WorldWideScience

Sample records for atomic energy programme

  1. The international atomic energy agency's programme on inertial fusion energy

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency has been promoting international activity and collaboration related to the use of inertial fusion confinement schemes for energy production for many years. Thorough review of inertial fusion research and a detailed analysis of future prospects has been conducted. Inertial Fusion Energy is now approaching the turning point in the long history from physics oriented research to fusion energy oriented development. The programme of the International Atomic Energy Agency reflects, to some extent, this development

  2. An atomic empire a technical history of the rise and fall of the British atomic energy programme

    CERN Document Server

    Hill, C N

    2013-01-01

    Britain was the first country to exploit atomic energy on a large scale, and at its peak in the mid-1960s, it had generated more electricity from nuclear power than the rest of the world combined.The civil atomic energy programme grew out of the military programme which produced plutonium for atomic weapons. In 1956, Calder Hall power station was opened by the Queen. The very next year, one of the early Windscale reactors caught fire and the world's first major nuclear accident occurred.The civil programme ran into further difficulty in the mid-1960s and as a consequence of procrastination in

  3. Proceedings of the DAE-BRNS theme meeting on chemistry in atomic energy programme

    International Nuclear Information System (INIS)

    The pivotal role played by chemistry in all the stages of atomic energy programme, right from mineral exploration, materials processing, fuel fabrication, coolant, control and structural materials, reactor chemistry, fuel recycling and actinide partitioning to radioactive waste management, has been explicitly demonstrated in the last few decades. The discoveries and developments in chemical sciences that have contributed to the formulation and successful implementation of our nuclear programme are enormous. It is to the credit of all our colleagues of Department of Atomic Energy to reckon the chronology of mile stones in our programme and how they place our nation on the global map of nuclear energy. The theme meeting on Chemistry in Atomic Energy Programme is an outcome of the thinking of some of our colleagues in BARC to take stock of the accomplishments made hitherto and to prepare a roadmap to meet the challenges of future advanced reactor regimes, while safeguarding the strategic interests of mankind. It is not out-of-context to record here that India, with its rich experience, is poised to play a major role in the global nuclear power programme, through bilateral international collaborations as well as on the platform of IAEA. Papers relevant to INIS are indexed separately

  4. The United States Atomic Energy Commission Programme of Nuclear Materials Management

    International Nuclear Information System (INIS)

    Nuclear materials management as conceived by the US Atomic Energy Commission is defined and its development traced from 1943 to the present time. The general programme is outlined and its principal features discussed. Emphasis is placed on administration of those portions of the USAEC programme which pertain to the development and maintenance of quantity data, the establishment of internal controls and the evaluation of performance. The current techniques whereby transfer data are recorded and processed within the USAEC are discussed in some detail, as are the techniques for presentation of material balance reports which periodically summarize the transactions and the results of operations. The techniques used by the USAEC to ascertain the effectiveness of the nuclear materials management programmes of its operating contractors are also discussed. In addition to material being held by contractors which operate USAEC-owned plants and laboratories, there are large quantities of special nuclear material held under a wide variety of financial and administrative arrangements, e.g. under lease, private ownership, under contract with the USAEC where the user is financially liable for losses, as well as those where the risk of losses is taken by the USAEC. This divergence of circumstances causes significant variation in the emphasis and approach used by the AEC and this variation is noted. A brief summary of unresolved problem areas concludes the presentation. (author)

  5. A clinical audit programme for diagnostic radiology: the approach adopted by the International Atomic Energy Agency.

    Science.gov (United States)

    Faulkner, K; Järvinen, H; Butler, P; McLean, I D; Pentecost, M; Rickard, M; Abdullah, B

