WorldWideScience

Sample records for atomic shells

  1. Atomic inner-shell physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1985-01-01

    This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions

  2. Muonic atoms with vacant electron shells

    International Nuclear Information System (INIS)

    Bacher, R.; Gotta, D.; Simons, L.M.; Missimer, J.; Mukhopadhyay, N.C.

    1985-01-01

    We show that the cascade in muonic atoms with Z<20 ejects sufficient atomic electrons to ionize an isolated muonic atom completely. In gases, the rates with which electrons refill the atomic shell can be accurately deduced from measured and calculated electron transfer cross sections. Thus, we can conclude that completely ionized muonic atoms can be prepared in gases, and that they remain isolated for long enough times at attainable pressures to facilitate studies of fundamental interactions in muonic atoms

  3. Atomic mass formula with linear shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami; Ando, Yoshihira; Tachibana, Takahiro.

    1981-01-01

    An atomic mass formula is constructed in the form of a sum of gross terms and empirical linear shell terms. Values of the shell parameters are determined after the statistical method of Uno and Yamada, Which is characterized by inclusion of the error inherent in the mass formula. The resulting formula reproduces the input masses with the standard deviation of 393 keV. A prescription is given for estimating errors of calculated masses. The mass formula is compared with recent experimental data of Rb, Cs and Fr isotopes, which are not included in the input data, and also with the constant-shell-term formula of Uno and Yamada. (author)

  4. Electron induced atomic inner-shell ionization

    International Nuclear Information System (INIS)

    Quarles, C.A.

    1974-01-01

    The current status of cross section measurements for atomic inner-shell ionization by electron bombardment is reviewed. Inner shell ionization studies using electrons as projectiles compliment the similar studies being done with heavy particles, and in addition can provide tests of the theory in those cases when relativistic effects and exchange effects are expected to be important. Both total cross sections and recently measured differential cross sections will be discussed and compared with existing theories where possible. Prospects for further experimental and theoretical work in this area of atomic physics using small electron accelerators will also be discussed

  5. On the atomic shell structure calculation (1)

    International Nuclear Information System (INIS)

    Choe Sun Chol

    1986-01-01

    We have considered the problem of atomic shell structure calculation using operator technique. We introduce reduced matrix elements of annihilation operators according to eg. (4). The normalized basis function is denoted as || ...>. The reduced matrix elements of the pair annihilation operators are expressed throw one-electron matrix elements. Some numerical results are represented and the problem of sign assignment is discussed. (author)

  6. Relativistic effects in atomic inner-shell transitions

    International Nuclear Information System (INIS)

    Chen, M.H.

    1982-01-01

    Theoretical calculations of atomic inner-shell transition rates based on independent-particle models are reviewed. Factors affecting inner-shell transition rates are examined, particularly the effects of relativity. 48 references, 5 figures

  7. Inner-shell excitation of alkali-metal atoms

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    1987-06-01

    Inner-shell excitation of alkali-metal atoms, which leads to auto-ionization, is reviewed. The validity of quantum mechanical approximation is analyzed and the importance of exchange and correlation is demonstrated. Basic difficulties in making accurate calculations for inner-shell excitation process are discussed. Suggestions are made for further study of inner-shell process in atoms and ions. (author). 26 refs, 4 figs, 1 tab

  8. Kinetic-energy density functional: Atoms and shell structure

    International Nuclear Information System (INIS)

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. copyright 1996 The American Physical Society

  9. The K-shell ionisation of atoms by relativistic protons

    International Nuclear Information System (INIS)

    Davidovic, D.M.; Moiseiwitsch, B.L.; Norrington, P.H.

    1978-01-01

    The K-shell ionisation of atoms by protons travelling with relativistic velocities is investigated using an extension of the first-order time-dependent perturbation-theory treatment of Moeller (Ann. Phys. Lpz.; 14:531 (1932)), taking Dirac plane waves for the description of the incident and scattered protons and the Darwin approximation for the relativistic wavefunctions of the K-shell atomic electrons and the ejected electron. The differential cross sections and total cross sections are calculated. Results are compared with those of earlier workers. (author)

  10. Ionization of inner shells of atoms taking account of outer shell rearrangement

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    1977-01-01

    The application of the general many-body theory and methods formulated with its help, in particular, the so-called random phase approximation with exchange (RPAE) and the many-body perturbation theory (MBPT) makes possible a description of ionization processes for many outer and intermediate shells of a number of atoms. This investigation of outer- and intermediate-shell ionization by photons and electrons demonstrates the collective character of these processes and the possibility of describing them by RPAE. 28 references

  11. Internal conversion theory of gamma radiation in unfilled atomic shells

    International Nuclear Information System (INIS)

    Anderson, Eh.M.; Trusov, V.F.; Ehglajs, M.O.

    1980-01-01

    The internal conversion theory of gamma radiation in unfilled shells, when the atom is in a state with certain energy and momentum, is considered. A formula for the conversion coefficient between the atom and ion levels is obtained. This coefficient turns to be dependent on genealogic characteristics of the atom. It is discussed when the conversion coefficients are proportional to the numbers of filling subshells in the atom. Exact calculations have been carried out in the multiconfigurational approximation taking into account intermediate coupling for the d-shell of the Fe atom Single-electron radial wave functions have been calculated on the basis of the relativistic method of the Hartree-Fock-Dirak self-consistent field. Conversion coefficients on certain subshells as well as submatrix elements of the production operator are calculated. The electric coefficient of internal conversion (CIC) in the calculation for one electron does not depend on spin orientation. That is why the electric CIC from the level will not depend on filling number distribution by subshells. For magnetic CIC the dependence on the atom state is significant. Using multiconfiguration basis for calculating energy matrix and its succeeding diagonalization means the account of the intermediate coupling type, which takes place for the unfilled shells

  12. Inner shells as a link between atomic and nuclear physics

    International Nuclear Information System (INIS)

    Merzbacher, E.

    1982-01-01

    Nuclear decay and reaction processes generally take place in neutral or partially ionized atoms. The effects of static nuclear properties (size, shape, moments) on atomic spectra are well known, as are electronic transitions accompanying nuclear transitions, e.g. K capture and internal conversion. Excitation or ionization of initially filled inner shells, really or virtually, may modify nuclear Q values, will require correction to measured beta-decay endpoint energies, and can permit the use of inner-shell transitions in the determination of nuclear widths. Improvements in resolution continue to enhance the importance of these effects. There is also beginning to appear experimental evidence of the dynamical effects of atomic electrons on the course of nuclear reactions. The dynamics of a nuclear reaction, which influences and may in turn be influenced by atomic electrons in inner shells, offers instructive examples of the interplay between strong and electromagnetic interactions and raises interesting questions about coherence properties of particle beams. A variety of significantly different collision regimes, depending on the atomic numbers of the collision partners and the collision velocity, will be discussed and illustrated. 21 References, 5 figures

  13. Ionization effects in electronic inner-shells of ionized atoms

    International Nuclear Information System (INIS)

    Shchornak, G.

    1983-01-01

    A review of the atomic physics of ionization atoms has been presented. Interaction and structure effects in atomic shells, correlated to the occurrence of vacancies in several subshells of the atom have been considered. The methods of calculations of atomic states and wave functions have been reviewed. The energy shift of characteristic X-rays is discussed as a function of the ionization stage of the atom. The influence of inner and outer-shell vacancies on the energy of the X-rays is shown in detail. The influence of chemical effects on the parameters of X-rays is also taken into account. Further on, the change of transition probabilities in radiative and non-radiative transitions by changing stage of ionization is discussed; and among them the leading part of Auger and Coster-Kronig transitions by the arearrangement of the atomic states is shown. The influence of non-radiative electronic transitions on ionization cross-sections for multiple ionization is discussed. Using these results, ionization cross-sections for direct and indirect processes for several ionization stages are given

  14. Autoionization of inner atomic shells during β decay

    International Nuclear Information System (INIS)

    Batkin, I.S.; Kopytin, I.V.; Smirnov, Y.G.; Churakova, T.A.

    1981-01-01

    A theory describing the autoionization of inner atomic shells in nuclear β decay has been developed. It is shown on the basis of diagram technique that in first order in Z -1 the matrix element of the process is represented in the form of the sum of two terms, one of which corresponds to ionization of an electron shell of an atom with sudden change of the charge of the nucleus, and the other to direct interaction of a β particle with the electrons of the atomic shell. Specific calculations are carried out in the nonrelativistic approximation with use of electron wave functions and a Green's function constructed with a Teitz screened Coulomb potential, the systematic inclusion of the contribution of the direct mechanism being carried out for the first time. For the case of β decay of the isotopes 35 S, 45 Ca, 63 Ni, 147 Pm, and 151 Sm we have calculated the shape of the spectrum of shakeup electrons and the integrated probability of autoionization of the K shell. It was found that the contribution of the direct mechanism in all cases considered is significant

  15. Inner-shell photoionization of group-IIB atoms

    International Nuclear Information System (INIS)

    Kutzner, M.; Tidwell, C.; Vance, S.E.; Radojevic, V.

    1994-01-01

    Total and partial photoionization cross sections, branching ratios, and angular-distribution asymmetry parameters for inner subshells (nl,l≥2) of the group-IIB elements zinc, cadmium, and mercury have been calculated in both the relativistic random-phase approximation and the relativistic random-phase approximation modified to include relaxation. Comparisons are made between the results of the two theoretical methods and with experiment where available. The present theoretical results for the 3d inner-shell photoionization of zinc are not in accord with experiment. We confirm previous work [S. L. Carter and H. P. Kelly, J. Phys. B 11, 2467 (1978)] which demonstrated that relaxation is an important effect in photoionization of the 4d subshell of atomic cadmium. It is also found that the inclusion of relaxation effects resolves a discrepancy between theory and experiment for the 4f inner-shell photoionization of atomic mercury

  16. The role of fullerene shell upon stuffed atom polarization potential

    OpenAIRE

    Amusia, M. Ya.; Chernysheva, L. V.

    2015-01-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes pol...

  17. The L1-shell ionisation of atoms by relativistic particles

    International Nuclear Information System (INIS)

    Moiseiwitsch, B.L.; Norrington, P.H.

    1979-01-01

    An expression for the L 1 -shell ionisation cross sections of atoms by high-energy particles has been derived using the relativistic plane-wave Born approximation. The incident and scattered particles are described by Dirac plane waves while Darwin hydrogenic wavefunctions are used for the atomic electrons. A comparison is made with experimental total cross sections for incident electrons in the energy range 1-2 MeV. The agreement is a considerable improvement on that obtained using the non-relativistic planewave Born approximation. (author)

  18. Collisional alignment and orientation of atomic outer shells. Pt. 1

    International Nuclear Information System (INIS)

    Andersen, N.; Gallagher, J.W.; Hertel, I.V.

    1988-01-01

    The study of polarization of atomic radiation emitted after impact excitation has yielded an enormous wealth of detailed information on the mechanism and dynamics of collisional excitation and energy transfer, both in electron and heavy particle impact studies. In these studies, the beam of electrons, ions or fast atoms used to excite the target atoms provides a suitable quantization axis with respect to which the polarization of the fluorescent light of the excited atoms is detected. From these data information on the cross sections for the different magnetic substates of the excited atom is extracted, imparting a great deal of insight into impact mechanisms for both outer and inner shell excitation. It is our aim to provide a comprehensive review including all data available in the literature presented in a standardized and easily accessible fashion. In this review we include only alignment and orientation studies, which have a well-defined planar symmetry, i.e., in which the initial and final relative momentum of the interacting particles are well defined by differential scattering techniques. We do not make a major distinction between heavy-particle and electron impact excitation: In fact, one of our aims is to demonstrate similarities between the two fields from a technical as well as from a conceptual point of view. The review is divided into three parts: This first part (I) deals with direct excitation of atoms by electrons and fast atoms or ions. Section 2 gives an introduction to the general concepts and ideas behind this kind of study and a description of typical experimental setups. Section 3 deals with electron impact excitation of atoms, starting with the simplest case of electron-helium collisions which may be fully described by two parameters, followed by more complex cases such as electron impact excitation of hydrogen and the heavy rare gases. Section 4 describes the results for direct excitation by atomic impact. (orig./AH)

  19. Study of inter sub-shell and inter shell electron correlations in 4d open-shell heavy atomic ions

    International Nuclear Information System (INIS)

    Koike, Fumihiro

    2009-01-01

    The effect of correlations between 4p, 4d, and 4f has been studied extensively. The characteristic spectral structures of 4p - 4d and 4d - 4f optical transitions, due to the unique structures of N = 4 open sub-shells in heavy atomic ions, have been studied theoretically. To gain an insight of this effect, a series of careful MCDF calculations for 4d q (q = 0 to 10) atomic ions with atomic numbers Z = 48 to 56 has been carried out. The difference of orbital energy differences between 4p and 4d orbitals and 4d and 4f orbitals coincidently falls within the range of a few % for almost all the atomic ions investigated. The 4p 6 4d4f and 4p 5 4d 3 configurations may mix strongly, and the optical 4p - 4d and 4d - 4f transitions may take place coherently, providing us with quite a peculiar EUV emission spectrum. The effect of spectral narrowing and shift is expected to be quite common to the atomic specieds with the atomic numbers in the range Z = 48 to 56.

  20. Symmetry chains for the atomic shell model. I. Classification of symmetry chains for atomic configurations

    International Nuclear Information System (INIS)

    Gruber, B.; Thomas, M.S.

    1980-01-01

    In this article the symmetry chains for the atomic shell model are classified in such a way that they lead from the group SU(4l+2) to its subgroup SOsub(J)(3). The atomic configurations (nl)sup(N) transform like irreducible representations of the group SU(4l+2), while SOsub(J)(3) corresponds to total angular momentum in SU(4l+2). The defining matrices for the various embeddings are given for each symmetry chain that is obtained. These matrices also define the projection onto the weight subspaces for the corresponding subsymmetries and thus relate the various quantum numbers and determine the branching of representations. It is shown in this article that three (interrelated) symmetry chains are obtained which correspond to L-S coupling, j-j coupling, and a seniority dependent coupling. Moreover, for l<=6 these chains are complete, i.e., there are no other chains but these. In articles to follow, the symmetry chains that lead from the group SO(8l+5) to SOsub(J)(3) will be discussed, with the entire atomic shell transforming like an irreducible representation of SO(8l+5). The transformation properties of the states of the atomic shell will be determined according to the various symmetry chains obtained. The symmetry lattice discussed in this article forms a sublattice of the larger symmetry lattice with SO(8l+5) as supergroup. Thus the transformation properties of the states of the atomic configurations, according to the various symmetry chains discussed in this article, will be obtained too. (author)

  1. K-shell auger decay of atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.C.; Lu, Y.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydberg analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.

  2. Wavefunction effects in inner shell ionization of light atoms by protons

    International Nuclear Information System (INIS)

    Aashamar, K.; Amundsen, P.A.

    An efficient computer code for calculating the impact parameter distribution of atomic ionization probabilities caused by charged particle impact, has been developed. The programme is based on the semiclassical approximation, and it allows the use of an arbitrary atomic central potential for deriving the one-electron orbitals that form the basis for the description of the atomic states. Extensive calculations are reported for proton induced K-shell ionization in carbon and neon, covering energies in the range 0.1-10 MeV. Some calculations on proton-argon L-shell ionization are also reported. Comparison of the results obtained using (screened) hydrogenic potentials and the recently reported energy- optimized effective atomic central potentials, respectively demonstrates that wavefunction effects are generally important for inner-shell ionization of light atoms. The agreement between theory and experiment in the K-shell case is improved for fast collisions upon using better wavefunctions. (Auth.)

  3. Off-shell distortions of multichannel atomic processes

    Science.gov (United States)

    Barrachina, R. O.; Clauser, C. F.

    2017-10-01

    Any multichannel problem can be reduced to a succession of two-body events. However, these basic building blocks of many-body theories do not correspond to elastic processes but are off-the-energy-shell. In view of this difficulty, the great majority of the Distorted-Wave models includes a subsidiary approximation where these off-shell terms are arbitrarily forced to lie on the energy shell. At a first glance, since the energy deficiency is negligible for high enough velocities, the on-shell assumption seems to be completely justified. However, for the case of Coulomb interactions, the two-body off-shell distortions have branch-point singularities on the on-shell limit. In this article we demonstrate that these singularities might produce sizeable distortions of multiple scattering amplitudes, mainly when dealing with ion-ion collisions. Finally, we propose a method of including these distortions that might lead to better results that removing them completely.

  4. Notes from the Nordic Spring Symposium on atomic inner shell phenomena

    International Nuclear Information System (INIS)

    Hansteen, J.M.; Gundersen, R.

    1978-01-01

    The purpose of the symposium was to bring together scientists from those various fields of physics that involve atomic inner shell processes. Vol. 2 contains the submitted complete lecture notes in chronological order. (JIW)

  5. Simultaneous K plus L shell ionized atoms during heavy-ion ...

    Indian Academy of Sciences (India)

    The fraction of simultaneous K plus L shell ionized atoms is estimated in Fe, Co and Cu elements using carbon ions at different projectile energies. The present results indicate that the fraction of simultaneous K plus L shell ionization probability decreases with increase in projectile energy as well as with increase in the ...

  6. Four shells atomic model to computer the counting efficiency of electron-capture nuclides

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Fernandez Martinez, A.

    1985-01-01

    The present paper develops a four-shells atomic model in order to obtain the efficiency of detection in liquid scintillation courting, Mathematical expressions are given to calculate the probabilities of the 229 different atomic rearrangements so as the corresponding effective energies. This new model will permit the study of the influence of the different parameters upon the counting efficiency for nuclides of high atomic number. (Author) 7 refs

  7. Atomic mass prediction from the mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami

    1982-08-01

    The mass-excess prediction of about 8000 nuclides was calculated from two types of the atomic mass formulas with empirical shell terms of Uno and Yamada. The theoretical errors to accompany the calculated mass excess are also presented. These errors have been obtained by a new statistical method. The mass-excess prediction includes the term of the gross feature of a nuclear mass surface, the shell terms and a small correction term for odd-odd nuclei. Two functional forms for the shell terms were used. The first is the constant form, and the sencond is the linear form. In determining the values of shell parameters, only the data of even-even and odd-A nuclei were used. A new statistical method was applied, in which the error inherent to the mass formula was taken account. The obtained shell parameters and the values of mass excess are shown in tables. (Kato, T.)

  8. Multislice theory of fast electron scattering incorporating atomic inner-shell ionization

    International Nuclear Information System (INIS)

    Dwyer, C.

    2005-01-01

    It is demonstrated how atomic inner-shell ionization can be incorporated into a multislice theory of fast electron scattering. The resulting theory therefore accounts for both inelastic scattering due to inner-shell ionization and dynamical elastic scattering. The theory uses a description of the ionization process based on the angular momentum representation for both the initial and final states of the atomic electron. For energy losses near threshold, only a small number of independent states of the ejected atomic electron need to be considered, reducing demands on computing time, and eliminating the need for tabulated inelastic scattering factors. The theory is used to investigate the influence of the collection aperture size on the spatial origin of the silicon K-shell EELS signal generated by a STEM probe. The validity of a so-called local approximation is also considered

  9. Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Chernysheva, L V [Ioffe Physical-Technical Institute, St-Petersburg 194021 (Russian Federation)

    2006-11-28

    We present the results of calculations of outer and next to outer shell non-dipole angular anisotropy parameters of photoelectrons for semi-filled shell atoms in the Hartree-Fock (HF) one-electron approximation and in the frame of the spin polarized random phase approximation with exchange (SP RPAE) which takes into account inter-electron correlations. We demonstrate for the first time that this characteristic of the photoionization process is essentially sensitive to whether the photoelectron has the same or opposite spin orientation to that of the semi-filled shell.

  10. Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V

    2006-01-01

    We present the results of calculations of outer and next to outer shell non-dipole angular anisotropy parameters of photoelectrons for semi-filled shell atoms in the Hartree-Fock (HF) one-electron approximation and in the frame of the spin polarized random phase approximation with exchange (SP RPAE) which takes into account inter-electron correlations. We demonstrate for the first time that this characteristic of the photoionization process is essentially sensitive to whether the photoelectron has the same or opposite spin orientation to that of the semi-filled shell

  11. process for K-shell ionization of atoms

    Indian Academy of Sciences (India)

    Department of Physics, College of Science Campus, M.L.S. University, Udaipur 313 002, ... been expressed as a product of kinematical factors and atomic structure functions. The ..... AL on energy is through two factors in an involved way.

  12. Generalized oscillator strengths for some higher valence-shell excitations of krypton atom

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The valence-shell excitations of krypton atom have been investigated by fast electron impact with an angle-resolved electron-energy-loss spectrometer. The generalized oscillator strengths for some higher mixed valence-shell excitations in 4d, 4f, 5p, 5d, 6s, 6p, 7s ← 4p of krypton atom have been determined. Their profiles are discussed, and the generalized oscillator strengths for the electric monopole and quadrupole excitations in 5p ← 4p are compared with the calculations of Amusia et al. (Phys. Rev. A 67 022703 (2003)). The differences between the experimental results and theoretical calculations show that more studies are needed.

  13. Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study.

    OpenAIRE

    Walters, D A; Smith, B L; Belcher, A M; Paloczi, G T; Stucky, G D; Morse, D E; Hansma, P K

    1997-01-01

    A family of soluble proteins from the shell of Haliotis rufescens was introduced over a growing calcite crystal being scanned in situ by an atomic force microscope (AFM). Atomic step edges on the crystal surface were altered in shape and speed of growth by the proteins. Proteins attached nonuniformly to the surface, indicating different interactions with crystallographically different step edges. The observed changes were consistent with the habit modification induced by this family of protei...

  14. Quantitative measurement of solvation shells using frequency modulated atomic force microscopy

    Science.gov (United States)

    Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.

    2005-03-01

    The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.

  15. Local functional derivative of the total energy and the shell structure in atoms and molecules

    NARCIS (Netherlands)

    Pino, R.; Markvoort, Albert. J.; Santen, van R.A.; Hilbers, P.A.J.

    2003-01-01

    The full and local Thomas–Fermi–Dirac energy functional derivatives are evaluated at Hartree–Fock densities for several atoms and molecules. These functions are interpreted as local chemical potentials and related mainly to kinetic energy functional derivatives. They are able to reveal the shell

  16. Wigner’s phase-space function and atomic structure: II. Ground states for closed-shell atoms

    DEFF Research Database (Denmark)

    Springborg, Michael; Dahl, Jens Peder

    1987-01-01

    We present formulas for reduced Wigner phase-space functions for atoms, with an emphasis on the first-order spinless Wigner function. This function can be written as the sum of separate contributions from single orbitals (the natural orbitals). This allows a detailed study of the function. Here we...... display and analyze the function for the closed-shell atoms helium, beryllium, neon, argon, and zinc in the Hartree-Fock approximation. The quantum-mechanical exact results are compared with those obtained with the approximate Thomas-Fermi description of electron densities in phase space....

  17. Ultrafast atomic process in X-ray emission by using inner-shell ionization method for sodium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-07-01

    An ultrafast inner-shell ionization process with X-ray emission stimulated by high-intensity short-pulse X-ray is studied. Carbon and sodium atoms are treated as target matter. It is shown that atomic processes of the target determine the necessary X-ray intensity for X-ray laser emission as well as the features of X-ray laser such as wavelength and duration time. The intensity also depends on the density of initial atoms. Furthermore, we show that as the intensity of X-ray source becomes high, the multi-inner-shell ionization predominates, leading to the formation of hollow atoms. As the density of hollow atoms is increased by the pumping X-ray power, the emission of X-rays is not only of significance for high brightness X-ray measurement but also is good for X-ray lasing. New classes of experiments of pump X-ray probe and X-ray laser are suggested. (author)

  18. Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring

    Science.gov (United States)

    Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.

    2017-10-01

    In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.

  19. Photoionization of the valence shells of the neutral tungsten atom

    Science.gov (United States)

    Ballance, C. P.; McLaughlin, B. M.

    2015-04-01

    Results from large-scale theoretical cross section calculations for the total photoionization (PI) of the 4f, 5s, 5p and 6s orbitals of the neutral tungsten atom using the Dirac Coulomb R-matrix approximation (DARC: Dirac-atomic R-matrix codes) are presented. Comparisons are made with previous theoretical methods and prior experimental measurements. In previous experiments a time-resolved dual laser approach was employed for the photo-absorption of metal vapours and photo-absorption measurements on tungsten in a solid, using synchrotron radiation. The lowest ground state level of neutral tungsten is 5{{p}6}5{{d}4}6{{s}2}{{ }5}{{D}J}, with J = 0, and requires only a single dipole matrix for PI. To make a meaningful comparison with existing experimental measurements, we statistically average the large-scale theoretical PI cross sections from the levels associated with the ground state 5{{p}6}5{{d}4}6{{s}2}{{ }5}{{D}J} (J = 0, 1, 2, 3, 4) levels and the 5{{d}5}6{{s} 7}{{S}3} excited metastable level. As the experiments have a self-evident metastable component in their ground state measurement, averaging over the initial levels allows for a more consistent and realistic comparison to be made. In the wider context, the absence of many detailed electron-impact excitation (EIE) experiments for tungsten and its multi-charged ion stages allows current PI measurements and theory to provide a road-map for future EIE, ionization and di-electronic cross section calculations by identifying the dominant resonance structure and features across an energy range of hundreds of eV.

  20. Superconducting transition temperature and the formation of closed electron shells in the atoms of superconducting compounds

    International Nuclear Information System (INIS)

    Chapnik, I.M.

    1985-01-01

    The relationship between the regularities in the tansition temperature (T/sub c/) values in analogous compounds (having the same structure and stoichiometry) and the formation of the closed electron shells outside inert gas shells in the atoms of the variable component of the 158 intermetallic superconducting compounds has been discussed. The T/sub c/ data for compounds of the elements from the first long period of the Periodic Table (K to Se) are compared with the T/sub c/ data for the analogous compounds of the elements from the second long period (Rb to Te)

  1. Calculation of Ion Charge State Distributions After Inner-Shell Ionization in Xe Atom

    International Nuclear Information System (INIS)

    Mohammedein, A.M.; Ghoneim, A.A.; Kandil, M.K.; Kadad, I.M.

    2009-01-01

    The vacancy cascades following initial inner-shell vacancies in single and multi-ionized atoms often lead to highly charged residual ions. The inner-shell vacancy produced by ionization processes may decay by either a radiative or non-radiative transition. In addition to the vacancy filling processes, there is an electron shake off process due to the change of core potential of the atom. In the calculation of vacancy cascades, the radiative (x-ray) and non-radiative (Auger and Coster-Kronig) branching ratios give valuable information on the de-excitation dynamics of an atom with inner-shell vacancy. The production of multi-charged ions yield by the Auger cascades following inner shell ionization of an atom has been studied both experimentally and theoretically. Multi-charged Xe ions following de-excitation of K, L 1 , L 2,3 , M 1 , M 2,3 and M 4,5 subshell vacancies are calculated using Monte-Carlo algorithm to simulate the vacancy cascade development. Fluorescence yield (radiative) and Auger, Coster- Kronig yield (non- radiative) are evaluated. The decay of K hole state through radiative transitions is found to be more probable than non-radiative transitions in the first step of de-excitation. On the other hand, the decay of L, M vacancies through non-radiative transitions are more probable. The K shell ionization in Xe atom mainly yields Xe 7+ , Xe 8+ , Xe 9+ and Xe 1 0 + ions, and the charged X 8+ ions are the highest. The main product from the L 1 shell ionization is found to be Xe 8+ , Xe 9+ ions, while the charged Xe 8+ ions predominate at L 2,3 hole states. The charged Xe 6+ , Xe 7+ and Xe 8+ ions mainly yield from 3s 1/2 and 3p 1/2 , 3/2 ionization, while Xe in 3d 3/2 , 5/2 hole states mainly turns into Xe 4+ and Xe 5+ ions. The present results are found to agree well with the experimental data. (author)

  2. Probability of K atomic shell ionization by heavy particles impact, in functions of the scattering angle

    International Nuclear Information System (INIS)

    Oliveira, P.M.C. de.

    1976-12-01

    A method of calculation of the K atomic shell ionization probability by heavy particles impact, in the semi-classical approximation is presented. In this approximation, the projectile has a classical trajectory. The potential energy due to the projectile is taken as perturbation of the Hamiltonian of the neutral atom. We use scaled Thomas-Fermi wave function for the atomic electrons. The method is valid for intermediate atomic number elements and particle energies of some MeV. Probabilities are calculated for the case of Ag (Z = 47) and protons of 1 and 2 MeV. Results are given as function of scattering angle, and agree well known experimental data and also improve older calculations. (Author) [pt

  3. Ultra fast atomic process in X-ray emission by inner-shell ionization

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Tajima, T

    1998-03-01

    An ultra-fast atomic process together with X-ray emission by inner-shell ionization using high intensity (10{sup 18} W/cm{sup 2}) short pulse (20fs) X-ray is studied. A new class of experiment is proposed and a useful pumping source is suggested. In this method, it is found that the gain value of X-ray laser amounts to larger than 1000(1/cm) with use of the density of 10{sup 22}/cm{sup 3} of carbon atom. Electron impact ionization effect and initial density effect as well as intensity of pumping source effect are also discussed. (author)

  4. Investigation of the structure change of atomic shells due to uranium ionization by the Dirac-Fock-Slater method

    International Nuclear Information System (INIS)

    Shchornak, G.

    1979-01-01

    The influence of outer vacancies in the atomic shells of uranium on the atomic shell structure is claculated by the Dirac-Fock-Slater method. It is found out that the energy of the X-ray transitions increases due to the detachment of the electrons with the lowest binding energies. The electron detachment from the subshells of the 4f level gives rise to negative energy shifts of the X-ray transitions.(author)

  5. Two-photon decay of K-shell vacancy states in heavy atoms

    International Nuclear Information System (INIS)

    Ilakovac, K.; Uroic, M.; Majer, M.; Pasic, S.; Vukovic, B.

    2006-01-01

    Two-photon decay has been extensively studied in atomic, nuclear and particle physics since the 1930s when the problem of stability of the 2s state of the hydrogen atom emerged. Since then, many theoretical and experimental investigations have been made on hydrogen and one-electron (H-like) ions and on helium and two-electron (He-like) ions. The work on two-photon decay in many-electron systems involving inner shells started about 30 years ago and, in the meantime, two-photon decay of the K-shell vacancy state has been the subject of many theoretical and experimental studies. Experimental results have been obtained for 2s->1s and higher-state electron ->1s two-photon transitions in molybdenum, and for 2s -> 1s, 3s -> 1s, 3d -> 1s and 4sd -> 1s two-photon transitions in silver, xenon, hafnium and mercury. Nonrelativistic and relativistic calculations of the processes have been made. The relativistic calculations for transitions in molybdenum, silver and xenon atoms are in a reasonable agreement with the experimental results, but some problems remain to be solved. A review of investigations of two-photon transitions in atomic systems is presented

  6. Evaluating and interpreting the chemical relevance of the linear response kernel for atoms II: open shell.

    Science.gov (United States)

    Boisdenghien, Zino; Fias, Stijn; Van Alsenoy, Christian; De Proft, Frank; Geerlings, Paul

    2014-07-28

    Most of the work done on the linear response kernel χ(r,r') has focussed on its atom-atom condensed form χAB. Our previous work [Boisdenghien et al., J. Chem. Theory Comput., 2013, 9, 1007] was the first effort to truly focus on the non-condensed form of this function for closed (sub)shell atoms in a systematic fashion. In this work, we extend our method to the open shell case. To simplify the plotting of our results, we average our results to a symmetrical quantity χ(r,r'). This allows us to plot the linear response kernel for all elements up to and including argon and to investigate the periodicity throughout the first three rows in the periodic table and in the different representations of χ(r,r'). Within the context of Spin Polarized Conceptual Density Functional Theory, the first two-dimensional plots of spin polarized linear response functions are presented and commented on for some selected cases on the basis of the atomic ground state electronic configurations. Using the relation between the linear response kernel and the polarizability we compare the values of the polarizability tensor calculated using our method to high-level values.

  7. Realistic Gamow shell model for resonance and continuum in atomic nuclei

    Science.gov (United States)

    Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.

    2018-02-01

    The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.

  8. Correlated electron capture and inner-shell excitation measurements in ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.; Bernstein, E.M.; Clark, M.W.

    1985-01-01

    In an ion-atom collision projectile excitation and charge transfer (electron capture) may occur together in a single encounter. If the excitation and capture are correlated, then the process is called resonant transfer and excitation (RTE); if they are uncorrelated, then the process is termed nonresonant transfer and excitation (NTE). Experimental work to date has shown the existence of RTE and provided strong evidence for NTE. Results presented here provide information on the relative magnitudes of RTE and NTE, the charge state dependence of RTE, the effect of the target momentum distribution on RTE, the magnitude of L-shell RTE compared to K-shell RTE, and the target Z dependences of RTE and NTE. 15 refs., 5 figs

  9. Inner-shell photoemission from atoms and molecules using synchrotron radiation

    International Nuclear Information System (INIS)

    Lindle, D.W.

    1983-12-01

    Photoelectron spectroscopy, in conjunction with synchrotron radiation, has been used to study inner-shell photoemission from atoms and molecules. The time structure of the synchrotron radiation permits the measurements of time-of-flight (TOF) spectra of Auger and photoelectrons, thereby increasing the electron collection efficiency. The double-angle TOF method yielded angle-resolved photoelectron intensities, which were used to determine photoionization cross sections and photoelectron angular distributions in several cases. Comparison to theoretical calculations has been made where possible to help explain observed phenomena in terms of the electronic structure and photoionization dynamics of the systems studied. 154 references, 23 figures, 7 tables

  10. Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Seselj, Nedjeljko; Poreddy, Raju

    2016-01-01

    in electrooxidation of sustainable fuels (i.e. formic acid, methanol and ethanol), and selective hydrogenation of benzene derivatives. Especially high activity was achieved for formic acid oxidation, 549 mA (mgPt)−1 (at 0.6 V vs. SCE), which is 3.5 fold higher than a commercial ... properties were thoroughly characterized by ultraviolet-visible light spectrophotometry, transmission electron microscopy, nanoparticle tracking analysis and electrochemistry. The 8 ± 2 nm Au@PtNPs contained 24 ± 1 mol% Pt and 76 ± 1 mol% Au corresponding to an atomically thin Pt shell. Electrochemical data...

  11. Computation of electron-impact K-shell ionization cross sections of atoms

    International Nuclear Information System (INIS)

    Uddin, M.A.; Haque, A.K.F.; Billah, M. Masum; Basak, A.K.; Karim, K.R.; Saha, B.C.

