheres ranged from 10 to 50 wt%. A possible mechanism for the formation of PS/CeO2 composite microspheres was discussed also. The CMP test results confirmed that the novel core-shell structured composite abrasives are useful to improve oxide CMP performance. In addition, there is an obvious effect of shell thickness of the composite abrasives on oxide CMP performance.

  2. Presenting the Bohr Atom.

    Science.gov (United States)

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  3. Structural shell analysis understanding and application

    CERN Document Server

    Blaauwendraad, Johan

    2014-01-01

    The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...

  4. Monte Carlo Shell Model Mass Predictions

    International Nuclear Information System (INIS)

    The nuclear mass calculation is discussed in terms of large-scale shell model calculations. First, the development and limitations of the conventional shell model calculations are mentioned. In order to overcome the limitations, the Quantum Monte Carlo Diagonalization (QMCD) method has been proposed. The basic formulation and features of the QMCD method are presented as well as its application to the nuclear shell model, referred to as Monte Carlo Shell Model (MCSM). The MCSM provides us with a breakthrough in shell model calculations: the structure of low-lying states can be studied with realistic interactions for a nearly unlimited variety of nuclei. Thus, the MCSM can contribute significantly to the study of nuclear masses. An application to N∼20 unstable nuclei far from the β-stability line is mentioned

  5. Systematic study of shell gaps in nuclei

    CERN Document Server

    Mo, Qiuhong; Wang, Ning

    2014-01-01

    The nucleon separation energies and shell gaps in nuclei over the whole nuclear chart are systematically studied with eight global nuclear mass models. For unmeasured neutron-rich and super-heavy regions, the uncertainty of the predictions from these different mass models is still large. The latest version (WS4) of the Weizs\\"acker-Skyrme mass formula, in which the isospin dependence of model parameters is introduced into the macroscopic-microscopic approach inspired by the Skyrme energy-density functional, is found to be the most accurate one in the descriptions of nuclear masses, separation energies and shell gaps. Based on the predicted shell gaps in nuclei, the possible magic numbers in super-heavy nuclei region are investigated. In addition to the shell closures at $N=184, Z=114$, the sub-shell closures at around $N=178, Z=120$ could also play a role for the stability of super-heavy nuclei.

  6. Structure, energetic and phase transition of multi shell icosahedral bimetallic nanostructures: A molecular dynamics study of Ni{sub m}Pd{sub n} (n + m = 55 and 147)

    Energy Technology Data Exchange (ETDEWEB)

    Hewage, Jinasena W., E-mail: jinasena@chem.ruh.ac.lk

    2015-01-15

    Structure, energetic and thermodynamic properties of multi shell icosahedral bimetallic nickel–palladium nanostructures with the size of 55 and 147 atoms were studied by using the molecular dynamics simulations and the microcanonical ensemble version of multiple histogram method. In 55 atoms icosahedra, two core–shell motifs, Ni{sub 13}Pd{sub 42} and Pd{sub 13}Ni{sub 42} with their isomers Pd{sub 13}(Pd{sub 29}Ni{sub 13}) and Ni{sub 13}(Ni{sub 29}Pd{sub 13}) were considered. Similarly in 147 atoms icosahedra, all mutations corresponding to the occupations of either nickel atoms or palladium atoms in the core, inner shell or outer shell and their isomers generated by interchanging thirteen core atoms with thirteen atoms of the other type in the inner and outer shells were considered. It is found that the nickel-core clusters are more stable than the palladium-core clusters and cohesive energy increases with the nickel composition. Phase transition of each cluster was studied by means of constant volume heat capacity. The trend in variation of melting temperature is opposite to the energy trend and special increase in melting points was observed for nickel-core isomers compared to the palladium-core isomers. Helmholtz free energy change with temperature for shell to core interchange of thirteen atoms revealed the thermodynamic stability of the formation of Ni{sub core}Pd{sub shell} structures and the surface segregation of palladium. - Highlights: • Nanostructures of Ni{sub m}Pd{sub n} clusters for m + n = 55 and 147 have been studied. • Structures favor the formation of nickel-core surrounded by palladium atoms. • In general, it appears the increase of cohesive energy with the nickel composition. • Calculated thermodynamic parameters confirm the energetic results. • Results show also the palladium segregation on the surface.

  7. The main factors causing "imperfect shell development" (ISD) in thin-shelled walnut

    Institute of Scientific and Technical Information of China (English)

    Baoguo LI; Suping GUO; Guohui QI

    2009-01-01

    Effects of solar radiation, rainfall and cultivars on "imperfect shell development" (ISD) of the thin-shelled walnut were studied by means of field investigation and weather data comparison. The results showed that cultivars were the main factor causing the ISD of the thin-shelled walnut. Among the cultivars, Shangsong 6 was the most sensitive one, whose percentage of imperfect shell attained 67.3%, followed by Xiangling (52.7%). However, the rate of imperfect shells in Zhonglin 5 was only 20.9%. It was sug-gested that the main environmental factors contributing to the ISD of the thin-shelled walnut were sunlight intensity and rainfall during the shell-hardening stage.

  8. A static spherically symmetric thin shell wormhole colliding with a spherical thin shell

    CERN Document Server

    Gao, Sijie

    2015-01-01

    We consider a static spherically symmetric thin shell wormhole collides with another thin shell consisting of ordinary matter. By employing the geometrical constraint, which leads to the conservation of energy and momentum, we show that the state after the collision can be solved from the initial data. In the low speed approximation, the solutions are rather simple. The shell may either bounce back or pass through the wormhole. In either case, the wormhole shrinks right after the collision. In the ``bouncing'' case, a surprising result is that the radial speeds before and after the collision satisfy an addition law, which is independent of the masses of the wormhole and the shell. Once the shell passes through the wormhole, we find that the shell always expands. However, the expansion rate is the same as its collapsing rate right before the collision. Finally, we find out the solution for the shell moving together with the wormhole.

  9. Local shell-to-shell energy transfer via nonlocal interactions in fluid turbulence

    Indian Academy of Sciences (India)

    Mahendra K Verma; Arvind Ayyer; Olivier Debliquy; Shishir Kumar; Amar V Chandra

    2005-08-01

    In this paper we analytically compute the strength of nonlinear interactions in a triad, and the energy exchanges between wave-number shells in incompressible fluid turbulence. The computation has been done using first-order perturbative field theory. In three dimensions, magnitude of triad interactions is large for nonlocal triads, and small for local triads. However, the shell-to-shell energy transfer rate is found to be local and forward. This result is due to the fact that the nonlocal triads occupy much less Fourier space volume than the local ones. The analytical results on three-dimensional shell-to-shell energy transfer match with their numerical counterparts. In two-dimensional turbulence, the energy transfer rates to the nearby shells are forward, but to the distant shells are backward; the cumulative effect is an inverse cascade of energy.

  10. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    Science.gov (United States)

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-01

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  11. Femtometer accuracy EXAFS measurements: Isotopic effect in the first, second and third coordination shells of germanium

    Energy Technology Data Exchange (ETDEWEB)

    Purans, J; Timoshenko, J; Kuzmin, A [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Dalba, G; Fornasini, P; Grisenti, R; Afify, N D [Dip. di Fisica dell' Universita di Trento, Via Sommarive 14, I-38050 Povo, Trento (Italy); Rocca, F [Istituto di Fotonica e Nanotecnologie del CNR, Sezione ' FBK-CeFSA' di Trento, Povo, Trento (Italy); De Panfilis, S [Research Center Soft INFM-CNR, c/o Universita di Roma La Sapienza, I-00185 Roma (Italy); Ozhogin, I [Institute of Molecular Physics, Russian Research Centre ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Tiutiunnikov, S I, E-mail: purans@cfi.lu.l [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2009-11-15

    The analysis of the EXAFS signals from {sup 70}Ge and {sup 76}Ge has evidenced the low-temperature effect of isotopic mass difference on the amplitude of relative atomic vibrations. This effect is reflected in the difference of the Debye-Waller factors of the first three coordination shells, and on the difference of nearest-neighbour average interatomic distances, evaluated with femtometer accuracy. The experimental results are in agreement with theoretical expectations.

  12. Toxicity of Graphene Shells, Graphene Oxide, and Graphene Oxide Paper Evaluated with Escherichia coli Biotests

    OpenAIRE

    Ludmila V. Efremova; Alexey S. Vasilchenko; Rakov, Eduard G.; Dmitry G. Deryabin

    2015-01-01

    The plate-like graphene shells (GS) produced by an original methane pyrolysis method and their derivatives graphene oxide (GO) and graphene oxide paper (GO-P) were evaluated with luminescent Escherichia coli biotests and additional bacterial-based assays which together revealed the graphene-family nanomaterials’ toxicity and bioactivity mechanisms. Bioluminescence inhibition assay, fluorescent two-component staining to evaluate cell membrane permeability, and atomic force microscopy data show...

  13. High-Resolution Spectroscopy of K-shell Praseodymium with a High-Energy Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, D B; Brown, G V; Clementson, J T; Chen, H; Chen, M H; Beiersdorfer, P; Boyce, K R; Kilbourne, C A; Porter, F S; Kelley, R L

    2007-06-05

    We present a measurement of the K-shell spectrum of He-like through Be-like praseodymium ions trapped in the Livermore SuperEBIT electron beam ion trap using a bismuth absorber pixel on the XRS/EBIT microcalorimeter. This measurement is the first of its kind where the n=2 to n=1 transitions of the various charge states are spectroscopically resolved. The measured transition energies are compared with theoretical calculations from several atomic codes.

  14. Contrasts in the application of distortion in calculations of the K-shell ionization cross section

    International Nuclear Information System (INIS)

    Two models which describe the proton-induced ionization from the K shell of an atom are contrasted in terms of the differing forms of distortion employed. Results of calculations of both total and differential cross section are seen to be surprisingly close despite the large disparity between the models. Some consequences are discussed, particularly with regard to the use of pseudostates to represent continuum states. (orig.)

  15. Ternary and quaternary Lennard-Jones atomic clusters: The effects of atomic sizes on the compositions, geometries, and relative stability

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Hiroshi, E-mail: takehi@sci.hokudai.ac.jp

    2015-08-18

    Highlights: • Geometry optimization of ternary and quaternary Lennard-Jones clusters. • Elucidation of atomic compositions, growth sequence, and relative stability. • Pronounced effects of the atom-size difference on the features of the clusters. • High efficiency of atom-type conversions in the geometry optimization. - Abstract: Global-minimum geometries of ternary and quaternary Lennard-Jones clusters have been calculated with constraints on atomic compositions of the clusters. In the present study, the constraints were removed to obtain optimal compositions. The size ratios of the largest-sized atom to the smallest-sized one ranged from 1.1 to 1.6 whereas the depths of the interatomic potentials were constant. The heuristic method combined with the geometrical perturbations and atom-type conversion was used to search for the global minima of the clusters with up to 50 atoms. The smallest-sized and largest-sized atoms usually occupy cores and outer shells, respectively, and the atoms with intermediate sizes are often lacking. The size ratio has pronounced effects on the compositions, structures, and relative stability of the clusters.

  16. Nucleon-pair approximation to the nuclear shell model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.M., E-mail: ymzhao@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Arima, A. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533 (Japan)

    2014-12-01

    Atomic nuclei are complex systems of nucleons–protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton–proton and neutron–neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton–neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.

  17. Antiprotonic Helium Atoms

    OpenAIRE

    Kartavtsev, O. I.

    1995-01-01

    Metastable antiprotonic helium atoms $^{3,4}\\! H\\! e\\bar pe$ have been discovered recently in experiments of the delayed annihilation of antiprotons in helium media. These exotic atoms survive for an enormous time (about tens of microseconds) and carry the extremely large total angular momentum $L\\sim 30-40$. The theoretical treatment of the intrinsic properties of antiprotonic helium atoms, their formation and collisions with atoms and molecules is discussed.

  18. Atomic Scale Plasmonic Switch

    OpenAIRE

    Emboras, A.; Niegemann, J.; Ma, P; Haffner, C; Pedersen, A.; Luisier, M.; Hafner, C; Schimmel, T.; Leuthold, J.

    2016-01-01

    The atom sets an ultimate scaling limit to Moore’s law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocat...