    2010-01-01

    The International Atomic Energy Agency (IAEA) has a mandate to assist member states in areas of human health and particularly in the use of radiation for diagnosis and treatment. Clinical audit is seen as an essential tool to assist in assuring the quality of radiation medicine, particularly in the instance of multidisciplinary audit of diagnostic radiology. Consequently, an external clinical audit programme has been developed by the IAEA to examine the structure and processes existent at a clinical site, with the basic objectives of: (1) improvement in the quality of patient care; (2) promotion of the effective use of resources; (3) enhancement of the provision and organisation of clinical services; (4) further professional education and training. These objectives apply in four general areas of service delivery, namely quality management and infrastructure, patient procedures, technical procedures and education, training and research. In the IAEA approach, the audit process is initiated by a request from the centre seeking the audit. A three-member team, comprising a radiologist, medical physicist and radiographer, subsequently undertakes a 5-d audit visit to the clinical site to perform the audit and write the formal audit report. Preparation for the audit visit is crucial and involves the local clinical centre completing a form, which provides the audit team with information on the clinical centre. While all main aspects of clinical structure and process are examined, particular attention is paid to radiation-related activities as described in the relevant documents such as the IAEA Basic Safety Standards, the Code of Practice for Dosimetry in Diagnostic Radiology and related equipment and quality assurance documentation. It should be stressed, however, that the clinical audit does not have any regulatory function. The main purpose of the IAEA approach to clinical audit is one of promoting quality improvement and learning. This paper describes the background to

  6. A clinical audit programme for diagnostic radiology: The Approach adopted by the international atomic energy agency

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) has a mandate to assist member states in areas of human health and particularly in the use of radiation for diagnosis and treatment. Clinical audit is seen as an essential tool to assist in assuring the quality of radiation medicine, particularly in the instance of multidisciplinary audit of diagnostic radiology. Consequently, an external clinical audit programme has been developed by the IAEA to examine the structure and processes existent at a clinical site, with the basic objectives of: (1) improvement in the quality of patient care; (2) promotion of the effective use of resources; (3) enhancement of the provision and organisation of clinical services; (4) further professional education and training. These objectives apply in four general areas of service delivery, namely quality management and infrastructure, patient procedures, technical procedures and education, training and research. In the IAEA approach, the audit process is initiated by a request from the centre seeking the audit. A three-member team, comprising a radiologist, medical physicist and radiographer, subsequently undertakes a 5-d audit visit to the clinical site to perform the audit and write the formal audit report. Preparation for the audit visit is crucial and involves the local clinical centre completing a form, which provides the audit team with information on the clinical centre. While all main aspects of clinical structure and process are examined, particular attention is paid to radiation-related activities as described in the relevant documents such as the IAEA Basic Safety Standards, the Code of Practice for Dosimetry in Diagnostic Radiology and related equipment and quality assurance documentation. It should be stressed, however, that the clinical audit does not have any regulatory function. The main purpose of the IAEA approach to clinical audit is one of promoting quality improvement and learning. This paper describes the background to

  7. Proposal for a coordination research programme (CRP) of the International Atomic Energy Agency (IAEA) on stable isotope tracer techniques for studies on protein-energy interactions

    International Nuclear Information System (INIS)

    This Report provides a rationale and justification for the initiation of a Coordinated Research programme to support studies using stable isotopic tracer techniques to address priority areas of human protein-energy interactions with special emphasis on the problems of human nutrition in developing countries. The Report suggests a modus for establishing such a practically oriented Coordinated Research Programme under the aegis of the International Atomic Energy Agency with concrete suggestions for its organization and the identification of probable participants in such a programme. The likely sources of additional funding to sustain such an activity viable for a period of 4 to 5 years are also indicated. 8 refs

  8. Wholesomeness and Public Health Research in the United States Atomic Energy Commission Food Irradiation Programme

    International Nuclear Information System (INIS)

