WorldWideScience

Sample records for atomic power generation

  1. Rotary-Atomizer Electric Power Generator

    Science.gov (United States)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  2. Concept of electric power output control system for atomic power generation plant utilizing cool energy of stored snow

    International Nuclear Information System (INIS)

    Kamimura, Seiji; Toita, Takayuki

    2003-01-01

    A concept of the SEAGUL system (Snow Enhancing Atomic-power Generation UtiLity) is proposed in this paper. Lowering the temperature of sea water for cooling of atomic-power plant will make a efficiency of power generation better and bring several ten MW additional electric power for 1356 MW class plant. The system concept stands an idea to use huge amount of seasonal storage snow for cooling water temperature control. In a case study for the Kashiwazaki-Kariwa Nuclear Power Station, it is estimated to cool down the sea water of 29degC to 20degC by 80 kt snow for 3 hours in a day would brought 60 MWh electric power per a day. Annually 38.4 Mt of stored snow will bring 1800 MWh electric power. (author)

  3. Atomic power plant

    International Nuclear Information System (INIS)

    Kawakami, Hiroto.

    1975-01-01

    Object: To permit decay heat to be reliably removed after reactor shut-down at such instance as occurrence of loss of power by means of an emergency water supply pump. Structure: An atomic power plant having a closed cycle constructed by connecting a vapor generator, a vapor valve, a turbine having a generator, a condenser, and a water supply pump in the mentioned order, and provided with an emergency water supply pump operated when there is a loss of power to the water supply pump, a degasifier pressure holding means for holding the pressure of the degasifier by introducing part of the vapor produced from said vapor generator, and a valve for discharge to atmosphere provided on the downstream side of said vapor generator. (Kamimura, M.)

  4. Regulation for delivery of subsidies for urgent safety measures for atomic power generating facilities

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law for the proper enforcement of subsidy budgets and the ordinance for the execution of this law and to practice these provisions. It is applied to the delivery of subsidies for the expenses of the measures taken beforehand for the security of inhabitants in the surrounding areas of atomic power generating facilities in the emergency time of hazard or the danger of the occurrence of hazard by such facilities. Basic terms are defined, such as atomic power generating facilities and others, prefecture concerned, cities, towns and villages concerned, emergency communication network arrangement business, emergency medical facility arrangement business, business of holding hazard prevention course and expected date of beginning operation. Directors of ministries and agencies concerned deliver, if necessary, to prefectures concerned subsidies for all or a part of the expenses needed for the businesses of emergency communication network arrangement, emergency medical facility arrangement and holding hazard prevention course. The terms of delivery and the amounts of subsidies vary according to the kinds of businesses. Prefectures which intend to apply for the delivery of subsidies shall file to the director of the ministry or agency concerned the specified application attaching the operation plans of businesses and the general explanation of atomic power generating facilities, etc. The decision and conditions of delivery, reports on the situations and results of businesses and other related matters are defined, respectively. (Okada, K.)

  5. The new generation of nuclear power stations. A new trend in atomic power?

    International Nuclear Information System (INIS)

    Hohlefelder, W.

    2006-01-01

    According to the author, all options for future power supply should be followed, including atomic power provided that it can be made technically safe and treated with a maximum safety culture. On the one hand, power supply is an elementary human need, deciding on public welfare, economic development and technical progress. On the other hand, there is an impending shortage of power owing to depletion of resources and the emergence of new industrialized nations especially in south east Asia. For this reason, all options should be considered, from renewable energy sources to coal and nuclear power. (orig.)

  6. Situation of nuclear power generation in Europe

    International Nuclear Information System (INIS)

    Toukai, Kunihiro

    2003-01-01

    Nuclear power plants began to be built in Europe in the latter half of 1960. 146 plants are operating and generating about 33% of total power in 2002. France is top of Europe and operating 59 plants, which generate about 75% of power generation in the country. Germany is second and 30%. England is third and 30%. However, Germany decided not to build new atomic power plant in 2000. Movement of non-nuclear power generation is decreasing in Belgium and Switzerland. The liberalization of power generation decreased the wholesale price and BE Company in England was financial difficulties. New nuclear power generation is planning in Finland and France. (S.Y.)

  7. Rotary-atomizer electric power generator

    NARCIS (Netherlands)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.

    2015-01-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the

  8. Tarapur Atomic Power Station - - an overview of experience

    International Nuclear Information System (INIS)

    Shah, J.C.

    1979-01-01

    A broad overview of the experience and performance of the Tarapur Atomic Power Station (TAPS) in its role as the developing world's first foray in commercial atomic power has been attempted. The prime objective was not just generation of power but assimilation of an advanced technology on an economically viable basis in the underdeveloped environment compounded with governmental organisational culture. Scientific and technical advances registered through the TAPS experience in the area of design, operation and maintenance are mentioned. Aspects of station performance, management and even economics are also covered. (auth.)

  9. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  10. Present status and problems of nuclear power generation

    International Nuclear Information System (INIS)

    Harada, Hiroshi.

    1984-01-01

    The nuclear power generation in Japan began in 1963 with the successful power generation in the JPDR of the Japan Atomic Energy Research Institute, and since then, more than 20 years have elapsed. The Japan Atomic Power Co. started the operation of an imported Calder Hall type gas-cooled reactor with 166,000 kWe output in Tokai Nuclear Power Station in July, 1966. In 1983, the quantity of nuclear power generation was 113.1 billion kWh, which was equivalent to 21.4 % of the total power generation in Japan. As of April 1, 1984, 25 nuclear power plants with 18.28 million kW output were in operation, 12 plants of 11.8 million kW were under construction, and 7 plants of 6.05 million kW were in preparation phase. Besides, the ATR ''Fugen'' with 165,000 kW output has been in operation, and the FBR ''Monju'' with 280,000 kW output is under construction. The capacity ratio of Japanese nuclear power stations attained 71.5 % in 1983. According to the ''Long term energy demand and supply outlook'' revised in November, 1983, the nuclear power generation in 2000 will be about 62 million kW to cater for about 16 % of primary energy supply. The problems are the improvement of economy, the establishment of independent nuclear fuel cycle, the decommissioning of nuclear reactors and so on. (Kako, I.)

  11. The law governing power generation and the atomic energy law in Japan, with special regard to the current situation in the energy sector

    International Nuclear Information System (INIS)

    Fujiwara, J.

    1984-01-01

    This contribution characterises Japanese legislation on power generation and supply, goes into detail with regard to the current Atomic Energy Law within the framework of the overall legal concept governing power supply, and presents an outlook on future developments. A table summarizes the main problems in this field. (orig./HSCH) [de

  12. Collisional effects on metastable atom population in vapour generated by electron beam heating

    International Nuclear Information System (INIS)

    Dikshit, B; Majumder, A; Bhatia, M S; Mago, V K

    2008-01-01

    The metastable atom population distribution in a free expanding uranium vapour generated by electron beam (e-beam) heating is expected to depart from its original value near the source due to atom-atom collisions and interaction with electrons of the e-beam generated plasma co-expanding with the vapour. To investigate the dynamics of the electron-atom and atom-atom interactions at different e-beam powers (or source temperatures), probing of the atomic population in ground (0 cm -1 ) and 620 cm -1 metastable states of uranium was carried out by the absorption technique using a hollow cathode discharge lamp. The excitation temperature of vapour at a distance ∼30 cm from the source was calculated on the basis of the measured ratio of populations in 620 to 0 cm -1 states and it was found to be much lower than both the source temperature and estimated translational temperature of the vapour that is cooled by adiabatic free expansion. This indicated relaxation of the metastable atoms by collisions with low energy plasma electrons was so significant that it brings the excitation temperature below the translational temperature of the vapour. So, with increase in e-beam power and hence atom density, frequent atom-atom collisions are expected to establish equilibrium between the excitation and translational temperatures, resulting in an increase in the excitation temperature (i.e. heating of vapour). This has been confirmed by analysing the experimentally observed growth pattern of the curve for excitation temperature with e-beam power. From the observed excitation temperature at low e-beam power when atom-atom collisions can be neglected, the total de-excitation cross section for relaxation of the 620 cm -1 state by interaction with low energy electrons was estimated and was found to be ∼10 -14 cm 2 . Finally using this value of cross section, the extent of excitational cooling and heating by electron-atom and atom-atom collisions are described at higher e-beam powers

  13. Nuclear power generation: challenge in the 1980s

    International Nuclear Information System (INIS)

    Eklund, S.A.

    1981-01-01

    In the lecture ''Nuclear power generation - challenge in the 1980s'', attempt is made to predict the events arising in 1980s on the basis of the data available in the International Atomic Energy Agency. By the term ''challenge'', emphasis is placed on the potentiality of nuclear power for solving the world energy problem. This is indicated clearly by nuclear power currently accounting for 8%, of the total power generation in the world. The explanation in the above connection with figures and tables is made, including geographical distribution of reactors, nuclear power generation and total power generation in various countries, future capacity of nuclear power generation, situation of reactor operation, future installation of nuclear power plants, uranium demand/supply situation, spent fuel storage, etc. Then, discussion and analysis are made on such problems as waste management, economy, safety, and safeguards. (J.P.N.)

  14. The enforcement order for the law for arrangement of surrounding areas of power generating facilities

    International Nuclear Information System (INIS)

    1980-01-01

    This rule is established under the provisions of the law for the redevelopment of the surrounding areas of power generating facilities. Persons who install power generating facilities under the law include general electric power enterprises and wholesale electric power enterprises defined under the electric enterprises act and the Power Reactor and Nuclear Fuel Development Corporation. The scale of these facilities defined under the law is 350,000 kilo-watts output for atomic and thermal power generating facilities, 10,000 kilo-watts output for the facilities utilizing geothermal energy, 100,000 kilo-watts output for facilities whose main fuel is coal, and 1,000 kilo-watts output for hydraulic power generating facilities, etc. The facilities closely related to atomic power generation include the reprocessing and examination facilities of fuel materials spent in atomic power reactors, the reactors installed by the Japan Atomic Energy Research Institute for studying on the safety of atomic power reactors, the experimental fast reactors and the uranium enrichment facilities established by the Power Reactor and Nuclear Fuel Development Corporation. The public facilities in this rule are those for communication, sport and recreation, environment hygiene, education and culture, medicine, social welfare, fire fighting, etc. Governors of prefectures who intend to get approval under the law shall file redevelopment plans to the competent minister through the Minister of the International Trade and Industry. (Okada, K.)

  15. Chemical generation of iodine atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, Kevin B. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)]. E-mail: kevin.hewett@kirtland.af.mil; Hager, Gordon D. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States); Crowell, Peter G. [Northrup Grumman Information Technology, Science and Technology Operating Unit, Advanced Technology Division, P.O. Box 9377, Albuquerque, NM 87119-9377 (United States)

    2005-01-10

    The chemical generation of atomic iodine using a chemical combustor to generate the atomic fluorine intermediate, from the reaction of F{sub 2} + H{sub 2}, followed by the production of atomic iodine, from the reaction of F + HI, was investigated. The maximum conversion efficiency of HI into atomic iodine was observed to be approximately 75%, which is in good agreement with the theoretical model. The conversion efficiency is limited by the formation of iodine monofluoride at the walls of the combustor where the gas phase temperature is insufficient to dissociate the IF.

  16. Outline of renovation for Mihama Public Relations (PR) Center on atomic power generation and nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    The Mihama PR Center of Kansai Electric Power Co. on atomic power generation and nuclear applications is now under entire renovation. It was constructed accompanying the construction of No. 1 unit in Mihama Nuclear Power Station, and opened in November, 1967, as the only PR facility of open house system. Since then, more than 1.9 million persons visited there in 15 years. Recently the space has become difficult to provide satisfactorily sophisticated exhibits because the importance of nuclear power generation has increased, and the diversified contents have been required. On the other hand, its building was cramped since many rooms were accommodated in the single round building of total area 815 m/sup 2/. In addition, the building has required drastic looking-over because of its deterioration and damages due to aging. The promotion of the understanding for the early securing of nuclear power plant location has been decided as the principal promotion item. The plan includes the modification of the existing building to the exhibition hall only as well as the completion and re-arrangement of the exhibits. It has been determined to construct a new building connected to the existing building, which accommodates a meeting hall, offices, utility machine room, etc., a total area being increased to 1457 m/sup 2/. The fund required is about 600 million yen. The construction work has started on December 1, 1982, aiming at the opening in July, 1983. The meeting hall is designed to seat about 120 persons and to employ multi-screen image techniques.

  17. How is Electricity Generated from Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lajnef, D.

    2015-01-01

    Nuclear power is a proven, safe and clean source of power generation. A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical in all conventional thermal power stations the heat is used to generate steam which drives a steam turbine: the energy released from continuous fission of the atoms of the fuel is harnessed as heat in either a gas or water, and is used to produce steam. Nuclear Reactors are classified by several methods. It can be classified by type of nuclear reaction, by the moderator material, by coolant or by generation. There are several components common to most types of reactors: fuel, moderator, control rods, coolant, and containment. Nuclear reactor technology has been under continuous development since the first commercial exploitation of civil nuclear power in the 1950s. We can mention seven key reactor attributes that illuminate the essential differences between the various generations of reactors: cost effectiveness, safety, security and non-proliferation, fuel cycle, grid appropriateness and Economics. Today there are about 437 nuclear power reactors that are used to generate electricity in about 30 countries around the world. (author)

  18. Hamaoka Atomic Energy Hall, Chubu Electric Power Co. , Inc

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Y [Chubu Electric Power Co. Inc., Nagoya (Japan)

    1979-10-01

    Hamaoka Nuclear Power Station was constructed in the very large site of about 1.6 million m/sup 2/ surrounded by sand dunes and pine forests at the southern tip of Shizuoka Prefecture. Hamaoka Atomic Energy Hall was built on the right side of this power station. This hall had been planned as a part of the works commemorating the 20th anniversary of the founding of the company, and was opened in August, 1972. The building is of steel frame type, and has two floors of 1135 m/sup 2/ total area. The first floor comprises cinema room, power generation corner and open gallery, and the second floor comprises meeting room, native land corner and observation room. Moreover, there is observation platform on the roof. The purpose of the hall is coexistence and coprosperity with the regional residents, and 13 persons make explanations to visitors having reached to 1.9 million as of the end of June, 1979. It is incorporated in the sightseeing route centering around the Omaezaki lighthouse. The cinema hall accommodates 120 men, and the films concerning nuclear power generation and the construction of a nuclear power plant are shown. In the power generation corner, the explanation on nuclear power generation is made with models and panels. The third hall is being built now as energy corner, and it will be completed in autumn, 1979.

  19. Hamaoka Atomic Energy Hall, Chubu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Kawasaki, Yukio

    1979-01-01

    Hamaoka Nuclear Power Station was constructed in the very large site of about 1.6 million m 2 surrounded by sand dunes and pine forests at the southern tip of Shizuoka Prefecture. Hamaoka Atomic Energy Hall was built on the right side of this power station. This hall had been planned as a part of the works commemorating the 20th anniversary of the founding of the company, and was opened in August, 1972. The building is of steel frame type, and has two floors of 1135 m 2 total area. The first floor comprises cinema room, power generation corner and open gallery, and the second floor comprises meeting room, native land corner and observation room. Moreover, there is observation platform on the roof. The purpose of the hall is coexistence and coprosperity with the regional residents, and 13 persons make explanations to visitors having reached to 1.9 million as of the end of June, 1979. It is incorporated in the sightseeing route centering around the Omaezaki lighthouse. The cinema hall accommodates 120 men, and the films concerning nuclear power generation and the construction of a nuclear power plant are shown. In the power generation corner, the explanation on nuclear power generation is made with models and panels. The third hall is being built now as energy corner, and it will be completed in autumn, 1979. (Kako, I.)

  20. Evaluation of a hydride generation-atomic fluorescence system for the determination of arsenic using a dielectric barrier discharge atomizer

    International Nuclear Information System (INIS)

    Zhu Zhenli; Liu Jixin; Zhang Sichun; Na Xing; Zhang Xinrong

    2008-01-01

    A new atomizer based on atmospheric pressure dielectric barrier discharge (DBD) plasma was specially designed for atomic fluorescence spectrometry (AFS) in order to be applied to the measurement of arsenic. The characteristics of the DBD atomizer and the effects of different parameters (power, discharge gas, gas flow rate, and KBH 4 concentration) were discussed in the paper. The DBD atomizer shows the following features: (1) low operation temperature (between 44 and 70 deg. C, depending on the operation conditions); (2) low power consumption; (3) operation at atmospheric pressure. The detection limit of As(III) using hydride generation (HG) with the proposed DBD-AFS was 0.04 μg L -1 . The analytical results obtained by the present method for total arsenic in reference materials, orchard leaves (SRM 1571) and water samples GBW(E) 080390, agree well with the certified values. The present HG-DBD-AFS is more sensitive and reliable for the determination of arsenic. It is a very promising technique allowing for field arsenic analysis based on atomic spectrometry

  1. Nuclear power generation as seen from construction aspect

    International Nuclear Information System (INIS)

    Osaki, Yorihiko

    1984-01-01

    The measures to vitalize atomic energy industry in low economical growth age are grasped from the viewpoint of heightening the quality of technology, and the improvement of the economical efficiency of nuclear power generation as seen from construction aspect is discussed. By 2000, the nuclear power generation in Japan will be increased by about four times to 62 million kW, and the proportion of nuclear power increases steadily. Recently, the nuclear power stations in Japan have been stably operated at high level, and the capacity ratio has exceeded 70 %. However, the power generation cost tends to rise, and it is feared that the economical advantage over thermal power will be lost. Recently, the construction cost of nuclear power plants has continued to rise, which causes the high cost of nuclear power. The reason of the high construction cost is in short too much quantity of materials and long construction period. As the proposal to reduce the construction cost, three stages of the rationalization are discussed, such as the rationalization of simulated earthquake for design and the improvement of reactor building design. The promotion of technical development is indispensable for the cost reduction. (Kako, I.)

  2. The end of the nuclear power generation. On the recommendations of the ethics committee according to the 13th amendment to the Atomic Energy Act

    International Nuclear Information System (INIS)

    Becker, Peter

    2011-01-01

    With the 13th Amendment to the Atomic Energy Act the nuclear consequences of the earthquake disaster in Japan will result in an end to nuclear power generation in Germany. Here, the legislature resorted to unusual methods. For the first time, the legislature received advices from the ''ethics committee reliable energy supply''. This Ethics Commission adopted its recommendations ''on behalf of the Chancellor'' in the period from 4th April to 28th May, 2011. The understanding of this development, its epochal character and speed of decision-making requires an excursion into the economic history and the establishment of nuclear power generation with their legal protection.

  3. Human factors in atomic power plant

    International Nuclear Information System (INIS)

    Kawano, Ryutaro

    1997-01-01

    To ensure safety should have priority over all other things in atomic power plants. In Chernobyl accident, however, various human factors including the systems for bulb check after inspection and communication, troubles in the interface between hardwares such as warning speakers and instruments, and their operators, those in education and training for operators and those in the general management of the plant have been pointed out. Therefore, the principles and the practical measures from the aspect of human factors in atomic power plants were discussed here. The word, ''human factor'' was given a definition in terms of the direct cause and the intellectual system. An explanatory model for human factors, model SHEL constructed by The Tokyo Electric Power Co., Ltd., Inc. was presented; the four letter mean software(S), hardware(H), environment(E) and liveware(L). In the plants of the company, systemic measures for human error factors are taken now in all steps not only for design, operation and repairing but also the step for safety culture. Further, the level required for the safety against atomic power is higher in the company than those in other fields. Thus, the central principle in atomic power plants is changing from the previous views that technology is paid greater importance to a view regarding human as most importance. (M.N.)

  4. Water electrolysis plants for hydrogen and oxygen production. Shipped to Tsuruga Power Station Unit No.1, and Tokai No.2 power station, the Japan Atomic Power Co

    International Nuclear Information System (INIS)

    Ueno, Syuichi; Sato, Takao; Ishikawa, Nobuhide

    1997-01-01

    Ebara's water electrolysis plants have been shipped to Tsuruga Power Station Unit No.1, (H 2 generation rate: 11 Nm 3 /h), and Tokai No.2 Power Station (H 2 generation rate: 36 Nm 3 /h), Japan Atomic Power Co. An outcome of a business agreement between Nissho Iwai Corporation and Norsk Hydro Electrolysers (Norway), this was the first time that such water electrolysis plants were equipped in Japanese boiling water reactor power stations. Each plant included an electrolyser (for generating hydrogen and oxygen), an electric power supply, a gas compression system, a dehumidifier system, an instrumentation and control system, and an auxiliary system. The plant has been operating almost continuously, with excellent feedback, since March 1997. (author)

  5. Offshore atomic power plants

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Various merits of offshore atomic power plants are illustrated, and their systems are assessed. The planning of the offshore atomic power plants in USA is reviewed, and the construction costs of the offshore plant in Japan were estimated. Air pollution problem may be solved by the offshore atomic power plants remarkably. Deep water at low temperature may be advantageously used as cooling water for condensers. Marine resources may be bred by building artificial habitats and by providing spring-up equipments. In the case of floating plants, the plant design can be standardized so that the construction costs may be reduced. The offshore plants can be classified into three systems, namely artificial island system, floating system and sea bottom-based system. The island system may be realized with the present level of civil engineering, but requires the development of technology for the resistance of base against earthquake and its calculation means. The floating system may be constructed with conventional power plant engineering and shipbuilding engineering, but the aseismatic stability of breakwater may be a problem to be solved. Deep water floating system and deep water submerging system are conceivable, but its realization may be difficult. The sea bottom-based system with large caissons can be realized by the present civil engineering, but the construction of the caissons, stability against earthquake and resistance to waves may be problems to be solved. The technical prediction and assessment of new plant sites for nuclear power plants have been reported by Science and Technology Agency in 1974. The construction costs of an offshore plant has been estimated by the Ministry of International Trade and Industry to be yen71,026/kW as of 1985. (Iwakiri, K.)

  6. The enforcement order for the law for arrangement of surrounding areas of power generating facilities

    International Nuclear Information System (INIS)

    1979-01-01

    The order is defined under the law for arrangement of surrounding areas of power generating facilities. Establishers of power generating facilities shall be hereunder general electric enterprisers, wholesale electric enterprisers and the Power Reactor and Nuclear Fuel Development Corporation. The scale of power generating facilities provided by the order is 350,000 kilo-watts for atomic and steam power generation and 5,000 kilo-watts for hydroelectric power. Equipment closely related to atomic power generation shall include facilities for reprocessing and examination of nuclear fuel materials spent for power generating reactors, reactors used for research of the safety of power generating reactors, experimental fast breeding reactors and experimental uranium enrichment facilities. Requisites for the extent of industrial accumulation are that the area belongs to those self-governing bodies whose industrial accumulation is more than the 8th degree. Public facilities specified are those for communication, sports or recreation, environmental hygiene, education and culture, medicine, social welfare, fire fighting and heat supplying, etc. Governors of the prefectures shall file arrangement programs to the Minister in charge through the Minister of International Trade and Industry to get the permission stipulated by the law. Subsidies shall not be paid to those enterprises which are executed by the government or a part of the expenses is born or supported by it. (Okada, K.)

  7. Power control device of an atomic power plant

    International Nuclear Information System (INIS)

    Ootsuka, Shiro; Ito, Takero.

    1980-01-01

    Purpose: To improve the power controllability of an atomic power plant by improving the controllability, response and stability of the recirculation flow rate. Constitution: The power control device comprises a power detector of the reactor, which detects and operates the reactor power from the thermal power, neutron flux or the process quantity controlling the same, and a deviation detector which seeks deviation between the power signal of the power detector and the power set value of the reactor or power station. By use of the power control device constituted in this manner, the core flow rate is regulated by the power signal of the deviation detector thereby to control the power. (Aizawa, K.)

  8. Effort to grapple with improvement of security and reliability of nuclear power plant. Actions of the Japan Atomic Power Company

    International Nuclear Information System (INIS)

    Ishiguma, Kazuo

    2012-01-01

    Following the Great Tohoku Earthquake in 2011, Tokai No.2 reactor was shut down automatically. Three of emergency diesel generators worked automatically at loss-of-offsite-power and began to work the cooling system of reactor. The reactor could be kept stable and safe in cold state by management of power from the gas turbine electric generator and power source car. Actions of Japan Atomic Power Company (JAPC) for cold shutdown and Tsunami were stated. Inspection results after the earthquake and testimony of staff was described. Countermeasure of improvement of safety of nuclear power station is explained by ensuring of power source and water supply, crisis management system, countermeasure of accident, ensuring, and training of workers, and action for better understanding of reliance. (S.Y.)

  9. Scenarios for the popular initiatives 'Strom ohne Atom' (Electricity without nuclear power) and 'Moratorium Plus'

    International Nuclear Information System (INIS)

    Eckerle, K.; Haker, K.; Hofer, P.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the possible effects of two Swiss Popular Initiatives which called for the shutdown of nuclear power stations in Switzerland ('Strom ohne Atom'), the restriction of their operating life and the abstention from building new atomic power stations ('Moratorium Plus'). The report examines the energetic and financial consequences of the initiatives. The approaches used for the analysis are described and the energy policy actions required to avoid gaps in the supply of power after the possible closure of the power stations are discussed. Apart from a reference scenario (long-term utilisation of nuclear energy), scenarios for power generation using co-generation are presented. The problems posed by the resulting CO 2 and NO x emissions are discussed. Further scenarios review the contribution to be made by renewable sources of energy and increasing energy-conservation efforts. The costs of the shutdown of nuclear power stations are discussed and the results of a sensitivity analysis are presented

  10. Physical decommissioning of the Shippingport Atomic Power Station

    International Nuclear Information System (INIS)

    Crimi, F.P.

    1988-01-01

    The Shippingport Atomic Power Station consists of the nuclear steam supply system and associated radioactive waste processing systems, which are owned by the United States Department of Energy (USDOE), and the turbine-generator and balance of plant which is owned by the Duquesne Light Company. The station is located at Shippingport, Pennsylvania on seven acres of land leased by USDOE from the Duquesne Light Company. The Shippingport Station Decommissioning Project (SSDP) is being managed for the USDOE by the General Electric Company and its integated subcontractor, Morrison Knudsen-Ferguson (MK-F) Company. The objectives of the Shippingport Station Decommissioning Project (SSDP) are to: Demonstrate the safe and cost effective dismantlement of a large scale nuclear power plant; Provide useful data for future decommissioning projects

  11. Externalities of energy and atomic power

    International Nuclear Information System (INIS)

    2006-09-01

    Energy technology ensures not only energy supply but also has great impacts on society and environments. Economical value and effect evaluation alone doesn't mean appropriate so the evaluation of 'externalities' should be appreciated. In order to assess atomic power in this context, the Atomic Energy Society of Japan set up a research committee on 'externalities of energy and atomic power' from April 2002 to March 2006, whose activities were described in this report. In addition to environmental effects and environmental externalities, four areas were newly studied as follows: (1) biological effects of low dose rate exposure and externalities, (2) externalities as social/economical effects including stable supply and security, (3) energy technologies evaluation and (4) social choice and decision-making. (T. Tanaka)

  12. Nigeria nuclear power generation programme: Suggested way forward

    International Nuclear Information System (INIS)

    Adesanmi, C.A.

    2007-01-01

    It has now been established worldwide that nuclear power generation is needed to meet growing energy demands. The gases emitted from fossil fuel have serious adverse effects on the environment. The message from the 50th Annual General Conference of the International Atomic Energy Agency (IAEA) held in Vienna, September 2006 was very clear on this issue. There was a unanimous support for more nuclear power generation to meet the world energy demand. All the member states that can afford the nuclear power technology and willing to abide by the international regulations and safeguards were encouraged to do so. The requirements to participate in the nuclear power generation programme are political will and organized diplomacy, legislative and statutory framework, international safety obligations, institutional framework, public acceptability, capacity building and technology transfer, environmental concern , waste management and financing. Nigeria's performance on all the criteria was evaluated and found satisfactory. All these coupled with Nigeria's dire need for more power and better energy mix, are sufficient and undisputable reasons for the whole world to support Nigeria nuclear power generation programme. Definitely the programme poses serious challenges to the Nigerian Physicists. Therefore, Departments of Physics should endeavour to include nuclear physics option in their programme and work in collaboration with the faculty of Engineering in their various tertiary institutions in order to attain the necessary critical human capacity that will be needed to man the nuclear power industry within the next 10 years

  13. Inevitability of atomic energy in India's power programme

    International Nuclear Information System (INIS)

    Ramanna, R.

    1977-01-01

    The case for atomic energy as the inevitable answer to the energy problem of India has been emphatically put up and supported with data. Hydroelectric power is costly to develop and moreover its potential is not enough to meet India's growing energy requirements. On the grounds of economics and safety, nuclear power has been shown to be superior to power from coal-based power plants. India's proved reserves of coal are 21 billion tonnes out of which 80% has ash content more than 20% and in order to reach only half of the present per capita energy consumption in Europe, the present output of 90 million tonnes/year of coal will have to be increased by a factor of 10, which in addition raises the problem of its transportation to the plant sites. Secondly, total energy from the available coal is estimated at 160 x 10 12 kwh, while that from known reserves of 52,000 tonnes of uranium is 7.2 x 10 12 kwh if used in thermal reactors and 208 x 10 12 kwh if used in fast reactors. Thorium with its known reserves of 320,000 tonnes would give another 1280 x 10 12 kwh. As for safety and ecology, it has been pointed out that : (1) in U.S., the number of coal miners dying of black cancer is 1000 per 10 12 kwh of electricity generated, whereas the fatality rate of uranium miners due to lung cancer is 20 per 10 12 kwh of electricity generated and (2) safety has been the primary concern in all aspects of nuclear technology - mining, fuel production, reactor operation and radioactive waste processing. It has also been explained how the fear of any terrorist getting possession of plutonium for spreading it into atmosphere or making a nuclear bomb is highly improbable, because at any point throughout the fuel cycle plutonium is under strict security surveillance and it is impossible to make a nuclear device without the back-up of powerful laboratory facilities. Finally, India's three stage atomic power programme is described in brief. (M.G.B.)

  14. Atomic power development in USA

    International Nuclear Information System (INIS)

    Wiggin, E.

    1976-01-01

    Many problems concerning the atomic power development in USA are investigated and discussed. (Introduction of fast breeder reactors is not considered in this paper). The first problem is the raising of capital for plant construction. The second problem is the supply of uranium. Estimated amount of yellow cake and its price are presented and compared with estimated demands. It is concluded that 3.5x10 6 tons of yellow coke is sufficient for generating 7x10 8 KW of electric power up to about 2000. The third problem is the enrichment service. Balance of supply and demand is discussed together with the projected extension of existing plants and the construction of new plants. The completion of nuclear fuel cycle is discussed as the fourth problem. According to the author's opinion, technological problems of reprocessing, storing, waste disposal, and the utilization of mixed oxide fuel are not difficult to solve. Definite judgement of NRC and ERDA is strongly required. The last problem discussed in this paper is the public acceptance. The movements of anti-nuclear groups and the opinion of general public are analyzed and the role of AIF in presenting paper informations is discussed. (Aoki, K.)

  15. Present status and future perspective of development of atomic energy

    International Nuclear Information System (INIS)

    Takuma, Masao

    1990-01-01

    The last year was the 50th year from the discovery of the nuclear fission of uranium in 1939. The utilization of atomic energy made the unfortunate start as atomic bombs, but after the 'Atoms for Peace' declaration of President Eisenhauer, it has become to contribute to the development of mankind as nuclear power generation and radiation utilization. In Japan, the Atomic Energy Act was instituted in 1955, and the utilization of atomic energy has been eagerly promoted. As to nuclear power generation, as of the end of June, 1989, 423 power plants were in operation in the world, which generated 333 million kW, equivalent to 17 % of the total generated electric power. The nuclear power plants under construction and at planning stage were 199 with 190 million kW capacity, in this way, the development is advanced actively. At present in Japan, 38 nuclear power plants are in operation, generating 29.46 million kW, which has reached 30 % of the total generated electric power. The social environment surrounding atomic energy and the basic way of thinking on atomic energy development are discussed. The demand and supply of electric power in 21st century and atomic energy, and the policy of electric power companies to cope with it are explained. (K.I.)

  16. Radioactive waste management at Narora atomic power station in India

    International Nuclear Information System (INIS)

    Prasad, P.N.; Gupta, J.P.; Mittal, S.

    2001-01-01

    Modern society creates waste material, which have to be disposed of in nature without disturbing the ecological equilibrium. Hence effective waste management in all industries is a major concern today. Narora Atomic Power Station (NAPS) generates low and intermediate level liquid, solid and gaseous wastes during its operation and maintenance. The generation of wastes is controlled at the source itself. The wastes are managed by adequate and appropriate treatment before being released into the environment. Different types of liquid wastes are treated by chemical co-precipitation, ion exchange, evaporation, filtration, and dilution techniques. For handling and conditioning of solid wastes, volume reduction techniques such as incineration and baling are employed. The treated wastes are immobilised by incorporation into cement and polymer matrices. Gaseous waste is cleaned by passing through pre-filters and high efficiency particulate (HEPA) filters and diluted with inactive air prior to release to the atmosphere through a 145 m high stack to get further atmospheric dilution. Regular monitoring up to 30 km radius is carried out by fully equipped Environmental Survey and Micrometeorological Laboratory which functions independently under the Directorate of Health and Safety, Bhabha Atomic Research Centre (BARC), Mumbai. So far, the annual maximum dose to the public around NAPS is reported to be 0.2 to 0.3% of limit of 1 mSv/year recommended by the International Commission on Radiological Protection (ICRP). A decade of experience has proved that present practices of nuclear waste management at Narora Atomic Power Station are quite safe and effective with respect to ecological equilibrium. (author)

  17. Ministry of ordinance determining the technical standard concerning atomic energy facilities for power generation

    International Nuclear Information System (INIS)

    1985-01-01

    The ministerial ordinance provides for the technical standards for the power generation of nuclear facilities; i.e., electric power facilities generating electricity with nuclear energy for motive power, according to the Electricity Enterprises Act. The contents are as follows: protection against fires, aseismatic design, radiation protective barriers, structural protection for sitings, reactor installation, safety measures, materials and structures, safety valves, pressure resistance tests, reactor core, radiation shields, reactor cooling, emergency core cooling system, facility equipment, alarm system, reactor control system, reactor control room, fuel storage facility, fuel handling facility, ventilation equipment, radioactive contamination prevention, radioactive waste management facility, reactor containment facility, and so on. (Kubozono, M.)

  18. Protein Nano-Object Integrator: Generating atomic-style objects for use in molecular biophysics

    Science.gov (United States)

    Smith, Nicholas David Fenimore

    As researchers obtain access to greater and greater amounts of computational power, focus has shifted towards modeling macroscopic objects while still maintaining atomic-level details. The Protein Nano-Object Integrator (ProNOI) presented here has been designed to provide a streamlined solution for creating and designing macro-scale objects with atomic-level details to be used in molecular simulations and tools. To accomplish this, two different interfaces were developed: a Protein Data Bank (PDB), PDB-focused interface for generating regularly-shaped three-dimensional atomic objects and a 2D image-based interface for tracing images with irregularly shaped objects and then extracting three-dimensional models from these images. Each interface is dependent upon the C++ backend utility for generating the objects and ensures that the output is consistent across each program. The objects are exported in a standard PDB format which allows for the visualization and manipulation of the objects via standard tools available in Molecular Computational Biophysics.

  19. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang Leman; Zhou Lan

    2003-01-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states

  20. Operation and technology of high pulsed power generators

    International Nuclear Information System (INIS)

    Eyl, P.; Romary, P.

    1995-01-01

    In order to satisfy the needs of ''components and electronic circuits hardness'', a range of high pulsed power generators is available in the French Atomic Energy Commission. The goal of this paper is to present the general principles of operation and the main characteristics of the irradiation facilities which are operational at the CESTA center. Finally, we give a brief outline of the new technology developments. (authors). 6 refs., 16 figs

  1. Generation and amplification of a high-order sideband induced by two-level atoms in a hybrid optomechanical system

    Science.gov (United States)

    Liu, Zeng-Xing; Xiong, Hao; Wu, Ying

    2018-01-01

    It is quite important to enhance and control the optomechanically induced high-order sideband generation to achieve low-power optical comb and high-sensitivity sensing with an integrable structure. Here we present and analyze a proposal for enhancement and manipulation of optical nonlinearity and high-order sideband generation in a hybrid atom-cavity optomechanical system that is coherently driven by a bichromatic input field consisting of a control field and a probe field and that works beyond the perturbative regime. Our numerical analysis with experimentally achievable parameters confirms that robust high-order sideband generation and typical spectral structures with nonperturbative features can be created even under weak driven fields. The dependence of the high-order sideband generation on the atomic parameters are also discussed in detail, including the decay rate of the atoms and the coupling parameter between the atoms and the cavity field. We show that the cutoff order as well as the amplitude of the higher-order sidebands can be well tuned by the atomic coupling strength and the atomic decay rate. The proposed mechanism of enhancing optical nonlinearity is quite general and can be adopted to optomechanical systems with different types of cavity.

  2. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  3. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  4. Generation and storage of quantum states using cold atoms

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Josse, Vincent; Cviklinski, Jean

    2006-01-01

    Cold cesium or rubidium atomic samples have a good potential both for generation and storage of nonclassical states of light. Generation of nonclassical states of light is possible through the high non-linearity of cold atomic samples excited close to a resonance line. Quadrature squeezing, polar...

  5. (Shippingport Atomic Power Station). Quarterly operating report, fourth quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    At the beginning of the fourth quarter of 1980, the Shippingport Atomic Power Station remained shutdown for the normally planned semiannual maintenance and testing program, initiated September 12, 1980. Operational testing began on November 7. Maximum power was achieved November 28 and was maintained throughout the remainder of the quarter except as noted. The LWBR Core has generated 19,046.07 EFPH from start-up through the end of the quarter. During this quarter, approximately 0.000025 curies of Xe 133 activity were released from the station. During the fourth quarter of 1980, 1081 cubic feet of radioactive solid waste was shipped out of state for burial. These shipments contained 0.037 curies of radioactivity.

  6. Thermoelectric power generator for variable thermal power source

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  7. Power generation technologies

    CERN Document Server

    Breeze, Paul

    2014-01-01

    The new edition of Power Generation Technologies is a concise and readable guide that provides an introduction to the full spectrum of currently available power generation options, from traditional fossil fuels and the better established alternatives such as wind and solar power, to emerging renewables such as biomass and geothermal energy. Technology solutions such as combined heat and power and distributed generation are also explored. However, this book is more than just an account of the technologies - for each method the author explores the economic and environmental costs and risk factor

  8. Atomic power in space: A history

    International Nuclear Information System (INIS)

    1987-03-01

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs

  9. Power generation statistics

    International Nuclear Information System (INIS)

    Kangas, H.

    2001-01-01

    The frost in February increased the power demand in Finland significantly. The total power consumption in Finland during January-February 2001 was about 4% higher than a year before. In January 2001 the average temperature in Finland was only about - 4 deg C, which is nearly 2 degrees higher than in 2000 and about 6 degrees higher than long term average. Power demand in January was slightly less than 7.9 TWh, being about 0.5% less than in 2000. The power consumption in Finland during the past 12 months exceeded 79.3 TWh, which is less than 2% higher than during the previous 12 months. In February 2001 the average temperature was - 10 deg C, which was about 5 degrees lower than in February 2000. Because of this the power consumption in February 2001 increased by 5%. Power consumption in February was 7.5 TWh. The maximum hourly output of power plants in Finland was 13310 MW. Power consumption of Finnish households in February 2001 was about 10% higher than in February 2000, and in industry the increase was nearly zero. The utilization rate in forest industry in February 2001 decreased from the value of February 2000 by 5%, being only about 89%. The power consumption of the past 12 months (Feb. 2000 - Feb. 2001) was 79.6 TWh. Generation of hydroelectric power in Finland during January - February 2001 was 10% higher than a year before. The generation of hydroelectric power in Jan. - Feb. 2001 was nearly 2.7 TWh, corresponding to 17% of the power demand in Finland. The output of hydroelectric power in Finland during the past 12 months was 14.7 TWh. The increase from the previous 12 months was 17% corresponding to over 18% of the power demand in Finland. Wind power generation in Jan. - Feb. 2001 was exceeded slightly 10 GWh, while in 2000 the corresponding output was 20 GWh. The degree of utilization of Finnish nuclear power plants in Jan. - Feb. 2001 was high. The output of these plants was 3.8 TWh, being about 1% less than in Jan. - Feb. 2000. The main cause for the

  10. Generation of a slow and continuous cesium atomic beam for an atomic clock

    International Nuclear Information System (INIS)

    Park, Sang Eon; Lee, Ho Seong; Shin, Eun-joo; Kwon, Taeg Yong; Yang, Sung Hoon; Cho, Hyuck

    2002-01-01

    A thermal atomic beam from a cesium oven was slowed down by use of the Hoffnagle modified white-light cooling technique. In addition, the atomic beam was collimated by use of a two-dimensional optical molasses that was installed transverse to the atomic-beam direction. The flux of the atomic beam was 2x10 10 atoms/s, an increase of a factor of 16 as a result of the collimation. The mean longitudinal velocity was ∼24.4 m/s, and the rms velocity spread of the slowed atomic beam was ∼1 m/s. Compared with other methods, we found that the Hoffnagle method is suitable for the generation of slow atomic beams to be used in an atomic clock, which requires an ultralow magnetic field environment. This atomic beam was deflected by an angle of 30 deg. by a one-dimensional optical molasses to separate it from laser light and high-velocity atoms

  11. High-dimensional atom localization via spontaneously generated coherence in a microwave-driven atomic system.

    Science.gov (United States)

    Wang, Zhiping; Chen, Jinyu; Yu, Benli

    2017-02-20

    We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.

  12. Cheaper power generation from surplus steam generating capacities

    International Nuclear Information System (INIS)

    Gupta, K.

    1996-01-01

    Prior to independence most industries had their own captive power generation. Steam was generated in own medium/low pressure boilers and passed through extraction condensing turbines for power generation. Extraction steam was used for process. With cheaper power made available in Nehru era by undertaking large hydro power schemes, captive power generation in industries was almost abandoned except in sugar and large paper factories, which were high consumers of steam. (author)

  13. Atomic power in space: A history

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs.