  19. Atomizing nozzle and process

    Science.gov (United States)

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  20. Atoms Talking to SQUIDs

    CERN Document Server

    Hoffman, J E; Kim, Z; Wood, A K; Anderson, J R; Dragt, A J; Hafezi, M; Lobb, C J; Orozco, L A; Rolston, S L; Taylor, J M; Vlahacos, C P; Wellstood, F C

    2011-01-01

    We present a scheme to couple trapped $^{87}$Rb atoms to a superconducting flux qubit through a magnetic dipole transition. We plan to trap atoms on the evanescent wave outside an ultrathin fiber to bring the atoms to less than 10 $\\mu$m above the surface of the superconductor. This hybrid setup lends itself to probing sources of decoherence in superconducting qubits. Our current plan has the intermediate goal of coupling the atoms to a superconducting LC resonator.

  1. Pathological behavior of the open-shell restricted self-consistent-field equations

    Energy Technology Data Exchange (ETDEWEB)

    Moscardo, F.; Alvarez-Collado, J.R.

    1979-02-01

    The possible solutions of open-shell restricted self-consistent-field equations for a doublet are studied for Li and Na atoms, according to the values of the parameters implied in those equations. A similar behavior, characterized by the presence of several variational solutions is observed in both atoms. Some of these solutions can be assigned to excited configurations. Excitation energies are in good agreement with experimental data. Doublet stability for the solutions obtained has been studied, discussing the saddle-point character present in those solutions associated to excited configurations.

  2. L-shell Auger and Coster-Kronig spectra from relativistic theory

    Science.gov (United States)

    Chen, M. H.; Crasemann, B.; Aoyagi, M.; Mark, H.

    1979-01-01

    The intensities of L-shell Auger and Coster-Kronig transitions in heavy atoms have been calculated relativistically. A detailed comparison is made with measured Auger spectra of Pt and U. The pertinent transition energies were computed from relativistic wave functions with inclusion of the Breit interaction, self-energy, a vacuum-polarization correction, and complete atomic relaxation. Multiplet splitting is found to distribute Auger electrons from certain transitions among several lines. The analysis leads to reassignment of a number of lines in the measured spectra. Lines originally identified as L2-L3Ni in the U spectrum are shown to arise from M4,5 Auger transitions instead.

  3. Use of the Bethe equation for inner-shell ionization by electron impact

    Science.gov (United States)

    Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc

    2016-05-01

    We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L3-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections and available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232-276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.

  4. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  5. Spontaneous spherical symmetry breaking in atomic confinement

    CERN Document Server

    Sveshnikov, K

    2016-01-01

    The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The reason is that such boundary conditions could yield a large magnitude of electronic wavefunction in some sector of the box boundary, what in turn promotes atomic displacement from the box center towards this part of the boundary, and so the underlying SO(3) symmetry spontaneously breaks. The emerging Goldstone modes, coinciding with rotations around the box center, restore the symmetry by spreading the atom over a spherical shell localized at some distances from the box center. Atomic confinement inside the cavity proceeds dynamically -- due to the boundary condition the deformation of electronic wavefunction near the boundary works as a spring, that returns the at...

  6. Successive change regularity of actinide properties with atomic number

    International Nuclear Information System (INIS)

    The development and achievements on chemistry of actinide elements are summarised. The relations of properties of actinides to their electronic configurations of valence electronic shells are discussed. Some anomalies of solid properties, the radius contraction, the stable state effect of f7n-orbits (n = 0, 1, 2) and the tetrad effect of oxidation states, etc., with atomic number (Z) are described. 31 figures appended show directly the successive change regularity of actinide properties with Z

  7. Atomic-Beam Magnetic Resonance Experiments at ISOLDE

    CERN Multimedia

    2002-01-01

    The aim of the atomic-beam magnetic resonance (ABMR) experiments at ISOLDE is to map the nuclear behaviour in wide regions of the nuclear chart by measuring nuclear spins and moments of ground and isomeric states. This is made through an investigation of the atomic hyperfine structure of free, neutral atoms in a thermal atomic-beam using radio-frequency techniques. On-line operation allows the study of short-lived nuclei far from the region of beta-stability.\\\\ \\\\ The ABMR experiments on the |2S^1 ^2 elements Rb, Cs, Au and Fr have been completed, and present efforts are directed towards the elements with an open p-shell and on the rare-earth elements.\\\\ \\\\ The experimental data obtained are compared with results from model calculations, giving information on the single-particle structure and on the nuclear shape parameters.

  8. Updated Atomic Data and Calculations for X-ray Spectroscopy

    CERN Document Server

    Foster, A R; Smith, R K; Brickhouse, N S

    2012-01-01

    We describe the latest release of AtomDB, version 2.0.2, a database of atomic data and a plasma modeling code with a focus on X-ray astronomy. This release includes several major updates to the fundamental atomic structure and process data held within AtomDB, incorporating new ionization balance data, state-selective recombination data, and updated collisional excitation data for many ions, including the iron L-shell ions from Fe$^{+16}$ to Fe$^{+23}$ and all of the hydrogen- and helium-like sequences. We also describe some of the effects that these changes have on calculated emission and diagnostic line ratios, such as changes in the temperature implied by the He-like G-ratios of up to a factor of 2.

  9. Determination of K shell absorption jump factors and jump ratios in the elements between Tm( Z = 69) and Os( Z = 76) by measuring K shell fluorescence parameters

    Science.gov (United States)

    Kaya, N.; Tıraşoğlu, E.; Apaydın, G.

    2008-04-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.

  10. Hemispherical micro-resonators from atomic layer deposition

    Science.gov (United States)

    Gray, Jason M.; Houlton, John P.; Gertsch, Jonas C.; Brown, Joseph J.; Rogers, Charles T.; George, Steven M.; Bright, Victor M.

    2014-12-01

    Hemispherical shell micro-resonators may be used as gyroscopes to potentially enable precision inertial navigation and guidance at low cost and size. Such devices require a high degree of symmetry and large quality factors (Q). Fabricating the devices from atomic layer deposition (ALD) facilitates symmetry through ALD’s high conformality and low surface roughness. To maximize Q, the shells’ geometry is optimized using finite element method (FEM) studies to reduce thermoelastic dissipation and anchor loss. The shells are fabricated by etching hemispherical molds in Si (1 1 1) substrates with a 2:7:1 volumetric ratio of hydrofluoric:nitric:acetic acids, and conformally coating and patterning the molds with ALD Al2O3. The Al2O3 shells are then released from the surrounding Si substrate with an SF6 plasma. The resulting shells typically have radii around 50 µm and thicknesses close to 50 nm. The shells are highly symmetric, with radial deviations between 0.22 and 0.49%, and robust enough to be driven on resonance at amplitudes 10 × their thickness, sufficient to visualize the resonance mode shapes in an SEM. Resonance frequencies are around 60 kHz, with Q values between 1000 and 2000. This Q is lower than the 106 predicted by FEM, implying that Q is being limited by unmodeled sources of energy loss, most likely from surface effects or material defects.

  11. Atomic 'After Effects' Following 181Hfβ--Decay

    International Nuclear Information System (INIS)

    Strong evidence of atomic 'after effects' following β--decay of 181Hf was observed from perturbed angular correlation (PAC) studies in different viscous and non-viscous molecular solutions and in ionic as well as non-ionic solutions. In non-viscous acetone and H2O solutions, the PAC spectra have been found to be completely different to what was expected considering molecular motions in these media. Similarly, in the glycerol-H2O system, PAC spectra remain significantly unchanged with the change of viscosity indicating that molecular motions are not reflected in these media. Rather, perturbations from the interaction of the nucleus-excited atomic state, which was so far considered to be absent for 181Hf β--decay, have been found to be dominant. The atomic shell recovery times inmolecular liquids have been found to be in the range 50-150 nsec. In insulating solid HfCl4 medium, however, the PAC spectrum indicates that the atomic shell following 181Hf β--decay remains unchanged within the lifetime of the intermediate state. The lifetime for the 615 keV level has been remeasured and a value of T1/2=12.1±0.1 nsec only has been obtained. This value, although in strong disagreement with the earlier reported value (17.83 μsec), helps explain atomic 'after effects' in 181Hf β--decay.

  12. Derivation of a poroelastic flexural shell model

    CERN Document Server

    Mikelic, Andro

    2015-01-01

    In this paper we investigate the limit behavior of the solution to quasi-static Biot's equations in thin poroelastic flexural shells as the thickness of the shell tends to zero and extend the results obtained for the poroelastic plate by Marciniak-Czochra and Mikeli\\'c. We choose Terzaghi's time corresponding to the shell thickness and obtain the strong convergence of the three-dimensional solid displacement, fluid pressure and total poroelastic stress to the solution of the new class of shell equations. The derived bending equation is coupled with the pressure equation and it contains the bending moment due to the variation in pore pressure across the shell thickness. The effective pressure equation is parabolic only in the normal direction. As additional terms it contains the time derivative of the middle-surface flexural strain. Derivation of the model presents an extension of the results on the derivation of classical linear elastic shells by Ciarlet and collaborators to the poroelastic shells case. The n...

  13. Single Atom Plasmonic Switch

    CERN Document Server

    Emboras, Alexandros; Ma, Ping; Haffner, Christian; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2015-01-01

    The atom sets an ultimate scaling limit to Moores law in the electronics industry. And while electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling-similar to electronics-is only limited by the atom. More precisely, we introduce an electrically controlled single atom plasmonic switch. The switch allows for fast and reproducible switching by means of the relocation of an individual or at most - a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ration of 10 dB and operation at room temperature with femtojoule (fJ) power consumption for a single switch operation. This demonstration of a CMOS compatible, integrated quantum device allowing to control photons at the single-atom level opens intriguing perspectives for a fully i...

  14. Interferometry with atoms

    International Nuclear Information System (INIS)

    Optics and interferometry with matter waves is the art of coherently manipulating the translational motion of particles like neutrons, atoms and molecules. Coherent atom optics is an extension of techniques that were developed for manipulating internal quantum states. Applying these ideas to translational motion required the development of techniques to localize atoms and transfer population coherently between distant localities. In this view position and momentum are (continuous) quantum mechanical degrees of freedom analogous to discrete internal quantum states. In our contribution we start with an introduction into matter wave optics in sect. 1, discuss coherent atom optics and atom interferometry techniques for molecular beams in sect. 2 and for trapped atoms in sect. 3. In sect. 4 we then describe tools and experiments that allow to probe the evolution of quantum states of many-body systems by atom interference.

  15. Free vibration analysis of delaminated composite shells using different shell theories

    International Nuclear Information System (INIS)

    Free vibration response of laminated composite shells with delamination is presented using the finite element method based on first order shear deformation theory. The shell theory used is the extension of dynamic, shear deformable theory according to the Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. An eight-noded C0 continuity, isoparametric quadrilateral element with five degrees of freedom per node is used in the formulation. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. The natural frequencies of the delaminated cylindrical (CYL), spherical (SPH) and hyperbolic paraboloid (HYP) shells are determined by using the above mentioned shell theories, namely Sanders', Love's, and Donnell's. The validity of the present approach is established by comparing the authors' results with those available in the literature. Additional studies on free vibration response of CYL, SPH and HYP shells are conducted to assess the effects of delamination size and number of layers considering all three shell theories. It is shown that shell theories according to Sanders and Love always predict practically identical frequencies. Donnell's theory gives reliable results only for shallow shells. Moreover, the natural frequency is found to be very sensitive to delamination size and number of layers in the shell.

  16. Inelastic electron scattering investigation of the complete 4d shell

    International Nuclear Information System (INIS)

    In order to test for collective behavior in the filled 4d shell of single atoms with Z approx. = 54, inelastic electron scattering experiments were performed on thin films of antimony, tellurium and barium fluoride using 300 keV electrons. The Te measurements at low momentum transfers are in absolute agreement with photoabsorption results. For Te, a high concentration of oscillator strength is found in the broad maximum which dominates the 4d excitation spectrum. With the aid of a background subtraction, the energy centroid of this feature is located. In a comparison with simple models, the measured energy shift in the 4d continuum as a function of momentum transfer favors a single particle rather than collective description

  17. Tunneling spectroscopy of multi-shell carbon fullerenes

    Science.gov (United States)

    Doore, Keith; Cook, Matt; Clausen, Eric; Kidd, Tim; Ye, Zhipeng; Ye, Gaihua; He, Rui; Stollenwerk, Andrew

    Carbon allotropes such as fullerenes and nanotubes have generated considerable interest due possible exploitation of their mechanical and electrical properties for practical applications. Carbon onions are a type of fullerene consisting of multiple spherically concentric shells of curved graphitic sheets. Compared to single-shell fullerenes, few studies have been directed toward understanding the structural and electrical properties of carbon onions. Because carbon onions have proven difficult to fabricate in a controlled method, most of these studies have focused on synthesis methods. In this study, we investigate the electrical properties of carbon onions using a scanning tunneling microscope. Carbon onions were fabricated using ultrasonic agitation to break down isopropanol facilitated by a MoS2 catalyst. Particles suspended in the remaining solution were deposited onto atomically flat HOPG substrates. Scanning tunneling spectroscopy indicate that carbon onions can exhibit both metallic and semiconducting properties, similar to carbon nanotubes. This work was supported in part by the National Science Foundation, Grants No. DMR-1206530 and No. DMR-1410496.