    2005-01-01

    The total cross sections of electron impact single K-shell ionization of atomic targets, with a wide range of atomic numbers from Z=6-50, are evaluated in the energy range up to about 10 MeV employing the recently proposed modified version of the improved binary-encounter dipole (RQIBED) model [Uddin et al., Phys. Rev. A 70, 032706 (2004)], which incorporates the ionic and relativistic effects. The experimental cross sections for all targets are reproduced satisfactorily even in the relativistic energies using fixed generic values of the two parameters in the RQIBED model. The relativistic effect is found to be significant in all targets except for C, being profound in Ag and Sn

  12. Filling of double vacancy in the K atomic shell with emission of one single photon

    International Nuclear Information System (INIS)

    Jalbert, G.

    1978-12-01

    A method was developed to calculate the transition rate for two-electron one-photon K(sub αα) transition (2s 2p → 1s 2 ). The method was tested for Ni with two K-shell vacancies in the initial state. The (sub αα) rate is calculated within the framework of a single system formed by the atom and the radiation. The transition is originated in the interactiion between the parts of that system. In the dipole approximation, the transition rate is obtained from the second order term of the time dependente perturbation theory. Hartree-Fock-Slater wave functions were used in the calculations for Ni. The results are compared with the available theoretical and experimental information. (Author) [pt

  13. Approximate symmetries in atomic nuclei from a large-scale shell-model perspective

    Science.gov (United States)

    Launey, K. D.; Draayer, J. P.; Dytrych, T.; Sun, G.-H.; Dong, S.-H.

    2015-05-01

    In this paper, we review recent developments that aim to achieve further understanding of the structure of atomic nuclei, by capitalizing on exact symmetries as well as approximate symmetries found to dominate low-lying nuclear states. The findings confirm the essential role played by the Sp(3, ℝ) symplectic symmetry to inform the interaction and the relevant model spaces in nuclear modeling. The significance of the Sp(3, ℝ) symmetry for a description of a quantum system of strongly interacting particles naturally emerges from the physical relevance of its generators, which directly relate to particle momentum and position coordinates, and represent important observables, such as, the many-particle kinetic energy, the monopole operator, the quadrupole moment and the angular momentum. We show that it is imperative that shell-model spaces be expanded well beyond the current limits to accommodate particle excitations that appear critical to enhanced collectivity in heavier systems and to highly-deformed spatial structures, exemplified by the second 0+ state in 12C (the challenging Hoyle state) and 8Be. While such states are presently inaccessible by large-scale no-core shell models, symmetry-based considerations are found to be essential.

  14. High-resolution inner-shell spectroscopies of free atoms and molecules using soft-x-ray beamlines at the third-generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article reviews the current status of inner-shell spectroscopies of free atoms and molecules using high-resolution soft-x-ray monochromators installed in the soft-x-ray beamlines at the third-generation synchrotron radiation facilities. Beamlines and endstations devoted to atomic and molecular inner-shell spectroscopies and various types of experimental techniques, such as ion yield spectroscopy, resonant photoemission spectroscopy and multiple-coincidence momentum imaging, are described. Experimental results for K-shell excitation of Ne, O K-shell excitation of H 2 O and CO 2 , C K-shell excitation and ionization of CO 2 and B K-shell excitation of BF 3 , obtained at beamline 27SU of SPring-8 in Japan, are discussed as examples of atomic and molecular inner-shell spectroscopies using the third-generation synchrotron radiation sources. (topical review)

  15. Epitaxial TiO 2/SnO 2 core-shell heterostructure by atomic layer deposition

    KAUST Repository

    Nie, Anmin; Liu, Jiabin; Li, Qianqian; Cheng, Yingchun; Dong, Cezhou; Zhou, Wu; Wang, Pengfei; Wang, Qingxiao; Yang, Yang; Zhu, Yihan; Zeng, Yuewu; Wang, Hongtao

    2012-01-01

    Taking TiO 2/SnO 2 core-shell nanowires (NWs) as a model system, we systematically investigate the structure and the morphological evolution of this heterostructure synthesized by atomic layer deposition/epitaxy (ALD/ALE). All characterizations

  16. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    Science.gov (United States)

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  17. Inner-shell near-threshold photoionization of A-C60 endohedral atoms

    International Nuclear Information System (INIS)

    Baltenkov, Arkadiy S.; Dolmatov, Valery K.; Manson, Steven T.

    2002-01-01

    Photoelectron angular distributions and total photoionization cross sections of near-threshold 1s photoionization of Li from the oriented-in-space endohedral Li-C 60 fullerene are investigated within the framework of our recently developed photoionization theory of multicenter formations. Both at-the-center and off-the-center endohedral Li are considered, and off-the-center effects are shown to be of extreme importance, in contrast to the conventional wisdom. Multiple-scattering effects on the outgoing photoelectron are included and found to influence the photoionization spectra strongly, e.g., decreasing the cross section by more than an order of magnitude in certain cases, as compared to the situation when such effects are neglected. Diffraction resonances in the photoionization cross section of the endohedral Li atom are found as a result of the multicenter nature of the C 60 surrounding cage, and these are compared with the results of other empirical and ab initio theories. Since there is nothing particularly special about Li 1s with respect to photoionization, the trends uncovered in this paper should qualitatively apply to near-threshold inner-shell ns photoionization spectra of virtually any endohedral atom A from any A-C 60 endohedral fullerene formation

  18. Epitaxial TiO 2/SnO 2 core-shell heterostructure by atomic layer deposition

    KAUST Repository

    Nie, Anmin

    2012-01-01

    Taking TiO 2/SnO 2 core-shell nanowires (NWs) as a model system, we systematically investigate the structure and the morphological evolution of this heterostructure synthesized by atomic layer deposition/epitaxy (ALD/ALE). All characterizations, by X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction and Raman spectra, reveal that single crystalline rutile TiO 2 shells can be epitaxially grown on SnO 2 NWs with an atomically sharp interface at low temperature (250 °C). The growth behavior of the TiO 2 shells highly depends on the surface orientations and the geometrical shape of the core SnO 2 NW cross-section. Atomically smooth surfaces are found for growth on the {110} surface. Rough surfaces develop on {100} surfaces due to (100) - (1 × 3) reconstruction, by introducing steps in the [010] direction as a continuation of {110} facets. Lattice mismatch induces superlattice structures in the TiO 2 shell and misfit dislocations along the interface. Conformal epitaxial growth has been observed for SnO 2 NW cores with an octagonal cross-section ({100} and {110} surfaces). However, for a rectangular core ({101} and {010} surfaces), the shell also derives an octagonal shape from the epitaxial growth, which was explained by a proposed model based on ALD kinetics. The surface steps and defects induced by the lattice mismatch likely lead to improved photoluminescence (PL) performance for the yellow emission. Compared to the pure SnO 2 NWs, the PL spectrum of the core-shell nanostructures exhibits a stronger emission peak, which suggests potential applications in optoelectronics. © The Royal Society of Chemistry 2012.

  19. Hylleraas-like functions with the correct cusp conditions: K-shell electrons for the neutral atoms

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, K.V. [Universidad Nacional del Sur, 8000 Bahia Blanca and Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)], E-mail: krodri@criba.edu.ar; Gasaneo, G. [Universidad Nacional del Sur, 8000 Bahia Blanca and Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Mitnik, D.M.; Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio and Universidad de Buenos Aires (Argentina)

    2007-10-15

    We present simple correlated wavefunctions for the two K-shell electrons of neutral atoms. A variational method was chosen to calculate the mean energy of the ground state, in which the electrons are subject to a local Hartree potential representing the presence of the outer shell electrons. The functions are constructed in terms of exponential and power series, where special care has been taken in order to fulfill the exact behavior at the electron-electron and electron-nucleus coalescence points (Kato cusp conditions). Global properties, such as the energies and virial coefficients, as well as local properties, such as spatial mean values, are also analyzed.

  20. Systematic study of L shell ionization of heavry atoms by protons

    International Nuclear Information System (INIS)

    Barros Leite Filho, C.V. de.

    1977-01-01

    Cross sections for L-subshell ionization by proton impact have been determined for W, Au, Tl, Pb, Bi, Th and U over the projectile range 0.5-3.5 MeV. The measured X-ray production cross sections of the total L- Shell and of some well resolved lines or groups of lines are consistent with those obtained by different authors in the same regions of bombarding energies and atomic numbers. Ionization cross sections were obtained by using the above results and the experimental values for the relative radiative transition probabilities, fluorescente yelds and Coster-Kronig factors. Relative radiative decay rates were measured with a Si (Li) detection system. A graphical method was employed to analyze the X-ray spectra so obtained. The values of fluorescente and Coster-Kronig yields were taken from previously published experiments performed in this laboratory. The influence of these experimental data on the shape of cross section versus proton energy curves is discussed. Comparisons of the experimentally determined L-subshell ionization cross sections are made wuth calculations in the plane-wave Born approximation, semi-classical aproximation and binary encounter approximation. The large effect of binding-energy trajetory and relativistic corrections on the PWBA calculations, invalidates quantitative conclusions regarding agreement between experimental and theoretical values. Semi-classical arguments are presented, however, to explain some general aspects of the ionization cross section curves. (Author) [pt

  1. Atomic layer deposition synthesis and evaluation of core–shell Pt-WC electrocatalysts

    International Nuclear Information System (INIS)

    Hsu, Irene J.; Chen, Jingguang G.; Jiang, Xiaoqiang; Willis, Brian G.

    2015-01-01

    Pt-WC core shell particles were produced using atomic layer deposition (ALD) to deposit Pt layers onto WC particle substrates. A range of Pt depositions were used to determine the growth mechanism for the Pt-WC powder system. TEM imaging and Cu stripping voltammetry found that Pt ALD growth on WC powder substrates was similar to that on WC thin films. However, excess free carbon was found to affect Pt ALD by blocking adsorption sites on WC. The Pt-WC samples were evaluated for the oxygen reduction reaction using a rotating disk electrode to obtain quantitative activity information. The mass and specific activities for the 30 and 50 ALD cycle samples were found to be comparable to a 10 wt. % Pt/C catalyst. However, higher overpotentials and lower limiting currents were observed with ALD Pt-WC compared to Pt/C catalysts, indicating that the oxygen reduction mechanism is not as efficient on Pt-WC as on bulk Pt. Additionally, these Pt-WC catalysts were used to demonstrate hydrogen evolution reaction activity and were found to perform as well as bulk Pt catalyst but with a fraction of the Pt loading, in agreement with the previous work on Pt-WC thin film catalysts

  2. Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Finzel, Kati, E-mail: kati.finzel@liu.se [Linköpings University, IFM Department of Physics, 58183 Linköping (Sweden)

    2016-01-21

    The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.

  3. Conference proceedings on X84 International Conference on X-ray and Inner-Shell Processes in Atoms, Molecules and Solids

    International Nuclear Information System (INIS)

    Meisel, A.; Finster, J.

    1984-01-01

    The proceedings contain 46 lectures and contributions presented at the 1984 conference. Topics of the conference were ion-atom collisions, inner-shell ionization phenomena, X-ray spectroscopy and electron spectroscopy

  4. Inner shell excitation in atoms and molecules by high resolution electron impact

    International Nuclear Information System (INIS)

    King, G.C.

    1986-01-01

    In this work an inner-shell spin-forbidden transition in N 2 and a parity-forbidden transition in Ar were studied. These transitions were observed by using incident electron energies as low as 1.15 times the excitation energy of the inner-shell states. (Auth.)

  5. A new formulation of the relativistic many-body theory of electric dipole moments of closed shell atoms

    International Nuclear Information System (INIS)

    Latha, K V P; Angom, Dilip; Chaudhuri, Rajat K; Das, B P; Mukherjee, Debashis

    2007-01-01

    The electric dipole moments of closed-shell atoms are sensitive to the parity and time-reversal violating phenomena in the nucleus. The nuclear Schiff moment is one such property, it arises from the parity and time reversal violating quark-quark interactions and the quark-chromo electric dipole moments. We calculate the electric dipole moment of atomic 199 Hg arising from the nuclear Schiff moment using the relativistic coupled-cluster theory. This is the most accurate calculation of the quantity to date. Our calculations in combination with the experiment data provide important insights to the P and T violating coupling constants at the elementary particle level. In addition, a new limit on the tensor-pseudo tensor induced atomic EDM, calculated using the relativistic coupled-cluster theory is also presented

  6. In-situ observation of Cu-Pt core-shell nanoparticles in the atomic scale by XAFS

    International Nuclear Information System (INIS)

    Zheng, Xusheng; Liu, Shoujie; Chen, Xing; Cheng, Jie; Ye, Qing; Pan, Zhiyun; Chu, Wangsheng; Wu, Ziyu; Marcelli, Augosto

    2013-01-01

    Bimetallic nanoparticles play an important role in potential industrial applications, such as catalysis, optoelectronics, information storage and biological labeling. Herein, homogeneous Cu-Pt core-shell nanoparticles with the averaged size of 8 nm have been synthesized by chemical methods. Cu atoms diffusion process, which motivated by heating, was observed in-situ by using temperature-dependent x-ray absorption fine-structure (XAFS) spectroscopy. Results show that Cu diffuse gradually from Cu core to Pt shell in these nanoparticles with increasing temperature. We also found the surface ligand (O) bonded Pt at the room temperature and were removed gradually by heating the sample. The analysis of the diffusion process in bimetallic nanoparticles will provide important guideline for their designing and tuning.

  7. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    International Nuclear Information System (INIS)

    Yang, Zhimin; Wang, Qiang; Shan, Xiaoye; Zhu, Hongjun; Li, Wei-qi; Chen, Guang-hui

    2015-01-01

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs

  8. Single-quantum annihilation of positrons with shell-bound atomic electrons

    International Nuclear Information System (INIS)

    Palathingal, J.C.; Asoka-Kumar, P.; Lynn, K.G.; Posada, Y.; Wu, X.Y.

    1991-01-01

    The single-quantum annihilation of positrons has been studied experimentally with a positron beam and a thin lead target, at energies 1 MeV and higher. Spectral peaks corresponding to the K, L, and M shells have been resolved and observed distinctly for the first time. The shell ratios L/K and M/K have been determined. An analysis of the L peak has yielded the (LII+LIII)/L ratio. The first measurements of the directional distributions of the annihilation quanta of the three individual electron shells are also reported. The results are in agreement with theory. They also point out the potential for applying the phenomena to the development of a tunable, highly directional gamma-ray source

  9. Outer-shell transitions in collisions between multiply charged ions and atoms

    International Nuclear Information System (INIS)

    Bloemen, E.W.P.

    1980-01-01

    The study of collisions between multiply charged ions and atoms (molecules) is of importance in different areas of research. Usually, the most important process is capture of an electron from the target atom into the projectile ion. In most cases the electron goes to an excited state of the projectile ion. These electron capture processes are studied. The author also studied direct excitation of the target atom and of the projectile ion. (Auth.)

  10. Prediction of mass excess, β-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Uno, Masahiro; Yamada, Masami

    1983-02-01

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and β-decay energies (β-decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV

  11. Prediction of mass excess, #betta#-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Uno, Masahiro; Yamada, Masami.

    1983-02-01

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and #betta#-decay energies (#betta# - -decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV. (author)

  12. Nuclear charge radii of the 1fsub(7/2) shell nuclei from muonic atoms

    International Nuclear Information System (INIS)

    Wohlfahrt, H.D.

    1979-01-01

    Muonic X-ray of medium-weight nuclei have been performed in recent years by the Los Alamos muonic X-ray group, using the high intensity muon beam available at the LAMPF 800 MeV proton accelerator. These studies, which together include all stable 1fsub(7/2) neutron shell nuclei, provide information about the proton core polarization due to the successive addition of neutrons for the proton cores Z = 20 (Ca), 22 (Ti), 24(Cr), 26(Fe) and 28(Ni). In addition, these studies, which represent the first systematic investigations of isotone shifts, provide the opportunity to compare the core polarization caused by protons with core polarization caused by neutrons in the same (1fsub(7/2)) shell. (KBE)

  13. On the atomic-number similarity of the binding energies of electrons in filled shells of elements of the periodic table

    Science.gov (United States)

    Karpov, V. Ya.; Shpatakovskaya, G. V.

    2017-03-01

    An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr-Sommerfeld quantization rule within the Thomas-Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.

  14. On the atomic-number similarity of the binding energies of electrons in filled shells of elements of the periodic table

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, V. Ya. [Bruk Institute of Electronic Control Machines (Russian Federation); Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation)

    2017-03-15

    An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.

  15. Core-shell structured ceramic nonwoven separators by atomic layer deposition for safe lithium-ion batteries

    Science.gov (United States)

    Shen, Xiu; Li, Chao; Shi, Chuan; Yang, Chaochao; Deng, Lei; Zhang, Wei; Peng, Longqing; Dai, Jianhui; Wu, Dezhi; Zhang, Peng; Zhao, Jinbao

    2018-05-01

    Safety is one of the most factors for lithium-ion batteries (LIBs). In this work, a novel kind of ceramic separator with high safety insurance is proposed. We fabricated the core-shell nanofiber separators for LIBs by atomic layer deposition (ALD) of 30 nm Al2O3 on the electrospinning nonwoven fiber of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP). The separators show a pretty high heat resistance up to 200 °C without any shrinkage, an excellent fire-resistant property and a wide electrochemical window. Besides, with higher uptake and ionic conductivity, cells assembled with the novel separator shows better electrochemical performance. The ALD produced separators exhibit great potential in elaborate products like 3C communications and in energy field with harsh requirements for safety such as electric vehicles. The application of ALD on polymer fiber membranes brings a new strategy and opportunity for improving the safety of the advanced LIBs.

  16. Quasi-spin method in the case of j-j coupling in a shell of equivalent atomic electrons

    International Nuclear Information System (INIS)

    Savichyus, E.G.; Kanyauskas, Yu.M.; Rudzikas, Z.B.

    1979-01-01

    Mathematical apparatus of the theory of multielectronic atoms and ions in the case of j-j coupling in a shell of equivalent electrons is built. Quasi-spin method is used. The scheme of the investigation is the following: 1. Tensorial properties of the operators in quasi-spin space are considered. 2. Matrix elements of these operators are built and with the help of Wigner-Eckart theorem the dependence of the matrix elements upon the projection, including the quasi-spin projection, of the quantity of electrons in jj-subshell, is determined. 3. Subgenealogical coefficients (genealogical coefficients presented in quasi-spin space) are determined and some of their properties are investigated. The tables of subgenealogical coefficients for j=5/2, 7/2 are presented

  17. K-shell ionization and double-ionization of Au atoms with 1.33 MeV photons

    International Nuclear Information System (INIS)

    Belkacem, A.; Dauvergne, D.; Feinberg, B.; Ionescu, D.; Maddi, J.; Sorensen, A.H.

    2000-01-01

    At relativistic energies, the cross section for the atomic photoelectric effect drops off as does the cross section for liberating any bound electron through Compton scattering. However, when the photon energy exceeds twice the rest mass of the electron, ionization may proceed via electron-positron pair creation. We used 1.33 MeV photons impinging on Au thin foils to study double K-shell ionization and vacuum-assisted photoionization. The preliminary results yield a ratio of vacuum-assisted photoionization and pair creation of 2x10 -3 , a value that is substantially higher than the ratio of photo double ionization to single photoionization that is found to be 0.5-1x10 -4 . Because of the difficulties and large error bars associated with the small cross sections additional measurements are needed to minimize systematic errors

  18. Optical oscillator strengths of the valence-shell excitations of atoms and molecules determined by the dipole ( γ,γ) method

    Science.gov (United States)

    Xu, Long-Quan; Liu, Ya-Wei; Xu, Xin; Ni, Dong-Dong; Yang, Ke; Zhu, Lin-Fan

    2017-07-01

    The dipole (γ,γ) method, which is the inelastic X-ray scattering operated at a negligibly small momentum transfer, has been developed to determine the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. This new method is free from the line saturation effect, and its Bethe-Born conversion factor varies much more slowly with the excitation energy than that of the dipole (e, e) method. Thus the dipole (γ,γ) method provides a reliable approach to obtain the benchmark optical oscillator strengths of the valence-shell excitations for gaseous atoms and molecules. In this paper, we give a review of the dipole (γ,γ) method and some recent measurements of absolute optical oscillator strengths of gaseous atoms and molecules. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  19. Inner-shell ionization of atoms by electron, positron and photon impacts

    International Nuclear Information System (INIS)

    Khare, S.P.; Sinha, P.; Wadehra, J.M.

    1994-01-01

    Plane wave Born approximation with Coulomb, relativistic and exchange corrections is employed to obtain L1-, L2- and L3-subshell ionization cross sections of several atoms due to electron and positron impacts for projectile energy varying from the threshold of ionization to 60 times the threshold energy. Photoionization cross sections for all the three L-subshells of the atoms are also calculated using the hydrogenic approximation for the atomic wave functions. For L3-subshell the present cross sections due to electron impact are in good agreement with a number of experimental data for different atoms over the entire energy range investigated. For L1- and L2-subshells the present calculations yield qualitative agreement with the experimental data. The agreement between the present results and the limited experimental data for positron impact is also satisfactory. The hydrogenic approximation for the L-subshell photoionization is found to be good at small photon energies but it underestimates the cross sections at large photon energies. (orig.)

  20. Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms

    International Nuclear Information System (INIS)

    Thierfelder, C.; Schwerdtfeger, P.

    2010-01-01

    We present quantum electrodynamic (QED) calculations within the picture of bound-state QED for the frequency-dependent Breit interaction between electrons, the vacuum polarization, and the electron self-energy correction starting from the Dirac-Coulomb Hamiltonian for the ionization potentials of the group 1, 2, 11, 12, 13, and 18 elements of the periodic table, and down to the superheavy elements up to nuclear charge Z=120. The results for the s-block elements are in very good agreement with earlier studies by Labzowsky et al. [Phys. Rev. A 59, 2707 (1999)]. We discuss the influence of the variational versus perturbative treatment of the Breit interaction for valence-space ionization potentials. We argue that the lowest-order QED contributions become as important as the Breit interaction for ionization potentials out of the valence s shell.

  1. Photoionization of excited states, ions and open-shell atoms: innovative synchrotron experiments

    International Nuclear Information System (INIS)

    Manson, S.T.

    1981-01-01

    The development of synchrotron light sources with increased photon flux in the region 10 eV less than or equal to hν less than or equal to 1000 eV opens the door to many atomic physics investigations which have not been possible up to now. In this paper, three general types of experiments are discussed, each of which offers attractive possibilities for significant advances in our understanding

  2. Silver atom solvation and desolvation in ice matrices: study of solvation shell geometry by electron spin resonance and electron spin echo methods

    Energy Technology Data Exchange (ETDEWEB)

    Kevan, L; Narayana, P A

    1978-01-01

    Results of studies of the solvation shell structure of silver atoms in ice matrix at 4/sup 0/K by electron spin resonance (ESR) and electron spin echo spectrometry are reported. Drastic change in the hyperfine coupling constant of the silver atom was noted when the silver atom initially produced at 4/sup 0/K was warmed to 77/sup 0/K and reexamined by ESR at 4/sup 0/K. This suggested a very drastic rearrangement of the water molecules surrounding the silver atom. The geometric arrangement of water molecules around the silver atom produced at 4/sup 0/K was what would be expected for a solvated silver ion, indicating that no rearrangement had occurred after the silver atom formed. The addition of a little thermal excitation (heating to 77/sup 0/K) results in the geometry changes than can be explained by assuming either that a water molecule rotates around one of its OH bands or by the development of a hydrogen bond between the silver atom and one of the first solvation shell water molecules. Optical excitation in the absorption band of the silver atom in the ice matrix at 400nm resulted in desolvation of the silver ion or a reversion to the structure originally obtained by reaction of solver salts in ic matrix with radiation produced electrons. This was best explained by a charge transfer mechanism. (BLM)

  3. Computation of Ion Charge State Distributions After Inner-shell Ionization in Ne, Ar and Kr Atoms Using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Ahmed Ghoneim, Adel Aly; Ghoneim, Adel A.; Al-Zanki, Jasem M.; El-Essawy, Ashraf H.

    2009-01-01

    Atomic reorganization starts by filling the initially inner-shell vacancy by a radiative transition (x-ray) or by a non-radiative transition (Auger and Coster-Kronig processes). New vacancies created during this atomic reorganization may in turn be filled by further radiative and non-radiative transitions until all vacancies reach the outermost occupied shells. The production of inner-shell vacancy in an atom and the de-excitation decays through radiative and non-radiative transitions may result in a change of the atomic potential; this change leads to the emission of an additional electron in the continuum (electron shake-off processes). In the present work, the ion charge state distributions (CSD) and mean atomic charge ions produced from inner shell vacancy de-excitation decay are calculated for neutral Ne , Ar and Kr atoms. The calculations are carried out using Monte Carlo (MC) technique to simulate the cascade development after primary vacancy production. The radiative and non-radiative transitions for each vacancy are calculated in the simulation. In addition, the change of transition energies and transition rates due to multi vacancies produced in the atomic configurations through the cascade development are considered in the present work. It is found that considering the electron shake off process and closing of non-allowed non-radiative channels improves the results of both charge state distributions (CSD) and average charge state. To check the validity of the present calculations, the results obtained are compared with available theoretical and experimental data. The present results are found to agree well with the available theoretical and experimental values. (author)

  4. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from 55Cs to 80Hg

    Directory of Open Access Journals (Sweden)

    Hiroshi Tatewaki

    2015-06-01

    Full Text Available We consider, for atoms from 55Cs to 80Hg, the effective atomic radius (rear, which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He2. The values of rear are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of rear decreases from 55Cs to 56Ba and undergoes increases and decreases with rising nuclear charge from 57La to 70Y b. In fact rear is understood as comprising two interlaced sequences; one consists of 57La, 58Ce, and 64Gd, which have electronic configuration (4fn−1(5d1(6s2, and the remaining atoms have configuration (4fn(6s2. The sphere defined by rear contains 85%–90% of the 6s electrons. From 71Lu to 80Hg the radius rear also involves two sequences, corresponding to the two configurations 5dn+16s1 and 5dn6s2. The radius rear according to the present methodology is considerably larger than rvdW obtained by other investigators, some of who have found values of rvdW close to .

  5. Decay of the double--K-shell-vacancy state in silver atoms created in the decay of 109Cd

    International Nuclear Information System (INIS)

    Horvat, V.; Ilakovac, K.

    1985-01-01

    A pair of germanium detectors and a three-parameter analyzer were applied in an experimental study of the creation and of the decay of atomic states with a double K-shell vacancy, created in the decay of 109 Cd. Assuming a variable intensity ratio of the Kα 1 and Kα 2 hypersatellite lines, their shift with respect to the diagram lines, Δ/sub K/α/sup h/ = 546 +- 20 eV, and the shift of the Kα satellite lines with an initial L-shell vacancy, Δ/sub K/α/sup s/(L -1 ) = 54 +- 6 eV, were obtained. The former result is in agreement with the previous experimental result of van Eijk et al. and with the theoretical result of Chen et al., but the latter result is significantly lower than the theoretical value of 73 eV. For the I(Kα 1 /sup h/)/I(Kα/sup h/) intensity ratio, a value of 0.54 +- 0.11 was obtained. From the numbers of counts in the hypersatellite-satellite peaks the intensity ratios of the hypersatellite lines I(Kβ/sub 1prime/ /sup h/)/I(Kα/sup h/) = 0.195 +- 0.016, and I(Kβ/sub 2prime/ /sup h/)/I(Kα/sup h/) = 0.055 +- 0.008 were obtained. The former value seems to be larger than the theoretical value 0.168, while the latter value is significantly larger than the theoretical value 0.029

  6. Technical Note: Effect of explicit M and N-shell atomic transitions on a low-energy x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Peter G. F., E-mail: peter.watson@mail.mcgill.ca; Seuntjens, Jan [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada)

    2016-04-15

    Purpose: In EGSnrc, atomic transitions to and from the M and N-shells are treated in an average way by default. This approach is justified in which the energy difference between explicit and average M and N-shell binding energies is less than 1 keV, and for most applications can be considered negligible. However, for simulations of low energy x-ray sources on thin, high-Z targets, characteristic x-rays can make up a significant portion of the source spectra. As of release V4-2.4.0, EGSnrc has included an option to enable a more complete algorithm of all atomic transitions available in the EADL compilation. In this paper, the effect of M and N-shell averaging on the calculation of half-value layer (HVL) and relative depth dose (RDD) curve of a 50 kVp intraoperative x-ray tube with a thin gold target was investigated. Methods: A 50 kVp miniature x-ray source with a gold target (The INTRABEAM System, Carl Zeiss, Germany) was modeled with the EGSnrc user code cavity, both with and without M and N-shell averaging. From photon fluence spectra simulations, the source HVLs were determined analytically. The same source model was then used with egs-chamber to calculate RDD curves in water. Results: A 4% increase of HVL was reported when accounting for explicit M and N-shell transitions, and up to a 9% decrease in local relative dose for normalization at 3 mm depth in water. Conclusions: The EGSnrc default of using averaged M and N-shell binding energies has an observable effect on the HVL and RDD of a low energy x-ray source with high-Z target. For accurate modeling of this class of devices, explicit atomic transitions should be included.

  7. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from {sub 55}Cs to {sub 80}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Tatewaki, Hiroshi, E-mail: htatewak@nsc.nagoya-cu.ac.jp [Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi 467-8501 (Japan); Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota, Aichi 470-0393 (Japan); Hatano, Yasuyo [School of Information Science and Technology, Chukyo University, Toyota, Aichi 470-0393 (Japan); Noro, Takeshi [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Yamamoto, Shigeyoshi [School of International Liberal Studies, Chukyo University, Nagoya, Aichi 466-8666 (Japan)

    2015-06-15

    We consider, for atoms from {sub 55}Cs to {sub 80}Hg, the effective atomic radius (r{sub ear}), which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He{sub 2}. The values of r{sub ear} are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of r{sub ear} decreases from {sub 55}Cs to {sub 56}Ba and undergoes increases and decreases with rising nuclear charge from {sub 57}La to {sub 70}Y b. In fact r{sub ear} is understood as comprising two interlaced sequences; one consists of {sub 57}La, {sub 58}Ce, and {sub 64}Gd, which have electronic configuration (4f{sup n−1})(5d{sup 1})(6s{sup 2}), and the remaining atoms have configuration (4f{sup n})(6s{sup 2}). The sphere defined by r{sub ear} contains 85%–90% of the 6s electrons. From {sub 71}Lu to {sub 80}Hg the radius r{sub ear} also involves two sequences, corresponding to the two configurations 5d{sup n+1}6s{sup 1} and 5d{sup n}6s{sup 2}. The radius r{sub ear} according to the present methodology is considerably larger than r{sub vdW} obtained by other investigators, some of who have found values of r{sub vdW} close to .

  8. Inner-shell correlations and Sturm expansions in coupled perturbation calculations of atomic systems

    International Nuclear Information System (INIS)

    Sherstyuk, A.I.; Solov'eva, G.S.

    1995-01-01

    It is shown that virtual Hartree-Fock orbitals in Sturm-type expansions can be used to calculate the response of atomic systems to an external field within the framework of the coupled perturbation theory with allowance for correlation effects. The corrected electron-electron interaction in a system with field-distorted orbitals is considered by adding a nonlocal potential to a one-electron Hartree-Fock operator within each group of equivalent elections. The remaining correlation effects are calculated by solving a system of equations for corrections to the radial functions. The system is solved iteratively, with each subsequent iteration corresponding to a correction of an increasingly higher order in the electron--electron interaction. The explicit expression derived for the polarizability contains one-and two-particle radial integrals of the Sturm functions

  9. Density Functional Theory of Open-Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations.

    Science.gov (United States)

    Luo, Sijie; Averkiev, Boris; Yang, Ke R; Xu, Xuefei; Truhlar, Donald G

    2014-01-14

    The 3d-series transition metals (also called the fourth-period transition metals), Sc to Zn, are very important in industry and biology, but they provide unique challenges to computing the electronic structure of their compounds. In order to successfully describe the compounds by theory, one must be able to describe their components, in particular the constituent atoms and cations. In order to understand the ingredients required for successful computations with density functional theory, it is useful to examine the performance of various exchange-correlation functionals; we do this here for 4s(N)3d(N') transition-metal atoms and their cations. We analyze the results using three ways to compute the energy of the open-shell states: the direct variational method, the weighted-averaged broken symmetry (WABS) method, and a new broken-symmetry method called the reinterpreted broken symmetry (RBS) method. We find the RBS method to be comparable in accuracy with the WABS method. By examining the overall accuracy in treating 18 multiplicity-changing excitations and 10 ionization potentials with the RBS method, 10 functionals are found to have a mean-unsigned error of systems, the M06-L functional is the most accurate. And by combining the results with our previous studies of p-block and 4d-series elements as well as databases for alkyl bond dissociation, main-group atomization energies, and π-π noncovalent interactions, we find five functionals, namely, PW6B95, MPW1B95, M08-SO, SOGGA11-X, and MPWB1K, to be highly recommended. We also studied the performance of PW86 and C09 exchange functionals, which have drawn wide interest in recent studies due to their claimed ability to reproduce Hartree-Fock exchange at long distance. By combining them with four correlation functionals, we find the performance of the resulting functionals disappointing both for 3d transition-metal chemistry and in broader tests, and thus we do not recommend PW86 and C09 as components of generalized

  10. Assessment of density functional theory for bonds formed between rare gases and open-shell atoms: a computational study of small molecules containing He, Ar, Kr and Xe

    International Nuclear Information System (INIS)

    Bertolus, Marjorie; Major, Mohamed; Brenner, Valerie

    2012-01-01

    The validity of the description of the DFT approximations currently implemented in plane wave DFT codes (LDA, GGA, meta-GGA, hybrid, GGA + empirical dispersion correction) for interactions between rare gases and open-shell atoms which form materials is poorly known. We have performed a first assessment of the accuracy of these functionals for the description of the bonds formed by helium, argon, krypton and xenon with various open-shell atoms. This evaluation has been done on model molecular systems for which precise experimental data are available and reference post-Hartree-Fock calculations (CCSD(T) using large basis sets) are feasible. The results show that when the rare gas atom shares density with the neighbouring atoms, the GGA functionals yield good geometries and qualitatively correct binding energies, even if these are quite significantly overestimated. The use of hybrid functionals enables us to obtain good geometries and satisfactory binding energies. For compounds in which the rare gas atom forms weak dispersive-like bonding, the accuracy yielded by the various functionals is not as good. No functional gives satisfactory binding energies for all the compounds investigated. Several GGA and hybrid functionals yield correct geometries, even if some isomers are not obtained. One GGA functional (PBE) yields qualitatively correct results for the compounds of the three rare gases and several hybrid functionals give satisfactory energies for He compounds. The addition of an empirical dispersive correction improves the results on association compounds, but several isomers are not found. (authors)

  11. Assessment of density functional theory for bonds formed between rare gases and open-shell atoms: a computational study of small molecules containing He, Ar, Kr and Xe.