    To assess the biological safety of foods which are of interest to the Atomic Energy Commission's irradiated food program, studies have been sponsored by the Commission's Division of Biology and Medicine since 1961. Wholesomeness, microbiological and biochemical studies have been undertaken with a view to complementing data derived from developmental, economic and technological research studies sponsored by the Commission's Division of Isotopes Development. When these aspects appear feasible for specific low-dose irradiated foods, studies are initiated to provide relevant data required by the United States Food and Drug Administration before final judgements can be made on petitions for unlimited human consumption. Toxicity studies on several species of animals which are fed diets containing up to 35° (dry solids basis) of the irradiated food in question have been included in this program. Investigations of two years duration on animals (rats, dogs and chickens) provide data concerning food consumption, growth rate, enzyme systems, haematology, gross pathology and histopathology. Shorter-term studies of a confirmatory nature on two animal species (rat and dog) are employed in certain cases when the irradiated food in question is sufficiently related to foods which have previously undergone long-term toxicity studies. Results to date of chronic toxicity studies on soft-shell clams and subacute toxicity studies on strawberries, apples, pears, sweet cherries, apricots, plums and onions are discussed. Microbiological studies have been concentrated primarily on potentially pathogenic organisms. Studies have been in progress to evaluate carefully the conditions governing radiation and heat resistance, sporulation, outgrowth and toxin production of Clostridium botulinum Type E. The natural incidence of Type E organisms in certain marine products and ocean environments is being investigated. Findings in the microbiological studies are discussed. Studies to date have

  9. Indian experience in capacity building as a part of development of atomic energy programme

    International Nuclear Information System (INIS)

    India embarked on a programme to harness nuclear technologies for the welfare of the nation more than five decades ago and adopted an approach involving knowledge generation through research and development, disseminating the knowledge acquired to the young generation through in-house arrangement, encouraging the researchers in the university system to work on problems of interest to the nuclear industry by providing research funding, networking with the university system, collaborating with industry to upgrade their skills to take up challenging manufacturing jobs, setting up industry under the control of the Government wherever private industry was not coming forward and so on. The basic approach underlying all efforts was to tap the 'knowledge' wherever available and to upgrade the 'knowledge' by R and D. For developing new technologies and for problem solving, 'bottoms up approach' implying study of scientific basis of all issues beginning from fundamentals was used and shortcuts were avoided. This has enabled the country to be self sufficient in all aspects of nuclear fuel cycle as well as applications of radiation technology to industry, agriculture and health care. This also enabled the industry to gain skills and use the skills gained for other sectors of economy. Now that the industry in India is much more mature and the engineering education at the post-graduate level is well developed, several changes in the approach followed have been made. These include making use of the skills and size of the industry by ordering total systems of a power plant rather than individual components and involving industry as consultants for several jobs, which were done in-house in the earlier days. The paper summarizes Indian experience of the last five decades and what is planned for the future. (author)

  10. The nuclear power stations of the French atomic energy programme (1960)

    International Nuclear Information System (INIS)

    After recalling the entry of nuclear energy into energy production in France, the paper emphasizes the evolution of techniques applied in the designing of French nuclear power plants and describes the means employed for reducing costs per kWh of EDF2 and EDF3 compared with EDF1: the electric power per ton of uranium varies from 493 kW/t for EDF1 to 970 kW/t for EDF3. For this purpose the thermal power and electric power of units are changed respectively from 290 MWt for EDF1 to 1200 or 1600 MWt for EDF3 and from 28 to 250 MW. The results are obtained by an improvement in neutronic characteristics, developments in nuclear fuel technology, and simplification of the system of charging the reactor, whose means of maintenance are increased; the EDF2 heat-exchangers have been so designed as to increase the unit power of the elements, which will attain 9 MWt, as against 3 for EDF1. For EDF3 an advance project forecasts a thermodynamic layout with only one pressure stage. The paper ends with a description of the burst-slug detection systems, and an appendix gives a detailed comparative table of EDF1, EDF2 and EDF3 plant characteristics. (author)

  11. Programmable solid state atom sources for nanofabrication

    Science.gov (United States)

    Han, Han; Imboden, Matthias; Stark, Thomas; Del Corro, Pablo G.; Pardo, Flavio; Bolle, Cristian A.; Lally, Richard W.; Bishop, David J.