  14. Burning issue of energy problem after Fukushima disaster of TEPCO's atomic power stations

    International Nuclear Information System (INIS)

    Harada, Shoji

    2012-01-01

    Strikes of unanticipated enormous earthquake and subsequent tsunami brought unbelievable disaster in eastern Japan on March 11, 2012. In particular, collapse of cooling system of TEPCO's Fukushima atomic power stations resulted in IAEA-defined level7 accident including heavy radiation, hydrogen explosion -induced collapse of the building of power station No.2 and No.4 and melt through of nuclear pressure vessel No1.3.4 At an initial stage of the disaster, nobody knew precisely what happened at the power stations. According to the recent report of the national investigation committee, precise reason of the collapse of the cooling system whether it was induced by the strike of huge earthquake or tsunami is still unclear. Due to poor risk management of the government and TEPCO and closure of the precise disaster information, people became suspicious and nervous about the atomic power station. Fifty four atomic power stations have been constructed for these forty years in Japan. On last May 04, all the atomic power stations were shut down due to periodic inspection. However, restart of them became hot discussion. Although atomic power station was regarded as a powerful tool to reduce carbon dioxide several years ago, this situation after March 11 completely changed. In many countries which possess atomic power station, making a road map to develop recyclable energy is a burning issue. It should be noted that German spent about thirty years to declare atomic energy free society. Finally necessity of succession of technology of utilizing atomic power is emphasized. Politics on depending atomic power differs in each country. Therefore, study from Fukushima disaster should be widely used to prevent from unexpected accident of atomic power station.

  15. Shippingport Atomic Power Station decommissioning program and applied technology

    Energy Technology Data Exchange (ETDEWEB)

    Crimi, F P; Skavdahl, R E

    1985-01-01

    The Shippingport Station decommissioning project is the first decommissioning of a large scale nuclear power plant, and also the first nuclear power plant to be decommissioned which has continued the power operation as long as 25 years. The nuclear facilities which have been decommissioned so far have operated for shorter period and were small as compared with commercial power reactors, but the experience gained by those decommissionings as well as that gained by nuclear plant maintenance and modification has helped to establish the technology and cost basis for Shippingport and future decommissioning projects. In this paper, the current status of the preparation being made by the General Electric Co., its subcontractor and the US Department of Energy for starting the decommissioning phase of the Shippingport Atomic Power Station is described. Also remote metal cutting, decontamination, concrete removal, the volume reduction of liquids and solids and robotics which will be applied to the project are discussed. The Shippingport Station is a 72 MWe PWR plant having started operation in 1957, and permanently shut down in 1982, after having generated over 7.4 billion kWh of electricity.

  16. A study of public acceptance of construction of atomic power plant

    International Nuclear Information System (INIS)

    Harada, Kazunori; Matsuhashi, Ryuji; Yoshida, Yoshikuni

    2011-01-01

    In June 2010, Basic Energy Plan was approved in a Cabinet meeting. It says that Japan aims to construct more than 14 atomic power plants by 2030. Today, there are 12 plans of construction of atomic power plant, but it is hard to say that their plans easily come off. That's because public acceptance of atomic power plant is low in Japan, for example local residents wage opposition campaigns. This study conducts a survey in the form of a questionnaire and analyzes it by Analytical Hierarchical Process (AHP). Analytic Hierarchy Process is a structured technique for dealing with complex decisions. A questionnaire using AHP is very easy to answer and analyze. This survey was conducted in 2 areas. First area is Hohoku-cho, Yamaguchi Pref. that had a plan of construction of atomic power plant and the plan was demolished by opposition campaigns. Second area is Kaminoseki-cho, Yamaguchi Pref. that has a plan of construction of atomic power plant now and the plan is working order. Public acceptance can be calculated from survey data of 2 areas, and it helps to understand why first area disapproved a plan of atomic power plant and second area approves it. We consider a model to analyze public acceptance. (author)

  17. Solar thermal aided power generation

    International Nuclear Information System (INIS)

    Hu, Eric; Yang, YongPing; Nishimura, Akira; Yilmaz, Ferdi; Kouzani, Abbas

    2010-01-01

    Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO 2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

  18. Development of a 0.1 kW thermoelectric power generator for military applications

    International Nuclear Information System (INIS)

    Menchen, W.R.

    1986-01-01

    A man-portable thermoelectric power source is being developed for the U.S. Army. Initially used as a dedicated power supply for the XM-21 Chemical Agent Alarm System, the set can also meet a variety of general purpose user requirements. Development of a thermoelectric power conversion device is being undertaken by the U.S. Army LABCOM Electronics Technology and Devices Laboratory to fill a need for a generator that is silent, lightweight, multi-fueled and reliable. The 0.1 kW Power Generator is rectangular in configuration and consists of a power module, electronic control assembly and fuel delivery system housed within a tubular structural frame. The generator operates on military fuels ranging from kerosene to diesel oil. Multi-fuel capability is achieved using an ultrasonic atomizer and regenerative burner developed specifically for this application. This paper provides the first public presentation of results achieved during the Advanced Development Phase of the 0.1 kW Power Generator. The development process is briefly traced with emphasis on a description of the system and test results obtained to date

  19. How power is generated in a nuclear reactor

    International Nuclear Information System (INIS)

    Swaminathan, V.

    1978-01-01

    Power generation by nuclear fission as a result of chain reaction caused by neutrons interacting with fissile material such as 235 U, 233 U and 239 Pu is explained. Electric power production by reactor is schematically illustrated. Materials used in thermal reactor and breeder reactor are compared. Fuel reprocessing and disposal of radioactive waste coming from reprocessing plant is briefly described. Nuclear activities in India are reviewed. Four heavy water plants and two power reactors are under construction and will be operative in the near future. Two power reactors are already in operation. Nuclear Fuel Complex at Hyderabad supplies fuel element to the reactors. Fuel reprocessing and waste management facility has been set up at Tarapur. Bhabha Atomic Research Centre at Bombay and Reactor Research Centre at Kalpakkam near Madras are engaged in applied and basic research in nuclear science and engineering. (B.G.W.)

  20. Power generation

    International Nuclear Information System (INIS)

    Nunez, Anibal D.

    2001-01-01

    In the second half of twentieth century, nuclear power became an industrial reality. Now the operating 433 power plants, the 37 plants under construction, near 9000 years/reactor with only one serious accident with emission of radioactive material to the environment (Chernobyl) show the maturity of this technology. Today nuclear power contribute a 17% to the global generation and an increase of 75 % of the demand of electricity is estimated for 2020 while this demand is expected to triplicate by 2050. How this requirement can be satisfied? All the indicators seems to demonstrate that nuclear power will be the solution because of the shortage of other sources, the increase of the prices of the non renewable fuels and the scarce contribution of the renewable ones. In addition, the climatic changes produced by the greenhouse effect make even more attractive nuclear power. The situation of Argentina is analyzed and compared with other countries. The convenience of an increase of nuclear power contribution to the total national generation seems clear and the conclusion of the construction of the Atucha II nuclear power plant is recommended

  1. Atomic Power | Taylor | Zede Journal

    African Journals Online (AJOL)

    Zede Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3 (1968) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Atomic Power. D Taylor. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT ...

  2. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Jirasek, Vit; Spalek, Otomar; Censky, Miroslav; Pickova, Irena; Kodymova, Jarmila; Jakubec, Ivo

    2007-01-01

    A method of the chemical generation of atomic iodine for a chemical oxygen-iodine laser (COIL) using atomic fluorine as a reaction intermediate was studied experimentally. This method is based on the reaction between F 2 and NO providing F atoms, and the reaction of F with HI resulting in iodine atoms generation. Atomic iodine was produced with efficiency exceeding 40% relative to initial F 2 flow rate. This efficiency was nearly independent on pressure and total gas flow rate. The F atoms were stable in the reactor up to 2 ms. An optimum ratio of the reactants flow rates was F 2 :NO:HI = 1:1:1. A rate constant of the reaction of F 2 with HI was determined. The numerical modelling showed that remaining HI and IF were probably consumed in their mutual reaction. The reaction system was found suitable for employing in a generator of atomic iodine with its subsequent injection into a supersonic nozzle of a COIL

  3. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  4. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-01

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  5. Power generating device

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Toshihiro

    1989-05-02

    The existing power generating device consisting of static components only lacks effective measures to utilize solar energy and maintain power generation, hence it is inevitable to make the device much larger and more complicated in order to utilize it as the primary power source for artificial satellites. In view of the above, in order to offer a power generating device useful for the primary power source for satellites which is simple and can keep power generation by solar energy, this invention proposes a power generating device composed of the following elements: (1) a rectangular parallelopiped No. II superconductor plate; (2) a measure to apply a magnetic field to one face of the above superconductor plate; (3) a measure to provide a temperature difference within the range between the starting temperature and the critical temperature of superconductivity to a pair of faces meeting at right angles with the face to which the magnetic field was applied by the above measure; (4) a measure to provide an electrode on each of the other pair of faces meeting at right angles with the face to which the magnetic field was applied by the above measure and form a closed circuit by connecting the each electrode above to each of a pair of electrodes of the load respectively; and (5) a switching measure which is installed in the closed circuit prepared by the above measure and shuts off the closed circuit when the direction of the electric current running the above closed circuit is reversed. 6 figs.

  6. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  7. Simultaneous determination of arsenic and antimony by hydride generation atomic fluorescence spectrometry with dielectric barrier discharge atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhi [Department of Chemistry, Key Laboratory for Atomic and Molecular Nanosciences of the Education Ministry, Tsinghua University, Beijing 100084 (China); Kuermaiti, Biekesailike [Department of Chemistry, Key Laboratory for Atomic and Molecular Nanosciences of the Education Ministry, Tsinghua University, Beijing 100084 (China); Products Quality Inspection Institute, Yili, Xinjiang 835000 (China); Wang Juan; Han Guojun; Zhang Sichun [Department of Chemistry, Key Laboratory for Atomic and Molecular Nanosciences of the Education Ministry, Tsinghua University, Beijing 100084 (China); Zhang Xinrong, E-mail: xrzhang@mail.tsinghua.edu.cn [Department of Chemistry, Key Laboratory for Atomic and Molecular Nanosciences of the Education Ministry, Tsinghua University, Beijing 100084 (China)

    2010-12-15

    Simultaneous determination of As and Sb by hydride generation atomic fluorescence spectrometry was developed with the dielectric barrier discharge plasma as the hydride atomizer. The low-temperature and atmospheric-pressure micro-plasma was generated in a quartz cylindrical configuration device, which was constructed by an axial internal electrode and an outer electrode surrounding outside of the tube. The optimization of the atomizer construction and parameters for hydride generation and fluorescence detection systems were carried out. Under the optimized conditions, the detection limits for As and Sb were 0.04 and 0.05 {mu}g L{sup -1}, respectively. In addition, the applicability of the present method was confirmed by the detection of As and Sb in reference materials of quartz sandstone (GBW07106) and argillaceous limestone (GBW07108). The present work provided a new approach to exploit the miniaturized hydride generation dielectric barrier discharge atomic fluorescence spectrometry system for simultaneous multi-element determination.

  8. Simultaneous determination of arsenic and antimony by hydride generation atomic fluorescence spectrometry with dielectric barrier discharge atomizer

    International Nuclear Information System (INIS)

    Xing Zhi; Kuermaiti, Biekesailike; Wang Juan; Han Guojun; Zhang Sichun; Zhang Xinrong

    2010-01-01

    Simultaneous determination of As and Sb by hydride generation atomic fluorescence spectrometry was developed with the dielectric barrier discharge plasma as the hydride atomizer. The low-temperature and atmospheric-pressure micro-plasma was generated in a quartz cylindrical configuration device, which was constructed by an axial internal electrode and an outer electrode surrounding outside of the tube. The optimization of the atomizer construction and parameters for hydride generation and fluorescence detection systems were carried out. Under the optimized conditions, the detection limits for As and Sb were 0.04 and 0.05 μg L -1 , respectively. In addition, the applicability of the present method was confirmed by the detection of As and Sb in reference materials of quartz sandstone (GBW07106) and argillaceous limestone (GBW07108). The present work provided a new approach to exploit the miniaturized hydride generation dielectric barrier discharge atomic fluorescence spectrometry system for simultaneous multi-element determination.

  9. Atomic Power in Space: A History

    Science.gov (United States)

    1987-03-01

    "Atomic Power in Space," a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. Interplanetary space exploration successes and achievements have been made possible by this technology, for which there is no known substitue.

  10. On rings generating supernilpotent and special atoms | France ...

    African Journals Online (AJOL)

    We study prime rings which generate supernilpotent (respectively special) atoms, that is, atoms of the lattice of all supernilpotent (respectively special) radicals. A prime ring A is called a **-ring if the smallest special class containing A is closed under semiprime homomorphic images of A. A semiprime ring A whose every ...

  11. Harmonic and power balance tools for tapping-mode atomic force microscope

    International Nuclear Information System (INIS)

    Sebastian, A.; Salapaka, M. V.; Chen, D. J.; Cleveland, J. P.

    2001-01-01

    The atomic force microscope (AFM) is a powerful tool for investigating surfaces at atomic scales. Harmonic balance and power balance techniques are introduced to analyze the tapping-mode dynamics of the atomic force microscope. The harmonic balance perspective explains observations hitherto unexplained in the AFM literature. A nonconservative model for the cantilever - sample interaction is developed. The energy dissipation in the sample is studied and the resulting power balance equations combined with the harmonic balance equations are used to estimate the model parameters. Experimental results confirm that the harmonic and power balance tools can be used effectively to predict the behavior of the tapping cantilever. [copyright] 2001 American Institute of Physics

  12. Renewable energies for power generation

    International Nuclear Information System (INIS)

    Freris, L.; Infield, D.

    2009-01-01

    Power generation from renewable energy sources is different from power generation from classical energies (nuclear, thermal..). Therefore, the integration into the grid of the electricity supplied by renewable sources requires a deep thinking. The reason is that these power sources are controlled by variable elements, like wind, water and sun, which condition production. This book deals with the following aspects in detail: characteristics of classical and intermittent generators; grid balancing between supply and demand; conversion methods of renewable energies into electricity; power systems; privatizing of power generation and birth of new markets, in particular the 'green' power market; development of renewable energies thanks to technical advances. It gives a comprehensive overview of the present day available renewable energy sources for power generation. (J.S.)

  13. Beaver Valley Power Station and Shippingport Atomic Power Station. 1977 annual environmental report: radiological. Volume 2

    International Nuclear Information System (INIS)

    1978-01-01

    The environmental monitoring conducted during 1977 in the vicinity of the Beaver Valley Power Station and the Shippingport Atomic Power Station is described. The environmental monitoring program consists of onsite sampling of water, gaseous, and air effluents, as well as offsite monitoring of water, air, river sediments, and radiation levels in the vicinity of the site. The report discusses releases of small quantities of radioactivity to the Ohio River from the Beaver Valley Power Station and Shippingport Atomic Power Station during 1977

  14. Fuzzy algorithms to generate level controllers for nuclear power plant steam generators

    International Nuclear Information System (INIS)

    Moon, Byung Soo; Park, Jae Chang; Kim, Dong Hwa; Kim, Byung Koo

    1993-01-01

    In this paper, we present two sets of fuzzy algorithms for the steam generater level control; one for the high power operations where the flow error is available and the other for the low power operations where the flow error is not available. These are converted to a PID type controller for the high power case and to a quadratic function form of a controller for the low power case. These controllers are implemented on the Compact Nuclear Simulator at Korea Atomic Energy Research Institute and tested by a set of four simulation experiments for each. For both cases, the results show that the total variation of the level error and of the flow error are about 50% of those by the PI controllers with about one half of the control action. For the high power case, this is mainly due to the fact that a combination of two PD type controllers in the velocity algorithm form rather than a combination of two PI type controllers in the position algorithm form is used. For the low power case, the controller is essentially a PID type with a very small integral component where the average values for the derivative component input and for the controller output are used. (Author)

  15. Philosophy of power generation

    International Nuclear Information System (INIS)

    Amein, H.; Joyia, Y.; Qureshi, M.N.; Asif, M.

    1995-01-01

    In view of the huge power demand in future, the capital investment requirements for the development of power projects to meet the future energy requirements are so alarming that public sector alone cannot manage to raise funds and participation of the private sector in power generation development has become imperative. This paper discusses a power generation philosophy based on preference to the exploitation of indigenous resources and participation of private sector. In order to have diversification in generation resources, due consideration has been given to the development of nuclear power and even non-conventional but promising technologies of solar, wind, biomass and geothermal etc. (author)

  16. Taming the atom: facing the future with nuclear power

    International Nuclear Information System (INIS)

    Blair, I.M.

    1983-01-01

    The subject is discussed under the headings: the mythology of the atom; what is nuclear power (the atom and its nucleus; radioactivity; nuclear fission; breeding nuclear fuel; how a reactor works; the natural reactor at Oklo; the fast reactor; nuclear fusion); the nuclear industry in profile (uranium mining; isotope enrichment; reactor fuel fabrication; types of reactor; decommissioning redundant stations; transport of spent nuclear fuel; reprocessing the spent fuel; management of waste products); nuclear power in the energy scene (energy in man's development; the impending crisis; the need for energy conservation; the role of nuclear power; status of the fast reactor programme; atoms by wire; other possible sources; the question of economics; the next few decades); matters of public concern (biological effects of radiation; probability and consequences of accidents; worries about waste disposal; no free lunches; the technological imperative; the centralisation of power; fears about terrorism; threats to civil liberties; proliferation of nuclear weapons); the great nuclear debate (depth of public concern; lack of public knowledge; differing national techniques; put it somewhere else; a question of credibility). (U.K.)

  17. Magnetohydrodynamic (MHD) power generation

    International Nuclear Information System (INIS)

    Chandra, Avinash

    1980-01-01

    The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)

  18. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  19. Magnetohydrodynamic power generation

    International Nuclear Information System (INIS)

    Sheindlin, A.E.; Jackson, W.D.; Brzozowski, W.S.; Rietjens, L.H.Th.

    1979-01-01

    The paper describes research and development in the field of magnetohydrodynamic power generation technology, based on discussions held in the Joint IAEA/UNESCO International Liaison Group on MHD electrical power generation. Research and development programmes on open cycle, closed cycle plasma and liquid-metal MHD are described. Open cycle MHD has now entered the engineering development stage. The paper reviews the results of cycle analyses and economic and environmental evaluations: substantial agreement has been reached on the expected overall performance and necessary component specifications. The achievement in the Soviet Union on the U-25 MHD pilot plant in obtaining full rated electrical power of 20.4 MW is described, as well as long duration testing of the integrated operation of MHD components. Work in the United States on coal-fired MHD generators has shown that, with slagging of the walls, a run time of about one hundred hours at the current density and electric field of a commercial MHD generator has been achieved. Progress obtained in closed cycle plasma and liquid metal MHD is reviewed. Electrical power densities of up to 140 MWe/m 3 and an enthalpy extraction as high as 24 per cent have been achieved in noble gas MHD generator experiments. (Auth.)

  20. Four giga joule flywheel motor-generator for JT-60 toroidal field coil power supply system

    International Nuclear Information System (INIS)

    Matsukawa, T.; Kanke, M.; Shimada, R.; Yoshida, Y.; Yamashita, K.; Nakayama, T.

    1986-01-01

    A fusion test reactor often needs motor-generators as a power source in order to reduce disturbances to utility lines. The toroidal field coil power supply system of JT-60 also adopted a motor-generator for this purpose. The motor-generator started operation in April, 1985 at Japan Atomic Energy Research Institute together with the whole system. The motor-generator has several special features both electrically and mechanically. One electrical feature is that it is used as a pulse source of large current and power for periodic short-time duty. A mechanical feature is that a large flywheel is directly coupled to the motor-generator shaft and operated intermittently and at high speed. Therefore detailed investigations were carried out concerning constitution, characteristics as well as the coordination with the system performance. This paper describes the outlines of the flywheel motor-generator and discusses several topics

  1. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duben, Ondřej [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Hlavova 8, Prague, CZ 128 43 Czech Republic (Czech Republic); Boušek, Jaroslav [Faculty of Electrical Engineering and Communications, Brno University of Technology, Technická 1058/10, 61600 Brno (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic)

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min{sup −1} Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml{sup −1} Se in the DBD and 0.15 ng ml{sup −1} Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH{sub 2} atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated.

  2. Methods of selection and training of personnel for the Rajasthan atomic power station

    International Nuclear Information System (INIS)

    Sarma, M.S.R.; Wagadarikar, V.K.

    1975-01-01

    Personnel selected to work in a nuclear electric generating station rarely have the necessary knowledge and experience in all the related fields. A station can be operated and maintained and at the same time radiation doses absorbed by station personnel can be kept to a minimum only if the operating personnel are familiar with, and can be used for, all phases of station operation and the maintainers have more than one skill or trade. More technical knowledge and more diversified skills, in addition to those required in other industries, are needed because of the nature of the nuclear reactor and the associated radiation environment and high automation. A training programme has been developed at the Nuclear Training Centre (NTC) near the Rajasthan Atomic Power Station (RAPS), Kota, India, to cater to the needs of the operation and maintenance personnel for nuclear power stations including the Madras Atomic Power Station. This programme has been in operation for the last five years. The paper describes the method of recruitment/selection of various categories of personnel and the method of training them to meet the job requirements. (author)

  3. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    International Nuclear Information System (INIS)

    Ataman, O. Yavuz

    2008-01-01

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C 0 , where the change in characteristic mass, m 0 , can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E max , maximum enhancement factor; E t , enhancement for 1.0 minute sampling and E v , enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps

  4. Electric power generation

    International Nuclear Information System (INIS)

    Pinske, J.D.

    1981-01-01

    Apart from discussing some principles of power industry the present text deals with the different ways of electric power generation. Both the conventional methods of energy conversion in heating and water power stations and the facilities for utilizing regenerative energy sources (sun, wind, ground heat, tidal power) are considered. The script represents the essentials of the lecture of the same name which is offered to the students of the special subject 'electric power engineering' at the Fachhochschule Hamburg. It does not require any special preliminary knowledge except for the general principles of electrical engineering. It is addressing students of electrical engineering who have passed their preliminary examination at technical colleges and universities. Moreover, it shall also be of use for engineers who want to obtain a quick survey of the structure and the operating characteristics of the extremely different technical methods of power generation. (orig.) [de

  5. Generation of Bell, NOON and W states via atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Rameez-ul; Saif, Farhan [Department of Electronics, Quaid-i-Azam University, Islamabad (Pakistan); Khosa, Ashfaq H [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2008-02-14

    We propose atom interferometric techniques for the generation of Bell, NOON and W states of an electromagnetic field in high-Q cavities. The fundamental constituent of these techniques is off-resonant Bragg diffraction of atomic de Broglie waves. We show good success probabilities for these schemes under the currently available experimental environment of atom interferometry.

  6. The Gyllingnaes investigation - a survey of altitudes in the Gylling postal area towards atomic power

    International Nuclear Information System (INIS)

    Boldsen, N.; Buelow, W.

    1977-01-01

    An investigation of the altitudes of the local population towards the possible construction of an atomic power station at Gyllingnaes in Denmark. It is primarily based on questionnaries, secondarily on interviews. To put the results in better perspective, similar investigations from 1974-1976 are also dealt with. It is concluded that the majority of the population are against atomic power; not only do they oppose the erection of an atomic power station at Gyllingnaes but they oppose the building of atomic power stations in general. An attempt is made to characterize the ''typical'' opponent and the ''typical'' supporter of atomic power. (B.P.)

  7. Effect of laser power and specimen temperature on atom probe analyses of magnesium alloys

    International Nuclear Information System (INIS)

    Oh-ishi, K.; Mendis, C.L.; Ohkubo, T.; Hono, K.

    2011-01-01

    The influence of laser power, wave length, and specimen temperature on laser assisted atom probe analyses for Mg alloys was investigated. Higher laser power and lower specimen temperature led to improved mass and spatial resolutions. Background noise and mass resolutions were degraded with lower laser power and higher specimen temperature. By adjusting the conditions for laser assisted atom probe analyses, atom probe results with atomic layer resolutions were obtained from all the Mg alloys so far investigated. Laser assisted atom probe investigations revealed detailed chemical information on Guinier-Preston zones in Mg alloys. -- Research highlights: → We study performance of UV laser assisted atom probe analysis for Mg alloys. → There is an optimized range of laser power and specimen temperature. → Optimized UV laser enables atom probe data of Mg alloys with high special resolution.

  8. Advertising the atom: federal promotion of nuclear power, 1953-1984

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    1984-01-01

    The public relations strategies of the Atomic Energy Commission (AEC) and the nuclear power industry reveal both public and official perceptions of nuclear power and the social uses of technology in general during the first 15 years after passage of the Atomic Energy Act of 1954. The relation between nuclear promotion and regulation also helps explain the environmental crisis of the 1969-1984 years. Project Plowshare coincides roughly with the early promotional years, and provides a case study of the relation of regulatory standards to promotion in AEC policymaking. The author examines the environmentalists challenge to nuclear power that emerged in 1969 alongside government and industry response. He concludes with an assessment of the present state of federal nuclear power policy and of the nuclear power industry.

  9. Advertising the atom: federal promotion of nuclear power, 1953-1984

    International Nuclear Information System (INIS)

    Smith, M.

    1984-01-01

    The public relations strategies of the Atomic Energy Commission (AEC) and the nuclear power industry reveal both public and official perceptions of nuclear power and the social uses of technology in general during the first 15 years after passage of the Atomic Energy Act of 1954. The relation between nuclear promotion and regulation also helps explain the environmental crisis of the 1969-1984 years. Project Plowshare coincides roughly with the early promotional years, and provides a case study of the relation of regulatory standards to promotion in AEC policymaking. The author examines the environmentalists challenge to nuclear power that emerged in 1969 alongside government and industry response. He concludes with an assessment of the present state of federal nuclear power policy and of the nuclear power industry

  10. Optical lattice on an atom chip

    DEFF Research Database (Denmark)

    Gallego, D.; Hofferberth, S.; Schumm, Thorsten

    2009-01-01

    Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retroreflected using the atom chip surface as a high......-quality mirror, generating a vertical array of purely optical oblate traps. We transfer thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice....

  11. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    Science.gov (United States)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-03-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  12. Electricity Generation Through the Koeberg Nuclear Power Station of Eskom in South Africa

    International Nuclear Information System (INIS)

    Dladla, G.; Joubert, J.

    2015-01-01

    The poster provides information on the process of nuclear energy generation in a nuclear power plant in order to produce electricity. Nuclear energy currently provides approximately 11% of the world’s electricity needs, with Koeberg Nuclear Power Station situated in the Western Cape providing 4.4% of South Africa’s electricity needs. As Africa’s first nuclear power station, Koeberg has an installed capacity of 1910 MW of power. Koeberg’ s total net output is 1860 MW. While there are significant differences, there are many similarities between nuclear power plants and other electrical generating facilities. Uranium is used for fuel in nuclear power plants to make electricity. With the exception of solar, wind, and hydroelectric plants, all others including nuclear plants convert water to steam that spins the propeller-like blades of a turbine that spins the shaft of a generator. Inside the generator coils of wire and magnetic fields interact to create electricity. The energy needed to boil water into steam is produced in one of two ways: by burning coal, oil, or gas (fossil fuels) in a furnace or by splitting certain atoms of uranium in a nuclear energy plant. The uranium fuel generates heat through a controlled fission process fission, which is described in this poster presentation. The Koeberg Nuclear Power Station is a Pressurised water reactor (PWR). The operating method and the components of the Koeberg Power Station are also described. The nuclear waste generated at a nuclear power station is described under three headings— low-level waste, intermediate-level waste and used or spent fuel, which can be solid, liquid or gaseous. (author)

  13. Impacts on power generation

    International Nuclear Information System (INIS)

    Myers, J.; Sidebotton, P.

    1998-01-01

    The future impact of the arrival of natural gas in the Maritime provinces on electricity generation in the region was discussed. Currently, electrical generation sources in Nova Scotia include hydro generation (9 per cent), coal generation (80 per cent), heavy fuel oil generation (8 per cent), and light oil, wood chips and purchased power (3 per cent). It is expected that with the introduction of natural gas electric utilities will take advantage of new gas combustion turbines which have high efficiency rates. An overview of Westcoast Power's operations across Canada was also presented. The Company has three projects in the Maritimes - the Courtney Bay project in New Brunswick, the Bayside Power project, the Irving Paper project - in addition to the McMahon cogeneration plant in Taylor, B.C. figs

  14. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    Energy Technology Data Exchange (ETDEWEB)

    Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C{sub 0}, where the change in characteristic mass, m{sub 0}, can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E{sub max}, maximum enhancement factor; E{sub t}, enhancement for 1.0 minute sampling and E{sub v}, enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps.

  15. Nuclear power generation and global heating

    International Nuclear Information System (INIS)

    Taboada, Horacio

    1999-01-01

    The Professionals Association and Nuclear Activity of National Atomic Energy Commission (CNEA) are following with great interest the worldwide discussions on global heating and the role that nuclear power is going to play. The Association has an active presence, as part of the WONUC (recognized by the United Nations as a Non-Governmental Organization) in the COP4, which was held in Buenos Aires in November 1998. The environmental problems are closely related to human development, the way of power production, the techniques for industrial production and exploitation fields. CO 2 is the most important gas with hothouse effects, responsible of progressive climatic changes, as floods, desertification, increase of average global temperature, thermal expansion in seas and even polar casks melting and ice falls. The consequences that global heating will have on the life and economy of human society cannot be sufficiently emphasized, great economical impact, destruction of ecosystems, loss of great coast areas and complete disappearance of islands owing to water level rise. The increase of power retained in the atmosphere generates more violent hurricanes and storms. In this work, the topics presented in the former AATN Meeting is analyzed in detail and different technological options and perspectives to mitigate CO 2 emission, as well as economical-financial aspects, are explored. (author)

  16. Beaver Valley Power Station and Shippingport Atomic Power Station. 1984 Annual environmental report, radiological. Volume 2

    International Nuclear Information System (INIS)

    1985-01-01

    This report describes the Radiological Environmental Monitoring Program conducted during 1984 in the vicinity of the Beaver Valley Power Station and the Shippingport Atomic Power Station. The Radiological Environmental Program consists of on-site sampling of water and gaseous effluents and off-site monitoring of water, air, river sediments, soils, food pathway samples, and radiation levels in the vicinity of the site. This report discusses the results of this monitoring during 1984. The environmental program outlined in the Beaver Valley Power Station Technical Specifications was followed throughout 1984. The results of this environmental monitoring program show that Shippingport Atomic Power Station and Beaver Valley Power Station operations have not adversely affected the surrounding environment. 23 figs., 18 tabs

  17. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  18. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  19. Generation of 99-mW continuous-wave 285-nm radiation for magneto-optical trapping of Mg atoms

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Yu, Ping; Balslev, Søren

    2002-01-01

    We have developed a tunable intense narrow-band 285 nm light source based on frequency doubling of 570 nm light in BBO. At input powers of 840 mW (including 130 mW used for locking purposes) we generate 99 mW UV radiation with an intensity profile suitable for laser-cooling experiments. The light...... is used for laser cooling of neutral magnesium atoms in a magneto-optical trap (MOT). We capture about 5 x 10(6) atoms directly from a thermal beam and find that the major loss mechanism of the magnesium MOT is a near-resonant two-photon ionization process....

  20. Thermoelectric coolers as power generators

    International Nuclear Information System (INIS)

    Burke, E.J.; Buist, R.J.

    1984-01-01

    There are many applications where thermoelectric (TE) coolers can be used effectively as power generators. The literature available on this subject is scarce and very limited in scope. This paper describes the configuration, capability, limitations and performance of TE coolers to be used as power generators. Also presented are performance curves enabling the user to design the optimum TE module for any given power generation application

  1. Competitiveness of nuclear power generation

    International Nuclear Information System (INIS)

    Sumi, Yoshihiko

    1998-01-01

    In view of the various merits of nuclear power generation, Japanese electric utilities will continue to promote nuclear power generation. At the same time, however, it is essential to further enhance cost performance. Japanese electric utilities plan to reduce the cost of nuclear power generation, such as increasing the capacity factor, reducing operation and maintenance costs, and reducing construction costs. In Asia, nuclear power will also play an important role as a stable source of energy in the future. For those countries planning to newly introduce nuclear power, safety is the highest priority, and cost competitiveness is important. Moreover, financing will be an essential issue to be resolved. Japan is willing to support the establishment of nuclear power generation in Asia, through its experience and achievements. In doing this, support should not only be bilateral, but should include all nuclear nations around the Pacific rim in a multilateral support network. (author)

  2. The nuclear power generation

    International Nuclear Information System (INIS)

    Serres, R.

    1999-01-01

    The French nuclear generating industry is highly competitive. The installations have an average age of fifteen years and are half way through their expected life. Nuclear power accounts for 70% of the profits of the French generating company, EDF. Nuclear generation has a minimal effect on the atmosphere and France has a level of CO 2 emissions, thought to be the main cause of the greenhouse effect, half that of Europe as a whole. The air in France is purer than in neighbouring countries, mainly because 75% of all electrical power is generated in nuclear plants and 15% in hydroelectric stations. The operations and maintenance of French nuclear power plants in the service and distribution companies out of a total of 100 000 employees in all, 90 % of whom are based in mainland France. (authors)

  3. Atom chief calls for decision on N-power

    International Nuclear Information System (INIS)

    Hughes, N.

    1982-01-01

    A decision must be made, on whether South Africa is going to build more nuclear power stations. The Atomic Energy Corporation and the Electricity Supply Commission should come together, to present a nuclear development plan to the Government. If the nuclear power industry is going to expand, everything must be co-ordinated and this should be done in the immediate future

  4. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1979

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1979-01-01

    At the beginning of the third quarter of 1979, the Shippingport Atomic Power Station remained shutdown to complete repairs of the turbine generator hydrogen circulation fan following discovery of a rubbing noise on May 24, 1979. The Station was in a cooldown condition at approximately 180/sup 0/F and 300 psig with a steam bubble in the pressurizer and the reactor coolant pumps in slow speed. The reactor plant cooldown heat exchanger was in service to maintain coolant temperature. The 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops remained in service. All expended PWR Core 2 fuel elements have previously been shipped off-site. The remaining irradiated PWR Core 2 core barrel and miscellaneous refueling tools were in storage under shielding water in the deep pit of the Fuel Handling Building. The LWBR Core has generated 12,111.00 EFPH from startup through the end of the quarter.

  5. Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields

    OpenAIRE

    Lee, Jaehak; Park, Jiyong; Lee, Sang Min; Lee, Hai-Woong; Khosa, Ashfaq H.

    2008-01-01

    We propose a cavity-QED-based scheme of generating entanglement between atoms. The scheme is scalable to an arbitrary number of atoms, and can be used to generate a variety of multipartite entangled states such as the Greenberger-Horne-Zeilinger, W, and cluster states. Furthermore, with a role switching of atoms with photons, the scheme can be used to generate entanglement between cavity fields. We also introduce a scheme that can generate an arbitrary multipartite field graph state.

  6. Atoms: for war or peace

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, K V

    1981-08-01

    History of nuclear power generation starting from the experimental split of uranium atom in 1938 to the establishment of the International Atomic Energy Agency is traced. In India, the Atomic Energy Commission was established with the major objective of developing nuclear power to make up India's deficiencies in energy sources. It is noted that from the very beginning the commission's activities were covered under a blanket of secrecy. According to the author, India's atomic energy programme stagnated after Dr. Bhabha's death. The Department of Atomic Energy diverted its attention to the nuclear explosion which was carried out in 1974. This event caused a great setback to the collaboration with Canada and USA in the nuclear power programme. The resulting problems are still not fully solved. The author maintains that the Department of Atomic Energy should have confined its efforts to the reactor development with special reference to the fast breeder reactor so that thorium can be utilised to the maximum advantage.

  7. A survey on the application of robot techniques to an atomic power plant

    International Nuclear Information System (INIS)

    Hasegawa, Tsutomu; Sato, Tomomasa; Hirai, Shigeoki; Suehiro, Takashi; Okada, Tokuji

    1982-01-01

    Tasks of workers in atomic power plants have been surveyed from the viewpoint of necessity and possibility of their robotization. The daily tasks are classified into the following: (1) plant operation; (2) periodical examination; (3) patrol and inspection; (4) in-service inspection; (5) maintenance and repaire; (6) examination and production of the fuel; (7) waste disposal; (8) decommission of the plant. The necessity and present status of the robotization in atomic power plants are investigated according to the following classification: (1) inspection robots; (2) patrol inspection/maintenance robots; (3) hot cell robots; (4) plant decommission robots. The following have been made clear through the survey: (1) Various kinds of tasks are necessary for an atomic power plant: (2) Because of most of the tasks taking place in intense radiation environments, it is necessary to introduce robots into atomic power plants: (3) In application of robots in atomic power plant systems, it is necessary to take account of various severe conditions concerning spatial restrictions, radioactive endurance and reliability. Lastly wide applicability of the techniques of knowledge robots, which operate interactively with men, has been confirmed as a result of the survey. (author)

  8. Optimal Control of Wind Power Generation

    Directory of Open Access Journals (Sweden)

    Pawel Pijarski

    2018-03-01

    Full Text Available Power system control is a complex task, which is strongly related to the number and kind of generating units as well as to the applied technologies, such as conventional coal fired power plants or wind and photovoltaic farms. Fast development of wind generation that is considered as unstable generation sets new strong requirements concerning remote control and data hubs cooperating with SCADA systems. Considering specific nature of the wind power generation, the authors analyze the problem of optimal control for wind power generation in farms located over a selected remote-controlled part of the Operator grid under advantageous wind conditions. This article presents an original stepwise method for tracing power flows that makes possible to eliminate current (power overloading of power grid branches. Its core idea is to consider the discussed problem as an optimization task.

  9. Remote Generation of Entanglement for Individual Atoms via Optical Fibres

    International Nuclear Information System (INIS)

    Yan-Qing, Guo; Hai-Yang, Zhong; Ying-Hui, Zhang; He-Shan, Song

    2008-01-01

    The generation of atomic entanglement is discussed in a system that atoms are trapped in separate cavities which are connected via optical fibres. Two distant atoms can be projected to Bell-state by synchronized turning off of the local laser fields and then performing a single quantum measurement by a distant controller. The distinct advantage of this scheme is that it works in a regime where Δ ≈ κ ≫ g, which makes the scheme insensitive to cavity strong leakage. Moreover, the fidelity is not affected by atomic spontaneous emission. (general)

  10. Power generation in South Africa

    International Nuclear Information System (INIS)

    Van der Walt, N.T.

    1976-01-01

    There have been extensive developments in the power supply industry in South Africa. The most evident of these has been the increase in the size of generating units. Escom has recently placed orders for 600 MW units. In South Africa, with its large indigenous reserves of cheap coal, there was no need to rush into a nuclear power programme before it would be economic and, accordingly the first serious study of nuclear power generation was not undertaken until 1966. A final aspect of power generation which is becoming very important is the control of pollution and protection of the environment

  11. Flexibility analysis of main primary heat transport system : Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Rastogi, S.K.

    1975-01-01

    The paper presents flexibility analysis problem of main primary heat transport system and the approximate analysis that has been made to estimate the loads coming on major equipments. The primary heat transport system for Narora Atomic Power Project is adopting vertical steam generators and pumps equally divided on either side of the reactor with inter-connecting pipes and feeders. Since the system is mainly spring supported with movement of a few points in certain direction defined but no anchorage, it represents a good problem for flexibility analysis which can only be solved in one step by developing a good computer programme. (author)

  12. Electrical Power Conversion of River and Tidal Power Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-11-21

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  13. Power generation enhancement in a salinity-gradient solar pond power plant using thermoelectric generator

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Saadat, Mohammad; Palideh, Vahid; Afzal, Sadegh

    2017-01-01

    Highlights: • Thermoelectric generator was used and simulated within a salinity-gradient solar pond power plant. • Results showed that the thermoelectric generator can be able to enhance the power plant efficiency. • Results showed that the presented models can be able to produce generation even in the cold months. • The optimum size of area of solar pond based on its effect on efficiency is 50,000 m 2 . - Abstract: Salinity-gradient solar pond (SGSP) has been a reliable supply of heat source for power generation when it has been integrated with low temperature thermodynamics cycles like organic Rankine cycle (ORC). Also, thermoelectric generator (TEG) plays a critical role in the production of electricity from renewable energy sources. This paper investigates the potential of thermoelectric generator as a power generation system using heat from SGSP. In this work, thermoelectric generator was used instead of condenser of ORC with the purpose of improving the performance of system. Two new models of SGSP have been presented as: (1) SGSP using TEG in condenser of ORC without heat exchanger and (2) SGSP using TEG in condenser of ORC with heat exchanger. These proposed systems was evaluated through computer simulations. The ambient conditions were collected from beach of Urmia lake in IRAN. Simulation results indicated that, for identical conditions, the model 1 has higher performance than other model 2. For models 1 and 2 in T LCZ = 90 °C, the overall thermal efficiency of the solar pond power plant, were obtained 0.21% and 0.2% more than ORC without TEG, respectively.

  14. Environmental impact of power generation

    International Nuclear Information System (INIS)

    Hester, R.E.; Harrison, R.M.

    1999-01-01

    A series of articles offers answers to questions on the environmental consequences and impact on man of the power generation industry. Subjects discussed in detail include: (i) acid rain and climate change and how the generators of electricity have been expected to play a role disproportionate to their deleterious contributions in improving the situation; (ii) recently adopted air quality management approaches with regard to airborne emissions from power stations and motor vehicles; (iii) the evolution of the UK power industry towards sustainability through considerations for the environment and use of resources in a liberalised market; (iv) the Best Practicable Environmental Option approach to the design and siting of power stations; (v) the environmental impact of nuclear power generation and (vi) electromagnetic fields and the possible effects on man of transmitting electricity in overhead power lines

  15. Power generation using photovoltaic induction in an isolated power network

    International Nuclear Information System (INIS)

    Kalantar, M.; Jiang, J.

    2001-01-01

    Owing to increased emphasis on renewable resources, the development of suitable isolated power generators driven by energy sources, the development of suitable isolated power generators driven by energy sources such as photovoltaic, wind, small hydroelectric, biogas and etc. has recently assumed greater significance. A single phase capacitor self excited induction generator has emerged as a suitable candidate of isolated power sources. This paper presents performance analysis of a single phase self-excited induction generator driven by photovoltaic (P V) system for low power isolated stand-alone applications. A single phase induction machine can work as a self-excited induction generator when its rotor is driven at suitable speed by an photovoltaic powered do motor. Its excitation is provided by connecting a single phase capacitor bank at a stator terminals. Either to augment grid power or to get uninterrupted power during grid failure stand-alone low capacity ac generators are used. These are driven by photovoltaic, wind power or I C engines using kerosene, diesel, petrol or biogas as fuel. Self-excitation with capacitors at the stator terminals of the stator terminals of the induction machines is well demonstrated experimentally on a P V powered dc motor-induction machine set. The parameters and the excitation requirements of the induction machine run in self-excited induction generator mode are determined. The effects of variations in prime mover speed,terminal capacitance and load power factor on the machine terminal voltage are studied

  16. About connection between atomic and hydrogen energy power

    International Nuclear Information System (INIS)

    Avdeeva, M.Zh.; Vecher, A.A.; Pan'kov, V.V.