    Science.gov (United States)

    Bertolus, Marjorie; Major, Mohamed; Brenner, Valérie

    2012-01-14

    The validity of the description of the DFT approximations currently implemented in plane wave DFT codes (LDA, GGA, meta-GGA, hybrid, GGA + empirical dispersion correction) for interactions between rare gases and open-shell atoms which form materials is poorly known. We have performed a first assessment of the accuracy of these functionals for the description of the bonds formed by helium, argon, krypton and xenon with various open-shell atoms. This evaluation has been done on model molecular systems for which precise experimental data are available and reference post-Hartree-Fock calculations (CCSD(T) using large basis sets) are feasible. The results show that when the rare gas atom shares density with the neighbouring atoms, the GGA functionals yield good geometries and qualitatively correct binding energies, even if these are quite significantly overestimated. The use of hybrid functionals enables us to obtain good geometries and satisfactory binding energies. For compounds in which the rare gas atom forms weak dispersive-like bonding, the accuracy yielded by the various functionals is not as good. No functional gives satisfactory binding energies for all the compounds investigated. Several GGA and hybrid functionals yield correct geometries, even if some isomers are not obtained. One GGA functional (PBE) yields qualitatively correct results for the compounds of the three rare gases and several hybrid functionals give satisfactory energies for He compounds. The addition of an empirical dispersive correction improves the results on association compounds, but several isomers are not found.

  12. Coulomb interaction in atomic and nuclear physics: Inner-Shell excitation, Coulomb dissociation of nuclei, and nuclear polarizability in electronic atoms

    International Nuclear Information System (INIS)

    Hoffmann, B.

    1984-07-01

    In three chapters different physical situations are described which have commonly the Coulomb interaction as driving force. The first two chapters study the Coulomb interactions in connection with the excitation of inner electron shells and the Coulomb excitation of nuclei in first order. In the third part on effect ofthe Coulomb interaction between electronic shell and nucleus is treated in second order (nuclear polarization), and its effect on the isotopic and isomeric shift is studied. (orig./HSI) [de

  13. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  14. K-shell excitation studied for H- and He-like bismuth ions in collisions with low-z target atoms

    International Nuclear Information System (INIS)

    Stoehlker, T.; Bosch, F.; Geissel, H.; Kozhuharov, C.; Ludziejewski, T.; Mokler, P.H.; Scheidenberger, C.; Stachura, Z.; Warczak, A.

    1997-09-01

    The formation of excited projectile states via Coulomb excitation is investigated for hydrogen- and helium-like bismuth projectiles (Z=83) in relativistic ion-atom collisions. The excitation process was unambiguously identified by observing the radiative decay of the excited levels to the vacant 1s shell in coincidence with ions that did not undergo charge exchange in the reaction target. In particular, owing to the large fine structure splitting of Bi, the excitation cross-sections to the various L-shell sublevels are determined separately. The results are compared with detailed relativistic calculations, showing that both the relativistic character of the bound-state wave-functions and the magnetic interaction are of considerable importance for the K-shell excitation process in high-Z ions like Bi. The experimental data confirm the result of the complete relativistic calculations, namely that the magnetic part of the Lienard-Wiechert interaction leads to a significant reduction of the K-shell excitation cross-section. (orig.)

  15. High resolution inner-shell spectroscopies of atoms and molecules in gas phase using the soft x-ray photochemistry beamline at SPring-8

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article describes recent activities on inner-shell spectroscopies of atoms and molecules on beamline 27SU, nicknamed soft X-ray photochemistry beamline, at SPring-8, an 8-GeV synchrotron radiation facility in Japan. This beamline provides linearly polarized monochromatic soft X-rays at the resolution higher than 10,000. The end station is designed so that one can perform various kinds of excitation and de-excitation spectroscopies as well as coincidence spectroscopies. Following the description of the beamline and the end station, we present recent results for inner-shell spectroscopies on Ne, CO 2 , BF 3 , and CF 4 . Emphasis is given to illustrate the strategy of the research on this beamline and performance of the beamline and the end station. (author)

  16. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  17. Inner-shell corrections to the Bethe stopping-power formula evaluated from a realistic atomic model

    International Nuclear Information System (INIS)

    Inokuti, M.; Manson, S.T.

    1985-01-01

    Generalized oscillator strengths for K- and L-shell ionization have been calculated using a central potential derived from the Hartree-Slater model. In cases in which an ejected electron carries low kinetic energies, sizable differences with hydrogenic-model calculations are evident

  18. Determination and Quantification of metals in the shells of Crassostrea virginica after the Deepwater Horizon oil spill utilizing Atomic Absorption Spectrometry.

    Science.gov (United States)

    Roopnarine, D.; Patel, S.; Roopnarine, P.; Giarikos, D.; Anderson, L. C.

    2017-12-01

    The Deepwater Horizon (DWH) oil rig explosion on April 20, 2010 resulted in the release of 685,000 tons of crude oil into the Gulf of Mexico (GOM) over a period of three months. There were obvious immediate effects, but the long-term ramifications are still being studied. The primary constituent of crude oil is hydrocarbons with other organic compounds containing nitrogen, oxygen and sulfur. There are also a number of trace metals with the most abundant frequently being iron, nickel, copper and vanadium. These do not degrade like organic materials. However, the exact composition varies among the production sites. The oil from the DWH rig was classified as light crude which is moderately volatile. Natural oil seeps occur in the environment, but the DWH spill represented an acute impact. Trace amounts of heavy metals are a normal part of the composition of marine organisms, but can be toxic in high concentrations. Bivalved molluscs bioaccumulate heavy metals in their tissues and shells, and are therefore often useful as monitors of environmental pollution. We thus used the Eastern oyster Crassostrea virginica to determine the impact of the spill by measuring the concentrations of metals in the shells utilizing flame emission atomic absorption spectrometry. We focused on the hypothesis that DWH spill exposure resulted in an increase in metal uptake into the shells. Specimens spanned the years 2010 to 2014 and ranged from Grand Isle, LA to Apalachicola Bay, Fl. Vanadium had the greatest concentration in the shells, and along with copper, cadmium, zinc and iron displayed an upward trend of increase from 2010 to 2013, with a decline in 2014. However there was unexpected variability, as the specimens from Apalachicola Bay, Fl had higher levels of vanadium when compared to those from Grand Isle, LA. Ongoing work includes an increase of sample sizes from the same geographic localities and time period.

  19. Alignment and orientation of atomic outer shells induced by electron and ion impact: Some recent developments and remaining problems

    International Nuclear Information System (INIS)

    Andersen, N.; Gallagher, J.W.; Hertel, I.V.

    1985-01-01

    Alignment and orientation of atoms in collision experiments with planar symmetry have now been studied for about 15 years and close to 500 papers have been produced, mainly devoted to S->P excitation. Despite the large variety of electron-atom, ion-atom and atom-atom collision systems considered, a unified framework for description of these phenomena is now emerging. This framework is a generalization of the original ideas of Macek and Jaecks and is based on consideration of symmetries, conservation laws, etc. The key parameters are directly related to the shape and dynamics of the charge cloud of the excited electron as well as to experimental observables. A brief review is given of this framework, and some current problems and prospects for the future are discussed. (orig.)

  20. Auger Spectra and Different Ionic Charges Following 3s, 3p and 3d Sub-Shells Photoionization of Kr Atoms

    Directory of Open Access Journals (Sweden)

    Yehia A. Lotfy

    2006-01-01

    Full Text Available The decay of inner-shell vacancy in an atom through radiative and non-radiative transitions leads to final charged ions. The de-excitation decay of 3s, 3p and 3d vacancies in Kr atoms are calculated using Monte-Carlo simulation method. The vacancy cascade pathway resulted from the de-excitation decay of deep core hole in 3s subshell in Kr atoms is discussed. The generation of spectator vacancies during the vacancy cascade development gives rise to Auger satellite spectra. The last transitions of the de-excitation decay of 3s, 3p and 3d holes lead to specific charged ions. Dirac-Fock-Slater wave functions are adapted to calculate radiative and non-radiative transition probabilities. The intensity of Kr^{4+} ions are high for 3s hole state, whereas Kr^{3+} and Kr^{2+} ions have highest intensities for 3p and 3d hole states, respectively. The present results of ion charge state distributions agree well with the experimental data.

  1. Cross sections for double K-shell ionization in slow heavy ion-atom collisions, ch. 4

    International Nuclear Information System (INIS)

    Hoogkamer, T.P.; Woerlee, P.H.; Saris, F.W.

    1977-01-01

    Cross sections for Ksub(αα) X-ray production have been measured in collisions of 200 keV N + → NH 3 , N 2 , H 2 O; O + → NH 3 , H 2 O and 200, 400, 600 keV Ne 2+ → Ne. Fluorescence yields for Ksub(αα) two-electron one-photon transitions have been estimated for N and O, whereas for Ne, theoretical values for the fluorescence yield are available. We have used these to obtain double K-shell ionizzation cross sections which are compared to calculated cross section based on the theory for rotational coupling in the transient quasimolecular state

  2. Shell Venster

    International Nuclear Information System (INIS)

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  3. NiCo_2O_4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    International Nuclear Information System (INIS)

    Wang, Ruiqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.

    2016-01-01

    Highlights: • NiCo_2O_4 nanostructures are prepared via a simple hydrothermal method. • Outer shell of TiN is then grown through conformal atomic layer deposition. • Electrodes exhibit significantly enhanced rate capability with TiN coating. • Solid-state polymer electrolyte is employed to improve cycling stability. • Full devices show a stack power density of 58.205 mW cm"−"3 at 0.061 mWh cm"−"3. - Abstract: Ternary transition metal oxides such as NiCo_2O_4 show great potential as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo_2O_4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo_2O_4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo_2O_4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo_2O_4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm"−"3 at a stack energy density of 0.061 mWh cm"−"3. To the best of our knowledge, these values are the highest of any NiCo_2O_4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo_2O_4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm"−"2. These results illustrate the promise of ALD-assisted hybrid NiCo_2O_4@TiN electrodes within sustainable and integrated energy storage applications.

  4. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Renqi

    2016-03-04

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  5. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Renqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.

    2016-01-01

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  6. Improved atomic data for electron-transport predictions by the codes TIGER and TIGERP. I. Inner-shell ionization by electron collision

    International Nuclear Information System (INIS)

    Peek, J.M.; Halbleib, J.A.

    1983-01-01

    The inner-shell ionization data for electron-target collisions now in use in the TIGER and TIGERP electron-transport codes are extracted and compared with other data for these processes. The TIGER cross sections for K-shell ionization by electron collisions are found to be seriously in error for large-Z targets and incident electron energies greater than 1 MeV. A series of TIGER and TIGERP runs were carried out with and without improved K-shell electron ionization cross section data replacing that now in use. The relative importance of electron-impact and photon ionization of the various subshells was also extracted from these runs. In general, photon ionization dominated in the examples studied so the sensitivity of many predicted properties to errors in the electron-impact subshell ionization data was not large. However, some differences were found and, as all possible applications were not covered in this study, it is recommended that these electron-impact data now in TIGER and TIGERP be replaced. Cross section data for the processes under study are reviewed and those that are most suitable for this application are identified. 19 references, 9 figures, 2 tables

  7. Molecular effects in carbon K-shell Auger-electron production by 0.6-2.0 MeV protons and extraction of an atomic cross section

    International Nuclear Information System (INIS)

    McDaniel, F.D.; Lapicki, G.

    1987-01-01

    Carbon K-shell Auger-electron production cross sections are reported for 0.6-2.0 MeV protons incident on CH 4 (methane), C 2 H 2 (acetylene), C 2 H 4 (ethylene), C 2 H 6 (ethane), n-C 4 H 10 (normal butane), i-C 4 H 10 (isobutane), C 6 H 6 (benzene), CO (carbon monoxide), and CO 2 (carbon dioxide). A constant-energy mode 45 0 parallel-plate electrostatic analyzer was used for detection of Auger electrons. The carbon KLL Auger-electron cross sections for all molecules were found to be lower than that found for CH 4 by 9-23%. All carbon KLL Auger-electron data could be brought into agreement when corrected for the chemical shift of the carbon K-shell binding energy in molecules and for intramolecular scattering. KLL Auger-electron production cross sections are compared to first Born and ECPSSR theories and show good agreement with both after the chemical shift of the carbon K-shell binding energy in molecules and the effects of intramolecular scattering are considered. (orig.)

  8. Inner-shell ionization of heavy atoms by slow ions. A study of electronic relativistic effects and projectile Coulomb deflection in the Semiclassical Approximation

    International Nuclear Information System (INIS)

    Amundsen, P.A.

    1978-08-01

    Several investigations have been made on K and L shell ionization of the heavy collision partner in slow asymmetric collisions based on the SCA. The use of the SCA can only be defended for slow collisions if the projectile has a charge much less than the target. Thus this approximation should first be tested for proton impact on very heavy target elements. For these elements the inner shell electrons move sufficiently fast for a relativistic description to be mandatory. These relativistic effects are in themselves of some interest, as they can be quite large. After discussion of the formulation of the SCA used throughout this work, a further introduction is given on relativistic effects in Coulomb ionisation. Two papers on electronic relativistic effects in K and L shell ionization follow. The next two papers discuss calculations with an exact Coulomb projectile path. The latter of these also touches upon the inclusion of corrections to the SCA from terms beyond first order perturbation theory. In the last paper of this thesis it is shown how the theoretical apparatus developed for the SCA- calculations can immediately be used also for making calculations of more symmetric systems with the Briggs model. Thus, at least for direct ionization in very slow collisions a unification of the SA and MO approaches has apparently been reached. (JIW)

  9. Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of the projectile charge and velocity

    International Nuclear Information System (INIS)

    Rangama, J.

    2002-11-01

    Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of projectile charge and velocity. Auger electron spectroscopy is used for an experimental investigation of ionization and excitation of lithium atoms by ions (Kr34 + and Ar18 + ) and electrons at high impact velocities (from 6 to 60 a.u.). In particular, relative contributions of the mechanisms responsible for lithium K-shell ionization-excitation are determined for various projectile charges Zp and velocities vp. A large range of perturbation parameters |Zp|/vp is explored (|Zp|/vp = 0,05 - 0,7 a.u.). From single K-shell excitation results, it appears that the projectile-electron interaction gives mainly rise to a dipole-like transition 1s -> np Concerning K-shell ionization-excitation, the separation of the TS2 (two independent projectile-electron interactions) and TS1 (one projectile-electron interaction) mechanisms responsible for the formation of the 2snp 1,3P and 2sns 1,3S lithium states is performed. In TS1 process, the projectile-electron interaction can be followed by an electron-electron interaction (dielectronic process) or by an internal rearrangement of the residual target after a sudden potential change (shake process). From Born theory, ab initio calculations are performed. The good agreement between theoretical and experimental results confirms the mechanism identification. For the production of P states, TS1 is found to be strongly dominant for small |Zp|/vp values and TS2 is found to be most important for large |Zp|/vp values. Since P states cannot be formed significantly via a shake process, the TS1 and TS2 separation provides a direct signature of the dielectronic process. On the other hand, the TS1 process is shown to be the unique process for producing the S states. At the moment, only the shake aspect of the TS1 process can explain the fact that the 2s3s configuration is preferentially

  10. Effect of the sulphur atom on geometry and spectra of the biomolecule 2-thiouracil and in the WC base pair 2-thiouridine-adenosine. Influence of water in the first hydration shell.

    Science.gov (United States)

    Alcolea Palafox, M; Rastogi, V K; Singh, S P

    2018-04-01

    The effect of the sulphur atom on 2-thiouracil (2TU) and 2-thiouridine molecules, as compared with uracil and uridine molecules, respectively, was carried out in several environments. The predicted IR spectrum of 2TU in the isolated state was compared with that obtained for uracil molecule and with those reported experimentally in matrix isolation. Its crystal unit cell in the solid state was simulated through a tetramer form using DFT methods for the first time. The calculated Raman spectrum was compared to the experimental ones in the solid state. A linear scaling procedure was used for this task. The first hydration shell was simulated by explicit number of water molecules surrounding 2TU up to 30 and was compared with that obtained in uracil molecule. Water molecules 'distributed' around 2TU was preferred over that 'clustering', because it can better reproduce the hydration and their effects on different parameters of the molecular structure of 2TU and uracil. The total atomic charges and several calculated thermodynamic parameters were discussed. The effect of the sulphur atom on the Watson-Crick (WC) and reverse WC base pair uridine-adenosine was estimated, and the CP corrected interaction energies were calculated. 2-thiouridine has a weaker WC pair than that with uridine, although its slight higher dipole moment (μ) facilitates the interaction with the water molecules. Several helical parameters were determined.

  11. Inner-shell spectroscopy and exchange interaction of Rydberg electrons bound by singly and doubly charged Kr and Xe atoms in small clusters

    International Nuclear Information System (INIS)

    Nagasaka, Masanari; Hatsui, Takaki; Setoyama, Hiroyuki; Ruehl, Eckart; Kosugi, Nobuhiro

    2011-01-01

    Surface-site resolved Kr 3d 5/2 -1 5p and 3d 5/2 -1 6p and Xe 4d 5/2 -1 6p and 4d 5/2 -1 7p Rydberg excited states in small van der Waals Kr and Xe clusters with a mean size of = 15 are investigated by X-ray absorption spectroscopy. Furthermore, surface-site resolved Kr 4s -2 5p, 4s -2 6p, and 4s -1 4p -1 5p shakeup-like Rydberg states in small Kr clusters are investigated by resonant Auger electron spectroscopy. The exchange interaction of the Rydberg electron with the surrounding atoms and the induced polarization of the surrounding atoms in the singly and doubly ionized atoms are deduced from the experimental spectra to analyze different surface-site contributions in small clusters, assuming that the corner, edge, face, and bulk sites have 3, 5-6, 8, and 12 nearest neighbor atoms. These energies are almost proportional to the number of the nearest neighbor atoms. The present analysis indicates that small Kr and Xe clusters with = 15 have an average or mixture structure between the fcc-like cubic and icosahedron-like spherical structures.

  12. Atomic nucleus and elementary particles

    International Nuclear Information System (INIS)

    Zakrzewski, J.

    1976-01-01

    Negatively charged leptons and hadrons can be incorporated into atomic shells forming exotic atoms. Nucleon resonances and Λ hyperons can be considered as constituents of atomic nuclei. Information derived from studies of such exotic systems enriches our knowledge of both the interactions of elementary particles and of the structure of atomic nuclei. (author)

  13. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  14. An equations of motion approach for open shell systems

    International Nuclear Information System (INIS)

    Yeager, D.L.; McKoy, V.

    1975-01-01

    A straightforward scheme is developed for extending the equations of motion formalism to systems with simple open shell ground states. Equations for open shell random phase approximation (RPA) are given for the cases of one electron outside of a closed shell in a nondegenerate molecular orbital and for the triplet ground state with two electrons outside of a closed shell in degenerate molecular orbitals. Applications to other open shells and extension of the open shell EOM to higher orders are both straightforward. Results for the open shell RPA for lithium atom and oxygen molecule are given

  15. Change in the conversion rate for the E3-isomer sup(235m)U (76,8 eV; 1/2+ → 7/2-) at variation of configurations of the valence band of the atomic shell

    International Nuclear Information System (INIS)

    Grechukhin, D.P.; Soldatov, A.A.

    1983-01-01

    In the framework of the relativistic Hartree-Fock-Slater method, a change of the conversion rate lambda for the E3 isomer (at the transition energy of h/2πω=77 eV) with respect to the rate lambda for the normal configuration of uranium atom, (7ssup(1/2)sup(2)(6dsup(3/2))sup(1)(5fsup(5/2))sup(3), is calcUlated for 14 configurations of the valence band of the atomic shell, including considerable variations of the occupation numbers in 6d, 7s, and 5f orbits. A very strong change Δlambda/lambda 1 is found to be due to variation of the occupation number for the 5f orbit (ΔN(5f) not equal to 0); the change amounts to about 8% per ΔN(5f)=+-1, that is an order of magnitude higher than Δlambda/lambda 1 due to variations of the occupation numbers for other orbits in the cases where N(5f)=const. Though the direct contribution from the 5f electrons to the conversion is very small ( 1 for ΔN(5f) not equal to 0. A rigid correlation between the partial conversion rate and the r. m. s. radius of the orbit is obtained for 6p orbits

  16. Atomic physics made clear

    International Nuclear Information System (INIS)

    Meinhold, H.

    1980-01-01

    This book is a popular introduction into the foundations of atomic physics und quantum mechanics. Starting from some phenomenological concepts Bohr's model and the construction of the periodic system regarding the shell structure of atoms are introduced. In this framework the selection rules and magnetic moments of atomic electrons are considered. Finally the wave-particle dualism is considered. In the appendix some mathematical methods are described which are useful for a deeper penetration into the considered ideas. (HSI)

  17. Strontium clusters: electronic and geometry shell effects

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2008-01-01

    charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, and spectra of the density of electronic states (DOS). It is demonstrated that the size-evolution of structural and electronic properties of strontium clusters...... is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It is shown that the excessive charge essentially affects the optimized geometry...

  18. Inner-shell physics after fifty years of quantum mechanics

    International Nuclear Information System (INIS)

    Merzbacher, E.

    1976-01-01

    A historical view is given of how the development of quantum mechanics has been affected by the information relating to inner shells, gathered by physicists since the early days of atomic physics, and of the impact of quantum mechanics on the physics of inner atomic shells. 25 refs

  19. A pressure tuned stop-flow atomic layer deposition process for MoS2 on high porous nanostructure and fabrication of TiO2/MoS2 core/shell inverse opal structure

    Science.gov (United States)

    Li, Xianglin; Puttaswamy, Manjunath; Wang, Zhiwei; Kei Tan, Chiew; Grimsdale, Andrew C.; Kherani, Nazir P.; Tok, Alfred Iing Yoong

    2017-11-01

    MoS2 thin films are obtained by atomic layer deposition (ALD) in the temperature range of 120-150 °C using Mo(CO)6 and dimethyl disulfide (DMDS) as precursors. A pressure tuned stop-flow ALD process facilitates the precursor adsorption and enables the deposition of MoS2 on high porous three dimensional (3D) nanostructures. As a demonstration, a TiO2/MoS2 core/shell inverse opal (TiO2/MoS2-IO) structure has been fabricated through ALD of TiO2 and MoS2 on a self-assembled multilayer polystyrene (PS) structure template. Due to the self-limiting surface reaction mechanism of ALD and the utilization of pressure tuned stop-flow ALD processes, the as fabricated TiO2/MoS2-IO structure has a high uniformity, reflected by FESEM and FIB-SEM characterization. A crystallized TiO2/MoS2-IO structure can be obtained through a post annealing process. As a 3D photonic crystal, the TiO2/MoS2-IO exhibits obvious stopband reflecting peaks, which can be adjusted through changing the opal diameters as well as the thickness of MoS2 layer.

  20. Modified Activated Carbon Prepared from Acorn Shells as a New Solid-Phase Extraction Sorbent for the Preconcentration and Determination of Trace Amounts of Nickel in Food Samples Prior to Flame Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ebrahimi, Bahram

    2017-03-01

    A new solid-phase extraction (SPE) sorbent was introduced based on acidic-modified (AM) activated carbon (AC) prepared from acorn shells of native oak trees in Kurdistan. Hydrochloric acid (15%, w/w) and nitric acid (32.5%, w/w) were used to condition and modify AC. The IR spectra of AC and AM-AC showed that AM lead to the formation of increasing numbers of acidic functional groups on AM-AC. AM-AC was used in the SPE method for the extraction and preconcentration of Ni+2 prior to flame atomic absorption spectrometric determination at ng/mL levels in model and real food samples. Effective parameters of the SPE procedure, such as the pH of the solutions, sorbent dosage, extraction time, sample volume, type of eluent, and matrix ions, were considered and optimized. An enrichment factor of 140 was obtained. The calibration curve was linear with an R2 of 0.997 in the concentration range of 1-220 ng/mL. The RSD was 5.67% (for n = 7), the LOD was 0.352 ng/mL, and relative recoveries in vegetable samples ranged from 96.7 to 103.7%.

  1. Atomic inner shell ionization: a new method of nuclear interaction lifetimes in the range 10-16-10-18 second. Lifetime measurement of the compound nucleus in the reaction 106Cd+p (Ep=10 and 12 MeV)

    International Nuclear Information System (INIS)

    Chemin, J.-F.

    1978-01-01

    A new method to measure the lifetime of the compound nucleus formed in the reaction 106 Cd+p at Ep=10 and 12 MeV is described. The nuclear lifetime is compared to the known lifetime of an atomic inner shell vacancy created in the entrance channel of the nuclear reaction. If the ionization probability in he way-in of the nuclear reaction is kown the compound nucleus lifetime is deduced by a simple relation from the number of compound X-rays measured in coincidence with one of the reaction products. A large number of ionization probability values measured in very small impact parameter collisions induced by H + , He + , D + on Al, Cu, S, Ti, Si, Ag, Cd are reported. The data are interpreted in terms of the corrected SCA theory of ionization. New effects such as angular dependence and trajectory effect (hair-pin-curve effect) are shown experimentally. The influence of a nuclear delay time on the ionization probability value is considered; the effect on a nuclear reaction of the energy losses by the projectile during the ionization process is analysed in detail. The yield curve of the resonant nuclear reaction 27 Al(p,γ) 28 Si is taken as an example. A detailed analysis of the compound nucleus 107 In lifetimes is given. Attention has been paid to competitive processes leading to X ray emission of same energy as the compound X rays. Extensions of the method to measure compound nucleus lifetimes in collision induced by heavy ions and to separate the shape elastic and compound elastic mechanisms are presented [fr

  2. Foam shell project: Progress report

    International Nuclear Information System (INIS)

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-01-01

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 μm thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D 2 or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE

  3. Fabrication of Foam Shells for ICF Experiments

    Science.gov (United States)

    Czechowicz, D. G.; Acenas, O.; Flowers, J. S.; Nikroo, A.; Paguio, R. R.; Schroen, D. G.; Streit, J.; Takagi, M.

    2004-11-01

    The General Atomics/Schafer team has developed processes to fabricate foam shells targets suitable for ICF experiments. The two most common chemical systems used to produce foam shells have been resorcinol-formaldehyde (R/F) aerogel and divinylbenzene (DVB). Spherical targets have been made in the form of shells and beads having diameters ranging from approximately 0.5 mm to 4.0 mm, and having densities from approximately 100 mg/cc to 250 mg/cc. The work on R/F foam shells has been concentrated on 1) shell fabrication process improvement to obtain high yields ( ˜25%) and 2) depositing a reliable permeation barrier to provide shells for ongoing direct drive experiments at LLE. Development of divinylbenzene foam shells has been mainly directed towards Inertial Fusion Energy applications (at densities as low as 30 mg/cc) and recently for shells for experiments at LLE. Details of the relevant metrology and properties of these foams as well as the range of targets currently available will be discussed.

  4. Interelectron correlations in photoionization of outer shells near inner shell thresholds

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V; Drukarev, E G

    2015-01-01

    We have studied the role of virtual excitations of inner shells upon outer shell photoionization. The calculations were performed in the frames of the Random Phase Approximation with Exchange (RPAE) and its generalized version GRPAE that take into account variation of the atomic field due to electron elimination and the inner vacancies decay. We apply both analytic approximation and numeric computations. The results are presented for 3p electrons in Ar and for 4d-electrons in Pd near inner shells thresholds. The effect considered proved to be quite noticeable. (paper)

  5. Coulomb ionization of inner shells by heavy charged particles

    International Nuclear Information System (INIS)

    Lapicki, G.

    1975-01-01

    The theory of inner-shell Coulomb ionization by heavy charged particles, of atomic number small compared to the target atomic number, is developed through the extension of work by Brandt and his coworkers for K shells to L shells. In slow collisions relative to the characteristic times of the inner shell electrons, the quantum-mechanical predictions in the plane-wave Born approximation (PWBA) can exceed experimental cross sections by orders of magnitude. The effects of the perturbation of the atom by and the Coulomb deflection of the particle during collisions are included in the theory. The perturbed atomic states amount to a binding of the inner-shell electrons to the moving particle in slow collisions, and to a polarization of the inner shells by the particle passing at large impact parameters during nonadiabatic collisions. These effects, not contained in the PWBA, are treated in the framework of the perturbed stationary state (PSS) theory for slow collisions and in terms of the harmonic oscillator model of Ashley, Brandt, and Ritchie for stopping powers in fast collisions. The effect of the Coulomb deflection of the particle in the field of the target nucleus on the cross sections is incorporated in the semiclassical approximation of Bang and Hansteen. Except for the lightest target atoms, the contribution of electron capture by the particles to inner-shell ionizations is shown to be negligible. The theory as developed earlier for the K shell, and here for L shells, agrees well with the vast body of experimental data on inner-shell Coulomb ionization by heavy charged particles

  6. Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of the projectile charge and velocity; Ionisation et excitation de l'atome de lithium par impact de particules chargees rapides: Identification des mecanismes de creation de deux lacunes en couche K du lithium en fonction de la charge et de la vitesse du projectile

    Energy Technology Data Exchange (ETDEWEB)

    Rangama, J

    2002-11-01

    Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of projectile charge and velocity. Auger electron spectroscopy is used for an experimental investigation of ionization and excitation of lithium atoms by ions (Kr34{sup +} and Ar18{sup +}) and electrons at high impact velocities (from 6 to 60 a.u.). In particular, relative contributions of the mechanisms responsible for lithium K-shell ionization-excitation are determined for various projectile charges Zp and velocities vp. A large range of perturbation parameters |Zp|/vp is explored (|Zp|/vp = 0,05 - 0,7 a.u.). From single K-shell excitation results, it appears that the projectile-electron interaction gives mainly rise to a dipole-like transition 1s -> np Concerning K-shell ionization-excitation, the separation of the TS2 (two independent projectile-electron interactions) and TS1 (one projectile-electron interaction) mechanisms responsible for the formation of the 2snp 1,3P and 2sns 1,3S lithium states is performed. In TS1 process, the projectile-electron interaction can be followed by an electron-electron interaction (dielectronic process) or by an internal rearrangement of the residual target after a sudden potential change (shake process). From Born theory, ab initio calculations are performed. The good agreement between theoretical and experimental results confirms the mechanism identification. For the production of P states, TS1 is found to be strongly dominant for small |Zp|/vp values and TS2 is found to be most important for large |Zp|/vp values. Since P states cannot be formed significantly via a shake process, the TS1 and TS2 separation provides a direct signature of the dielectronic process. On the other hand, the TS1 process is shown to be the unique process for producing the S states. At the moment, only the shake aspect of the TS1 process can explain the fact that the 2s3s configuration is

  7. Deeply bound pionic atom

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Yamazaki, Toshimitsu

    1989-01-01

    The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)

  8. Systematic study of shell effect near drip-lines

    International Nuclear Information System (INIS)

    Adhikari, S.; Samanta, C.

    2004-01-01

    The variation of nuclear shell effects with nucleon numbers is evaluated using the modified Bethe–Weizsaecker mass formula (BWM) and the measured atomic masses. The shell effects at magic neutron numbers N=8, 20, 28, 50, 82 and 126 and magic proton numbers Z=8, 20, 28, 50 and 82 are found to vary rapidly approaching the drip-lines. The shell effect due to one magic number increases on approaching another magic number. Thus, shell effects are not always negligible near the drip-lines. (author)

  9. Atomic physics with highly charged ions

    International Nuclear Information System (INIS)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations

  10. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  11. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  12. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  13. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  14. Vacancy decay in endohedral atoms

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Baltenkov, A. S.

    2006-01-01

    It is demonstrated that the fullerene shell dramatically affects the radiative and Auger vacancy decay of an endohedral atom A-C 60 . The collectivized electrons of the C 60 shell add new possibilities for radiative and nonradiative decays similar to that in ordinary atoms where the vacancies in the initial and final state almost always belong to different subshells. It is shown that the smallness of the atomic shell radii as compared to that of the fullerene shell provides an opportunity to derive the simple formulas for the probabilities of the electron transitions. It is shown that the radiative and Auger (or Koster-Kronig) widths of the vacancy decay due to electron transition in the atom A in A-C 60 acquire an additional factor that can be expressed via the polarizability of the C 60 at transition energy. It is demonstrated that due to an opening of the nonradiative decay channel for vacancies in subvalent subshells the decay probability increases by five to six orders of magnitude

  15. Shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Hennekes, B. [Shell Global Solutions (US) Inc. (United States). Technology Marketing

    2002-07-01

    The presentation, on which 17 slides/overheads are included in the papers, explained the principles of the Shell coal gasification process and the methods incorporated for control of sulfur dioxide, nitrogen oxides, particulates and mercury. The economics of the process were discussed. The differences between gasification and burning, and the differences between the Shell process and other processes were discussed.

  16. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-01-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells

  17. Inner-shell electron spectroscopy for microanalysis

    International Nuclear Information System (INIS)

    Joy, D.C.; Maher, D.M.