    2015-06-01

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques. Electronic supplementary information (ESI) available: A document containing further information about device characterization

  12. Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection. While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  13. British Energy Operating Experience Programme

    International Nuclear Information System (INIS)

    British Energy is the major nuclear generator in the U.K. It has a market share varying between 22% and 25% of the total U.K. generation. The fleet of power stations operated by British Energy consists of one 1250 MWe Pressurised Water Reactor, six Advanced Gas Cooled reactor sites, each with two reactor units of 660 MWe, and one coal fired site with four units of 500 Mwe. In early 1999 British Energy set a strategic goal, for all its reactor units, to achieve 'World Class Performance through Cost leadership' by the end of year 2004. This would be measured against the applicable Upper Quartile performance indicators of the World Association of Nuclear Operators (WANO). Against this strategic goal six fundamental objectives were identified, one of which was to define, deploy and measure the effectiveness of a world class Operating Experience programme. British Energy has clearly re-defined its Operating Experience programme and, recognised the value of learning from Operating Experience. Commitment to the programme, and communicating the value of an effective OE programme is being clearly demonstrated by all managers throughout the organisation. Making the information easily accessible at the workplace has been achieved via the British Energy intranet, the harder step is to ensure OE is consulted before commencing an assigned task or plant evolution. Early signs of this are encouraging, but a continuous sustained effort will be required for probably the next two years. The full deployment of the OE programme is scheduled to be complete by 2004. There will however be a redefined programme identified by then to incorporate the lessons learnt and to ensure the programme is aligned with the business as it evolves. An analysis of event root causes and precursors since May 2001 will be undertaken in June 2002. These will be compared with data from previous years to ascertain the effect on the number of recurring events. The critical question, 'has this prevented recurring

  14. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2014-01-01

    In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization....

  15. Denmark Wind Energy Programme

    OpenAIRE

    Shen, Wen Zhong

    2014-01-01

    In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization.

  16. The 1964 programme of help in atomic development

    International Nuclear Information System (INIS)

    A wide variety of projects for the provision of experts and equipment to 32 countries has been approved by the IAEA Board of Governors for 1964. Further work is being financed under the United Nations Expanded Programme of Technical Assistance; altogether, the services of about 100 experts in the field are called for, in addition to those who are still at work on earlier assignments. The estimated cost of the Agency's 1964 programme is $804 600, of which $459 200 is for the services of experts, and $345 400 for the provision of equipment and supplies. In addition, $513 500 is being allocated for EPTA programmes. It is becoming increasingly difficult, however, for the Agency to meet the growing number of requests and lack of finance may prevent its programme from being carried out in full. Many of these requests come from newly independent countries which have become Member States, and which seek assistance in developing national atomic energy programmes. In addition, numerous research reactors and radioisotope laboratories are being built or have recently been completed under bilateral arrangements which are normally limited to the period of construction. Most of these new centres then require some form of assistance in their programmes of research and training. Such a group could help the new centres with the technical aspects of the programme, and could also be helpful in furthering regional collaboration. There is evidently no lack of local talent and initiative in the regions where these meetings have been held. Given the lead, they should be able to organize a more fruitful utilization of research facilities, with the Agency supplementing local effort by acting as a clearing-house for information and assistance, on the lines indicated in its long-range plan. The study group meetings are also helping to create greater awareness in the advanced countries about the work and needs of the developing centres. As a result, it may be hoped that the advanced centres

  17. Rural Energy Development Programme-Nepal

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    On 16 Auguest 1996 the Rural Energy Develoment Programme (REDP) was initiated with the aim of improving livelihoods of rural people and pressrving the environment through the promotion of rural energy systems. The Programme is run by the United Nations Deelopment Programme and His Majesty's Government of Nepal.