    2008-01-01

    Possible interaction between atomic and hydrogen energy power has been discussed. The analysis of the result held shows that the electrical energy produced by the atomic reactor during the of-load hours can be involved into the process of obtaining hydrogen by electrolysis. In order to optimize the transportation and storage of hydrogen it is proposed to convert it into ammonia. The direct uses of ammonia as a fuel into the internal combustion engine and fuel cells are examined. (authors)

  17. Is nuclear energy power generation more dangerous than power generation by wind and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y

    1979-03-01

    Since the occurrence of the petroleum crisis, many countries have devoted a great deal of effort to search for substitute energy sources. Aside from nuclear energy, forms of power generation with wind, solar energy, and geothermal energy have all been actually adopted in one place or another. Most recently, a research report was published by the Canadian Bureau of Nuclear Energy Management stating that the use of wind and solar energy to generate electricity is much more dangerous than power generation with nuclear energy. When mining, transportation, machine manufacturing, etc. are included in the process of producing unit power, i.e. kilowatt/year, the data of various risks of death, injury, and diseases are computed in terms of man/day losses by the bureau. They indicate that of the ten forms of power generation, the danger is the least with natural gas, only about a 6 man/day, and nuclear energy is the next least dangerous, about 10 man/day. The danger of using temperature differential of sea water to generate electricity is about 25 man/day, and the most dangerous form of power generation is coal, amounting to three thousand man/day.

  18. Power generator in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to perform stable and dynamic conditioning operation for nuclear fuels in BWR type reactors. Constitution: The conditioning operation for the nuclear fuels is performed by varying the reactor core thermal power in a predetermined pattern by changing the predetermined power changing pattern of generator power, the rising rate of the reactor core thermal power and the upper limit for the rising power of the reactor core thermal power are calculated and the power pattern for the generator is corrected by a power conditioning device such that the upper limit for the thermal power rising rate and the upper limit for the thermal power rising rate are at the predetermined levels. Thus, when the relation between the reactor core thermal power and the generator electrical power is fluctuated, the fluctuation is detected based on the variation in the thermal power rising rate and the limit value for the thermal power rising rate, and the correction is made to the generator power changing pattern so that these values take the predetermined values to thereby perform the stable conditioning operation for the nuclear fuels. (Moriyama, K.)

  19. Thermoelectric power generator with intermediate loop

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  20. UV light-emitting-diode photochemical mercury vapor generation for atomic fluorescence spectrometry.

    Science.gov (United States)

    Hou, Xiaoling; Ai, Xi; Jiang, Xiaoming; Deng, Pengchi; Zheng, Chengbin; Lv, Yi

    2012-02-07

    A new, miniaturized and low power consumption photochemical vapor generation (PVG) technique utilizing an ultraviolet light-emitting diode (UV-LED) lamp is described, and further validated via the determination of trace mercury. In the presence of formic acid, the mercury cold vapor is favourably generated from Hg(2+) solutions by UV-LED irradiation, and then rapidly transported to an atomic fluorescence spectrometer for detection. Optimum conditions for PVG and interferences from concomitant elements were investigated in detail. Under optimum conditions, a limit of detection (LOD) of 0.01 μg L(-1) was obtained, and the precision was better than 3.2% (n = 11, RSD) at 1 μg L(-1) Hg(2+). No obvious interferences from any common ions were evident. The methodology was successfully applied to the determination of mercury in National Research Council Canada DORM-3 fish muscle tissue and several water samples.

  1. Some problems on cost of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, A [Japan Energy Economic Research Inst., Tokyo

    1975-12-01

    The price of thermal power from oil has risen sharply. On the other hand, the price of atomic energy which has been expected to be favorable as compared with thermal power is rising slowly. In addition, the financial strength of electric utilities if lower, which results in difficulty of financing atomic power development. The course and the motivation of introducing nuclear power generation are briefly summarized. The economy and the usefulness of nuclear power generation and the problem of the financing for developing atomic energy are also examined.

  2. Reactive power supply by distributed generators

    OpenAIRE

    Braun, M.

    2008-01-01

    Distributed reactive power supply is necessary in distribution networks for an optimized network operation. This paper presents first the reactive power supply capabilities of generators connected to the distribution network (distributed generators). In a second step an approach is proposed of determining the energy losses resulting from reactive power supply by distributed generators. The costs for compensating these losses represent the operational costs of reactive power supply. These cost...

  3. Influence of laser power on atom probe tomographic analysis of boron distribution in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Y., E-mail: ytu@imr.tohoku.ac.jp [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Takamizawa, H.; Han, B.; Shimizu, Y.; Inoue, K.; Toyama, T. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yano, F. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Tokyo City University, Setagaya, Tokyo 158-8557 (Japan); Nishida, A. [Renesas Electronics Corporation, Hitachinaka, Ibaraki 312-8504 (Japan); Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2017-02-15

    The relationship between the laser power and the three-dimensional distribution of boron (B) in silicon (Si) measured by laser-assisted atom probe tomography (APT) is investigated. The ultraviolet laser employed in this study has a fixed wavelength of 355 nm. The measured distributions are almost uniform and homogeneous when using low laser power, while clear B accumulation at the low-index pole of single-crystalline Si and segregation along the grain boundaries in polycrystalline Si are observed when using high laser power (100 pJ). These effects are thought to be caused by the surface migration of atoms, which is promoted by high laser power. Therefore, for ensuring a high-fidelity APT measurement of the B distribution in Si, high laser power is not recommended. - Highlights: • Influence of laser power on atom probe tomographic analysis of B distribution in Si is investigated. • When using high laser power, inhomogeneous distributions of B in single-crystalline and polycrystalline Si are observed. • Laser promoted migration of B atoms over the specimen is proposed to explain these effects.

  4. Thoughts on Documentation of Atomic Power Technology

    International Nuclear Information System (INIS)

    Oh, Jeong Hoon; Lee, Hee Won; Song, Ki Chan

    2012-01-01

    Korean Atomic Energy Research Institute (KAERI) has accumulated a number of technology development and research outcomes, including its representative achievements such as atomic energy technology independence and the first export of atomic energy system, since it was established in 1959. With its long history of over 50 years, KAERI has produced a large amount of information and explicit knowledge such as experiment data, database, design data, report, instructions, and operation data at each stage of its research and development process as it has performed various researches since its establishment. Also, a lot of tacit knowledge has been produced both knowingly and not unknowingly based on the experience of researchers who have participated in many projects. However, in the research environment in Korea where they focus overly on the output, tacit knowledge has not been managed properly compared to explicit knowledge. This tacit knowledge is as an important asset as explicit knowledge for an effective research and development. Moreover, as the first generation of atomic energy independence and research manpower retire, their accumulated experience and knowledge are in danger of disappearing. Therefore, in this study, we sought how to take a whole view and to document atomic energy technology researched and developed by KAERI, from the background to achievement of each field of the technology. Comprehensive and systematic documentation of atomic energy technology will establish a comprehensive management system of national atomic energy technology record to make a foundation of technical advancement and development of atomic energy technology. Also, it is expected to be used as an important knowledge and information resource of atomic energy knowledge management system

  5. Power quality improvement of unbalanced power system with distributed generation units

    DEFF Research Database (Denmark)

    Hu, Y.; Chen, Zhe; Excell, P.

    2011-01-01

    This paper presents a power electronic system for improving the power quality of the unbalanced distributed generation units in three-phase four-wire system. In the system, small renewable power generation units, such as small PV generator, small wind turbines may be configured as single phase...... and control of the converter are described. Simulation results have demonstrated that the system can effectively correct the unbalance and enhance the system power quality....... generation units. The random nature of renewable power sources may result in significant unbalance in the power network and affect the power quality. An electronic converter system is proposed to correct the system unbalance and harmonics so as to deal with the power quality problems. The operation...

  6. Purification of ammonia-containing trap waters from atomic power plant by ozone treatment

    International Nuclear Information System (INIS)

    Grachok, M.A.; Prokudina, S.A.; Shulyat'ev, M.I.

    1990-01-01

    The aim of research was to study the process of ozonation of ammonia-containing trap waters from the Kursk Atomic Power Plant both on the model solutions and on real ones. Different factors (pH of the medium, temperature, concentration of the initial substances) have been studied for their effect on ozonation of aqueous ammonia solutions, model solutions of trap waters from the Kursk Atomic Power Plant as well as ammonia-containing trap waters and liquid radioactive wastes delivered to special water treatment at the Kursk Atomic Power Plant. It is shown that in all the cases the highest rate of ammonia oxidation by ozone is observed in the alkaline medium (pH 1.4-11.0) and at 55 deg C. The obtained results have shown that a method of ozonation followed by evaporation of water to be purified can be used to treat ammonia-containing waters from atomic power plant

  7. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  8. Generation of electricity by wind power

    Energy Technology Data Exchange (ETDEWEB)

    Golding, E W

    1976-01-01

    Information on wind power is presented concerning the history of windmills; estimation of the energy obtainable from the wind; wind characteristics and distribution; wind power sites; wind surveys; wind flow over hills; measurement of wind velocity; wind structure and its determination; wind data and energy estimation; testing of wind driven ac generators; wind-driven machines; propeller type windmills; plants for isolated premises and small communities; economy of wind power generation; construction costs for large wind-driven generators; relationship of wind power to other power sources; research and development; and international cooperation.

  9. Integrated Control for Small Power Wind Generator

    Directory of Open Access Journals (Sweden)

    Hongliang Liu

    2018-05-01

    Full Text Available The control strategies of the small power wind generator are usually divided into the maximum power point tracking (MPPT case, which requires the wind generator produce power as much as possible, and the power limited control (PLC case that demands the wind generator produce a power level following the load requirement. Integration of these two operating cases responding to flexible and sophisticated power demands is the main topic of this article. A small power wind generator including the sluggish mechanical dynamic phenomenon, which uses the permanent magnet synchronous generator, is introduced to validate different control methods integrating MPPT and PLC cases and based on hysteresis control. It is a matter of an indirect power control method derived from three direct methods following perturb and observe principle as well as from a look-up table. To analyze and compare the proposed power control methods, which are implemented into an emulator of a small power wind generator, a power demand profile is used. This profile is randomly generated based on measured rapid wind velocity data. Analyzing experimental results, from the power viewpoint, all proposed methods reveal steady-state error with big amount of peak resulting from the nature of perturb and observe.

  10. VG-400 atomic power and technological installation. Possible core design

    International Nuclear Information System (INIS)

    Komarov, E.V.; Laptev, F.V.; Lyubivyj, A.G.; Mitenkov, F.M.; Samojlov, O.B.; Sukhachevskij, Yu.B.

    1979-01-01

    The main characteristics, basic circuit and configuration of equipment of the VG-400 atomic power and technological installation are considered. This installation is intended for supplying with highly-potential heat of thermal electrochemical hydrogen production and for power generation in the steam-turbine cycle. The main installation characteristics: HTGR reactor heat power 1100 MW, electric power 300 MW, helium coolant pressure 50 atm, output temperature 950 deg C, steam pressure in the second contour 175 atm, temperature 535 deg C, core diameter and height 6.4 m and 4 m, respectively, number of spherical fuel elements 8.5x10 5 . The installation can ensure hydrogen production of 10 5 Nxm 3 /h. For the VG-400 reactor block the integral arrangement of the first circuit equipment in the reinforced concrete is chosen. Two versions of the reactor core with prismatic and spherical fuel elements are compared. It is shown that taking into account great potentialities of the spherical zone in a case of further temperature increase and its positive qualities with respect to construction and processing of fuel elements and graphite blocks, the utilization of simplier units and mechanisms in the overloading system and in the process of profiling of energy distribution the choice of the spherical configuration for the VG-400 pilot plant installation seems to be valid

  11. Structural reliability of atomic power plant

    International Nuclear Information System (INIS)

    Klemin, A.I.; Polyakov, E.F.

    1980-01-01

    In 1978 the first specialized technical manual ''Technique of Calculating the Structural Reliability of an Atomic Power Plant and Its Systems in the Design Stage'' was developed. The present article contains information about the main characteristics and capabilities of the manual. The manual gives recommendations concerning the calculations of the reliability of such specific systems as the reactor control and safety system, the system of instrumentation and automatic control, and safety systems. 2 refs

  12. Distributed power generation using microturbines

    CSIR Research Space (South Africa)

    Szewczuk, S

    2008-11-01

    Full Text Available At present, the bulk of the world is electricity is generated in central power stations. This approach, one of `economy of size generates electricity in large power stations and delivers it to load centres via an extensive network of transmission...

  13. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  14. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.

    Science.gov (United States)

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-06-20

    Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1  Sb) is comparable to that observed in QTA (0.14 ng mL -1  Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Long term plan of atomic energy development and utilization

    International Nuclear Information System (INIS)

    1982-01-01

    The atomic energy utilization and development in Japan have progressed remarkably, and already nuclear power generation has borne an important part in electric power supply, while radiation has been utilized in the fields of industry, agriculture, medicine and so on. Now, atomic energy is indispensable for national life and industrial activity. The former long term plan was decided in September, 1978, and the new long term plan should be established since the situation has changed largely. The energy substituting for petroleum has been demanded, and the expectation to nuclear power generation has heightened because it enables stable and economical power supply. The independently developed technology related to atomic energy must be put in practical use. The peaceful utilization of atomic energy must be promoted, while contributing to the nuclear non-proliferation policy. The Atomic Energy Commission of Japan decided the new long term plan to clearly show the outline of the important measures related to atomic energy development and utilization in 10 years hereafter, and the method of its promotion. The basic concept of atomic energy development and utilization, the long term prospect and the concept on the promotion, the method of promoting the development and utilization, and the problems of funds, engineers and location are described. (kako, I.)

  16. White paper on atomic energy in 1980

    International Nuclear Information System (INIS)

    1981-01-01

    The nuclear power generation in Japan attained the scale of 21 plants with 15 million kW capacity, and its proportion in electric power supply exceeded 13%. Now it is indispensable for various economic activities and national life, and it is expected that its role as the substitute energy for petroleum will grow more and more in future. The Atomic Energy Commission took up preponderantly the promotion of nuclear power generation and the related measures in view of such situation when the trend in the development and utilization of atomic energy in Japan is reviewed in this white paper. When nuclear power generation is promoted, efforts are exerted on the improvement of safety, and it is necessary to tackle with all might the subjects such as the settlement of LWRs more firmly, the development of new reactors, the establishment of nuclear fuel cycle, and the countermove to complex international situation, while giving consideration to the development of independent technologies. It is most important to obtain national consensus when atomic energy is developed and utilized, as seen in the difficulty of locating nuclear power stations. In this annual report, the events for about one year from October, 1979, are described. Also the related data and documents are shown. (Kako, I.)

  17. Enhancing power generation of floating wave power generators by utilization of nonlinear roll-pitch coupling

    Science.gov (United States)

    Yerrapragada, Karthik; Ansari, M. H.; Karami, M. Amin

    2017-09-01

    We propose utilization of the nonlinear coupling between the roll and pitch motions of wave energy harvesting vessels to increase their power generation by orders of magnitude. Unlike linear vessels that exhibit unidirectional motion, our vessel undergoes both pitch and roll motions in response to frontal waves. This significantly magnifies the motion of the vessel and thus improves the power production by several orders of magnitude. The ocean waves result in roll and pitch motions of the vessel, which in turn causes rotation of an onboard pendulum. The pendulum is connected to an electric generator to produce power. The coupled electro-mechanical system is modeled using energy methods. This paper investigates the power generation of the vessel when the ratio between pitch and roll natural frequencies is about 2 to 1. In that case, a nonlinear energy transfer occurs between the roll and pitch motions, causing the vessel to perform coupled pitch and roll motion even though it is only excited in the pitch direction. It is shown that co-existence of pitch and roll motions significantly enhances the pendulum rotation and power generation. A method for tuning the natural frequencies of the vessel is proposed to make the energy generator robust to variations of the frequency of the incident waves. It is shown that the proposed method enhances the power output of the floating wave power generators by multiple orders of magnitude. A small-scale prototype is developed for the proof of concept. The nonlinear energy transfer and the full rotation of the pendulum in the prototype are observed in the experimental tests.

  18. Design and analysis of reactor headers for Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Danak, M.R.

    1975-01-01

    Reactor header for Narora Atomic Power Reactor is a 400 mm O.D. 10 metres long pressure vessel in the primary coolant circuit connecting 153 feeders to PHT pumps or steam generators. The vessel dimensions are restricted are by containment philosophy. The outlet connections for pumps or steam generators are to be of the size of vessel diameter and DO/t ratio for the vessel is approximately 10. The design and stresses induced meet the code requirements except that at times it is difficult to get precise stress values in absence of certain data and lack of code or available literature giving practical approach to the problem. It can be seen that the 400 mm equal tees used as part of the vessel cannot be penetrated in the light of code reinforcement requirements. However if the tees have to penetrated to retain established feeder layout, it should be established experimentally or by some detailed stress analysis that it will meet the intent of code. (author)

  19. Atomic power engineering as military and nuclear deterrence

    International Nuclear Information System (INIS)

    Koryakin, Yu.I.

    2000-01-01

    The legislative aspects of the nuclear power facilities protection during military actions are discussed. The IAEA position on this question is considered. Absence in the IAEA subject scope of the works on preparation of the treaty on prohibiting the destruction of nuclear power facilities means that the IAEA countries differently understand the necessity for introducing the legislative positions of the international atomic law. However, observation of the unwritten codex of mutual nuclear deterrence gives rise to the hope for the wise solution of the problem on the nuclear power objects protection during the military actions [ru

  20. Power Generation and Distribution via Distributed Coordination Control

    OpenAIRE

    Kim, Byeong-Yeon; Oh, Kwang-Kyo; Ahn, Hyo-Sung

    2014-01-01

    This paper presents power coordination, power generation, and power flow control schemes for supply-demand balance in distributed grid networks. Consensus schemes using only local information are employed to generate power coordination, power generation and power flow control signals. For the supply-demand balance, it is required to determine the amount of power needed at each distributed power node. Also due to the different power generation capacities of each power node, coordination of pow...

  1. Atomic power project, Kakrapar, Gujarat

    International Nuclear Information System (INIS)

    Varadarajan, G.

    1992-01-01

    The atomic power project at Kakrapar, comprising of two units of 235 MW each, went critical very recently in September 1992. The work consisted of construction of reactor and turbine buildings, outer and inner containment walls, calandria vault, natural draught cooling tower, etc. Nearly 152,000m 3 of normal aggregate concrete and 3,500m 3 of heavy aggregate concrete were produced and poured. The paper describes salient innovative construction features of the project. Incidentally, the project received a Certificate of Merit in the Excellence in Concrete competition held by the Maharashtra India Chapter of the American Concrete Institute. (author). 7 figs

  2. Simulating spontaneously generated coherence in a four-level atomic system

    International Nuclear Information System (INIS)

    Li Aijun; Gao Jinyue; Wu Jinhui; Wang Lei

    2005-01-01

    We study the spontaneous emission property of a four-level atomic system driven by two coherent fields. By numerical calculations in the bare state picture, we show that such interesting phenomena as extremely narrow peaks and spontaneous emission quenching can be realized, which are well understood by qualitative explanations in the partially and fully dressed state pictures. Especially, this coherently driven atomic system has two close-lying levels in the partially dressed state picture so that spontaneously generated coherence arises. Using our considered scheme it is feasible to carry out experiments based on spontaneously generated coherence because all rigorous requirements have been avoided in the bare state picture

  3. The Chip-Scale Atomic Clock - Low-Power Physics Package

    Science.gov (United States)

    2004-12-01

    36th Annual Precise Time and Time Interval (PTTI) Meeting 339 THE CHIP-SCALE ATOMIC CLOCK – LOW-POWER PHYSICS PACKAGE R. Lutwak ...pdf/documents/ds-x72.pdf [2] R. Lutwak , D. Emmons, W. Riley, and R. M. Garvey, 2003, “The Chip-Scale Atomic Clock – Coherent Population Trapping vs...2002, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 539-550. [3] R. Lutwak , D. Emmons, T. English, and W. Riley, 2004

  4. Conscience of Japanese on nuclear power generation

    International Nuclear Information System (INIS)

    Hayashi, Chikio

    1995-01-01

    There are considerably many investigations and researches on the attitude of general public to nuclear power generation, but those which analyzed the contents of attitude or the research which got into the problem of what method is desirable to obtain the understanding of nuclear power generation for power generation side is rarely found. Therefore, the research on where is its cause was begun. As the result, since the attitude to nuclear power generation is related to the attitudes to many things that surround nuclear power generation in addition to that directly to nuclear power generation, it is necessary to elucidate the problem synthetically. The social investigation was carried out for the public of from 18 to 79 years old who live in the supply area of Kansai Electric Power Co., Inc. The data were obtained from those selected by probabilistic sampling, 1000 in urban area (rate of recovery 76%) and 440 in country area (rate of recovery 77%). The way of thinking on making questionnaire is shown. The investigation and the analysis of the obtained data were carried out. What do you recollect as a dangerous matter, the attitude to nuclear power generation, the structure of the conscience to nuclear power generation and its significance, the type classification of people and its features are reported and discussed. (K.I.)

  5. Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlioglu, Ipek; Korkmaz, Deniz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2007-01-15

    The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3{sigma} limit of detection was estimated as 0.053 {mu}g l{sup -1} for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat CRM-TMDW and Metals on Soil/Sediment 4, IRM-008.

  6. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M. K.; Wind, L.; Canter, B.; Moeller, T.

    2002-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 2000 and 2001. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (SM)

  7. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  8. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  9. Power generation systems and methods

    Science.gov (United States)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  10. Performance of on-power fuelling equipment at Rajasthan Atomic Power Station

    International Nuclear Information System (INIS)

    Jayabarathan, S.; Gopalakrishnan, S.

    1977-01-01

    Natural uranium reactors on account of their intrinsically low reactivity need frequent refuelling. The Rajasthan Atomic Power Station based on natural uranium reactors has, therefore, been provided with on-power fuel handling system which was installed in 1972. Its performance has met the design intent and operational objectives which are enumerated. However, continuous fuelling 7 to 10 days has not been possible because frequent maintenance of refuelling system is needed on account of certain deficiencies major of which is the heavy water leakage. For better performance, installation of a programmable logic controller is suggested. Mention has also been made of inadequate number of skilled man-power required for maintenance which leads to quick depletion of man-rem of all the available personnel trained for maintenance work. (M.G.B.)

  11. Present status and perspective of Japanese atomic energy industry

    International Nuclear Information System (INIS)

    Miura, Kenzo

    1990-01-01

    Already 35 years are going to elapse since atomic energy industry was founded in Japan, and the positive development has been carried out in the nuclear power generation mainly with light water reactors as the base energy, as the result, now both the result of electric power generation and the technology have reached the highest level in the world. These are due to the accumulation of efforts, the preponderant assignment of able men and the positive investment for the research and development of the atomic energy industry. However, since 1985, the slowdown of power reactor development, the practical use of new type power reactors such as fast breeder reactors and the establishment of nuclear fuel cycle such as uranium enrichment and fuel reprocessing have been the new situation to be dealt with. In order to properly and flexibly cope with such change of situation, the healthy development of the atomic energy industry so as to secure the market on a certain scale and develop the business with responsibility is indispensable. The outlay of electric power industry related to atomic energy, the development of atomic energy market and the sales of mining and manufacturing industries, the trend of research and development and personnel, and the perspective and subjects of hereafter are reported. (K.I.)

  12. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.

    Science.gov (United States)

    Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma

    2011-11-01

    This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Generation of Atomic Greenberger-Horne-Zeilinger States Based on Faraday Rotation

    International Nuclear Information System (INIS)

    Liang Honghui; Li Xinghua

    2010-01-01

    Based on the input-output relation of the cavity and the Faraday Rotation mechanism, we propose a scheme for generating the n-atom Greenberger-Horne-Zeilinger state. In the scheme, the n-atom trapped respectively in n spatially separate cavities would be entangled with the photons going through the atom-cavity system. The successful probabilities of our protocol approach unity in the ideal case. What is more, no requirement for separately addressing further lowers experimental difficulties. (general)

  14. Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal

    Science.gov (United States)

    2016-08-26

    OPEN ORIGINAL ARTICLE Atomically phase-matched second-harmonic generation in a 2D crystal Mervin Zhao1,2,*, Ziliang Ye1,2,*, Ryuji Suzuki3,4,*, Yu...photoluminescence mapping, Raman spectroscopy and atomic -force microscopy. (b) Image produced via scanning and gathering the SH light produced by the 3R-MoS2...arising from a single atomic layer, where the SH light elucidated important information such as the grain boundaries and electronic structure in these ultra

  15. History of the nuclear power generation technology in Japan

    International Nuclear Information System (INIS)

    2016-01-01

    First, the outline of the historical fact is described. Next, the research institution, the industrial world, and the government which were the bearers of technical development are described and look back upon the history of development from each position. The focus is a viewpoint based on refection of a Fukushima disaster. 'Teachings from history' seen from each actor was described being based on the objective fact. Moreover, it focuses also on the society, the politics, and the economic factor which affected development of nuclear development. The following three were treated as themes. 1. Relation with the atomic power and the nonproliferation policy of the U.S. government. 2. Relation with public opinion or media. 3. Social responsibility of a society, or a scientist and an engineering person. Finally, based on these teachings, the viewpoint considered to be important for future nuclear power generation and technical development was summarized as a proposal. (author)

  16. An Implanted, Stimulated Muscle Powered Piezoelectric Generator

    Science.gov (United States)

    Lewandowski, Beth; Gustafson, Kenneth; Kilgore, Kevin

    2007-01-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle could be used to augment the power systems of implanted medical devices, such as neural prostheses, by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The features of our generator design are no moving parts and the use of a portion of the generated power for system operation and regulation. A software model of the system has been developed and simulations have been performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces have been experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to approximately 700 W of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 50 W. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and further investigation is underway.

  17. Hydride generation – in-atomizer collection of Pb in a quartz trap-and-atomizer device for atomic absorption spectrometry – an interference study

    Energy Technology Data Exchange (ETDEWEB)

    Novotný, Pavel [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); High School in Hořice, Husova 1414, 508 01 Hořice (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-01-01

    Interferences of selected hydride forming elements (As, Sb, Bi, Se and Sn) on lead determination by hydride generation atomic absorption spectrometry were extensively studied in both on-line atomization and preconcentration (collection) modes. The commonly used on-line atomization mode was found free of significant interferences, whereas strong interference from Bi was observed when employing the preconcentration mode with plumbane collection in a quartz trap-and-atomizer device. Interference of Bi seems to take place in the preconcentration step. Interference of Bi in the collection mode cannot be reduced by increased hydrogen radical amount in the trap and/or the atomizer. - Highlights: ► Interference study on Pb determination by in-atomizer trapping was performed for the first time. ► Bi was found as a severe interferent in the preconcentration mode (Pb:Bi ratio 1:100). ► No interference was found in the on-line atomization (no preconcentration). ► Bi interference occurs during preconcentration.

  18. High-power density miniscale power generation and energy harvesting systems

    International Nuclear Information System (INIS)

    Lyshevski, Sergey Edward

    2011-01-01

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro (∼100 μW) to medium (∼100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems.

  19. Power generation, operation and control

    CERN Document Server

    Wood, Allen J; Sheblé, Gerald B

    2013-01-01

    Since publication of the second edition, there have been extensive changes in the algorithms, methods, and assumptions in energy management systems that analyze and control power generation. This edition is updated to acquaint electrical engineering students and professionals with current power generation systems. Algorithms and methods for solving integrated economic, network, and generating system analysis are provided. Also included are the state-of-the-art topics undergoing evolutionary change, including market simulation, multiple market analysis, multiple interchange contract analysis, c

  20. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  1. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  2. Wind electric power generation

    International Nuclear Information System (INIS)

    Groening, B.; Koch, M.; Canter, B.; Moeller, T.

    1995-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1988 and 1989. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. The statistics for December 1994 comprise 2328 wind turbines

  3. Power generation in Southern Africa

    International Nuclear Information System (INIS)

    Beer, J.A. de

    2002-01-01

    This paper outlines the main characteristics of power generation in Southern Africa, in terms of primary energy resources, existing and projected power supply and demand, types and location of power plants, regional integration, and environmental management aspects. Various options for future development of power generation are presented as part of an overall integrated resource planning (IRP) process for the power industry. These include coal and natural gas based options, hydro power and other renewable energy, and nuclear power plants. A specific option, the pebble bed modular reactor (PBMR), under development by Eskom Enterprises and other international and local partners, is described in terms of overall design parameters, inherent safety features, economics and environmental aspects. Included is a high level discussion on the selection of materials for the design of this PBMR plant, an advanced design version of a high temperature gas reactor (HTGR). (orig.)

  4. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  5. Unregulated generation relationships at Niagara Mohawk Power Corporation

    International Nuclear Information System (INIS)

    Schrayshuen, H.

    1995-01-01

    This paper examines the contractual and mandated power generation pricing relationships between an electric utility and unregulated power generation stations. The topics of the paper include types of generation facilities, current capacity of unregulated generators, rights to power markets, utility planning, responding to a changing market, power purchase agreement relationships, enforcement and renegotiation

  6. Generation of maximally entangled mixed states of two atoms via on-resonance asymmetric atom-cavity couplings

    International Nuclear Information System (INIS)

    Li, Shang-Bin

    2007-01-01

    A scheme for generating the maximally entangled mixed state of two atoms on-resonance asymmetrically coupled to a single mode optical cavity field is presented. The part frontier of both maximally entangled mixed states and maximal Bell violating mixed states can be approximately reached by the evolving reduced density matrix of two atoms if the ratio of coupling strengths of two atoms is appropriately controlled. It is also shown that exchange symmetry of global maximal concurrence is broken if and only if coupling strength ratio lies between (√(3)/3) and √(3) for the case of one-particle excitation and asymmetric coupling, while this partial symmetry breaking cannot be verified by detecting maximal Bell violation

  7. Nonlinear atom optics and bright-gap-soliton generation in finite optical lattices

    International Nuclear Information System (INIS)

    Carusotto, Iacopo; Embriaco, Davide; La Rocca, Giuseppe C.

    2002-01-01

    We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear physical picture of the main features observed in the numerical simulations is given in terms of the atomic band dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due to the atom-atom interaction are discussed in detail, such as atom-optical limiting and atom-optical bistability. For positive scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to modulational instability. A scheme for the experimental generation of narrow bright gap solitons from a wide Bose-Einstein condensate is proposed: the modulational instability is seeded starting from the strongly modulated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from their shape and their collisional properties

  8. High-power density miniscale power generation and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, Sergey Edward [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, NY 14623-5603 (United States)

    2011-01-15

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro ({proportional_to}100 {mu}W) to medium ({proportional_to}100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems. (author)

  9. Integration of Renewable Generation in Power System Defence Plans

    DEFF Research Database (Denmark)

    Das, Kaushik

    Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity of conven......Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity......, one of them being the North East area with high share of wind power generation.The aim of this study is to investigate how renewable generations like wind power can contribute to the power system defence plans. This PhD project “Integration of Renewable Generation in Power System Defence Plans...

  10. Generation of Exotic Quantum States of a Cold Atomic Ensemble

    DEFF Research Database (Denmark)

    Christensen, Stefan Lund

    Over the last decades quantum effects have become more and more controllable, leading to the implementations of various quantum information protocols. These protocols are all based on utilizing quantum correlation. In this thesis we consider how states of an atomic ensemble with such correlations...... can be created and characterized. First we consider a spin-squeezed state. This state is generated by performing quantum non-demolition measurements of the atomic population difference. We show a spectroscopically relevant noise reduction of -1.7dB, the ensemble is in a many-body entangled state...... — a nanofiber based light-atom interface. Using a dual-frequency probing method we measure and prepare an ensemble with a sub-Poissonian atom number distribution. This is a first step towards the implementation of more exotic quantum states....

  11. Stand-alone excitation synchronous wind power generators with power flow management strategy

    Directory of Open Access Journals (Sweden)

    Tzuen-Lih Chern

    2014-09-01

    Full Text Available This study presents a stand-alone excitation synchronous wind power generator (SESWPG with power flow management strategy (PFMS. The rotor speed of the excitation synchronous generator tracks the utility grid frequency by using servo motor tracking technologies. The automatic voltage regulator governs the exciting current of generator to achieve the control goals of stable voltage. When wind power is less than the needs of the consumptive loading, the proposed PFMS increases motor torque to provide a positive power output for the loads, while keeping the generator speed constant. Conversely, during the periods of wind power greater than output loads, the redundant power of generator production is charged to the battery pack and the motor speed remains constant with very low power consumption. The advantage of the proposed SESWPG is that the generator can directly output stable alternating current (AC electricity without using additional DC–AC converters. The operation principles with software simulation for the system are described in detail. Experimental results of a laboratory prototype are shown to verify the feasibility of the system.

  12. Ultratrace determination of lead by hydride generation in-atomizer trapping atomic absorption spectrometry: Optimization of plumbane generation and analyte preconcentration in a quartz trap-and-atomizer device

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz

    2012-05-15

    A compact trap-and-atomizer device and a preconcentration procedure based on hydride trapping in excess of oxygen over hydrogen in the collection step, both constructed and developed previously in our laboratory, were employed to optimize plumbane trapping in this device and to develop a routine method for ultratrace lead determination subsequently. The inherent advantage of this preconcentration approach is that 100% preconcentration efficiency for lead is reached in this device which has never been reported before using quartz or metal traps. Plumbane is completely retained in the trap-and-atomizer device at 290 Degree-Sign C in oxygen-rich atmosphere and trapped species are subsequently volatilized at 830 Degree-Sign C in hydrogen-rich atmosphere. Effect of relevant experimental parameters on plumbane trapping and lead volatilization are discussed, and possible trapping mechanisms are hypothesized. Plumbane trapping in the trap-and-atomizer device can be routinely used for lead determination at ultratrace levels reaching a detection limit of 0.21 ng ml{sup -1} Pb (30 s preconcentration, sample volume 2 ml). Further improvement of the detection limit is feasible by reducing the blank signal and increasing the trapping time. - Highlights: Black-Right-Pointing-Pointer In-atomizer trapping HG-AAS was optimized for Pb. Black-Right-Pointing-Pointer A compact quartz trap-and-atomizer device was employed. Black-Right-Pointing-Pointer Generation, preconcentration and atomization steps were investigated in detail. Black-Right-Pointing-Pointer 100% preconcentration efficiency for lead was reached. Black-Right-Pointing-Pointer Routine analytical method was developed for Pb determination (LOD of 0.2 ng ml{sup -1} Pb).

  13. Comparison of collimated blue-light generation in 85Rb atoms via the D1 and D2 lines

    Science.gov (United States)

    Prajapati, Nikunj; Akulshin, Alexander M.; Novikova, Irina

    2018-05-01

    We experimentally studied the characteristics of the collimated blue light (CBL) produced in ${}^{85}$Rb vapor by two resonant laser fields exciting atoms into the $5D_{3/2}$ state, using either the $5P_{1/2}$ or the $5P_{3/2}$ intermediate state. We compared the CBL output at different values of frequency detunings, powers, and polarizations of the pump lasers in these two cases, and confirmed the observed trends using a simple theoretical model. We also demonstrated that the addition of the repump laser, preventing the accumulation of atomic population in the uncoupled hyperfine ground state, resulted in nearly an order of magnitude increase in CBL power output. Overall, we found that the $5S_{1/2} - 5P_{1/2} - 5D_{3/2}$ excitation pathway results in stronger CBL generation, as we detected up to $4.25~\\mu$W using two pumps of the same linear polarization. The optimum CBL output for the $5S_{1/2} - 5P_{3/2} - 5D_{3/2}$ excitation pathway required the two pump lasers to have the same circular polarization, but resulted only in a maximum CBL power of $450$~nW.

  14. Nuclear power generation cost methodology

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1980-08-01

    A simplified calculational procedure for the estimation of nuclear power generation cost is outlined. The report contains a discussion of the various components of power generation cost and basic equations for calculating that cost. An example calculation is given. The basis of the fixed-charge rate, the derivation of the levelized fuel cycle cost equation, and the heavy water charge rate are included as appendixes

  15. A large capacity turbine generator for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Susumu; Miki, Takahiro; Suzuki, Kazuichi

    2000-01-01

    In future large capacity nuclear power plant, capacity of a generator to be applied will be 1800 MVA of the largest class in the world. In response to this, the Mitsubishi Electric Co., Ltd. began to carry out element technology verification of a four-pole large capacity turbine generator mainly using upgrading technique of large capacity, since 1994 fiscal year. And, aiming at reliability verification of the 1800 MVA class generator, a model generator with same cross-section as that of an actual one was manufactured, to carry out some verifications on its electrified tests, and so on. Every performance evaluation result of tests on the model generator were good, and high reliability to design and manufacturing technique of the 1800 MVA class generator could be verified. In future, on the base of these technologies, further upgrading of reliability on the large capacity turbine generator for nuclear power generation is intended to be carried out. (G.K.)

  16. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter......This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...

  17. Situation of nuclear power generation in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, S [Swedish Atomic Forum

    1978-01-01

    In Sweden, nuclear power generation was received initially favorably. In the end of 1960s, however, nuclear power generation got involved in the activities of environment preservation. Then, political parties became opposed to nuclear power generation, and now, the need of nuclear power generation itself is regarded as questionable. In the general election in 1976, the Government opposing the nuclear power generation won. As the result, the conditional nuclear power development law and the energy committee were set up. The committee composed of parliament members, experts, and representatives of enterprises and trade unions is to submit its report so that the parliament can prepare a new energy program in the fall of 1978. Meanwhile, the nuclear fuel safety project formed newly has studied to satisfy the conditions of the law. In Sweden, which has developed nuclear reactors independently from the technology of USA, the oppositions are on the decrease, however. It is awaited what decision will be made by the Government in this fall.

  18. Electrical Power Conversion of a River and Tidal Power Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-09-01

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  19. An atomic empire a technical history of the rise and fall of the British atomic energy programme

    CERN Document Server

    Hill, C N

    2013-01-01

    Britain was the first country to exploit atomic energy on a large scale, and at its peak in the mid-1960s, it had generated more electricity from nuclear power than the rest of the world combined.The civil atomic energy programme grew out of the military programme which produced plutonium for atomic weapons. In 1956, Calder Hall power station was opened by the Queen. The very next year, one of the early Windscale reactors caught fire and the world's first major nuclear accident occurred.The civil programme ran into further difficulty in the mid-1960s and as a consequence of procrastination in

  20. Nuclear power generation and automation technology

    International Nuclear Information System (INIS)

    Korei, Yoshiro

    1985-01-01

    The proportion of nuclear power in the total generated electric power has been increasing year after year, and the ensuring of its stable supply has been demanded. For the further development of nuclear power generation, the heightening of economical efficiency which is the largest merit of nuclear power and the public acceptance as a safe and stable electric power source are the important subjects. In order to solve these subjects, in nuclear power generation, various automation techniques have been applied for the purpose of the heightening of reliability, labor saving and the reduction of radiation exposure. Meeting the high needs of automation, the automation technology aided by computers have been applied to the design, manufacture and construction, operation and maintenance of nuclear power plants. Computer-aided design and the examples of design of a reactor building, pipings and a fuel assembly, an automatic welder for pipings of all position TIG welding type, a new central monitoring and control system, an automatic exchanger of control rod-driving mechanism, an automatic in-service inspection system for nozzles and pipings, and a robot for steam generator maintenance are shown. The trend of technical development and an intelligent moving robot, a system maintenance robot and a four legs walking robot are explained. (Kako, I.)

  1. The end of the nuclear power generation. On the recommendations of the ethics committee according to the 13th amendment to the Atomic Energy Act; Das Ende der Atomverstromung. Zu den Empfehlungen der Ethik-Kommission, zur 13. Atomgesetz-Novelle

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Peter [Kanzlei Becker Buettner Held, Berlin (Germany)

    2011-11-15

    With the 13th Amendment to the Atomic Energy Act the nuclear consequences of the earthquake disaster in Japan will result in an end to nuclear power generation in Germany. Here, the legislature resorted to unusual methods. For the first time, the legislature received advices from the ''ethics committee reliable energy supply''. This Ethics Commission adopted its recommendations ''on behalf of the Chancellor'' in the period from 4th April to 28th May, 2011. The understanding of this development, its epochal character and speed of decision-making requires an excursion into the economic history and the establishment of nuclear power generation with their legal protection.

  2. 18 CFR 801.12 - Electric power generation.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power generation. 801.12 Section 801.12 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made...

  3. Atomic-powered democracy: Policy against politics in the quest for American nuclear energy

    International Nuclear Information System (INIS)

    Williams, R.W.

    1993-01-01

    This dissertation focuses on the relationship of American nuclear energy to democracy. It examines whether the nuclear policy processes have furthered the legitimacy-government accountability and citizen participation-which the democratic institutes are based. Nuclear policy and its institutions have placed severe limitations on democratic practices. Contravened democracy is seen most clearly in the decoupling of policy from politics. Decoupling refers to the weakening of institutional linkages between citizens and government, and to the erosion of the norms that ground liberal democracy. Decoupling is manifested in policy centralization, procedural biases, technical rationality, and the spatial displacement of conflict. Decoupling has normative implications: While federal accountability was limited and citizen participation was shackled, other major groups enjoyed privileged access to policy making. The decoupling of nuclear policy from politics arose within the context of US liberal-democratic capitalism. The federal government pursued its own goals of defense and world leadership. Yet, it was not structurally autonomous from the hegemony of the political-economic context. Economically, the Atomic Energy Act did not permit federal agencies to directly invest in power plant construction, and did not authorize them to commercially generate electricity. Private industry was structurally placed to domesticate the atom. Politically, the liberal-democratic system hampered an unquestioning pursuit of atomic energy. Federal institutions have been forced to heed some of the anti-nuclear concerns. The pervasive influence of the US political economy on nuclear policy has come to transgress democracy. Nuclear power's growth faltered during the 1970s. The political and economic constraints on federal actions have limited the means available to revive a becalmed nuclear industry; this has exerted strong pressure on federal institutions to decouple policy from participation

  4. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Lee, Young Gun; Lee, Han Myung; Song, Ki Dong; Lee, Man Ki; Kim, Seung Su; Moon, Kee Hwan; Chung, Whan Sam; Kim, Kyung Pyo; Cho, Sang Goo

    1992-01-01

    The purpose of this study is to clarify the role of nuclear power generation under the circumstances of growing concerns about environmental impact and to help decision making in electricity sector. In this study, efforts are made to estimate electricity power generation cost of major power options by incorporating additional cost to reduce environmental impact and to suggest an optimal plant mix in this case. (Author)

  5. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    Czech Academy of Sciences Publication Activity Database

    Duben, Ondřej; Boušek, J.; Dědina, Jiří; Kratzer, Jan

    2015-01-01

    Roč. 111, SEP (2015), s. 57-63 ISSN 0584-8547 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation-atomic absorption spectrometry * selenium Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  6. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    International Nuclear Information System (INIS)

    Herman, R.M.

    1982-01-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 10 9 , in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of h) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms

  7. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    Science.gov (United States)

    Herman, R. M.

    1982-03-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 109, in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of ℏ) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit-relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms.

  8. Generation of even harmonics in a relativistic laser plasma of atomic clusters

    International Nuclear Information System (INIS)

    Krainov, V.P.; Rastunkov, V.S.