  18. Structures of 38-atom gold-platinum nanoalloy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  19. Induce magnetism into silicene by embedding transition-metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaotian; Wang, Lu, E-mail: lwang22@suda.edu.cn, E-mail: yyli@suda.edu.cn; Lin, Haiping; Hou, Tingjun; Li, Youyong, E-mail: lwang22@suda.edu.cn, E-mail: yyli@suda.edu.cn [Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu (China)

    2015-06-01

    Embedding transition-metal (TM) atoms into nonmagnetic nanomaterials is an efficient way to induce magnetism. Using first-principles calculations, we systematically investigated the structural stability and magnetic properties of TM atoms from Sc to Zn embedded into silicene with single vacancy (SV) and double vacancies (DV). The binding energies for different TM atoms correlate with the TM d-shell electrons. Sc, Ti, and Co show the largest binding energies of as high as 6 eV, while Zn has the lowest binding energy of about 2 eV. The magnetic moment of silicene can be modulated by embedding TM atoms from V to Co, which mainly comes from the 3d orbitals of TM along with partly contributions from the neighboring Si atoms. Fe atom on SV and Mn atom on DV have the largest magnetic moment of more than 3 μB. In addition, we find that doping of N or C atoms on the vacancy site could greatly enhance the magnetism of the systems. Our results provide a promising approach to design silicene-based nanoelectronics and spintronics device.

  20. Bending stresses in Facetted Glass Shells

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik

    2008-01-01

    A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...

  1. Extraction of Polyphenols from Cashew Nut Shell

    OpenAIRE

    Mathew Obichukwu EDOGA; Labake FADIPE; Rita Ngozi EDOGA

    2006-01-01

    Cashew nut shell liquid (CNSL) was extracted from cashew nut shell by indirect leaching process using soxhlet extraction equipment. Normal hexane (n-hexane) was used as solvent. The operating conditions for the extraction were 680C and 1 atmosphere in every 100g of cashew nut shell used for the extraction, 35gCNSL was obtained. The CNSL was further separated into cardol, cardanol and anacardic acid (polyphenol) using an amine extractant (alanine) with the aid of shake-out separation equipment...

  2. A theory of latticed plates and shells

    CERN Document Server

    Pshenichnon, Gi

    1993-01-01

    The book presents the theory of latticed shells as continual systems and describes its applications. It analyses the problems of statics, stability and dynamics. Generally, a classical rod deformation theory is applied. However, in some instances, more precise theories which particularly consider geometrical and physical nonlinearity are employed. A new effective method for solving general boundary value problems and its application for numerical and analytical solutions of mathematical physics and reticulated shell theory problems is described. A new method of solving the shell theory's nonli

  3. Thin shells joining local cosmic string geometries

    CERN Document Server

    Eiroa, Ernesto F; Simeone, Claudio

    2016-01-01

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a standard thin shell and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters.

  4. Shell States of Neutron Rich Matter

    CERN Document Server

    Horowitz, C J

    2008-01-01

    The equation of state (EOS) for nuclear and neutron rich matter is investigated in a Relativistic Mean Field (RMF) model. New shell states are found that minimize the free energy per baryon, calculated in a spherical Wigner-Seitz (WS) approximation, over a significant range of baryon densities. These shell states, that have both inside and outside surfaces, minimize the Coulomb energy of large proton number configurations at the expense of a larger surface energy. This is related to a possible depression in the central density of super heavy nuclei. As the baryon density increases, we find the system changes from normal nuclei, to shell states, and then to uniform matter.

  5. Shell states of neutron-rich matter

    Science.gov (United States)

    Horowitz, C. J.; Shen, G.

    2008-07-01

    The equation of state (EOS) for nuclear and neutron rich matter is investigated in a relativistic mean field (RMF) model. New shell states are found that minimize the free energy per baryon, calculated in a spherical Wigner-Seitz (WS) approximation, over a significant range of baryon densities. These shell states, that have both inside and outside surfaces, minimize the Coulomb energy of large proton number configurations at the expense of a larger surface energy. This is related to a possible depression in the central density of super heavy nuclei. As the baryon density increases, we find the system changes from normal nuclei, to shell states, and then to uniform matter.

  6. On micropolar theory of shallow shells

    Directory of Open Access Journals (Sweden)

    Ambartsumian S.A.

    2010-09-01

    Full Text Available The simplified theory of the shallow shells is suggested on the base of the Kirchhoff-Love hypothesis and pseudo-Cosserat medium. The bending and vibrations problem of the shallow spherical shell is investigated. The value of shell small thickness is determined, when micro-rotational are essential. пологая оболочка, микровращение, изгиб, microrotation, bending, vibration

  7. On micropolar theory of shallow shells

    OpenAIRE

    Ambartsumian S.A.; Belubekyan M.V.

    2010-01-01

    The simplified theory of the shallow shells is suggested on the base of the Kirchhoff-Love hypothesis and pseudo-Cosserat medium. The bending and vibrations problem of the shallow spherical shell is investigated. The value of shell small thickness is determined, when micro-rotational are essential. пологая оболочка, микровращение, изгиб, microrotation, bending, vibration

  8. Galileon Radiation from a Spherical Collapsing Shell

    CERN Document Server

    Martin-Garcia, Javier

    2016-01-01

    Galileon radiation in the collapse of a thin spherical shell of matter is analyzed. In the framework of a cubic Galileon theory, we compute the field profile produced at large distances by a short collapse, finding that the radiated field has two peaks traveling ahead of light fronts. The total energy radiated during the collapse follows a power law scaling with the shell's physical width and results from two competing effects: a Vainshtein suppression of the emission and an enhancement due to the thinness of the shell.

  9. Photon propagator in light-shell gauge

    Science.gov (United States)

    Georgi, Howard; Kestin, Greg; Sajjad, Aqil

    2016-05-01

    We derive the photon propagator in light-shell gauge (LSG) vμAμ=0 , where vμ=(1,r ^ ) μ . This gauge is an important ingredient of the light-shell effective theory—an effective theory for describing high energy jet processes on a 2-dimensional spherical shell expanding at the speed of light around the point of the initial collision producing the jets. Since LSG is a noncovariant gauge, we cannot calculate the LSG propagator by using the standard procedure for covariant gauges. We therefore employ a new technique for computing the propagator, which we hope may be of relevance in other gauges as well.

  10. Effective Interactions from No Core Shell Model

    International Nuclear Information System (INIS)

    We construct the many-body effective Hamiltonian for pf-shell by carrying out 2ℎ(Omega) NCSM calculations at the 2-body cluster level. We demonstrate how the effective Hamiltonian derived from realistic nucleon-nucleon (NN) potentials for the 2ℎ(Omega) NCSM space should be modified to properly account for the many-body correlations produced by truncating to the major pf-shell. We obtain two-body effective interactions for the pf-shell by using direct projection and use them to reproduce the results of large scale NCSM for other light Ca isotopes

  11. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    Cvitas, Marko T.; Soldan, Pavel; Hutson, Jeremy M.

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  12. Oyster Shell Proteins Originate from Multiple Organs and Their Probable Transport Pathway to the Shell Formation Front.

    Directory of Open Access Journals (Sweden)

    Xiaotong Wang

    Full Text Available Mollusk shell is one kind of potential biomaterial, but its vague mineralization mechanism hinders its further application. Mollusk shell matrix proteins are important functional components that are embedded in the shell, which play important roles in shell formation. The proteome of the oyster shell had been determined based on the oyster genome sequence by our group and gives the chance for further deep study in this area. The classical model of shell formation posits that the shell proteins are mantle-secreted. But, in this study, we further analyzed the shell proteome data in combination with organ transcriptome data and we found that the shell proteins may be produced by multiple organs though the mantle is still the most important organ for shell formation. To identify the transport pathways of these shell proteins not in classical model of shell formation, we conducted a shell damage experiment and we determined the shell-related gene set to identify the possible transport pathways from multiple organs to the shell formation front. We also found that there may exist a remodeling mechanism in the process of shell formation. Based on these results along with some published results, we proposed a new immature model, which will help us think about the mechanism of shell formation in a different way.

  13. Membrane Shell Reflector Segment Antenna

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  14. Acetabular shell deformation as a function of shell stiffness and bone strength.

    Science.gov (United States)

    Dold, Philipp; Pandorf, Thomas; Flohr, Markus; Preuss, Roman; Bone, Martin C; Joyce, Tom J; Holland, James; Deehan, David

    2016-04-01

    Press-fit acetabular shells used for hip replacement rely upon an interference fit with the bone to provide initial stability. This process may result in deformation of the shell. This study aimed to model shell deformation as a process of shell stiffness and bone strength. A cohort of 32 shells with two different wall thicknesses (3 and 4 mm) and 10 different shell sizes (44- to 62-mm outer diameter) were implanted into eight cadavers. Shell deformation was then measured in the cadavers using a previously validated ATOS Triple Scan III optical system. The shell-bone interface was then considered as a spring system according to Hooke's law and from this the force exerted on the shell by the bone was calculated using a combined stiffness consisting of the measured shell stiffness and a calculated bone stiffness. The median radial stiffness for the 3-mm wall thickness was 4192 N/mm (range, 2920-6257 N/mm), while for the 4-mm wall thickness the median was 9633 N/mm (range, 6875-14,341 N/mm). The median deformation was 48 µm (range, 3-187 µm), while the median force was 256 N (range, 26-916 N). No statistically significant correlation was found between shell stiffness and deformation. Deformation was also found to be not fully symmetric (centres 180° apart), with a median angle discrepancy of 11.5° between the two maximum positive points of deformation. Further work is still required to understand how the bone influences acetabular shell deformation.

  15. A static spherically symmetric thin shell wormhole colliding with a spherical thin shell

    OpenAIRE

    Gao, Sijie; Wang, Xiaobao

    2015-01-01

    We consider a static spherically symmetric thin shell wormhole collides with another thin shell consisting of ordinary matter. By employing the geometrical constraint, which leads to the conservation of energy and momentum, we show that the state after the collision can be solved from the initial data. In the low speed approximation, the solutions are rather simple. The shell may either bounce back or pass through the wormhole. In either case, the wormhole shrinks right after the collision. I...

  16. Development of Mortar Simulator with Shell-In-Shell System – Problem of External Ballistics

    OpenAIRE

    Fedaravicius, A.; V. Jonevicius; Ragulskis, M.

    2007-01-01

    The shell-in-shell system used in the mortar simulator raises a number of non-standard technical and computational problems starting from the requirement to distribute the propelling blast energy between the warhead and the ballistic barrel, finishing with the requirement that the length of warhead's flight path must be scaled to combat shell firing tables. The design problem of the simulator is split into two parts – the problem of external ballistics where the initial velocities of the warh...

  17. Breakup of finite thickness viscous shell microbubbles by ultrasound: A simplified zero-thickness shell model

    OpenAIRE

    HSIAO, Chao-Tsung; Chahine, Georges L.

    2013-01-01

    A simplified three-dimensional (3-D) zero-thickness shell model was developed to recover the non-spherical response of thick-shelled encapsulated microbubbles subjected to ultrasound excitation. The model was validated by comparison with previously developed models and was then used to study the mechanism of bubble break-up during non-spherical deformations resulting from the presence of a nearby rigid boundary. The effects of the shell thickness and the bubble standoff distanc...

  18. Off-shell Color-Kinematics Duality

    CERN Document Server

    Mastrolia, Pierpaolo; Schubert, Ulrich; Bobadilla, William J Torres

    2015-01-01

    We elaborate on the color-kinematics duality for off-shell diagrams in gauge theories coupled to matter, by investigating the scattering process $gg\\to ss, q\\bar q, gg$, and show that the Jacobi relations for the kinematic numerators of off-shell diagrams, built with Feynman rules in axial gauge, reduces to a color-kinematics violating term due to the contributions of sub-graphs only. Such anomaly vanishes when the four particles connected by the Jacobi relation are on their mass shell with vanishing squared momenta, being either external or cut particles, where the validity of the color-kinematics duality is recovered. We discuss the role of this off-shell decomposition in the direct construction of higher-multiplicity numerators satisfying color-kinematics identity, providing an explicit example for the QCD process $gg\\to q\\bar{q}g$.