  18. Atomic Energy Control Board

    International Nuclear Information System (INIS)

    This paper has been prepared to provide an overview of the responsibilities and activities of the Atomic Energy Control Board. It is designed to address questions that are often asked concerning the establishment of the Atomic Energy Control Board, its enabling legislation, licensing and compliance activities, federal-provincial relationships, international obligations, and communications with the public

  19. Dangerous Energy : Atomic

    International Nuclear Information System (INIS)

    This book describes the disaster in Chernobyl, Russia. Through the accident It reveals the dangerous nuclear energy with a lot of problems on the nuclear power plants which includes four reasons about propelling development of atomic and criticism about that, eight reasons against development of atomic, the problem in 11 -12 nuclear power plant, the movement of antagonism towards nuclear waste in Anmyon island, cases of antinuclear in foreign country and building of new energy system.

  20. Atomic Energy Basics, Understanding the Atom Series.

    Science.gov (United States)

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  1. Intergovernmental organisation activities: European Atomic Energy Community, International Atomic Energy Agency, OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    European Atomic Energy Community: Proposed legislative instruments, Adopted legislative instruments, Non-legislative instruments, Other activities (meetings). International Atomic Energy Agency: IAEA Action Plan on Nuclear Safety. OECD Nuclear Energy Agency: The Russian Federation to join the OECD Nuclear Energy Agency; Participation by the regulatory authorities of India and the United Arab Emirates in the Multinational Design Evaluation Programme (MDEP); NEA International Workshop on Crisis Communication, 9-10 May 2012; International School of Nuclear Law: 2013; Next NEA International Nuclear Law Essentials Course

  2. International Atomic Energy Agency: Highlights of activities

    International Nuclear Information System (INIS)

    This document provides a brief, well-illustrated summary of the activities of the International Atomic Energy Agency in the months up to September 1992. Especially mentioned are the programmes to enhance the safety of nuclear power, from the study of nuclear reactors to assessing the radiological consequences of reactor accidents, and the areas of non-proliferation and safeguards

  3. International Atomic Energy Agency. Highlights of activities

    International Nuclear Information System (INIS)

    This document provides a brief, well-illustrated summary of the activities of the International Atomic Energy Agency in the months up to September 1991. Especially mentioned are the programmes to enhance the safety of nuclear power, from the study of nuclear reactors to assessing the radiological consequences of reactor accidents, and the areas of non-proliferation and safeguards

  4. Policy Pathways: Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection.While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  5. Atomic energy utilization

    International Nuclear Information System (INIS)

    As observed worldwide, sufficient consensus has not been obtained on the peaceful utilization of atomic energy, but why has only France showed the relatively smooth advance ? Is it the result of the PR activities by enterprises ? The author visited two French nuclear facilities in June-July, 1990, and experienced the way of acceptance of the peaceful utilization of atomic energy and the action of enterprises in France. The French Electric Power Corp. (EDF) already clarified the guideline to the society about 'How to obtain the trust of public for atomic energy'. The gist of the contents of this EDF guideline is shown. The investigation by the authors can be judged as illustrating concretely the posture of enterprises to endeavor for the realization of this EDF guideline. The serious consideration on communication and community, the opening of information to public and sincere response, the fostering of the expression techniques of those in charge of PR, the immediate notice at the time of accidents, the maintenance of information transmission systems and so on carried out for 30 years contributed to the fostering of trust. The points of social psychology for national consensus and the investigation in the La Hague reprocessing plant and the Super Phenix in Creys Malville are reported. (K.I.)