    1979-01-01

    The transmission electron energy-loss spectrum shows characteristic edges corresponding to the excitation of inner-shell electrons of atoms in a thin sample. Analysis of these edges provides detailed chemical, structural, and electronic data from the radiated volume. By combining electron spectroscopy and electron microscopy, this microanalytical technique can be performed in conjunction with high-resolution imaging of the sample. It is shown that this approach has advantages of sensitivity, spatial resolution, and convenience over other comparable techniques. 7 figures

  18. Inner shell ionization accompanying nuclear collisions

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1987-01-01

    Selected phenomena leading to inner shell ionization and being of relevance for nuclear physics are discussed. The selection emphasizes the K-shell ionization induced in head-on collisions by fast light and medium-heavy ions. Cross-sections are reviewed. Effects of multiple inner shell ionization on the K X-ray spectra are illustrated with recent results. Implications for nuclear experiments are noted. Use of atomic observables as clocks for proton induced nuclear reactions is reviewed. Prospects for H.I. reactions are discussed. Preliminary experimental results on the direct K-shell ionization accompanying H.I. fusion reactions are presented. The post-collisional K-shell ionization due to internal conversion of γ-rays is discussed as the dominating contribution to the ionization for residues of dissipative nuclear reactions with Z > 40. Systematics of the corresponding K X-ray multiplicities are presented for rotational nuclei. These multiplicity values can be used for determining cross-sections for e.g. incomplete fusion reactions. Examples of such applications are given. Also discussed is the use of target K X-rays for normalization purposes and of the post-collisional, residue K X-rays in the studies of high spin phenomena. 96 references, 35 figures, 3 tables

  19. Inner shell ionization by incident nuclei

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1974-10-01

    The atomic Coulomb excitation process induced by impinging heavy charged particles such as protons, deuterons, α-particles and complex heavy ions is reviewed. Recent experimental and theoretical efforts have led toimproved understanding of the atomic Coulomb excitation as well as to discovery of new types of ionization mechanisms. The following models are mentioned: the Plane Wave Born Approximation (PWBA); theeeeeeeeeeeee modified PWBA model; the Binary Encounter Approximation (BEA); the Semi-Classical Approximation (SCA); the Perturbed-Stationary-State model (PSS). The structure of the SCA model is more thoroughly treated. Experimental results on single Coulomb ionizations of the K-, L-, and M-shells, and of the connected sub-shells by protons are compared with predictions. Most calculations are based on straight line projectile paths and non-relativistic hydrogen-like target electron wave functions. The BEA model and the SCA model seem to work reasonably well for multiple Coulomb ionizations by stripped light ions. Background effects in ion-atom collisions are commented upon. Future aspects of atomic Coulomb excitation by incident nuclei and ions are discussed. The interplay between Coulomb induced processes and united atom phenomena is especially mentioned. The simple ionization models have yielded valuable insights but it is suggested that this branch of collision physics has reached a turning point where new and more advanced and unifying models are needed. (JIW)

  20. Ni3Si(Al)/a-SiOx core shell nanoparticles: characterization, shell formation, and stability

    Science.gov (United States)

    Pigozzi, G.; Mukherji, D.; Gilles, R.; Barbier, B.; Kostorz, G.

    2006-08-01

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni3Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni3Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiOx). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  1. Molluscan shell colour.

    Science.gov (United States)

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  2. Laser method of free atom nuclei orientation

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1987-01-01

    Orientation process of free atom (atoms in beams) nuclei, scattering quanta of circularly polarized laser radiation is considered. A method for the evaluation of nuclei orientation parameters is developed. It is shown that in the process of pumping between the ground and first excited atomic states with electron shell spins J 1 and J 2 , so that J 2 = J 1 + 1, a complete orientation of nuclei can be attained

  3. Nuclear shell theory

    CERN Document Server

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  4. Interaction of complex atoms with radiation

    International Nuclear Information System (INIS)

    Amus'ya, M.Ya.

    1984-01-01

    Different manifestations of multielectron atomic structure under photoionization are discussed. Collectivization of external electron shells essential both in production cross section and in angular distribution as well as in photoelectron polarization are noted. In a wide range of quantum energies (of the order of ionization potential) an incident electron scattering on the atom irradiates quite differently than on the potential. It polarizes atoms mainly dipolarly, and virtually excited atom emits ''bremsstrahlung'' quantum. With energy growth of the incident electron at small momentum transferred to it by the atom the role of the second mechanism turns to be determinant

  5. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  6. L-shell radiative transition rates by selective synchrotron ionization

    International Nuclear Information System (INIS)

    Bonetto, R D; Carreras, A C; Trincavelli, J; Castellano, G

    2004-01-01

    Relative L-shell radiative transition rates were obtained for a number of decays in Gd, Dy, Er, Yb, Hf, Ta and Re by means of a method for refining atomic and experimental parameters involved in the spectral analysis of x-ray irradiated samples. For this purpose, pure samples were bombarded with monochromatic synchrotron radiation tuning the incident x-ray energy in order to allow selective ionization of the different atomic shells. The results presented are compared to experimental and theoretical values published by other authors. A good general agreement was found and some particular discrepancies are discussed

  7. Shell Buckling Knockdown Factors

    Data.gov (United States)

    National Aeronautics and Space Administration — The Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment #: 07-010-E, was established in March of 2007 by the NESC in...

  8. Electromagnetic transitions in the atom

    International Nuclear Information System (INIS)

    Ulehla, I.; Suk, M.; Trka, Z.

    1990-01-01

    Methods to achieve excitation of atoms are outlined and conditions necessary for the occurrence of electromagnetic transitions in the atomic shell are given. Radiative transitions between the energy states of the atom include stimulated absorption, spontaneous emission, and stimulated emission. Selection rules applying to the majority of observed transitions are given. The parity concept is explained. It is shown how the electromagnetic field and its interaction with the magnetic moment of the atom lead to a disturbance of the energy states of the atom and the occurrence of various electro-optical and magneto-optical phenomena. The Stark effect and electron spin resonance are described. X-rays and X-ray spectra, the Auger effect and the internal photoeffect are also dealt with. The principle of the laser is explained. (M.D.). 22 figs., 1 tab

  9. Dynamical polarizability of atoms

    International Nuclear Information System (INIS)

    Mukhopadhyay, G.; Lundqvist, S.

    1980-07-01

    The frequency-dependent polarizability of a closed-shell atom is considered in an RPA type approximation. This is usually done using many-body perturbation theory but can also be recast into the form of equations for the density oscillations as previously shown by the authors. The latter approach is known to lead to a non-hermitian problem because of the structure of the interaction kernel. This note shows that this is also true if using the reaction matrix method. The main result is to derive the expression for the polarizability function taking into account the non-hermitian nature of the problem. (author)

  10. Shells and Patterns

    Science.gov (United States)

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  11. Off-shell CHY amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  12. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  13. Dyson shells: a retrospective

    Science.gov (United States)

    Bradbury, Robert J.

    2001-08-01

    More than 40 years have passed since Freeman Dyson suggested that advanced technological civilizations are likely to dismantle planets in their solar systems to harvest all of the energy their stars wastefully radiate into space. Clearly this was an idea that was ahead of its time. Since that time, dozens of SETI searches have been conducted and almost all of them have focused their attention on stars which by definition cannot be the advanced civilizations that Dyson envisioned. I will review the data that created the confusion between Dyson spheres and Dyson shells. The sources that disprove Dyson spheres while still allowing Dyson shells will be discussed. The use of outmoded ideas that have biased the few searches for Dyson Shells that have occurred will be pointed out. An update of the concept of Dyson shells to include our current knowledge of biotechnology, nanotechnology and computer science will be explored. Finally, an approach to setting limits on the abundance of Dyson shells in our galaxy using existing optical astronomical data and future optical satellites will be proposed.

  14. X-ray core states, atomic size and Moseley's law

    International Nuclear Information System (INIS)

    Smith, D.Y.; Karstens, William

    2000-01-01

    Vinti's dipolar sum-rule for the spatial extent of quantum states was tested on atomic K-shell and ns valence states. Agreement between radii derived from absorption spectra and from atomic-structure calculations is excellent, provided Pauli-principle-prohibited transitions are accounted for. These many-electron corrections to the single-electron sum-rule contributed less than 20% to the radii, which supports application of single-electron rules to electron-excess defects as a first approximation. We found the oscillator strength for K-shell excitations decreases rapidly with atomic number because of strength transfer to higher-lying p states. Hence, K-shell contributions to radiation damage decrease with increasing atomic number. A new interpretation of Moseley's law for the X-ray K edge in terms of K-shell radii is described

  15. Photoionization of the outer electrons in noble gas endohedral atoms

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.

    2008-01-01

    We suggest a prominent modification of the outer shell photoionization cross section in noble gas (NG) endohedral atoms NG-C n under the action of the electron shell of fullerene C n . This shell leads to two important effects: a strong enhancement of the cross section due to fullerene shell polarization under the action of the incoming electromagnetic wave and to prominent oscillation of this cross section due to the reflection of a photoelectron from the NG by the fullerene shell. Both factors lead to powerful maxima in the outer shell ionization cross sections of NG-C n , which we call giant endohedral resonances. The oscillator strength reaches a very large value in the atomic scale, 25. We consider atoms of all noble gases except He. The polarization of the fullerene shell is expressed in terms of the total photoabsorption cross section of the fullerene. The photoelectron reflection is taken into account in the framework of the so-called bubble potential, which is a spherical δ-type potential. It is assumed in the derivations that the NG is centrally located in the fullerene. It is also assumed, in accordance with the existing experimental data, that the fullerene radius R C is much larger than the atomic radius r A and the thickness Δ C of the fullerene shell. As was demonstrated recently, these assumptions allow us to represent the NG-C n photoionization cross section as a product of the NG cross section and two well-defined calculated factors

  16. Metal shell technology based upon hollow jet instability

    International Nuclear Information System (INIS)

    Kendall, J.M.; Lee, M.C.; Wang, T.G.

    1982-01-01

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. We describe a technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal. We have produced shells in the 0.7--2.0 mm size range using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold--lead--antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise

  17. Synthesis of triangular Au core-Ag shell nanoparticles

    International Nuclear Information System (INIS)

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali

    2007-01-01

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules

  18. Excitation of the inner 4d shell of neutral iodine

    Energy Technology Data Exchange (ETDEWEB)

    Pettini, M; Tozzi, G P [Osservatorio Astrofisico di Arcetri, Florence (Italy); Mazzoni, M [Florence Univ. (Italy). Ist. di Astronomia

    1981-03-23

    The absorption spectrum of neutral atomic iodine has been photographed in the EUV region and three strong autoionized resonances have been identified. A broad absorption feature has been observed and is ascribed to a collective exitation of the 4d inner shell.

  19. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  20. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  1. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  2. Cu–Ni core–shell nanoparticles: structure, stability, electronic, and magnetic properties: a spin-polarized density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: wangqiang@njtech.edu.cn; Wang, Xinyan; Liu, Jianlan; Yang, Yanhui [Nanjing Tech University, School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis (IAS) (China)

    2017-02-15

    Bimetallic core–shell nanoparticles (CSNPs) have attracted great interest not only because of their superior stability, selectivity, and catalytic activity but also due to their tunable properties achieved by changing the morphology, sequence, and sizes of both core and shell. In this study, the structure, stability, charge transfer, electronic, and magnetic properties of 13-atom and 55-atom Cu and Cu–Ni CSNPs were investigated using the density functional theory (DFT) calculations. The results show that Ni@Cu CSNPs with a Cu surface shell are more energetically favorable than Cu@Ni CSNPs with a Ni surface shell. Interestingly, three-shell Ni@Cu{sub 12}@Ni{sub 42} is more stable than two-shell Cu{sub 13}@Ni{sub 42}, while two-shell Ni{sub 13}@Cu{sub 42} is more stable than three-shell Cu@Ni{sub 12}@Cu{sub 42}. Analysis of Bader charge illustrates that the charge transfer increases from Cu core to Ni shell in Cu@Ni NPs, while it decreases from Ni core to Cu shell in Ni@Cu NPs. Furthermore, the charge transfer results that d-band states have larger shift toward the Fermi level for the Ni@Cu CSNPs with Cu surface shell, while the Cu@Ni CSNPs with Ni surface shell have similar d-band state curves and d-band centers with the monometallic Ni NPs. In addition, the Cu–Ni CSNPs possess higher magnetic moment when the Ni atoms aggregated at core region of CSNPs, while having lower magnetic moment when the Ni atoms segregate on surface region. The change of the Cu atom location in CSNPs has a weak effect on the total magnetic moment. Our findings provide useful insights for the design of bimetallic core–shell catalysts.

  3. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  4. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    Science.gov (United States)

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  5. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  6. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  7. Giant atoms for the production of nuclear fuel

    International Nuclear Information System (INIS)

    Fahr, H.J.

    1980-01-01

    Neutral atoms can be blown up to the size of a football, if the electrons of the atomic shell are appropriately excited by photons just below the ionization energy. Such atoms, called Rydberg atoms, behave very differently to the usual ones in multiple respects. The fact that they can very easily be ionized by conventional electrostatic fields is being investigated as a method of isotope separation, for instance in the very important case of U 235 and U 238 . (orig.) [de

  8. Sidewall coring shell

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Ya A; Konstantinov, L P; Martyshin, A N

    1966-12-12

    A sidewall coring shell consists of a housing and a detachable core catcher. The core lifter is provided with projections, the ends of which are situated in another plane, along the longitudinal axis of the lifter. The chamber has corresponding projections.

  9. Stability of charged thin shells

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-01-01

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  10. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  11. Innershell ionisation at small impactparameters in proton-atom collisions

    International Nuclear Information System (INIS)

    Duinker, W.

    1981-01-01

    This thesis concentrates on innershell ionisation in proton-atom collisions. An experiment on K-shell ionisation of argon is described, performed in a gasfilled collision chamber under single collision conditions. Further experiments with carbon and aluminium were performed, the K-shell vacancy production in the collision of protons with these atoms being detected through the measurement of Auger-electrons. A spectrometer with a large solid angle was specially constructed for this and its performance is described. K-shell ionisation accompanying nuclear (p,γ) reactions has also been measured using 26 Mg and 27 Al. (Auth./C.F.)

  12. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  13. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  14. Atomic-level Electron Microscopy of Metal and Alloy Electrocatalysts

    DEFF Research Database (Denmark)

    Deiana, Davide

    , the elemental distribution of the PtxY, before and after the electrochemical tests, has been determined. A core-shell structure is formed after the ORR chemical treatment, with an alloyed core embedded by a ~1 nm Pt-rich shell, due to the segregation of the Y from the first few atomic layers of the particle...... was the only matching structure. In the case of Pd−Hg, a core-shell structure has been found, with a pure Pd core and a Pd-Hg shell. Through atomic resolution STEM, the structure of the alloy in the shell of different particles has been revealed, showing the formation of an ordered alloy structure....... flat surfaces and exposed to different sintering conditions. Ex situ STEM imaging has been used to monitor the variation of the particle dimensions through the analysis of particle area distributions. Clusters with a monomodal size distribution exhibited intrinsic sintering resistance on different...

  15. Shells on elastic foundations

    International Nuclear Information System (INIS)

    Das, Y.C.; Kedia, K.K.

    1977-01-01

    No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)

  16. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  17. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  18. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  19. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  20. On-line system for investigation of atomic structure

    International Nuclear Information System (INIS)

    Amus'ya, M.Ya.; Chernysheva, L.V.

    1983-01-01

    A description of the on-line ATOM system is presented that enables to investigate the structure of atomic electron shells and their interactions with different scattering particles-electrons, positronse photons, mesons - with the use of computerized numerical solutions. The problem is stated along with mathematical description of atomic properties including theoretical and numerical models for each investigated physical process. The ATOM system structure is considered. The Hartree-Fock method is used to determine the wave functions of the ground and excited atomic states. The programs are written in the ALGOL langauge. Different atomic characteristics were possible to be calculated for the first time with an accuracy exceeding an experimental one

  1. Formation of hollow atoms above a surface

    Science.gov (United States)

    Briand, Jean Pierre; Phaneuf, Ronald; Terracol, Stephane; Xie, Zuqi

    2012-06-01

    Slow highly stripped ions approaching or penetrating surfaces are known to capture electrons into outer shells of the ions, leaving the innermost shells empty, and forming hollow atoms. Electron capture occurs above and below the surfaces. The existence of hollow atoms below surfaces e.g. Ar atoms whose K and L shells are empty, with all electrons lying in the M and N shells, was demonstrated in 1990 [1]. At nm above surfaces, the excited ions may not have enough time to decay before hitting the surfaces, and the formation of hollow atoms above surfaces has even been questioned [2]. To observe it, one must increase the time above the surface by decelerating the ions. We have for the first time decelerated O^7+ ions to energies as low as 1 eV/q, below the minimum energy gained by the ions due to the acceleration by their image charge. As expected, no ion backscattering (trampoline effect) above dielectric (Ge) was observed and at the lowest ion kinetic energies, most of the observed x-rays were found to be emitted by the ions after surface contact. [4pt] [1] J. P. Briand et al., Phys.Rev.Lett. 65(1990)159.[0pt] [2] J.P. Briand, AIP Conference Proceedings 215 (1990) 513.

  2. Theory of multiphoton ionization of atoms

    International Nuclear Information System (INIS)

    Szoeke, A.

    1986-03-01

    A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs

  3. Formation of the minor phase shell on the surface of hypermonotectic alloy powders

    International Nuclear Information System (INIS)

    Zhao, J.Z.

    2006-01-01

    The microstructure evolution in an atomized hypermonotectic alloy drop is calculated. The results indicate that the formation of the minor phase shell on the surface of the powder is due to the heterogeneous nucleation of the minor phase droplets on the atomized drop surface and the resultant diffusional transfer of solute during the liquid-liquid phase transformation

  4. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    Berry, G.; Cowan, P.; Gemmell, D.

    1994-08-01

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba + ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  5. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  6. Construction of carbon nanoflakes shell on CuO nanowires core as enhanced core/shell arrays anode of lithium ion batteries

    International Nuclear Information System (INIS)

    Cao, F.; Xia, X.H.; Pan, G.X.; Chen, J.; Zhang, Y.J.

    2015-01-01

    Highlights: • CuO/C core/shell nanowire arrays are prepared by electro-deposition + ALD method. • Carbon shell is favorable for structural stability. • CuO/C core/shell arrays show enhanced cycle stability and high capacity. - Abstract: Tailored metal oxide/carbon composite structures have attracted great attention due to potential synergistic effects and enhanced properties. In this work, novel CuO/C core/shell nanowire arrays are prepared by the combination of electro-deposition of CuO and atomic-layer-deposition-assisted formation of carbon nanoflakes shell. The CuO nanowires with diameters of ∼200 nm are homogenously coated by carbon nanoflakes shell. When evaluated as anode materials for lithium ion batteries (LIBs), compared to the unmodified CuO nanowire arrays, the CuO/C core/shell nanowire arrays exhibit improved electrochemical performances with higher capacity, better electrochemical reactivity and high-rate capability as well as superior cycling life (610 mAh g"−"1 at 0.5C after 290 cycles). The enhanced electrochemical performance is mainly attributed to the introduction of carbon flake shell in the core/shell nanowire arrays structure, which provides higher active material-electrolyte contact area, improved electrical conductivity, and better accommodation of volume change. The proposed method provides a new way for fabrication of high-performance metal oxides anodes of LIBs.

  7. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  8. Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability.

    Science.gov (United States)

    Pigozzi, G; Mukherji, D; Gilles, R; Barbier, B; Kostorz, G

    2006-08-28

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni(3)Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni(3)Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiO(x)). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  9. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  10. Core–shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinqin; Cui, Yingqi; Zeng, Qun; Yang, Mingli, E-mail: myang@scu.edu.cn [Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China); Yu, Shengping [College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041 (China)

    2016-04-07

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe){sub x}@(CdSe){sub y} and their Zn-substituted complexes of x = 2–4 and y = 16–28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn–Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition–structure–property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  11. Is there chirality in atomic nuclei?

    International Nuclear Information System (INIS)

    Meng Jie

    2009-01-01

    Static chiral symmetries are common in nature, for example, the macroscopic spirals of snail shells, the microscopic handedness of certain molecules, and human hands. The concept of chirality in atomic nuclei was first proposed in 1997, and since then many efforts have been made to understand chiral symmetry and its spontaneous breaking in atomic nuclei. Recent theoretical and experimental progress in the verification of chirality in atomic nuclei will be reviewed, together with a discussion of the problems that await to be solved in the future. (authors)

  12. Seismic analysis of axisymmetric shells

    International Nuclear Information System (INIS)

    Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.

    1984-01-01

    Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt

  13. Creep analysis of orthotropic shells

    International Nuclear Information System (INIS)

    Mehra, V.K.; Ghosh, A.

    1975-01-01

    A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)

  14. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  15. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Xia [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Xiao-Xu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Computing Center, Beijing 100094 (China); Hu, Yao-Wen [Department of Physics, Tsinghua University, Beijing 100084 (China); Song, Hong-Quan; Huo, Jin-Rong; Li, Lu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Qian, Ping, E-mail: ustbqianp@163.com [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Song, Yu-Jun [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-12-15

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations show that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.

  16. The direct manipulation shell

    International Nuclear Information System (INIS)

    Allen, M.E.; Christiansen, M.

    1992-01-01

    Accelerator controls systems provide parameter display pages which allow the operator to monitor and manipulate selected control points in the system. Display pages are generally implemented as either hand-crafted, purpose-built programs; or by using a specialized display page layout tool. These two methods of display page development exhibit the classic trade-off between functionality vs. ease of implementation. In the Direct Manipulation Shell we approach the process of developing a display page in a manifestly object-oriented manner. This is done by providing a general framework for interactively instantiating and manipulating display objects. (author)

  17. Aqueous-phase synthesis and color-tuning of core/shell/shell inorganic nanocrystals consisting of ZnSe, (Cu, Mn)-doped ZnS, and ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongwan; Yoon, Sujin [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Felix Sunjoo, E-mail: fskim@cau.ac.kr [School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, 156-756 (Korea, Republic of); Kim, Nakjoong, E-mail: kimnj@hanyang.ac.kr [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-06-25

    We report synthesis of colloidal nanocrystals based on ZnSe core, (Cu,Mn)-doped ZnS inner-shell, and ZnS outer-shell by using an eco-friendly method and their optical properties. Synthesis of core/shell/shell nanocrystals was performed by using a one-pot/three-step colloidal method with 3-mercaptopropionic acid as a stabilizer in aqueous phase at low temperature. A double-shell structure was employed with inner-shell as a host for doping and outer-shell as a passivation layer for covering surface defects. Copper and manganese were introduced as single- or co-dopants during inner-shell formation, providing an effective means to control the emission color of the nanocrystals. The synthesized nanocrystals showed fluorescent emission ranging from blue to green, to white, and to orange, adjusted by doping components, amounts, and ratios. The photoluminescence quantum yields of the core/doped-shell/shell nanocrystals approached 36%. - Highlights: • ZnSe/ZnS:(Cu,Ms)/ZnS core/(doped)shell/shell nanocrystals were synthesized in an aqueous phase. • Emission color of nanocrystals was controlled from blue to white to orange by adjusting the atomic ratio of Cu and Mn co-dopants. • Photoluminescence quantum yields of the colloidal nanocrystals approached 36%.

  18. Deposition of conductive TiN shells on SiO2 nanoparticles with a fluidized bed ALD reactor

    NARCIS (Netherlands)

    Didden, A.; Hillebrand, P.; Wollgarten, M.; Dam, B.; Van de Krol, R.

    2016-01-01

    Conductive TiN shells have been deposited on SiO2 nanoparticles (10–20 nm primary particle size) with fluidized bed atomic layer deposition using TDMAT and NH3 as precursors. Analysis of the powders confirms that shell growth saturates at approximately 0.4 nm/cycle at TDMAT doses of >1.2 mmol/g of

  19. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  20. Double-shell target fabrication workshop-2016 report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. Morris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oertel, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Farrell, Michael [General Atomics, San Diego, CA (United States); Baumann, Ted [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Huang, Haibo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikroo, Abbas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-10

    On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activities at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.

  1. Impact parameter dependence of inner-shell ionization probabilities

    International Nuclear Information System (INIS)

    Cocke, C.L.

    1974-01-01

    The probability for ionization of an inner shell of a target atom by a heavy charged projectile is a sensitive function of the impact parameter characterizing the collision. This probability can be measured experimentally by detecting the x-ray resulting from radiative filling of the inner shell in coincidence with the projectile scattered at a determined angle, and by using the scattering angle to deduce the impact parameter. It is conjectured that the functional dependence of the ionization probability may be a more sensitive probe of the ionization mechanism than is a total cross section measurement. Experimental results for the K-shell ionization of both solid and gas targets by oxygen, carbon and fluorine projectiles in the MeV/amu energy range will be presented, and their use in illuminating the inelastic collision process discussed

  2. Dossier Shell Eco-Marathon; Dossier Shell Eco-Marathon

    Energy Technology Data Exchange (ETDEWEB)

    Matla, P.

    2012-05-15

    Three articles address subjects concerning the annual race with highly energy efficient cars: the Shell Eco-Marathon. [Dutch] In 3 artikelen wordt aandacht besteed aan de ontwerpen voor de jaarlijkse race met superzuinige auto's, de Shell Eco-Marathon.

  3. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  4. Giant resonances in free atoms and in clusters

    International Nuclear Information System (INIS)

    Brechignac, C.; Connerade, J.P.

    1994-01-01

    A review of recent developments in the study of giant resonances in free atoms and in clusters is presented, with particular emphasis on the transition from free atoms to atoms in the condensed phase. Giant resonances in alkali and related metallic clusters due to the excitation of closed shells of delocalized electrons are also reviewed and the relation between different types of collective oscillations is discussed. (author)

  5. Atomic and molecular effects in the VUV spectra of solids

    International Nuclear Information System (INIS)

    Sonntag, B.

    1977-10-01

    The VUV spectra of solids are often dominated by atomic or molecular effects, which clearly manifest themselves in the gross features of the spectra and the fine structure at inner shell excitation thresholds. Evidence for the influence of atomic and molecular matrix elements, multiplet-splitting and correlation is presented. Special emphasis is given to the direct experimental verification based on the comparison of atomic and solid state spectra. (orig.) [de

  6. Hi shells, supershells, shell-like objects, and ''worms''

    International Nuclear Information System (INIS)

    Heiles, C.

    1984-01-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo

  7. Atomic secrecy

    International Nuclear Information System (INIS)

    Sweet, W.

    1979-01-01

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  8. Contemporary models of the atomic nucleus

    CERN Document Server

    Nemirovskii, P E

    2013-01-01

    Contemporary Models of the Atomic Nucleus discusses nuclear structure and properties, expounding contemporary theoretical concepts of the low-energy nuclear processes underlying in nuclear models. This book focuses on subjects such as the optical nuclear model, unified or collective model, and deuteron stripping reaction. Other topics discussed include the basic nuclear properties; shell model; theoretical analysis of the shell model; and radiative transitions and alpha-decay. The deuteron theory and the liquid drop nuclear model with its application to fission theory are also mentioned, but o

  9. Shell Trumpets from Western Mexico

    Directory of Open Access Journals (Sweden)

    Robert Novella

    1991-11-01

    Full Text Available Marine shells have been used as musical instruments in almost all parts of the world (Izikowitz 1935, including Mesoamerica, where large univalves, also called conch shells in the literature, had a utilitarian function as trumpets. Their use is well documented in most cultural areas of Mesoamerica, as in Western Mexico, through their various occurrences in archaeological contexts and museums collections.

  10. Cylindrical thin-shell wormholes

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2004-01-01

    A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands forever, depending only on the sign of its initial velocity

  11. Shell model and spectroscopic factors

    International Nuclear Information System (INIS)

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  12. Conventional shell model: some issues

    International Nuclear Information System (INIS)

    Vallieres, M.; Pan, X.W.; Feng, D.H.; Novoselsky, A.

    1997-01-01

    We discuss some important issues in shell-model calculations related to the effective interactions used in different regions of the periodic table; in particular the quality of different interactions is discussed, as well as the mass dependence of the interactions. Mention is made of the recently developed Drexel University shell-model (DUSM). (orig.)

  13. Expert system development (ESD) shell

    International Nuclear Information System (INIS)

    Padmini, S.; Diwakar, M.P.; Rathode, N.C.; Bairi, B.R.

    1991-01-01

    An Expert System Development (ESD) Shell design implementation is desribed in detail. The shell provides high-level generic facilities for Knowledge Representation (KR) and inferencing and tools for developing user interfaces. Powerful set of tools in the shell relieves much of the programming burden in the ES development. The shell is written in PROLOG under IBM PC/AT. KR facilities are based on two very powerful formalisms namely, frames and rules. Inference Engine (IE) draws most of its power from unification and backward reasoning strategy in PROLOG. This basic mechanism is enhanced further by incorporating both forward and backward chaining of rules and frame-based inferencing. Overall programming style integrates multiple paradigms including logic, object oriented, access-oriented and imperative programming. This permits ES designer a lot of flexibility in organizing inference control. Creation and maintainance of knowledge base is a major activity. The shell, therefore, provides number of facilities to simplify these tasks. Shell design also takes note of the fact that final success of any system depends on end-user satisfaction and hence provides features to build use-friendly interfaces. The shell also provides a set of interfacing predicates so that it can be embedded within any PROLOG program to incorporate functionalilty of the shell in the user program. (author). 10 refs., 8 figs

  14. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  15. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  16. Dynamic centering of liquid shells

    International Nuclear Information System (INIS)

    Tsamopoulos, J.A.; Brown, R.A.

    1987-01-01

    The moderate-amplitude axisymmetric oscillations of an inviscid liquid shell surrounding an incompressible gas bubble are calculated by a multiple-time-scale expansion for initial deformations composed of two-lobed perturbations of the shell and a displacement of the bubble from the center of mass of the liquid. Two types of small-amplitude motion are identified and lead to very different nonlinear dynamic interactions, as described by the results valid up to second order in the amplitude of the initial deformation. In the ''bubble mode,'' the oscillations of the captive bubble and the liquid shell are exactly in phase and the bubble vibrates about its initial eccentric location. The bubble moves toward the center of the drop when the shell is perturbed into a ''sloshing mode'' of oscillation where both interfaces move out of phase. These results explain the centering of liquid shells observed in several experiments

  17. Inner shell transitions of BrI in the EUV

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoni, M [Florence Univ. (Italy). Ist. di Astronomia; Pettini, M [Osservatorio Astrofisico di Arcetri, Florence (Italy)

    1981-10-12

    The EUV line spectrum originating from transitions of the inner 3d shell of neutral atomic bromine has been observed in absorption. Fano parameters have been derived for the three autoionized resonances nd/sup 10/(n + 1)s/sup 2/(n + 1)p/sup 5/ /sup 2/P-nd/sup 9/(n + 1)s/sup 2/(n + 1)p/sup 62/D observed in both bromine (n = 3) and iodine (n = 4) spectra.

  18. Metallic double shell hollow nanocages: the challenges of their synthetic techniques.

    Science.gov (United States)

    Mahmoud, M A; El-Sayed, M A

    2012-03-06

    Hollow metallic nanoparticles have been attracting the attention of many researchers in the past five years due to their new properties and potential applications. The unique structure of the hollow nanoparticles; presence of two surfaces (internal and external), and the presence of both cavities and pores in the wall surfaces of these nanoparticles are responsible for their unique properties and applications. Here the galvanic replacement technique is used to prepare nanocages made of gold, platinum, and palladium. In addition, hollow double shell nanoparticles are made of two metal shells like Au-Pt, Pt-Au, Au-Pd, Pd-Au, Pd-Pt, and Pt-Pd. Silver nanocubes are used as templates during the synthesis of hollow nanoparticles with single metal shell or double shell nanocages. Most of the problems that could affect the synthesis of solid Silver nanocubes used as template as well as the double shell nanocages and their possible solutions are discussed in a detail. The sizes and shapes of the single-shell and double-shell nanocages were characterized by a regular and high-resolution TEM. A SEM mapping technique is also used to image the surface atoms for the double shell hollow nanoparticles in order to determine the thickness of the two metal shells. In addition, optical studies are used to monitor the effect of the dielectric properties of the other metals on the plasmonic properties of the gold nanoshell in these mixed nanoparticles.

  19. Electronic shell structure and chemisorption on gold nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Kleis, Jesper; Thygesen, Kristian Sommer

    2011-01-01

    to distort considerably, creating large band gaps at the Fermi level. For up to 200 atoms we consider structures generated with a simple EMT potential and clusters based on cuboctahedra and icosahedra. All types of cluster geometry exhibit jelliumlike electronic shell structure. We calculate adsorption...... energies of several atoms on the cuboctahedral clusters. Adsorption energies are found to vary abruptly at magic numbers. Using a Newns-Anderson model we find that the effect of magic numbers on adsorption energy can be understood from the location of adsorbate-induced states with respect to the cluster...

  20. Experimental Confirmation of CH Mandrel Removal from Be Shells

    International Nuclear Information System (INIS)

    Cook, B; Letts, S; Buckley, S

    2004-01-01

    Sputtered Be shells are made by sputter deposition of Be, with a radially graded Cu dopant as necessary, onto plastic mandrels supplied by General Atomics. Although the plastic mandrel may not be a design issue, it is a fielding issue because at cryo temperatures the plastic shrinks more than the Be and delaminates. We described in previous memos a proposed method for thermally removing the plastic by burning it in air at elevated temperature. A key aspect to this process is getting air in and out of the shell through the small diameter hole that must be laser drilled in the capsule wall to serve as a fill hole for the fuel. Because the hole is quite small, gas flow through the orifice must be forced, and an external pressure variation was suggested to do this. Further calculations showed that since the volume of the capsule is quite small and the amount of plastic in the shell by comparison is large, the ''pumping'' of air in and out of the shell must occur at least once per minute in order to supply enough O 2 to completely burn the plastic to CO 2 and H 2 O in a reasonable time. Such an apparatus has been now built and this memo details both its construction and operation, as well as provides the first evidence of plastic mandrel removal from Be shells

  1. Atoms stories

    International Nuclear Information System (INIS)

    Radvanyi, P.; Bordry, M.

    1988-01-01

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  2. Atomic physics

    International Nuclear Information System (INIS)

    Held, B.

    1991-01-01

    This general book describes the change from classical physics to quantum physics. The first part presents atom evolution since antiquity and introduces fundamental quantities and elements of relativity. Experiments which have contributed to the evolution of knowledge on matter are analyzed in the second part. Applications of wave mechanics to the study of matter properties are presented in the third part [fr

  3. Preparation and characterization of antibacterial Au/C core-shell composite

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yanhong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Zhang Nianchun [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Zhong Yuwen [Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Cai Huaihong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Liu Yingliang, E-mail: tliuyl@jnu.edu.cn [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China)

    2010-09-01

    An environment-friendly oxidation-reduction method was used to prepare Au/C core-shell composite using carbon as core and gold as shell. The chemical structures and morphologies of Au/C core-shell composite and carbon sphere were characterized by X-ray diffraction, transmission electron microscope, energy dispersion X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The antibacterial properties of the Au/C core-shell composite against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were examined by the disk diffusion assay and minimal inhibition concentration (MIC) methods. In addition, antibacterial ability of Au/C core-shell composite was observed by atomic force microscope. Results demonstrated that gold homogeneously supported on the surface of carbon spheres without aggregation and showed efficient antibacterial abilities.

  4. K-shell-hole production, multiple-hole production, charge transfer, and antisymmetry

    International Nuclear Information System (INIS)

    Reading, J.F.; Ford, A.L.

    1980-01-01

    In calculating K-shell-hole production when an ion collides with an atom, account must be taken of the fact that processes involving electrons other than the K-shell electron can occur. For example, after making a K-shell hole an L-shell electron may be knocked into it, or an L-shell vacancy may be produced and the K-shell electron promoted to that vacancy in the ''Fermi sea'' of the target-atom orbitals. In 1973 a theorem was proved by one of the present authors demonstrating that all these multielectron processes cancel in an independent-particle model for the target atom. In this paper it is shown that the same thing occurs for hole production by charge transfer to the ion. The authors demonstrate that multihole production does not obey this simple rule and that the probability for multihole production is not the product of independent single-electron probabilities. The correct expressions that should be used for these processes are given, together with new results for charge-transfer processes accompanied by hole production

  5. Three-fluid MHD-model of a current shell in Z-pinch

    International Nuclear Information System (INIS)

    Bazdenkov, S.V.; Vikhrev, V.V.