    2004-01-01

    It is shown that the irradiation of atomic clusters by a superintense femtosecond laser pulse gives rise to various harmonics of the laser field. They arise as a result of elastic collisions of free electrons with atomic ions inside the clusters in the presence of the laser filed. The yield of even harmonics whose electromagnetic field is transverse is attributed to the relativism of the motion of electrons and the consideration of their drift velocity associated with the internal ionization of atoms and atomic ions of a cluster. These harmonics are emitted in the same direction as odd harmonics. The conductivities and electromagnetic fields of the harmonics are calculated. The generation efficiency of the harmonics slowly decreases as the harmonic number increases. The generation of even harmonics ceases when the drift velocity of electrons becomes equal to zero and only the oscillation velocity of electrons is nonzero. The results can also be applied to the irradiation of solid-state targets inside a skin layer

  9. Generation of four-atom Greenberger—Horn—Zeilinger state via adiabatic passage

    International Nuclear Information System (INIS)

    Zhang Chun-Ling; Chen Mei-Feng

    2013-01-01

    We propose a scheme to generate a Greenberger—Horn—Zeilinger (GHZ) state of four atoms trapped in a two-mode optical cavity via an adiabatic passage. The scheme is robust against moderate fluctuations of the experimental parameters. Numerical calculations show that the excited probabilities of both the cavity modes and the atoms are tiny and depend on the pulse peaks of the classical laser fields. For certain decoherence due to the atomic spontaneous emission and the cavity decay, there exits a range of pulse peaks to get a high fidelity. (general)

  10. Highly versatile atomic micro traps generated by multifrequency magnetic field modulation

    International Nuclear Information System (INIS)

    Courteille, Ph W; Deh, B; Fortagh, J; Guenther, A; Kraft, S; Marzok, C; Slama, S; Zimmermann, C

    2006-01-01

    We propose the realization of custom-designed adiabatic potentials for cold atoms based on multimode radio frequency radiation in combination with static inhomogeneous magnetic fields. For example, the use of radio frequency combs gives rise to periodic potentials acting as gratings for cold atoms. In strong magnetic field gradients, the lattice constant can be well below 1 μm. By changing the frequencies of the comb in time the gratings can easily be propagated in space, which may prove useful for Bragg scattering atomic matter waves. Furthermore, almost arbitrarily shaped potentials are possible such as disordered potentials on a scale of several 100 nm or lattices with a spatially varying lattice constant. The potentials can be made state selective and, in the case of atomic mixtures, also species selective. This opens new perspectives for generating tailored quantum systems based on ultracold single atoms or degenerate atomic and molecular quantum gases

  11. An approach for obtaining high availability at Madras Atomic Power Station

    International Nuclear Information System (INIS)

    Subramanian, K.S.; Murthy, K.S.N.; Hariharan, K.

    1977-01-01

    Causes of unavailability of nuclear power plants are described, with special reference to the Madras Atomic Power Plant (MAPP). Design inadequacies, component failures, installation errors, etc. encountered at the MAPP are enumerated. Systems testing followed as well as recruitment and training efforts resorted to are also reported. (K.B.)

  12. Atom for peace, code for war. The technology policy of the atomic power solution in Finland between 1955-1970

    International Nuclear Information System (INIS)

    Sarkikoski, T.

    2011-01-01

    This dissertation investigates the atomic power solution in Finland between 1955 - 1970. During these years a national arrangement for atomic energy technology evolved. The foundations of the Finnish atomic energy policy; the creation of basic legislation and the first governmental bodies, were laid between 1955 - 1965. In the late 1960's, the necessary technological and political decisions were made in order to purchase the first commercial nuclear reactor. A historical narration of this process is seen in the international context of 'atoms for peace' policies and Cold War history in general. The geopolitical position of Finland made it necessary to become involved in the balanced participation in international scientific-technical exchange and assistive nuclear programs. The Paris Peace Treaty of 1947 categorically denied Finland acquisition of nuclear weapons. Accordingly, from the 'Geneva year' of 1955, the emphasis was placed on peaceful purposes for atomic energy as well as on the education of national professionals in Finland. An initiative for the governmental atomic energy commission came from academia but the ultimate motive behind it was an anticipated structural change in the supply of national energy. Economically exploitable hydro power resources were expected to be built within ten years and atomic power was seen as a promising and complementing new energy technology. While importing fuels like coal was out of the question, because of scarce foreign currency, domestic uranium mineral deposits were considered as a potential source of nuclear fuel. Nevertheless, even then nuclear energy was regarded as just one of the possible future energy options. In the mid-1960 s a bandwagon effect of light water reactor orders was witnessed in the United States and soon elsewhere in the world. In Finland, two separate invitations for bids for nuclear reactors were initiated. This study explores at length both their preceding grounds and later phases. An

  13. 75 FR 54400 - Florida Power and Light Company; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2010-09-07

    ...] Florida Power and Light Company; Establishment of Atomic Safety and Licensing Board Pursuant to delegation..., notice is hereby given that an Atomic Safety and Licensing Board (Board) is being established to preside over the following proceeding: Florida Power & Light Company (Turkey Point Units 6 and 7) This...

  14. Power Generation from Coal 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report focuses mainly on developments to improve the performance of coal-based power generation technologies, which should be a priority -- particularly if carbon capture and storage takes longer to become established than currently projected. A close look is taken of the major ongoing developments in process technology, plant equipment, instrumentation and control. Coal is an important source of energy for the world, particularly for power generation. To meet the growth in demand for energy over the past decade, the contribution from coal has exceeded that of any other energy source. Additionally, coal has contributed almost half of total growth in electricity over the past decade. As a result, CO2 emissions from coal-fired power generation have increased markedly and continue to rise. More than 70% of CO2 emissions that arise from power generation are attributed to coal. To play its role in a sustainable energy future, its environmental footprint must be reduced; using coal more efficiently is an important first step. Beyond efficiency improvement, carbon capture and storage (CCS) must be deployed to make deep cuts in CO2 emissions. The need for energy and the economics of producing and supplying it to the end-user are central considerations in power plant construction and operation. Economic and regulatory conditions must be made consistent with the ambition to achieve higher efficiencies and lower emissions. In essence, clean coal technologies must be more widely deployed.

  15. Power generation and the environment

    International Nuclear Information System (INIS)

    Robert, L.E.J.; Liss, P.S.; Saunders, P.A.H.

    1990-01-01

    This book reviews environmental aspects of large-scale power generation. It includes historic background of present-generation patterns and a discussion of fossil fuel, nuclear energy, and renewable technologies

  16. Generation of multipartite entangled states for chains of atoms in the framework of cavity-QED

    Energy Technology Data Exchange (ETDEWEB)

    Gonta, Denis

    2010-07-07

    Cavity quantum electrodynamics is a research field that studies electromagnetic fields in confined spaces and the radiative properties of atoms in such fields. Experimentally, the simplest example of such system is a single atom interacting with modes of a high-finesse resonator. Theoretically, such system bears an excellent framework for quantum information processing in which atoms and light are interpreted as bits of quantum information and their mutual interaction provides a controllable entanglement mechanism. In this thesis, we present several practical schemes for generation of multipartite entangled states for chains of atoms which pass through one or more high-finesse resonators. In the first step, we propose two schemes for generation of one- and two-dimensional cluster states of arbitrary size. These schemes are based on the resonant interaction of a chain of Rydberg atoms with one or more microwave cavities. In the second step, we propose a scheme for generation of multipartite W states. This scheme is based on the off-resonant interaction of a chain of three-level atoms with an optical cavity and a laser beam. We describe in details all the individual steps which are required to realize the proposed schemes and, moreover, we discuss several techniques to reveal the non-classical correlations associated with generated small-sized entangled states. (orig.)

  17. Generation of multipartite entangled states for chains of atoms in the framework of cavity-QED

    International Nuclear Information System (INIS)

    Gonta, Denis

    2010-01-01

    Cavity quantum electrodynamics is a research field that studies electromagnetic fields in confined spaces and the radiative properties of atoms in such fields. Experimentally, the simplest example of such system is a single atom interacting with modes of a high-finesse resonator. Theoretically, such system bears an excellent framework for quantum information processing in which atoms and light are interpreted as bits of quantum information and their mutual interaction provides a controllable entanglement mechanism. In this thesis, we present several practical schemes for generation of multipartite entangled states for chains of atoms which pass through one or more high-finesse resonators. In the first step, we propose two schemes for generation of one- and two-dimensional cluster states of arbitrary size. These schemes are based on the resonant interaction of a chain of Rydberg atoms with one or more microwave cavities. In the second step, we propose a scheme for generation of multipartite W states. This scheme is based on the off-resonant interaction of a chain of three-level atoms with an optical cavity and a laser beam. We describe in details all the individual steps which are required to realize the proposed schemes and, moreover, we discuss several techniques to reveal the non-classical correlations associated with generated small-sized entangled states. (orig.)

  18. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-15

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century.

  19. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-01

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century

  20. Generator technology for HTGR power plants

    International Nuclear Information System (INIS)

    Lomba, D.; Thiot, D.

    1997-01-01

    Approximately 15% of the worlds installed capacity in electric energy production is from generators developed and manufactured by GEC Alsthom. GEC Alsthom is now working on the application of generators for HTGR power conversion systems. The main generator characteristics induced by the different HTGR power conversion technology include helium immersion, high helium pressure, brushless excitation system, magnetic bearings, vertical lineshaft, high reliability and long periods between maintenance. (author)

  1. Third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1988-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached or are about to step into the third generation phase of development. The paper concludes that to achieve the objectives of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry

  2. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  3. Investment strategy for low-carbon power generation

    International Nuclear Information System (INIS)

    Yamasaki, Yukihiro; Matsuhashi, Ryuji; Yoshida, Yoshikuni

    2011-01-01

    Recently, it is needed to reduce CO 2 emissions for prevention of global warming. In Japan, the power generation sector is the biggest part in terms of CO 2 emissions, therefore it is very important to cope with the reduction of the emissions from this sector. From this point of view, it is assumed that the nuclear power generation is the most practical option to reduce them. In order to evaluate the possibility of introduction of the nuclear power, we built a generation planning model and simulate to analyze the transition of the optimal generation mix. Also, we evaluate the investment in the introduction of the nuclear power quantitatively using the real option analysis. (author)

  4. Simulation of the energy - environment economic system power generation costs in power-stations

    International Nuclear Information System (INIS)

    Weible, H.

    1978-09-01

    The costs of power generation are an important point in the electricity industry. The present report tries to supply a model representation for these problems. The costs of power generation for base load, average and peak load power stations are examined on the basis of fossil energy sources, nuclear power and water power. The methods of calculation where dynamic investment calculation processes are used, are given in the shape of formulae. From the point of view of long term prediction, power generation cost sensitivity studies are added to the technical, economic and energy-political uncertainties. The sensitivity of models for calculations is examined by deterministic and stochastic processes. In the base load and average region, power generation based on nuclear power and water power is economically more favourable than that from fossilfired power stations. Even including subsidies, this cost advantage is not in doubt. In the peak load region, pumped storage power stations are more economic than fossilfired power stations. (orig.) [de

  5. Data logger system of Tokai (I) Nuclear Power Station, the Japan Atomic Power Company

    International Nuclear Information System (INIS)

    Machida, Akira; Chikahata, Kiyomitsu; Nakamura, Mamoru; Nanbu, Taketoshi; Kawakami, Hiroshi

    1977-01-01

    The Tokai(I) nuclear power station, the Japan Atomic Power Company, was commissioned in July, 1966. In this station, temperatures of about 700 points are monitored and recorded with a data logger. However, the logger was manufactured some 15 years ago, therefore it is now old-fashioned, and has caused frequent failures these 2 or 3 years. So it was decided to replace it with a new one, and the process control computer, U-300 system including CRT display, has been adopted considering the latest trend in U.K. The control and monitoring system in this station is not a centralized control system, but a distributed control system divided into three control rooms, namely main control room, turbine generator control room and fuel exchanger (cask machine) control room. Therefore for grasping the complete plant conditions at the main control room, the system has not been convenient, and the centralization of data processing has been desired from the viewpoint of operation. The new logger system is composed so as to facilitate the centralized monitoring in the main control room, considering the above requirement. It has been improved so as to have seven important functions in addition to the existing functions. Hardware and software of this system are briefly explained. The new system was started up in February 1977, and is now operating well, though some early failures were experienced. (Wakatsuki, Y.)

  6. Seismic re-evaluation of the Tarapur atomic power plants 1 and 2

    International Nuclear Information System (INIS)

    Ingole, S.M.; Kumar, B.S.; Gupta, S.; Singh, U.P.; Giridhar, K.; Bhawsar, S.D.; Samota, A.; Chhatre, A.G.; Dixit, K.B.; Bhardwaj, S.A.

    2004-01-01

    Two Boiling Water Reactors (BWR) of 210 MWe each at Tarapur Atomic Power Station, Units-1 and 2 (TAPS-1-2) were commissioned in the year 1969. The safety related civil structures at TAPS had been designed for a seismic coefficient of 0.2 g and other structures for 0.1 g. The work of seismic re-evaluation of the TAPS-1-2 has been taken up in the year 2002. As two new Pressurized Heavy Water Reactor (PHWR) plants of 540 MWe each, Tarapur Atomic Power Project Units-3 and 4 (TAPP-3-4), are coming up in the vicinity of TAPS-1-2, detailed geological and seismological studies of the area around TAPS-1-2 are available. The same free-field ground motion as generated for TAPP-3-4 has been used for TAPS-1-2. The seismic re-evaluation of the plant has been performed as per the procedure given in IAEA, Safety Reports Series entitled 'Seismic Evaluation of Existing Nuclear Power Plants', and meeting the various codes and standards, viz., ASME, ASCE, IEEE standards etc. The Safety Systems (SS) and Safety Support Systems (SSS) are qualified by adopting detailed analysis and testing methods. The equipment in the SS and SSS have been qualified by conducting a walk-down as per the procedure given in Generic Implementation Procedure, Dept. of Energy (GIP--DOE), USA. The safety systems include the systems required for safe shutdown of the plant, one chain of decay heat removal and containment of activity. The safety support systems viz., Electrical, Instrumentation and Control and systems other than SS and SSS have been qualified by limited analysis, testing and mostly by following the procedure of walk-down. The paper brings out the details of the work accomplished during seismic re-evaluation of the two units of BWR at Tarapur. (authors)

  7. The coherence and spectra of a Bose condensate generated by an atomic laser

    International Nuclear Information System (INIS)

    Kozlovskii, A.V.

    2003-01-01

    The first-order coherence dynamics of a Bose condensate generated by a cw atomic laser with evaporative cooling is analyzed. For the atomic-laser multimode model, the coherence functions and atomic field spectra are calculated by the master equation technique. Elastic collisions in the trapped atomic gas lead to significant broadening of the atomic laser line, a shift of its center, and a multi peak structure of the spectra. The oscillatory time dynamics of the atomic-field coherence function is studied. For the atomic laser, the free phase diffusion of the field typical of optical lasers, and characterized by monotonically decreasing mean field with a constant mean phase, is absent due to elastic collisions

  8. Regulation for delivery of subsidies for urgent safety measures for atomic power generating facilities

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations provide for subsidies for the emergency measures taken by the prefecture concerned in preparation for a major accident in a nuclear power generating, etc. facility. These activities include an emergency communication network, emergency medical care, personnel education, and outfitting of emergency personnel. The contents are as follows: terms of subsidy allocations, the sum of a subsidy allocation, applications for subsidies, determination of subsidy allocations, withdrawal of applications the conditions attached to the allocations, a report on the work proceedings, a report on the results, confirmation on the sum of the subsidies, withdrawal of the decision for subsidies, limitations for the disposal of the properties, etc. (Mori, K.)

  9. Peak power ratio generator

    Science.gov (United States)

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  10. Power generation from waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Nitsche, H

    1980-04-18

    Since the energy crisis, power generation from waste wood has become increasingly important. The most profitable way to use waste wood in woodworking plants with an annual production of 100 to 150,000 m/sup 3/ solid measure of wood chips and bark is by combustion and thermal energy recovery. In plants with an annual production of 10,000 m/sup 3/ solid measure of wood chips and bark, electric power generation is a suitable application.

  11. Power: towards a third generation definition

    OpenAIRE

    13250612 - Zaaiman, Stephanus Johannes

    2008-01-01

    Power is a well-established concept in the social sciences especially in the political sciences. Although it is widely used in scientific discourse, different definitions and perspectives prevail with regard to it. This article aims to explore the possibilities of taking the debate further towards a third generation definition of social power. Although first generation definitions (associated with Weber and Dahl) and second generation definitions (associated with inter alia Giddens and Morris...

  12. Power generation in India: analysing trends and outlook

    International Nuclear Information System (INIS)

    2011-01-01

    The objective of this report is to provide up-to-date data, critical analysis and information encompassing all aspects of power generation in India. The report provides historic and future outlook for power generation in India. It also provides an evaluation of private participation in power generation segment of India and investment opportunities in Indian power sector. In addition, the report examines policies, regulatory framework and financing of power generation in India. It also highlights key issues and challenges that are restricting the accelerated development of this sector. The report has thirteen chapters in total. (author)

  13. How shall we hand over the atomic energy to the next generation? Publicity activities to the youth

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Kaji, Yoshiyuki; Kumagaya, Akira; Shibata, Toshikazu; Watanabe, Tamaki; Murakami, Masatoshi; Nishina, Kojiro.

    1995-01-01

    It is important for Atomic Energy Society of Japan which covers the wide fields related to atomic energy to know exactly what the youths who bear the next generation learn about atomic energy and what feeling they have. However, the attitude or the attempt of meeting young generation from such viewpoint was not sufficient so far. In the phenomena of 'away from atomic energy' recently pointed out frequently, the root seems to have existed long ago. In this feature article, from such critical mind, the present status and the plan for hereafter of atomic energy publicity activities for young generation and those concerned to education are made clear. The publicity activities for school education and young generation, the publicity activities for those concerned to education, the questionnaire of the consciousness about energy and environment, the open school activity of Atomic Energy Society of Japan, the nuclear reactor experiment and study for middle and high school teachers, the assembling of simplified GM counters and the experiment of measuring radiation, the activities of Plasnet for young generation and the exercise and seminar on radiation for high school students are reported. Japanese social system is at the root of atomic energy problem, and the effort to improve it contributes to innovate the constitution of whole Japan. (K.I.)

  14. Bettis Atomic Power Laboratory

    International Nuclear Information System (INIS)

    1992-01-01

    The Bettis Atomic Power Laboratory (Bettis) is owned by the US Department of Energy (DOE) and has been operated under Government contract by the Westinghouse Electric Corporation since 1949. The Bettis Site in West Mifflin, Pennsylvania conducts research and development work on improved nuclear propulsion plants for US Navy warships and is the headquarters for all of the Laboratory's operations. For many years, environmental monitoring has been performed to demonstrate that the Bettis Site is being operated in accordance with environmental standards. While the annual report describes monitoring practices and results, it does not describe the nature and environmental aspects of work and facilities at the Bettis Site nor give a historical perspective of Bettis' operations. The purpose of this report is to provide this information as well as background information, such as the geologic and hydrologic nature of the Bettis Site, pertinent to understanding the environmental aspects of Bettis operations. Waste management practices are also described

  15. Evaluation Of Different Power Conditioning Options For Stirling Generators

    Science.gov (United States)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  16. Japan and atomic co-operation

    International Nuclear Information System (INIS)

    1965-01-01

    Japan, which is host country for the Ninth Regular Session of the Agency General Conference, has an important programme of nuclear power development to meet future needs. In addition, Japan is active in other applications of atomic energy and is building up a domestic nuclear engineering industry. Japan has profited by the Agency as a channel of international cooperation, and was a party to the first bilateral agreement in which the responsibility for administering safeguards against the diversion of materials to military purposes, was transferred to the Agency. Japan has also lent support to Agency programmes by gifts, training courses, research, and the loan of experts. In 1961, the Japan Atomic Energy Commission (AEC) formulated the 'Long-Range Programme for Development and Utilization of Atomic Energy', on the basis of the economic prospects of nuclear power generation, and the conditions necessary to meet the ever-increasing domestic energy demands. According to this programme, in the light of power reactor development trends overseas, it is expected that nuclear power costs will compete with those of oil burning stations by 1970. On this basis, total nuclear power generating capacity of 1000 MW(e) will be attained by 1970, and 7000 - 9 500M(e) by 1980. As a prelude to the above programme the Japan Atomic Power Company (JAPCO) began construction in 1959 of a graphite-moderated gas-cooled nuclear power station (Improved Calder Hall type) of 165 MW(e) gross capacity. This is now progressing smoothly, and reached criticality in May 1965; it is expected to supply commercial power by the end of this year. The second nuclear power station will be built by the same company on the coast of the Japan Sea, with a light water-moderated reactor of 250 - 300 MW(e) capacity. The construction plan i s currently being pushed forward for completion in 1970. Thereafter three private utility companies - Tokyo, Kansai and Chubu Electric Companies - are doing preparatory work for

  17. Centralized power generation: what share for gas?

    International Nuclear Information System (INIS)

    Honore, A.; Pharabod, E.; Lecointe, O.; Poyer, L.

    2007-01-01

    Up to a recent past, most energy scenarios were foreseeing a fast growth of natural gas consumption thanks to an assumed strong penetration of gas-fueled power plants. The share of natural gas in the centralized power generation has been the subject of a meeting of the French gas association (AFG) which aimed at answering the following questions: today's position of gas power generation in Europe in the present day context of gas prices (level, volatility), the share of natural gas in the French power mix in the coming years, the strategies of development of gas power plants by historical operators and newcomers, the gas arbitration between its sale to end-users and its use for power generation, and the integration of the CO 2 risk. (J.S.)

  18. White paper on atomic energy in 1979

    International Nuclear Information System (INIS)

    1980-01-01

    In Japan, there are currently 21 nuclear power plants in operation with a total capacity of 15,000MW. Under the present situation of the so-called second energy crisis, the role of nuclear power is assuming increasingly more importance. The white paper is presented covering the one year period from October 1978; statistics, however, are for fiscal 1978. Contents are the following: part I general ''world nuclear power situation, advances in nuclear energy, the outlook for 1980s''; part II the status of nuclear power ''nuclear power generation, nuclear power safety, nuclear fuel cycle, international activities, safeguards, development of power reactors, nuclear fusion/nuclear powered ship/high-temperature gas cooled reactor, radiation utilization, basic research, nuclear power industry''; part III references (organization/plans of Atomic Energy Commission etc., atomic energy budgets, nuclear energy statistics, etc.). (J.P.N.)

  19. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong-Yang [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wen, Jing-Ji [College of Foundation Science, Harbin University of Commerce, Harbin, Heilongjiang 150028 (China); Bai, Cheng-Hua; Hu, Shi; Cui, Wen-Xue [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wang, Hong-Fu, E-mail: hfwang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhu, Ai-Dong [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhang, Shou, E-mail: szhang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China)

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  20. Electric power generator

    International Nuclear Information System (INIS)

    Carney, H.C.

    1977-01-01

    An electric power generator of the type employing a nuclear heat source and a thermoelectric converter is described wherein a transparent thermal insulating medium is provided inside an encapsulating enclosure to thermally insulate the heat source and thermoelectric generator. The heat source, the thermoelectric converter, and the enclosure are provided with facing surfaces which are heat-reflective to a substantial degree to inhibit radiation of heat through the medium of the encapsulating enclosure. Multiple reflective foils may be spaced within the medium as necessary to inhibit natural convection of heat and/or further inhibit radiation

  1. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-12-31

    During the wind power generator project a design algorithm for a gearless permanent magnet generator with an axially orientated magnetic flux was developed and a 10 kW model machine was constructed. Utilising the test results a variable wind speed system of 100 kW was designed that incorporates a permanent magnet generator, a frequency converter and a fuzzy controller. This system produces about 5-15% more energy than existing types and stresses to the blades are minimised. The type of generator designed in the project represents in general a gearless solution for slow-speed electrical drives. (orig.)

  2. Power generation from nuclear reactors in aerospace applications

    International Nuclear Information System (INIS)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion

  3. Power Generation from Nuclear Reactors in Aerospace Applications

    Science.gov (United States)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  4. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  5. Wind Turbine Generator Efficiency Based on Powertrain Combination and Annual Power Generation Prediction

    Directory of Open Access Journals (Sweden)

    Dongmyung Kim

    2018-05-01

    Full Text Available Wind turbine generators are eco-friendly generators that produce electric energy using wind energy. In this study, wind turbine generator efficiency is examined using a powertrain combination and annual power generation prediction, by employing an analysis model. Performance testing was conducted in order to analyze the efficiency of a hydraulic pump and a motor, which are key components, and so as to verify the analysis model. The annual wind speed occurrence frequency for the expected installation areas was used to predict the annual power generation of the wind turbine generators. It was found that the parallel combination of the induction motors exhibited a higher efficiency when the wind speed was low and the serial combination showed higher efficiency when wind speed was high. The results of predicting the annual power generation considering the regional characteristics showed that the power generation was the highest when the hydraulic motors were designed in parallel and the induction motors were designed in series.

  6. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1996-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  7. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  8. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  9. Optimization of power generation from shrouded wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis (United States)

    2013-07-01

    In past several years, several studies have shown that the shrouded wind turbines can generate greater power compared to bare turbines. The objective of this study is to determine the potential of shrouded wind turbines for increased power generation by conducting numerical simulations. An analytical/computational study is performed by employing the well-known commercial Computational Fluid Dynamics (CFD) software FLUENT. An actuator disc model is used to model the turbine. The incompressible Navier-Stokes equations and a two equation realizable {kappa}-{epsilon} model are employed in the calculations. The power coefficient Cp and generated power are calculated for a large number of cases for horizontal axis wind turbines (HAWT) of various diameters and wind speeds for both bare and shrouded turbines. The design of the shroud is optimized by employing a single objective genetic algorithm; the objective being the maximization of the power coefficient Cp. It was found that the shroud indeed increases the Cp beyond the Betz’s limit significantly and as a result the generated power; this effect is consistent with that found in the recent literature that the shrouded wind-turbines can generate greater power than the bare turbines. The optimized shape of the shroud or diffuser further increases the generated power and Cp.

  10. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-01-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO 2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  11. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  12. Future perspective of cost for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Ichiro

    1988-01-01

    The report presents and discussed results of evaluation of the cost for power generation in this and forthcoming years on the basis of an analysis of the current fuel prices and the economics of various power sources. Calculations show that nuclear power generation at present is inferior to coal-firing power generation in terms of required costs, but can become superior in the future due to an increased burn-up and reduced construction cost. Investigations are made of possible contributions of future technical improvements to reduction in the overall cost. Results suggest that nuclear power generation will be the most efficient among the various electric sources because of its technology-intensive feature. Development of improved light water reactors is of special importance to achieve a high burn-up and reduced construction costs. In general, the fixed cost accounts for a large part of the overall nuclear power generation cost, indicating that a reduction in construction cost can greatly increase the economic efficiency. Changes in the yen's exchange rate seem to have little effect on the economics of nuclear power generation, which represents another favorable aspect of this type of energy. (Nogami, K.)

  13. LPGC, Levelized Steam Electric Power Generator Cost

    International Nuclear Information System (INIS)

    Coen, J.J.; Delene, J.G.

    1994-01-01

    1 - Description of program or function: LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generation cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized-water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor. Costs for plant having either one or two units may be obtained. 2 - Method of solution: LPGC consists of nine individual menu-driven programs controlled by a driver program, MAINPWR. The individual programs are PLANTCAP, for calculating capital investment costs; NUCLOM, for determining operation and maintenance (O and M) costs for nuclear plants; COALOM, for computing O and M costs for coal-fired plants; NFUEL, for calculating levelized fuel costs for nuclear plants; COALCOST, for determining levelized fuel costs for coal-fired plants; FCRATE, for computing the fixed charge rate on the capital investment; LEVEL, for calculating levelized power generation costs; CAPITAL, for determining capitalized cost from overnight cost; and MASSGEN, for generating, deleting, or changing fuel cycle mass balance data for use with NFUEL. LPGC has three modes of operation. In the first, each individual code can be executed independently to determine one aspect of the total

  14. Ocean Current Power Generator. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, G. A.

    2002-07-26

    The Ocean Power Generator is both technically and economically suitable for deployment in the Gulf Stream from the US Navy facility in Dania, Florida. Yet to be completed is the calibration test in the Chesapeake Bay with the prototype dual hydroturbine Underwater Electric Kite. For the production units a revised design includes two ballast tanks mounted as pontoons to provide buoyancy and depth control. The power rating of the Ocean Power Generator has been doubled to 200 kW ready for insertion into the utility grid. The projected cost for a 10 MW installation is $3.38 per watt, a cost that is consistent with wind power pricing when it was in its deployment infancy, and a cost that is far better than photovoltaics after 25 years of research and development. The Gulf Stream flows 24 hours per day, and water flow is both environmentally and ecologically perfect as a renewable energy source. No real estate purchases are necessary, and you cannot see, hear, smell, or touch an Ocean Power Generator.

  15. Operating of Small Wind Power Plants with Induction Generators

    Directory of Open Access Journals (Sweden)

    Jakub Nevrala

    2008-01-01

    Full Text Available This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generators connected to the power grid. Methods of control these systems as a separately working, directly connecting to power grid, control by frequency converter and wiring by synchronous cascade are confronted on the measuring base too.

  16. Power generation from nuclear reactors in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  17. Organic solvents as interferents in arsenic determination by hydride generation atomic absorption spectrometry with flame atomization

    Czech Academy of Sciences Publication Activity Database

    Karadjova, I.B.; Lampugnani, L.; Dědina, Jiří; D'Ulivo, A.; Onor, M.; Tsalev, D.L.

    2006-01-01

    Roč. 61, č. 5 (2006), s. 525-531 ISSN 0584-8547 R&D Projects: GA AV ČR IAA400310507 Institutional research plan: CEZ:AV0Z40310501 Keywords : hydride generation * atomic absorption spectrometry * interferences Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.092, year: 2006

  18. A mechatronic power boosting design for piezoelectric generators

    International Nuclear Information System (INIS)

    Liu, Haili; Liang, Junrui; Ge, Cong

    2015-01-01

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation

  19. A mechatronic power boosting design for piezoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haili; Liang, Junrui, E-mail: liangjr@shanghaitech.edu.cn; Ge, Cong [School of Information Science and Technology, ShanghaiTech University, No. 8 Building, 319 Yueyang Road, Shanghai 200031 (China)

    2015-10-05

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  20. Economic analysis of power generation from floating solar chimney power plant

    International Nuclear Information System (INIS)

    Zhou, Xinping; Yang, Jiakuan; Xiao, Bo; Wang, Fen

    2009-01-01

    Solar chimney thermal power technology that has a long life span is a promising large-scale solar power generating technology. This paper performs economic analysis of power generation from floating solar chimney power plant (FSCPP) by analyzing cash flows during the whole service period of a 100 MW plant. Cash flows are influenced by many factors including investment, operation and maintenance cost, life span, payback period, inflation rate, minimum attractive rate of return, non-returnable subsidy rate, interest rate of loans, sale price of electricity, income tax rate and whether additional revenue generated by carbon credits is included or not. Financial incentives and additional revenue generated by carbon credits can accelerate the development of the FSCPP. Sensitivity analysis to examine the effects of the factors on cash flows of a 100 MW FSCPP is performed in detail. The results show that the minimum price for obtaining minimum attractive rate of return (MARR) of 8% reaches 0.83 yuan (kWh) -1 under financial incentives including loans at a low interest rate of 2% and free income tax. Comparisons of economics of the FSCPP and reinforced concrete solar chimney power plant or solar photovoltaic plant are also performed by analyzing their cash flows. It is concluded that FSCPP is in reality more economical than reinforced concrete solar chimney power plant (RCSCPP) or solar photovoltaic plant (SPVP) with the same power capacity. (author)

  1. Present state of research and development of MHD power generation

    International Nuclear Information System (INIS)

    Ikeda, Shigeru

    1978-01-01

    MHD power generation can obtain electric energy directly from the heat energy of high speed plasma flow, and the power generating plant of 1 million kW can be realized by this method. When the MHD power generation method is combined before conventional thermal power generation method, the thermal efficiency can be raised to about 60% as compared with 38% in thermal power generation plants. The research and development of MHD power generation are in progress in USA and USSR. The research and development in Japan are in the second stage now after the first stage project for 10 years, and the Mark 7 generator with 100 kW electric output for 200 hr continuous operation is under construction. The MHD power generation is divided into three types according to the conductive fluids used, namely combustion type for thermal power generation, unequilibrated type and liquid metal type for nuclear power generation. The principle of MHD power generation and the constitution of the plant are explained. In Japan, the Mark 2 generator generated 1,180 kW for 1 min in 1971, and the Mark 3 generator generated 1.9 kW continuously for 110 hr in 1967. The MHD generator with superconducting magnet succeeded in 1969 to generate 25 kW for 6 min. The second stage project aimes at collecting design data and obtaining operational experience for the construction of 10 MW class pilot plant, and the Mark 7 and 8 generators are planned. (Kako, I.)

  2. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  3. Analysis of Linear MHD Power Generators

    Energy Technology Data Exchange (ETDEWEB)

    Witalis, E A

    1965-02-15

    The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.

  4. Power Generation for River and Tidal Generators

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Donegan, James [Ocean Renewable Power Company (ORPC), Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company (ORPC), Portland, ME (United States); McEntee, Jarlath [Ocean Renewable Power Company (ORPC), Portland, ME (United States)

    2016-06-01

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered one of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.

  5. Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay

    International Nuclear Information System (INIS)

    Zou, XuBo; Pahlke, K.; Mathis, W.

    2003-01-01

    We propose a scheme to generate a four-particle Greenberger-Horne-Zeilinger (GHZ) state of distant atoms that are trapped separately in leaky cavities. This scheme uses cavity decay to inject photons into a setup of optical devices that consist of a symmetric series of beam splitters and photon detectors. Photon detection on the output modes of the beam splitters projects the atom-cavity-system state onto the GHZ state. It is briefly pointed out that this scheme can be extended to generate GHZ states of 4m atoms

  6. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    International Nuclear Information System (INIS)

    Hashiba, Takashi

    2001-01-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO 2 on generation, and awareness of energy environmental concerns. (author)

  7. The first phase epidemiological study on the workers engaged in radiation business in facilities for atomic power generation

    International Nuclear Information System (INIS)

    Iwasaki, Tamiko; Kumatori, Toshiyuki

    1996-01-01

    Recently, the influence of long-lasting exposure to low-dose radiation on human bodies, especially on carcinogenesis have been attracting considerable attentions, however, there are few data available for the estimation of such risks. An epidemiological survey study on the workers for radiation business in atomic power stations was started in 1990 and its first phase study (1990-1994) was finished. This report describes the outlines of the results from the study, which has been made public by the Science and Technology Agency. The correlation between the exposure dose and carcinogenicity was observed only for the cancer in pancreas, but not in other organs. But, the previous studies in other countries and the data from the persons exposed to atomic bomb indicated that there was no significant correlation between the radiation and the incidence of pancreatic cancer. This causal relation found should be coped with carefully. The standardized mortality ratio, SMR for all kinds of death cause in the subjects was 0.89 (95% CI: 0.82-0.96), significantly lower than that in all Japanese men. This fact was consistent with the data in other countries, suggesting that the decreased SMR compared with the whole people would be due to so called 'healthy worker's effects'. (M.N.)

  8. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Costa, L.M.

    2008-12-01

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  9. High-Altitude Wind Power Generation

    NARCIS (Netherlands)

    Fagiano, L.; Milanese, M.; Piga, D.

    2010-01-01

    Abstract—The paper presents the innovative technology of highaltitude wind power generation, indicated as Kitenergy, which exploits the automatic flight of tethered airfoils (e.g., power kites) to extract energy from wind blowing between 200 and 800 m above the ground. The key points of this

  10. Environmental studies and clearance compliance of Kudankulam Atomic Power Project

    International Nuclear Information System (INIS)

    Agarwal, S.K.; Singh, Jitendra

    2002-01-01

    Full text: Nuclear industry has played a leading role in evolving proper and effective environmental management impact from development practices right form inception thus minimizing the environmental impact from developmental activities of man. In the engineering design of nuclear power plant, safety is further enhanced considerably by providing double back-upped engineered safety systems. Besides the engineered safety, the other factors considered for ensuring environmental impact minimization are siting criteria, conservative rad-waste management, effluent treatment, application of stringent environmental protection standards for limiting waste discharges, an elaborate environmental surveillance program and an on site and off site emergency preparedness plan. Recently, nuclear power industry has taken a drive to develop and implement Environmental Management System (EMS) to all its operating stations in line with ISO-14001 standards. For Kudankulam atomic power project, a number of studies specifically for environmental protection are carried out to meet the requirements of Russian Federation, new guidelines of Ministry of environment and Forests (MOEF) and Atomic Energy Regulatory Board (AERB). In the present paper an attempt has been made to present the environmental management plan and clearance compliance status of the project

  11. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  12. The generation of the Greenberger-Horne-Zeilinger state of four distant atoms conditioned on cavity decay

    International Nuclear Information System (INIS)

    Pahlke, Kai; Zou Xubo; Mathis, Wolfgang

    2004-01-01

    We show a way to use an optical device set-up to generate the four-particle Greenberger-Horne-Zeilinger (GHZ) state of atoms, which are trapped separately in leaky cavities. Based on cavity decay, photons are transferred from the atom-cavity systems to a symmetric series of beam splitters and photon detectors. The events of photon detection on the output modes of the beam splitters project the state of the atom-cavity systems onto the GHZ state. It is briefly pointed out how this scheme can be extended to generate GHZ states of 4m atoms

  13. Operating of Small Wind Power Plants with Induction Generators

    OpenAIRE

    Jakub Nevrala; Stanislav Misak

    2008-01-01

    This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generator...

  14. Nuclear power generation and fuel cycle report 1997

    International Nuclear Information System (INIS)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East

  15. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  16. Use of thermoelectric generators for improve power dependability over grid power

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Jack [Global Thermoelectric, Calgary (Canada)

    2005-07-01

    A natural gas transportation company was experiencing extensive pipeline corrosion on some sections of their pipeline protected by impressed current using grid power and rectifiers. After determining that grid power was being interrupted on the affected sections, the gas transporter began looking for a more dependable power supply and chose thermoelectric generators. Since installing thermoelectric generators in 2002, the pipeline potentials have stabilized and transporter was able to experience 100% operational time on affected sections. (author)

  17. Dual-loop self-optimizing robust control of wind power generation with Doubly-Fed Induction Generator.

    Science.gov (United States)

    Chen, Quan; Li, Yaoyu; Seem, John E

    2015-09-01

    This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Reactive power management of power networks with wind generation

    CERN Document Server

    Amaris, Hortensia; Ortega, Carlos Alvarez

    2012-01-01

    As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key

  19. Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers.

    Science.gov (United States)

    Lin, Kuang-I; Ho, Yen-Hung; Liu, Shu-Bai; Ciou, Jian-Jhih; Huang, Bo-Ting; Chen, Christopher; Chang, Han-Ching; Tu, Chien-Liang; Chen, Chang-Hsiao

    2018-02-14

    Edge morphology and lattice orientation of single-crystal molybdenum disulfide (MoS 2 ) monolayers, a transition metal dichalcogenide (TMD), possessing a triangular shape with different edges grown by chemical vapor deposition are characterized by atomic force microscopy and transmission electron microscopy. Multiphoton laser scanning microscopy is utilized to study one-dimensional atomic edges of MoS 2 monolayers with localized midgap electronic states, which result in greatly enhanced optical second-harmonic generation (SHG). Microscopic S-zigzag edge and S-Mo Klein edge (bare Mo atoms protruding from a S-zigzag edge) terminations and the edge-atom dependent resonance energies can therefore be deduced based on SHG images. Theoretical calculations based on density functional theory clearly explain the lower energy of the S-zigzag edge states compared to the corresponding S-Mo Klein edge states. Characterization of the atomic-scale variation of edge-enhanced SHG is a step forward in this full-optical and high-yield technique of atomic-layer TMDs.

  20. Attitude of students intending to be teachers toward nuclear power generation and the environment

    International Nuclear Information System (INIS)

    Shiomi, Tetsuro; Tada, Yasuyuki

    2002-01-01

    The ''Period for Integrated study'' will be added to the existing subjects in elementary schools, junior and high schools from 2002. Subjects included in the period are, for example, international understanding, information, environment, etc. To treat the issues about environment, energy and nuclear power generation in the period, it is necessary to study the attitude of the teachers and the students intending to be teachers toward environment, energy, atomic power and integrated study. The results of the present survey show that the teachers studying in under graduate schools and the students intending to be teachers have negative attitude toward nuclear power, have concern about environment and energy, value cooperation with a company in the period. When they deal with the environment, energy and nuclear power in the period, individual ideas and principles are not taught, and teachers gather information from the pros and cons, and motivate the children to judge by themselves. This reflects the basic idea of ''the Period of Integrated Study''. (author)

  1. Concentrated solar power generation using solar receivers

    Science.gov (United States)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  2. Generation of long-living entanglement between two distant three-level atoms in non-Markovian environments.

    Science.gov (United States)

    Li, Chuang; Yang, Sen; Song, Jie; Xia, Yan; Ding, Weiqiang

    2017-05-15

    In this paper, a scheme for the generation of long-living entanglement between two distant Λ-type three-level atoms separately trapped in two dissipative cavities is proposed. In this scheme, two dissipative cavities are coupled to their own non-Markovian environments and two three-level atoms are driven by the classical fields. The entangled state between the two atoms is produced by performing Bell state measurement (BSM) on photons leaving the dissipative cavities. Using the time-dependent Schördinger equation, we obtain the analytical results for the evolution of the entanglement. It is revealed that, by manipulating the detunings of classical field, the long-living stationary entanglement between two atoms can be generated in the presence of dissipation.

  3. Refurbishment and replacement efforts to mitigate ageing at Tarapur Atomic Power Station - an overview

    International Nuclear Information System (INIS)

    Katiyar, S.C.; Thattey, V.; Das, P.K.