  6. Atomic Energy Commission Act, 1963

    International Nuclear Information System (INIS)

    Promulgated in 1963, the Atomic Energy Commission Act (204) established and vested in the Ghana Atomic Energy Commission the sole responsibility for all matters relating to the peaceful uses of atomic energy in the country. Embodied in the Act are provisions relating to the powers, duties, rights and liabilities of the Commission. (EAA)

  7. Energy programme of the Federal Government

    International Nuclear Information System (INIS)

    After some basic remarks on energy supply as an economic and political challenge the German energy policy of the individual sectors is explained and corroborated by corresponding data. The appendix gives a new pre-assessment of the energy supply of the F.R. of Germany until the year 1995. Some additional graphs and tables contribute to a clear survey of this development. The programme contains a new confession on the promotion of nuclear energy and on the continuation of the recent energy policy in the fields of natural gas, coal and petroleum as well as some suggestions on the demand-oriented development of district heat and of renewable energies. (UA)

  8. Atomic Energy Authority Act 1954

    International Nuclear Information System (INIS)

    This Act provides for the setting up of an Atomic Energy Authority for the United Kingdom. It also makes provision for the Authority's composition, powers, duties, rights and liabilities, and may amend, as a consequence of the establishment of the Authority and in connection therewith, the Atomic Energy Act, 1946, the Radioactive Substances Act 1948 and other relevant enactments. (NEA)

  9. Building energy efficiency labeling programme in Singapore

    International Nuclear Information System (INIS)

    The use of electricity in buildings constitutes around 16% of Singapore's energy demand. In view of the fact that Singapore is an urban city with no rural base, which depends heavily on air-conditioning to cool its buildings all year round, the survival as a nation depends on its ability to excel economically. To incorporate energy efficiency measures is one of the key missions to ensure that the economy is sustainable. The recently launched building energy efficiency labelling programme is such an initiative. Buildings whose energy performance are among the nation's top 25% and maintain a healthy and productive indoor environment as well as uphold a minimum performance for different systems can qualify to attain the Energy Smart Office Label. Detailed methodologies of the labelling process as well as the performance standards are elaborated. The main strengths of this system namely a rigorous benchmarking database and an independent audit conducted by a private accredited Energy Service Company (ESCO) are highlighted. A few buildings were awarded the Energy Smart Office Label during the launching of the programme conducted in December 2005. The labeling of other types of buildings like hotels, schools, hospitals, etc. is ongoing

  10. The China Institute of Atomic Energy

    International Nuclear Information System (INIS)

    The China Institute of Atomic Energy (CIAE), established in 1950, carries out multidisciplinary research in nuclear science, technology and engineering. It has three research reactors and ten low energy accelerators. The focus of its nuclear energy related R and D is on reactor engineering and technology. In the area of nuclear techniques for applications, R and D is carried out on accelerators, isotope production, nuclear electronics and utilization of radioisotopes and radiation. There is also a strong programme in basic nuclear physics and radiochemistry. New major facilities under construction in CIAE include China Advanced Research Reactor (flux 8x1014n/cm2/sec) and China Experimental Fast Reactor. China has been successfully using the products of its R and D for a variety of applications in medicine, industry, materials science etc. A dynamic research programme is tuned to attract young talent to CIEA and there is good collaboration with the Beijing University. CIEA has been an active participant of RCA programmes of the IAEA and has been a resource for many developing countries. The management expects the Institute to be a leading multidisciplinary institute in the field of nuclear science, technology and engineering. (author)

  11. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  12. IEA Energy Training Capacity-building Programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The IEA has carried out training activities in energy-related areas from its origins as an agency, with the Emergency Response Exercises (ERE), designed to prepare member countries for oil supply disruption through a set of specially prepared drills simulating crisis conditions. The globalisation of world energy markets in recent years and the wider engagement of the IEA beyond its members have expanded this role, as demand for training instruction has increased. In response, the IEA has created the Energy Training and Capacity-Building Programme, which, through seminars and workshops, secondments and internships, will offer training in the methods and standards that make IEA work in a wide range of energy-related areas, including statistics, the international standard for objective policy recommendations.