    1975-01-01

    Formation and motion of the current shell in a power pulsed discharge (Z-pinch) are discussed. One-dimmensional nonstationary problem about a discharge in deuterium is solved in the three-liquid magnetohydrodynamic approximation with regard for gas ionization and motion of neutral atoms. It is shown that after the shell removal there remains a large quantity of an ionized gas near an isolating chamber wall. The quantity is sufficient that a secondary breakdown may take place in the ionized gas. The moving current shell has a double structure, i.e. a current ''piston'' and a current layer in the shock wave front

  6. Accelerated ions as a tool in atomic physics

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Some of the aspects of atomic physics which are being brought into focus by the construction and completion of a new generation of heavy-ion accelerators are dealt with. Various types of processes occurring in the overlapping electron clouds are visualised in an elementary way, using among others, some recent observations on the formation of quasi-molecules and quasi-atoms. Phenomena connected with the inner electron shells in superheavy atoms are touched upon, in particular those processes possibly leading to the production of positrons. In such cases the crucial importance of an atomic Coulomb excitation mechanism is stressed. In conclusion the view is emphasized that inner shell ionization phenomena in heavy ion collisions form a bridge between processes originating respectively from nuclear and atomic physics. (Auth.)

  7. Transition sum rules in the shell model

    Science.gov (United States)

    Lu, Yi; Johnson, Calvin W.

    2018-03-01

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.

  8. Dynamical symmetries of the shell model

    International Nuclear Information System (INIS)

    Van Isacker, P.

    2000-01-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  9. Molluscan shell evolution with review of shell calcification hypothesis

    Czech Academy of Sciences Publication Activity Database

    Furuhashi, T.; Schwarzinger, C.; Mikšík, Ivan; Smrž, Miloslav; Beran, A.

    2009-01-01

    Roč. 154, č. 3 (2009), s. 351-371 ISSN 1096-4959 Institutional research plan: CEZ:AV0Z50110509 Keywords : mollusca * shell * biomineralization Subject RIV: CE - Biochemistry Impact factor: 1.607, year: 2009

  10. Some possible atomic physics experiments with 15 UD pelletron machine

    International Nuclear Information System (INIS)

    Mandal, A.

    1995-01-01

    Some possible experiments in atomic physics using medium energy heavy ion beam from the Pelletron are discussed. Main discussions is on x-ray spectroscopy using heavy ion beam. Different excitation mechanisms of inner atomic shells, experimental results and comparison with different theoretical models are presented. Effects of multiple vacancies in outer shells on K-shell ionisation, projectile charge state and target thickness effects are discussed. High resolution x-ray spectroscopy using curved crystal spectrometer is useful for studying these effects. Special emphasis is given to the study of quasi-molecular orbit (MO) formation during adiabatic collision of heavy ion with atom. Different aspects of MO x-ray study are presented. Other continuum x-rays e.g. radiative electron capture (REC), secondary electron Bremsstrahlung (SEB) nucleus-nucleus Bremsstrahlung (NNB) etc are also discussed. (author). 16 refs., 5 figs

  11. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  12. Many-electron model for multiple ionization in atomic collisions

    International Nuclear Information System (INIS)

    Archubi, C D; Montanari, C C; Miraglia, J E

    2007-01-01

    We have developed a many-electron model for multiple ionization of heavy atoms bombarded by bare ions. It is based on the transport equation for an ion in an inhomogeneous electronic density. Ionization probabilities are obtained by employing the shell-to-shell local plasma approximation with the Levine and Louie dielectric function to take into account the binding energy of each shell. Post-collisional contributions due to Auger-like processes are taken into account by employing recent photoemission data. Results for single-to-quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a very good agreement with experimental data

  13. Many-electron model for multiple ionization in atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C D [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina); Montanari, C C [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina); Miraglia, J E [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina)

    2007-03-14

    We have developed a many-electron model for multiple ionization of heavy atoms bombarded by bare ions. It is based on the transport equation for an ion in an inhomogeneous electronic density. Ionization probabilities are obtained by employing the shell-to-shell local plasma approximation with the Levine and Louie dielectric function to take into account the binding energy of each shell. Post-collisional contributions due to Auger-like processes are taken into account by employing recent photoemission data. Results for single-to-quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a very good agreement with experimental data.

  14. Calculation of the photoionization cross section of the 4d10 subshell of the La atom

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Sheftel, S.I.

    1976-01-01

    The photoionization cross section of 4d 10 subshell of La atom is calculated. The cross section curve near its threshold is strongly modified by rearrangement of outer shells in the process of photoionization. (Auth.)

  15. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    Science.gov (United States)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  16. Instant Windows PowerShell

    CERN Document Server

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  17. Patterning of the turtle shell.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F

    2017-08-01

    Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Simple and convenient preparation of Au-Pt core-shell nanoparticles on surface via a seed growth method

    International Nuclear Information System (INIS)

    Qian Lei; Sha Yufang; Yang Xiurong

    2006-01-01

    Au-Pt core-shell nanoparticles were prepared on glass surface by a seed growth method. Gold nanoparticles were used as seeds and ascorbic acid-H 2 PtCl 6 solutions as growth solutions to deposit Pt shell on the surface of gold nanoparticles. These core-shell nanoparticles and their growth process were examined by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and field-emission environmental scanning electron microscopy and the results indicated that the deposition speed was fast and nanoparticles with obvious core-shell structure could be obtained after 2 min. Moreover, this seed growth method for preparation of the core-shell nanoparticles is simple and convenient compared with other seed growth methods with NH 4 OH as a mild reductant. In addition, electrochemical experiments indicated that these Au-Pt core-shell nanoparticles had similar electrochemical properties to those of the bulk Pt electrode

  19. 40 Years of Shell Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Shell has been using scenario planning for four decades. During that time these scenarios have helped the company and governments across the world to make better strategic choices. Scenarios provide lenses that help see future prospects more clearly, make richer judgments and be more sensitive to uncertainties. Discover how the Shell Scenarios team has helped guide decision makers at major moments in history and get a peek at the team future focus, including the intricate relationship between energy, water and food.

  20. Differential cross sections for inelastic scattering of electrons on Kr and Xe atoms at intermediate energies

    International Nuclear Information System (INIS)

    Filipovic, D.M.

    1989-01-01

    Electron-impact excitation of the larger- number noble-gas atoms is a way of understanding excitation mechanisms in atomic collisional processes. Krypton and xenon have the largest atomic number of all the stable noble gases. Therefore, effects dependent on the size of a target atom, such as alignment and orientation of the atomic outer shell charge cloud after collisional excitation, are best observed by studying these atoms. Normalized, absolute differential cross sections (DCS's) for the lowest electronic states of Kr and Xe atoms, at intermediate energies, are the subject of this report

  1. Atomic hydrogen in the Orion star-forming region

    International Nuclear Information System (INIS)

    Chromey, F.R.; Elmegreen, B.G.; Elmegreen, D.M.

    1989-01-01

    A large-scale survey of atomic hydrogen in Orion reveals low-density material with a total mass comparable to that in dense molecular clouds. The atomic gas is sufficiently dense that it can shield the molecular material from photodissociative radiation and provide a pressure link to the low-density intercloud medium. An excess of H I emission comes from photodissociation fronts near the bright stars and from a giant shell in the Orion Belt region. This shell may have caused the apparent bifurcation between the Orion A and B clouds, and the associated pressures may have induced peculiar motions and star formation in NGC 2023 and 2024. 49 refs

  2. A Hartree-Fock program for atomic structure calculations

    International Nuclear Information System (INIS)

    Mitroy, J.

    1999-01-01

    The Hartree-Fock equations for a general open shell atom are described. The matrix equations that result when the single particle orbitals are written in terms of a linear combination of analytic basis functions are derived. Attention is paid to the complexities that occur when open shells are present. The specifics of a working FORTRAN program which is available for public use are described. The program has the flexibility to handle either Slater-type orbitals or Gaussian-type orbitals. It can be obtained over the internet at http://lacebark.ntu.edu.au/j_mitroy/research/atomic.htm Copyright (1999) CSIRO Australia

  3. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  4. Partial and total electronic stopping cross sections of atoms and solids for protons

    International Nuclear Information System (INIS)

    Kaneko, Toshiaki.

    1990-12-01

    Based on a wave packet theory (Phys. Rev. A40, 2188(1989); Phys. Stat. Sol. (B)156,49(1989)), partial and total electronic cross sections of target elements in atomic and solid phases with atomic number Z ranging from 2 (He) to 92 (U) are tabulated shell by shell for protons with velocity v from 0.2V 0 to 2OV 0 (V 0 =2.18 x 10 8 cm/s). (author)

  5. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  6. Exit channels of autoionization resonances in atoms

    International Nuclear Information System (INIS)

    Krause, M.O.

    1985-01-01

    In many-electron atoms with open shells strong autoionization resonances occur when an electron from an inner, weakly bound subshell is excited. Usually, the resonance state lies above several ionization thresholds and, hence, will decay into more than one exit or continuum channel. Several cases are discussed in which the resonance state is induced by synchrotron radiation, and the exit channels are differentiated and characterized by the analysis of the ejected electrons

  7. Exotic atoms

    International Nuclear Information System (INIS)

    Kunselman, R.

    1993-01-01

    The experiments use a solid hydrogen layer to form muonic hydrogen isotopes that escape into vacuum. The method relies on transfer of the muon from protium to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections, and may be emitted from the surface of the layer. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes. A target has been constructed which exploits muonic atom emission in order to learn more about the energy dependence of transfer and muon molecular formation

  8. Creep buckling of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading

  9. Radial behavior of the average local ionization energies of atoms

    International Nuclear Information System (INIS)

    Politzer, P.; Murray, J.S.; Grice, M.E.; Brinck, T.; Ranganathan, S.

    1991-01-01

    The radial behavior of the average local ionization energy bar I(r) has been investigated for the atoms He--Kr, using ab initio Hartree--Fock atomic wave functions. bar I(r) is found to decrease in a stepwise manner with the inflection points serving effectively to define boundaries between electronic shells. There is a good inverse correlation between polarizability and the ionization energy in the outermost region of the atom, suggesting that bar I(r) may be a meaningful measure of local polarizabilities in atoms and molecules

  10. Localization in f-shell metals

    International Nuclear Information System (INIS)

    Harrison, W.A.

    1984-01-01

    Anderson's theory of local moments is applied to the f-shell metals with the use of parameters for the electronic structure given earlier. A criterion for localization (abrupt in this theory) of Z/sub f/ levels per atom is that the resonance width be less than 2U sin 2 (πZ/sub f//14), with U the intra-atomic repulsion associated with s-f transfer. Americium and the heavier actinides satisfy this criterion, as do all the rare earths except cerium; plutonium is borderline. The traditional term ''localized state'' is used here though ''correlated state'' would be more appropriate. For the cases considered the localized states are found to have net spin (or moment) but that is not a necessary condition. They are found to contribute to the f-band pressure on the crystal, but reduced by a factor of about W/sub f//3U, equal to 0.09 for americium, where W/sub f/ is the itinerant f-band width. The localized f levels may themselves be thought to form bands, but with reduced width, and they may even have Fermi surface, though that was not found for the systems considered. A comparison of this state with band ferromagnetism is made. An approximate calculation of the total energy of the localized and delocalized states as a function of volume correctly predicted the large volume and localization for americium

  11. Shells around stars

    International Nuclear Information System (INIS)

    Olnon, F.M.

    1977-01-01

    This thesis deals with optically visible stars surrounded by gas and dust and hot enough to ionize the hydrogen atoms in their envelopes. The ionized gas emits radio continuum radiation by the thermal Bremsstrahlung mechanism. Cool giant stars that show radio line emission from molecules in their circumstellar envelopes are discussed. Under favourable conditions the so-called maser effect gives rise to very intense emission lines. Up till now seven different maser transitions have been found in the envelopes of cool giants. Four of these lines from OH, H 2 O and SiO are studied here. Each of them originates in a different layer so that these lines can be used to probe the envelope. The profile of a maser line gives information about the velocity structure of the region where it is formed

  12. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  13. Modified ferrite core-shell nanoparticles magneto-structural characterization

    Science.gov (United States)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  14. The SCA description of inner-shell Coulomb ionization and associated phenomena

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1989-01-01

    The semiclassical trajectory method for describing atomic processes induced by charged projectiles is outlined. The framework for the perturbative SCA formalism is sketched with emphasis on the first-order time-dependent approach. Selected results from computations on inner-shell Coulomb ionization and δ-electron emission are presented. The kinematic scaling law for ionization and pair-production phenomena is treated in detail. The importance of this scaling law for high-energy atomic collision physics is stressed. (orig.)

  15. On the spectral properties of Dirac operators with electrostatic delta-shell interactions

    Czech Academy of Sciences Publication Activity Database

    Behrndt, J.; Exner, Pavel; Holzmann, M.; Lotoreichik, Vladimir

    2018-01-01

    Roč. 111, č. 3 (2018), s. 47-78 ISSN 0021-7824 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Dirac operator * self-adjoint extension * shell interaction * spectral properties Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.802, year: 2016

  16. Atomic ionization at positron-electron annihilation at β+-decay

    International Nuclear Information System (INIS)

    Fedotkin, S.N.

    2012-01-01

    The role of the nuclear charge screening and corrections to the Born approximation for the flying from atom electron in a process of atomic ionization at annihilation of positron with another electron of daughter's atom at β + - decay is studied. It was considered the processes of ionization of different atomic shells (n = 1, 2, 3, 4) at annihilation of positron, emitted at β'+ - decay with K- electron of daughter's atom. It is shown that the screening effect is important only for shell with n = 4. While corrections to the Born approximation plays the essential role for all shells. It is shown that the most probable process is related with emission of the another K- electron

  17. The evolution of mollusc shells.

    Science.gov (United States)

    McDougall, Carmel; Degnan, Bernard M

    2018-05-01

    Molluscan shells are externally fabricated by specialized epithelial cells on the dorsal mantle. Although a conserved set of regulatory genes appears to underlie specification of mantle progenitor cells, the genes that contribute to the formation of the mature shell are incredibly diverse. Recent comparative analyses of mantle transcriptomes and shell proteomes of gastropods and bivalves are consistent with shell diversity being underpinned by a rapidly evolving mantle secretome (suite of genes expressed in the mantle that encode secreted proteins) that is the product of (a) high rates of gene co-option into and loss from the mantle gene regulatory network, and (b) the rapid evolution of coding sequences, particular those encoding repetitive low complexity domains. Outside a few conserved genes, such as carbonic anhydrase, a so-called "biomineralization toolkit" has yet to be discovered. Despite this, a common suite of protein domains, which are often associated with the extracellular matrix and immunity, appear to have been independently and often uniquely co-opted into the mantle secretomes of different species. The evolvability of the mantle secretome provides a molecular explanation for the evolution and diversity of molluscan shells. These genomic processes are likely to underlie the evolution of other animal biominerals, including coral and echinoderm skeletons. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties. © 2018 Wiley Periodicals, Inc.

  18. Creep buckling of shell structures

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Hagihara, Seiya

    2015-01-01

    The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)

  19. Core-Shell-Corona Micelles with a Responsive Shell.

    Science.gov (United States)

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  20. Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.

    Science.gov (United States)

    Gangil, Sandip

    2014-03-01

    Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The fission time scale measured with an atomic clock

    NARCIS (Netherlands)

    Kravchuk, VL; Wilschut, HW; Hunyadi, M; Kopecky, S; Lohner, H; Rogachevskiy, A; Siemssen, RH; Krasznahorkay, A; Hamilton, JH; Ramayya, AV; Carter, HK

    2003-01-01

    We present a new direct method of measuring the fission absolute time scale using an atomic clock based on the lifetime of a vacancy in the atomic K-shell. We studied the reaction Ne-20 + Th-232 -> O-16 + U-236* at 30 MeV/u. The excitation energy of about 115 MeV in such a reaction is in the range

  2. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters

    International Nuclear Information System (INIS)

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. - Highlights: • This work regard the K shell absorption jump ratios and jump factors of Ti, Cr, Fe, Co, Ni and Cu. • This paper presents the first measurement of these parameters using the experimental K shell fluorescence parameters. • A good agreement was found between experimental and theoretical values. • The EDXRF technique was suitable, precise and reliable for the measurement of these atomic parameters

  3. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.; Dean, D.J.; Langanke, K.

    1997-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)

  4. Cask for concrete shells transportation

    International Nuclear Information System (INIS)

    Labergri, F.

    2001-01-01

    Nowadays, nuclear plant radioactive waste are conditioned in situ into concrete shells. Most of them enter in the industrial waste category defined by the regulations of radioactive material transportation. However, the content of a few ones exceeds the limits set for low specific activity substances. Thus, these shells must be transported into type B packagings. To this end, Robatel has undertaken, for EDF (Electricite de France), the development of a container, named ROBATEL TM R68, for further licensing. The particularity of this packaging is that the lid must have a wide opening to allow the usual handling operations of the concrete shells. This leads to a non-conventional conception, and makes the package more vulnerable to drop test solicitations. In order to define a minimal drop test program on a reduced scale model, we use a simple method to find the most damageable drop angle. (author)

  5. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.

    1996-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs

  6. Stability of core–shell nanowires in selected model solutions

    International Nuclear Information System (INIS)

    Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-01-01

    Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods

  7. Characterization of the Micro-shell Surface Using Holographic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sandras, F.; Hermerel, C.; Choux, A.; Merillot, P.; Pin, G.; Jeannot, L. [CEA Valduc, Dept Rech Mat Nucl, Serv Microcibles, 21 - Is-sur-Tille (France)

    2009-05-15

    To characterize the shape, the quality, and the roughness of micro-shells, typically used technologies are scanning electron microscopy, scanning interferometric microscopy, or atomic force microscopy. One of the drawbacks of these techniques is that they are generally slow because of their scanning process. Digital holographic microscopy technology is an innovation that can offer ability adapted to these studies. It captures holograms instead of intensity images, as done by conventional microscopes. The holograms are then digitally interpreted (10 per second) to reconstruct a double image, one for the intensity and another one for the phase. Using a rotation axis, the bump counting for the complete micro-shell surface is possible with a very high speed. Using an image stitching software, mapping can be done in a few minutes. Wavelets such as 'Mexican hat' are used to model the bumps. Each bump can then be characterized on the map by its position, diameter, and height. (authors)

  8. Absolute cross-section measurements of inner-shell ionization

    Science.gov (United States)

    Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer

    1994-12-01

    Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.

  9. Stability of core–shell nanowires in selected model solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kalska-Szostko, B., E-mail: kalska@uwb.edu.pl; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-30

    Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  10. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  11. Interplay of electronic and geometry shell effects in properties of neutral and charged Sr clusters

    DEFF Research Database (Denmark)

    Lyalin, Andrey; Solov'yov, Ilia; Solov'yov, Andrey V.

    2007-01-01

    that the size evolution of structural and electronic properties of strontium clusters is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters......The optimized structure and electronic properties of neutral, singly, and doubly charged strontium clusters have been investigated using ab initio theoretical methods based on density-functional theory. We have systematically calculated the optimized geometries of neutral, singly, and doubly...... charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, the gap between the highest occupied and the lowest unoccupied molecular orbitals, and spectra of the density of electronic states (DOS). It is demonstrated...

  12. RHFPPP, SCF-LCAO-MO Calculation for Closed Shell and Open Shell Organic Molecules

    International Nuclear Information System (INIS)

    Bieber, A.; Andre, J.J.

    1987-01-01

    1 - Nature of physical problem solved: Complete program performs SCF-LCAO-MO calculations for both closed and open-shell organic pi-molecules. The Pariser-Parr-People approximations are used with- in the framework of the restricted Hartree-Fock method. The SCF calculation is followed, if desired, by a variational configuration interaction (CI) calculation including singly excited configurations. 2 - Method of solution: A standard procedure is used; at each step a real symmetric matrix has to be diagonalized. The self-consistency is checked by comparing the eigenvectors between two consecutive steps. 3 - Restrictions on the complexity of the problem: i) The calculations are restricted to planar molecules. ii) In order to avoid accumulation of round-off errors, in the iterative procedure, double precision arithmetic is used. iii) The program is restricted to systems up to about 16 atoms; however the size of the systems can easily be modified if required

  13. Learning Shell scripting with Zsh

    CERN Document Server

    Festari, Gaston

    2014-01-01

    A step-by-step tutorial that will teach you, through real-world examples, how to configure and use Zsh and its various features. If you are a system administrator, developer, or computer professional involved with UNIX who are looking to improve on their daily tasks involving the UNIX shell, ""Learning Shell Scripting with Zsh"" will be great for you. It's assumed that you have some familiarity with an UNIX command-line interface and feel comfortable with editors such as Emacs or vi.

  14. Closed-shell and open-shell square-planar iridium nitrido complexes

    Science.gov (United States)

    Scheibel, Markus G.; Askevold, Bjorn; Heinemann, Frank W.; Reijerse, Edward J.; de Bruin, Bas; Schneider, Sven

    2012-07-01

    Coupling reactions of nitrogen atoms represent elementary steps to many important heterogeneously catalysed reactions, such as the Haber-Bosch process or the selective catalytic reduction of NOx to give N2. For molecular nitrido (and related oxo) complexes, it is well established that the intrinsic reactivity, for example nucleophilicity or electrophilicity of the nitrido (or oxo) ligand, can be attributed to M-N (M-O) ground-state bonding. In recent years, nitrogen (oxygen)-centred radical reactivity was ascribed to the possible redox non-innocence of nitrido (oxo) ligands. However, unequivocal spectroscopic characterization of such transient nitridyl {M=N•} (or oxyl {M-O•}) complexes remained elusive. Here we describe the synthesis and characterization of the novel, closed-shell and open-shell square-planar iridium nitrido complexes [IrN(Lt-Bu)]+ and [IrN(Lt-Bu)] (Lt-Bu=N(CHCHP-t-Bu2)2). Spectroscopic characterization and quantum chemical calculations for [IrN(Lt-Bu)] indicate a considerable nitridyl, {Ir=N•}, radical character. The clean formation of IrI-N2 complexes via binuclear coupling is rationalized in terms of nitrido redox non-innocence in [IrN(Lt-Bu)].

  15. K-shell transitions in L-shell ions with the EBIT calorimeter spectrometer

    Science.gov (United States)

    Hell, Natalie; Brown, G. V.; Wilms, J.; Beiersdorfer, P.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2015-08-01

    With the large improvement in effective area of Astro-H's micro-calorimeter soft X-ray spectrometer (SXS) over grating spectrometers, high-resolution X-ray spectroscopy with good signal to noise will become more commonly available, also for faint and extended sources. This will result in a range of spectral lines being resolved for the first time in celestial sources, especially in the Fe region. However, a large number of X-ray line energies in the atomic databases are known to a lesser accuracy than that expected for Astro-H/SXS, or have no known uncertainty at all. To benchmark the available calculations, we have therefore started to measure reference energies of K-shell transition in L-shell ions for astrophysically relevant elements in the range 11 ≤ Z ≤ 28 (Na to Ni), using the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with the NASA/GSFC EBIT calorimeter spectrometer (ECS). The ECS has a resolution of ~5eV, i.e., similar to Astro-H/SXS and Chandra/HETG. A comparison to crystal spectra of lower charge states of sulfur with ~0.6eV resolution shows that the analysis of spectra taken at ECS resolution allows us to determine the transition energies of the strongest components.Work at LLNL was performed under the auspices of DOE under contract DE-AC52-07NA27344 and supported by NASA's APRA program.

  16. In Situ Generation of Two-Dimensional Au–Pt Core–Shell Nanoparticle Assemblies

    Directory of Open Access Journals (Sweden)

    Khalid Madiha

    2009-01-01

    Full Text Available Abstract Two-dimensional assemblies of Au–Pt bimetallic nanoparticles are generated in situ on polyethyleneimmine (PEI silane functionalized silicon and indium tin oxide (ITO coated glass surfaces. Atomic force microscopy (AFM, UV–Visible spectroscopy, and electrochemical measurements reveal the formation of core–shell structure with Au as core and Pt as shell. The core–shell structure is further supported by comparing with the corresponding data of Au nanoparticle assemblies. Static contact angle measurements with water show an increase in hydrophilic character due to bimetallic nanoparticle generation on different surfaces. It is further observed that these Au–Pt core–shell bimetallic nanoparticle assemblies are catalytically active towards methanol electro-oxidation, which is the key reaction for direct methanol fuel cells (DMFCs.

  17. Cross Sections for Inner-Shell Ionization by Electron Impact

    Energy Technology Data Exchange (ETDEWEB)

    Llovet, Xavier, E-mail: xavier@ccit.ub.edu [Centres Científics i Tecnològics, Universitat de Barcelona, Lluís Solé i Sabarís 1-3, 08028 Barcelona (Spain); Powell, Cedric J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8370 (United States); Salvat, Francesc [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Jablonski, Aleksander [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2014-03-15

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements.

  18. Structural and magnetic properties of CoO-Pt core-shell nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Zeleňáková, A.; Zeleňák, V.; Michalik, Štefan; Kováč, J.; Meisel, M. W.

    2014-01-01

    Roč. 89, č. 10 (2014), "104417-1"-"104417-10" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : CoO-Pt core shell nanoparticles * superparamagnetism * superspin glass state * x-ray diffraction * x-ray absorption spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.736, year: 2014

  19. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications

    KAUST Repository

    Xia, Chuan; Chen, Wei; Wang, Xianbin; Hedhili, Mohamed N.; Wei, Nini; Alshareef, Husam N.

    2015-01-01

    commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD

  20. On the possibility of considering the fullerene shell C{sub 60} as a conducting sphere

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Baltenkov, A.S. [Arifov Institute of Electronics, Tashkent 700125 (Uzbekistan)]. E-mail: arkbalt@mail.ru

    2006-12-25

    The dynamical and static dipole polarizabilities of the C{sub 60} molecule have been calculated on the basis of the experimental data on the cross section of the fullerene photoabsorption. It has been shown that the fullerene shell in the static electric field behaves most likely as a set of separate carbon atoms rather than as a conducting sphere.

  1. Digestive ripening: a synthetic method par excellence for core–shell ...

    Indian Academy of Sciences (India)

    persity of nanoparticles. An even more remarkable feature of digestive ripening exemplified here is, it could be exercised as a synthetic method towards vari- ous heterostructured materials like core–shell particles, nanoalloys, and nanocomposites in combination with the synthetic method, solvated metal atom dispersion.

  2. Relativistic quantum chemistry of the superheavy elements. Closed-shell element 114 as a case study

    International Nuclear Information System (INIS)

    Schwerdtfeger, Peter; Seth, Michael

    2002-01-01

    The chemistry of superheavy element 114 is reviewed. The ground state of element 114 is closed shell [112]7s 2 7p 1/2 2 and shows a distinct chemical inertness (low reactivity). This inertness makes it rather difficult to study the atom-at-a-time chemistry of 114 in the gas or liquid phase. (author)

  3. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti; Collier, Nathan; Dalcí n, Lisandro D.; Ghommem, Mehdi; Calo, Victor M.

    2012-01-01

    The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  4. Atomic reactor thermal engineering

    International Nuclear Information System (INIS)

    Kim, Gwang Ryong

    1983-02-01

    This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.

  5. Atomic energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1978-01-01

    Development of nuclear science in India, particularly the research and development work at the Bhabha Atomic Research Centre (BARC), Bombay, is described. Among the wide range of materials developed for specific functions under rigorous conditions are nuclear pure grade uranium, zirconium and beryllium, and conventional materials like aluminium, carbon steel and stainless steels. Radioisotopes are produced and used for tracer studies in various fields. Various types of nuclear gauges and nuclear instruments are produced. Radiations have been used to develop new high yielding groundnut mutants with large kernals. The sterile male technique for pest control and radiosterilization technique to process potatoes, onions and marine foods for storage are ready for exploitation. Processes and equipment have been developed for production of electrolytic hydrogen, electrothermal phosphorus and desalinated water. Indigenously manufactured components and materials are now being used for the nuclear energy programme. Indian nuclear power programme strategy is to build heavy water reactors and to utilise their byproduct plutonium and depleted uranium to feed fast breeder reactors which will produce more fissile material than burnt. Finally a special mention has been made of the manpower development programme of the BARC. BARC has established a training school in 1957 giving advanced training in physics, chemistry and various branches of engineering and metallurgy

  6. Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Lewicka Katarzyna

    2017-06-01

    Full Text Available Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN, walnut shells (WN and peanut shells (PN. Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g and WN900 at 25°C (4.34 mmol/g. All of the samples had a well-developed microporous structure.

  7. Starting SCF Calculations by Superposition of Atomic Densities

    NARCIS (Netherlands)

    van Lenthe, J.H.; Zwaans, R.; van Dam, H.J.J.; Guest, M.F.

    2006-01-01

    We describe the procedure to start an SCF calculation of the general type from a sum of atomic electron densities, as implemented in GAMESS-UK. Although the procedure is well-known for closed-shell calculations and was already suggested when the Direct SCF procedure was proposed, the general

  8. Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles

    KAUST Repository

    Ding, Yong; Fan, Fengru; Tian, Zhongqun; Wang, Zhong Lin

    2010-01-01

    shell of the NPs was systematically investigated by high-resolution transmission electron microscopy. In the NPs coated with a single atomic layer of Pd, the strain between the surface Pd layer and the Au core is released by Shockley partial dislocations

  9. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    Science.gov (United States)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  10. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-01-01

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal

  11. Adaptative mixed methods to axisymmetric shells

    International Nuclear Information System (INIS)

    Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.

    1989-09-01

    The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt

  12. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  13. Tube in shell heat exchangers

    International Nuclear Information System (INIS)

    Hayden, O.; Willby, C.R.; Sheward, G.E.; Ormrod, D.T.; Firth, G.F.

    1980-01-01

    An improved tube-in-shell heat exchanger to be used between liquid metal and water is described for use in the liquid metal coolant system of fast breeder reactors. It is stated that this design is less prone to failures which could result in sodium water reactions than previous exchangers. (UK)

  14. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  15. Nonlinear theory of elastic shells

    International Nuclear Information System (INIS)

    Costa Junior, J.A.

    1979-08-01

    Nonlinear theory of elastic shells is developed which incorporates both geometric and physical nonlinearities and which does not make use of the well known Love-Kirchhoff hypothesis. The resulting equations are formulated in tensorial notation and are reduced to the ones of common use when simplifying assumptions encountered in the especific litterature are taken. (Author) [pt

  16. Shell energy scenarios to 2050

    International Nuclear Information System (INIS)

    2008-01-01

    Shell developed two scenarios that describe alternative ways the energy future may develop. In the first scenario (Scramble) policymakers pay little attention to more efficient energy use until supplies are tight. Likewise, greenhouse gas emissions are not seriously addressed until there are major climate shocks. In the second scenario (Blueprints) growing local actions begin to address the challenges of economic development, energy security and environmental pollution. A price is applied to a critical mass of emissions giving a huge stimulus to the development of clean energy technologies, such as carbon dioxide capture and storage, and energy efficiency measures. The result is far lower carbon dioxide emissions. Both these scenarios can help Shell to test their strategy against a range of possible developments over the long-term. However, according to Shell, the Blueprints' outcomes offer the best hope for a sustainable future, whether or not they arise exactly in the way described. However, with the right combination of policy, technology and commitment from governments, industry and society globally, Shell believes it can be realized. But achieving the targets will not be easy, and time is short. Clear thinking, huge investment, and effective leadership are required

  17. Collapse analysis of toroidal shell

    International Nuclear Information System (INIS)

    Pomares, R.J.

    1990-01-01

    This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation

  18. Studies of dust shells around stars

    International Nuclear Information System (INIS)

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  19. Current ideas on ion-atom collisions

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1975-09-01

    A survey is given of recent developments in the understanding of ion-atom collisions, with particular emphasis on processes leading to ion-induced X-rays. The inner-shell Coulomb ionization phenomena are discussed at some length, with stress on the near-quantitative picture that appears to emerge from simple-minded models. The phenomenon of Pauli excitations and the formation of quasi-molecules leading to united atom phenomena are qualitatively reviewed together with a brief mention of target recoil effects and electron capture processes. Selected background phenomena of importance in interpreting experiments are touched upon, such as various types of bremsstrahlung production. Implications of the recently-discovered interplay between Coulomb-induced processes and united atom phenomena are especially mentioned. It is suggested that this branch of collision physics is now (1975) reaching a point where new notions and more advanced and unifying models are greatly needed. (auth)

  20. Recent evolution of theoretical models in inner shell photoionization

    International Nuclear Information System (INIS)

    Combet Farnoux, F.

    1978-01-01

    This paper is a brief review of various atomic theoretical models recently developed to calculate photoionization cross sections in the low energy range (from the far ultraviolet to the soft X ray region). For both inner and outer shells concerned, we emphasize the necessity to go beyond the independent particle models by means of the introduction of correlation effects in both initial and final states. The basic physical ideas of as elaborated models as Random Phase Approximation with exchange, Many Body Perturbation Theory and R matrix Theory are outlined and summarized. As examples, the results of some calculations are shown and compared with experiment

  1. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    Science.gov (United States)

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  2. 7 CFR 983.29 - Shelled pistachios.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means pistachio...

  3. Thin-shell wormholes in dilaton gravity

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2005-01-01

    In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed

  4. Shell film- and video catalogue 1996

    International Nuclear Information System (INIS)

    1996-01-01

    An overview is given of films and videos that are available through 'Shell Nederland Filmcentrale' (Shell Netherlands Film Center), subdivided into the subjects (1) About Shell; (2) Health, Safety and Environment; (3) Science and Technology; (4) The History of Car(racing); and (5) Historical Overview. 5 ills

  5. A finite element for plates and shells

    International Nuclear Information System (INIS)

    Muller, A.; Feijoo, R.A.; Bevilacqua, L.

    1981-08-01

    A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt

  6. Vibrations of Thin Piezoelectric Shallow Shells

    Indian Academy of Sciences (India)

    Abstract. In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  7. 7 CFR 981.6 - Shelled almonds.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds after...