    2006-01-01

    Tarapur Atomic Power Station (TAPS) - a twin Boiling Water Reactor unit and India's first Atomic Power Station was commissioned in April 1969, and was declared commercial in November 1969. Since then the light water moderated, low enriched uranium BWR with its demonstrated reliability and favourable economics is playing a vital role as a reliable source of power for the states of Maharashtra and Gujarat. The Power Station played a key role as a technology demonstrator validating the nuclear energy as safe and environmentally benign and economically viable alternate source of power generation in India. Built in the late sixties with state-of-the-art safety features prevailing then, TAPS has further evolved to be a safe plant with renovation and refurbishment efforts. Ageing Management Programme is in place at TAPS. Identification of systems, structures and components (SSCs) important to safety and availability, assessment of ageing degradation of these SSCs and mitigation through repair, replacement and refurbishment based on the investigations have enhanced the plant safety and reliability. The station's operating experience and feedback from BWRs operating abroad have also given inputs to Ageing Management Programme. A good number of major equipment have been replaced to mitigate ageing. Primary system piping, process heat exchangers, feed water heaters, turbine extraction system piping, turbine blades, emergency condenser tube bundles, various pumps, station batteries, electrical cables, circuit breakers etc. are some of them. Obsolescence is another aspect of ageing of a plant. Replacement of obsolete equipment and components particularly in C and I is another area where much headway has been made. Replacement and refurbishment of equipment have been done after detailed study and analysis so that current standards are met. Retrofitting the indigenously developed and fabricated equipment in a compact plant like TAPS was a difficult task and required lot of

  4. Experimental study of power generation utilizing human excreta

    International Nuclear Information System (INIS)

    Mudasar, Roshaan; Kim, Man-Hoe

    2017-01-01

    Highlights: • Power generation from human excreta has been studied under ambient conditions. • Biogas increases with solid wastes and continuous feeding at mesophilic conditions. • Understand the potential of human excreta for domestic power generating systems. • 26.8 kW h power is generated using biogas of 0.35 m 3 /kg from waste of 35 kg. • Continuous feeding produces 0.7 m 3 /kg biogas and generates 60 kW h power. - Abstract: This study presents the energetic performance of the biomass to produce power for micro scale domestic usage. Human excreta are chosen as the subject of the study to investigate their potential to produce biogas under ambient conditions. Furthermore, the research examines the approaches by which biogas production can be enhanced and purified, leading to a high-power generation system. The experimental work focuses on the design and fabrication of a biogas digester with a reverse solar reflector, water scrubbing tower, and a dryer. Anaerobic digestion has been considered as the decomposition method using solar energy which is a heat providing source. Specifically, two types of experiments have been performed, namely, feces to water weight proportion and continuous feeding experiments, each involving a set of six samples. The effect of parameters such as pH, ambient temperature, and biogas upgradation reveals that volume of biogas and power generation can be best obtained when an 8:2 feces to water weight sample is employed and when the feeding is applied every fifth day. In addition, this study discusses the environmental prospects of the biogas technology, which is achieved by using the water purification method to improve the methane percentage to 85% and remove undesired gases. The motivation behind this work is to understand the potential of human excreta for the development of domestic power generating systems. The results obtained reveal that 0.35 m 3 /kg of biogas is produced with 8:2 weight proportion sample, which

  5. Report of fact-finding survey in atomic energy industries, 1990

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In fiscal year 1990, Japanese economy maintained steady domestic civilian demands, and the real rate of economical growth became 5.7%. The total supply of primary energy increased by 5.3% as compared with that in the last year. The share of nuclear power recovered to 9.4% due to the increase of the capacity factor after the lapse of three years. The demand of electric power increased by 7.3% as compared with that in the previous year, and the share of nuclear power in the total generated electric power was 26.3%. The outlay of electric power industry related to atomic energy was 1735.4 billion yen, and 6% increase as compared with that in the previous year. The sales of mining and manufacturing industries related to atomic energy was 1768.1 billion yen and 2% increase as compared with that in the previous year. The construction cost of nuclear power stations was 658.3 billion yen and 17% increase. The civilian workers related to atomic energy in electric power, mining and manufacturing industries were 57687 persons and 7% increase. Kashiwazaki-Kariwa No. 2 plant (1100 MWe BWR) and No. 5 plant (1100 MWe BWR) of Tokyo Electric Power Co., Inc. started the operation, and installed nuclear power generation capacity reached 31.48 million kW of 39 plants. (K.I.)

  6. The third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1987-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached of are about to step into the third generation phase of development. The paper concludes that to achieve the objective of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry. (author)

  7. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su

    1997-12-01

    The major contents in this study are as follows : - long-term forecast to the year of 2040 is provided for nuclear electricity generating capacity by means of logistic curve fitting method. - the role of nuclear power in a national economy is analyzed in terms of environmental regulation. To do so, energy-economy linked model is developed. By using this model, the benefits from the introduction of nuclear power in Korea are estimated. Study on inter-industry economic activity for nuclear industry is carried out by means of an input-output analysis. Nuclear industry is examined in terms of inducement effect of production, of value-added, and of import. - economic analysis of nuclear power generation is performed especially taking into consideration wide variations of foreign currency exchange rate. The result is expressed in levelized generating costs. (author). 27 refs., 24 tabs., 44 figs

  8. Nuclear power generating costs

    International Nuclear Information System (INIS)

    Srinivasan, M.R.; Kati, S.L.; Raman, R.; Nanjundeswaran, K.; Nadkarny, G.V.; Verma, R.S.; Mahadeva Rao, K.V.

    1983-01-01

    Indian experience pertaining to investment and generation costs of nuclear power stations is reviewed. The causes of investment cost increases are analysed and the increases are apportioned to escalation, design improvements and safety related adders. The paper brings out the fact that PHWR investment costs in India compare favourably with those experienced in developed countries in spite of the fact that the programme and the unit size are relatively much smaller in India. It brings out that in India at current prices a nuclear power station located over 800 km from coal reserves and operating at 75% capacity factor is competitive with thermal power at 60% capacity factor. (author)

  9. Multipumping flow system for improving hydride generation atomic fluorescence spectrometric determinations

    International Nuclear Information System (INIS)

    Lopez-Garcia, Ignacio; Ruiz-Alcaraz, Irene; Hernandez-Cordoba, Manuel

    2006-01-01

    The advantages of using membrane micropumps rather than peristaltic pumps to introduce both sample and reagent solutions for hydride generation atomic fluorescence spectrometry are discussed. Arsenic was used as a test analyte to check the performance of the proposed manifold. Sample and reagent consumption was reduced 8-9 fold compared with continuous mode measurements made with peristaltic pumps, with no deterioration in sensitivity. The calibration graph was linear in the 0.05 to 2.5 μg l -1 As range using peak area as the analytical signal and maximum gain in the detector setting. A limit of detection (3σ) of 0.02 μg l -1 and relative standard deviation values close to 2% for 10 independent measurements of a 1 μg l -1 As solution were obtained. The sampling frequency increased from 45 to 102 h -1 with the subsequent saving in carrier gas used and reduction in wastes generated. The instrumental modification, which could be used for other elements currently determined by atomic fluorescence spectrometry, will permit hydride generators of more reduced dimensions to be constructed

  10. Costs of electric power generation in different types of power plants

    International Nuclear Information System (INIS)

    Weible, H.

    1977-01-01

    In the framework of our study 'energy - environment - industry' we need among other things the costs of electric power generation. We register their structure in a sub-model. Recently there was disagreement on effective costs of electric power generation particularly when comparing fossil-fuel power plants to nuclear power plants. For this reason, expertises on the costs of electric power generation in nuclear and fossil-fuel power plants were ordered with the Energy-Economic Institute in Cologne as well as with the Battelle Institute in Frankfurt. In the framwork of our paper on the system 'energy - environment - industry' we do not want to give new data potentially required for our task, before the expertises will be finished. Therefore the results given in part III of this lecture are only meant as an example in order to show possible consequences of the cost programs set up, depending on initial data whose general recognition is to be aimed at. Furthermore, the theoretical approach to investment calculation has to win general recognition when recording calculation methods computer-compatibly. Any new formulations discussed in industrial management have not been taken into account. (orig.) [de

  11. Interaction of antiprotons with Rb atoms and a comparison of antiproton stopping powers of the atoms H, Li, Na, K, and Rb

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Fischer, Nicolas; Saenz, Alejandro

    2009-01-01

    Ionization and excitation cross sections as well as electron-energy spectra and stopping powers of the alkali metal atoms Li, Na, K, and Rb colliding with antiprotons were calculated using a time-dependent channel-coupling approach. An impact-energy range from 0.25 to 4000 keV was considered....... The target atoms are treated as effective one-electron systems using a model potential. The results are compared with calculated cross sections for antiproton-hydrogen atom collisions....

  12. World's largest DC flywheel generator for the toroidal field power supply of JAERI's JFT-2M Tokamak nuclear fusion reactor

    International Nuclear Information System (INIS)

    Tani, Takashi; Nakanishi, Yuji; Horita, Tsuyoshi; Kawase, Chiharu; Oyabu, Isao; Kishimoto, Takeshi.

    1996-01-01

    Mitsubishi Electric has delivered the world's largest DC generator for the toroidal field coil power supply of the JFT-2M Tokamak at the Japan Atomic Energy Research Institute. The unit rotates at 225 or 460 rpm, providing a maximum rated output of 2,700 V, 19,000 A and 51.3 MW. The toroidal field is a DC field, so use of a DC generator permits a simpler design consuming less floor space than an AC drive system. The generator was manufactured following extensive studies on commutation, mechanical strength and insulation. (author)

  13. Working environment in power generation

    International Nuclear Information System (INIS)

    1989-05-01

    The proceedings contain 21 papers, of which 7 are devoted to nuclear power generation. They are concerned with the working environment in the controlled areas of the Bohunice nuclear power plant, the unsuitable design of the control rooms with respect to reliability and safety of operation of the nuclear power plant, optimization of the man-working conditions relation, operation of transport facilities, refuelling and fuel element inspection, the human factor and the probabilityy assessment of the nuclear power plant operating safety, a proposal to establish a universal ergonometric programme for the electric power distribution system, and physical factors in the ergonometric analysis of the working environment. (J.B.)

  14. Certification of power generation from sewage gas

    International Nuclear Information System (INIS)

    Ronchetti, C.

    2004-01-01

    This article discusses the certification of power generated from sewage gas in packaged co-generation units in Switzerland. Since 2003, such electricity can be sold as 'green power' to consumers, who pay an additional charge for this ecologically generated power. Since the eco-balance of this electricity generated in wastewater treatment plant is considered as being excellent, the prestigious 'Naturemade Star' label has been awarded to it. This label sets most stringent requirements. The Canius wastewater treatment plant in the 'Lenzerheide' in eastern Switzerland is taken as an example to illustrate the procedure that has to be gone through to receive certification. This certification is carried out by independent auditors and guarantees that the 'green' electricity offered by the utility meets the high ecological criteria set by the label

  15. Power import or domestic power generation using gas?

    International Nuclear Information System (INIS)

    Saettler, M.; Bohnenschaefer, W.; Schlesinger, M.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents expert opinion on the question of how Switzerland could meet its demands for power in the future. The results of the analysis of two options - the import of electrical power or its generation using natural-gas-fired power stations - made in the light of gas market liberalisation are presented. These include the assessment of the use of 'GuD' (combined gas and steam-turbine) power stations in the 100 MW e l to 400 MW e l class regarding their cost, their emissions and primary energy consumption. The authors discuss the assessments from the political and economic points of view. An appendix supplies characteristic data for 'GuD' power stations and an example of a model calculation for a 400 MW e l 'GuD' power station

  16. Electrical power systems for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T.A.; Huval, S.J. [Stewart & Stevenson Services, Inc., Houston, TX (United States)

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  17. A thermoelectric generator using loop heat pipe and design match for maximum-power generation

    KAUST Repository

    Huang, Bin-Juine

    2015-09-05

    The present study focuses on the thermoelectric generator (TEG) using loop heat pipe (LHP) and design match for maximum-power generation. The TEG uses loop heat pipe, a passive cooling device, to dissipate heat without consuming power and free of noise. The experiments for a TEG with 4W rated power show that the LHP performs very well with overall thermal resistance 0.35 K W-1, from the cold side of TEG module to the ambient. The LHP is able to dissipate heat up to 110W and is maintenance free. The TEG design match for maximum-power generation, called “near maximum-power point operation (nMPPO)”, is studied to eliminate the MPPT (maximum-power point tracking controller). nMPPO is simply a system design which properly matches the output voltage of TEG with the battery. It is experimentally shown that TEG using design match for maximum-power generation (nMPPO) performs better than TEG with MPPT.

  18. Magnetic field generation device for magnetohydrodynamic electric power generation

    International Nuclear Information System (INIS)

    Kuriyama, Yoshihiko.

    1993-01-01

    An existent magnetic field generation device for magnetohydrodynamic electric power generation comprises at least a pair of permanent magnets disposed to an inner circumferential surface of a yoke having such a cross sectional area that two pairs of parallel sides are present, in which different magnetic poles are opposed while interposing a flow channel for a conductive fluid therebetween. Then, first permanent magnets which generate main magnetic fields are disposed each at a gap sandwiching a plane surface including a center axis of a flow channel for the conductive fluid. Second permanent magnets which generate auxiliary magnetic fields are disposed to an inner circumferential surface of a yoke intersecting the yoke to which the first permanent magnets are disposed. The magnetic poles on the side of the flow channel for the second permanent magnets have identical polarity with that of the magnetic poles of the adjacent first permanent magnets. As a result, a magnetic flux density in the flow channel for the conductive fluid can be kept homogeneous and at a high level from a position of the axial line of the flow channel to the outer circumference, thereby enabling to remarkably improve a power generation efficiency. (N.H.)

  19. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su; Lim, Chae Young

    1998-12-01

    An energy security index was developed to measure how the introduction of nuclear power generation improved the national security of energy supply in Korea. Using the developed index, a quantitative effort was made to analyze the relationship between the nuclear power generation and the national energy security. Environmental impacts were evaluated and a simplified external cost of a specific coal-fired power plant in Korea was estimated using the QUERI program, which was developed by IAEA. In doing so, efforts were made to quantify the health impacts such as mortality, morbidity, and respiratory hospital admissions due to particulates, SOx, and Nox. The effects of CO 2 emission regulation on the national economy were evaluated. In doing so, the introduction of carbon tax was assumed. Several scenarios were established about the share of nuclear power generation and an effort was made to see how much contribution nuclear energy could make to lessen the burden of the regulation on the national economy. This study re-evaluated the methods for estimating and distributing decommissioning cost of nuclear power plant over lifetime. It was resulted out that the annual decommissioning deposit and consequently, the annual decommissioning cost could vary significantly depending on estimating and distributing methods. (author). 24 refs., 44 tabs., 9 figs

  20. 76 FR 51065 - Florida Power & Light Company; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2011-08-17

    ... & Light Company; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by the... hereby given that an Atomic Safety and Licensing Board (Board) is being established to preside over the following proceeding: Florida Power & Light Company (St. Lucie Plant, Unit 1) This proceeding involves a...

  1. Application study of the project management on the nuclear power projects in China Institute of Atomic Energy

    International Nuclear Information System (INIS)

    Ji Cunxing

    2012-01-01

    The article introduced the actions of foreign and domestic nuclear power technical services in China Institute of Atomic Energy, the project management theory is applied to the organization, implementation and control of the nuclear power projects. It is analyzed the quality, schedule , investment etc of nuclear power projects, the improving measures and suggestions are bring forward on the project management organization, quality assurance, reduce cost etc. It will raise its nuclear power project management level in China Institute of Atomic Energy. (author)

  2. Optimal Output of Distributed Generation Based On Complex Power Increment

    Science.gov (United States)

    Wu, D.; Bao, H.

    2017-12-01

    In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.

  3. Market power and technological bias in electricity generation markets

    International Nuclear Information System (INIS)

    Twomey, Paul; Neuhoff, Karsten

    2005-01-01

    It is difficult or very costly to avoid all market power in electricity markets. A recurring response is that a limited amount of market power is accepted with the justification that it is necessary to produce revenues to cover some of the fixed costs. It is assumed that all market participants benefit equally from the increased prices. However, this assumption is not satisfied if different production technologies are used. We assess the case of a generation mix of conventional generation and intermittent generation with exogenously varying production levels. If all output is sold in the spot market, then intermittent generation benefits less from market power than conventional generation. If forward contracts or option contracts are signed, then market power might be reduced but the bias against returns to intermittent generators persists. Thus allowing some level of market power as a means of encouraging investment in new generation may result in a bias against intermittent technologies or increase the costs of strategic deployment to achieve renewable quotas. (Author)

  4. Protein Nano-Object Integrator (ProNOI for generating atomic style objects for molecular modeling

    Directory of Open Access Journals (Sweden)

    Smith Nicholas

    2012-12-01

    Full Text Available Abstract Background With the progress of nanotechnology, one frequently has to model biological macromolecules simultaneously with nano-objects. However, the atomic structures of the nano objects are typically not available or they are solid state entities. Because of that, the researchers have to investigate such nano systems by generating models of the nano objects in a manner that the existing software be able to carry the simulations. In addition, it should allow generating composite objects with complex shape by combining basic geometrical figures and embedding biological macromolecules within the system. Results Here we report the Protein Nano-Object Integrator (ProNOI which allows for generating atomic-style geometrical objects with user desired shape and dimensions. Unlimited number of objects can be created and combined with biological macromolecules in Protein Data Bank (PDB format file. Once the objects are generated, the users can use sliders to manipulate their shape, dimension and absolute position. In addition, the software offers the option to charge the objects with either specified surface or volumetric charge density and to model them with user-desired dielectric constants. According to the user preference, the biological macromolecule atoms can be assigned charges and radii according to four different force fields: Amber, Charmm, OPLS and PARSE. The biological macromolecules and the atomic-style objects are exported as a position, charge and radius (PQR file, or if a default dielectric constant distribution is not selected, it is exported as a position, charge, radius and epsilon (PQRE file. As illustration of the capabilities of the ProNOI, we created a composite object in a shape of a robot, aptly named the Clemson Robot, whose parts are charged with various volumetric charge densities and holds the barnase-barstar protein complex in its hand. Conclusions The Protein Nano-Object Integrator (ProNOI is a convenient tool for

  5. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  6. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Perez-Navarro, A.; Alfonso, D.; Alvarez, C.; Ibanez, F.; Sanchez, C.; Segura, I.

    2010-01-01

    Massive implementation of renewable energy resources is a key element to reduce CO 2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  7. Super power generators

    International Nuclear Information System (INIS)

    Martin, T.H.; Johnson, D.L.; McDaniel, D.H.

    1977-01-01

    PROTO II, a super power generator, is presently undergoing testing at Sandia Laboratories. It has operated with an 80 ns, 50 ns, 35 ns, and 20 ns positive output pulse high voltage mode and achieved total current rates of rise of 4 x 10 14 A/s. The two sided disk accelerator concept using two diodes has achieved voltages of 1.5 MV and currents of 4.5 MA providing a power exceeding 6 TW in the electron beam and 8 TW in the transmission lines. A new test bed named MITE (Magnetically Insulated Transmission Experiment) was designed and is now being tested. The pulse forming lines are back to back short pulse Blumleins which use untriggered water switching. Output data showing a ten ns half width power pulse peaking above one terrawatt were obtained. MITE is a module being investigated for use in the Electron Beam Fusion Accelerator and will be used to test the effects of short pulses propagating down vacuum transmission lines

  8. Life cycle analysis of advanced nuclear power generation technologies

    International Nuclear Information System (INIS)

    Uchiyama, Yoji; Yokoyama, Hayaichi

    1996-01-01

    In this research, as for light water reactors and fast breeder reactors, for the object of all the processes from the mining, transport and refining of fuel, electric power generation to the treatment and disposal of waste, the amount of energy input and the quantity of CO 2 emission over the life cycle were analyzed, and regarding the influence that the technical progress of nuclear power generation exerted to environment, the effect of improvement was elucidated. Attention has been paid to nuclear power generation as its CO 2 emission is least, and the effect of global warming is smallest. In order to reduce the quantity of radioactive waste generation in LWRs and the cost of fuel cycle, and to extend the operation cycle, the technical development for heightening fuel burnup is in progress. The process of investigation of the new technologies of nuclear power generation taken up in this research is described. The analysis of the energy balance of various power generation methods is discussed. In the case of pluthermal process, the improvement of energy balance ratio is dependent on uranium enrichment technology. Nuclear power generation requires much materials and energy for the construction, and emits CO 2 indirectly. The CO 2 unit emission based on the analysis of energy balance was determined for the new technologies of nuclear power generation, and the results are shown. (K.I.)

  9. Internal structure of reactor building for Madras Atomic Power Project

    International Nuclear Information System (INIS)

    Pandit, D.P.

    1975-01-01

    The structural configuration and analysis of structural elements of the internal structure of reactor building for the Madras Atomic Power Project has been presented. Two methods of analysis of the internal structure, viz. Equivalent Plane Frame and Finite Element Method, are explained and compared with the use of bending moments obtained. (author)

  10. CHP in Switzerland from 1990 to 1998. Thermal power generation including combined heat and power

    International Nuclear Information System (INIS)

    Kaufmann, U.

    1999-01-01

    The results of a study on thermal power generation in Switzerland show that combined heat and power (CHP) systems have grown rapidly. Statistics are presented on the development of CHP-based power and also on thermal power stations without waste heat usage. Figures are given for gas and steam turbine installations, combined gas and steam turbine stations and motor-driven CHP units. Power production is categorised, separating small and large (over 1 Megawatt electrical) power generation facilities. On-site, distributed power generation at consumers' premises and the geographical distribution of plant is described

  11. Brushless power generating system having reduced conducted emissions in output power

    International Nuclear Information System (INIS)

    Walton, D.N.; Dolan, C.F.; Shah, M.J.

    1991-01-01

    This patent describes a brushless electrical power generating system. It comprises an exciter for producing alternating current from an exciter rotor; a rectifier mounted for rotation with the rotor for producing a rectified control current from the alternating current; a common mode inductor, coupled to the rectifier, for cancelling common mode noise components within the rectified control current; and a main generator, having a rotating field winding mounted on a main generator rotor excited by the control current and producing an alternating current power output from a stator

  12. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  13. Assessment of Environmental External Effects in Power Generation

    DEFF Research Database (Denmark)

    Meyer, Henrik Jacob; Morthorst, Poul Erik; Ibsen, Liselotte Schleisner

    1996-01-01

    to the production of electricity based on a coal fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas.In the report the individual externalities from...

  14. FY 2000 report on the demonstrative research for photovoltaic power generation system in Thailand. Demonstrative study on photovoltaic power generation grid-connected system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    In relation to the demonstrative study of the photovoltaic power system that is planned in Libong island, Thailand, the FY 2000 results were reported. In this R and D, construction/demonstrative operation were planned for a photovoltaic power station with a generation output of 100kW, photovoltaic power system in school facilities, and system for transmitting/distributing power to houses by connecting the power station and power system. In this fiscal year, the field survey was conducted together with the alteration from Yao Yai island, for which the demonstrative study was planned at first, to Libong island. The electric equipment was selected which met the requests from Thailand and the results of the field survey, and the basic design of the photovoltaic power generation/transmission/distribution system was completed. Based on this, the design/manufacture of photovoltaic power generation modules, power control equipment, measuring equipment, etc. were made. At the construction site of photovoltaic power station, construction work such as land formation was conducted. Further, Thai engineers who visited Japan did the following: discussions about power system, presence at test/inspection of photovoltaic power generation modules, visits to photovoltaic power stations, wind power stations, etc. (NEDO)

  15. Vapor generationatomic spectrometric techniques. Expanding frontiers through specific-species preconcentration. A review

    International Nuclear Information System (INIS)

    Gil, Raúl A.; Pacheco, Pablo H.; Cerutti, Soledad; Martinez, Luis D.

    2015-01-01

    This article reviews 120 articles found in SCOPUS and specific Journal cites corresponding to the terms ‘preconcentration’; ‘speciation’; ‘vapor generation techniques’ and ‘atomic spectrometry techniques’ in the last 5 years. - Highlights: • Recent advances in vapor generation and atomic spectrometry were reviewed. • Species-specific preconcentration strategies after and before VG were discussed. • New preconcentration and speciation analysis were evaluated within this framework. - Abstract: We review recent progress in preconcentration strategies associated to vapor generation techniques coupled to atomic spectrometric (VGT-AS) for specific chemical species detection. This discussion focuses on the central role of different preconcentration approaches, both before and after VG process. The former was based on the classical solid phase and liquid–liquid extraction procedures which, aided by automation and miniaturization strategies, have strengthened the role of VGT-AS in several research fields including environmental, clinical, and others. We then examine some of the new vapor trapping strategies (atom-trapping, hydride trapping, cryotrapping) that entail improvements in selectivity through interference elimination, but also they allow reaching ultra-low detection limits for a large number of chemical species generated in conventional VG systems, including complete separation of several species of the same element. This review covers more than 100 bibliographic references from 2009 up to date, found in SCOPUS database and in individual searches in specific journals. We finally conclude by giving some outlook on future directions of this field

  16. Vapor generationatomic spectrometric techniques. Expanding frontiers through specific-species preconcentration. A review

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Raúl A.; Pacheco, Pablo H.; Cerutti, Soledad [Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Martinez, Luis D., E-mail: ldm@unsl.edu.ar [Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina)

    2015-05-22

    This article reviews 120 articles found in SCOPUS and specific Journal cites corresponding to the terms ‘preconcentration’; ‘speciation’; ‘vapor generation techniques’ and ‘atomic spectrometry techniques’ in the last 5 years. - Highlights: • Recent advances in vapor generation and atomic spectrometry were reviewed. • Species-specific preconcentration strategies after and before VG were discussed. • New preconcentration and speciation analysis were evaluated within this framework. - Abstract: We review recent progress in preconcentration strategies associated to vapor generation techniques coupled to atomic spectrometric (VGT-AS) for specific chemical species detection. This discussion focuses on the central role of different preconcentration approaches, both before and after VG process. The former was based on the classical solid phase and liquid–liquid extraction procedures which, aided by automation and miniaturization strategies, have strengthened the role of VGT-AS in several research fields including environmental, clinical, and others. We then examine some of the new vapor trapping strategies (atom-trapping, hydride trapping, cryotrapping) that entail improvements in selectivity through interference elimination, but also they allow reaching ultra-low detection limits for a large number of chemical species generated in conventional VG systems, including complete separation of several species of the same element. This review covers more than 100 bibliographic references from 2009 up to date, found in SCOPUS database and in individual searches in specific journals. We finally conclude by giving some outlook on future directions of this field.

  17. Experimental studies of laser-generated translationally hot atoms and molecules

    International Nuclear Information System (INIS)

    Cousins, L.M.

    1989-01-01

    An important determinant of the outcome of a chemical interaction is the relative translational energy of the partners. This thesis focuses on the generation of translationally energetic atoms and molecules and the role of translational energy in chemical interactions. One set of studies examines the competitive pathways of reactions and energy transfer in hyperthermal collisions of fast H or D atoms with HF. The vibrational excitation of HF or DF is measured using a time- and wavelength-resolved infrared emission technique. The results suggest that different collision geometries can lead to markedly different mechanisms for vibrational excitation. Another set of experiments is performed with a goal to generate a repetitively pulsed source of molecules or atoms with translational energies in the 0.1-10 eV range. A pulsed UV laser is used to excite a molecular film, vaporizing a number of molecules near the surface of the film. The composition and velocity of these molecules are measured by their time-of-flight to a quadrupole mass spectrometer. Kinetic energies in the range of 0.1-10 eV are observed; the energies are continuously variable and the molecules can be repetitively and reproducibly generated. To establish the dynamics of the vaporization, the internal distributions of fast 0.1-0.7 eV NO molecules are measured using a laser multiphoton detection technique. These studies indicate that the translationally hot molecules are ejected rotationally cold, i.e. typically with only 3% of the energy in rotational excitation. The large disequilibrium between translation and rotation suggests that the vaporization occurs by a transient, nonequilibrium heating mechanism coupled with an adiabatic expansion. The result is additionally promising in light of the desire to produce fast beams of molecules with characterizable and narrow internal energy distributions

  18. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

    International Nuclear Information System (INIS)

    Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

    2017-01-01

    This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method. (paper)

  19. Optical generation of radio-frequency power

    International Nuclear Information System (INIS)

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100's of mW's at millimeter wave frequencies with a theoretical ''wall-plug'' efficiency approaching 34%

  20. An approach to the conversion of the power generated by an offshore wind power farm connected into seawave power generator

    Energy Technology Data Exchange (ETDEWEB)

    Franzitta, Vicenzo; Messineo, Antonio; Trapanese, Marco

    2011-07-01

    The development of renewable energy systems has been undergoing for the past decades but sea wave's energy resource has been under-utilized. This under-utilization has several reasons: the energy concentration is low in sea waves, extraction of this energy requires leading edge technologies and conversion of the energy into electrical energy is difficult. This study compares two different methods to connect the sea waves' generator to the network and to the offshore wind power farm. The first method consists in a decentralized approach: each generator is connected to the grid through an AC converter. The second method is a partially centralized approach: a rectifier is connected to each generator, all of the generators are then connected together to a common DC bus and power is then converted in AC to be connected to the grid. This study has shown that the partially centralized approach is more reliable and efficient than the decentralized approach.

  1. Is there a tomorrow for nuclear power generation?

    International Nuclear Information System (INIS)

    Kanoh, T.

    1996-01-01

    Critical comments are publicly made about nuclear power generation and the nuclear fuel cycle. This criticism is directed at three areas of concern: accidents, radioactive waste disposal, and proliferation of nuclear weapons. In addition, there are other comments that ask 'Why are there countries pushing for nuclear power generation when other countries around the world are giving it up?' and 'Will further efforts to develop new energy sources and energy conservation not eliminate the nneed for nuclear power generation?' Such critical comments appear in some media more often than those expressing other opinions. Is there really no tomorrow for nuclear power? This question is studied below. (author)

  2. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  3. Set up for simultaneous water desalination and power generation

    International Nuclear Information System (INIS)

    Hasan, S.W.; Mookhi, M.B.; Sadiq, M.A.; Hasan, Z.; Zaidi, S.I.; Shah, W.A.

    2010-01-01

    Instead of following the conventional fuel oriented power generation methods and dissipating its heat into environment, we evaporate saline water into steam and use its energy to generate power. Using this scheme would make sea water usable in power generation which at the moment is only being used for cooling purposes in the power plants. The steam used for generating electricity is eventually collected, condensed and used for potable purposes. The proposed scheme may be seen as Steam Power Generation with additional feature of desalination. We set up an experimental test bed in order to calculate the electric power available using this scheme. To ensure safety for human consumption, we also perform chemical tests on the desalinated water to see whether it is fit to be used for drinking and agricultural purposes. Our conclusions are based on actual experiments and laboratory tests; procedures outlined here may be used at larger scale for more in-depth analyses. We also highlight future extensions and modifications in this work. (author)

  4. Accelerator magnet power supply using storage generator

    International Nuclear Information System (INIS)

    Karady, G.; Thiessen, H.A.

    1987-01-01

    Recently, a study investigated the feasibility of a large, 60 GeV accelerator. This paper presents the conceptual design of the magnet power supply (PS() and energy storage system. The main ring magnets are supplied by six, high-voltage and two, low-voltage power supplies. These power supplies drive a trapezoidal shaped current wave through the magnets. The peak current is 10 kA and the repetition frequency is 3.3 Hz. During the acceleration period the current is increased from 1040 A to 10,000 A within 50 msec which requires a loop voltage of 120 kV and a peak power of 1250 MW. During the reset period, the PS operates as an inverter with a peak power of -1250 MW. The large energy fluctuation necessitates the use of a storage generator. Because of the relatively high operation frequency, this generator operates in a transient mode which significantly increases the rotor current and losses. The storage generator is directly driven by a variable speed drive, which draws a practically constant power of 17 MW from the ac supply network and eliminates the pulse loading. For the reduction of dc ripple, the power supplies operate in a 24 pulse mode

  5. Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power

    Directory of Open Access Journals (Sweden)

    Fang-Fang Li

    2015-07-01

    Full Text Available To maximize annual power generation and to improve firm power are important but competing goals for hydropower stations. The firm power output is decisive for the installed capacity in design, and represents the reliability of the power generation when the power plant is put into operation. To improve the firm power, the whole generation process needs to be as stable as possible, while the maximization of power generation requires a rapid rise of the water level at the beginning of the storage period. Taking the minimal power output as the firm power, both the total amount and the reliability of the hydropower generation are considered simultaneously in this study. A multi-objective model to improve the comprehensive benefits of hydropower stations are established, which is optimized by Non-dominated Sorting Genetic Algorithm-II (NSGA-II. The Three Gorges Cascade Hydropower System (TGCHS is taken as the study case, and the Pareto Fronts in different search spaces are obtained. The results not only prove the effectiveness of the proposed method, but also provide operational references for the TGCHS, indicating that there is room of improvement for both the annual power generation and the firm power.

  6. Power generation and power system development for the period after 2000

    International Nuclear Information System (INIS)

    Fushtikj, Vangel

    1998-01-01

    The paper presents an overview of the power generation and power system development worldwide in terms of forecast power and energy production. The conditions of power system ability to meet the changes, caused by the new technologies development and regulatory policy, in the next intensive energy period are also considered. Identified key issues are used to emphasize the guided concepts and principles in power system evolution. (Author)

  7. Capacity expansion model of wind power generation based on ELCC

    Science.gov (United States)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  8. Free piston linear generator for low grid power generation

    Directory of Open Access Journals (Sweden)

    Abdalla Izzeldin

    2017-01-01

    Full Text Available Generating power is of great importance nowadays across the world. However, recently, the world became aware of the climatic changes due to the greenhouse effect caused by CO2 emissions and began seeking solutions to reduce the negative impact on the environment. Besides, the exhaustion of fossil fuels and their environmental impact, make it is crucial to develop clean energy sources, and efforts are focused on developing and improving the efficiency of all energy consuming systems. The tubular permanent magnet linear generators (TPMLGs are the best candidate for energy converters. Despite being suffering problem of attraction force between permanent magnets and stator teeth, to eliminate such attraction force, ironless-stator could be considered. Thus, they could waive the presence of any magnetic attraction between the moving and stator part. This paper presents the design and analysis of ironless -cored TPMLG for low grid power generation. The main advantages of this generator are the low cogging force and high efficiency. Therefore, the magnetic field computation of the proposed generator has been performed by applying a magnetic vector potential and utilizing a 2-D finite element analysis (FEA. Moreover, the experimental results for the current profile, pressure profile and velocity profile have been presented.

  9. Geothermal electric power generation in Iceland for the proposed Iceland/United Kingdom HVDC power link

    International Nuclear Information System (INIS)

    Hammons, T.J.; Palmason, G.; Thorhallsson, S.

    1991-01-01

    The paper reviews geothermal electric power potential in Iceland which could economically be developed to supplement hydro power for the proposed HVDC Power Link to the United Kingdom, and power intensive industries in Iceland, which are envisaged for development at this time. Technically harnessable energy for electricity generation taking account of geothermal resources down to an assumed base depth, temperature distribution in the crust, probable geothermal recovery factor, and accessibility of the field, has been assessed. Nineteen known high-temperature fields and 9 probable fields have been identified. Technically harnessable geo-heat for various areas is indicated. Data on high temperature fields suitable for geothermal electric power generation, and on harnessable energy for electric power generation within volcanic zones, is stated, and overall assessments are made. The paper then reviews how the potential might be developed, discussing preference of possible sites, and cost of the developments at todays prices. Cost of geothermal electric power generation with comparative costs for hydro generation are given. Possible transmission system developments to feed the power to the proposed HVDC Link converter stations are also discussed

  10. Synthesizing modeling of power generation and power limits in energy systems

    International Nuclear Information System (INIS)

    Sieniutycz, Stanislaw

    2015-01-01

    Applying the common mathematical procedure of thermodynamic optimization the paper offers a synthesizing or generalizing modeling of power production in various energy generators, such as thermal, solar and electrochemical engines (fuel cells). Static and dynamical power systems are investigated. Dynamical models take into account the gradual downgrading of a resource, caused by power delivery. Analytical modeling includes conversion efficiencies expressed in terms of driving fluxes. Products of efficiencies and driving fluxes determine the power yield and power maxima. While optimization of static systems requires using of differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. In reacting mixtures balances of mass and energy serve to derive power yield in terms of an active part of chemical affinity. Power maximization approach is also applied to fuel cells treated as flow engines driven by heat flux and fluxes of chemical reagents. The results of power maxima provide limiting indicators for thermal, solar and SOFC generators. They are more exact than classical reversible limits of energy transformation. - Highlights: • Systematic evaluation of power limits by optimization. • Common thermodynamic methodology for engine systems. • Original, in-depth study of power maxima. • Inclusion of fuel cells to a class of thermodynamic power systems

  11. The problem of ensuring the seismic stability of atomic electric power plant equipment and ways of solving it

    International Nuclear Information System (INIS)

    Kaznovskii; Filippov, G.A.

    1983-01-01

    By seismic stability the authors mean the ability of the equipment and buildings to retain certain properties when subjected to seismic loads: leakproofness, strength, the absence of any residual changes of shape, which interfere with normal operation, ability to be repaired, nuclear and radiation safety. The latter requirement is the main thing which differentiates atomic electric power plants from other constructions, including other power-generation plants. Whereas, for example, an accident in the event of an earthquake in a thermal electric power plant can be regarded as a local accident, and the measures to ensure seismic stability are determined by economic factors and safety requirements for the operating staff, to ensure the seismic stability of an AES it is essential to take account in the first instance of the possibility of dangerous radiation effects both in the AES and in the vast area around it

  12. Monitoring method of an atomic power plant

    International Nuclear Information System (INIS)

    Koba, Akitoshi; Goto, Seiichiro; Ohashi, Hideaki.

    1975-01-01

    Object: To make a monitoring vehicle, which is loaded with various detecting elements, go round along the monorail disposed so as to surround various devices to thereby early discover various abnormal conditions. Structure: The monitoring vehicle is travelled on the monorail disposed so as to surround the periphery of various devices in an atomic power plant so that detection signals from an ITV camera, temperature and radioactive rays and sound detecting elements, and the like are received through a slide contact between the wheel and transmitting and receiving line disposed in the wheel groove to transmit the signals to a central control panel. (Yoshihara, H.)

  13. Determination of trace elements in atomic absorption spectrophotometry. Study of the atomic cloud and atom generator. Application to the measurement of physical quantities

    International Nuclear Information System (INIS)

    Hircq, Bernard.

    1976-06-01

    After the description of the absorption cell the principal parameters are studied: argon flow rate in the cell, atomization temperature, cell geometry etc. The technique is applied to the measurement of impurities in uranium after deposition on a carbon filament. The atomic concentration distribution and the dimensions of the cloud generated by a graphite filament are then studied along the axes parallel to the filament and as a function of the various experimental parameters. From the determination of the cloud elevation rate it is possible to calculate the absolute atomic concentration, which allows certain physical quantities to be evaluated: oscillator force, Lorentz Widening, diffusion coefficient... The size and penetration depth of the deposit are then determined with an ionic microprobe and the distribution with a Castaing microprobe. The chemical transformations undergone by the uranium matrix during the heat cycles are studied by the X-ray method [fr

  14. Power generation from solid fuels

    CERN Document Server

    Spliethoff, Hartmut

    2010-01-01

    Power Generation from Solid Fuels introduces the different technologies to produce heat and power from solid fossil (hard coal, brown coal) and renewable (biomass, waste) fuels, such as combustion and gasification, steam power plants and combined cycles etc. The book discusses technologies with regard to their efficiency, emissions, operational behavior, residues and costs. Besides proven state of the art processes, the focus is on the potential of new technologies currently under development or demonstration. The main motivation of the book is to explain the technical possibilities for reduci

  15. Flux compression generators as plasma compression power sources

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; Thomson, D.B.; Garn, W.B.

    1979-01-01

    A survey is made of applications where explosive-driven magnetic flux compression generators have been or can be used to directly power devices that produce dense plasmas. Representative examples are discussed that are specific to the theta pinch, the plasma gun, the dense plasma focus and the Z pinch. These examples are used to illustrate the high energy and power capabilities of explosive generators. An application employing a rocket-borne, generator-powered plasma gun emphasizes the size and weight potential of flux compression power supplies. Recent results from a local effort to drive a dense plasma focus are provided. Imploding liners ae discussed in the context of both the theta and Z pinches

  16. 1989 basic plan for atomic energy development and utilization

    International Nuclear Information System (INIS)

    1989-01-01

    A Basic Plan for Atomic Energy Development and Utilization has been established each year based on the guidelines set up by the Atomic Energy Commission of Japan, with the aim of promoting the development and utilization of atomic energy schematically and efficiently. The Basic Plan shows specific projects to achieve the objectives specified in the Long-Range Plan for Atomic Energy Development and Utilization. The Basic Plan specifies efforts to be made for overall strengthening of safety measures (safety policies, safety research, disaster prevention, etc.), promotion of nuclear power generation, establishment of the nuclear fuel cycle (securing of uranium, technology for uranium enrichment, reprocessing, etc.), development of new types of power reactors (fast breeder reactor, new types of converter reactors, plutonium fuel processing technology), promotion of leading projects (nuclear fusion, utilization of radiations, atomic powered ships, high-temperature engineering tests), promotion of basic technology development (basic research, training of scientists and engineers), voluntary and active international activities (international cooperation), and acquisition of understanding and cooperation of the general public. (N,K.)

  17. Gas-fired Power Generation in India: Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    India's fast growing economy needs to add 100,000 MW power generating capacity between 2002-2012. Given limitations to the use of coal in terms of environmental considerations, quality and supply constraints, gas is expected to play an increasingly important role in India's power sector. This report briefs NMC Delegates on the potential for gas-fired power generation in India and describes the challenges India faces to translate the potential for gas-fired power generation into reality.

  18. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Tubel

    2004-02-01

    The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

  19. Power generation planning: a survey from monopoly to competition

    International Nuclear Information System (INIS)

    Kagiannas, A.G.; Askounis, D.T.; Psarras, J.