  19. On the Calculation of Shallow Shells

    Science.gov (United States)

    Ambartsumyan, S. A.

    1956-01-01

    This paper considers a sufficiently thin shallow shell of nonzero Gaussian curvature. It also presents a system of symmetrically constructed differential equations, constructed by the mixed method through the stress function and the displpacement function.

  20. Nuclear Quadrupole Moments and Nuclear Shell Structure

    Science.gov (United States)

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  1. Shell deformation studies using holographic interferometry

    Science.gov (United States)

    Parmerter, R. R.

    1974-01-01

    The buckling of shallow spherical shells under pressure has been the subject of many theoretical and experimental papers. Experimental data above the theoretical buckling load of Huang have given rise to speculation that shallow shell theory may not adequately predict the stability of nonsymmetric modes in higher-rise shells which are normally classified as shallow by the Reissner criterion. This article considers holographic interferometry as a noncontact, high-resolution method of measuring prebuckling deformations. Prebuckling deformations of a lambda = 9, h/b = 0.038 shell are Fourier-analyzed. Buckling is found to occur in an N = 5 mode as predicted by Huang's theory. The N = 4 mode was unusually stable, suggesting that even at this low value of h/b, stabilizing effects may be at work.

  2. Shell Galaxies, Dynamical Friction, and Dwarf Disruption

    CERN Document Server

    Ebrova, Ivana; Canalizo, Gabriela; Bennert, Nicola; Jilkova, Lucie

    2009-01-01

    Using N-body simulations of shell galaxies created in nearly radial minor mergers, we investigate the error of collision dating, resulting from the neglect of dynamical friction and of gradual disruption of the cannibalized dwarf.

  3. Single atom microscopy.

    Science.gov (United States)

    Zhou, Wu; Oxley, Mark P; Lupini, Andrew R; Krivanek, Ondrej L; Pennycook, Stephen J; Idrobo, Juan-Carlos

    2012-12-01

    We show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity. PMID:23146658

  4. 41 CFR 102-85.120 - What is shell Rent?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is shell Rent? 102... GSA SPACE Rent Charges § 102-85.120 What is shell Rent? Shell Rent is that portion of GSA Rent charged for the building envelope and land. (See § 102-85.35 for the definition of building shell.)...

  5. A circumferential crack in a cylindrical shell under tension.

    Science.gov (United States)

    Duncan-Fama, M. E.; Sanders, J. L., Jr.

    1972-01-01

    A closed cylindrical shell under uniform internal pressure has a slit around a portion of its circumference. Linear shallow shell theory predicts inverse square-root-type singularities in certain of the stresses at the crack tips. This paper reports the computed strength of these singularities for different values of a dimensionless parameter based on crack length, shell radius and shell thickness.

  6. Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers

    Directory of Open Access Journals (Sweden)

    G. Langer

    2014-08-01

    Full Text Available Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells and outside (pHn-shells a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size normalised aragonite area. Size normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size normalised thickness of the pHlow-shells, these data led us to conclude that low pH exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. The latter is different from normal elongation growth and proceeds through addition of aragonitic layers only, while the production of calcitic layers is confined to elongation growth. Therefore aragonite cannot be regarded as a per se disadvantageous polymorph under ocean acidification conditions.

  7. Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers

    Science.gov (United States)

    Langer, G.; Nehrke, G.; Baggini, C.; Rodolfo-Metalpa, R.; Hall-Spencer, J. M.; Bijma, J.

    2014-12-01

    Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells) and outside (pHn-shells) a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size-normalised aragonite area. Size-normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size-normalised thickness of the pHlow-shells, these data led us to conclude that low-pH-exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. This is different from normal elongation growth and proceeds through addition of aragonitic parts only, while the production of calcitic parts is confined to elongation growth. Therefore, aragonite cannot be regarded as a disadvantageous polymorph per se under ocean acidification conditions.

  8. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  9. Plate shell structures - statics and stability

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2008-01-01

    This paper describes the basic structural system, statics and spatial stability of plate shells. The structural system can be considered as a single layer of planar elements, where each element only transfers in-plane (membrane) forces to its neighbouring elements. External out-of-plane loads...... system is dual to that of a spatial truss system, which means the stringer system [1] can be applied to plate-shell structures....

  10. Free Vibration of Partially Supported Cylindrical Shells

    OpenAIRE

    Mirza, S.; Y. Alizadeh

    1995-01-01

    The effects of detached base length on the natural frequencies and modal shapes of cylindrical shell structures were investigated in this work. Some of the important applications for this type of problem can be found in the cracked fan and rotor blades that can be idealized as partially supported shells with varying unsupported lengths. A finite element model based on small deflection linear theory was developed to obtain numerical solutions for this class of problems. The numerical results w...

  11. Multimode interaction in axially excited cylindrical shells

    OpenAIRE

    Silva F. M. A.; Rodrigues L.; Gonçalves P. B.; Del Prado Z. J. G. N

    2014-01-01

    Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural fr...

  12. Rosette Globulettes and Shells in the Infrared

    OpenAIRE

    Mäkelä, M. M.; Haikala, L.K.; Gahm, G. F.

    2014-01-01

    Tiny, dense clumps of sub-solar mass called globulettes form in giant galactic HII regions. The young central clusters compress the surrounding molecular shells which break up into clumps, filaments, and elephant trunks that interact with UV light from the central OB stars. We study the nature of the infrared emission and extinction in the shell and globulettes in the Rosette Nebula (RN) and search for associated newborn stars. We imaged the northwestern quadrant of the RN in the near-infrare...

  13. Dynamic Strength of Fiber Glass Shells

    OpenAIRE

    Syrunin, M.; Fedorenko, A.; Ivanov, A

    1997-01-01

    This paper presents generalization of results, obtained by experimental investigations of dynamic response, strength, and load-bearing ability of cylindrical and spherical shells, manufactured from composite materials on the basis of fiber glass, under loading them by explosion of compact high-explosive charges on the inside. The paper describes mechanisms and criteria of destruction of such shells, methods to improve their specific load-bearing ability. Results of experiments concerning inve...

  14. Double shell tank waste analysis plan

    International Nuclear Information System (INIS)

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations

  15. Atomic homodyne detection of weak atomic transitions.

    Science.gov (United States)

    Gunawardena, Mevan; Elliott, D S

    2007-01-26

    We have developed a two-color, two-pathway coherent control technique to detect and measure weak optical transitions in atoms by coherently beating the transition amplitude for the weak transition with that of a much stronger transition. We demonstrate the technique in atomic cesium, exciting the 6s(2)S(1/2) --> 8s(2)S(1/2) transition via a strong two-photon transition and a weak controllable Stark-induced transition. We discuss the enhancement in the signal-to-noise ratio for this measurement technique over that of direct detection of the weak transition rate, and project future refinements that may further improve its sensitivity and application to the measurement of other weak atomic interactions.

  16. Metal atom oxidation laser

    International Nuclear Information System (INIS)

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  17. Advances in atomic physics

    Directory of Open Access Journals (Sweden)

    Tharwat M. El-Sherbini

    2015-09-01

    Full Text Available In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics.

  18. Advances in atomic physics

    OpenAIRE

    Tharwat M. El-Sherbini

    2015-01-01

    Graphical abstract In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research - an overview is provided of the milestones in the fascinating landscape of atomic physics.

  19. Atomic and Molecular Physics

    OpenAIRE

    Cohen-Tannoudji, Claude

    2015-01-01

    When physicists began to explore the world of atoms more precisely, as they endeavoured to understand its structure and the laws governing its behaviour, they soon encountered serious difficulties. Our intuitive concepts, based on our daily experience of the macroscopic world around us, proved to be completely erroneous on the atomic scale; the atom was incomprehensible within the framework of classical physics. In order to uncover these new mysteries, after a great deal of trial and error, e...

  20. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  1. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1995-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is promarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  2. Metal atom oxidation laser

    Science.gov (United States)

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  3. Atomic Oxygen Effects

    Science.gov (United States)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  4. The Software Atom

    CERN Document Server

    Javanainen, Juha

    2016-01-01

    By putting together an abstract view on quantum mechanics and a quantum-optics picture of the interactions of an atom with light, we develop a corresponding set of C++ classes that set up the numerical analysis of an atom with an arbitrary set of angular-momentum degenerate energy levels, arbitrary light fields, and an applied magnetic field. As an example, we develop and implement perturbation theory to compute the polarizability of an atom in an experimentally relevant situation.

  5. Experiments on shells under base excitation

    Science.gov (United States)

    Pellicano, Francesco; Barbieri, Marco; Zippo, Antonio; Strozzi, Matteo

    2016-05-01

    The aim of the present paper is a deep experimental investigation of the nonlinear dynamics of circular cylindrical shells. The specific problem regards the response of circular cylindrical shells subjected to base excitation. The shells are mounted on a shaking table that furnishes a vertical vibration parallel to the cylinder axis; a heavy rigid disk is mounted on the top of the shells. The base vibration induces a rigid body motion, which mainly causes huge inertia forces exerted by the top disk to the shell. In-plane stresses due to the aforementioned inertias give rise to impressively large vibration on the shell. An extremely violent dynamic phenomenon suddenly appears as the excitation frequency varies up and down close to the linear resonant frequency of the first axisymmetric mode. The dynamics are deeply investigated by varying excitation level and frequency. Moreover, in order to generalise the investigation, two different geometries are analysed. The paper furnishes a complete dynamic scenario by means of: (i) amplitude frequency diagrams, (ii) bifurcation diagrams, (iii) time histories and spectra, (iv) phase portraits and Poincaré maps. It is to be stressed that all the results presented here are experimental.

  6. METHOD OF GREEN'S FUNCTION OF CORRUGATED SHELLS

    Institute of Scientific and Technical Information of China (English)

    YUAN Hong; ZHANG Xiang-wei

    2005-01-01

    By using the fundamental equations of axisymmetric shallow shells of revolution, the nonlinear bending of a shallow corrugated shell with taper under arbitrary load has been investigated. The nonlinear boundary value problem of the corrugated shell was reduced to the nonlinear integral equations by using the method of Green's function. To solve the integral equations, expansion method was used to obtain Green's function. Then the integral equations were reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral equations become nonlinear algebraic equations. Newton's iterative method was utilized to solve the nonlinear algebraic equations. To guarantee the convergence of the iterative method, deflection at center was taken as control parameter. Corresponding loads were obtained by increasing deflection one by one. As a numerical example,elastic characteristic of shallow corrugated shells with spherical taper was studied.Calculation results show that characteristic of corrugated shells changes remarkably. The snapping instability which is analogous to shallow spherical shells occurs with increasing load if the taper is relatively large. The solution is close to the experimental results.

  7. Buckling of conical shell with local imperfections

    Science.gov (United States)

    Cooper, P. A.; Dexter, C. B.

    1974-01-01

    Small geometric imperfections in thin-walled shell structures can cause large reductions in buckling strength. Most imperfections found in structures are neither axisymmetric nor have the shape of buckling modes but rather occur locally. This report presents the results of a study of the effect of local imperfections on the critical buckling load of a specific axially compressed thin-walled conical shell. The buckling calculations were performed by using a two-dimensional shell analysis program referred to as the STAGS (Structural Analysis of General Shells) computer code, which has no axisymmetry restrictions. Results show that the buckling load found from a bifurcation buckling analysis is highly dependent on the circumferential arc length of the imperfection type studied. As the circumferential arc length of the imperfection is increased, a reduction of up to 50 percent of the critical load of the perfect shell can occur. The buckling load of the cone with an axisymmetric imperfections is nearly equal to the buckling load of imperfections which extended 60 deg or more around the circumference, but would give a highly conservative estimate of the buckling load of a shell with an imperfection of a more local nature.

  8. Distributed neural signals on parabolic cylindrical shells

    Science.gov (United States)

    Hu, S. D.; Li, H.; Tzou, H. S.

    2013-06-01

    Parabolic cylindrical shells are commonly used as key components in communication antennas, space telescopes, solar collectors, etc. This study focuses on distributed modal neural sensing signals on a flexible simply-supported parabolic cylindrical shell panel. The parabolic cylindrical shell is fully laminated with a piezoelectric layer on its outer surface and the piezoelectric layer is segmented into infinitesimal elements (neurons) to investigate the microscopic distributed neural sensing signals. Since the dominant vibration component of the shell is usually the transverse oscillation, a new transverse mode shape function is defined. Two shell cases, i.e., the ratio of the meridian height to the half span distance of a parabola at 1:4 (shallow) and 1:1 (deep), are studied to reveal the curvature effect to the neural sensing signals. Studies suggest that the membrane signal component dominates for lower natural modes and the bending signal component dominates for higher natural modes. The meridional membrane and bending signal components are mostly concentrated on the high-curvature areas, while the longitudinal bending component is mostly concentrated on the relatively flat areas. The concentration behavior becomes more prominent as the parabolic cylindrical shell deepens, primarily resulting from the enhanced membrane effect due to the increased curvature.