  8. Site-resolved imaging of a bosonic Mott insulator using ytterbium atoms

    Science.gov (United States)

    Miranda, Martin; Inoue, Ryotaro; Tambo, Naoki; Kozuma, Mikio

    2017-10-01

    We demonstrate site-resolved imaging of a strongly correlated quantum system without relying on laser cooling techniques during fluorescence imaging. We observe the formation of Mott shells in the insulating regime and realize thermometry in an atomic cloud. This work proves the feasibility of the noncooled approach and opens the door to extending the detection technology to new atomic species.

  9. ''Atomic'' Bremsstrahlung or polarizational radiation in collision of many-electron ions

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Solov'yov, A.V.

    1991-01-01

    In this work the so-called ''Atomic'' bremsstrahlung (AB) or polarizational radiation, created in collisions of atoms or ions, is discussed. This kind of radiation arises due to the polarization of the electron shell of colliding particles. It is created by the structured projectiles and targets if the constituents are electrically charged. 6 refs, 2 figs

  10. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.

    Science.gov (United States)

    Gong, Jianxiao; Zhou, Fei; Li, Zhiyuan; Tang, Zhiyong

    2012-06-19

    We have synthesized Au@Ag core-shell nanocubes containing Au cores with varying shapes and sizes through modified seed-mediated methods. Bromide ions are found to be crucial in the epitaxial growth of Ag atoms onto Au cores and in the formation of the shell's cubic shape. The Au@Ag core-shell nanocubes exhibit very abundant and distinct localized surface plasmon resonance (LSPR) properties, which are core-shape and size-dependent. With the help of theoretical calculation, the physical origin and the resonance mode profile of each LSPR peak are identified and studied. The core-shell nanocrystals with varying shaped cores offer a new rich category for LSPR control through the plasmonic coupling effect between core and shell materials.

  11. Photoionization and vacancy decay of endohedral atoms

    International Nuclear Information System (INIS)

    Amusia, M. Ya.

    2007-01-01

    We demonstrate the role played by the fullerenes shell in the photoionization and vacancy decay of endohedral atoms A-C 60 . It is shown, partly in the frame of a rather simple model that describes the fullerene shell, partly using only the assumption on the smallness of the atom A in comparison to the size of C 60 that it affects photoionization and the vacancy decay of A-C 60 profoundly. Namely, it leads to a number of new resonances in photoionization cross-section and other photoionization characteristics as well as strong modifications of the vacancy decay probabilities and to opening of new decay channels. We will discuss the problem of photon propagation through the C 60 shell and conclude that at any considered frequency ω, 0 ≤ ω ≤ 60 eV the C 60 enhances the incoming radiation. This shows non-metallic dielectric behavior of the 240 collectivized electrons in C 60 . We also discuss the effects of C 60 upon the fast electron inelastic scattering. The results obtained are valid qualitatively also for other than C 60 molecules, e.g. for C 70 or C 76

  12. Photoionization and vacancy decay of endohedral atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M. Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation)], E-mail: amusia@vms.huji.ac.il

    2007-10-15

    We demonstrate the role played by the fullerenes shell in the photoionization and vacancy decay of endohedral atoms A-C{sub 60}. It is shown, partly in the frame of a rather simple model that describes the fullerene shell, partly using only the assumption on the smallness of the atom A in comparison to the size of C{sub 60} that it affects photoionization and the vacancy decay of A-C{sub 60} profoundly. Namely, it leads to a number of new resonances in photoionization cross-section and other photoionization characteristics as well as strong modifications of the vacancy decay probabilities and to opening of new decay channels. We will discuss the problem of photon propagation through the C{sub 60} shell and conclude that at any considered frequency {omega}, 0 {<=} {omega} {<=} 60 eV the C{sub 60} enhances the incoming radiation. This shows non-metallic dielectric behavior of the 240 collectivized electrons in C{sub 60}. We also discuss the effects of C{sub 60} upon the fast electron inelastic scattering. The results obtained are valid qualitatively also for other than C{sub 60} molecules, e.g. for C{sub 70} or C{sub 76}.

  13. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  14. Expansion of X-ray form factor for close shell using uncorrelated wave function

    Energy Technology Data Exchange (ETDEWEB)

    AL-Robayi, Enas M. [Babylon University , College of Science for Women, laser Physics Department, Hilla (Iraq)

    2013-12-16

    The atomic scattering factor has been studied for Be+ve, and B+2ve ions using the uncorrelated wave function (Hartree-Fock (HF)) for inter particle electronic shells. The physical importance of this factor appears in its relation to several important atomic properties as, the coherent scattering intensity, the total scattering intensity, the incoherent scattering function, the coherent scattering cross section, the total incoherent cross section, the nuclear magnetic shielding constant, the geometrical structure factor. Also there is one atomic properties the one particle radial density distribution function D(r)has been studied using the partitioning technique.

  15. Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing.

    Science.gov (United States)

    Dass, Amala

    2009-08-26

    The molecular formula Au(68)(SCH(2)CH(2)Ph)(34) has been assigned to the 14 kDa nanocluster using MALDI-TOF mass spectrometry. The 34-electron shell closing in a macroscopically obtained thiolated gold nanocluster is demonstrated. The Au(68) nanocluster is predicted to have a 49 atom Marks decahedral core with 19 inner core atoms and 30 outer atoms chelating with the staple motifs. The nanoclusters' predicted formulation is [Au](19+30) [Au(SR)(2)](11) [Au(2)(SR)(3)](4).

  16. Atomic weight versus atomic mass controversy

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    A problem for the Atomic Weights Commission for the past decade has been the controversial battle over the names ''atomic weight'' and ''atomic mass''. The Commission has considered the arguments on both sides over the years and it appears that this meeting will see more of the same discussion taking place. In this paper, I review the situation and offer some alternatives

  17. Extending synchrotron-based atomic physics experiments into the hard X-ray region

    International Nuclear Information System (INIS)

    LeBrun, T.

    1996-01-01

    The high-brightness, hard x-ray beams available from third-generation synchrotron sources are opening new opportunities to study the deepest inner shells of atoms, an area where little work has been done and phenomena not observed in less tightly bound inner-shells are manifested. In addition scattering processes which are weak at lower energies become important, providing another tool to investigate atomic structure as well as an opportunity to study photon/atom interactions beyond photoabsorption. In this contribution the authors discuss some of the issues related to extending synchrotron-based atomic physics experiments into the hard x-ray region from the physical and the experimental point of view. They close with a discussion of a technique, resonant Raman scattering, that may prove invaluable in determining the spectra of the very highly-excited states resulting from the excitation of deep inner shells

  18. Two-photon decay in heavy atoms and ions

    International Nuclear Information System (INIS)

    Mokler, P.H.; Dunford, R.W

    2003-08-01

    We review the status of and comment on current developments in the field of two-photon decay in atomic physics research. Recent work has focused on two-photon decays in highly-charged ions and two-photon decay of inner-shell vacancies in heavy neutral atoms. We emphasize the importance of measuring the shape of the continuum emission in two-photon decay as a probe of relativistic effects in the strong central fields found in heavy atomic systems. New experimental approaches and their consequences will be discussed. (orig.)

  19. Status and problems of multiply ionized atom spectroscopy

    International Nuclear Information System (INIS)

    Kononov, Eh.Ya.; Ryabtsev, A.N.

    1984-01-01

    Principal directions of investigations associated with identification of spectral lines and with determination of energy structure of high multiplicity ions are analyzed. The considered part of atomic spectroscopy is developed both in the direction of obtaining high multiplicity ion spectra and interpretation of spectral details associated with excitation conditions and in the direction of detailed study on compound energy structures of electron shells. Spectroscopy with fast ion beams is widely developed. Accumulated atomic data, developed methods of atomic calculations and improvement of observation technique permit to realize complex spectroscopic diagnostics in astrophysics and hot plasma physics

  20. Revealing inner shell dynamics with inelastic X-ray scattering

    International Nuclear Information System (INIS)

    Franck, C.

    1990-01-01

    One of the many opportunities provided by the Advanced Photon Source (APS) is to extend the study of intra-atomic dynamics. As a means of testing dynamic response, inelastic x-ray scattering is particularly promising since it allows us to independently vary the period of the exciting field in both space and time. As an example of this type of work, the author presents experiments performed at the Cornell High Energy Synchrotron Source (CHESS) laboratory, a prototype for the APS. This was inner shell inelastic scattering with a twist: in order to explore a new distance scale an x-ray fluorescence trigger was employed. Aside for the atomic insight gained, the experiment taught them the importance of the time structure of the synchrotron beam for coincidence experiments which are dominated by accidental events

  1. Design aids for stiffened composite shells with cutouts

    CERN Document Server

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  2. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    Science.gov (United States)

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  4. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  5. Pressure Shell Approach to Integrated Environmental Protection

    Science.gov (United States)

    Kennedy, Kriss J.

    2011-01-01

    The next generation of exploration mission human systems will require environmental protection such as radiation protection that is effective and efficient. In order to continue human exploration, habitat systems will require special shells to protect astronauts from hostile environments. The Pressure Shell Approach to integrated environmental (radiation) protection is a multi-layer shell that can be used for multifunctional environmental protection. Self-healing, self-repairing nano technologies and sensors are incorporated into the shell. This shell consists of multiple layers that can be tailored for specific environmental protection needs. Mainly, this innovation focuses on protecting crew from exposure to micrometeorites, thermal, solar flares, and galactic cosmic ray (GCR) radiation. The Pressure Shell Approach consists of a micrometeoroid and secondary ejecta protection layer; a thin, composite shell placed in between two layers that is non-structural; an open cavity layer that can be filled with water, regolith, or polyethylene foam; a thicker composite shell that is a structural load bearing that is placed between two layers; and a bladder coating on the interior composite shell. This multi-layer shell creates an effective radiation protection system. Most of its layers can be designed with the materials necessary for specific environments. In situ materials such as water or regolith can be added to the shell design for supplemental radiation protection.

  6. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  7. Double containment shell for nuclear power plants

    International Nuclear Information System (INIS)

    Sykora, D.

    1977-01-01

    A double containment shell is proposed for nuclear power plants, especially those equipped with pressurized water reactors. The shell offers increased environmental protection from primary circuit accidents. The inner shell is built of steel or concrete while the outer shell is always built of concrete. The space between the two shells is filled with water and is provided with several manholes and with stiffeners designed for compensation for load due to the water hydrostatic pressure. Water serves the airtight separation of the containment shell inside from the environment and the absorption of heat released in a primary circuit accident. In case the inner shell is made of concrete, it is provided with heat-removal tubes in-built in its walls ensuring rapid heat transfer from the inside of the containment to the water in the interwall space. (Z.M.)

  8. Recent developments in anisotropic heterogeneous shell theory

    CERN Document Server

    Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G

    2016-01-01

    This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.

  9. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  10. Slow pyrolysis of pistachio shell

    Energy Technology Data Exchange (ETDEWEB)

    Apaydin-Varol, Esin; Putun, Ersan; Putun, Ayse E [Anadolu University, Eskisehir (Turkey). Department of Chemical Engineering

    2007-08-15

    In this study, pistachio shell is taken as the biomass sample to investigate the effects of pyrolysis temperature on the product yields and composition when slow pyrolysis is applied in a fixed-bed reactor at atmospheric pressure to the temperatures of 300, 400, 500, 550, 700{sup o}C. The maximum liquid yield was attained at about 500-550{sup o}C with a yield of 20.5%. The liquid product obtained under this optimum temperature and solid products obtained at all temperatures were characterized. As well as proximate and elemental analysis for the products were the basic steps for characterization, column chromatography, FT-IR, GC/MS and SEM were used for further characterization. The results showed that liquid and solid products from pistachio shells show similarities with high value conventional fuels. 31 refs., 9 figs., 1 tab.

  11. Shell trips over its reserves

    International Nuclear Information System (INIS)

    Jemain, A.

    2004-01-01

    Some mistakes in the evaluation of the proven reserves of Royal Dutch Shell group, the second world petroleum leader, will oblige the other oil and gas companies to be more transparent and vigilant in the future. The proven reserves ('P90' in petroleum professionals' language) are the most important indicators of the mining patrimony of companies. These strategic data are reported each year in the annual reports of the companies and are examined by the security exchange commission. The evaluation of reserves is perfectly codified by the US energy policy and conservation act and its accountable translation using the FAS 69 standard allows to establish long-term cash-flow forecasts. The revision announced by Shell on January 9 leads to a 20% reduction of its proven reserves. Short paper. (J.S.)

  12. Læren fra Shell

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders

    2017-01-01

    Hvad kan afsløringerne om Shells mere end 25 år gamle viden om klimaforandringer lære virksomheder om disruption og strategi? Først og fremmest at undgå at se disruption som en mulig trussel, men i stedet som en fremtidig realitet og chance for vækst......Hvad kan afsløringerne om Shells mere end 25 år gamle viden om klimaforandringer lære virksomheder om disruption og strategi? Først og fremmest at undgå at se disruption som en mulig trussel, men i stedet som en fremtidig realitet og chance for vækst...

  13. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  14. Shell structure of potassium isotopes deduced from their magnetic moments

    CERN Document Server

    Papuga, J.; Kreim, K; Barbieri, C; Blaum, K; De Rydt, M; Duguet, T; Garcia Ruiz, R F; Heylen, H; Kowalska, M; Neugart, R; Neyens, G; Nortershauser, W; Rajabali, M M; Sanchez, R; Smirnova, N; Soma, V; Yordanov, D T

    2014-09-29

    $\\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\\\ \\\\ $\\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \\\\ \\\\ $\\textbf{Method:}$ High-resolution collinear laser spectroscopy on bunched atomic beams. \\\\ \\\\ $\\textbf{Results:}$ From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and $\\textit{ab initio}$ framework is al...

  15. Nested shell superconducting magnet designs

    International Nuclear Information System (INIS)

    Bromberg, L.; Williams, J.E.C.; Titus, P.

    1992-01-01

    A new concept for manufacturing the toroidal field coil is described in this paper. Instead of structural plates, the magnet is wound in interlocking shells. The magnet configuration is described and the advantages explored. Structural analysis of the concept is performed using the ARIES tokamak reactor parameters. The effectiveness of a structural cap, placed above and below the toroidal field coils and used only to balance opposing torques generated in different places of the coil, is quantified

  16. Shell Models of Superfluid Turbulence

    International Nuclear Information System (INIS)

    Wacks, Daniel H; Barenghi, Carlo F

    2011-01-01

    Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.

  17. Plastic buckling of cylindrical shells

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-01-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads

  18. Buckling shells are also swimmers

    Science.gov (United States)

    Quilliet, Catherine; Dyfcom Bubbleboost Team

    We present an experimental and numerical study on the displacement of shells undergoing deformations in a fluid. When submitted to cycles of pressure difference between outside and inside, a shell buckles and debuckles, showing a succession of shapes and a dynamics that are different during the two phases. Hence such objects are likely to swim, including at low Reynolds (microscopic scale). We studied the swimming of buckling/debuckling shells at macroscopic scale using different approaches (force quantization, shape recording, displacement along a frictionless rail, study of external flow using PIV), and showed that inertia plays a role in propulsion, even in situations where dimensionless numbers correspond also to microswimmers in water. Different fluid viscosities were explored, showing an optimum for the displacement. Interestingly, the most favorable cases lead to displacements in the same direction and sense during both motor stroke (buckling phase) and recovery stroke (de-buckling phase). This work opens the route for the synthesis with high throughput of abusively simple synthetic swimmers, possibly gathered into nanorobots, actuated by a scalar field such as the pressure in echographic devices. Universite Grenoble Alpes, CNRS, European Research Council.

  19. Applications to particle and atomic physics of a ''theorem'' on the order of energy levels

    International Nuclear Information System (INIS)

    Grosse, H.; Pflug, A.; Martin, A.

    1984-01-01

    The sign of the Laplacian of the potential, in the Schroedinger equation, indicates in which way Coulomb degeneracy is lifted. We propose three applications of this property. The first one concerns the order of levels in heavy quark systems, the second the effects of the finite size of nuclei in mesic atoms, and the third the filling of atomic shells and the order of levels in alkaline atoms [fr

  20. Photoionization of atoms encapsulated by cages using the power-exponential potential

    International Nuclear Information System (INIS)

    Lin, C Y; Ho, Y K

    2012-01-01

    The systems of confined atoms in cages have received considerable attention for decades due to interesting phenomena arising from the effect of cage environment on the atom. For early theoretical work based on empirical model potentials, the Dirac δ-potential, i.e. the so-called bubble potential, and the attractive short-range spherical shell potential are conventionally used for the description of interaction between the valence electron of confined atom and the cage. In this work, the power-exponential potential with a flexible confining shape is proposed to model the cages. The methods of complex scaling in the finite-element discrete variable representation are implemented to investigate the hydrogen, hydrogen-like ions and alkali metals encapsulated by the cages. The energy spectrum varying with the confining well depth exhibits avoided crossings. The influence of cage on atomic photoionization leading to the oscillation behaviour or the so-called confinement resonances in cross sections is demonstrated in a variety of confined atomic systems. In comparisons with existing predictions using the Dirac δ-potential and the attractive short-range spherical shell potentials, our results show the significant influence of cage thickness and smooth shell boundary on the photoionization. The drastic changes of cross sections due to the character of cage are presented and discussed for the encaged lithium and sodium atoms. The present model is useful for clarifying the boundary effect of confining shell on the endohedral atoms. (paper)

  1. Magnetic properties of Ni/Au core/shell studied by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Sidi Bouzid, Safi, 63 4600 (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Bahmad, L. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France)

    2014-01-10

    The magnetic properties of ferromagnetic Ni/Au core/shell have been studied using Monte Carlo simulations within the Ising model framework. The considered Hamiltonian includes the exchange interactions between Ni–Ni, Au–Au and Ni–Au and the external magnetic field. The thermal total magnetizations and total magnetic susceptibilities of core/shell Ni/Au are computed. The critical temperature is deduced. The exchange interaction between Ni and Au atoms is obtained. In addition, the total magnetizations versus the external magnetic field and crystal filed for different temperature are also established.

  2. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Jordi, E-mail: jordi.llorca@upc.edu; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques (Spain); Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol [Universitat de Barcelona, Departament de Quimica Inorganica (Spain)

    2008-03-15

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O{sub 2}-H{sub 2} mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration.

  3. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    International Nuclear Information System (INIS)

    Llorca, Jordi; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi; Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol

    2008-01-01

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O 2 -H 2 mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration

  4. Design, fabrication and testing of a prototype stressed-shell fuel isolation container

    International Nuclear Information System (INIS)

    Crosthwaite, J.L.; Barrie, J.N.; Nuttall, K.

    1982-07-01

    Atomic Energy of Canada Limited is conducting and coordinating research into the development of engineered barriers for the disposal of unreprocessed irradiated fuel within a deep, stable geologic vault. In one approach, a containment shell of corrosion-resistant metal is proposed as the principal barrier to radionuclide release, giving a high probability of containment for at least 300 years, thus ensuring isolation of nearly all fission products for their hazardous lives. The simplest concept is the 'stressed-shell' container, designed with sufficient shell thickness to withstand the hydrostatic pressure within a 1000-m deep disposal vault postulated to have flooded with groundwater. This report describes the design, fabrication, analysis and hydrostatic testing of a full-scale stressed-shell prototype. The report concludes that the deformation and collapse performance of stressed-shell designs, based on short-term mechanical properties be modelled adequately by BOSOR 5, a commercially available stress-strain computer program. If the stressed-shell concept is retained as a viable fuel isolation concept, future analyses should include an assessment of the role of material creep on long-term container performance

  5. Organic superalkalis with closed-shell structure and aromaticity

    Science.gov (United States)

    Srivastava, Ambrish Kumar

    2018-06-01

    Benzene (C6H6) and polycyclic hydrocarbons such as naphthalene (C10H8), anthracene (C14H10) and coronene (C24H12) are well known aromatic organic compounds. We study the substitution of Li replacing all H-atoms in these hydrocarbons using density functional method. The vertical ionisation energy of such lithiated species, i.e. C6Li6, C10Li8, C14Li10 and C24Li12 ranges 4.24-4.50 eV, which is lower than the ionisation energy (IE) of Li atom. Thus, these species may behave as superalkalis due to their lower IE than alkali metal. However, these lithiated species possess planar and closed-shell structure, unlike typical superalkalis. Furthermore, all Li-substituted species are aromatic although their degree of aromaticity is reduced as compared to corresponding hydrocarbon analogues. We have further explored the structure of C6Li6 as star-like, unlike its inorganic analogue B3N3Li6, which appears as fan-like structure. We have also demonstrated that the interaction of C6Li6 with a superhalogen (such as BF4) is similar to that of a typical superalkali (such as OLi3). This may further suggest that the proposed lithiated species may form a new class of closed-shell organic superalkalis with aromaticity.

  6. Cascade of negative muons in atoms

    International Nuclear Information System (INIS)

    Akylas, V.R.

    1978-01-01

    A study is made of the evolution of a negative muon captured in an atom and the formalism of energy loss associated with the muonic atom. The principal goals are to calculate reliability the muon x-ray intensities, given the initial population of the muonic orbits, to invert the problem and deduce the initial distribution from the x-ray intensities, to provide a reasonably simple and convenient tool to correlate observations, and finally, to systematize some questions of theoretical interest. The early part of the history of the muon in matter, including the atomic capture and classical phase of the atomic cascade are reviewed. In the quantal treatment of the transition rates, both radiative and electron Auger transitions are considered. In general, multipolarities up to E3 and K, L, and M electronic shells are fully investigated. Multipole radiation is treated in the conventinal way and pesents no special problems. Magnetic type transitions between states with different principal quantum numbers are shown to be small. Auger electron ejection rates are more complicated and several approximations have been adopted. The basic results have been computed in terms of elemetary functions. In the Auger transitions we have shown that magnetic multipoles can be safety neglected. The relative sizes of the rates corresponding to different multipoles are systematically studied. A comparison of results is made with atomic photoelectric effect data and with the nuclear internal conversion coefficients. A general agreement is found, except around shell thresholds. The existing data of muonic x-ray intensities in iron and thallium are analyzed in a systematic way. It is found that for Fe the initial l-distribution is almost flat, whereas that for T1 is weighted towards the high l values, sharper than statistical. As a result of the investigations and in order to make our findings usable, a computer program has been developed. 36 references

  7. Subshell resolved L shell ionization of Bi and U induced by 16 - 45 keV electrons

    International Nuclear Information System (INIS)

    Rahangdale, Hitesh; Das, Pradipta K.; Saha, S.; Mitra, D.

    2015-01-01

    Electron induced inner-shell ionization is important for both fundamental and applied research. Ionization of outer atomic energy levels has been studied extensively than for inner levels. Knowledge of inner shell ionization cross sections is important in X-ray and Auger electron spectroscopy and in the fields of astrophysics, plasma physics, surface science and many more. At electron impact energies near the atomic binding energies the distortion of the wave functions from plane wave towards a spherical wave, due to the electrostatic field of the atoms, needs to be considered. The distorted wave Born approximation (DWBA) calculations, taking relativistic effects and exchange interaction into account, is used to estimate the K, L and M-shell ionization cross-section for the atoms. Earlier experiments on electron impact ionization studies focused mainly on K-shell ionization cross-section, while L and M-shell ionization data were hardly reported. A review of the existing L-shell ionization cross-section data shows that, while the X-ray production cross-sections by electron impact were reported quite a few times, the reporting of subshell resolved ionization cross-sections were rarely found near the ionization threshold region. In the present work, we have measured the X ray production cross-sections of different L lines of Bi and U induced by 16-45 keV electrons and converted the obtained values to the subshell specific ionization cross-sections. The experimental data are compared with the theoretical calculations based on the (DWBA) obtained from PENELOPE. To the best of our knowledge, the subshell resolved electron induced ionization cross-sections for the L-shell of Bi and U are reported here for the first time at the energy values near the corresponding ionization threshold. (author)

  8. Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles

    KAUST Repository

    Ding, Yong

    2010-09-08

    Using a two-step seed-mediated growth method, we synthesized bimetallic nanoparticles (NPs) having a gold octahedron core and a palladium epitaxial shell with controlled Pd-shell thickness. The mismatch-release mechanism between the Au core and Pd shell of the NPs was systematically investigated by high-resolution transmission electron microscopy. In the NPs coated with a single atomic layer of Pd, the strain between the surface Pd layer and the Au core is released by Shockley partial dislocations (SPDs) accompanied by the formation of stacking faults. For NPs coated with more Pd (>2 nm), the stacking faults still exist, but no SPDs are found. This may be due to the diffusion of Au atoms into the Pd shell layers to eliminate the SPDs. At the same time, a long-range ordered L11 AuPd alloy phase has been identified in the interface area, supporting the assumption of the diffusion of Au into Pd to release the interface mismatch. With increasing numbers of Pd shell layers, the shape of the Au-Pd NP changes, step by step, from truncated-octahedral to cubic. After the bimetallic NPs were annealed at 523 K for 10 min, the SPDs at the surface of the NPs coated with a single atomic layer of Pd disappeared due to diffusion of the Au atoms into the surface layer, while the stacking faults and the L11 Au-Pd alloyed structure remained. When the annealing temperature was increased to 800 K, electron diffraction patterns and diffraction contrast images revealed that the NPs became a uniform Au-Pd alloy, and most of the stacking faults disappeared as a result of the annealing. Even so, some clues still support the existence of the L11 phase, which suggests that the L11 phase is a stable, long-range ordered structure in Au-Pd bimetallic NPs. © 2010 American Chemical Society.

  9. Percolation approach for atomic and molecular cluster formation

    International Nuclear Information System (INIS)

    Knospe, O.; Seifert, G.

    1987-12-01

    We apply a percolation approach for the theoretical analysis of mass spectra of molecular microclusters obtained by adiabatic expansion technique. The evolution of the shape of the experimental size distributions as function of stagnation pressure and stagnation temperature are theoretically reproduced by varying the percolation parameter. Remaining discrepancies between theory and experiment are discussed. In addition, the even-odd alternation as well as the 'magic' shell structure within metallic, secondary ion mass spectra are investigated by introducing statistical weights for the cluster formation probabilities. Shell correction energies of atomic clusters as function of cluster-size are deduced from the experimental data. (orig.)

  10. Atomic fountain and applications

    International Nuclear Information System (INIS)

    Rawat, H.S.

    2000-01-01

    An overview of the development of working of MOT along with the basic principle of laser atom cooling and trapping is given. A technique to separate the cooled and trapped atoms from the MOT using atomic fountain technique will also be covered. The widely used technique for atomic fountain is, first to cool and trap the neutral atoms in MOT and then launch them in the vertical direction, using moving molasses technique. Using 133 Cs atomic fountain clock, time improvement of 2 to 3 order of magnitude over a conventional 133 Cs atomic clock has been observed

  11. Interferometry with atoms

    International Nuclear Information System (INIS)

    Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.

    1992-01-01

    Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)

  12. Addressing Challenges and Scalability in the Synthesis of Thin Uniform Metal Shells on Large Metal Nanoparticle Cores: Case Study of Ag-Pt Core-Shell Nanocubes.

    Science.gov (United States)

    Aslam, Umar; Linic, Suljo

    2017-12-13

    Bimetallic nanoparticles in which a metal is coated with an ultrathin (∼1 nm) layer of a second metal are often desired for their unique chemical and physical properties. Current synthesis methods for producing such core-shell nanostructures often require incremental addition of a shell metal precursor which is rapidly reduced onto metal cores. A major shortcoming of this approach is that it necessitates precise concentrations of chemical reagents, making it difficult to perform at large scales. To address this issue, we considered an approach whereby the reduction of the shell metal precursor was controlled through in situ chemical modification of the precursor. We used this approach to develop a highly scalable synthesis for coating atomic layers of Pt onto Ag nanocubes. We show that Ag-Pt core-shell nanostructures are synthesized in high yields and that these structures effectively combine the optical properties of the plasmonic Ag nanocube core with the surface properties of the thin Pt shell. Additionally, we demonstrate the scalability of the synthesis by performing a 10 times scale-up.

  13. Atomic Charges and Chemical Bonding in Y-Ga Compounds

    Directory of Open Access Journals (Sweden)

    Yuri Grin

    2018-02-01

    Full Text Available A negative deviation from Vegard rule for the average atomic volume versus yttrium content was found from experimental crystallographic information about the binary compounds of yttrium with gallium. Analysis of the electron density (DFT calculations employing the quantum theory of atoms in molecules revealed an increase in the atomic volumes of both Y and Ga with the increase in yttrium content. The non-linear increase is caused by the strengthening of covalent Y-Ga interactions with stronger participation of genuine penultimate shell electrons (4d electrons of yttrium in the valence region. Summing the calculated individual atomic volumes for a unit cell allows understanding of the experimental trend. With increasing yttrium content, the polarity of the Y-Ga bonding and, thus its ionicity, rises. The covalency of the atomic interactions in Y-Ga compounds is consistent with their delocalization from two-center to multi-center ones.

  14. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    Science.gov (United States)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal

  15. Three-atom clusters

    International Nuclear Information System (INIS)

    Pen'kov, F.M.

    1998-01-01

    The Born-Oppenheimer approximation is used to obtain an equation for the effective interaction in three atoms bound by a single electron. For low binding energies in an 'electron + atom' pair, long-range forces arise between the atoms, leading to bound states when the size of the three-atom cluster is a few tens of angstrom. A system made of alkali-metal atoms is considered as an example

  16. Auger transitions in singly and multiply ionized atoms

    International Nuclear Information System (INIS)

    Mehlhorn, W.

    1978-01-01

    Some recent progress in Auger and autoionizing electron spectrometry of free metal atoms and of multiply ionized atoms is reviewed. The differences which arise between the spectra of atoms in the gaseous and the solid state are due to solid state effects. This will be shown for Cd as an example. The super Coster-Kronig transitions 3p-3d 2 (hole notation) and Coster-Kronig transitions 3p-3d 4s have been measured and compared with free-atom calculations for free Zn atoms. The experimental width GAMMA(3p)=(2.1+-0.2)eV found for the free atom agrees with the value obtained for solid Zn but is considerably smaller than the theoretical value for the free atom. Autoionizing spectra of Na following an L-shell excitation or ionization by different particles are compared and discussed. The nonisotropic angular distribution of electrons from the transition 2p 5 3s 2 2 Psub(3/2)→2p 6 +e - is compared with theoretical calculations. Two examples for Auger spectrometry of multiply ionized atoms are given: (1) excitation of neon target atoms by light and heavy ions, and (2) excitation of projectile ions Be + and B + in single gas collisions with CH 4 . A strong alignment of the excited atoms has also been found here

  17. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  18. Ionization of atoms by high energy photons

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Ioffe, A.F.

    1994-01-01

    Photoionization of atoms by high energy photons is considered. It is emphasized that in this frequency region the cross section and other characteristics of the process are strongly effected by electron shell polarization and rearrangement effects, including that due to inner vacancy Auger decay. In the effects of nuclear structure could be important and noticeable, i.e. of virtual or real excitation of the nucleus degrees of freedom and of the Quantum Electrodynamics vacuum. Ionization accompanied by secondary photon emission (Compton ionization) is analyzed in the considered domain of energies

  19. Re-evaluation of atomic bomb radiation

    International Nuclear Information System (INIS)

    Okajima, Shunzo

    1984-01-01

    The background and current status of the re-evaluation of atomic bomb (A-bomb) radiation doses are presented. Problems in re-evaluating radiation doses are discussed: spectra of gamma-rays and neutrons emitted in the air, A-bomb structures, and meterological elements should be taken into account. In Japan, in an attempt to estimate A-bomb radiation doses, radioactive residues contained in roof tiles, bricks, rocks, and teeth and shell button of clothes are being actually measured. (Namekawa, K.)

  20. Universal cross sections for K-shell ionization by low-velocity protons; importance of relativistic and energy-loss effects

    International Nuclear Information System (INIS)

    Zander, A.R.; Lapicki, G.

    1981-01-01

    When Z 1 2 , inner-shell ionization of a target atom of atomic number Z 2 by a projectile of atomic number Z 1 occurs predominately via removal of an inner-shell electron to the target atom continuum (direct ionization). Electron capture contributes then insignificantly to the ionization, and thus the predictions of perturbativein-Z 1 /Z 2 theories of direct ionization can be tested through comparison with measured ionization cross sections. We present such a comparison with the recently reported data for K-shell ionization of the Z 2 =22, 26, 28, and 30 elements by 60-150 keV protons (Z 1 =1). These ionization cross sections were inferred from x-ray production measurements using Krause's fluorescence yields

  1. A kinetic Monte Carlo study of coarsening resistance of novel core/shell precipitates

    International Nuclear Information System (INIS)

    Zhang, Xuan; Gao, Wenpei; Bellon, Pascal; Averback, Robert S.; Zuo, Jian-Min

    2014-01-01

    A novel approach towards the design of coarsening-resistant nanoprecipitates in structural alloys was investigated by kinetic Monte Carlo (KMC) simulation. The approach is motivated by recent experimental results in Cu–Nb–W alloys showing that room temperature ion irradiation resulted in W nanoprecipitation, leading to exceptional stability of W-rich-core/Nb-rich-shell nanoprecipitates formed following thermal annealing (Zhang et al., 2013 [11]). Here, image simulations of atomically resolved scanning transmission electron microscopy are performed to establish that these W nanoprecipitates are highly ramified. Thermal precipitate coarsening in an A–B–C ternary alloy similar to Cu–Nb–W is then studied by KMC simulations, where the highly immiscible and refractory C solute atoms are initially distributed into fractal nanoprecipitates, or cores, which become coated by a shell of B atoms during elevated temperature annealing. Compared with nanoprecipitates generated by compact C cores, the ramified nanoprecipitates result in exceptionally high trapping efficiency of B solute atoms during thermal coarsening, and the efficiency increases with the cluster size. The KMC results are analyzed and rationalized by noting that, owing to the Gibbs–Thomson effect, when the curvatures of the shell of the precipitates are zero or negative, the microstructure is coarsening-resistant. Such morphology can be realized by facets, or by dynamic balance within positive, negative and zero curvatures

  2. Mussel Shell Impaction in the Esophagus

    Directory of Open Access Journals (Sweden)

    Sunmin Kim

    2013-03-01

    Full Text Available Mussels are commonly used in cooking around the world. The mussel shell breaks more easily than other shells, and the edge of the broken mussel shell is sharp. Impaction can ultimately cause erosion, perforation and fistula. Aside from these complications, the pain can be very intense. Therefore, it is essential to verify and remove the shell as soon as possible. In this report we describe the process of diagnosing and treating mussel shell impaction in the esophagus. Physicians can overlook this unusual foreign body impaction due to lack of experience. When physicians encounter a patient with severe chest pain after a meal with mussels, mussel shell impaction should be considered when diagnosing and treating the patient.

  3. Vibration of liquid-filled thin shells

    International Nuclear Information System (INIS)

    Kalnins, A.