    2004-01-01

    During the last two decades electric power generation industry in many countries and regions around the world has undergone a significant transformation from being a centrally coordinated monopoly to a deregulated liberalized market. In the majority of those countries, competition has been introduced through the adoption of a competitive wholesale electricity spot market. Short-term efficiency of power generators under competitive environment has attracted considerable effort from researchers, while long-term investment performance has received less attention. In this context, the paper aims to serve as a comprehensive review basis for generation planning methods applied in a competitive electric power generation market. The traditional modeling techniques developed for generation expansion planning under monopoly are initially presented in an effort to assess the evolution of generation planning according to the evolution of the structure of the electric power market. (author)

  20. Aggregated wind power generation probabilistic forecasting based on particle filter

    International Nuclear Information System (INIS)

    Li, Pai; Guan, Xiaohong; Wu, Jiang

    2015-01-01

    Highlights: • A new method for probabilistic forecasting of aggregated wind power generation. • A dynamic system is established based on a numerical weather prediction model. • The new method handles the non-Gaussian and time-varying wind power uncertainties. • Particle filter is applied to forecast predictive densities of wind generation. - Abstract: Probability distribution of aggregated wind power generation in a region is one of important issues for power system daily operation. This paper presents a novel method to forecast the predictive densities of the aggregated wind power generation from several geographically distributed wind farms, considering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a mesoscale numerical weather prediction model, a dynamic system is established to formulate the relationship between the atmospheric and near-surface wind fields of geographically distributed wind farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmospheric state with the near-surface wind power generation measurements, and to forecast the possible samples of the aggregated wind power generation. The predictive densities of the aggregated wind power generation are then estimated based on these predicted samples by a kernel density estimator. In case studies, the new method presented is tested on a 9 wind farms system in Midwestern United States. The testing results that the new method can provide competitive interval forecasts for the aggregated wind power generation with conventional statistical based models, which validates the effectiveness of the new method

  1. Parylene-based electret power generators

    International Nuclear Information System (INIS)

    Lo, Hsi-wen; Tai, Yu-Chong

    2008-01-01

    An electret power generator is developed using a new electret made of a charged parylene HT® thin-film polymer. Here, parylene HT® is a room-temperature chemical-vapor-deposited thin-film polymer that is MEMS and CMOS compatible. With corona charge implantation, the surface charge density of parylene HT® is measured as high as 3.69 mC m −2 . Moreover, it is found that, with annealing at 400 °C for 1 h before charge implantation, both the long-term stability and the high-temperature reliability of the electret are improved. For the generator, a new design of the stator/rotor is also developed. The new micro electret generator does not require any sophisticated gap-controlling structure such as tethers. With the conformal coating capability of parylene HT®, it is also feasible to have the electret on the rotors, which is made of either a piece of metal or an insulator. The maximum power output, 17.98 µW, is obtained at 50 Hz with an external load of 80 MΩ. For low frequencies, the generator can harvest 7.7 µW at 10 Hz and 8.23 µW at 20 Hz

  2. Attitude of students intending to be teachers toward nuclear power generation and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Shiomi, Tetsuro; Tada, Yasuyuki [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    The ''Period for Integrated study'' will be added to the existing subjects in elementary schools, junior and high schools from 2002. Subjects included in the period are, for example, international understanding, information, environment, etc. To treat the issues about environment, energy and nuclear power generation in the period, it is necessary to study the attitude of the teachers and the students intending to be teachers toward environment, energy, atomic power and integrated study. The results of the present survey show that the teachers studying in under graduate schools and the students intending to be teachers have negative attitude toward nuclear power, have concern about environment and energy, value cooperation with a company in the period. When they deal with the environment, energy and nuclear power in the period, individual ideas and principles are not taught, and teachers gather information from the pros and cons, and motivate the children to judge by themselves. This reflects the basic idea of ''the Period of Integrated Study''. (author)

  3. Wind power generation

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. The data are arranged according to the size of the turbines. For each wind turbine the name of the site and type of turbine is given as well as the production during the last 3 months in 1998, and the total production in 1997 and 1998. Data on the operation is given

  4. Shippingport Atomic Power Station. Quarterly operating report, third quarter 1978

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1978-01-01

    A loss of ac power to the station occurred on July 28, 1978 caused by an interaction between Beaver Valley Power Station and Shippingport Atomic Power Station when the main transformer of Unit No. 1 of the Beaver Valley Power Station developed an internal failure and tripped the BVPS. Two environmental studies were continued this quarter. The first involves reduction of main unit condenser chlorination and the second, river intake screen fish impingement sampling. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. During the third quarter of 1978, 874 cubic feet of radioactive solid waste was shipped out of state for burial. At the end of the quarter, the Fall shutdown continued with the plant heated up, the main turbine on turning gear and plant testing in progress prior to Station startup.

  5. Greenberger-Horne-Zeilinger state generation of three atoms trapped in two remote cavities

    International Nuclear Information System (INIS)

    Li Yanling; Fang Maofa; Xiao Xing; Zeng Ke; Wu Chao

    2010-01-01

    We consider a system composed of a single-atom-trapped cavity (A) and a remote two-atom-trapped cavity (B) which are connected by an optical fibre. It is shown that a shared Greenberger-Horne-Zeilinger (GHZ) state of the three atoms can be deterministically generated by controlling the time of interaction or via the adiabatic passage based on this system. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity is also investigated. It is found that our schemes can be realized with high fidelity even when these decoherence processes are considered.

  6. Greenberger-Horne-Zeilinger state generation of three atoms trapped in two remote cavities

    Energy Technology Data Exchange (ETDEWEB)

    Li Yanling; Fang Maofa; Xiao Xing; Zeng Ke; Wu Chao, E-mail: mffang@hunnu.edu.c [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control, Ministry of Education, and College of Physics and Information Science, Hunan Normal University, Changsha 410081 (China)

    2010-04-28

    We consider a system composed of a single-atom-trapped cavity (A) and a remote two-atom-trapped cavity (B) which are connected by an optical fibre. It is shown that a shared Greenberger-Horne-Zeilinger (GHZ) state of the three atoms can be deterministically generated by controlling the time of interaction or via the adiabatic passage based on this system. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity is also investigated. It is found that our schemes can be realized with high fidelity even when these decoherence processes are considered.

  7. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  8. Biofouling in the condenser cooling conduits of Madras Atomic Power Station

    International Nuclear Information System (INIS)

    Thiyagarajan, V.; Subramoniam, T.; Venugopalan, V.P.; Nair, K.V.K.

    1995-01-01

    The present paper deals with various aspects fouling organisms collected from the condenser cooling water circuit of Madras Atomic Power Station (MAPS II) their biomass, thickness, composition and length frequency distribution of one of the major species namely, B. reticulatus. (author). 8 refs., 1 tab., 2 figs

  9. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    . As an example, the latest published grid codes stress the ability of distributed generators, especially wind turbines, to stay connected during short grid disturbances and in addition to provide active/reactive power control at the point of common coupling. Based on the above facts, the need for improving...... reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power and an enhanced contribution of distributed power generation systems to power system stability...... and adding more features to the control of distributed power generation systems (DPGS) arises. As a consequence, this thesis focuses on grid monitoring methods and possible approaches in control in order to obtain a more reliable and  exible power generation system during normal and faulty grid conditions...

  10. COMPREHENSIVE ANALYSIS OF BIOLOGICALLY RELEVANT ARSENICALS BY PH-SELECTIVE HYDRIDE GENERATION-ATOMIC ABSORPTION SPECTROMETRY

    Science.gov (United States)

    A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...

  11. Wind power generation and dispatch in competitive power markets

    Science.gov (United States)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  12. Gas-fired electric power generating technologies

    International Nuclear Information System (INIS)

    1994-09-01

    The workshop that was held in Madrid 25-27 May 1994 included participation by experts from 16 countries. They represented such diverse fields and disciplines as technology, governmental regulation, economics, and environment. Thus, the participants provided an excellent cross section of key areas and a diversity of viewpoints. At the workshop, a broad range of topics regarding gas-fired electric power generation was discussed. These included political, regulatory and financial issues as well as more specific technical questions regarding the environment, energy efficiency, advanced generation technologies and the status of competitive developments. Important technological advances in gas-based power and CHP technologies have already been achieved including higher energy efficiency and lower emissions, with further improvements expected in the near future. Advanced technology trends include: (a) The use of gas technology to reduce emissions from existing coal-fired power plants. (b) The wide-spread application of combined-cycle gas turbines in new power plants and the growing use of aero-derivative gas turbines in CHP applications. (c) Phosphoric acid fuel cells that are being introduced commercially. Their market penetration will grow over the next 10 years. The next generation of fuel cells (solid oxide and molten carbonate) is expected to enter the market around the year 2000. (EG)

  13. Annual report 1984-85 [of the Department of Atomic Energy, of the Government of India

    International Nuclear Information System (INIS)

    1985-01-01

    Research and Development (R and D) activities of the research establishments of the Department of Atomic Energy (DAE), performance of various production units and public sector undertakings of DAE and progress of various projects underway are reported. The report covers the period of the financial year 1984-85. The research establishments of DAE are the Bhabha Atomic Research Centre at Bombay and the Reactor Research Centre at Kalpakkam. DAE production units include atomic power stations for electricity generation at Tarapur, Kota and Kalpakkam; heavy water plants around the country and the Nuclear Fuel Complex at Hyderabad. Public sector undertaking of the Department are Indian Rare Earths Ltd., Electronic Corporation of India Ltd., and Uranium Corporation of India Ltd. The Atomic Minerals Division of the Department is mainly engaged in the R and D activities pertaining to exploration, prospecting and development of mineral resources needed for nuclear power programme. The Department's objective is to achieve the target of 10,000 MWe of nuclear power generating capacity by the year 2000. The Department's Nuclear Power Board operates the atomic power stations and is charged with the responsibility of design, construction and commissioning of atomic power projects at Narora and Kakrapar. The Department also financially supports the Tata Institute of Fundamental Research, the Tata Memorial Centre, both at Bombay and the Saha Institute of Nuclear Physics at Calcutta. The R and D activities of these institutions are also described in brief in this report. (M.G.B.)

  14. Generation of atto-second pulses in atoms and molecules

    International Nuclear Information System (INIS)

    Haessler, St.

    2009-12-01

    When a low-frequency laser pulse is focused to a high intensity into a gas, the electric field of the laser light may become of comparable strength to that felt by the electrons bound in an atom or molecule. A valence electron can then be 'freed' by tunnel ionization, accelerated by the strong oscillating laser field and can eventually re-collide and recombine with the ion. The gained kinetic energy is then released as a burst of coherent X-UV light and the macroscopic gas medium then becomes a source of X-UV light pulses of atto-second (1 as equals 10 -18 s) duration. This is the natural time-scale of electron dynamics in atoms and molecules. The largest part of this thesis deals with experiments where molecules are the harmonic generation medium and the re-colliding electron wave packet acts as a 'self-probe'. In several experiments, we demonstrate the potential of this scheme to observe or image ultra-fast intra-molecular electronic and nuclear dynamics. In particular, we have performed the first phase measurements of the high harmonic emission from aligned molecules and we have extracted the recombination dipole matrix element. This observable contains signatures of quantum interference between the continuum and bound parts of the total electronic wavefunction. It is shown how this quantum interference can be utilized to shape the atto-second light emission from the molecules. In a second part of this thesis, we use the well characterized coherent X-UV light emitted by rare gas atoms to photo-ionize molecules. Measuring the ejected photoelectron wave packet then allows to extract information on the photoionization process itself, and possibly about the initial bound and final continuum states of the electron. The last chapter of this manuscript describes studies of high harmonic and atto-second light pulse generation in a different medium: ablation plasmas. (author)

  15. Economics of generating electricity from nuclear power

    International Nuclear Information System (INIS)

    Boadu, H.O.

    2001-01-01

    The paper reviews and compares experiences and projected future construction and electricity generation costs for nuclear and fossil fired power plants. On the basis of actual operating experience, nuclear power has been demonstrated to be economically competitive with other base load generation options, and international studies project that this economic competitiveness will be largely maintained in the future, over a range of conditions and in a number of countries. However, retaining and improving this competitive position requires concerted efforts to ensure that nuclear plants are constructed within schedule and budgets, and are operated reliably and efficiently. Relevant cost impacting factors is identified, and conclusions for successful nuclear power plant construction and operation are drawn. The desire to attain sustainable development with balanced resource use and control of the environmental and climate impacts of energy systems could lead to renewed interest in nuclear power as an energy source that does not emit greenhouse gases, thus contributing to a revival of the nuclear option. In this regard, mitigation of emissions from fossil-fuelled power plants could lead to restrictions of fossil fuel use and/or result in higher costs of fossil based generation, thus improving the economic competitiveness of nuclear power (au)

  16. Miniature Gas-Turbine Power Generator

    Science.gov (United States)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  17. Atoms for peace and war, 1953-1961

    International Nuclear Information System (INIS)

    Hewlett, R.G.; Holl, J.M.

    1989-01-01

    This is the third book in a series by the author dealing with the Atomic Energy Commission (AEC). The material ranges from debates over how to use nuclear power to generate electricity to the development of the deadliest weapons in human history. Also included are a concise account of the Oppenheimer affair, a clear history of Eisenhower's Atoms for Peace initiative, and a balanced report of the partisan battle over the development of nuclear power, with Democrats insisting on a major role for government while the Republicans championed a free enterprise approach. The nearly 600 pages of text are organized around three central themes: (1) the close connection between the two seemingly different concerns of the AEC - atoms for peace and atoms for war; (2) the conflict of interest the AEC faced over the issue of nuclear testing; and (3) the central role played by Dwight D. Eisenhower in shaping American nuclear policy in the 1950s

  18. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...

  19. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lim Chong C.

    2014-07-01

    Full Text Available Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material for power generation. Besides, the concept of portability will enable different power source like solar, wasted heat from air conditioner, refrigerator, stove etc, i.e. to create temperature different on thermoelectric material for power generation. Furthermore, thermoelectric will generate direct current which is used by all the gadgets like Smartphone, tablet, laptop etc. The portable concept of renewable energy will encourage the direct usage of renewable energy for portable gadgets. The working principle and design of portable thermoelectric power generator coupled with phase change material is presented in this paper.

  20. Economics of power generation from imported biomass

    International Nuclear Information System (INIS)

    Lako, P.; Van Rooijen, S.N.M.

    1998-02-01

    Attention is paid to the economics of import of biomass to the Netherlands, and subsequent utilisation for power generation, as a means to reduce dependence on (imported) fossil fuels and to reduce CO2 emission. Import of wood to the extent of 40 PJ or more from Baltic and South American states seems to be readily achievable. Import of biomass has various advantages, not only for the European Union (reduced CO2 emissions) but also for the countries of origin (employment creation). However, possible disadvantages or risks should be taken into account. With that in mind, import of biomass from Baltic states seems very interesting, although it should be noted that in some of those countries the alternative of fuel-switching to biomass seems to be more cost-effective than import of biomass from those countries. Given the expected increase in inland biomass consumption in the Baltic countries and the potential substantial future demand for biomass in other Western European countries it is expected that the biomass supply from Baltic countries will not be sufficient to fulfill the demand. An early focus on import from other countries seems advisable. Several power generation options are available with short to medium term potential and long term potential. The margin between costs of biomass-fuelled power and of coal fired power will be smaller, due to substantial improvements in power generating efficiency and reductions of investment costs of options for power generation from biomass, notably Biomass Gasification Combined Cycle. 18 refs

  1. Optimal generator bidding strategies for power and ancillary services

    Science.gov (United States)

    Morinec, Allen G.

    As the electric power industry transitions to a deregulated market, power transactions are made upon price rather than cost. Generator companies are interested in maximizing their profits rather than overall system efficiency. A method to equitably compensate generation providers for real power, and ancillary services such as reactive power and spinning reserve, will ensure a competitive market with an adequate number of suppliers. Optimizing the generation product mix during bidding is necessary to maximize a generator company's profits. The objective of this research work is to determine and formulate appropriate optimal bidding strategies for a generation company in both the energy and ancillary services markets. These strategies should incorporate the capability curves of their generators as constraints to define the optimal product mix and price offered in the day-ahead and real time spot markets. In order to achieve such a goal, a two-player model was composed to simulate market auctions for power generation. A dynamic game methodology was developed to identify Nash Equilibria and Mixed-Strategy Nash Equilibria solutions as optimal generation bidding strategies for two-player non-cooperative variable-sum matrix games with incomplete information. These games integrated the generation product mix of real power, reactive power, and spinning reserve with the generators's capability curves as constraints. The research includes simulations of market auctions, where strategies were tested for generators with different unit constraints, costs, types of competitors, strategies, and demand levels. Studies on the capability of large hydrogen cooled synchronous generators were utilized to derive useful equations that define the exact shape of the capability curve from the intersections of the arcs defined by the centers and radial vectors of the rotor, stator, and steady-state stability limits. The available reactive reserve and spinning reserve were calculated given a

  2. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.; Schavemaker, P.H.; Sluis, van der L.; Kling, W.L.; Kurowicka, D.; Cooke, R.M.

    2006-01-01

    Stochastic generation, i.e., electrical power production by an uncontrolled primary energy source, is expected to play an important role in future power systems. A new power system structure is created due to the large-scale implementation of this small-scale, distributed, non-dispatchable

  3. Photoionization of atoms encapsulated by cages using the power-exponential potential

    International Nuclear Information System (INIS)

    Lin, C Y; Ho, Y K

    2012-01-01

    The systems of confined atoms in cages have received considerable attention for decades due to interesting phenomena arising from the effect of cage environment on the atom. For early theoretical work based on empirical model potentials, the Dirac δ-potential, i.e. the so-called bubble potential, and the attractive short-range spherical shell potential are conventionally used for the description of interaction between the valence electron of confined atom and the cage. In this work, the power-exponential potential with a flexible confining shape is proposed to model the cages. The methods of complex scaling in the finite-element discrete variable representation are implemented to investigate the hydrogen, hydrogen-like ions and alkali metals encapsulated by the cages. The energy spectrum varying with the confining well depth exhibits avoided crossings. The influence of cage on atomic photoionization leading to the oscillation behaviour or the so-called confinement resonances in cross sections is demonstrated in a variety of confined atomic systems. In comparisons with existing predictions using the Dirac δ-potential and the attractive short-range spherical shell potentials, our results show the significant influence of cage thickness and smooth shell boundary on the photoionization. The drastic changes of cross sections due to the character of cage are presented and discussed for the encaged lithium and sodium atoms. The present model is useful for clarifying the boundary effect of confining shell on the endohedral atoms. (paper)

  4. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  5. Fuel cell - An alternative for power and heat generating

    International Nuclear Information System (INIS)

    Zubcu, Victor; Ursescu, Gabriel; Zubcu, Dorina Silvia; Miler, Mihai Cristian

    2004-01-01

    One of the most promising energy generating technologies is the fuel cell (FC) because of its high efficiency and low emissions. There are even zero chemical emissions FC and cogeneration plants based on FC generate low heat emissions too. FC was invented 160 years ago but it was usually used only since 1960 in space missions. A FC farm tractor was tested 40 years ago. FC was again taken into account by power engineering since 1990 and it is now considered a credible alternative to power and heat generating. The thermal power engineers (and not only they) have two problems of cardinal importance for mankind to solve: - Energy saving (by increasing of energy generating efficiency) and - Environmental protection (by reducing chemical and heat emissions). The possibilities to use FC to generate power and heat are practically endless: on the earth, in the air and outer space, by and under water, in numberless areas of human activities. FC are now powering buses, cars, trains, boats, plains, scooters, highway road signs etc. There are already miniature FC for portable electronics. Homes, schools, hospitals, institutes, banks, police stations, etc are using FC to generate power and heat for their facilities. The methane gas produced by wastewater treatment plants and landfills is converted into electricity by using FC. Being less expensive than nuclear and solar source of energy, FC is now generally used in the space missions (in addition FC generates water). In this work an analysis of the possibilities to use FC especially for combined power and heat generating is presented. FC is favourite as energy source in space missions because it is less expensive than nuclear or solar sources. All major automobile companies have FC powered automobiles in testing stage. Mini FC for phone, laptop, and electronics are already on market. FC will be use to pagers, video recorders, small portable tools, miniature robots, special devices as hearing aid various devices, smoke detectors

  6. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Hashiba, Takashi [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO{sub 2} on generation, and awareness of energy environmental concerns. (author)

  7. The development situation of biomass gasification power generation in China

    International Nuclear Information System (INIS)

    Zhou, Zhaoqiu; Yin, Xiuli; Xu, Jie; Ma, Longlong

    2012-01-01

    This work presents the development situation of biomass gasification power generation technology in China and analyzes the difficulty and challenge in the development process. For China, a large agricultural country with abundant biomass resources, the utilization of biomass gasification power generation technology is of special importance, because it can contribute to the electricity structure diversification under the present coal-dominant electricity structure, ameliorate the environmental impact, provide energy to electricity-scarce regions and solve the problems facing agriculture. Up to now, China has developed biomass gasification power generation plants of different types and scales, including simple gas engine-based power generation systems with capacity from several kW to 3 MW and integrated gasification combined cycle systems with capacity of more than 5 MW. In recent years, due to the rising cost of biomass material, transportation, manpower, etc., the final cost of biomass power generation has increased greatly, resulting in a serious challenge in the Chinese electricity market even under present preferential policy for biomass power price. However, biomass gasification power generation technology is generally in accord with the characteristics of biomass resources in China, has relatively good adaptability and viability, and so has good prospect in China in the future. - Highlights: ► Biomass gasification power generation of 2 kW–2 MW has wide utilization in China. ► 5.5 MW biomass IGCC demonstration plant has maximum power efficiency of up to 30%. ► Biomass power generation is facing a serious challenge due to biomass cost increase.

  8. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  9. Rated power factor and excitation system of large turbine generator

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Watanabe, Takashi; Banjou, Minoru.

    1979-01-01

    As for the rated power factor of turbine generators for thermal power stations, 90% has been adopted since around 1960. On the other hand, power transmission system has entered 500 kV age, and 1,000 kV transmission is expected in the near future. As for the supply of reactive power from thermal and nuclear turbine generators, the necessity of supplying leading reactive power has rather increased. Now, the operating power factor of thermal and nuclear generators becomes 96 to 100% actually. As for the excess stability of turbine generators owing to the strengthening of transmission system and the adoption of super-high voltage, the demand of strict conditions can be dealt with by the adoption of super-fast response excitation system of thyristor shunt winding self exciting type. The adoption of the turbine generators with 90 to 95% power factor and the adoption of the thyristor shunt winding self exciting system were examined and evaluated. The rated power factor of generators, excitation system and economy of adopting these systems are explained. When the power factor of generators is increased from 0.9 to 0.95, about 6% of saving can be obtained in the installation cost. When the thyristor shunt winding self excitation is adopted, it is about 10% more economical than AC excitation. (Kako, I.)

  10. Atomic energy policy in fiscal year 1985

    International Nuclear Information System (INIS)

    Sakurada, Michio

    1985-01-01

    The international demand and supply of petroleum advance in relaxed condition at present, but tend to get stringent in long term. Nuclear power is the most promising substitute energy for petroleum, and in Japan, 28 nuclear power plants with 20.56 million kW output are in operation, generating 20.4% of the total generated power in 1983. According to the perspective of long term power supply, the installed capacity of nuclear power plants will reach 62 million kW and 27% of the total installed capacity by 2000. It is important to positively deal with the industrialization of nuclear fuel cycle, the upgrading of nuclear power generation, the development of the reactors of new types and so on, preparing for the age that nuclear power generation will become the center of power supply. The atomic energy policy of the Ministry of International Trade and Industry in fiscal year 1985 is reflected to the budget, financial investment and funding and other measures based on the above viewpoint. The outline of the budget and financial investment and funding for fiscal year 1985 is explained. The points are the promotion of industrialization of nuclear fuel cycle, the promotion of nuclear power generation and the promotion of understanding and cooperation of nation on the location of electric power sources. (Kako, I.)

  11. Modeling of Optimal Power Generation using Multiple Kites

    NARCIS (Netherlands)

    Williams, P.; Lansdorp, B.; Ockels, W.J.

    2008-01-01

    Kite systems have the potential to revolutionize energy generation. Large scale systems are envisioned that can fly autonomously in “power generation” cycles which drive a ground-based generator. In order for such systems to produce power efficiently, good models of the system are required. This

  12. Indices for planning wind power generation; Furyoku hatsuden no keikaku shihyo

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, H

    1997-11-25

    Outlined herein are status of wind power generation development, indices for planning development, and actual development results. At present, wind power generates electric power of 6,781MW worldwide. USA has been rapidly developing wind power generation since enactment of the PURPA law, and accounted for 25% of the world output in the past. However, the county is recently unseated from the world top position by Germany, which has been extensively developing wind power generation since enactment of the EFL law to reach 1,799MW. In Japan, electric power companies, local governments and public institutions have been positively introducing wind mills since 1992, when Tohoku Electric Power Co. built Ryuhi Wind Park, now generating a total power of 15MW by 64 units located at 33 different points. According to the surveys by NEDO on wind conditions, there are a number of districts suited for wind mills in Hokkaido, Tohoku, Okinawa and sea areas in Honshu. The indices described herein for planning wind power generation include rotor diameter, tower height, speed of rotation, weight, power to be generated, utilization and service factors, noise level, and investment and running costs. In the present state of the development of wind power generation in Japan, development points are 33, generated ouptut 15,097kW and units 64. 14 figs.

  13. Stochastic Modeling and Analysis of Power System with Renewable Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan

    Unlike traditional fossil-fuel based power generation, renewable generation such as wind power relies on uncontrollable prime sources such as wind speed. Wind speed varies stochastically, which to a large extent determines the stochastic behavior of power generation from wind farms...... that such a stochastic model can be used to simulate the effect of load management on the load duration curve. As CHP units are turned on and off by regulating power, CHP generation has discrete output and thus can be modeled by a transition matrix based discrete Markov chain. As the CHP generation has a strong diurnal...

  14. Wastes power generation introduction manual. Main edition; Haikibutsu hatsuden donyu manual. Honpen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A practical and specific working manual was prepared that satisfies the standards and criteria defined in the relevant law such as the Sanitation and Environment Ordinance No. 249, the guideline for generation of dioxins caused by refuse disposal, and that enables the reports evaluating the wastes quantitatively to be submitted to heads of the local governments when persons in charge of planning the introduction of wastes power generation at local governments discuss the wastes power generation systems. Taking general combustible wastes and sewage sludge treatments as the object, this paper details from the economic performance to size of wastes treatment at the priority limit for the power generation facility introduction. The subject power generation systems include the following: the stoker furnace/separation type ash melting furnace power generation system, the fluidized bed/separation type ash melting furnace power generation system, and the direct type gasification melting furnace power generation system, whose establishment of safety, reliability and stability have been verified by full-size system operation record available at the local governments, the gas turbine re-powering composite type power generation system (gas turbine power plants are installed beside the incineration furnaces) that makes high-efficiency power generation possible, and the RDF power generation system (power generation by mixed combustion with general refuses, and power generation using RDF (refuse derived fuel) exclusive combustion). Other important discussion and assessment items include environment and resource utilization performances. (NEDO)

  15. Capacity value evaluation of photovoltaic power generation

    International Nuclear Information System (INIS)

    Kurihara, I.

    1993-01-01

    The paper presents an example of capacity value (kW-value) evaluation of photovoltaic generation from power companies generation planning point of view. The method actually applied to evaluate the supplying capability of conventional generation plants is briefly described. 21 figs, 1 tab

  16. Next power generation-mix for Bangladesh: Outlook and policy priorities

    International Nuclear Information System (INIS)

    Ahamad, Mazbahul; Tanin, Fahian

    2013-01-01

    Bangladesh's strategy for economic development relies heavily on its energy and power policy, searching for an efficient implementation of planned power generation-mix of gas, oil, coal and hydro. At present, the contribution of gas is around 83% of total power generation, which is much higher than other traditional fuel sources. To reduce this single-source dependency on gas, Bangladesh needs to initiate alternative option to sustain its mid-term power generation-mix in addition to achieve its long-term energy security. Government of Bangladesh has already initiated a new master plan for the development of power generation under fuel-diversification scenario. In this view, local coal production and imported coal would assist the power planners to reduce the sole dependency on gas-driven power plants. In addition, cross-border hydropower import from Bhutan, Myanmar and Nepal would also be a vital policy imperative to maintain the country's long-term energy security. Nonetheless, adding extra power to production side is certainly essential, demand side management through efficient energy use and energy conservation could also be of assistance to the release the existing crisis to a greater extent. - Highlights: • In 2010, the contribution of gas in power generation is about 88% in Bangladesh. • Installed capacity (4.29%) and actual power generation (3.75%) from coal is very low. • Local coal-based power plants would be an alternative for next generation-mix. • Cross-border hydropower trade with Bhutan, Myanmar and Nepal would be another alternative. • Public-private partnership (PPP) could solve financing constraints to install new plants

  17. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  18. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...

  19. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Politechn Poznanska, Poznan (Poland)

    2007-03-15

    The analytical performance of coupled hydride generation - integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H{sub 2}Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangernents (a water-cooled single silica tube, double-slotted quartz tube or an 'integrated trap') was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3{sigma}), was 0.9 ng mL{sup -1} for Te. For a 2 min in situ preconcentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  20. Isotope powered Stirling generator for terrestrial applications

    International Nuclear Information System (INIS)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995

  1. Risk of nuclear power generation as business (continued)

    International Nuclear Information System (INIS)

    Sato, Satoshi

    2017-01-01

    This paper described the following: (1) fleet formation of power companies that operate nuclear power plants in the U.S., (2) collaboration, competition, and merger between plant makers, (3) stress corrosion cracking of stream generators for PWR and their thin heat transfer tubes, especially stress corrosion cracking under primary cooling water environment (PWSCC), and (4) replacement project from Inconel 600 MA to Inconel 600 TT or 690 TT of steam generator thin heat transfer tubes of PWR plants in the U.S. and others. In addition, it described the troubles at San Onofre Nuclear Power Station in California: wear of steam generator thin tubes of Units 2 and 3, and leakage from primary system to secondary system of Unit 3, and permanent shutdown. It also described the detail of damages compensation talks between South California Edison Company that operates San Onofre nuclear power plant and Mitsubishi Heavy Industries Ltd. which supplied the steam generator. Although the operation of the 1.7 million kW plant became impossible due to the bud shedding of nuclear power renaissance, these troubles might have saved the nightmare of drifting on the way. (A.O.)

  2. The legal framework for nuclear power stations in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schmidt-Preuss, M.

    2008-01-01

    Within the range of the power generation the part of nuclear energy amounts 22 % in Germany in the year 2007. The author of the contribution under consideration describes the legal framework for nuclear power stations in the Federal Republic of Germany. The following aspects are described: (a) The atomic law and the completion of the power generation from nuclear energy; (b) The disposal of nuclear wastes; (c) The Euratom contract; (d) The institutional framework for the execution of the atomic energy law; (e) Legal protection opposite atom legal sovereignty documents; (f) future of the atomic law; (g) European Union-Russian partnership agreement and cooperation agreement. In order to guarantee a sustainable power supply for the production of goods and services in a national economy, also the legal framework for nuclear power stations in Germany must be realized

  3. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  4. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  5. Nuclear power generation and fuel cycle report 1996

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included

  6. Demonstration tokamak fusion power plant for early realization of net electric power generation

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Asaoka, Y.; Shinya, K.; Ogawa, Y.

    2005-01-01

    A demonstration tokamak fusion power plant Demo-CREST is proposed as the device for early realization of net electric power generation by fusion energy. The plasma configuration for Demo-CREST is optimized to satisfy the electric breakeven condition (the condition for net electric power, P e net = 0 MW) with the plasma performance of the ITER reference operation mode. This optimization method is considered to be suitable for the design of a demonstration power plant for early realization of net electric power generation, because the demonstration power plant has to ensure the net electric generation. Plasma performance should also be more reliably achieved than in past design studies. For the plasma performance planned in the present ITER programme, net electric power from 0 to 500 MW is possible with Demo-CREST under the following engineering conditions: maximum magnetic field 16 T, thermal efficiency 30%, NBI system efficiency 50% and NBI current drive power restricted to 200 MW. By replacing the blanket system with one of higher thermal efficiency, a net electric power of about 1000 MW is also possible so that the performance of the commercial plant with Demo-CREST can also be studied from the economic point of view. The development path from the experimental reactor 'ITER' to the commercial plant 'CREST' through the demonstration power plant 'Demo-CREST' is proposed as an example of the fast track concept. (author)

  7. Risks of power generation

    International Nuclear Information System (INIS)

    Mostert, P.

    1981-01-01

    A comparison is made between the various ways of power generation in the Netherlands and the hazards attached to them. Tables are presented of fuels used, the quantities used per annum and in the course of the last 20 years, accidents and pollution types and percentages, as well as the toxicity and waste disposal risks. (Auth.)

  8. Captive power generation in Saudi Arabia—Overview and recommendations on policies

    International Nuclear Information System (INIS)

    Abdul-Majeed, Mohammed Arif; Al-Hadhrami, Luai M.; Al-Soufi, Khaled Y.; Ahmad, Firoz; Rehman, Shafiqur

    2013-01-01

    The power sector in the Kingdom of Saudi Arabia is undergoing the restructuring process. Moreover, during the last decade the Kingdom has witnessed a phenomenal growth in the load demand, consequently a huge amount of generation is added to the electric utilities to meet the load. Up to now only the electric utility generation was taken in the planning of the electrical sector. The data regarding the captive power generation was not readily available. A survey is conducted regarding the captive power generation in Saudi Arabia based on its utilization pattern, fuel used and amount of excess energy available to the grid. The existing regulatory framework and institutional structure of the Saudi power industry was also reviewed. Based on the information collected in the survey of captive power, key guidelines that may be considered in developing the policy for the captive power generators are presented. Furthermore, these guidelines and later the policies will help promote the investors to come forward in developing the captive power generation in Saudi Arabia. -- Highlights: •Database of captive power generation in the Kingdom of Saudi Arabia. •Historical perspective of electrical power industry in the Kingdom. •Saudi Arabia′s power requirements. •Regulatory framework and key guidelines regarding captive power generation. •It is first of its kind study in the region

  9. Spectroscopy of Rb atoms in hollow-core fibers

    International Nuclear Information System (INIS)

    Slepkov, Aaron D.; Bhagwat, Amar R.; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2010-01-01

    Recent demonstrations of light-matter interactions with atoms and molecules confined to hollow waveguides offer great promise for ultralow-light-level applications. The use of waveguides allows for tight optical confinement over interaction lengths much greater than what could be achieved in bulk geometries. However, the combination of strong atom-photon interactions and nonuniformity of guided light modes gives rise to spectroscopic features that must be understood in order to take full advantage of the properties of such systems. We use light-induced atomic desorption to generate an optically dense Rb vapor at room temperature inside a hollow-core photonic band-gap fiber. Saturable-absorption spectroscopy and passive slow-light experiments reveal large ac Stark shifts, power broadening, and transit-time broadening, that are present in this system even at nanowatt powers.

  10. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  11. The central government power generating capacity- reforms and the future

    International Nuclear Information System (INIS)

    Singh, Rajendra

    1995-01-01

    The alarming resource gap that the states were facing in 1970's has prompted the Central Government to augment the resources for power generation by creating two new entities in November 1975 viz the National Thermal Power Corporation (NTPC) and National Hydro Power Corporation (NHPC). Few other organisations also exist in central sector which are engaged in power generation like Nuclear Power Corporation (NPC). NTPC being the leading player in the power sector, it can neither be indifferent nor dissociate itself from the reforms sweeping the sector today. The article describes the Central Government's role in power generation, reforms and NTPC and further prospects of NTPC

  12. Green method for ultrasensitive determination of Hg in natural waters by electrothermal-atomic absorption spectrometry following sono-induced cold vapor generation and 'in-atomizer trapping'

    International Nuclear Information System (INIS)

    Gil, Sandra; Lavilla, Isela; Bendicho, Carlos

    2007-01-01

    Sono-induced cold vapor generation (SI-CVG) has been used for the first time in combination with a graphite furnace atomizer for determination of Hg in natural waters by electrothermal-atomic absorption spectrometry after in situ trapping onto a noble metal-pretreated platform (Pd, Pt or Rh) inserted into a graphite tube. The system allows 'in-atomizer trapping' of Hg without the use of conventional reduction reactions based on sodium borohydride or tin chloride in acid medium for cold vapor generation. The sono-induced reaction is accomplished by applying ultrasound irradiation to the sample solution containing Hg(II) in the presence of an organic compound such as formic acid. As this organic acid is partly degraded upon ultrasound irradiation to yield CO, CO 2 , H 2 and H 2 O, the amount of lab wastes is minimized and a green methodology is achieved. For this purpose, experimental variables influencing the generation/trapping process are fully investigated. The limit of detection for a 10 min trapping time and 10 mL sample volume was 0.03 μg L -1 (Integrated absorbance) and the repeatability expressed as relative standard deviation was about 3%. Carbonates and chlorides at 100 mg L -1 level caused a signal depression by 20-30%. The enhanced trapping efficiency observed with the sono-induced cold vapor generation as compared with 'in-atomizer trapping' methods employing chemical vapor generation is discussed. A reaction pathway for SI-CVG is proposed on the basis of the current knowledge for synthesis of noble metal nanoparticles by ultrasound

  13. A realistic way for graduating from nuclear power generation

    International Nuclear Information System (INIS)

    Kikkawa, Takeo

    2012-01-01

    After Fukushima Daiichi Nuclear Power Plant accident, fundamental reform of Japanese energy policy was under way. As for reform of power generation share for the future, nuclear power share should be decided by three independent elements of the progress: (1) extension of power generation using renewable energy, (2) reduction of power usage by electricity saving and (3) technical innovation toward zero emission of coal-fired thermal power. In 2030, nuclear power share would still remain about 20% obtained by the 'subtraction' but in the long run nuclear power would be shutdown judging from difficulties in solution of backend problems of spent fuel disposal. (T. Tanaka)

  14. High-Power, Solid-State, Deep Ultraviolet Laser Generation

    Directory of Open Access Journals (Sweden)

    Hongwen Xuan

    2018-02-01

    Full Text Available At present, deep ultraviolet (DUV lasers at the wavelength of fourth harmonics of 1 μm (266 nm/258 nm and at the wavelength of 193 nm are widely utilized in science and industry. We review the generation of these DUV lasers by nonlinear frequency conversion processes using solid-state/fiber lasers as the fundamental frequency. A DUV laser at 258 nm by fourth harmonics generation (FHG could achieve an average power of 10 W with a beam quality of M2 < 1.5. Moreover, 1 W of average power at 193 nm was obtained by sum-frequency generation (SFG. A new concept of 193-nm DUV laser generation by use of the diamond Raman laser is also introduced. A proof-of-principle experiment of the diamond Raman laser is reported with the conversion efficiency of 23% from the pump to the second Stokes wavelength, which implies the potential to generate a higher power 193 nm DUV laser in the future.

  15. Hydrogen atom kinetics in capacitively coupled plasmas

    Science.gov (United States)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  16. Power generation in the 12-th five-year plan

    International Nuclear Information System (INIS)

    Troitskij, A.A.

    1986-01-01

    The state of electric power generation in the 11-th five-year plan is summed up. Perspectives of development of heat and electric power generation in the 12-th five-year plan are considered. Thermal power generation of NPPs in 1990 will increase by a factor of 8.4 as compared with 1975. The NPP development will be mainly realized on the basis of the WWER-1000 type reactors. It is planned to commission fast reactors of up to 800 MW

  17. Conditional prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Kariniotakis, Georges

    2010-01-01

    A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform...... on the characteristics of prediction errors for providing conditional interval forecasts. By simultaneously generating prediction intervals with various nominal coverage rates, one obtains full predictive distributions of wind generation. Adapted resampling is applied here to the case of an onshore Danish wind farm...... to the case of a large number of wind farms in Europe and Australia among others is finally discussed....

  18. Advanced power generation using biomass wastes from palm oil mills

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Kurniawan, Tedi; Oda, Takuya; Kashiwagi, Takao

    2017-01-01

    This study focuses on the energy-efficient utilization of both solid and liquid wastes from palm oil mills, particularly their use for power generation. It includes the integration of a power generation system using empty fruit bunch (EFB) and palm oil mill effluent (POME). The proposed system mainly consists of three modules: EFB gasification, POME digestion, and additional organic Rankine cycle (ORC). EFBs are dried and converted into a syngas fuel with high calorific value through integrated drying and gasification processes. In addition, POME is converted into a biogas fuel for power generation. Biogas engine-based cogenerators are used for generating both electricity and heat. The remaining unused heat is recovered by ORC module to generate electricity. The influences of three EFB gasification temperatures (800, 900 and 1000 °C) in EFB gasification module; and working fluids and pressure in ORC module are evaluated. Higher EFB gasification leads to higher generated electricity and remaining heat for ORC module. Power generation efficiency increases from 11.2 to 24.6% in case of gasification temperature is increased from 800 to 1000 °C. In addition, cyclohexane shows highest energy efficiency compared to toluene and n-heptane in ORC module. Higher pressure in ORC module also leads to higher energy efficiency. Finally, the highest total generated power and power generation efficiency obtained by the system are 8.3 MW and 30.4%, respectively.

  19. Radioisotope Power Sources

    International Nuclear Information System (INIS)

    Culwell, J. P.

    1963-01-01

    The radioisotope power programme of the US Atomic Energy Commission has brought forth a whole new technology of the use of radioisotopes as energy sources in electric power generators. Radioisotope power systems are particularly suited for remote applications where long-lived, compact, reliable power is needed. Able to perform satisfactorily under extreme environmental conditions of temperature, sunlight and electromagnetic radiations, these ''atomic batteries'' are attractive power sources for remote data collecting devices, monitoring systems, satellites and other space missions. Radioisotopes used as fuels generally are either alpha or beta emitters. Alpha emitters are the preferable fuels but are more expensive and less available than beta fuels and are generally reserved for space applications. Beta fuels separated from reactor fission wastes are being used exclusively in land and sea applications at the present. It can be expected, however, that beta emitters such as stiontium-90 eventually will be used in space. Development work is being carried out on generators which will use mixed fission products as fuel. This fuel will be less expensive than the pure radioisotopes since the costs of isotope separation and purification are eliminated. Prototype thermoelectric generators, fuelled with strontium-90 and caesium-137, are now in operation or being developed for use in weather stations, marine navigation aids and deep sea monitoring devices. A plutonium-238 thermoelectric generator is in orbit operating as electric power source in a US Navy TRANSIT satellite. Generators are under development for use on US National Aeronautics and Space Administration missions. The large quantities of radioactivity involved in radioisotope power sources require that special attention be given to safety aspects of the units. Rigid safety requirements have been established and extensive tests have been conducted to insure that these systems can be employed without creating undue

  20. Report on demonstrative research on photovoltaic power generation system in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of installation and demonstrative operation in Myanmar of a power generation system combining a small-scale photovoltaic power generation system, a wind power generation system, and a diesel generator, research and development is being made under a six year plan starting in 1999 and ending in 2004. Comparative discussions were given on the installation location of the power generation system for the climatic conditions in Chaungthar and Letkhokekone, whereas the final decision was given on Chaungthar. This project plans installation of a photovoltaic power generation system of 80 kW, a wind power generation system of 40 kW, and a diesel generator of 60 kW. Power generation will start at 6 o'clock in the morning and continue to 11 o'clock at night every day, with a storage battery of 1,000 Ah and a stabilized load comprising of ice maker units to be installed. Observation of wind power and solar insolation is being continued with an aim of acquiring data over a period of one year or longer, whereas the data as have been forecasted are being acquired at the present. The diesel generator was manufactured in Japan, which has been arrived at the port of Yangon in February 2001, and installed at the site in Chaungthar in March. (NEDO)

  1. Reference costs for power generation

    International Nuclear Information System (INIS)

    2003-12-01

    The first part of the 2003 study of reference costs for power generation has been completed. It was carried out by the General Directorate for Energy and Raw Materials (DGEMP) of the French Ministry of the Economy, Finance and Industry, with the collaboration of power-plant operators, construction firms and many other experts. A Review Committee of experts including economists (Forecasting Department, French Planning Office), qualified public figures, representatives of power-plant construction firms and operators, and non-governmental organization (NGO) experts, was consulted in the final phase. The study examines the costs of power generated by different methods (i.e. nuclear and fossil-fuel [gas-, coal-, and oil-fired] power plants) in the context of an industrial operation beginning in the year 2015. - The second part of the study relating to decentralized production methods (wind, photovoltaic, combined heat and power) is still in progress and will be presented at the beginning of next year. - 1. Study approach: The study is undertaken mainly from an investor's perspective and uses an 8% discount rate to evaluate the expenses and receipts from different years. In addition, the investment costs are considered explicitly in terms of interest during construction. - 2. Plant operating on a full-time basis (year-round): The following graph illustrates the main conclusions of the study for an effective operating period of 8000 hours. It can be seen that nuclear is more competitive than the other production methods for a year-round operation with an 8% discount rate applied to expenses. This competitiveness is even better if the costs related to greenhouse-gas (CO 2 ) emission are taken into account in estimating the MWh cost price. Integrating the costs resulting from CO 2 emissions by non-nuclear fuels (gas, coal), which will be compulsory as of 2004 with the transposition of European directives, increases the total cost per MWh of these power generation methods

  2. Review of pulsed rf power generation

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies

  3. Microwave and Millimeter-Wave Signal Power Generation

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan

    Among the major limitations in high-speed communications and highresolution radars is the lack of efficient and powerful signal sources with low distortion. Microwave and millimeter-wave (mm-wave) signal power is needed for signal transmission. Progress in signal generation stems largely from...... distortion and high PAE were observed. The estimated output power of 42.5 dBm and PAE of 31.3% are comparable to the state-of-the-art results reported for GaN HEMT amplifiers. Wireless communication systems planned in the near future will operate at E-band, around 71-86 GHz, and require mm-wave-PAs to boost...... the application of novel materials like galliumnitride (GaN) and silicon-carbide (SiC) and fabrication of indiumphosphide (InP) based transistors. One goal of this thesis is to assess GaN HEMT technology with respect to linear efficient signal power generation. While most reports on GaN HEMT high-power devices...