  9. Atomic data for the ITER Core Imaging X-ray Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, J; Beiersdorfer, P; Biedermann, C; Bitter, M; Delgado-Aparicio, L F; Graf, A; Gu, M F; Hill, K W; Barnsley, R

    2012-06-15

    The parameters of the ITER core plasmas will be measured using the Core Imaging X-ray Spectrometer (CIXS), a high-resolution crystal spectrometer focusing on the L-shell spectra of highly ionized tungsten atoms. In order to correctly infer the plasma properties accurate atomic data are required. Here, some aspects of the underlying physics are discussed using experimental data and theoretical predictions from modeling.

  10. Unlocking the Origin of Superior Performance of a Si-Ge Core-Shell Nanowire Quantum Dot Field Effect Transistor.

    Science.gov (United States)

    Dhungana, Kamal B; Jaishi, Meghnath; Pati, Ranjit

    2016-07-13

    The sustained advancement in semiconducting core-shell nanowire technology has unlocked a tantalizing route for making next generation field effect transistor (FET). Understanding how to control carrier mobility of these nanowire channels by applying a gate field is the key to developing a high performance FET. Herein, we have identified the switching mechanism responsible for the superior performance of a Si-Ge core-shell nanowire quantum dot FET over its homogeneous Si counterpart. A quantum transport approach is used to investigate the gate-field modulated switching behavior in electronic current for ultranarrow Si and Si-Ge core-shell nanowire quantum dot FETs. Our calculations reveal that for the ON state, the gate-field induced transverse localization of the wave function restricts the carrier transport to the outer (shell) layer with the pz orbitals providing the pathway for tunneling of electrons in the channels. The higher ON state current in the Si-Ge core-shell nanowire FET is attributed to the pz orbitals that are distributed over the entire channel; in the case of Si nanowire, the participating pz orbital is restricted to a few Si atoms in the channel resulting in a smaller tunneling current. Within the gate bias range considered here, the transconductance is found to be substantially higher in the case of a Si-Ge core-shell nanowire FET than in a Si nanowire FET, which suggests a much higher mobility in the Si-Ge nanowire device.

  11. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells

    Science.gov (United States)

    Zhang, N.; Chen, F. Y.; Wu, X. Q.

    2015-07-01

    The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeable result, so the newfound pIh Ag32Cu6 core-shell cluster is further investigated for potential application for O2 dissociation in oxygen reduction reaction (ORR). The activation energy barrier for the O2 dissociation on pIh Ag32Cu6 core-shell cluster is 0.715 eV, where the d-band center is -3.395 eV and the density of states at the Fermi energy level is maximal for the favorable absorption site, indicating that the catalytic activity is attributed to a maximal charge transfer between an oxygen molecule and the pIh Ag32Cu6 core-shell cluster. This work revises the earlier idea that Ag32Cu6 core-shell nanoparticles are not suitable as ORR catalysts and confirms that Ag-Cu nanoalloy is a potential candidate to substitute noble Pt-based catalyst in alkaline fuel cells.

  12. Unlocking the Origin of Superior Performance of a Si-Ge Core-Shell Nanowire Quantum Dot Field Effect Transistor.

    Science.gov (United States)

    Dhungana, Kamal B; Jaishi, Meghnath; Pati, Ranjit

    2016-07-13

    The sustained advancement in semiconducting core-shell nanowire technology has unlocked a tantalizing route for making next generation field effect transistor (FET). Understanding how to control carrier mobility of these nanowire channels by applying a gate field is the key to developing a high performance FET. Herein, we have identified the switching mechanism responsible for the superior performance of a Si-Ge core-shell nanowire quantum dot FET over its homogeneous Si counterpart. A quantum transport approach is used to investigate the gate-field modulated switching behavior in electronic current for ultranarrow Si and Si-Ge core-shell nanowire quantum dot FETs. Our calculations reveal that for the ON state, the gate-field induced transverse localization of the wave function restricts the carrier transport to the outer (shell) layer with the pz orbitals providing the pathway for tunneling of electrons in the channels. The higher ON state current in the Si-Ge core-shell nanowire FET is attributed to the pz orbitals that are distributed over the entire channel; in the case of Si nanowire, the participating pz orbital is restricted to a few Si atoms in the channel resulting in a smaller tunneling current. Within the gate bias range considered here, the transconductance is found to be substantially higher in the case of a Si-Ge core-shell nanowire FET than in a Si nanowire FET, which suggests a much higher mobility in the Si-Ge nanowire device. PMID:27280769

  13. Lessons Not Learned. The Other Shell Report 2004

    International Nuclear Information System (INIS)

    The third alternative Shell Corporate Social Responsibility (CSR) report is presented on behalf of several of the many communities that live on Shell's 'fencelines', next to Shell's refineries, depots and pipelines. This 2004 report builds on reports of the past two years 'Failing the Challenge', (2002) and 'Behind the Shine' (2003) which chronicled Shell's impacts around the world. It gives critical updates of Shell's performance over the past year

  14. Design & Performances of Coconut De-Shelling Machine

    OpenAIRE

    Mr. Ketan K.Tonpe; Mr. Vinod P. Sakhare

    2014-01-01

    The traditional method used in India, for the separation of copra and shell from partially-dried split coconuts, is labour intensive. To overcome this problem, a power operated coconut de-shelling machine was designed and developed. A coconut de-shelling machine comprising of cutter with belt drive. Performances test analysis conducted show that the machine de-shelled the fruits without nut breakage and also that its average de-shelling efficiency and capacity are 90% and 195 ...

  15. Curved thin shell buckling behaviour

    Directory of Open Access Journals (Sweden)

    G. Forasassi

    2007-08-01

    Full Text Available Purpose: The aim of the paper is to evaluate buckling instabilities behaviour of long curved thin shell. Both initially straight and curved tubes are investigated with numerical and experimental assessment methods, in the context of NPP applications with an illustrative example for IRIS LWR integrated Steam Generator (SG tubes.Design/methodology/approach: In this study structural buckling response tube with combination effects of geometric imperfections as well as initially bent shape under external pressure load are investigated using a non linear finite element (MSC.MARC FEM code formulation analysis. Moreover results are presented, extending the findings of previous research activity works, carried out at Pisa University, on thin walled metal specimen.Findings: The experiments were conducted on Inconel 690 test specimen tube. The comparison between numerical and experimental results, for the same geometry and loading conditions, shows a good agreement between the elastic-plastic finite-element predictions and the experimental data.Research limitations/implications: The presented research results may be considered preliminary in the sense that it would be important to enlarge the statistical base of the results themselves, even if they are yet certainly meaningful to highlight the real problem, considering the relatively large variability of the geometrical imperfections and bending instabilities also in high quality production tubes.Originality/value: From the point of view of the practical implication, besides the addressed problem general interest in industrial plant technology, it is worth to stress that straight and curved axis tubes are foreseen specifically in innovative nuclear reactors SG design.

  16. Nanorod and nanoparticle shells in concentration gradient core-shell lithium oxides for rechargeable lithium batteries.

    Science.gov (United States)

    Yoon, Sung-June; Myung, Seung-Taek; Noh, Hyung-Joo; Lu, Jun; Amine, Khalil; Sun, Yang-Kook

    2014-12-01

    The structure, electrochemistry, and thermal stability of concentration gradient core-shell (CGCS) particles with different shell morphologies were evaluated and compared. We modified the shell morphology from nanoparticles to nanorods, because nanorods can result in a reduced surface area of the shell such that the outer shell would have less contact with the corrosive electrolyte, resulting in improved electrochemical properties. Electron microscopy studies coupled with electron probe X-ray micro-analysis revealed the presence of a concentration gradient shell consisting of nanoparticles and nanorods before and after thermal lithiation at high temperature. Rietveld refinement of the X-ray diffraction data and the chemical analysis results showed no variations of the lattice parameters and chemical compositions of both produced CGCS particles except for the degree of cation mixing (or exchange) in Li and transition metal layers. As anticipated, the dense nanorods present in the shell gave rise to a high tap density (2.5 g cm(-3) ) with a reduced pore volume and surface area. Intimate contact among the nanorods is likely to improve the resulting electric conductivity. As a result, the CGCS Li[Ni0.60 Co0.15 Mn0.25 ]O2 with the nanorod shell retained approximately 85.5% of its initial capacity over 150 cycles in the range of 2.7-4.5 V at 60 °C. The charged electrode consisting of Li0.16 [Ni0.60 Co0.15 Mn0.25 ]O2 CGCS particles with the nanorod shell also displayed a main exothermic reaction at 279.4 °C releasing 751.7 J g(-1) of heat. Due to the presence of the nanorod shell in the CGCS particles, the electrochemical and thermal properties are substantially superior to those of the CGCS particles with the nanoparticle shell. PMID:25044175

  17. Evanescent Wave Atomic Mirror

    Science.gov (United States)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  18. Thermal Dihydrogen Activation by a Closed-Shell AuCeO2(+) Cluster.

    Science.gov (United States)

    Meng, Jing-Heng; He, Sheng-Gui

    2014-11-01

    Laser-ablation-generated AuCeO2(+) and CeO2(+) oxide clusters were mass-selected using a quadrupole mass filter and reacted with H2 in an ion trap reactor at ambient conditions. The reactions were characterized by mass spectrometry and density functional theory calculations. The gold-cerium bimetallic oxide cluster AuCeO2(+) is more reactive in H2 activation than the pure cerium oxide cluster CeO2(+). The gold atom is the active adsorption site and facilitates the heterolytic cleavage of H2 in collaboration with the separated O(2-) ion of the CeO2 support. To the best of our knowledge, this is the first example of thermal H2 activation by a closed-shell atomic cluster, which provides molecular-level insights into the single gold atom catalysis over metal oxide supports. PMID:26278765

  19. Deep inner-shell multiphoton ionization by intense x-ray free-electron laser pulses

    CERN Document Server

    Fukuzawa, H; Motomura, K; Mondal, S; Nagaya, K; Wada, S; Liu, X -J; Feifel, R; Tachibana, T; Ito, Y; Kimura, M; Sakai, T; Matsunami, K; Hayashita, H; Kajikawa, J; Johnsson, P; Siano, M; Kukk, E; Rudek, B; Erk, B; Foucar, L; Robert, E; Miron, C; Tono, K; Inubushi, Y; Hatsui, T; Yabashi, M; Yao, M; Santra, R; Ueda, K

    2012-01-01

    We have investigated multiphoton multiple ionization dynamics of argon and xenon atoms using a new x-ray free electron laser (XFEL) facility, SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan, and identified that highly charged Xe ions with the charge state up to +26 are produced predominantly via four-photon absorption as well as highly charged Ar ions with the charge state up to +10 are produced via two-photon absorption at a photon energy of 5.5 keV. The absolute fluence of the XFEL pulse, needed for comparison between theory and experiment, has been determined using two-photon processes in the argon atom with the help of benchmark ab initio calculations. Our experimental results, in combination with a newly developed theoretical model for heavy atoms, demonstrate the occurrence of multiphoton absorption involving deep inner shells.

  20. Melting Behaviour of Core-Shell Structured Ag-Rh Bimetallic Clusters

    Institute of Scientific and Technical Information of China (English)

    PAN Yang; CHENG Dao-Jian; HUANG Shi-Ping; WANG Wen-Chuan

    2007-01-01

    The me/ting behaviour of four typical core-shell structured 309-atom Ag-Rh bimetallic clusters, with decahedral and icosahedral geometric configurations, is investigated by using molecular dynamics simulation, based on the Sutton-Chen potential. The initial atomic configurations are obtained from semi-grand canonical ensemble Monte Carlo simulations. It is found that the melting point temperature Tm increases with the mole fraction of Rh in the bimetallic clusters, and Tm of Ag-Rh icosahedral clusters is higher than those of Ag-Rh decahedral clusters with the same Rh mole fraction. It is also found that the Ag atoms lie on the surface of Ag-Rh bimetallic clusters even after melting.

  1. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  2. Multiphoton ionization of atoms

    International Nuclear Information System (INIS)

    The paper is devoted to the analysis of high intensity effects which result from multiphoton ionization of atoms in a high laser intensity, ranging from 1010 to 1015 W cm-2. Resonant multiphoton ionization of atoms, the production of multiply charged ions, and electron energy spectra, are all discussed. (U.K.)