    1979-01-01

    This paper describes the analysis of free and forced vibration of a thin, axisymmetric shell, which contains some liquid. The axis of symmetry is vertical. Only such vibration is considered which can be produced by a horizontal movement of the base of shell. The objective of this paper is to examine the response of the coupled shell-liquid system for a frequency range lying between zero and the lowest natural sloshing frequency of the liquid. The mass of the liquid is modeled by a stationary and one or more sloshing masses. It is shown how the stationary mass can be incorporated in the vibration analysis of the shell and how to natural frequency of the coupled shell-liquid system can be obtained from a simple formula, if the lowest natural frequency of the shell, plus the stationary mass of the liquid, can be determined. A numerical example is given. (orig.)

  4. Ancient shell industry at Bet Dwarka island

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Sundaresh; Patankar, V.

    for the manufacture of beads, bangles, etc. 12 . Shell species found at the sites include T. pyrum (cha nk), Chicoreus ramosus , Fasciolaria trapezium , Cypraea (cowries), Arabica arabica (cowries), Babylonia spirata , dentalium, mussel and Arca... muscles are attached. Average length of a shell can be up to 15 to 20 cm and width 10 ? 15 cm 8 . It provides a unique structure for the manufacture of several bangles from a single shell. The organ ism living inside is also edible...

  5. Integrable structure in discrete shell membrane theory.

    Science.gov (United States)

    Schief, W K

    2014-05-08

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.

  6. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.

  7. Statistics and the shell model

    International Nuclear Information System (INIS)

    Weidenmueller, H.A.

    1985-01-01

    Starting with N. Bohr's paper on compound-nucleus reactions, we confront regular dynamical features and chaotic motion in nuclei. The shell-model and, more generally, mean-field theories describe average nuclear properties which are thus identified as regular features. The fluctuations about the average show chaotic behaviour of the same type as found in classical chaotic systems upon quantisation. These features are therefore generic and quite independent of the specific dynamics of the nucleus. A novel method to calculate fluctuations is discussed, and the results of this method are described. (orig.)

  8. Electron Shell as a Resonator

    International Nuclear Information System (INIS)

    Karpeshin, F. F.

    2002-01-01

    Main principles of the resonance effect arising in the electron shells in interaction of the nuclei with electromagnetic radiation are analyzed and presented in the historical aspect. Principles of NEET are considered from a more general position, as compared to how this is usually presented. Characteristic features of NEET and its reverse, TEEN, as internal conversion processes are analyzed, and ways are offered of inducing them by laser radiation. The ambivalent role of the Pauli exclusion principles in NEET and TEEN processes is investigated.

  9. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  10. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  11. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  12. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  13. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  14. Understanding emergent collectivity and clustering in nuclei from a symmetry-based no-core shell-model perspective

    Czech Academy of Sciences Publication Activity Database

    Dreyfuss, A. C.; Launey, K. D.; Dytrych, Tomáš; Draayer, J. P.; Baker, R. B.; Deibel, C. M.; Bahri, C.

    2017-01-01

    Roč. 95, č. 4 (2017), č. článku 044312. ISSN 2469-9985 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : C-12 * no-core shell-model * resonance Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.820, year: 2016

  15. Structures in the K-shell delta electron spectrum near threshold for ionization by fast charged particles

    International Nuclear Information System (INIS)

    Amundsen, P.A.; Aashamar, K.

    Results of calculations of the delta electron spectrum for K-shell ionization of atoms by fast charged particles for target charges in the range 6 2 <=40 are presented. Appreciable structure is found in the spectrum near the ionization threshold, in particular for fast projectiles and heavy target elements. The structure can be quite sensitive to the details of the effective atomic potentials. (Auth.)

  16. Experimental and theoretical studies of metal vapor atoms

    International Nuclear Information System (INIS)

    Whitfield, S.B.; Wehlitz, Ralf; Martins, Michael

    2004-01-01

    Employing electron spectrometry in conjunction with tuneable synchrotron radiation, we will present a detailed examination of the photoionization dynamics of selected metal vapor atoms. In particular, this paper will focus on the relative partial cross sections of the atomic Li K-shell main and satellite (ionization with excitation) photoelectron lines in the region of the strong 1snln'l' autoionizing transitions, the atomic Sc 3d, 4s main and satellite photoelectron lines in the region of the 3p→3d giant resonance, and also the atomic Fe 3d, 4s main and satellite photoelectron lines in the same resonance region. Our experimental data for Sc and Fe will be compared to our state-of-the-art calculations based on the superposition of configuration method developed by Cowan (The Theory of Atomic Structure and Spectra. University of California Berkeley Press, Berkeley and Los Angeles, 1981). Our partial cross section measurements for Li and Sc will be complemented with measurements of the angular distribution parameter, β. In addition, our Li data will also be compared with recent R-matrix calculations (Phys. Rev. 57 (1998) 1045). In the case of Fe, we will also address the term dependent behavior of the partial cross sections on resonance. These results will highlight what can be achieved with today's technology and point the way towards future endeavors in the study of the photoionization dynamics of open-shell metal vapor atoms

  17. Short range correlations in the pion s-wave self-energy of pionic atoms

    OpenAIRE

    Salcedo, L. L.; Holinde, K.; Oset, E.; Schütz, C.

    1995-01-01

    We evaluate the contribution of second order terms to the pion-nucleus s-wave optical potential of pionic atoms generated by short range nuclear correlation. The corrections are sizeable because they involve the isoscalar s-wave $\\pi N$ amplitude for half off-shell situations where the amplitude is considerably larger than the on-shell one. In addition, the s-wave optical potential is reanalyzed by looking at all the different conventional contributions together lowest order, Pauli corrected ...

  18. Atomic Fisher information versus atomic number

    International Nuclear Information System (INIS)

    Nagy, A.; Sen, K.D.

    2006-01-01

    It is shown that the Thomas-Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gaspar provides a qualitatively correct expression for the Fisher information: Gaspar's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number

  19. Measurements of K shell absorption jump factors and jump ratios using EDXRF technique

    Science.gov (United States)

    Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-04-01

    In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  20. Nuclear mass formula with the shell energies obtained by a new method

    International Nuclear Information System (INIS)

    Koura, H.; Tachibana, T.; Yamada, M.; Uno, M.

    1998-01-01

    Nuclear shapes and masses are estimated by a new method. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies by mixing them with appropriate weights. The spherical shell energies are calculated from single-particle potentials, and, till now, two mass formulas have been constructed from two different sets of potential parameters. The standard deviation of the calculated masses from all the experimental masses of the 1995 Mass Evaluation is about 760 keV. Contrary to the mass formula by Tachibana, Uno, Yamada and Yamada in the 1987-1988 Atomic Mass Predictions, the present formulas can give nuclear shapes and predict on super-heavy elements

  1. K-shell ionization probability in energetic nearly symmetric heavy-ion collisions

    International Nuclear Information System (INIS)

    Tserruya, I.; Schmidt-Boecking, H.; Schuch, R.

    1977-01-01

    Impact parameter dependent K-x-ray emission probabilities for the projectile and target atoms have been measured in 35 MeV Cl on Cl, Cl on Ti and Cl on Ni collisions. The sum of projectile plus target K-shell ionization probability is taken as a measure of the total 2psigma ionization probability. The 2pπ-2psigma totational coupling model is in clear disagreement with the present results. On the other hand the sum of probabilities is reproduced both in shape and absolute magnitude by the statistical model for inner-shell ionization. The K-shell ionization probability of the higher -Z collision partner is well described by this model including the 2psigma-1ssigma vacancy sharing probability calculated as a function of the impact parameter. (author)

  2. Ultrathin Interface Regime of Core-Shell Magnetic Nanoparticles for Effective Magnetism Tailoring.

    Science.gov (United States)

    Moon, Seung Ho; Noh, Seung-Hyun; Lee, Jae-Hyun; Shin, Tae-Hyun; Lim, Yongjun; Cheon, Jinwoo

    2017-02-08

    The magnetic exchange coupling interaction between hard and soft magnetic phases has been important for tailoring nanoscale magnetism, but spin interactions at the core-shell interface have not been well studied. Here, we systematically investigated a new interface phenomenon termed enhanced spin canting (ESC), which is operative when the shell thickness becomes ultrathin, a few atomic layers, and exhibits a large enhancement of magnetic coercivity (H C ). We found that ESC arises not from the typical hard-soft exchange coupling but rather from the large magnetic surface anisotropy (K S ) of the ultrathin interface. Due to this large increase in magnetism, ultrathin core-shell nanoparticles overreach the theoretical limit of magnetic energy product ((BH) max ) and exhibit one of the largest values of specific loss power (SLP), which testifies to their potential capability as an effective mediator of magnetic energy conversion.

  3. A design chart for long vacuum pipes and shells

    International Nuclear Information System (INIS)

    Krempetz, K.; Grimson, J.; Kelly, P.

    1986-01-01

    This paper presents a design chart to aid designers in the selection of a wall thickness for long cylindrical shells having atmospheric pressure outside the shell and a pressure less than atmospheric inside the shell. The chart indicates a conservative value for the minimum wall thickness for a given shell diameter and material when the shell is completely evacuated

  4. Muonic atom-light nucleus interaction

    International Nuclear Information System (INIS)

    Kuz'michev, V.E.; Peresypkin, V.V.; Efetov, A.V.

    1991-01-01

    The effective potential of the interaction between light nucleus and two-particle atom at distances greater than its Bohr radius is obtained in the analytic form on the basis of a correct account of three Coulomb particle problem. Features of the interaction between p, t, 4 He, 7 Be nuclei and mesonic atoms μp, μt, μ 4 He and μ 7 Be, that arising from the differences in masses and charges of interacting particles, are studied. The corresponding potentials in the pre-threshold energy range are given. The coefficients of the symptotic formula for the effective are calculated in adiabatic approximation and with regard for the main off-shell corrections. 16 refs.; 4 figs

  5. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  6. Correlated charge changing ion-atom collisions

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Tanis, J.A.

    1990-02-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant FG02-87ER13778 from August 15, 1987 through February 15, 1990. The general scope of this work involves the experimental investigation of fundamental atomic interactions in collisions of highly charged projectiles with neutral targets, with a particular emphasis on two-electron interactions. Inner-shell processes involving excitation, ionization, and charge transfer are investigated using, for the most part, coincidence techniques in which projectile charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. Measurements were conducted using accelerators at the Lawrence Berkeley Laboratory (LBL), Argonne National Laboratory (ANL), Hahn-Meitner-Institut, Berlin (HMI), and Western Michigan University (WMU). The research described here has resulted in 34 published papers, 14 invited presentations at national and international meetings, and 31 contributed presentations. Brief summaries of work completed and work in progress are discussed in this paper

  7. Comment on atomic independent-particle models

    International Nuclear Information System (INIS)

    Doda, D.D.; Gravey, R.H.; Green, A.E.S.

    1975-01-01

    The Hartree-Fock-Slater (HFS) independent-particle model in the form developed by Hermann and Skillman (HS) and the Green, Sellin, and Zachor (GSZ) analytic independent-particle model are being used for many types of applications of atomic theory to avoid cumbersome, albeit more rigorous, many-body calculations. The single-electron eigenvalues obtained with these models are examined and it is found that the GSZ model is capable of yielding energy eigenvalues for valence electrons which are substantially closer to experimental values than are the results of HS-HFS calculations. With the aid of an analytic representation of the equivalent HS-HFS screening function, the difficulty with this model is identified as a weakness of the potential in the neighborhood of the valence shell. Accurate representations of valence states are important in most atomic applications of the independent-particle model

  8. Atomic-fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Bakhturova, N.F.; Yudelevich, I.G.

    1975-01-01

    Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given

  9. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    Science.gov (United States)

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  10. Transitional nuclei near shell closures

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  11. Production of hollow atoms by high brightness x-ray sources and its applications

    International Nuclear Information System (INIS)

    Moribayashi, Kengo

    2004-01-01

    We study x-ray emissions from the (multi-)inner-shell states and hollow atoms of Si ions excited by high intensity x-ray sources. It is found that the x-ray number from multi-inner-shell excited states (1s 2 2s 2 2p k 3s 2 3p 2 , k=1-4) and hollow atoms (1s 2 2s 2 3p 2 ) is affected greatly by the high intensity short-pulse x-rays and little by weak intensity post-long pulse x-rays. The ratio of the x-ray intensities from hollow atoms to those from the multi-inner-shell excited states becomes almost independent of the pulses and dependent on the intensities of x-ray sources. This ratio may be used for the measurement of intensities of high intensity short pulse x-ray sources. (author)

  12. Estimation of atomic masses of heavy and superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Masahiro [Ministry of Education, Science and Culture, Tokyo (Japan)

    1997-07-01

    To estimate unknown atomic masses of heavy and superheavy elements, three kinds of formula: FRDM (finite range droplet model by Moeller et al.), TUYY (an empirical formula by Tachibana et al.) and our KUTY are explained. KUTY estimates the crude shell energies of spherical nucleus from sum of single-particle energies. Then, the refined shell energies in due consideration of paring and deformation are obtained by mixing with the functions of the crude shell energies. Experimental values of U and Fm isotopes were compared with estimation mass of KUTY and FRDM. In the field with experimental values of U isotopes, the value of KUTY and FRDM separated the same difference from the experimental value. The behavior of KUTY and FRDM for Fm isotopes were same as that of U, but ETFSI deviated a little from the experimental values. (S.Y.)

  13. Modification of the Xe 4d giant resonance by the C60 shell in molecular Xe at C60

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.; Felfli, Z.; Msezane, A. Z.

    2006-01-01

    It is demonstrated that in photoabsorption of the 4d 10 subshell of a Xe atom in molecular Xe at C 60 , the 4d giant resonance that characterizes the isolated Xe atom is distorted significantly. The reflection of photoelectron waves by the C 60 shell leads to profound oscillations in the photoionization cross section such that the Xe giant resonance is transformed into four strong peaks. Similarly, the angular anisotropy parameters, both dipole and nondipole, are also modified. The method of calculation is based on the approximation of the C 60 shell by an infinitely thin bubble potential that leaves the sum rule for the 4d-electrons almost unaffected, but noticeably modifies the dipole polarizability of the 4d-shell

  14. Lanthanum(III) and Lutetium(III) in Nitrate-Based Ionic Liquids: A Theoretical Study of Their Coordination Shell.

    Science.gov (United States)

    Bodo, Enrico

    2015-09-03

    By using ab initio molecular dynamics, we investigate the solvent shell structure of La(3+) and Lu(3+) ions immersed in two ionic liquids, ethylammonium nitrate (EAN) and its hydroxy derivative (2-ethanolammonium nitrate, HOEAN). We provide the first study of the coordination properties of these heavy metal ions in such a highly charged nonacqueous environment. We find, as expected, that the coordination in the liquid is mainly due to nitrate anions and that, due to the bidentate nature of the ligand, the complexation shell of the central ion has a nontrivial geometry and a coordination number in terms of nitrate molecules that apparently violates the decrease of ionic radii along the lanthanides series, since the smaller Lu(3+) ion seems to coordinate six nitrate molecules and the La(3+) ion only five. A closer inspection of the structural features obtained from our calculations shows, instead, that the first shell of oxygen atoms is more compact for Lu(3+) than for La(3+) and that the former coordinates 8 oxygen atoms while the latter 10 in accord with the typical lanthanide's trend along the series and that their first solvation shells have a slight irregular and complex geometrical pattern. When moving to the HOEAN solutions, we have found that the solvation of the central ion is possibly also due to the cation itself through the oxygen atom on the side chain. Also, in this liquid, the coordination numbers in terms of oxygen atoms in both solvents is 10 for La(3+) and 8 for Lu(3+).

  15. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  16. Effects of the fullerene (C{sub 60}) potential and position of the atom (A) on spectral characteristics of endohedral atoms A and C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Baltenkov, A S [Arifov Institute of Electronics, 100125 Tashkent (Uzbekistan); Becker, U [Fritz-Haber-Institute der Max-Planck-Gesellschaft, D-14195 Berlin (Germany); Manson, S T [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Msezane, A Z, E-mail: arkbalt@mail.r, E-mail: becker@fhi-berlin.mpg.d, E-mail: manson@phy-astr.gsu.ed, E-mail: amsezane@cau.ed [Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2010-06-14

    Within the framework of a model representing the potential of a C{sub 60} cage as a spherical electro-neutral layer U(r) formed by smeared carbon atoms, the effect of the details of the potential on spectral characteristics of atoms localized inside the fullerene shell has been studied. Using examples of encapsulated H and He atoms, it is shown that for potential shell thickness not exceeding 1.3-1.5 au, confinement resonance oscillations in the photoionization cross section weakly depend on the shape of the function U(r). With increasing width of the potential well, the confinement resonances in the energy dependence of the photoionization cross section disappear. In addition, it is demonstrated that displacing the doped atom from the centre of the cavity also diminishes the amplitude of the confinement resonance.

  17. Atom chips: mesoscopic physics with cold atoms

    International Nuclear Information System (INIS)

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  18. Collective effects in isolated atoms (many-body aspects of photoionization process)

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1983-01-01

    This chapter examines outer and intermediate many-electron shells and demonstrates that photoionization is of collective nature because in the atomic reaction to the external electromagnetic field at least all electrons of the ionized subshell take part. Performs the calculation of complex atom photoionization using random phase approximation with exchange (RPAE). Explains that in RPAE the ionization amplitude is presented as a sum of two terms, describing the direct knock-out and the induced one which is connected with a variation of the self-consistent field, caused by polarization of atomic shells under the action of the external field. Discusses collective effects in outer shells; deviation from RPAE prediction in outer shells; excitations ''two electrons-two holes'' and autoionizing states; collective effects in inner shells; and bremsstrahlung. Observes a large number of many-particle effects which manifest themselves practically in all atomic processes. Finds that by correcting and improving the one-electron approximation it becomes possible even in its frame to include much of what seems to be many-electron corrections

  19. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  20. Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots.

    Science.gov (United States)

    Reid, Kemar R; McBride, James R; Freymeyer, Nathaniel J; Thal, Lucas B; Rosenthal, Sandra J

    2018-02-14

    Thick-shell (>5 nm) InP-ZnSe colloidal quantum dots (QDs) grown by a continuous-injection shell growth process are reported. The growth of a thick crystalline shell is attributed to the high temperature of the growth process and the relatively low lattice mismatch between the InP core and ZnSe shell. In addition to a narrow ensemble photoluminescence (PL) line-width (∼40 nm), ensemble and single-particle emission dynamics measurements indicate that blinking and Auger recombination are reduced in these heterostructures. More specifically, high single-dot ON-times (>95%) were obtained for the core-shell QDs, and measured ensemble biexciton lifetimes, τ 2x ∼ 540 ps, represent a 7-fold increase compared to InP-ZnS QDs. Further, high-resolution energy dispersive X-ray (EDX) chemical maps directly show for the first time significant incorporation of indium into the shell of the InP-ZnSe QDs. Examination of the atomic structure of the thick-shell QDs by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals structural defects in subpopulations of particles that may mitigate PL efficiencies (∼40% in ensemble), providing insight toward further synthetic refinement. These InP-ZnSe heterostructures represent progress toward fully cadmium-free QDs with superior photophysical properties important in biological labeling and other emission-based technologies.

  1. Evolution of shell gaps with neutron richness

    International Nuclear Information System (INIS)

    Basu, Moumita Ray; Ray, I.; Kshetri, Ritesh; Saha Sarkar, M.; Sarkar, S.

    2006-01-01

    In the present work, an attempt has been made to coordinate the recent data available over the periodic table, specially near the shell gaps and studied the evolution of the shell gaps as function of neutron numbers and/or other related quantities

  2. Microsoft Exchange Server PowerShell cookbook

    CERN Document Server

    Andersson, Jonas

    2015-01-01

    This book is for messaging professionals who want to build real-world scripts with Windows PowerShell 5 and the Exchange Management Shell. If you are a network or systems administrator responsible for managing and maintaining Exchange Server 2013, you will find this highly useful.

  3. Shell effects in the nuclear deformation energy

    International Nuclear Information System (INIS)

    Ross, C.K.

    1973-01-01

    A new approach to shell effects in the Strutinsky method for calculating nuclear deformation energy is evaluated and the suggestion of non-conservation of angular momentum in the same method is resolved. Shell effects on the deformation energy in rotational bands of deformed nuclei are discussed. (B.F.G.)

  4. Intershell correlations in photoionization of outer shells

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Chernysheva, L.V. [A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Drukarev, E.G. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg 188300 (Russian Federation)

    2016-02-15

    We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.

  5. Strength Calculation of Locally Loaded Orthotropic Shells

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available The article studies laminated orthotropic cylindrical, conic, spherical, and toroidal shells, which are often locally loaded in the aircraft designs over small areas of their surfaces.The aim of this work is to determine stress concentration in shells versus structure of orthotropic composite material, shell form and parameters, forms of loading areas, which borders do not coincide with lines of main curvatures of shells. For this purpose, an analytical computing algorithm to estimate strength of shells in terms of stress is developed. It enables us to have solution results of the boundary value problem with a controlled error. To solve differential equations an analytical method is used. An algorithm of the boundary value problem solution is multiplicative.The main results of researches are graphs of stress concentration in the orthotropic shells versus their parameters and areas of loading lineated by circles and ellipses.Among the other works aimed at determination of stress concentration in shells, the place of this one is defined by the analytical solution of applied problems for strength estimation in terms of shell stresses of classical forms.The developed effective analytical algorithm to solve the boundary value problem and received results are useful in research and development.

  6. Radiometric measuring method for egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Forberg, S; Svaerdstroem, K

    1973-02-01

    A description is given of a fast nondestructive radiometric method for registration of the thickness of egg shells of the tawny owl, hen, osprey, and Canada goose. Certain errors are discussed. Measurement of the thickness of egg shells (mineral content per cm/sup 2/) with an accuracy better than 1% is possible in less than one minute under field conditions. (auth)

  7. Statistical Mechanics of Thin Spherical Shells

    Directory of Open Access Journals (Sweden)

    Andrej Košmrlj

    2017-01-01

    Full Text Available We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated “pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.

  8. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  9. Intershell correlations in photoionization of outer shells

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.; Drukarev, E.G.

    2016-01-01

    We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.

  10. Statistical mechanics of microscopically thin thermalized shells

    Science.gov (United States)

    Kosmrlj, Andrej

    Recent explosion in fabrication of microscopically thin free standing structures made from graphene and other two-dimensional materials has led to a renewed interest in the mechanics of such structures in presence of thermal fluctuations. Since late 1980s it has been known that for flat solid sheets thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli in a scale-dependent fashion. However, much is still unknown about the mechanics of thermalized flat sheets of complex geometries and about the mechanics of thermalized shells with non-zero background curvature. In this talk I will present recent development in the mechanics of thermalized ribbons, spherical shells and cylindrical tubes. Long ribbons are found to behave like hybrids between flat sheets with renormalized elastic constants and semi-flexible polymers, and these results can be used to predict the mechanics of graphene kirigami structures. Contrary to the anticipated behavior for ribbons, the non-zero background curvature of shells leads to remarkable novel phenomena. In shells, thermal fluctuations effectively generate negative surface tension, which can significantly reduce the critical buckling pressure for spherical shells and the critical axial load for cylindrical tubes. For large shells this thermally generated load becomes big enough to spontaneously crush spherical shells and cylindrical tubes even in the absence of external loads. I will comment on the relevance for crushing of microscopic shells (viral capsids, bacteria, microcapsules) due to osmotic shocks and for crushing of nanotubes.

  11. Biomineral repair of abalone shell apertures.

    Science.gov (United States)

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Structure, energetic and phase transition of multi shell icosahedral bimetallic nanostructures: A molecular dynamics study of NimPdn (n + m = 55 and 147)

    International Nuclear Information System (INIS)

    Hewage, Jinasena W.

    2015-01-01

    Structure, energetic and thermodynamic properties of multi shell icosahedral bimetallic nickel–palladium nanostructures with the size of 55 and 147 atoms were studied by using the molecular dynamics simulations and the microcanonical ensemble version of multiple histogram method. In 55 atoms icosahedra, two core–shell motifs, Ni 13 Pd 42 and Pd 13 Ni 42 with their isomers Pd 13 (Pd 29 Ni 13 ) and Ni 13 (Ni 29 Pd 13 ) were considered. Similarly in 147 atoms icosahedra, all mutations corresponding to the occupations of either nickel atoms or palladium atoms in the core, inner shell or outer shell and their isomers generated by interchanging thirteen core atoms with thirteen atoms of the other type in the inner and outer shells were considered. It is found that the nickel-core clusters are more stable than the palladium-core clusters and cohesive energy increases with the nickel composition. Phase transition of each cluster was studied by means of constant volume heat capacity. The trend in variation of melting temperature is opposite to the energy trend and special increase in melting points was observed for nickel-core isomers compared to the palladium-core isomers. Helmholtz free energy change with temperature for shell to core interchange of thirteen atoms revealed the thermodynamic stability of the formation of Ni core Pd shell structures and the surface segregation of palladium. - Highlights: • Nanostructures of Ni m Pd n clusters for m + n = 55 and 147 have been studied. • Structures favor the formation of nickel-core surrounded by palladium atoms. • In general, it appears the increase of cohesive energy with the nickel composition. • Calculated thermodynamic parameters confirm the energetic results. • Results show also the palladium segregation on the surface

  13. Atomic Energy Control Act

    International Nuclear Information System (INIS)

    1970-01-01

    This act provides for the establishment of the Atomic Energy Control Board. The board is responsible for the control and supervision of the development, application and use of atomic energy. The board is also considered necessary to enable Canada to participate effectively in measures of international control of atomic energy

  14. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  15. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    Science.gov (United States)

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-02

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  16. Obtainment of calcium carbonate from mussels shell

    International Nuclear Information System (INIS)

    Hamester, M.R.R.; Becker, D.

    2010-01-01

    The mussels and oyster shell are discarded at environment, and this accumulation is causing negative consequences to ecosystem. Calcium carbonate is main constituent of the shell chemical composition. Aiming to reduce environmental aggression and generate income to shellfish producer, there was the possibility of using these shells as an alternative to commercial calcium carbonate. For this physics, chemicals and thermal properties were evaluated, using X-ray fluorescence, thermogravimetric analysis, size distribution, abrasiveness and scanning electronic microscopy. The results indicate that mussels shells have an initial degradation temperature higher than commercial calcium carbonate e same lost weight behavior and 95% of shell chemical composition is calcium carbonate. The sample size distribution was influenced by grinding condition and time as well as its abrasiveness. (author)

  17. Structural shell analysis understanding and application

    CERN Document Server

    Blaauwendraad, Johan

    2014-01-01

    The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...

  18. Semiclassical shell structure in rotating Fermi systems

    International Nuclear Information System (INIS)

    Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.

    2010-01-01

    The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.

  19. Outer-shell excitation and capture processes: Alignment and orientation effects

    International Nuclear Information System (INIS)

    Andersen, N.; Dowek, D.; Dubois, A.; Hansen, J.P.; Nielsen, S.E.

    1990-01-01

    This contribution outlines some ongoing activities within a joint programme of experimental and theoretical studies of outer-shell excitation and charge transfer processes in atomic collisions. The main emphasis is presently on alignment and orientation phenomena. The aim is to reveal the shape and dynamics of the electronic charge cloud as it develops in time along the trajectory, and to understand these phenomena in terms of the underlying, basic mechanisms responsible for collisional excitation and transfer. (orig.)

  20. Atomic many-body theory of giant resonances

    International Nuclear Information System (INIS)

    Kelly, H.P.; Altun, Z.

    1987-01-01

    In this paper the use of many-body perturbation theory (MBPT) to include effects of electron correlations is discussed. The various physical processes contributing to the broad photoionization cross sections of the rare gases are studied in terms of the relevant many-body diagrams. Use of the random phase approximation with exchange (RPAE) is discussed by Amusia and Cherepkov. Calculations using the relativistic RPAE are reviewed by Johnson. In addition, many-body perturbation theory (MBPT) is used to study resonances which are due to excitation of bound states degenerate with the continuum. Very interesting giant resonance structure can occur when an inner shell electron is excited into a vacant open-shell orbital of the same principal quantum number. A particular example which is studied is the neutral manganese atom 3p 6 3d 5 4s 2 ( 6 S), in which the spins of the five 3d electrons are aligned. A very large resonance occurs in the 3d and 4s cross sections due to 3p → 3d excitation near 51 eV, and calculations of this resonance by MBPT and RPAE are discussed. A second example of this type of resonance occurs in open-shell rare-earth atoms with configurations 4d 10 4f/sup n/5s 2 5p 6 s 2 . Calculations and experimental results will be discussed for the case of europium with a half-filled sub-shell 4f 7 . 71 references, 15 figures

  1. Analytical local electron-electron interaction model potentials for atoms

    International Nuclear Information System (INIS)

    Neugebauer, Johannes; Reiher, Markus; Hinze, Juergen

    2002-01-01

    Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the computational effort in electronic structure calculations. The development of such potentials has a long history, but some promising ideas have not yet been taken into account for further improvements. We determine a local electron-electron interaction potential akin to those suggested by Green et al. [Phys. Rev. 184, 1 (1969)], which are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calculations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent local potentials, because the origin behavior of such potentials is different for different shells as has been explicated analytically [J. Neugebauer, M. Reiher, and J. Hinze, Phys. Rev. A 65, 032518 (2002)]. It is found that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number of fit parameters. It turns out that the shell-dependent form of Green's potential, which we also derive, yields results of comparable accuracy using only one shell-dependent parameter

  2. Optical properties of core-shell and multi-shell nanorods

    Science.gov (United States)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  3. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  4. Fast electrons from multi-electron dynamics in xenon clusters induced by inner-shell ionization

    International Nuclear Information System (INIS)

    Bostedt, Christoph; Thomas, Heiko; Hoener, Matthias; Moeller, Thomas; Saalmann, Ulf; Georgescu, Ionut; Gnodtke, Christian; Rost, Jan-Michael

    2010-01-01

    Fast electrons emitted from xenon clusters in strong femtosecond 90 eV pulses have been measured at the Free-electron Laser in Hamburg (FLASH). Energy absorption occurs mainly through atomic inner-shell photo-ionization. Photo-electrons are trapped in the strong Coulomb potential of the cluster ions and form a non-equilibrium plasma with supra-atomic density. Its equilibration through multiple energy-exchanging collisions within the entire cluster volume produces electrons with energies well beyond the dominant emission line of atomic xenon. Here, in contrast to traditional low-frequency laser plasma heating, the plasma gains energy from electrons delivered through massive single-photon excitation from bound states. Electron emission induced by thermalization of a non-equilibrium plasma is expected to be a general phenomenon occurring for strong atomic x-ray absorption in extended systems.

  5. Pathological behavior of the open-shell restricted self-consistent-field equations

    International Nuclear Information System (INIS)

    Moscardo, F.; Alvarez-Collado, J.R.

    1979-01-01

    The possible solutions of open-shell restricted self-consistent-field equations for a doublet are studied for Li and Na atoms, according to the values of the parameters implied in those equations. A similar behavior, characterized by the presence of several variational solutions is observed in both atoms. Some of these solutions can be assigned to excited configurations. Excitation energies are in good agreement with experimental data. Doublet stability for the solutions obtained has been studied, discussing the saddle-point character present in those solutions associated to excited configurations

  6. Pathological behavior of the open-shell restricted self-consistent-field equations

    Energy Technology Data Exchange (ETDEWEB)

    Moscardo, F.; Alvarez-Collado, J.R.

    1979-02-01

    The possible solutions of open-shell restricted self-consistent-field equations for a doublet are studied for Li and Na atoms, according to the values of the parameters implied in those equations. A similar behavior, characterized by the presence of several variational solutions is observed in both atoms. Some of these solutions can be assigned to excited configurations. Excitation energies are in good agreement with experimental data. Doublet stability for the solutions obtained has been studied, discussing the saddle-point character present in those solutions associated to excited configurations.

  7. Accounting of inter-electron correlations in the model of mobile electron shells

    International Nuclear Information System (INIS)

    Panov, Yu.D.; Moskvin, A.S.

    2000-01-01

    One studied the basic peculiar features of the model for mobile electron shells for multielectron atom or cluster. One offered a variation technique to take account of the electron correlations where the coordinates of the centre of single-particle atomic orbital served as variation parameters. It enables to interpret dramatically variation of electron density distribution under anisotropic external effect in terms of the limited initial basis. One studied specific correlated states that might make correlation contribution into the orbital current. Paper presents generalization of the typical MO-LCAO pattern with the limited set of single particle functions enabling to take account of additional multipole-multipole interactions in the cluster [ru

  8. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya Eri

    2015-01-01

    Full Text Available Existence of the electric dipole moment (EDM is deeply related with time-reversal invariance. The EDMof a diamagnetic atom is mainly induced by the nuclear Schiff moment. After carrying out the shell model calculations to obtain wavefunctions for Xe isotopes, we evaluate nuclear Schiff moments for Xe isotopes to estimate their atomic EDMs. We estimate the contribution from each single particle orbital for the Schiff moment. It is found that the contribution on the Schiff moment is very different from orbital to orbital.

  9. Nucleon-pair approximation to the nuclear shell model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.M., E-mail: ymzhao@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Arima, A. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533 (Japan)

    2014-12-01

    Atomic nuclei are complex systems of nucleons–protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton–proton and neutron–neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton–neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.

  10. Faraday Wave Turbulence on a Spherical Liquid Shell

    Science.gov (United States)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  11. G 126.1-0.8-14: A molecular shell related to Sh2-187

    Science.gov (United States)

    Cichowolski, S.; Pineault, S.; Gamen, R.; Ortega, M. E.; Arnal, E. M.; Suad, L. A.

    2014-10-01

    We present a multi-wavelength study of a region where a well defined molecular shell, named G 126.1-0.8-14, is observed. The distance of G 126.1-0.8-14 is about 1 kpc. Based on HI and CO data we analyze the atomic and molecular gas related to the structure and estimate its main physical properties. From the radio continuum and infrared data we analyze whether the emission associated with G 126.1-0.8-14 has a thermal origin. To disentangle the possible origin of the shell, and given the lack of catalogued O-type stars in the area, we observed with GEMINI the spectra of four OB stars located in projection inside the shell, to get their accurate spectral types and distances. The young HII region Sh2-187 is located onto the densest part of this molecular shell. A search for young stellar object candidates (cYSOs) was made using infrared point source catalogs. Several cYSOs are found spread out onto the shell. Based on all the available data, we discuss the possible origin of G 126.1-0.8-14 as well as its role in the formation of a new generation of stars.