  4. Automatic motion inhibit system for a nuclear power generating system

    International Nuclear Information System (INIS)

    Musick, C.R.; Torres, J.M.

    1977-01-01

    Disclosed is an automatic motion inhibit system for a nuclear power generating system for inhibiting automatic motion of the control elements to reduce reactor power in response to a turbine load reduction. The system generates a final reactor power level setpoint signal which is continuously compared with a reactor power signal. The final reactor power level setpoint is a setpoint within the capacity of the bypass valves to bypass steam which in no event is lower in value than the lower limit of automatic control of the reactor. If the final reactor power level setpoint is greater than the reactor power, an inhibit signal is generated to inhibit automatic control of the reactor. 6 claims, 5 figures

  5. Generating units performances: power system requirements

    Energy Technology Data Exchange (ETDEWEB)

    Fourment, C; Girard, N; Lefebvre, H

    1994-08-01

    The part of generating units within the power system is more than providing power and energy. Their performance are not only measured by their energy efficiency and availability. Namely, there is a strong interaction between the generating units and the power system. The units are essential components of the system: for a given load profile the frequency variation follows directly from the behaviour of the units and their ability to adapt their power output. In the same way, the voltage at the units terminals are the key points to which the voltage profile at each node of the network is linked through the active and especially the reactive power flows. Therefore, the customer will experience the frequency and voltage variations induced by the units behaviour. Moreover, in case of adverse conditions, if the units do not operate as well as expected or trip, a portion of the system, may be the whole system, may collapse. The limitation of the performance of a unit has two kinds of consequences. Firstly, it may result in an increased amount of not supplied energy or loss of load probability: for example if the primary reserve is not sufficient, a generator tripping may lead to an abnormal frequency deviation, and load may have to be shed to restore the balance. Secondly, the limitation of a unit performance results in an economic over-cost for the system: for instance, if not enough `cheap` units are able to load-following, other units with higher operating costs have to be started up. We would like to stress the interest for the operators and design teams of the units on the one hand, and the operators and design teams of the system on the other hand, of dialog and information exchange, in operation but also at the conception stage, in order to find a satisfactory compromise between the system requirements and the consequences for the generating units. (authors). 11 refs., 4 figs.

  6. Electric power generation the changing dimensions

    CERN Document Server

    Tagare, D M

    2011-01-01

    "This book offers an analytical overview of established electric generation processes, along with the present status & improvements for meeting the strains of reconstruction. These old methods are hydro-electric, thermal & nuclear power production. The book covers climatic constraints; their affects and how they are shaping thermal production. The book also covers the main renewable energy sources, wind and PV cells and the hybrids arising out of these. It covers distributed generation which already has a large presence is now being joined by wind & PV energies. It covers their accommodation in the present system. It introduces energy stores for electricity; when they burst upon the scene in full strength are expected to revolutionize electricity production. In all the subjects covered, there are references to power marketing & how it is shaping production. There will also be a reference chapter on how the power market works"--Provided by publisher.

  7. MHD generator performance analysis for the Advanced Power Train study

    Science.gov (United States)

    Pian, C. C. P.; Hals, F. A.

    1984-01-01

    Comparative analyses of different MHD power train designs for early commercial MHD power plants were performed for plant sizes of 200, 500, and 1000 MWe. The work was conducted as part of the first phase of a planned three-phase program to formulate an MHD Advanced Power Train development program. This paper presents the results of the MHD generator design and part-load analyses. All of the MHD generator designs were based on burning of coal with oxygen-enriched air preheated to 1200 F. Sensitivities of the MHD generator design performance to variations in power plant size, coal type, oxygen enrichment level, combustor heat loss, channel length, and Mach number were investigated. Basd on these sensitivity analyses, together with the overall plant performance and cost-of-electricity analyses, as well as reliability and maintenance considerations, a recommended MHD generator design was selected for each of the three power plants. The generators for the 200 MWe and 500 MWe power plant sizes are supersonic designs. A subsonic generator design was selected for the 1000 MWe plant. Off-design analyses of part-load operation of the supersonic channel selected for the 200 MWe power plant were also conductd. The results showed that a relatively high overall net plant efficiency can be maintained during part-laod operation with a supersonic generator design.

  8. The Hydroelectric Business Unit of Ontario Power Generation Inc

    International Nuclear Information System (INIS)

    Gaboury, J.

    2001-01-01

    The focus of this presentation was on the generation and sale of electricity. Prior to deregulation, companies that generated electricity had a readily available customer base to whom the electricity could be sold. The author discussed some of the changes affecting the industry as a result of deregulation of the electricity market in Ontario: the increasing number of companies, as well as the increased number of generators supplying power within the province. Currently 85 per cent of the generation in Ontario is met by Ontario Power Generation (OPG) and this percentage will decrease through de-control. De-control can be achieved in a variety of ways, either through the sale of assets, leases, asset swaps. The market rules dictate that OPG not control in excess of 35 per cent of the generation supply in Ontario, OPG is examining the situation. New supply being constructed or new interconnections with neighboring markets could affect the total assets that would have to be de-controlled. OPG has a mix of generation that includes hydroelectric, fossil, and nuclear, as well as a single wind turbine. Green power, defined as electricity generation deemed less intrusive environmentally than most traditional generation, includes wind, water, landfill gas, solar and others, and could affect the mix of generation. It is expected that there will be a niche market for green power, especially when one considers the reduction in emissions. It could represent a viable option for smaller startup companies, as less capital is required. The options for selling the power, either to the spot market or by entering into a bilateral contract with another customer, were explained

  9. Wind power, distrubted generation and transmission

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    the possibilities for integration of even more wind power using new power balancing strategies that exploit the possibilities given by the existence of CHP plants as well as the impact of heat pumps for district heating. The analyses demonstrate that it is possible to accommodate 50% or more wind power without......Denmark has the World?s highest penetration of wind power in electricity generation with a share of 15.0% of total domestic demand in 2002 (DEA, 2004). This is unevenly distributed in the two electricity systems of Denmark giving a share as high as 20.7% in Western Denmark in 2003 up from 18...... power balancing strategies are not applied, costly grid expansions will follow expansions in installed wind power capacity....

  10. Modeling and Simulation of Generator Side Converter of Doubly Fed Induction Generator-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Blaabjerg, Frede

    2010-01-01

    A real wind power generation system is given in this paper. SVM control strategy and vector control is applied for generator side converter and doubly fed induction generator respectively. First the mathematical models of the wind turbine rotor, drive train, generator side converter are described...

  11. Seismic considerations in the design of atomic power plants

    International Nuclear Information System (INIS)

    Arya, A.S.; Chandrasekaran, A.R.; Thakkar, S.K.

    1975-01-01

    A seismic design is one of the most important factors for the safety of nuclear power plants constructed in seismic areas. The various considerations in the design of atomic power plant structures and components to achieve high degree (near absolute) of safety during future probable earthquakes is described as follows: (a) determination of design earthquake parameters for SSE and OBE (b) fixing time history accelerograms and acceleration response spectra (c) mathematical modelling of the reactor building considering soil-structure interaction (d) deciding allowable stresses, damping factors and serviceability limits like drift, displacements and crack widths (e) tests for determining stiffness and damping characteristics of components in-situ before commissioning of plant. The main questions that arise under various items requiring further research investigations or development work are pointed out for discussion. (author)

  12. A study on economics of power generation in Pakistan

    International Nuclear Information System (INIS)

    Akbar, S.; Saleem Shahid, M.; Anwar Khan, M.; Khushnood, S.

    2005-01-01

    Pakistan is a developing country and has ever increasing requirement of electric power for its development process. Due to lack of timely and proper planning in this field, there has been acute shortage of power supply which has resulted into sever set back specially in industrial sector. To make up this deficiency government of Pakistan invited foreign and local companies for power generation, which has been purchased by WAPDA (water and power development authority-government of Pakistan) at exorbitant rates comparatively higher in this region. The Authors have thoroughly deliberated on the subject, collected the relative data from various government agencies, organizations and literature then carried out the comparative cost analysis of generation of electric power using various resources, keeping in mind the following factors: a) Fuel b) Plant Factor c) Investment Cost d) Operating and Maintenance Cost. The tariff rates of WAPDA have also been considered in this study. Recently two others organizations NEPRA (national electric power regulation authority) and PPIB (private power infrastructure board) has been constituted to regulate the tariffs and issuance of license to the private power generating companies. Now the efforts are in hand to regulate the purchase rate of electric power from the private companies by allowing reasonable profit without exploiting any body. The authors has concluded that timely planning, by providing necessary facilities to the power generation companies and regulating the tariff can facilitate the consumer and protecting them from paying exorbitant tariff. (authors)

  13. Spatio-temporal distribution of 3H in air moisture around Kakrapar Atomic Power Station

    International Nuclear Information System (INIS)

    Joshi, C.P.; Patra, A.K.; Jain, A.K.; Ravi, P.M.; Sarkar, P.K.; Gadhia, M.

    2012-01-01

    Tritium ( 3 H) is the only radioactive isotope of hydrogen. It decays to helium by emission of beta particle with a maximum energy of 18.6 keV. 3 H is most environmentally mobile radionuclide. To accomplish the task of estimating human exposure to tritium, it is necessary to know the tritium concentration in the atmosphere. Environmental Survey Laboratory (ESL) of Health Physics Division (HPD) of Bhabha Atomic Power Station (BARC) located at Kakrapar Atomic Power Station (KAPS) site is regularly monitoring the activity of tritium in the environment to ensure the safety of the public. This paper presents the result of analysis of tritium in atmospheric environment covering an area up to 30 km radius around KAPS site

  14. Utilizing the building envelope for power generation and conservation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, C.H.; Wang, F.J.

    2016-01-01

    Heat loading of the building envelope is caused by strong solar radiation and incorrect material selection. As a result of the heat loading of the building envelope, the indoor air temperature is increased, resulting in high energy consumption by air conditioners to maintain a comfortable indoor thermal environment. This study explores the use of a hybrid wall integrated with heat collectors (water piping system) and solar thermal power generators, which absorbs solar radiation through water to reduce heat transmission thereby saving energy and generating power. Power generation is achieved by an OD (oscillator device) that installed between a water tank (hot side) and building interior (cold side). The device acts by temperature differences between hot air (expansion) and cold air (contraction). CFD (computational dynamic simulation) was used to assess the effects of the hybrid wall on the interior environment. The results show that exterior heat is absorbed by cool water thereby reducing the heat transmission into the building, resulting in less energy consumption by air conditioners and power generation by use of temperature differences. - Highlights: • This study explores a hybrid building wall to save energy and generate power. • Power generators operated by air pressure change via hot tank and cool interior. • Less energy consumption by air conditioners and heating water. • Performance of CFD simulated results and experiment results are similar. • The energy saving efficiency is around 15 kWh/day via hybrid wall in west façade.

  15. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  16. Major issues associated with nuclear power generation cost and their evaluation

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Shimogori, Kei; Suzuki, Atsuhiko

    2015-01-01

    This paper discusses the evaluation of power generation cost that is an important item for energy policy planning. Especially with a focus on nuclear power generation cost, it reviews what will become a focal point on evaluating power generation cost at the present point after the estimates of the 'Investigation Committee on Costs' that was organized by the government have been issued, and what will be a major factor affecting future changes in costs. This paper firstly compared several estimation results on nuclear power generation cost, and extracted/arranged controversial points and unsolved points for discussing nuclear power generation cost. In evaluating nuclear power generation cost, the comparison of capital cost and other costs can give the understanding of what can be important issues. Then, as the main issues, this paper evaluated/discussed the construction cost, operation/maintenance cost, external cost, issue of discount rate, as well as power generation costs in foreign countries and the impact of fossil fuel prices. As other issues related to power generation cost evaluation, it took up expenses for decommissioning, disposal of high-level radioactive waste, and re-processing, outlined the evaluation results by the 'Investigation Committee on Costs,' and compared them with the evaluation examples in foreign countries. These costs do not account for a large share of the entire nuclear power generation costs. The most important point for considering future energy policy is the issue of discount rate, that is, the issue of fund-raising environment for entrepreneurs. This is the factor to greatly affect the economy of future nuclear power generation. (A.O.)

  17. Perspectives of the electric power industry amid the transforming global power generation markets

    Science.gov (United States)

    Makarov, A. A.; Mitrova, T. A.; Veselov, F. V.; Galkina, A. A.; Kulagin, V. A.

    2017-10-01

    A scenario-based prognosis of the evolution of global power generation markets until 2040, which was developed using the Scaner model-and-information complex, was given. The perspective development of fuel markets, vital for the power generation industry, was considered, and an attempt to predict the demand, production, and prices of oil, gas, coal, and noncarbon resources across various regions of the world was made. The anticipated decline in the growth of the global demand for fossil fuels and their sufficiency with relatively low extraction expenses will maintain the fuel prices (the data hereinafter are given as per 2014 prices) lower than their peak values in 2012. The outrunning growth of demand for electric power is shown in comparison with other power resources by regions and large countries in the world. The conditions of interfuel competition in the electric power industry considering the changes in anticipated fuel prices and cost indicators for various power generation technologies were studied. For this purpose, the ratios of discounted costs of electric power production by new gas and coal TPPs and wind and solar power plants were estimated. It was proven that accounting the system effects (operation modes, necessary duplicating and reserving the power of electric power plants using renewable energy sources) notably reduces the competitiveness of the renewable power industry and is not always compensated by the expected lowering of its capital intensity and growth of fuel for TPPs. However, even with a moderate (in relation to other prognoses) growth of the role of power plants using renewable energy sources, they will triple electric power production. In this context, thermal power plants will preserve their leadership covering up to 60% of the global electric power production, approximately half using gas.

  18. Distributed power generation, a market assessment; Marktaspekte der verteilten Energieerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Weller, T.

    2001-03-01

    The article assesses in the light of current energy policy the development of distributed power generation in the future, and resulting impacts on the structure the deregulated power industry in Germany. The author defines the essential characteristics of distributed power generation as opposed to centralized power generation, explains the various existing and emerging power generation technologies, and discusses market penetration scenarios and marketing opportunities in the context of technological developments, environmental and energy efficiency aspects, and consumer attitudes. (orig./CB) [German] Der Artikel bietet wichtige Definitionen fuer eine zielfuehrende Diskussion ueber das gesamte Gebiet der verteilten und dezentralen Energieerzeugung. Er versucht, teilweise emotional besetzte Themen auf sachlich begruendbare Grundannahmen zurueckzufuehren und zieht erste Folgerungen fuer das Zusammenwirken von erneuerbaren Energien und verteilter Energieerzeugung. (orig./CB)

  19. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    Sergeev, A.A.

    2001-01-01

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  20. Multiple microflame quartz tube atomizer: Study and minimization of interferences in quartz tube atomizers in hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moraes Flores, Erico Marlon de [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil)], E-mail: flores@quimica.ufsm.br; Medeiros Nunes, Adriane; Luiz Dressler, Valderi [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Dedina, Jiri [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, CZ-142 20 Prague (Czech Republic)

    2009-02-15

    A systematic study was performed to evaluate the performance of a multiple microflame (MM) quartz tube atomizer (QTA) for minimizing interferences and to improve the extent of the calibration range using a batch system for hydride generation atomic absorption spectrometry (HG AAS). A comparison of the results with conventional QTA on the determination of antimony, arsenic, bismuth and selenium was performed. The interference of As, Bi, Se, Pb, Sn and Sb was investigated using QTA and MMQTA atomizers. Better performance was found for MMQTA, and no loss of linearity was observed up to 160 ng for Se and Sb and 80 ng for As, corresponding to an enhancement of two times for both analytes when compared to QTA (analyte mass refers to a volume of 200 {mu}l). For Bi, the linear range was the same for QTA and MMQTA (140 ng). With the exception of Bi, the tolerance limits for hydride-forming elements were improved more than 50% in comparison to the conventional QTA system, especially for the interferences of As, Sb and Se. However, for Sn as an interferent, no difference was observed in the determination of Se and Sb using the MMQTA system. The use of MMQTA-HG AAS complied with the relatively high sensitivity of conventional QTA and also provided better performance for interferences and the linear range of calibration.

  1. Pulse power applications of flux compression generators

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.

    1981-01-01

    Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources

  2. Conceptual survey of Generators and Power Electronics for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Bindner, H.; Soerensen, P.; Bak-Jensen, B.

    2001-12-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: State of the art on generators and power electronics; future concepts and technologies within generators and power electronics; market needs in the shape of requirements to the grid connection, and; consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generator and power electronic concepts was carried out in co-operation between Aalborg University and Risoe National Laboratory in the scope of the research programme Electric Design and Control. (au)

  3. Mini Solar and Sea Current Power Generation System

    Science.gov (United States)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  4. Quasideterministic generation of maximally entangled states of two mesoscopic atomic ensembles by adiabatic quantum feedback

    International Nuclear Information System (INIS)

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio; Vitali, David

    2005-01-01

    We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses

  5. Evaluation of Steadiness and Drop Size Distribution in Sprays Generated by Different Twin-Fluid Atomizers

    Directory of Open Access Journals (Sweden)

    Zaremba Matouš

    2015-01-01

    Full Text Available Twin-fluid atomizers underwent a significant development during the last few decades. They are common in many industrial applications such as fuel spraying, melt atomization and food processing. This paper is focused on the evaluation of four different twin-fluid atomizers. The aim is to compare the quality of sprays generated by various atomizers with similar dimensions and in the same operating regimes. A phase- Doppler anemometry (PDA and particle image velocimetry (PIV were used to measure spray characteristics such as velocity and size of the droplets. Measured data were used to compare droplet size distribution and to evaluate steadiness of the spray. Visualisations were made to support measured data and to clarify the principles of primary atomization and its influence on the spray.

  6. Evaluation of Steadiness and Drop Size Distribution in Sprays Generated by Different Twin-Fluid Atomizers

    Science.gov (United States)

    Zaremba, Matouš; Mlkvik, Marek; Malý, Milan; Jedelský, Jan; Jícha, Miroslav

    2015-05-01

    Twin-fluid atomizers underwent a significant development during the last few decades. They are common in many industrial applications such as fuel spraying, melt atomization and food processing. This paper is focused on the evaluation of four different twin-fluid atomizers. The aim is to compare the quality of sprays generated by various atomizers with similar dimensions and in the same operating regimes. A phase- Doppler anemometry (PDA) and particle image velocimetry (PIV) were used to measure spray characteristics such as velocity and size of the droplets. Measured data were used to compare droplet size distribution and to evaluate steadiness of the spray. Visualisations were made to support measured data and to clarify the principles of primary atomization and its influence on the spray.

  7. Coherence-generating power of quantum dephasing processes

    Science.gov (United States)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  8. Present state and prospect of nuclear power generation

    International Nuclear Information System (INIS)

    Fukushima, Akira

    1980-01-01

    Energy resources are scarce in Japan, therefore Japan depends heavily on imported petroleum. However, the international situation of petroleum became more unstable recently, and the promotion of the development and utilization of nuclear power generation was agreed upon in the summit meeting and the IEA. In order to achieve the stable growth of economy and improve the national welfare in Japan, it is urgent subject to accelerate the development of nuclear power generation. Japan depends the nuclear fuel also on import, but the stable supply is assured by the contract of long term purchase. It is not necessary to replace nuclear fuel usually for three years, and the transport and storage of nuclear fuel are easy because the quantity is not very large. By establishing the independent nuclear fuel cycle in Japan, it is possible to give the character similar to domestically produced energy to nuclear fuel. Moreover, uranium resources can be effectively utilized by the development of nuclear reactors of new types, such as FBRs. The cost of generating 1 kWh of electricity was about 8 yen in case of nuclear power and 15 yen in petroleum thermal power as of January, 1980. 21 nuclear power plants of about 15 million kW capacity are in operation in Japan, and about 30 million kW will be installed by 1985. The measures to promote the development of nuclear power generation are discussed. (Kako, I.)

  9. Design of calandria-end shield support diaphragm of Narora Atomic Power Project

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S K; Nanda Kumar, S; Kakodkar, A

    1975-01-01

    The calandria-end shield diaphragm is one of the important components in Narora Atomic Power Plant. The support diaphragm is designed against elastic and plastic instability failures. Method of analysis for elastic and plastic instability is discussed for normal loading, pipe rupture loading, and earthquake loading.

  10. Design of calandria-end shield support diaphragm of Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Srivastava, S.K.; Nanda Kumar, S.; Kakodkar, A.

    1975-01-01

    The calandria-end shield diaphragm is one of the important components in Narora Atomic Power Plant. The support diaphragm is designed against elastic and plastic instability failures. Method of analysis for elastic and plastic instability is discussed for normal loading, pipe rupture loading and earthquake loading. (author)

  11. Nuclear industrial and power complex of Kazakhstan

    International Nuclear Information System (INIS)

    Shemanskiy, V.A.; Cherepnin, Yu.S.; Zelenski, D.I.; Papafanasopulo, G.A.

    1997-01-01

    While selecting the national power supply strategy of economic potential development four factors are laid in the basis of discussions and technical and economic decisions: effect either power complexes on people health, consequences environmental, economics and resources existence. Atomic power requires the balanced approach to power politics which, by that, avoids the dependence on any energy source. The existing electric power generation structure in Kazakhstan is Featured by the following numbers: -TEPP on coal - 79%; - TEPP on gas-black-oil fuel - 12-13%; - HEPP - 6-7%; - Atomic PP - about 0.7%. The ground for nuclear power development is considerable uranium deposits and rather developed atomic industry. Kazakhstan atomic industry includes: - uranium extractive enterprise - State Holding Company 'Tselinnyi Mining-Chemical Plant' (SHC 'TCMP'), Stepnoy Ore Division (SOD), Central ore Division 6 (COD 6), KASKOR (Aktau); - plant on fuel pellets production for APP (JSC 'UMP'); - plants on production of rare and rare-earth metals - Irtysh Chemical and Metallurgical (JSC 'CMP') and Ulba Metallurgical Plant (JSC 'UMP'); - Mangyshlak Power Plant (MAEK); - Scientific Complex of NNC RK of Ministry of Science-Academy of Science. About 25% of world deposits and uranium resources are concentrated in Kazakhstan bowels. The scientific potential of atomic production complex of the Republic of Kazakhstan is concentrated in NNC RK divisions (IAE and INP) and at JSC 'UMP' and MAEK enterprises. Ministry Energy and Nature Resources is a Board responsible for the development of atomic industry and power branches. Atomic Energy Agency of the Republic Kazakhstan performs the independent effective state supervision and control providing safety of atomic industry power installations operation

  12. Report of fact-finding survey for atomic energy in dustry, fiscal 1995

    International Nuclear Information System (INIS)

    1996-12-01

    Japanese economy in fiscal year 1995 progressed with the tendency of gradual business recovery, and the real rate of economic growth was 2.4%. The final energy consumption has become the growth rate of 3.2% as compared with that in the previous year. Classifying by energy supply sources, the share of petroleum was 55.8% which was slight decrease, and nuclear power has become 12%, the highest so far. The share of coal was 16.5%, natural gas 10.8%, and water power 3.5%. Total supply of primary energy increased by 1.9%, and the demand of electric power increased by 1.6% as compared with those in the previous year. As for the circumstances of atomic energy industries in fiscal year 1995, the outlay related to atomic energy of electric power industry decreased sharply by about 13%, while the sales related to atomic energy of mining and manufacturing industries turned to the increase by about 5%. The outlay related to atomic energy of mining and manufacturing industries decreased by 8% as compared with that in the previous year. As the perspective for future, the outlay related to atomic energy of electric power industry is expected to increase. The total number of the persons who engage in private atomic energy enterprises was 60,540. The average capacity factor of 49 nuclear power plants in operation was 80.2%. The share of nuclear power taken in total generated electric power was 33.8%. Four nuclear power plants were under construction as of the end of fiscal year 1995. (K.I.)

  13. Fuel cycle comparison of distributed power generation technologies

    International Nuclear Information System (INIS)

    Elgowainy, A.; Wang, M.Q.

    2008-01-01

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions

  14. Nuclear Power as a Basis for Future Electricity Generation

    Science.gov (United States)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  15. Mechanism of power generation - the MHD way

    International Nuclear Information System (INIS)

    Rangachari, S.; Ramash, V.R.; Subramanian, C.K.

    1975-01-01

    The basic physical principles of magnetohydrodynamics and the application of this principle for power generation (direct energy conversion) are explained. A magnetohydrodynamic generator (MHDG) is described both in the Faraday and Hall modes. The advantages of the Faraday mode and the Hall mode for different geometries of the generator are mentioned. The conductor used is a fluid - an ionised gas (plasma) or a liquid metal at high temperature. The difficulties in maintaining high temperature and high velocity for the gas and very low temperature at the same time side by side for superconducting magnets to produce a strong magnetic field, are pointed out. The most commonly used gas is purified air. The advantages of MHD generators and the present power crisis have compelled further research in this field in spite of the high costs involved. (A.K.)

  16. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  17. Managing strategic alliances in the power generation industry

    DEFF Research Database (Denmark)

    Kumar, Rajesh

    2003-01-01

    Highlights the challenges for power development developers in initiating alliances in the power generation industry. Importance of strategic alliances in the industry; Nature of the alliances in the independent power industry; Strategies for creating and sustaining value in global power development......; Management of tensions inherent in internal and external alliances....

  18. Optimal investment strategies in decentralized renewable power generation under uncertainty

    International Nuclear Information System (INIS)

    Fleten, S.-E.; Maribu, K.M.; Wangensteen, I.

    2007-01-01

    This paper presents a method for evaluating investments in decentralized renewable power generation under price un certainty. The analysis is applicable for a client with an electricity load and a renewable resource that can be utilized for power generation. The investor has a deferrable opportunity to invest in one local power generating unit, with the objective to maximize the profits from the opportunity. Renewable electricity generation can serve local load when generation and load coincide in time, and surplus power can be exported to the grid. The problem is to find the price intervals and the capacity of the generator at which to invest. Results from a case with wind power generation for an office building suggests it is optimal to wait for higher prices than the net present value break-even price under price uncertainty, and that capacity choice can depend on the current market price and the price volatility. With low price volatility there can be more than one investment price interval for different units with intermediate waiting regions between them. High price volatility increases the value of the investment opportunity, and therefore makes it more attractive to postpone investment until larger units are profitable. (author)

  19. Status of thermal power generation in India-Perspectives on capacity, generation and carbon dioxide emissions

    International Nuclear Information System (INIS)

    Ghosh, Subhodip

    2010-01-01

    India's reliance on fossil-fuel based electricity generation has aggravated the problem of high carbon dioxide (CO 2 ) emissions from combustion of fossil fuels, primarily coal, in the country's energy sector. The objective of this paper is to analyze thermal power generation in India for a four-year period and determine the net generation from thermal power stations and the total and specific CO 2 emissions. The installed generating capacity, net generation and CO 2 emissions figures for the plants have been compared and large generators, large emitters, fuel types and also plant vintage have been identified. Specific emissions and dates of commissioning of plants have been taken into account for assessing whether specific plants need to be modernized. The focus is to find out areas and stations which are contributing more to the total emissions from all thermal power generating stations in the country and identify the overall trends that are emerging.

  20. The global climate change and its effect on power generation in Bangladesh

    International Nuclear Information System (INIS)

    Khan, Iftekhar; Alam, Firoz; Alam, Quamrul

    2013-01-01

    Frequent and intense natural calamities, sea level rises and salinity have been causing adverse impacts on economic, environmental and social aspects of hundreds of millions people across the world. Although a series of studies was undertaken on social and environment impacts, very little information is available on power generation affected by climate change. The power generation in developing countries, especially Bangladesh, whose existence is severely threatened by the rise of sea levels, salinity, the ambient temperature, drought and flood, is not well studied and reported. Therefore, the primary objective of this study was to identify the risks imposed by global climate change on existing and projected power generation in Bangladesh. The climate effect parameters and their impacts on power generation capacity are studied and analysed. The findings indicate that all existing and future power plants and their generation across the country will be affected by global climate change. - Highlights: • Analysed the future climate change impact on power generation in Bangladesh. • Projected future power generation in Bangladesh up to 2100. • Power plant in coastal areas will experience threat of inundation and salinity. • Northwest region power generation in Bangladesh will face more drought threat. • Power generation in middle region of Bangladesh will be in high risk of flood

  1. Development of an HTS hydroelectric power generator for the hirschaid power station

    Energy Technology Data Exchange (ETDEWEB)

    Fair, Ruben; Lewis, Clive; Eugene, Joseph; Ingles, Martin, E-mail: ruben.fair@converteam.co [Advanced Technology Group, Converteam, Rugby, CV21 1BD (United Kingdom)

    2010-06-01

    This paper describes the development and manufacture of a 1.7MW, 5.25kV, 28pole, 214rpm hydroelectric power generator consisting of superconducting HTS field coils and a conventional stator. The generator is to be installed at a hydro power station in Hirschaid, Germany and is intended to be a technology demonstrator for the practical application of superconducting technology for sustainable and renewable power generation. The generator is intended to replace and uprate an existing conventional generator and will be connected directly to the German grid. The HTS field winding uses Bi-2223 tape conductor cooled to about 30K using high pressure helium gas which is transferred from static cryocoolers to the rotor via a bespoke rotating coupling. The coils are insulated with multi-layer insulation and positioned over laminated iron rotor poles which are at room temperature. The rotor is enclosed within a vacuum chamber and the complete assembly rotates at 214rpm. The challenges have been significant but have allowed Converteam to develop key technology building blocks which can be applied to future HTS related projects. The design challenges, electromagnetic, mechanical and thermal tests and results are presented and discussed together with applied solutions.

  2. Fuel procurement for first generation fusion power plants

    International Nuclear Information System (INIS)

    Gore, B.F.; Hendrickson, P.L.

    1976-09-01

    The provision of deuterium, tritium, lithium and beryllium fuel materials for fusion power plants is examined in this document. Possible fusion reactions are discussed for use in first generation power plants. Requirements for fuel materials are considered. A range of expected annual consumption is given for each of the materials for a 1000 megawatts electric (MWe) fusion power plant. Inventory requirements are also given. Requirements for an assumed fusion power plant electrical generating capacity of 10 6 MWe (roughly twice present U.S. generating capacity) are also given. The supply industries are then examined for deuterium, lithium, and beryllium. Methods are discussed for producing the only tritium expected to be purchased by a commercial fusion industry--an initial inventory for the first plant. Present production levels and methods are described for deuterium, lithium and beryllium. The environmental impact associated with production of these materials is then discussed. The toxicity of beryllium is described, and methods are indicated to keep worker exposure to beryllium as low as achievable

  3. Survey of a technology to introduce the waste-fueled power generation. Basic manual for introduction of the waste-fueled power generation; Haikibutsu hatsuden donyu gijutsu chosa. Haikibutsu hatsuden donyu kihon manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Local government offices, etc., which are expected to shoulder responsibility for introducing the waste-fueled power generation, want to need exact information on technical information concerning the waste-fueled power generation and the method to materialize the introduction plan, etc. Therefore, Electric Power Development Co. surveyed and studied it under the contract with NEDO. The results were collected together as a basic manual for introduction of the waste-fueled power generation. As an outline of the waste-fueled power generation, the manual explains the significance, the present situation and potentials, the waste-fueled power system, an outline of working out the waste-fueled power generation plan, an outline of construction and operation/maintenance of the waste-fueled power generation, an outline of various systems relating to the waste-fueled power generation, etc. As the items for the study of making a concrete plan for power generation equipment, the manual explains the amount of refuse to be incinerated, the present status of generation capacity as viewed from the quality of refuse, the quality of refuse and the design of power generation equipment, boiler efficiency, power generation efficiency, construction cost and operation cost, etc. In addition, the paper describes a case study of the waste-fueled power generation plan. 118 figs., 39 tabs.

  4. Assess and Predict Automatic Generation Control Performances for Thermal Power Generation Units Based on Modeling Techniques

    Science.gov (United States)

    Zhao, Yan; Yang, Zijiang; Gao, Song; Liu, Jinbiao

    2018-02-01

    Automatic generation control(AGC) is a key technology to maintain real time power generation and load balance, and to ensure the quality of power supply. Power grids require each power generation unit to have a satisfactory AGC performance, being specified in two detailed rules. The two rules provide a set of indices to measure the AGC performance of power generation unit. However, the commonly-used method to calculate these indices is based on particular data samples from AGC responses and will lead to incorrect results in practice. This paper proposes a new method to estimate the AGC performance indices via system identification techniques. In addition, a nonlinear regression model between performance indices and load command is built in order to predict the AGC performance indices. The effectiveness of the proposed method is validated through industrial case studies.

  5. Applied atomic and collision physics special topics

    CERN Document Server

    Massey, H S W; Bederson, Benjamin

    1982-01-01

    Applied Atomic Collision Physics, Volume 5: Special Topics deals with topics on applications of atomic collisions that were not covered in the first four volumes of the treatise. The book opens with a chapter on ultrasensitive chemical detectors. This is followed by separate chapters on lighting, magnetohydrodynamic electrical power generation, gas breakdown and high voltage insulating gases, thermionic energy converters, and charged particle detectors. Subsequent chapters deal with the operation of multiwire drift and proportional chambers and streamer chambers and their use in high energy p

  6. Railguns powered by explosive driven flux compression generators

    International Nuclear Information System (INIS)

    Fowler, C.M.; Zimmermann, E.L.; Cummings, C.E.

    1986-01-01

    Explosive driven flux compression generators (FCG's) are single-shot devices that convert part of the energy of high explosives into electromagnetic energy. Some classes of these generators have served quite well as railgun power sources. In this paper and the following paper we describe strip and helical type FCG's, both of which are in use in the Los Alamos railgun program. Advantages and disadvantages these generators have for railgun power supplies will be discussed, together with experimental results obtained and some of the diagnostics we have found particularly useful

  7. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, J. F.

    1980-01-01

    At the beginning of the third quarter of 1980, the Shippingport Atomic Power Station was operating with the 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops in service. During the quarter, the Station was operated for Duquesne Light Company System grid including base load and swing load operation. Twelve (12) planned swing load operations were performed on the LWBR Core this quarter to complete the LWBR operating plan of fifty (50) during this operating phase. The Station was shutdown on September 12 for the Fall 1980 Shutdown and remained in this mode through the end of the quarter. The LWBR Core has generated 18,297.98 EFPH from start-up through the end of the quarter. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. The radioactive liquid waste effluent line to the river remained blanked off to prevent inadvertent radioactive liquid waste discharges. During the quarter, approximately 0.001 curies of Xe 133 activity were released from the station. The radioactivity released from Shippingport Station is far too small to have any measurable effect on the general background environmental radioactivity outside the plant.

  8. Entropy-generated power and its efficiency

    DEFF Research Database (Denmark)

    Golubeva, N.; Imparato, A.; Esposito, M.

    2013-01-01

    We propose a simple model for a motor that generates mechanical motion by exploiting an entropic force arising from the topology of the underlying phase space. We show that the generation of mechanical forces in our system is surprisingly robust to local changes in kinetic and topological paramet...... parameters. Furthermore, we find that the efficiency at maximum power may show discontinuities....

  9. Conjugate gradient minimisation approach to generating holographic traps for ultracold atoms.

    Science.gov (United States)

    Harte, Tiffany; Bruce, Graham D; Keeling, Jonathan; Cassettari, Donatella

    2014-11-03

    Direct minimisation of a cost function can in principle provide a versatile and highly controllable route to computational hologram generation. Here we show that the careful design of cost functions, combined with numerically efficient conjugate gradient minimisation, establishes a practical method for the generation of holograms for a wide range of target light distributions. This results in a guided optimisation process, with a crucial advantage illustrated by the ability to circumvent optical vortex formation during hologram calculation. We demonstrate the implementation of the conjugate gradient method for both discrete and continuous intensity distributions and discuss its applicability to optical trapping of ultracold atoms.

  10. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  11. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  12. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    Directory of Open Access Journals (Sweden)

    Jingqi Sun

    2014-01-01

    Full Text Available As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China’s energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China.

  13. Transforming Ontario's Power Generation Company

    International Nuclear Information System (INIS)

    Manley, J.; Epp, J.; Godsoe, P.C.

    2004-01-01

    The OPG Review Committee was formed by the Ontario Ministry of Energy to provide recommendations and advice on the future role of Ontario Power Generation Inc. (OPG) in the electricity sector. This report describes the future structure of OPG with reference to the appropriate corporate governance and senior management structure. It also discusses the potential refurbishing of the Pickering A nuclear generating Units 1, 2 and 3. The electricity system in Ontario is becoming increasingly fragile. The province relies heavily on electricity imports and the transmission system is being pushed to near capacity. Three nuclear generating units are out of service. The problems can be attributed to the fact that the electricity sector has been subjected to unpredictable policy changes for more than a decade, and that the largest electricity generator (OPG) has not been well governed. OPG has had frequent senior management change, accountability has been weak, and cost overruns have delayed the return to service of the Pickering nuclear power Unit 4. It was noted that the generating assets owned and operated by OPG are capable of providing more than 70 per cent of Ontario's electricity supply. Decisive action is needed now to avoid a potential supply shortage of about 5,000 to 7,000 megawatts by 2007. In its current state, OPG risks becoming a burden on ratepayers. Forty recommendations were presented, some of which suggest that OPG should become a rate-regulated commercial utility focused on running and maintaining its core generating assets. This would require that the government act as a shareholder, and the company operate like a commercial business. It was also emphasized that the market must be allowed to bring in new players. refs., tabs., figs

  14. Complementary power output characteristics of electromagnetic generators and triboelectric generators.

    Science.gov (United States)

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-04

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.

  15. improvement of hydroelectric power generation using pumped

    African Journals Online (AJOL)

    HOD

    1, 4 DEPARTMENT OF SYSTEMS ENGINEERING, UNIVERSITY OF LAGOS, AKOKA, YABA, ... pumped storage system for generating hydroelectric power all year round. ... Power supply situation in Nigeria has no doubt ..... (objective functions), criteria for evaluation of control .... adsen H “Para eter esti ation in distributed.

  16. Generation of dense, pulsed beams of refractory metal atoms using two-stage laser ablation

    International Nuclear Information System (INIS)

    Kadar-Kallen, M.A.; Bonin, K.D.

    1994-01-01

    We report a technique for generating a dense, pulsed beam of refractory metal atoms using two-stage laser ablation. An atomic beam of uranium was produced with a peak, ground-state number density of 1x10 12 cm -3 at a distance of z=27 cm from the source. This density can be scaled as 1/z 3 to estimate the density at other distances which are also far from the source

  17. Repetitive plasma opening switch for powerful high-voltage pulse generators

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Zakatov, L.P.; Nitishinskii, M.S.; Ushakov, A.G.

    1998-01-01

    Results are presented of experimental studies of plasma opening switches that serve to sharpen the pulses of inductive microsecond high-voltage pulse generators. It is demonstrated that repetitive plasma opening switches can be used to create super-powerful generators operating in a quasi-continuous regime. An erosion switching mechanism and the problem of magnetic insulation in repetitive switches are considered. Achieving super-high peak power in plasma switches makes it possible to develop new types of high-power generators of electron beams and X radiation. Possible implementations and the efficiency of these generators are discussed

  18. Power programmes review: Nuclear power for India

    International Nuclear Information System (INIS)

    1959-01-01

    India will require a substantial increase in the generation of electrical power to meet the demands of her developing economy. A survey of available resources has been made in the context of development envisaged under the country's five-year plans and it is felt that atomic energy will have to be used in increasing quantities to supplement conventional fuel resources in order to attain the anticipated power targets in the next two decades. It has, therefore, been decided that a small beginning will be made with the erection and commissioning of anatomic power station of 250 MW (electric) capacity by the end of 1964. The installation of a further 750 MW of nuclear power by the end of the third five-year plan period, i.e. by March 1966, is under consideration. Present Pattern and future demand of energy is discussed, as well as available resources and immediate needs. Concerning nuclear fuel cycle and cost estimates it is stated that India's uranium reserves are not large enough to sustain a very long-term programme of power generation, but the reserves for thorium are. Therefore India's nuclear power production will have to be based primarily on thorium with a rather complicated fuel cycles and first, second and third generation atomic power stations. The Atomic Energy Establishment Trombay is India's national centre for research in the peaceful uses of atomic energy. India's first reactor, Apsara, which is of the swimming pool type, has been in operation for more than three years now and two other research reactors are under construction. These are the Canada-India Reactor, which is being built under the Colombo Plan in collaboration with Canada, and Zerlina, which is being designed and built by Indian scientists and engineers. The Canada-India Reactor will be a versatile high flux research reactor and will have facilities in which various power reactor concepts can be tried out in the so-called loop experiments. In addition, it will produce considerable

  19. Power programmes review: Nuclear power for India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    India will require a substantial increase in the generation of electrical power to meet the demands of her developing economy. A survey of available resources has been made in the context of development envisaged under the country's five-year plans and it is felt that atomic energy will have to be used in increasing quantities to supplement conventional fuel resources in order to attain the anticipated power targets in the next two decades. It has, therefore, been decided that a small beginning will be made with the erection and commissioning of anatomic power station of 250 MW (electric) capacity by the end of 1964. The installation of a further 750 MW of nuclear power by the end of the third five-year plan period, i.e. by March 1966, is under consideration. Present Pattern and future demand of energy is discussed, as well as available resources and immediate needs. Concerning nuclear fuel cycle and cost estimates it is stated that India's uranium reserves are not large enough to sustain a very long-term programme of power generation, but the reserves for thorium are. Therefore India's nuclear power production will have to be based primarily on thorium with a rather complicated fuel cycles and first, second and third generation atomic power stations. The Atomic Energy Establishment Trombay is India's national centre for research in the peaceful uses of atomic energy. India's first reactor, Apsara, which is of the swimming pool type, has been in operation for more than three years now and two other research reactors are under construction. These are the Canada-India Reactor, which is being built under the Colombo Plan in collaboration with Canada, and Zerlina, which is being designed and built by Indian scientists and engineers. The Canada-India Reactor will be a versatile high flux research reactor and will have facilities in which various power reactor concepts can be tried out in the so-called loop experiments. In addition, it will produce considerable

  20. Power generator system for HCL reaction

    International Nuclear Information System (INIS)

    Scragg, R. L.; Parker, A. B.