  3. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  4. Atomic Energy Control Board

    International Nuclear Information System (INIS)

    This paper has been prepared to provide an overview of the responsibilities and activities of the Atomic Energy Control Board. It is designed to address questions that are often asked concerning the establishment of the Atomic Energy Control Board, its enabling legislation, licensing and compliance activities, federal-provincial relationships, international obligations, and communications with the public

  5. Atomic and molecular gas in the merger galaxy NGC 1316 (Fornax A) and its environment

    NARCIS (Netherlands)

    Horellou, C; Black, JH; van Gorkom, JH; Combes, F; van der Hulst, JM; Charmandaris, [No Value

    2001-01-01

    We present and interpret observations of atomic and molecular gas toward the southern elliptical galaxy NGC 1316 (Fornax A), a strong double-lobe radio source with a disturbed optical morphology that includes numerous shells and loops. The (CO)-C-12(1-0), (CO)-C-12(2-1), and Hi observations were mad

  6. Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe

    DEFF Research Database (Denmark)

    Kageshima, M.; Jensenius, Henriette; Dienwiebel, M.;

    2002-01-01

    A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane surface were detected both in the frequency shift and dissipation. Due...

  7. A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Olanipekun, E.A.; Olusola, K.O.; Ata, O. [Obafemi Awolowo University, Ile-Ife, Osun State (Nigeria). Department of Building

    2006-03-15

    The high cost of conventional building materials is a major factor affecting housing delivery in Nigeria. This has necessitated research into alternative materials of construction. This paper presents the results of an investigation carried out on the comparative cost analysis and strength characteristics of concrete produced using crushed, granular coconut and palm kernel shells as substitutes for conventional coarse aggregate in gradation of 0%, 25%, 50%, 75% and 100%. Two mix ratios (1:1:2 and 1:2:4) were used. A total of 320 cubes of size 100x100x100mm were cast, tested and their physical and mechanical properties determined. The results of the tests showed that the compressive strength of the concrete decreased as the percentage of the shells increased in the two mix ratios. However, concrete obtained from coconut shells exhibited a higher compressive strength than palm kernel shell concrete in the two mix proportions. The results also indicated cost reduction of 30% and 42% for concrete produced from coconut shells and palm kernel shells, respectively. Considering the strength/economy ratio, it was concluded that coconut shells were more suitable than palm kernel shells when used as substitute for conventional aggregates in concrete production. (author)

  8. Systematic study of shell-model effective interaction in sd shell

    International Nuclear Information System (INIS)

    The spin-tensor decomposition method has been used to analyze the shell model effective interactions in sd shell systematically. Almost all the interactions have been studied, including the microscopic interactions and phenomenological ones. It can be noticed that the discrepancies between the central forces of microscopic interactions with the ones of empirical interactions are remarkable. (authors)

  9. Shell thickness determination of polymer-shelled microbubbles using transmission electron microscopy.

    Science.gov (United States)

    Härmark, Johan; Hebert, Hans; Koeck, Philip J B

    2016-06-01

    Intravenously injected microbubbles (MBs) can be utilized as ultrasound contrast agent (CA) resulting in enhanced image quality. A novel CA, consisting of air filled MBs stabilized with a shell of polyvinyl alcohol (PVA) has been developed. These spherical MBs have been decorated with superparamagnetic iron oxide nanoparticles (SPIONs) in order to serve as both ultrasound and magnetic resonance imaging (MRI) CA. In this study, a mathematical model was introduced that determined the shell thickness of two types of SPIONs decorated MBs (Type A and Type B). The shell thickness of MBs is important to determine, as it affects the acoustical properties. In order to investigate the shell thickness, thin sections of plastic embedded MBs were prepared and imaged using transmission electron microscopy (TEM). However, the sections were cut at random distances from the MB center, which affected the observed shell thickness. Hence, the model determined the average shell thickness of the MBs from corrected mean values of the outer and inner radii observed in the TEM sections. The model was validated using simulated slices of MBs with known shell thickness and radius. The average shell thickness of Type A and Type B MBs were 651nm and 637nm, respectively.

  10. On-shell and half-shell effects of the coulomb potential in quantum mechanics

    NARCIS (Netherlands)

    Maag, Jan Willem de

    1984-01-01

    In dit proefschrift wordt de Coulomb potentiaal in de nietrelativistische quantummechanica bestudeerd. Met gebruik van een streng wiskundige beschrijving onderzoeken we, in het bijzonder, on-shell en off-shell eigenschappen. De overeenkomsten en de verschillen met het geval van een glad afgeschermde

  11. Supercooling Self-Assembly of Magnetic Shelled Core/Shell Supraparticles.

    Science.gov (United States)

    Zheng, Xiaotong; Yan, Bingyun; Wu, Fengluan; Zhang, Jinlong; Qu, Shuxin; Zhou, Shaobing; Weng, Jie

    2016-09-14

    Molecular self-assembly has emerged as a powerful technique for controlling the structure and properties of core/shell structured supraparticles. However, drug-loading capacities and therapeutic effects of self-assembled magnetic core/shell nanocarriers with magnetic nanoparticles in the core are limited by the intervention of the outer organic or inorganic shell, the aggregation of superparamagnetic nanoparticles, the narrowed inner cavity, etc. Here, we present a self-assembly approach based on rebalancing hydrogen bonds between components under a supercooling process to form a new core/shell nanoscale supraparticle with magnetic nanoparticles as the shell and a polysaccharide as a core. Compared with conventional iron oxide nanoparticles, this magnetic shelled core/shell nanoparticle possesses an optimized inner cavity and a loss-free outer magnetic property. Furthermore, we find that the drug-loaded magnetic shelled nanocarriers showed interesting in vitro release behaviors at different pH conditions, including "swelling-broken", "dissociating-broken", and "bursting-broken" modes. Our experiments demonstrate the novel design of the multifunctional hybrid nanostructure and provide a considerable potential for the biomedical applications.

  12. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    NARCIS (Netherlands)

    Schilthuizen, M.

    2003-01-01

    Background: Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not pre

  13. Simplified dispersion curves for circular cylindrical shells using shallow shell theory

    Science.gov (United States)

    Sarkar, Abhijit; Sonti, Venkata R.

    2009-04-01

    An alternative derivation of the dispersion relation for the transverse vibration of a circular cylindrical shell is presented. The use of the shallow shell theory model leads to a simpler derivation of the same result. Further, the applicability of the dispersion relation is extended to the axisymmetric mode and the high frequency beam mode.

  14. Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness

    DEFF Research Database (Denmark)

    Jones, Wilm; Su, Ren; Wells, Peter;

    2014-01-01

    of these materials towards the reforming of alcohols for hydrogen production. The core–shell structured Au–Pd bimetallic nanoparticle supported on TiO2 has being of interest as it exhibited extremely high quantum efficiencies for hydrogen production. However, the effect of shell composition and thickness...

  15. Comparative study of the shell development of hard- and soft-shelled turtles.

    Science.gov (United States)

    Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru

    2014-07-01

    The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin.

  16. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  17. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  18. Moving Single Atoms

    Science.gov (United States)

    Stuart, Dustin

    2016-05-01

    Single neutral atoms are promising candidates for qubits, the fundamental unit of quantum information. We have built a set of optical tweezers for trapping and moving single Rubidium atoms. The tweezers are based on a far off-resonant dipole trapping laser focussed to a 1 μm spot with a single aspheric lens. We use a digital micromirror device (DMD) to generate dynamic holograms of the desired arrangement of traps. The DMD has a frame rate of 20 kHz which, when combined with fast algorithms, allows for rapid reconfiguration of the traps. We demonstrate trapping of up to 20 atoms in arbitrary arrangements, and the transport of a single-atom over a distance of 14 μm with continuous laser cooling, and 5 μm without. In the meantime, we are developing high-finesse fibre-tip cavities, which we plan to use to couple pairs of single atoms to form a quantum network.

  19. Preparation and mechanical property of core-shell type chitosan/calcium phosphate composite fiber

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Atsushi [Japan Society for the Promotion of Science, Ikenohata1-1-1, Daitou-ku, Tokyo 110-0008 (Japan) and Creative Research Initiative ' Sousei' , Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan)]. E-mail: MATSUDA.Atsushi@nims.go.jp; Ikoma, Toshiyuki [Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan); Kobayashi, Hisatoshi [Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)]. E-mail: Kobayashi.Hisatoshi@nims.go.jp; Tanaka, Junzo [Creative Research Initiative ' Sousei' , Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan); Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)

    2004-12-01

    Core-shell type chitosan/calcium phosphate composite fibers were prepared by a facile wet spinning method; the chitosan aqueous solution with PO{sub 4} ions was dropped and coagulated in the ethanol/calcium hydroxide solutions at different mixed ratio. X-ray diffraction (XRD) patterns indicated that the crystal phases of calcium phosphates in the composite fibers were a low-crystalline hydroxyapatite (HAp; Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2})or the low-crystalline hydroxyapatite/brushite mixture depended on the ratio of ethanol/calcium hydroxide solutions. The inorganic contents were ca. 60 wt.% by using the TG-DTA analysis. The energy-dispersive X-ray spectroscopy (EDS) analysis indicated that Ca and P atoms were mainly distributed on the outer layer of the composite fiber to grow calcium phosphate crystals; however, a little amount of P atom still remained at the inside of the fiber. This indicated that the composite fibers formed a unique core-shell structure with shell of calcium phosphate and core of chitosan. The mechanical property of the fibers was reinforced by the initial concentration of chitosan solution.

  20. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wydra, Robert J.; Kruse, Anastasia M. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Bae, Younsoo [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506 (United States); Anderson, Kimberly W. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Hilt, J. Zach, E-mail: hilt@engr.uky.edu [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States)

    2013-12-01

    In this study, core-shell nanoparticles were developed to achieve thermal therapy that can ablate cancer cells in a remotely controlled manner. The core-shell nanoparticles were prepared using atomic transfer radical polymerization (ATRP) to coat iron oxide (Fe{sub 3}O{sub 4}) nanoparticles with a poly(ethylene glycol) (PEG) based polymer shell. The iron oxide core allows for the remote heating of the particles in an alternating magnetic field (AMF). The coating of iron oxide with PEG was verified through Fourier transform infrared spectroscopy and thermal gravimetric analysis. A thermoablation (55 °C) study was performed on A549 lung carcinoma cells exposed to nanoparticles and over a 10 min AMF exposure. The successful thermoablation of A549 demonstrates the potential use of polymer coated particles for thermal therapy. - Highlights: • Utilized atomic transfer radical polymerization (ATRP) to coat iron oxide nanoparticles with PEG • Investigated the surface coating by surface characterization methods • Demonstrated the potential use of nanoparticles for cancer therapy applications.

  1. The study of the adductor muscle-shell interface structure in three Mollusc species

    Institute of Scientific and Technical Information of China (English)

    ZHU Yaoyao; SUN Chengjun; SONG Yingfei; JIANG Fenghua; YIN Xiaofei; TANG Min; DING Haibing

    2016-01-01

    The adductor muscle scar (AMS) is the fixation point of adductor muscle to the shell. It is an important organic-inorganic interface and stress distribution area. Despite recent advances, our understanding of the structure and composition of the AMS remain limited. Here, we report study on the AMS of three bivalves:Mytilus coruscus, Chlamys farreri andRuditapes philippinarum. Results showed that there were significant differences among their AMS structures. BothM. coruscus andC. farreri were found to have a columnar layer above the nacreous platelet shell structure at the AMS and this layer was more organized inM. coruscus. There was no distinguishable two-layer structure inR. philippinarum. Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FT-IR) results showed that the AMS was much smoother than the nacreous inner shell in all the three species and the AMS had minor different compositions from the nacreous shell layer. SDS-PAGE (sodium dodecyl-sulfate polyacrylamide gel electophoresis) study of the proteins isolated from the interface indicated that there was a 70 kDa protein which seemed to be specifically located to the highly organized columnar AMS structure inMytilus coruscus. Further analysis of this protein showed it contained high level of Asx (Asp+Asn), Glx (Glu+Gln) and Gly. The special structure and composition of the AMS might play important roles in the stability, adhesion and function at this stress distribution site.