  12. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors

    Science.gov (United States)

    Grote, Fabian; Wen, Liaoyong; Lei, Yong

    2014-06-01

    Large-scale arrays of core/shell nanostructures are highly desirable to enhance the performance of supercapacitors. Here we demonstrate an innovative template-based fabrication technique with high structural controllability, which is capable of synthesizing well-ordered three-dimensional arrays of SnO2/MnO2 core/shell nanotubes for electrochemical energy storage in supercapacitor applications. The SnO2 core is fabricated by atomic layer deposition and provides a highly electrical conductive matrix. Subsequently a thin MnO2 shell is coated by electrochemical deposition onto the SnO2 core, which guarantees a short ion diffusion length within the shell. The core/shell structure shows an excellent electrochemical performance with a high specific capacitance of 910 F g-1 at 1 A g-1 and a good rate capability of remaining 217 F g-1 at 50 A g-1. These results shall pave the way to realize aqueous based asymmetric supercapacitors with high specific power and high specific energy.

  13. Charge transfer and excitation in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.

    1986-11-01

    Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture

  14. Gravity on-shell diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Enrico [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA 95616 (United States)

    2016-11-22

    We study on-shell diagrams for gravity theories with any number of supersymmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only dlog-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N=8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in http://dx.doi.org/10.1007/JHEP06(2015)202.

  15. Stability of accelerated metal shells

    International Nuclear Information System (INIS)

    Tahsiri, H.

    1976-01-01

    A systematic treatment has been developed for the Rayleigh-Taylor instability of an accelerated liner. It is applicable to one-dimensional models either compressible or incompressible. With this model several points have been clarified. For an incompressible liner model, the Rayleigh-Taylor instability will have about five e-folding periods and the usual growth rate is independent of the current distribution or current rise time. Adequate stability will therefore depend on the magnitude of the initial perturbations or the precision of the initial liner and the thickness over which the shell is accelerated. However, for a compressible model, theory predicts that the current rise time is important and the Rayleigh-Taylor instability is suppressed if the current rise time is less than the shock transit time

  16. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  17. Successive change regularity of actinide properties with atomic number

    International Nuclear Information System (INIS)

    Yang Xuexian

    1990-08-01

    The development and achievements on chemistry of actinide elements are summarised. The relations of properties of actinides to their electronic configurations of valence electronic shells are discussed. Some anomalies of solid properties, the radius contraction, the stable state effect of f 7n -orbits (n = 0, 1, 2) and the tetrad effect of oxidation states, etc., with atomic number (Z) are described. 31 figures appended show directly the successive change regularity of actinide properties with Z

  18. Electronic isotope shifts, muonic atoms, and electron scattering

    International Nuclear Information System (INIS)

    Shera, E.B.

    1982-01-01

    The roles of electronic isotope shift, muonic atom, and electron scattering experiments in studying the nuclear charge distribution are discussed in terms of the potentials of each probe. Barium isotope shift data are presented as an example of a combined muonic-optical analysis and the results are compared with droplet and IBA model predictions. A survey of muonic and (e,e) results is presented with emphasis on shell-structure related features

  19. Coupled-states calculations of argon L-shell impact ionisation

    International Nuclear Information System (INIS)

    Martir, M.H.; Ford, A.L.; Reading, J.F.

    1982-01-01

    A coupled-states method is used to calculate the corrections to the first Born approximation for L-shell impact ionisation in the ion-atom collisions p+Ar and α+Ar at energies between 100 and 850 keV amu -1 . Using a classical projectile path and a pseudostate description of the ionisation continuum, the pseudostate and partial-wave convergence is considered. It is found that the absolute cross sections for these collisions are sensitive to the particular independent-particle-model (IPM) target-atom potential which is used. A modification to the long-range part of the neutral-atom Hartree-Fock (HF) potential is proposed that lowers the energy of the unbound pseudostates and that thereby brings the L-shell removal energies closer to the experimental ionisation potentials. With this modified HF potential good agreement between the present L-shell ionisation cross sections and experimental L-vacancy production cross sections is found. (author)

  20. Atomic-Beam Magnetic Resonance Experiments at ISOLDE

    CERN Multimedia

    2002-01-01

    The aim of the atomic-beam magnetic resonance (ABMR) experiments at ISOLDE is to map the nuclear behaviour in wide regions of the nuclear chart by measuring nuclear spins and moments of ground and isomeric states. This is made through an investigation of the atomic hyperfine structure of free, neutral atoms in a thermal atomic-beam using radio-frequency techniques. On-line operation allows the study of short-lived nuclei far from the region of beta-stability.\\\\ \\\\ The ABMR experiments on the |2S^1 ^2 elements Rb, Cs, Au and Fr have been completed, and present efforts are directed towards the elements with an open p-shell and on the rare-earth elements.\\\\ \\\\ The experimental data obtained are compared with results from model calculations, giving information on the single-particle structure and on the nuclear shape parameters.

  1. Four-parameter analytical local model potential for atoms

    International Nuclear Information System (INIS)

    Fei, Yu; Jiu-Xun, Sun; Rong-Gang, Tian; Wei, Yang

    2009-01-01

    Analytical local model potential for modeling the interaction in an atom reduces the computational effort in electronic structure calculations significantly. A new four-parameter analytical local model potential is proposed for atoms Li through Lr, and the values of four parameters are shell-independent and obtained by fitting the results of X a method. At the same time, the energy eigenvalues, the radial wave functions and the total energies of electrons are obtained by solving the radial Schrödinger equation with a new form of potential function by Numerov's numerical method. The results show that our new form of potential function is suitable for high, medium and low Z atoms. A comparison among the new potential function and other analytical potential functions shows the greater flexibility and greater accuracy of the present new potential function. (atomic and molecular physics)

  2. Determination of K shell absorption jump factors and jump ratios in the elements between Tm( Z = 69) and Os( Z = 76) by measuring K shell fluorescence parameters

    Science.gov (United States)

    Kaya, N.; Tıraşoğlu, E.; Apaydın, G.

    2008-04-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.

  3. Atomic Auger spectroscopy: Historical perspective and recent highlights

    International Nuclear Information System (INIS)

    Mehlhorn, W.

    2000-01-01

    The non-radiating decay of an inner-shell ionized atom by the emission of an electron was discovered by Pierre Auger in cloud-chamber experiments in the years 1923 to 1926. The first spectroscopic investigation of Auger electrons was performed by Robinson and Cassie in 1926, marking the birth date of Auger spectroscopy. The following seven decades of Auger spectroscopy will be divided into three periods. In the first period (1926-1960) Auger spectroscopy was mainly connected with β-ray spectroscopy where inner-shell ionization of atoms in the solid state was caused either by γ-conversion or by electron capture. The second period (beginning in 1960) is characterized by the external excitation of gas-phase or free metallic atoms, opening Auger spectroscopy to electron energies in the range of few eV to few keV. The third period (beginning in 1977/78) is characterized by the use of synchrotron radiation with its outstanding properties of tunability, polarization and narrow-band high intensity for the excitation and ionization of inner-shell electrons. Finally, two recent highlights of Auger spectroscopy, the interference between photo- and Auger electron with equal energies and an 'almost' complete experiment for Auger decay, will be presented

  4. Structures of 38-atom gold-platinum nanoalloy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  5. Measurement of K-shell jump ratios and jump factors for some elements in 76≤Z≤92 using EDXRF spectrometer

    International Nuclear Information System (INIS)

    Kaya, N.; Apaydin, G.; Tirasoglu, E.

    2011-01-01

    This article presents experimental values of the K-shell jump factor and jump ratio (ratio of the K-shell photoionization cross section to the photoionization cross section of the rest of the atom at the K edge) for some elements in 76≤Z≤92 using an energy dispersive X-ray fluorescence (EDXRF) spectrometer and compares those values with the theoretical ones giving reasonable agreement. The experimental values have been determined using the fluorescence parameters: K α production cross sections, K β /K α X-rays intensity ratios, total atomic attenuation cross sections, etc. To the best of our knowledge, K-shell jump ratios and jump factors have been measured without having any data on K edge for the first time in these elements. The results have been plotted versus atomic number.

  6. Axisymmetric vibrations of thick shells of revolution

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)

  7. Importance-truncated shell model for multi-shell valence spaces

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.

  8. Free vibration analysis of delaminated composite shells using different shell theories

    International Nuclear Information System (INIS)

    Nanda, Namita; Sahu, S.K.

    2012-01-01

    Free vibration response of laminated composite shells with delamination is presented using the finite element method based on first order shear deformation theory. The shell theory used is the extension of dynamic, shear deformable theory according to the Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. An eight-noded C 0 continuity, isoparametric quadrilateral element with five degrees of freedom per node is used in the formulation. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. The natural frequencies of the delaminated cylindrical (CYL), spherical (SPH) and hyperbolic paraboloid (HYP) shells are determined by using the above mentioned shell theories, namely Sanders', Love's, and Donnell's. The validity of the present approach is established by comparing the authors' results with those available in the literature. Additional studies on free vibration response of CYL, SPH and HYP shells are conducted to assess the effects of delamination size and number of layers considering all three shell theories. It is shown that shell theories according to Sanders and Love always predict practically identical frequencies. Donnell's theory gives reliable results only for shallow shells. Moreover, the natural frequency is found to be very sensitive to delamination size and number of layers in the shell.

  9. Localized hole effects in inner-shell excitation

    International Nuclear Information System (INIS)

    Rescigno, T.N.; Orel, A.E.

    1983-01-01

    Ab initio calculations of valence shell ionization potentials have shown that orbital relaxation and correlation differences usually make contributions of comparable magnitude. In marked contrast to this observation is the situation for deep core ionization, where correlation differences (approx. 1 eV) play a relatively minor role compared to orbital relaxation (approx. 20 eV). Theoretical calculations have shown that this relaxation is most easily described if the 1s-vacancy created by a K-shell excitation is allowed to localize on one of the atomic centers. For molecules possessing a center of inversion, this means that the molecular orbitals that best describe the final state do not transform as any irreducible representation of the molecular point group. Recent experimental work by Shaw, King, Read and Cvejanovic and by Stefani and coworkers has prompted us to carry out further calculations on N 2 , as well as analogous investigations of 1s/sub N/ → π* excitation in NO and N 2 O. The generalized oscillator strengths display a striking similarity and point to the essential correctness of the localized hole picture for N 2 . The theoretical calculations are briefly described, followed by a summary of the results and comparison to experiment, followed by a short discussion

  10. Ultimate load capacity assessment of reinforced concrete shell structures

    International Nuclear Information System (INIS)

    Gupta, Amita; Singh, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1993-01-01

    The objective of this study is to develop capability for prediction of ultimate load capacity of reinforced concrete shell structures. The present finite element code ULCA (Ultimate Load Capacity Assessment) adopts a degenerate concept of formulating general isoparametric shell element with a layered approach in the thickness direction. Different failure modes such as crushing, tensile cracking and reinforcement yielding are recognised for various problems. The structure fails by crushing of concrete when the concrete strain/stress reaches the ultimate stress or strain of concrete. Material nonlinearities as a result of tension cracking, tension stiffening between reinforcement and concrete in cracked region and yielding of reinforcement are considered along with geometric nonlinearity. Thus with this code it is possible to predict the pressure at which the first cracking, first through thickness cracking, first yielding of reinforcement occurs. After validating the code with few bench mark problems for different failure modes a reinforced concrete nuclear containment is analysed for its ultimate capacity and the results are matched with the published results. Further the ultimate load capacity of outer containment wall of Narora Atomic Power Station is predicted. It is observed that containment fails in membrane region and has a sufficient margin against design pressure. (author). 9 refs., 56 figs., 3 tabs., 1 appendix with 4 tabs

  11. Generation of L sub-shell photo-ionization cross-sections for elements 18Z92 at energies .320-115.606 keV (A computer program 'LSPICS')

    International Nuclear Information System (INIS)

    Sharma, Ajay; Mittal, Raj

    2005-01-01

    L sub-shell photo-ionization cross-sections, σ Li , for elements 18Z92 at energies .320-115.606 keV have been generated from an empirical relation fitted to Scofield's L sub-shell photo-ionization cross-section values. The excitation energy E for an element is constrained by the condition that only L and higher shell vacancies are produced in the elements. The closeness of generated and existing values of Scofield's L sub-shell data recommends the use of generated values in the fields of atomic and molecular physics and for trace elemental analysis. For this purpose computer software 'LSPICS' has been developed. On personal computer LSPICS generates L sub-shell photo-ionization cross-section values in barns just by entering the atomic number of element and excitation photon energy in keV

  12. Nature of the concentration thresholds of europium atom yield from the oxidized tungsten surface under electron stimulated desorption

    CERN Document Server

    Davydov, S Y

    2002-01-01

    The nature of the electron-stimulated desorption (ESD) of the europium atoms by the E sub e irradiating electrons energies, equal to 50 and 80 eV, as well as peculiarities of the Eu atoms yield dependence on their concentration on the oxidized tungsten surface are discussed. It is shown, that the ESD originates by the electron transition from the interval 5p- or 5s shell of the tungsten surface atom onto the oxygen external unfilled 2p-level

  13. Bending stresses in Facetted Glass Shells

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik

    2008-01-01

    A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...

  14. Strontium and fluorine in tuatua shells

    International Nuclear Information System (INIS)

    Trompetter, W.J.; Coote, G.E.

    1993-01-01

    This report describes the research to date on the elemental distributions of strontium, calcium, and fluorine in a collection of 24 tuatua shells (courtesy of National Museum). Variations in elemental concentrations were measured in the shell cross-sections using a scanning proton microprobe (PIXE and PIGME). In this paper we report the findings to date, and present 2-D measurement scans as illustrative grey-scale pictures. Our results support the hypothesis that increased strontium concentrations are deposited in the shells during spawning, and that fluorine concentration is proportional to growth rate. (author). 15 refs.; 13 figs.; 1 appendix

  15. Gross shell structure of moments of inertia

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.

    2002-01-01

    Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits

  16. Thin shells joining local cosmic string geometries

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F. [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Rubin de Celis, Emilio; Simeone, Claudio [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Ciudad Universitaria Pabellon I, IFIBA-CONICET, Buenos Aires (Argentina)

    2016-10-15

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)

  17. Thin shells joining local cosmic string geometries

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Rubin de Celis, Emilio; Simeone, Claudio

    2016-01-01

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)

  18. Amplitude structure of off-shell processes

    International Nuclear Information System (INIS)

    Fearing, H.W.; Goldstein, G.R.; Moravcsik, M.J.

    1984-01-01

    The structure of M matrices, or scattering amplitudes, and of potentials for off-shell processes is discussed with the objective of determining how one can obtain information on off-shell amplitudes of a process in terms of the physical observables of a larger process in which the first process is embedded. The procedure found is inevitably model dependent, but within a particular model for embedding, a determination of the physically measurable amplitudes of the larger process is able to yield a determination of the off-shell amplitudes of the embedded process

  19. Analysis of anisotropic shells containing flowing fluid

    International Nuclear Information System (INIS)

    Lakis, A.A.

    1983-01-01

    A general theory for the dynamic analysis of anisotropic thin cylindrical shells containing flowing fluid is presented. The shell may be uniform or non-uniform, provided it is geometrically axially symmetric. This is a finite- element theory, using cylindrical finite elements, but the displacement functions are determined by using classical shell theory. A new solution of the wave equation of the liquid finite element leads to an expression of the fluid pressure, p, as a function of the nodal displacements of the element and three operative forces (inertia, centrifugal and Coriolis) of the moving fluid. (Author) [pt

  20. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  1. Atoms - molecules - nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Otter, G.; Honecker, R.

    1993-01-01

    This first volume covers the following topics: Wave-particle dualism, classical atomic physics; the Schroedinger equation, angular momentum in quantum physics, one-electron atoms and many-electron atoms with atomic structure, atomic spectra, exotic atoms, influence of electric and magnetic fields

  2. Atomic and molecular sciences

    International Nuclear Information System (INIS)

    Lane, N.F.

    1989-01-01

    The theoretical atomic and molecular physics program at Rice University addresses basic questions about the collision dynamics of electrons, atoms, ions and molecules, emphasizing processes related to possible new energy technologies and other applications. The program focuses on inelastic collision processes that are important in understanding energy and ionization balance in disturbed gases and plasmas. Emphasis is placed on systems and processes where some experimental information is available or where theoretical results may be expected to stimulate new measurements. Examples of current projects include: excitation and charge-transfer processes; orientation and alignment of excited states following collisions; Rydberg atom collisions with atoms and molecules; Penning ionization and ion-pair formation in atom-atom collisions; electron-impact ionization in dense, high-temperature plasmas; electron-molecule collisions; and related topics

  3. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  4. Metal atom oxidation laser

    International Nuclear Information System (INIS)

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-01-01

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  5. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  6. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  7. A dynamical atomic simulation for the Ni-Al Wulff nanoparticle

    International Nuclear Information System (INIS)

    Tang, Jianfeng; Yang, Jianyu

    2013-01-01

    Ni-Al bimetallic nanoparticle structures are studied from a kinetic point of view. The diffusion and growth of Ni (or Al) atoms on Al (or Ni) cores with the Wulff structure are simulated by molecular dynamics and nudged elastic band methods. An analytic embedded atom model is applied to the two metals. The energy barriers of several typical diffusion processes of the adatoms on the nanoparticle surface are calculated. Results show that the incorporation of the Ni atoms into the Al core easily occurs, and the reverse process does not readily proceed. The growth simulations reveal that a better core-shell nanoparticle is obtained when the Al atoms are deposited on the Ni core at lower temperatures, and the deposition of the Ni atoms on the Al core leads to an amorphous surface. - Highlights: • The diffusion barrier of Ni (or Al) on Al (or Ni) Wulff nanoparticle is studied. • Ni atom can diffuse easily into Al core, and Al atom generally segregate on surface. • A core-shell nanoparticle is obtained for the deposition of Al atoms on Ni core. • Amorphous nanoparticle surface is obtained by depositing Ni atoms on Al core

  8. New oil skimmer from shell

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    Under a program initiated by the US Coast Guard (USCG), Shell Development Co. has developed the Zero-Relative Velocity Skimmer (ZRVS) (Abstract No. 24-30285) which can recover spilled oil in currents up to eight knots. Tests of a full-scale mockup of the system gave excellent results up to the test limit of eight knots and in waves up to 2 ft high. Conventional oil skimmers slow down the floating oil relative to the water so that it can be contained and collected. But when the relative velocity of water and skimmer exceeds 1 to 2 knots, turbulence caused by the skimmer's surface piercing equipment leads to oil escaping. The ZRVS combats this by laying twin floating, adsorbent belts on the surface so they move at the same speed as the water and oil relative to the skimmer. With no relative velocity between them, turbulence is removed, allowing the skimmer to operate effectively in fast currents. The skimmer is a 41 ft catamaran, built in three sections so it can be transported in two aircraft and assembled at the port nearest the spill. The first prototype is due to be completed at the USCG shipyard in the summer of 1978.

  9. Casimir effect in spherical shells

    International Nuclear Information System (INIS)

    Ruggiero, J.R.

    1985-01-01

    The analytic regularization method is applied to study the Casimir effect for spherical cavities. Although many works have been presented in the past few years, problems related to the elimination of the regulator parameter still remain. A way to calculate the zero point energy of a perfectly conducting spherical shell which is a miscellaneous of those presented early is here proposed, How a cancelation of divergent terms occurs and how a finite parte is obtained after the elimination of the regulator parameter is shown. As a by-product the zero point energy of the interior vibration modes is obtained and this has some relevance to the quarks bag model. This relev ance is also discussed. The calculation of the energy fom the density view is also discussed. Some works in this field are criticized. The logarithmic divergent terms in the zero point energy are studied when the interior and exterior of the sphere are considered as a medium not dispersive and characterized by a dielectric constants ε 1 and ε 2 and peermeability constants μ 1 and μ 2 respectivelly. The logarithmic divergent terms are not present in the case of ε i μ i =K, with K some constant and i=1,2. (author) [pt

  10. Extensions to a nonlinear finite element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    A finite element shell-of-revolution model has been developed to analyze shipping containers under severe impact conditions. To establish the limits for this shell model, I studied the basic assumptions used in its development; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress. (orig./HP)

  11. Single atom oscillations

    International Nuclear Information System (INIS)

    Wiorkowski, P.; Walther, H.

    1990-01-01

    Modern methods of laser spectroscopy allow the study of single atoms or ions in an unperturbed environment. This has opened up interesting new experiments, among them the detailed study of radiation-atom coupling. In this paper, the following two experiments dealing with this problem are reviewed: the single-atom maser and the study of the resonance fluorescence of a single stored ion. The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. This problem received a great deal of attention shortly after the maser was invented

  12. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  13. Anticavitation and Differential Growth in Elastic Shells

    KAUST Repository

    Moulton, Derek E.; Goriely, Alain

    2010-01-01

    infinite growth or resorption is imposed at the inner surface of the shell. However, void collapse can occur in a limiting sense when radial and circumferential growth are properly balanced. Growth functions which diverge or vanish at a point arise

  14. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  15. Single Shell Tank (SST) Program Plan

    International Nuclear Information System (INIS)

    HAASS, C.C.

    2000-01-01

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000

  16. Wireless energy transfer between anisotropic metamaterials shells

    International Nuclear Information System (INIS)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-01-01

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted

  17. Computational mechanics of nonlinear response of shells

    Energy Technology Data Exchange (ETDEWEB)

    Kraetzig, W.B. (Bochum Univ. (Germany, F.R.). Inst. fuer Statik und Dynamik); Onate, E. (Universidad Politecnica de Cataluna, Barcelona (Spain). Escuela Tecnica Superior de Ingenieros de Caminos) (eds.)

    1990-01-01

    Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs.

  18. Single Shell Tank (SST) Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    HAASS, C.C.

    2000-03-21

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000.

  19. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    . In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  20. Quark shell model using projection operators

    International Nuclear Information System (INIS)

    Ullah, N.

    1988-01-01

    Using the projection operators in the quark shell model, the wave functions for proton are calculated and expressions for calculating the wave function of neutron and also magnetic moment of proton and neutron are derived. (M.G.B.)

  1. Computational mechanics of nonlinear response of shells

    International Nuclear Information System (INIS)

    Kraetzig, W.B.; Onate, E.

    1990-01-01

    Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs

  2. A sextupole-magnet as variable velocity selector for paramagnetic atomic beams in the thermal range

    International Nuclear Information System (INIS)

    Spindler, G.; Ebinghaus, H.; Steffens, E.

    1974-01-01

    The possibility of employing a sextupole-magnet as a velocity selector on account of its velocity dependent focusing properties for paramagnetic atomic beams is investigated. In comparison with a traditional velocity selector with rotating disks, a sextupole-magnet as velocity selector has the advantage of additional focusing and polarizing the atomic beam. Moreover it suppresses polymer molecules without an effective magnetic momentum of the electronic shell

  3. Determination of first ionization potential of samarium atom using Rydberg series convergence

    International Nuclear Information System (INIS)

    Jayasekharan, T.; Razvi, M.A.N.; Bhale, G.L.

    1999-01-01

    The study of Rydberg states has recently received more attention partially because an efficient isotope selective ionization is possible via these states. In addition, their investigation provides useful information on the atomic structure. An electron in a shell with a high principal quantum number is a sensitive probe for the interaction with the ionic core of the atom. Measurements of these Rydberg levels give valuable data on quantum defects, anomalies in fine structure splitting, polarizabilities, configuration interactions, ionization potentials etc

  4. Acoustic coupling of two parallel shells in compressible fluid

    International Nuclear Information System (INIS)

    Gerges, S.N.Y.

    1982-01-01

    Modifications are done in the acoustic impedance for a vibrating shell, due to the pressure of another similar shell. The multi-analysis method of scattering is used. The results of the impedance in function of the shell radius, the wave length, the distance between the shell axis and its vibration models are presented. (E.G.) [pt

  5. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  6. Study of thiophene inner shell photofragmentation

    International Nuclear Information System (INIS)

    Mundim, M.S.P.; Mocellin, A.; Makiuchi, N.; Naves de Brito, A.; Attie, M.; Correia, N.

    2007-01-01

    We investigated the inner shell photofragmentation of thiophene by time of flight (TOF) mass spectroscopy using multi-coincidence electron-ion techniques. Our main purpose was to understand aspects of molecular relaxation process after inner shell excitation and to search for bond break selectivity. Analyses of mass and branching ratios are presented and the results suggest different mechanisms and channel of fragmentation when compared with S 2p and C 1s excitations

  7. Study of thiophene inner shell photofragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Mundim, M.S.P. [Instituto de Fisica, Universidade de Brasilia-UnB, P.O. Box 04455, CEP 70919-970 Brasilia, DF (Brazil)], E-mail: spedrosa@fis.unb.br; Mocellin, A.; Makiuchi, N. [Instituto de Fisica, Universidade de Brasilia-UnB, P.O. Box 04455, CEP 70919-970 Brasilia, DF (Brazil); Naves de Brito, A. [Instituto de Fisica, Universidade de Brasilia-UnB, P.O. Box 04455, CEP 70919-970 Brasilia, DF (Brazil); Laboratorio Nacional de Luz Sincrotron-LNLS, P.O. Box 6192, CEP 13084-971 Campinas, SP (Brazil); Attie, M. [Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, UESC Rodovia Ilheus-Itabuna, km 16, CEP 45 650 000 Ilheus, BA (Brazil); Correia, N. [Departamento de Ciencias Exatas e Tecnologicas, Universidade Estadual de Santa Cruz, UESC, Rodovia Ilheus-Itabuna, km 16, CEP 45 650 000 Ilheus, BA (Brazil); Departament of Quantum Chemistry, University of Uppsala, P.O. Box 518, 751 21 Uppsala (Sweden)

    2007-03-15

    We investigated the inner shell photofragmentation of thiophene by time of flight (TOF) mass spectroscopy using multi-coincidence electron-ion techniques. Our main purpose was to understand aspects of molecular relaxation process after inner shell excitation and to search for bond break selectivity. Analyses of mass and branching ratios are presented and the results suggest different mechanisms and channel of fragmentation when compared with S 2p and C 1s excitations.

  8. Walnut shells: replacement for natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Goss, J R; Williams, R O

    1977-11-01

    A method of extracting useful energy from cracked walnut shells has been developed by the University of California in co-operation with Diamond/Sunsweet, Inc., and the California Energy Resources Conservation and Development Commission. The technique involves converting the shells to producer gas, a low-Btu gas in which the major combustible components are carbon monoxide (20 to 30%) and hydrogen (10 to 15%).

  9. Double shell tank waste analysis plan

    International Nuclear Information System (INIS)

    Mulkey, C.H.; Jones, J.M.

    1994-01-01

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations

  10. Dehydration of core/shell fruits

    OpenAIRE

    Liu, Y.; Yang, Xiaosong; Cao, Y.; Wang, Z.; Chen, B.; Zhang, Jian J.; Zhang, H.

    2015-01-01

    Dehydrated core/shell fruits, such as jujubes, raisins and plums, show very complex buckles and wrinkles on their exocarp. It is a challenging task to model such complicated patterns and their evolution in a virtual environment even for professional animators. This paper presents a unified physically-based approach to simulate the morphological transformation for the core/shell fruits in the dehydration process. A finite element method (FEM), which is based on the multiplicative decomposition...

  11. P-shell hyperon binding energies

    International Nuclear Information System (INIS)

    Koetsier, D.; Amos, K.

    1991-01-01

    A shell model for lambda hypernuclei has been used to determine the binding energy of the hyperon in nuclei throughout the p shell. Conventional (Cohen and Kurath) potential energies for nucleon-nucleon interactions were used with hyperon-nucleon interactions taken from Nijmegen one boson exchange potentials. The hyperon binding energies calculated from these potentials compare well with measured values. 7 refs., 2 figs

  12. Dynamic nonlinear analysis of shells of revolution

    International Nuclear Information System (INIS)

    Riesemann, W.A. von; Stricklin, J.A.; Haisler, W.E.

    1975-01-01

    Over the past few years a series of finite element computer programs have been developed at Texas A and M University for the static and dynamic nonlinear analysis of shells of revolution. This paper discusses one of these, DYNAPLAS, which is a program for the transient response of ring stiffened shells of revolution subjected to either asymmetric initial velocities or to asymmetric pressure loadings. Both material and geometric nonlinearities may be considered. (Auth.)

  13. Shell effects in the superasymmetric fission

    CERN Document Server

    Mirea, M

    2002-01-01

    A new formalism based on the Landau-Zener promotion mechanism intends to explain the fine structure of alpha and cluster decay. The analysis of this phenomenon is accomplished by following the modality in which the shells are reorganized during the decay process beginning with the initial ground state of the parent towards the final configuration of two separated nuclei. A realistic level scheme is obtained in the framework of the superasymmetric two-center shell model. (author)

  14. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  15. Annual progress report for atomic and nuclear research with accelerators and fusion related atomic physics. Reporting period, October 1, 1974--September 30, 1975

    International Nuclear Information System (INIS)

    1975-10-01

    Topics covered include: laboratory operation and development; atomic collision cross sections in gases; ionization cross sections in thin solid materials; experimental impact-parameter dependent probabilities for k-shell vacancy production by fast heavy-ion projectiles; x-ray spectroscopy with high energy ions; atomic lifetime measurements; polarization studies of ion-induced x rays; theoretical spectra in ion-induced reactions; theoretical atomic cross section calculations; search for heavy-ion resonances; lifetimes of low energy states in 21 Ne; nuclear scattering and reactions; and trace element analysis

  16. Axisymmetric vibrations of thin shells of revolution

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kikuchi, Norio; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    The problem of free vibration of axisymmetric shells of revolution is important in connection with the design of pressure vessels, chemical equipment, aircrafts, structures and so on. In this study, the axisymmetrical vibration of a thin shell of revolution having a constant curvature in meridian direction was analyzed by thin shell theory. First, the Lagrangian during one period of the vibration of a shell of revolution was determined by the primary approximate theory of Love, and the vibration equations and boundary conditions were derived from its stopping condition. The vibration equations were strictly analyzed by using the series solution. The basic equations for the strain and strain energy of a shell were based on those of Novozhilov. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. The theory and the numerical calculation ore described. Especially in the frequency curves, the waving phenomena were observed frequently, which were not seen in non-axisymmetric vibration, accordingly also the vibration mode changed in complex state on the frequency curves of same order. The numerical calculation was carried out in the large computer center in Tohoku University. (Kako, I.)

  17. One pot synthesis, growth mechanism and optical properties of Zn{sub 1-x}Cd{sub x}Se graded core/shell and alloy nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, Kiran G. [Department of Physics, University of Pune, Pune 411 007 (India); Patil, K.R. [Centre for Materials Characterization, National Chemical Laboratory, Pune 411 008 (India); Mahamuni, Shailaja, E-mail: shailajamahamuni@yahoo.co.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2013-03-15

    Comparatively higher photoluminescence yield along with robustness of core/shell semiconductor nanocrystals make them attractive candidates for studying intricate quantum size effects. Here, we report, one pot synthesis of Zn{sub 1-x}Cd{sub x}Se graded core/shell structures by exploiting change in the reactivity of precursors. Optical and structural measurements indicate formation of graded structure. Growth mechanism probed by inductively coupled plasma atomic emission spectroscopy shows formation of graded core/shell structure, with CdSe rich core and ZnSe rich shell. Annealing these nanocrystals, in chemical bath, leads to diffusion of Cd from core to shell region. Formation of Zn{sub 1-x}Cd{sub x}Se alloy is also observed in X-ray photoelectron spectroscopic measurements, confirming the diffusion of Cd from core to shell region. Substantially high photoluminescence quantum efficiency of 60% with narrow line width of about 27 nm, was observed and is attributable to the reduced strain due to graded core/shell structure. - Highlights: Black-Right-Pointing-Pointer Graded CdSe/ZnSe core-shell nanocrystals are synthesized exploiting reactivity of precursors. Black-Right-Pointing-Pointer Growth mechanism is probed using ICP-AES spectroscopy. Black-Right-Pointing-Pointer Reduced strain leads to luminescence efficiency as high as 60%. Black-Right-Pointing-Pointer Alloy formation by annealing in chemical bath is probed using XPS.

  18. Characterization of the core-shell interaction of differently stabilized transition-metal nanoparticles by means of X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Bucher, S.

    2002-05-01

    Transition metal nanoparticles with different surfactants were investigated using X-ray absorption spectroscopy (XAS) to obtain information about the interaction between metal core and protecting shell. For tetraalkylammoniumchloride stabilized Pd- and Co-colloids, a detailed model of the interaction between the metal core and the stabilizing shell could be established, in which chlorine is the connecting element between the metal core and the organic protection cover. Different lengths of the alkyl-chains can cause different equilibrium positions for the chlorine atoms. At aluminum-organic stabilized Pt-colloids, Al K-XANES and Pt L III -XAS were carried out. In this case, it turned out that aluminum is the connecting element between metal core and protection shell. After modification of the shell by connecting different molecules to the outside of the shell, rearrangements of the shell could be observed. In contrast to the surfactant stabilized systems discussed above, metallic covers, especially gold coatings, of Co-particles did not lead to a complete protection shell. In all cases, the cobalt in the nanoparticles was oxidized. A core shell structure could not be verified for any of the metallic stabilized colloids. (orig.)

  19. Unlocking the Origin of Superior Performance of a Si-Ge Core-Shell Nanowire Quantum Dot Field Effect Transistor.

    Science.gov (United States)

    Dhungana, Kamal B; Jaishi, Meghnath; Pati, Ranjit

    2016-07-13

    The sustained advancement in semiconducting core-shell nanowire technology has unlocked a tantalizing route for making next generation field effect transistor (FET). Understanding how to control carrier mobility of these nanowire channels by applying a gate field is the key to developing a high performance FET. Herein, we have identified the switching mechanism responsible for the superior performance of a Si-Ge core-shell nanowire quantum dot FET over its homogeneous Si counterpart. A quantum transport approach is used to investigate the gate-field modulated switching behavior in electronic current for ultranarrow Si and Si-Ge core-shell nanowire quantum dot FETs. Our calculations reveal that for the ON state, the gate-field induced transverse localization of the wave function restricts the carrier transport to the outer (shell) layer with the pz orbitals providing the pathway for tunneling of electrons in the channels. The higher ON state current in the Si-Ge core-shell nanowire FET is attributed to the pz orbitals that are distributed over the entire channel; in the case of Si nanowire, the participating pz orbital is restricted to a few Si atoms in the channel resulting in a smaller tunneling current. Within the gate bias range considered here, the transconductance is found to be substantially higher in the case of a Si-Ge core-shell nanowire FET than in a Si nanowire FET, which suggests a much higher mobility in the Si-Ge nanowire device.

  20. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior

    Science.gov (United States)

    Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten

    2018-01-01

    In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.