    1984-01-01

    A power generation system includes a nuclear reactor having a core which in addition to generating heat generates a high frequency electromagnetic radiation. An electromagnetic radiation chamber is positioned to receive at least a portion of the radiation generated by the reactor core. Hydrogen and chlorine are connected into the electromagnetic reactor chamber and react with controlled explosive violence when exposed to the radiation from the nuclear reactor. Oxygen is fed into the reactor chamber as a control medium. The resulting gases under high pressure and temperature are utilized to drive a gas turbine generators. In an alternative embodiment the highly ionized gases, hydrogen and chlorine are utilized as a fluid medium for use in magnetohydrodynamic generators which are attached to the electromagnetic reactor chambers

  1. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  2. Atom Mirny: The World’S First Civilian Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kaiser, Peter; Madsen, Michael

    2013-01-01

    The world’s first civilian nuclear power plant was commissioned on June 27, 1954 in Obninsk, which was at that time in the Soviet Union, today, the Russian Federation. The Obninsk nuclear power plant generated electricity and supported experimental nuclear research. The Obninsk nuclear power plant operated without incident for 48 years. In September 2002, the last fuel subassembly was unloaded, when the Obninsk nuclear power plant set another first: it became the first nuclear power plant to be decommissioned in Russia

  3. Hybrid power markets in Africa: Generation planning, procurement and contracting challenges

    International Nuclear Information System (INIS)

    Malgas, Isaac; Eberhard, Anton

    2011-01-01

    African power sectors are generally characterised by insufficient generation capacity. Reforms to address poor performances in the 1990s followed a prescribed evolution towards power markets that would allow wholesale competition amongst generators and so lead towards efficiency improvements. Despite reforms being embarked, competitive power markets have not been established in Africa; rather, the result has been the emergence of hybrid markets where state-owned generators and IPPs operate devoid of competition; and although IPPs have emerged in a number of African power sectors, many countries still do not have sufficient generation to meet their electricity demands. This paper investigates the development of private generation power projects in Africa by analysing data collected from both primary and secondary sources in four case studies of power sectors in Ghana, Cote d'Ivoire, Morocco and Tunisia. It identifies how planning and procurement challenges have lead to difficulties in adding sufficient generation capacity in a timely manner, exacerbating the problem of insufficient generation capacity in Africa. It provides suggestions as to how these frameworks could respond more effectively to the capacity challenges faced by hybrid electricity generation markets, and how broader power sector reforms should be guided to reflect the challenges of hybrid markets better. - Research highlights: → The standard model of power sector reform should no longer be used as a progress measure of power sector development in Africa and many other developing countries. → The hybrid market should in itself be recognised as an established 'model' of power sectors in Africa and many developing countries. → Planning, procurement and contracting arrangements should be shaped specifically for hybrid markets in order to address the problem of insufficient generation capacity in developing countries.

  4. Modeling the economics and market adoption of distributed power generation

    International Nuclear Information System (INIS)

    Maribu, Karl Magnus

    2006-01-01

    After decades of power generating units increasing in size, there is currently a growing focus on distributed generation, power generation close to energy loads. Investments in large-scale units have been driven by economy of scale, but recent technological improvements on small generating plants have made it possible to exploit the benefits of local power generation to a larger extent than previously. Distributed generation can improve power system efficiency because heat can be recovered from thermal units to supply heat and thermally activated cooling, and because small-scale renewables have a promising end-user market. Further benefits of distributed generation include improved reliability, deferral of often controversial and costly grid investments and reduction of grid losses. The new appeal of small-scale power generation means that there is a need for new tools to analyze distributed generation, both from a system perspective and from the perspective of potential developers. In this thesis, the focus is on the value of power generation for end-users. The thesis identifies how an end-user can find optimal distributed generation systems and investment strategies under a variety of economic and regulatory scenarios. The final part of the thesis extends the analysis with a bottom up model of how the economics of distributed generation for a representative set of building types can transfer to technology diffusion in a market. Four separate research papers make up the thesis. In the first paper, Optimal Investment Strategies in Decentralized Renewable Power Generation under Uncertainty, a method for evaluation of investments in renewable power units under price uncertainty is presented. It is assumed the developer has a building with an electricity load and a renewable power resource. The case study compares a set of wind power systems with different capacity and finds that capacity depends on the electricity price and that there under uncertain prices can be a

  5. Conceptual survey of generators and power electronics for wind turbines

    DEFF Research Database (Denmark)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.

    2002-01-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent systemoperators as well as manufactures of generators...... and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: - State of the art on generators and power electronics. - future concepts andtechnologies within generators and power electronics. - market needs in the shape of requirements to the grid...... connection, and - consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generatorand power electronic concepts was carried out in co-operation between Aalborg University and Risø National Laboratory in the scope of the research programme Electric...

  6. Windfarm Generation Assessment for ReliabilityAnalysis of Power Systems

    DEFF Research Database (Denmark)

    Negra, Nicola Barberis; Holmstrøm, Ole; Bak-Jensen, Birgitte

    2007-01-01

    Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...

  7. Windfarm generation assessment for reliability analysis of power systems

    DEFF Research Database (Denmark)

    Negra, N.B.; Holmstrøm, O.; Bak-Jensen, B.

    2007-01-01

    Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...

  8. 46 CFR 111.10-4 - Power requirements, generating sources.

    Science.gov (United States)

    2010-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must... or sources must be sufficient to supply those services necessary to provide normal operational...

  9. The price of fuel oil for power generation

    International Nuclear Information System (INIS)

    Hsu, G.J.Y.; Liaw, Y.Y.C.

    1987-01-01

    This study establishes a break-even analysis model for fuel oil generation. The authors calculate the break-even points of the international fuel oil prices for the existing coal-fired power plants, the nuclear power plants and the newly-built coal/oil-fired power plants

  10. The development of market power in the Polish power generation sector: A 10-year perspective

    International Nuclear Information System (INIS)

    Kamiński, Jacek

    2012-01-01

    The paper examines how and to which extent consolidation in the Polish power generation sector has affected the potential for market power over the last 10 years. Although this sector has been undergoing liberalisation (privatisation, introduction of TPA regulations and competition etc.), the consolidation efforts shown by Polish governments have resulted in a significant increase in concentration of both installed capacity and production. The methodology applied in this study includes typical ex-post structural and behavioural measures employed to estimate potential for market power, namely: concentration ratios (for the largest and the three largest suppliers), the Herfindahl–Hirschman Index, entropy, Supply Margin Assessment, the Residual Supply Index and the Lerner Index. Furthermore, an analysis based on the Gini coefficient was employed to obtain an insight into inequalities. The results of this study show that governmental decisions led to a significant increase in the potential to exercise market power held by key power generation companies. Of key importance was the 2007 consolidation, resulting in an increase in the HHI to 1374 (in terms of installed capacity) and 1945 (in terms of electricity production). This consolidation resulted in the creation of the first Pivotal Supplier in the Polish power generation sector in 2008. - Highlights: ► Market power analysis based on structural and behavioural indices was carried out for the Polish power sector. ► Governmental policy resulted in significant increase in concentration of both installed capacity and generation. ► Increase in the Lerner Index of brown coal-based generation and decrease of the hard coal-based one were observed.

  11. Generation of ozone by Ns-width pulsed power

    International Nuclear Information System (INIS)

    Shimomura, Naoyuki; Wakimoto, Masaya; Shinke, Yosuke; Nagata, Masayoshi; Namihira, Takao; Akiyama, Hidenori

    2002-01-01

    The demand of ozone will be increasing for wholesome and environment-conscious sterilizations. The generation of ozone using the pulsed power discharge will apply electron accelerations around the head of streamer discharge principally. The breakdown in reactor often limits the efficient generation. Therefore, the pulse shape should be controlled for dimension of the reactor. It is clear that a pulse shortening is one of effective approaches. Pulsed power voltage with ns-width applies for ozone generation. The effects, on concentration and efficiency of generation, of pulse shape, repetition rate of pulse, flow rate of oxygen gas, and dimension and configuration of reactor, are discussed. The dimension and configuration of the reactor are optimized for the pulse width

  12. Solar power generation system. Solar denryoku hassei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Ohaku, T [Toshiba Corp., Kawasaki (Japan)

    1990-12-21

    In a conventional solar power generation system having shunt elements for controlling generated power and supplying the controlled power to a load, it is difficult to carry out a stable power control, because the shunt characteristics of an analogue shunt element driving circuit vary widely as compared with a digital shunt element driving circuit, as the temperature varies. According to the present invention, in a solar power generation system having a plurality of solar cells divided into two of the first and second cell groups and a first and a second shunt element driving means provided for the first and second cell groups, the first shunt element driving means is composed of a combination of a resisance and level shift diode arranged, and the second shunt element driving means is composed of a combination of a transistor and level shift diode arranged. A stable current control of the shunt elements can be therefore realized, because the control voltage range of the first and second shunt element driving means is changed so as to be expanded, as the temperature varies, so that their overlapped voltage range is kept constant. 7 figs.

  13. Incorporation of a Wind Generator Model into a Dynamic Power Flow Analysis

    Directory of Open Access Journals (Sweden)

    Angeles-Camacho C.

    2011-07-01

    Full Text Available Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power fl ows in transmission lines.

  14. Generation of large-scale PV scenarios using aggregated power curves

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Cutululis, Nicolaos Antonio

    2017-01-01

    The contribution of solar photovoltaic (PV) power to the generation is becoming more relevant in modern power system. Therefore, there is a need to model the variability large-scale PV generation accurately. This paper presents a novel methodology to generate regional PV scenarios based...... on aggregated power curves rather than traditional physical PV conversion models. Our approach is based on hourly mesoscale reanalysis irradiation data and power measurements and do not require additional variables such as ambient temperature or wind speed. It was used to simulate the PV generation...... on the German system between 2012 and 2015 showing high levels of correlation with actual measurements (93.02–97.60%) and small deviations from the expected capacity factors (0.02–1.80%). Therefore, we are confident about the ability of the proposed model to accurately generate realistic large-scale PV...

  15. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    Science.gov (United States)

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  16. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients

    NARCIS (Netherlands)

    Yip, N.Y.; Vermaas, D.A.; Nijmeijer, K.; Elimelech, M.

    2014-01-01

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we

  17. Wind Generation Participation in Power System Frequency Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Zhang, Yingchen

    2017-01-01

    The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from that of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.

  18. Development of a novel cascading TPV and TE power generation system

    International Nuclear Information System (INIS)

    Qiu, K.; Hayden, A.C.S.

    2012-01-01

    Highlights: ► A novel cascading thermophotovoltaic (TPV) and thermoelectric (TE) power generation system is proposed and developed. ► The used heat stream is taken from the TPV and applied to the input of a TE converter in the system. ► A prototype was built and tested where GaSb TPV cells and PbSnTe-based TE converter were used. ► The TPV cells generate 123.5 We whereas the TE converter generates 306.2 We in the prototype. ► It is shown the cascading power generation is feasible in fuel-fired furnaces and can be applied to micro-CHP. -- Abstract: Thermophotovoltaic (TPV) cells can convert infrared radiation into electricity. They open up possibilities for silent and stand-alone power production in fuel-fired heating equipment. Similarly, thermoelectric (TE) devices convert thermal energy directly into electricity with no moving parts. However, TE devices have relatively low efficiency for electric power generation. In this study, the concept of cascading TPV and TE power generation was developed where the used heat stream is taken from the TPV and applied to the input of a TE converter. A prototype cascading TPV and TE generation system was built and tested. GaSb TPV cells and an integrated semiconductor TE converter were used in the cascading power system. The electric output characteristics of the TPV cells and the TE converter have been investigated in the power generation system at various operating conditions. Experimental results show that the cascading power generation is feasible and has the potential for certain applications.

  19. White paper on atomic energy in 1993. 1993 ed.

    International Nuclear Information System (INIS)

    1993-01-01

    In order to cope with the problem of how to secure the energy which is the base of mankind survival in the continuing increase of global population, the research and development of atomic energy and new energies, energy conservation and various other efforts have been carried out. But still the stable supply and securing of energy are important policy subjects. It is the policy of the new Hosokawa Cabinet to inherit important basic policies including energy policy. The nuclear power that generates about 30% of Japanese electric power is indispensable for stable energy supply, and its development and utilization are advanced steadily. The peaceful utilization of the plutonium produced in nuclear reactors by the establishment of nuclear fuel cycle must be advanced. For the purpose, the construction of Rokkasho fuel reprocessing plant and the development of the FBR 'Monju' are in progress. Also advance has been made in the fields of radiation cancer therapy and nuclear fusion. In this book, the general remarks on the circumstances surrounding atomic energy, nuclear power generation, the securing of safety and envrionment preservation, nuclear fuel cycle, the development of new power reactors and others are reported. The related materials are attached. (K.I.)

  20. Pec power generation system using pure energy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K; Sonai, A; Kano, A [Toshiba International Fuel Cells Corp. (Japan). Cell Technology Development Dept.; Yatake, T [Toshiba International Fuel Cells Corp. (Japan). Plant Engineering Dept.

    2002-07-01

    A polymer electrolyte fuel cell (PEFC) power generation system using pure hydrogen was developed by Toshiba International Fuel Cells (TIFC), Japan, under the sponsorship of the World Energy Network (WE-NET) Project. The goals of the project consist of the construction of 30 kilowatt power generation plant for stationary application and target electrical efficiency of over 50 per cent. Two critical technologies were investigated for high utilization stack, as high hydrogen utilization operation represents one of the most important items for the achievement of target efficiency. The first technology examined was the humidification method from cathode side, while the second was the two-block configuration, which is arranged in series in accordance with the flow of hydrogen. Using these technologies as a basis for the work, a 5 kilowatt short stack was developed, and a steady performance was obtained under high hydrogen utilization of up to 98 per cent. It is expected that by March 2003 the design of the hydrogen fueled 30 kilowatt power generation plant will be completed and assembled. 1 ref., 1 tab., 11 figs.

  1. Remote-site power generation opportunities for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  2. Facing the challenges of nuclear power at Ontario Power Generation

    International Nuclear Information System (INIS)

    Howes, H.

    1999-01-01

    Nuclear power represents a major portion of Ontario Power Generation's generation mix and it will be the bedrock upon which we build a successful, competitive company. Our nuclear units offer many environmental and economic benefits, the one most relevant to this meeting is their significant contribution to the relatively low carbon intensity of Ontario's and Canada's electricity supply. In recent weeks, we have listened with great interest to the endorsement by our federal Minister of the Environment of nuclear technology as a means of reducing global warming. But endorsements of this type alone are not sufficient to ensure that nuclear remains an acceptable option for managing greenhouse gas emissions. Without public acceptance and support, the entire nuclear investment is endangered. At OPG we face three challenges to building this public support: we must continue to improve our safety margins and operating performance; we must continue to improve the environmental performance at our stations; and we must increase our community outreach. Today I would like to focus on the last two challenges and the actions that we are taking to maintain our social and environmental 'licence to operate.' But before I describe these initiatives, I will tell you about: the new company - Ontario Power Generation; the changes in store for Ontario's electricity sector; and our greenhouse gas emissions - the legacy from Ontario Hydro. (author)

  3. Thinking small: Onsite power generation may soon be big

    International Nuclear Information System (INIS)

    Davidson, K.G.; Braun, G.W.

    1993-01-01

    Utilities are retheinking the way they do business. Eventually, smaller and cleaner generation units located near major load centers could begin to supplement power from central plants. The technologies necessary to this transition are emerging in the form of open-quotes distributed generation.close quotes These technologies typically produce power on a relatively small scale (less than 50 MW per unit) and can be sited in congested urban areas as well as near remote customers. This allows utilities to meet new demand for electricity without building central generating stations and without substantially expanding or upgrading the power delivery system-in other words, at lower cost. Some distributed-generation technologies, such as fuel cells and solar energy harnessed by photovoltaic (PV) cells, are just beginning to carve out niches in th power market. Others, such as engine generator sets and battery storage, have evolved into robust, high-technology systems. In the case of fuel cells and engine-driven systems, natural gas is emerging as an environmentally friendly fuel that should remain available for decades at competitive prices. As gas-fueled distributed power is deployed, utility infrastructures for delivering gas and electricity to customers could become more integrated, allowing planners to smooth load profiles for energy services and creating greater synergies between the two. As distributed-generation technologies become more practical and cost-effective, utilities may find that change can be a path toward least-cost service and sustainable profitability

  4. Development of water demand coefficients for power generation from renewable energy technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2017-01-01

    Highlights: • Water consumption and withdrawals coefficients for renewable power generation were developed. • Six renewable energy sources (biomass, nuclear, solar, wind, hydroelectricity, and geothermal) were studied. • Life cycle water footprints for 60 electricity generation pathways were considered. • Impact of cooling systems for some power generation pathways was assessed. - Abstract: Renewable energy technology-based power generation is considered to be environmentally friendly and to have a low life cycle greenhouse gas emissions footprint. However, the life cycle water footprint of renewable energy technology-based power generation needs to be assessed. The objective of this study is to develop life cycle water footprints for renewable energy technology-based power generation pathways. Water demand is evaluated through consumption and withdrawals coefficients developed in this study. Sixty renewable energy technology-based power generation pathways were developed for a comprehensive comparative assessment of water footprints. The pathways were based on the use of biomass, nuclear, solar, wind, hydroelectricity, and geothermal as the source of energy. During the complete life cycle, power generation from bio-oil extracted from wood chips, a biomass source, was found to have the highest water demand footprint and wind power the lowest. During the complete life cycle, the water demand coefficients for biomass-based power generation pathways range from 260 to 1289 l of water per kilowatt hour and for nuclear energy pathways from 0.48 to 179 l of water per kilowatt hour. The water demand for power generation from solar energy-based pathways ranges from 0.02 to 4.39 l of water per kilowatt hour, for geothermal pathways from 0.04 to 1.94 l of water per kilowatt hour, and for wind from 0.005 to 0.104 l of water per kilowatt hour. A sensitivity analysis was conducted with varying conversion efficiencies to evaluate the impact of power plant performance on

  5. Stopping powers and ranges for the heaviest atoms

    International Nuclear Information System (INIS)

    Sagaidak, Roman N.; Utyonkov, Vladimir K.; Dmitriev, Sergey N.

    2015-01-01

    Slowing down and stopping of the heaviest atoms, products of the fusion–evaporation nuclear reactions, during their passage through the Dubna gas-filled recoil separator has been studied using TRIM simulations. The study is important for experiments on the synthesis of super-heavy elements (SHEs) with atomic numbers around Z_P = 114 produced with accelerated heavy ion (HI) beams and extracted with a separator for their detection. The average Mylar stopping power (SP) values obtained with the simulations for HIs with 82 ⩽ Z_P ⩽ 92 reveal almost the same magnitudes, allowing extrapolation to the region of Z_P > 92. Similar extrapolation of the ranges in an He + Ar gas mixture leads to rather small values for the heaviest atoms (Z_P ⩾ 102) as compared to the range for U. The extrapolated values have large uncertainties and should be verified with different approaches. Available SP data obtained for HIs with 18 ⩽ Z_P ⩽ 92 at energies E < 20 MeV/u have been analysed within various semi-empirical approaches. The analysis has shown that existing parameterizations give Mylar SP values for Z_P ⩾ 82 that are very different from each other at energies of interest (around 0.1 MeV/u). We propose to use a general approach based on the HI effective charge parameterization obtained with available SP data for HIs and the hydrogen SP and effective charge corresponding to the same velocity and stopping medium as those for HIs. In this manner, the SPs of the gases H_2, He, C_4H_1_0, and Ar as well as those of the solids Mylar, C, Al, and Ti have been obtained for any atoms with Z_P ⩾ 18 (including the heaviest ones) at their reduced velocities 0.03 ⩽ V_r_e_d ⩽ 5.0. The SP values derived in such a way seem to be more reliable compared to the existing semi-empirical calculations and can be used in the conditioning of experiments on the synthesis of SHEs.

  6. Optimised deployment of hydro-power generation facilities

    International Nuclear Information System (INIS)

    Werlen, K.

    2004-01-01

    This article discusses how the opening-up of the European electricity market has led to the creation of more room for manoeuvre in the deployment of the generation capacity of dam and pumped-storage-based hydropower facilities and low-head power stations. Software tools for the optimisation of the operation of power generation facilities that can take care of complex hydraulic interdependencies are described. The use of the software for the assessment of new installations being planned or of older installations being extended is examined. The influence of climatic conditions, market prices for power, the general requirements placed on the system and other influences on financial gain are looked at. The article makes recommendations on those factors influencing the design of the software and for its optimal use in practice

  7. High power RF oscillator with Marx generators

    International Nuclear Information System (INIS)

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  8. Arrangement for adapting a wind wheel to an electric power generator

    Energy Technology Data Exchange (ETDEWEB)

    Beusse, H

    1977-08-11

    The invention is concerned with a device for adapting a wind wheel to an electric power generator in such a way that the wind wheel will always be operated with a maximum performance coefficient, that another source of energy, e.g. a prime mover, can supply the power deficit if the wind power is not sufficient, and that the generator at the output of the facility is kept mains-synchronous of constant speed and constant voltage. According to the invention, the shaft power of the wind power engine is transmitted to a first generator driving an electromotor. The motor is coupled to a second generator feeding into a consumer grid. By means of an anemometer the excitation output of the motor is controled in such manner that the speed of the generator is practically constant-provided a sufficient supply of wind is available. On the shaft of the output generator a prinse mover, e.g. a Diesel engine, is mounted being controllable for contant speed by means of a controll device in such a way that the prime mover takes over the missing amount of power if the wind supply falls short of the power taken off at the generator output.

  9. Apparatus and method for thermal power generation

    International Nuclear Information System (INIS)

    Cohen, P.; Redding, A.H.

    1978-01-01

    An improved thermal power plant and method of power generation is described which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant

  10. Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines

    Science.gov (United States)

    Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman

    2017-10-01

    Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.

  11. Relationship between students' interests in science and attitudes toward nuclear power generation

    International Nuclear Information System (INIS)

    Komiya, Izumi; Torii, Hiroyuki; Fujii, Yasuhiko; Hayashizaki, Noriyosu

    2008-01-01

    In order to study the following two points, we conducted an attitude survey among senior high school students. Study 1 The differences in attitudes between nuclear power generation and other science and technologies. Study 2 The relationship between student's interest in science and attitudes toward nuclear power generation. In the questionnaire, the attitude toward nuclear power generation consisted of four questions: (1) pros and cons, (2) safety, (3) necessity, (4) reliability of scientists and engineers who are involved in nuclear power; and we treat four science and technology issues: (1) genetically modified foods, (2) nuclear power generation, (3) humanoid and pet robots, (4) crone technology. From study 1, on attitude to security toward nuclear power generation, about 80% of respondents answered negatively and on attitude to necessity toward it, about 75% of respondents answered positively. Therefore, we found that the structure of attitude was complicated and that it was specific to nuclear power generation. From study 2, we found students' interests in science that influence the attitude toward nuclear power generation. (author)

  12. Prediction of future dispute concerning nuclear power generation

    International Nuclear Information System (INIS)

    1981-04-01

    This investigation is the third research on the public acceptance of nuclear power generation by the National Congress on Social Economics. In this study, how the energy dispute including that concerning nuclear power generation will develop in 1980s and 1990s, how the form of dispute and the point of controversy will change, were predicted. Though the maintenance of the concord of groups strongly regulates the behavior of people, recently they have become to exercise individual rights frequently. The transition to the society of dispute is the natural result of the modernization of society and the increase of richness. The proper prediction of social problems and the planning and execution of proper countermeasures are very important. The background, objective, basic viewpoint, range and procedure of this investigation, the change of social dispute, the history of the dispute concerning nuclear power generation, the basic viewpoint in the prediction of the dispute concerning nuclear power generation, the social situation in 1980s, the prediction and avoidance of the dispute in view of social and energy situations, and the fundamental strategy for seeking a clue to the solution in 1980s and 1990s are described. The establishment of neutral mediation organs and the flexible technologies of nuclear reactors are necessary. (Kako, I.)

  13. Simulation on effect of stopping nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki; Kumakura, Osamu; Sakurai, Norihisa; Nagata, Yutaka; Hattori, Tsuneaki

    1990-01-01

    The effects that the stopping of nuclear power generation exerts on the price of primary energy such as petroleum, LNG and coal and the trend of Japanese energy and economy are analyzed by using the medium term economy forecasting system. In the simulation, the case of stopping nuclear power generation in seven countries of OECD is supposed, and as for the process of stopping, two cases of immediate stopping and stopping by gradual reduction are set up. The models used for the simulation are the world energy model, the competition among energies model and the multiple category model. By the decrease of nuclear power generation, thermal power generation increases, and the demand of fossil fuel increases. As the result, the price of fossil fuel rises (the world energy model), and the price of fossil fuel imported to Japan rises. Also the quantity of fossil fuel import to Japan increase. These price rise and quantity increase exert deflation effect to Japanese economy (the multiple category model). The price rise of fossil fuel affects the competition among energies in Japan through the relative change of secondary energy price (the competition among energies model). The impact to the world and to Japan is discussed. (K.I.)

  14. Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation

    International Nuclear Information System (INIS)

    Taghavi, Reza; Seifi, Ali Reza; Samet, Haidar

    2015-01-01

    Environmental concerns besides fuel costs are the predominant reasons for unprecedented escalating integration of wind turbine on power systems. Operation and planning of power systems are affected by this type of energy due to the intermittent nature of wind speed inputs with high uncertainty in the optimization output variables. Consequently, in order to model this high inherent uncertainty, a PRPO (probabilistic reactive power optimization) framework should be devised. Although MC (Monte-Carlo) techniques can solve the PRPO with high precision, PEMs (point estimate methods) can preserve the accuracy to attain reasonable results when diminishing the computational effort. Also, this paper introduces a methodology for optimally dispatching the reactive power in the transmission system, while minimizing the active power losses. The optimization problem is formulated as a LFP (linear fuzzy programing). The core of the problem lay on generation of 2m + 1 point estimates for solving PRPO, where n is the number of input stochastic variables. The proposed methodology is investigated using the IEEE-14 bus test system equipped with HVDC (high voltage direct current), UPFC (unified power flow controller) and DFIG (doubly fed induction generator) devices. The accuracy of the method is demonstrated in the case study. - Highlights: • This paper uses stochastic loads in optimization process. • AC–DC load flow is modified to use some advantages of DC part in optimization process. • UPFC and DFIG are simulated in a way that could be effective in optimization process. • Fuzzy set has been used as an uncertainty analysis tool in the optimization

  15. Direct Drive Generator for Renewable Power Conversion from Water Currents

    International Nuclear Information System (INIS)

    Segergren, Erik

    2005-01-01

    In this thesis permanent magnet direct drive generator for power conversion from water currents is studied. Water currents as a power source involves a number of constrains as well as possibilities, especially when direct drive and permanent magnets are considered. The high power fluxes and low current velocities of a water current, in combination with its natural variations, will affect the way the generator is operated and, flowingly, the appearance of the generator. The work in this thesis can, thus, be categorized into two general topics, generator technology and optimization. Under the first topic, fundamental generator technology is used to increase the efficiency of a water current generator. Under the latter topic, water current generators are optimized to a specific environment. The conclusion drawn from this work is that it is possible to design very low speed direct drive generators with good electromagnetic properties and wide efficiency peak

  16. Variable structure unit vector control of electric power generation ...

    African Journals Online (AJOL)

    A variable structure Automatic Generation Control (VSAGC) scheme is proposed in this paper for the control of a single area power system model dominated by steam powered electric generating plants. Unlike existing, VSAGC scheme where the selection of the control function is based on a trial and error procedure, the ...

  17. Research of PV Power Generation MPPT based on GABP Neural Network

    Science.gov (United States)

    Su, Yu; Lin, Xianfu

    2018-05-01

    Photovoltaic power generation has become the main research direction of new energy power generation. But high investment and low efficiency of photovoltaic industry arouse concern in some extent. So maximum power point tracking of photovoltaic power generation has been a popular study point. Due to slow response, oscillation at maximum power point and low precision, the algorithm based on genetic algorithm combined with BP neural network are designed detailedly in this paper. And the modeling and simulation are completed by use of MATLAB/SIMULINK. The results show that the algorithm is effective and the maximum power point can be tracked accurately and quickly.

  18. Competition and Cooperation of Distributed Generation and Power System

    Science.gov (United States)

    Miyake, Masatoshi; Nanahara, Toshiya

    Advances in distributed generation technologies together with the deregulation of an electric power industry can lead to a massive introduction of distributed generation. Since most of distributed generation will be interconnected to a power system, coordination and competition between distributed generators and large-scale power sources would be a vital issue in realizing a more desirable energy system in the future. This paper analyzes competitions between electric utilities and cogenerators from the viewpoints of economic and energy efficiency based on the simulation results on an energy system including a cogeneration system. First, we examine best response correspondence of an electric utility and a cogenerator with a noncooperative game approach: we obtain a Nash equilibrium point. Secondly, we examine the optimum strategy that attains the highest social surplus and the highest energy efficiency through global optimization.

  19. Effects of a power shortage in the Tokyo metropolitan area on awareness of nuclear power generation and power savings behavior

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2004-01-01

    The shutdown of a number of nuclear power stations of the Tokyo Electric Power Company in the summer of 2003 caused a power shortage problem in the Tokyo Metropolitan area. To examine the effects of the power shortage, in September 2003 a survey was conducted in the service areas of the Kansai Electric Power Company (Kansai region) and the Tokyo Electric Power Company (Kanto region). This survey was part of a wider opinion survey begun in 1993 concerning nuclear power generation. The results of the September 2003 survey are as follows: The degree of recognition of the power shortage problem in the Metropolitan area was high, with 40% of respondents in the Kansai region and nearly 70% in the Kanto region understanding that the shortage was caused by the shutdown of several nuclear power station. The overall awareness of nuclear power generation was little affected in both the Kansai and Kanto regions, though the sense of a shortage of the generating capacity had been raised slightly. Once respondents knew about the power shortage problem, they estimated the likelihood of an occurrence of large-scale service interruption to be low, nearly at an even chance, and they had been only slightly worried about it, essentially viewing the problem optimistically. In the Kanto region, where public relations activities for power savings had been actively pursued, the frequency of experiencing exposure to such public relations activities was remarkably higher than in the Kansai region. The relation between exposure to public relations activities for power savings and power savings behavior was analyzed using quantification method II. Analysis results suggest that public relations activities for power savings in the Kanto region had the effect of urging power savings behavior. However, the difference in the rate of putting power savings behavior into practice was small between the Kanto and Kansai regions, indicating that public relation activities for power savings in the Kanto

  20. Pulsed corona generation using a diode-based pulsed power generator

    Science.gov (United States)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  1. Thermal and nuclear power generation cost estimates using corporate financial statements

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Nagatomi, Yu; Murakami, Tomoko

    2012-01-01

    There are two generally accepted methods for estimating power generation costs: so-called 'model plant' method and the method using corporate financial statements. The method using corporate financial statements, though under some constraints, can provide useful information for comparing thermal and nuclear power generation costs. This study used this method for estimating thermal and nuclear power generation costs in Japan for the past five years, finding that the nuclear power generation cost remained stable at around 7 yen per kilowatt-hour (kWh) while the thermal power generation cost moved within a wide range of 9 to 12 yen/kWh in line with wild fluctuations in primary energy prices. The cost of nuclear power generation is expected to increase due to the enhancement of safety measures and accident damage compensation in the future, while there are reactor decommissioning, backend and many other costs that the financial statement-using approach cannot accurately estimate. In the future, efforts should be continued to comprehensively and accurately estimate total costs. (author)

  2. 76 FR 36910 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Science.gov (United States)

    2011-06-23

    ... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power [[Page... subscribed docket(s). For assistance with any FERC Online service, please e-mail [email protected

  3. Design of Electricity Markets for Efficient Balancing of Wind Power Generation

    OpenAIRE

    Scharff, Richard

    2015-01-01

    Deploying wind power to a larger extent is one solution to reduce negative environmental impacts of electric power supply. However, various challenges are connected with increasing wind power penetration levels. From the perspective of transmission system operators, this includes balancing of varying as well as - to some extent - uncertain generation levels. From the perspective of power generating companies, changes in the generation mix will affect the market's merit order and, hence, their...

  4. Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system

    International Nuclear Information System (INIS)

    Remeli, Muhammad Fairuz; Tan, Lippong; Date, Abhijit; Singh, Baljit; Akbarzadeh, Aliakbar

    2015-01-01

    Highlights: • A new passive power cogeneration system using industrial waste heat was introduced. • Heat pipes and thermoelectrics were used for recovering waste heat and electricity. • Theoretical model predicted the 2 kW test rig could recover 1.345 kW thermal power. • 10.39 W electrical power was produced equivalent to 0.77% conversion efficiency. - Abstract: This research explores a new method of recovering waste heat and electricity using a combination of heat pipes and thermoelectric generators (HP-TEG). The HP-TEG system consists of Bismuth Telluride (Bi 2 Te 3 ) based thermoelectric generators (TEGs), which are sandwiched between two finned heat pipes to achieve a temperature gradient across the TEG for thermoelectricity generation. A theoretical model was developed to predict the waste heat recovery and electricity conversion performances of the HP-TEG system under different parametric conditions. The modelling results show that the HP-TEG system has the capability of recovering 1.345 kW of waste heat and generating 10.39 W of electrical power using 8 installed TEGs. An experimental test bench for the HP-TEG system is under development and will be discussed in this paper

  5. Electric power generation and uranium management

    International Nuclear Information System (INIS)

    Szergenyi, Istvan

    1989-01-01

    Assuming the present trend of nuclear power generation growth, the ratio of nuclear energy in the world power balance will double by the turn of the century. The time of reasonably exploited uranium resources can be predicted as a few decades. Therefore, new nuclear reactor types and more rational uranium management is needed to prolong life of known uranium resources. It was shown how can a better uranium utilization be expected by closed fuel cycles, and what advantages in uranium management can be expected by a better co-operation between small countries and big powers. (R.P.) 16 refs.; 4 figs

  6. Power Generator with Thermo-Differential Modules

    Science.gov (United States)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  7. Steam generators for nuclear power plants

    International Nuclear Information System (INIS)

    Tillequin, Jean

    1975-01-01

    The role and the general characteristics of steam generators in nuclear power plants are indicated, and particular types are described according to the coolant nature (carbon dioxide, helium, light water, heavy water, sodium) [fr

  8. Annual report 1982-83 [of the Department of Atomic Energy, India

    International Nuclear Information System (INIS)

    1983-01-01

    The annual report of the Department of Atomic Energy (DAE) of the Government of India for the financial year 1982-83 surveys the work of its various establishments. The major thrust of the DAE's programme is directed towards peaceful uses of atomic ener%y - primarily for electric power generation and applications of radiation and radioisotopes in medicine, agriculture and industry. The Bhabha Atomic Research Centre at Bombay is the major R and D establishment of the DAE and its activities in the fields of nuclear physics, chemistry and materials science, radiochemistry, nuclear fuels, reactor engineering, radiation protection, radioactive waste management and applications of radiation and radioactive isotopes are described in detail. The R and D activities of the Reactor Research Centre at Kanpakkam, the Tata Institute of Fundamental Research and the Tata A1emorial Centre, both at Bombay, and the Saha Institute of Nuclear Physics at Calcutta are described in brief. The performance of the Tarapur Atomic Power Station, the Rajasthan Atomic Power Station, the Nuclear Fuel Complex at Hyderabad, the Atomic Minerals Division, Uranium Corporation of India Ltd at Jaduguda, various heavy water plants and other industrial units of DAE is reported. Progress of nuclear power projects at Narora and Kakrapar, R-5 Project at Bombay and FBTR Project at Kalpakkam is described. India's participation in the activities of the International Atomic Energy Agency is also mentioned. (M.G.B.)

  9. Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma

    International Nuclear Information System (INIS)

    Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; Nalda, R. de; Castillejo, M.

    2017-01-01

    Highlights: • Plume species in infrared ns laser ablation of ZnS studied by low-order harmonic generation. • Different spatiotemporal properties of harmonics from atoms and nanoparticles. • Results compared with calculations of optical frequency up-conversion in perturbative regime. - Abstract: Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear

  10. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Jonathan Lueke

    2011-01-01

    Full Text Available Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  11. MEMS-based power generation techniques for implantable biosensing applications.

    Science.gov (United States)

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  12. 76 FR 34692 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Science.gov (United States)

    2011-06-14

    ... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC... notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service...

  13. Network integration of distributed power generation

    Science.gov (United States)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  14. Slovenske elektrarne, a.s., Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1998-01-01

    In this booklet the uranium atom nucleus fission as well as electricity generation in a nuclear power plant (primary circuit, reactor, reactor pressure vessel, fuel assembly, control rod and reactor power control) are explained. Scheme of electricity generation in nuclear power plant and Cross-section of Mochovce Nuclear Power Plant unit are included. In next part a reactor scram, refuelling of fuel, instrumentation and control system as well as principles of nuclear safety and safety improvements are are described

  15. Applications of lasers in nuclear power plants

    International Nuclear Information System (INIS)

    Raj, Rupam; Sanyal, D.N.; Sil, Jaydeb

    2013-01-01

    Applications of lasers in nuclear power plants: Bellow lip cutting and high pressure feeder coupling stud (HPFC) cutting during en-masse coolant channel replacement (EMCCR) campaign at Narora Atomic Power Station Reactor 1 in May 2006; cutting of pressure tubes from Madras Atomic Power Station 1 (MAPS-1) for easy storage in April 2005; In-situ cutting of selected coolant channel S-7 at Kakrapar Atomic Power Station (KAPS-2) (cutting of 12 mm thick end fitting and 4 mm thick liner tube of stainless steel from inside) in January 2005; Development of a miniature cutting mechanism for steam generator tubes (14 mm i.d.) from inside, In-situ bellow repair for secondary shutdown system; LASER welding may be deployed for End shield of MAPS-1 leak repair

  16. White paper on atomic energy, for 1974 and 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Nearly 20 years have passes since the initiation of peaceful uses of atomic energy in Japan. Close to the end of this period, there had occurred the so-called oil crisis, which emphasizes the keen need for nuclear power development. In the meanwhile, voices of the people in Japan are varied concerning the nuclear power, as in siting of the power plants and the n.s. (nuclear ship) Mutsu. The white paper describes the following: safety, environment preservation, nuclear power generation, nuclear fuel cycle, power reactor development and fusion reactor, nuclear-powered ship, radiation utilization, etc. (Mori, K.)

  17. Liberalization of power generation sector in the Croatian electricity market

    International Nuclear Information System (INIS)

    Viskovic, Alfredo

    2005-01-01

    The electricity market liberalization and the restructuring of power utilities eventually leads to the establishment of a single electricity market in Europe, which is especially important for efficiency gains in electricity generation coupled with increased security of supply, economic competitiveness and fulfillment of environmental requirements. The European electricity market Directives as well as the Energy Community Treaty for South East Europe (legislative Menu) have remarkable impact on the restructuring of the Croatian power sector and the development of electricity generation. The Croatian model of restructuring includes legal un bundling (in the ownership of one holding company - Hrvatska Elektroprivreda (HEP)). The operation of HEP Group and its subsidiaries in the conditions of partially opened electricity market in an important element that shapes the interactions of competitive activities and regulated activities in the environment influenced by exogenous factors a thirteen percent electricity are controlled by the Energy Market Operator (MO), the Transmission System Operator (TSO) and the Energy Regulatory Agency (CERA). The introduction of eligible procedures and newly created operative procedures for power system operation, are creating completely new conditions for competition in the power generation sector, where almost all power plants are owned by HEP. New generating capacities in Croatia can be built through tendering and licensing procedures carried out by the Regulator. Electricity prices are still regulated by the Government (below the cost reflective level), there is a small share of industrial consumers and the annual electricity production is 12 TWh, with relatively large share of hydro plants. All these have implications on the development of the power generation sector in Croatia as well as on electricity market operation. The subject matter of this paper is an impact of power system restructuring and electricity market opening on the

  18. Global analysis of a renewable micro hydro power generation plant

    Science.gov (United States)

    Rahman, Md. Shad; Nabil, Imtiaz Muhammed; Alam, M. Mahbubul

    2017-12-01

    Hydroelectric power or Hydropower means the power generated by the help of flowing water with force. It is one the best source of renewable energy in the world. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. As far as Global is concerned, only a small fraction of electricity is generated by hydro-power. The aim of our analysis is to demonstrate and observe the hydropower of the Globe in micro-scale by our experimental setup which is completely new in concept. This paper consists of all the Global and National Scenario of Hydropower. And how we can more emphasize the generation of Hydroelectric power worldwide.

  19. The Atomic energy basic law

    International Nuclear Information System (INIS)

    1979-01-01

    The law aims to secure future energy resources, push forward progress of science and advancement of industry for welfare of the mankind and higher standard of national life by helping research, development and utilization of atomic power. Research, development and utilization of atomic power shall be limited to the peaceful purpose with emphasis laid on safety and carried on independently under democratic administration. Basic concepts and terms are defined, such as: atomic power; nuclear fuel material; nuclear raw material; reactor and radiation. The Atomic Energy Commission and the Atomic Energy Safety Commission shall be set up at the Prime Minister's Office deliberately to realize national policy of research, development and utilization of atomic power and manage democratic administration for atomic energy. The Atomic Energy Commission shall plan, consider and decide matters concerning research, development and utilization of atomic energy. The Atomic Energy Safety Commission shall plan, consider and decide issues particularly concerning safety securing among such matters. The Atomic Energy Research Institute shall be founded under the governmental supervision to perform research, experiment and other necessary affairs for development of atomic energy. The Power Reactor and Nuclear Fuel Development Corporation shall be established likewise to develop fast breeding reactor, advanced thermal reactor and nuclear fuel materials. Development of radioactive minerals, control of nuclear fuel materials and reactors and measures for patent and invention concerning atomic energy, etc. are stipulated respectively. (Okada, K.)

  20. Large scale renewable power generation advances in technologies for generation, transmission and storage

    CERN Document Server

    Hossain, Jahangir

    2014-01-01

    This book focuses on the issues of integrating large-scale renewable power generation into existing grids. It includes a new protection technique for renewable generators along with the inclusion of current status of smart grid.