  2. Core@Double-Shell Structured Nanocomposites: A Route to High Dielectric Constant and Low Loss Material.

    Science.gov (United States)

    Huang, Yanhui; Huang, Xingyi; Schadler, Linda S; He, Jinliang; Jiang, Pingkai

    2016-09-28

    This work reports the advances of utilizing a core@double-shell nanostructure to enhance the electrical energy storage capability and suppress the dielectric loss of polymer nanocomposites. Two types of core@double-shell barium titanate (BaTiO3) matrix-free nanocomposites were prepared using a surface initiated atom transfer radical polymerization (ATRP) method to graft a poly(2-hydroxylethyle methacrylate)-block-poly(methyl methacrylate) and sodium polyacrylate-block-poly(2-hydroxylethyle methacrylate) block copolymer from BaTiO3 nanoparticles. The inner shell polymer is chosen to have either high dielectric constant or high electrical conductivity to provide large polarization, while the encapsulating outer shell polymer is chosen to be more insulating as to maintain a large resistivity and low loss. Finite element modeling was conducted to investigate the dielectric properties of the fabricated nanocomposites and the relaxation behavior of the grafted polymer. It demonstrates that confinement of the more conductive (lossy) phase in this multishell nanostructure is the key to achieving a high dielectric constant and maintaining a low loss. This promising multishell strategy could be generalized to a variety of polymers to develop novel nanocomposites. PMID:27602603

  3. Lithography-free shell-substrate isolation for core-shell GaAs nanowires.

    Science.gov (United States)

    Haggren, Tuomas; Perros, Alexander Pyymaki; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-01

    A facile and scalable lithography-free technique(5) for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale.

  4. Lithography-free shell-substrate isolation for core-shell GaAs nanowires.

    Science.gov (United States)

    Haggren, Tuomas; Perros, Alexander Pyymaki; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-01

    A facile and scalable lithography-free technique(5) for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale. PMID:27242347

  5. Lithography-free shell-substrate isolation for core–shell GaAs nanowires

    Science.gov (United States)

    Haggren, Tuomas; Pyymaki Perros, Alexander; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-01

    A facile and scalable lithography-free technique5 for the rapid construction of GaAs core–shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core–shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour‑liquid‑solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core–shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core–shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core–shell NWs on an industrial scale.

  6. Multimode interaction in axially excited cylindrical shells

    Directory of Open Access Journals (Sweden)

    Silva F. M. A.

    2014-01-01

    Full Text Available Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural frequencies. The shell is modelled using the Donnell nonlinear shallow shell theory and the discretized equations of motion are obtained by applying the Galerkin method. For this, a modal solution that takes into account the modal interaction among the relevant modes and the influence of their companion modes (modes with rotational symmetry, which satisfies the boundary and continuity conditions of the shell, is derived. Special attention is given to the 1:1:1:1 internal resonance (four interacting modes. Solving numerically the governing equations of motion and using several tools of nonlinear dynamics, a detailed parametric analysis is conducted to clarify the influence of the internal resonances on the bifurcations, stability boundaries, nonlinear vibration modes and basins of attraction of the structure.

  7. SHELL DISEASES AND TOXINS REGULATED BY LAW

    Directory of Open Access Journals (Sweden)

    Natalija Topić Popović

    1999-06-01

    Full Text Available There is a long tradition of cultivating shells in Croatia, and the shell industry has a good perspective of further development. Since shells are delicate organisms that require special breeding conditions and climate, they are also subject to many diseases. Bonamiosis, haplospioridiosis, marteiliosis, microcytosis and perkinsosis are stated by the International Bureau for Epizootics as shell diseases that, in keeping with law, must be reported, and iridovirosis as a disease of a potential international importance. The same diseases are regulated by the Veterinary Law from 1997 as infectious diseases prevention of which is of an interest for the Republic of Croatia. Although, according to the law, it does not have to be prevented, in this article the disease Mytilicola is also described. According to the Health Department Statute from 1994, eatable part of shells are being tested for toxins of some marine dinoflagelates that can damage human health, and these are PSP (Paralytic Shellfish Poison, DSP (Diarrhoeic Shellfish Poison and NSP (Neuroparalytic Shellfish Poison.

  8. Thick or Thin Ice Shell on Europa?

    Science.gov (United States)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  9. Folding of non-Euclidean curved shells

    Science.gov (United States)

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan

    2015-03-01

    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  10. Hollow Pollen Shells to Enhance Drug Delivery

    Directory of Open Access Journals (Sweden)

    Alberto Diego-Taboada

    2014-03-01

    Full Text Available Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine, made largely of cellulose, and the outer layer (exine, composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell.

  11. Atomic displacements due to interstitial hydrogen in Cu and Pd

    Indian Academy of Sciences (India)

    Hitesh Sharma; S Prakash

    2007-08-01

    The density functional theory (DFT) is used to study the atomic interactions in transition metal-based interstitial alloys. The strain field is calculated in the discrete lattice model using Kanzaki method. The total energy and hence atomic forces between interstitial hydrogen and transition metal hosts are calculated using DFT. The norm-conserving pseudopotentials for H, Cu and Pd are generated self-consistently. The dynamical matrices are evaluated considering interaction up to first nearest neighbors whereas impurity-induced forces are calculated with M32H shell (where M = Cu and Pd). The atomic displacements produced by interstitial hydrogen at the octahedral site in Cu and Pd show displacements of 7.36% and 4.3% of the first nearest neighbors respectively. Both Cu and Pd lattices show lattice expansion due to the presence of hydrogen and the obtained average lattice expansion / = 0.177 for Cu and 0.145 for Pd.

  12. Structural Assessment of Advanced Composite Tow-Steered Shells

    Science.gov (United States)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  13. On the behavior of scattering phases in collisions of electrons with multi-atomic objects

    CERN Document Server

    Amusia, M Ya

    2015-01-01

    We have studied the energy dependence of several first scattering phases with multi-atomic object. As concrete examples representing the general trends endohedrals Neon inside C60 and Argon inside C60 are considered. It appeared that the presence of an inner atom, either Ne or Ar, qualitatively affects the scattering phases, in spite of the fact that the fullerene consists of 60 carbon atoms, while the atom staffed inside is only one. Calculations are performed in the one-electron Hartree-Fock (HF) and random phase approximation with exchange (RPAE) for the inner atom while the fullerenes shell is substituted by static potential without and with the polarization potential. It appeared that the total endohedral scattering phase is simply a sum of atomic, Ne or Ar, and fullerenes C60 phases, contrary to the intuitive assumption that the total phases on C60 and Neon inside C60 or Ar inside C60 has to be the same.

  14. Analysis of sound radiation characteristics of complex double shells

    Institute of Scientific and Technical Information of China (English)

    CHEN Meixia; LUO Dongping; CHEN Xiaoning; SHEN Ruixi

    2004-01-01

    The double stiffened shell connected by annular plates is systematically studied.The shell motion is obtained using the classical Fliigge operator, the effects of stiffeners are induced into the vibration equation by treating them as reverse included in forces and moments on the shell, and the fluid field between the inner shell and outer shell is solved by applying Helmholtz equation and the continuity conditions of the displacement on the surface of fluidstructure. At last the vibration equation coupled by the sound-fluid-structure are constituted and solved. The effects of the double shell parameters and linked types between the double shells on the sound radiation are discussed in detail. The following conclusions can be gotten:The smaller the space between the inner shell and outer shell, the stronger the coupling of the inner shell and outer shell, the higher the radiated power and radial quadratic velocity, and the more indistinct the shield of the outer shell. The changes of the thickness of the inner shell and outer shell influenced the radial quadratic velocity greatly, and influenced the radiated power indistinctly. The thicker the thickness, the lower the radial quadratic velocity.

  15. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol

    Science.gov (United States)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-07-01

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  16. Linear atomic quantum coupler

    CERN Document Server

    El-Orany, Faisal A A

    2009-01-01

    In this paper, we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of them includes a localized and/or a trapped atom. These waveguides are placed close enough to allow exchanging energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way, i.e. as the Jaynes-Cummings model (JCM), and with the atom-mode in the second waveguide via evanescent wave. We present the Hamiltonian for the system and deduce the exact form for the wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional linear coupler, the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions, the system can yield the results of the two-m...

  17. Metal oxide core shell nanostructures as building blocks for efficient light emission (SISGR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jane P [Univ. of California, Los Angeles, CA (United States); Dorman, James [Univ. of California, Los Angeles, CA (United States); Cheung, Cyrus [Univ. of California, Los Angeles, CA (United States)

    2016-01-12

    The objective of this research is to synthesize core-shell nano-structured metal oxide materials and investigate their structural, electronic and optical properties to understand the microscopic pathways governing the energy conversion process, thereby controlling and improving their efficiency. Specifically, the goal is to use a single metal oxide core-shell nanostructure and a single excitation source to generate photons with long emission lifetime over the entire visible spectrum and when controlled at the right ratio, generating white light. In order to achieve this goal, we need to control the energy transfer between light emitting elements, which dictates the control of their interatomic spacing and spatial distribution. We developed an economical wet chemical process to form the nanostructured core and to control the thickness and composition of the shell layers. With the help from using DOE funded synchrotron radiation facility, we delineated the growth mechanism of the nano-structured core and the shell layers, thereby enhancing our understanding of structure-property relation in these materials. Using the upconversion luminescence and the lifetime measurements as effective feedback to materials sysnthes is and integration, we demonstrated improved luminescence lifetimes of the core-shell nano-structures and quantified the optimal core-multi-shell structure with optimum shell thickness and composition. We developed a rare-earths co-doped LaPO4 core-multishell structure in order to produce a single white light source. It was decided that the mutli-shell method would produce the largest increase in luminescence efficiency while limiting any energy transfer that may occur between the dopant ions. All samples resulted in emission spectra within the accepted range of white light generation based on the converted CIE color coordinates. The white light obtained varied between warm and cool white depending on the layering architecture, allowing for the

  18. 78 FR 58571 - Maine Yankee Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic...

    Science.gov (United States)

    2013-09-24

    ... Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic Electric Company... Power Company (Maine Yankee), Connecticut Yankee Atomic Power Company (Connecticut Yankee), and the Yankee Atomic Electric Company (Yankee Atomic) (together, ``licensees'' or ``the Yankee Companies'')...

  19. Preliminary structural investigations of the Eut-L shell protein of the ethanolamine ammonia-lyase metabolosome of Escherichia coli

    International Nuclear Information System (INIS)

    Preliminary X-ray analysis of crystals of the bacterial microcompartment shell protein Eut-L from Escherichia coli is reported. The ethanolamine ammonia-lyase microcompartment is composed of five different shell proteins that have been proposed to assemble into symmetrically shaped polyhedral particles of varying sizes. Here, preliminary X-ray analysis of crystals of the bacterial microcompartment shell protein Eut-L from Escherichia coli is reported. Cloning, overexpression and purification resulted in highly pure protein that crystallized readily under many different conditions. In all cases the protein forms thin hexagonal plate-shaped crystals belonging to space group P3 that are of unusually high stability against different solvent conditions. The crystals diffracted to a resolution of 2.0 Å using synchrotron radiation but proved to be radiation-sensitive. Preparations of heavy-atom-derivatized crystals for use in determining the three-dimensional structure are under way

  20. Endohedral metallofullerenes, M@C60 (M = Ca, Na, Sr): selective adsorption and sensing of open-shell NOx gases.

    Science.gov (United States)

    Tawfik, Sherif Abdulkader; Cui, X Y; Ringer, S P; Stampfl, C

    2016-08-21

    Based on density-functional theory and non-equilibrium Green's function calculations, we demonstrate that endohedral metallofullerenes (EMFs) are reactive to open-shell gases, and therefore have the potential application as selective open-shell gas sensors. The adsorption of eight gas species (CO, H2O, H2S, NO2, NO, SO2, O2 and NH3) on three EMFs (M@C60, M = Ca, Na and Sr) shows that the adsorption energies of the EMFs towards NO2 and NO are significantly higher than the closed-shell species. Moreover, the high selectivity appears relatively insensitive to the inserted metal atoms. The calculated current-voltage characteristics of gold-M@C60-gold structures (M = Ca, Na) show that the adsorption of NO2 leads to significant change in conductivity, suggesting a potential application as an EMF gas resistive sensing device.

  1. Endohedral metallofullerenes, M@C60 (M = Ca, Na, Sr): selective adsorption and sensing of open-shell NOx gases.

    Science.gov (United States)

    Tawfik, Sherif Abdulkader; Cui, X Y; Ringer, S P; Stampfl, C

    2016-08-21

    Based on density-functional theory and non-equilibrium Green's function calculations, we demonstrate that endohedral metallofullerenes (EMFs) are reactive to open-shell gases, and therefore have the potential application as selective open-shell gas sensors. The adsorption of eight gas species (CO, H2O, H2S, NO2, NO, SO2, O2 and NH3) on three EMFs (M@C60, M = Ca, Na and Sr) shows that the adsorption energies of the EMFs towards NO2 and NO are significantly higher than the closed-shell species. Moreover, the high selectivity appears relatively insensitive to the inserted metal atoms. The calculated current-voltage characteristics of gold-M@C60-gold structures (M = Ca, Na) show that the adsorption of NO2 leads to significant change in conductivity, suggesting a potential application as an EMF gas resistive sensing device. PMID:27426253

  2. Soluble organic matrices of the calcitic prismatic shell layers of two Pteriomorphid bivalves. Pinna nobilis and Pinctada margaritifera.

    Science.gov (United States)

    Dauphin, Yannicke

    2003-04-25

    The calcitic prisms of the shells of two bivalves, Pinna and Pinctada, are considered simple prisms according to some morphological and mineralogical characteristics. Scanning electron microscopic and atomic force microscopic studies show that the microstructures and nanostructures of these two shells are different. Pinna prisms are monocrystalline, whereas Pinctada prisms are not. Moreover, intraprismatic membranes are present only in the Pinctada prisms. The soluble organic matrices extracted from these prisms are acidic, but their bulk compositions differ. Ultraviolet and infrared spectrometries, fluorescence, high pressure liquid chromatography, and electrophoresis show that the sugar-protein ratios and the molecular weights are different. Sulfur is mainly associated with acidic sulfated sugars, not with amino acids, and the role of acidic sulfated sugars is still underestimated. Thus, the simple prism concept is not a relevant model for the biomineralization processes in the calcitic prismatic layer of mollusk shells.

  3. Atomic Dark Matter

    OpenAIRE

    Kaplan, David E.; Krnjaic, Gordan Z.; Rehermann, Keith R.; Wells, Christopher M.

    2009-01-01

    We propose that dark matter is dominantly comprised of atomic bound states. We build a simple model and map the parameter space that results in the early universe formation of hydrogen-like dark atoms. We find that atomic dark matter has interesting implications for cosmology as well as direct detection: Protohalo formation can be suppressed below $M_{proto} \\sim 10^3 - 10^6 M_{\\odot}$ for weak scale dark matter due to Ion-Radiation interactions in the dark sector. Moreover, weak-scale dark a...

  4. EINSTEIN, SCHROEDINGER, AND ATOM

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2014-03-01

    Full Text Available In this paper, we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation and the Schrodinger equation as well. The solutions of the Einstein equations describing the stationary states of arbitrary quantum and classical systems with central symmetry have been obtained. Einstein’s atom model has been developed, and proved that atoms and atomic nuclei can be represented as standing gravitational waves

  5. Atoms, molecules, solids

    International Nuclear Information System (INIS)

    This book is an introduction to modern physics for undergraduate students of physics or students of related fields. After an introduction to the wave-particle dualism the structure of atoms is considered with regards to atomic models. Then the foundations of quantum mechanics are introduced with regards to their application to atomic structure calculations. Thereafter the chemical bond and the molecular structure are discussed. Then classical and quantum statistical mechanics are introduced. Thereafter the crystal binding, the crystal structure, and the specific heat of solids are considered. Finally the band theory of solids is briefly introduced. Every chapter contains exercise problems. (HSI)

  6. Single-atom nanoelectronics

    CERN Document Server

    Prati, Enrico

    2013-01-01

    Single-Atom Nanoelectronics covers the fabrication of single-atom devices and related technology, as well as the relevant electronic equipment and the intriguing new phenomena related to single-atom and single-electron effects in quantum devices. It also covers the alternative approaches related to both silicon- and carbon-based technologies, also from the point of view of large-scale industrial production. The publication provides a comprehensive picture of the state of the art at the cutting edge and constitutes a milestone in the emerging field of beyond-CMOS technology. Although there are

  7. Atom probe tomography today

    Directory of Open Access Journals (Sweden)

    Alfred Cerezo

    2007-12-01

    Full Text Available This review aims to describe and illustrate the advances in the application of atom probe tomography that have been made possible by recent developments, particularly in specimen preparation techniques (using dual-beam focused-ion beam instruments but also of the more routine use of laser pulsing. The combination of these two developments now permits atomic-scale investigation of site-specific regions within engineering alloys (e.g. at grain boundaries and in the vicinity of cracks and also the atomic-level characterization of interfaces in multilayers, oxide films, and semiconductor materials and devices.

  8. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  9. Division of atomic physics

    International Nuclear Information System (INIS)

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  10. Inside the Hydrogen Atom

    CERN Document Server

    Nowakowski, M; Fierro, D Bedoya; Manjarres, A D Bermudez

    2016-01-01

    We apply the non-linear Euler-Heisenberg theory to calculate the electric field inside the hydrogen atom. We will demonstrate that the electric field calculated in the Euler-Heisenberg theory can be much smaller than the corresponding field emerging from the Maxwellian theory. In the hydrogen atom this happens only at very small distances. This effect reduces the large electric field inside the hydrogen atom calculated from the electromagnetic form-factors via the Maxwell equations. The energy content of the field is below the pair production threshold.

  11. The CHIANTI atomic database

    CERN Document Server

    Young, Peter R; Landi, Enrico; Del Zanna, Giulio; Mason, Helen

    2015-01-01

    The CHIANTI atomic database was first released in 1996 and has had a huge impact on the analysis and modeling of emissions from astrophysical plasmas. The database has continued to be updated, with version 8 released in 2015. Atomic data for modeling the emissivities of 246 ions and neutrals are contained in CHIANTI, together with data for deriving the ionization fractions of all elements up to zinc. The different types of atomic data are summarized here and their formats discussed. Statistics on the impact of CHIANTI to the astrophysical community are given and examples of the diverse range of applications are presented.

  12. Free Vibration of Partially Supported Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    S. Mirza

    1995-01-01

    Full Text Available The effects of detached base length on the natural frequencies and modal shapes of cylindrical shell structures were investigated in this work. Some of the important applications for this type of problem can be found in the cracked fan and rotor blades that can be idealized as partially supported shells with varying unsupported lengths. A finite element model based on small deflection linear theory was developed to obtain numerical solutions for this class of problems. The numerical results were generated for shallow shells and some of the degenerate cases are compared with other results available in the literature. The computations presented here involve a wide range of variables: material properties, aspect ratios, support conditions, and radius to base ratio.

  13. The microindentation behavior of several mollusk shells

    Energy Technology Data Exchange (ETDEWEB)

    Laraia, V.J.; Heuer, A.H. (Case Western Reserve Univ., Cleveland, OH (USA). Dept. of Materials Science and Engineering)

    1990-01-01

    An investigation of the relationship between structure and mechanical behavior is reported for mollusk shells employing foliated, nacreous, and crossed-lamellar structures by microindentation in the Knoop and Vickers geometries. Indentation damage zones develop crack systems that reflect the micro-architecture. For the crosed-lamellar structure, the system of cracks about the indentation normally developed in a brittle material is suppressed. Previous reports that shells are harder than the corresponding minerals, calcite and aragonite, are confirmed, but it is found that this effect can be strongly dependent on orientation. This anomalous hardness is not an artifact of the indentation test technique, since scratch tests confirm the relative hardness of shell over the mineral. It is suggested that microstructural organization is of central importance in producing this hardness, as opposed to intrinsic properties of the mineral or matrix phases. 17 refs., 6 figs., 1 tab.

  14. Off-shell amplitudes in superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, 211019 (India)

    2015-04-01

    Computing the renormalized masses and S-matrix elements in string theory, involving states whose masses are not protected from quantum corrections, requires defining off-shell amplitude with certain factorization properties. While in the bosonic string theory one can in principle construct such an amplitude from string field theory, there is no fully consistent field theory for type II and heterotic string theory. In this paper we give a practical construction of off-shell amplitudes satisfying the desired factorization property using the formalism of picture changing operators. We describe a systematic procedure for dealing with the spurious singularities of the integration measure that we encounter in superstring perturbation theory. This procedure is also useful for computing on-shell amplitudes, as we demonstrate by computing the effect of Fayet-Iliopoulos D-terms in four dimensional heterotic string theory compactifications using this formalism. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Impact loading on a spherical shell

    International Nuclear Information System (INIS)

    When calculating the impact-force of an aircraft striking a building the deformation of this building is not taken in account. To which extent the elastic displacements of a structure influence the impact on plates and on spherical shells is investigated in this paper. The aircraft is idealized by a linear mass-spring-dashpot-combination, which can suffer elastic as well as plastic deformation. This 'aircraft' normally strikes a spherical shell at the apex. The time-dependent reactions of the shell as a function of the unknown impact load (F)t are expanded in terms of the normal modes, which are Legendre functions. The continuity condition at the impact point leads to an integral-equation for F(t), which may be solved by Laplace transformation. (Auth.)

  16. Shell-structure fingerprints of tensor interaction

    CERN Document Server

    Zalewski, M; Dobaczewski, J; Olbratowski, P; Rafalski, M; Werner, T R; Wyss, R A

    2008-01-01

    We address consequences of strong tensor and weak spin-orbit terms in the local energy density functional, resulting from fits to the $f_{5/2} - f_{7/2}$ splittings in $^{40}$Ca, $^{48}$Ca, and $^{56}$Ni. In this study, we focus on nuclear binding energies. In particular, we show that the tensor contribution to the binding energies exhibits interesting topological features closely resembling that of the shell-correction. We demonstrate that in the extreme single-particle scenario at spherical shape, the tensor contribution shows tensorial magic numbers equal to $N(Z)$=14, 32, 56, and 90, and that this structure is smeared out due to configuration mixing caused by pairing correlations and migration of proton/neutron sub-shells with neutron/proton shell filling. Based on a specific Skyrme-type functional SLy4$_T$, we show that the proton tensorial magic numbers shift with increasing neutron excess to $Z$=14, 28, and 50.

  17. Off-shell Amplitudes in Superstring Theory

    CERN Document Server

    Sen, Ashoke

    2014-01-01

    Computing the renormalized masses and S-matrix elements in string theory, involving states whose masses are not protected from quantum corrections, requires defining off-shell amplitude with certain factorization properties. While in the bosonic string theory one can in principle construct such an amplitude from string field theory, there is no fully consistent field theory for superstring and heterotic string theory. In this paper we give a practical construction of off-shell amplitudes satisfying the desired factorization property using the formalism of picture changing operators. We describe a systematic procedure for dealing with the spurious singularities of the integration measure that we encounter when the supermoduli space is not holomorphically projected. This procedure is also useful for computing on-shell amplitudes, as we demonstrate by computing the effect of Fayet-Iliopoulos D-terms in four dimensional heterotic string theory compactifications using this formalism.

  18. Anticavitation and Differential Growth in Elastic Shells

    KAUST Repository

    Moulton, Derek E.

    2010-07-22

    Elastic anticavitation is the phenomenon of a void in an elastic solid collapsing on itself. Under the action of mechanical loading alone typical materials do not admit anticavitation. We study the possibility of anticavitation as a consequence of an imposed differential growth. Working in the geometry of a spherical shell, we seek radial growth functions which cause the shell to deform to a solid sphere. It is shown, surprisingly, that most material models do not admit full anticavitation, even when infinite growth or resorption is imposed at the inner surface of the shell. However, void collapse can occur in a limiting sense when radial and circumferential growth are properly balanced. Growth functions which diverge or vanish at a point arise naturally in a cumulative growth process. © 2010 Springer Science+Business Media B.V.

  19. A search for shells around crabs

    International Nuclear Information System (INIS)

    Prior to conducting a survey of the galactic plane at 327 MHz using the VLA, the authors have imaged four fields near galactic longitude of 20 degrees. Each image will cover a 2.5 degree field with ∼ 1 arcmin resolution. The fields have been chosen to include the remnants G20.0-0.2, G21.5-0.9, and G24.7 + 0.6. The first two are isolated Crab-like objects, that is, there is no discernible associated shell. Since such shells have relatively steep spectra, images at 327 MHz will be more sensitive to their presence. The absence of a shell can constrain the density of the ISM in the vicinity of the SNR. Since ∼ 50% of Crabs are naked, the implications can be extended to a significant fraction of the ISM

  20. NONLINEAR BENDING THEORY OF DIAGONAL SQUARE PYRAMID RETICULATED SHALLOW SHELLS

    Institute of Scientific and Technical Information of China (English)

    肖潭; 刘人怀

    2001-01-01

    Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core is comparatively flexible. According to its geometrical and mechanical characteristics, the diagonal square pyramid reticulated shallow shell is treated as a shallow sandwich shell on the basis of three basic assumptions. Its constitutive relations are analyzed from the point of view of energy and internal force equivalence. Basic equations of the geometrically nonlinear bending theory of the diagonal square pyramid reticulated shallow shell are established by means of the virtual work principle .