  13. Preemption - atomic energy

    International Nuclear Information System (INIS)

    While waiting for the federal government to develop a nuclear waste disposal strategy, California enacted legislation that bans the construction of nuclear reactors until permanent disposal technology for high-level wastes is demonstrated and approved. The US Supreme Court upheld this prohibition in Pacific Gas and Electric Co. v. State Energy Resources Conservation and Development Commission. The Court found that the California law did not attempt to regulate the construction or operation of a nuclear plant nor to infringe on federal regulation of radiation safety and nuclear wastes. The moratorium is a legitimate move by the state to avoid economic uncertainties. Federal preemption of the law would empower utilities to determine state energy needs and programs. 131 references

  14. Atomic Batteries: Energy from Radioactivity

    OpenAIRE

    Kumar, Suhas

    2015-01-01

    With alternate, sustainable, natural sources of energy being sought after, there is new interest in energy from radioactivity, including natural and waste radioactive materials. A study of various atomic batteries is presented with perspectives of development and comparisons of performance parameters and cost. We discuss radioisotope thermal generators, indirect conversion batteries, direct conversion batteries, and direct charge batteries. We qualitatively describe their principles of operat...

  15. Energy technology programmes 1993-1998. Evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    In the late 1980s Finland`s Ministry of Trade and Industry (KTM) initiated a series of research and development (R and D) programmes in the field of energy technology. Subsequently, in 1993, it launched a further suite of eleven Energy Technology Programmes scheduled to run over the period 1993-1998. Aimed at the development of efficient and environmentally sound energy technologies intended to be competitive in the international marketplace, the programmes sought to involve the research, industrial and public sectors in some FIM 1.2 billion of research and development activity. The technology areas spanned: Combustion and gasification techniques Bioenergy, Advanced energy systems and technologies (e.g. wind, solar energy), Fusion, Energy and environmental technology, Energy and the environment in transportation, Energy use in buildings, Energy in steel and metal production, Energy in paper and board production, District heating, Electricity distribution automation. In early 1995, the Technology Development Centre of Finland (Tekes) assumed responsibility for the funding, management and administration of the programmes. As the final year of activities began, Tekes commissioned Technopolis to assemble a team to conduct a major review of all eleven programmes over the course of 1998. The broad aim of the exercise was to review the experience of the eleven technology R and D programmes and to make suggestions for the future. In particular, the intention was to cover a number of distinct levels. Most important were the Programme and Portfolio levels. At the individual Programme level, the review was to comment on the relevance, calibre and impact of programmes, concentrating in particular on the following: Relevance - were programme and project level goals in line with Finnish interests and comparable agendas in other countries; Efficiency - how well were the programmes implemented and managed; Quality - how did the scientific and technological quality of the work

  16. Atomic Energy (factories) rules: 1988

    International Nuclear Information System (INIS)

    These rules are made by the Central Government under the Factories Act, 1948 and extend to all factories engaged in carrying out the purposes of the Atomic Energy Act, 1962. The rules cover the requirements of inspecting staff, health aspects, personnel safety, personnel welfare, working hours, employment of young persons, special provisions in case of dangerous manufacturing processes or operations, supplemental rules for administrative aspects and special powers of competent authority. (M.G.B.)

  17. Atomic Energy Authority Act 1971

    International Nuclear Information System (INIS)

    This Act provides for the transfer of property, rights, liabilities and obligations of parts of the undertaking of the United Kingdom Atomic Energy Autority, to two new Compagnies set up for this purpose: the Bristish Nuclear Fuels Limited, and the Radiochemical Centre Limited. Patents licences and registered designs owned by the Autority at the time of the transfer are not included therein. The Act also includes amendments to the Nuclear Installations Act 1965, notably as regards permits to operate granted to a body corporate. Finally, the Schedule to this Act lays down a certain number of provisions relating to security and the preservation of secrets. (NEA)

  18. Decommissioning in the United Kingdom Atomic Energy Authority

    International Nuclear Information System (INIS)

    The United Kingdom Atomic Energy Authority's policy on decommissioning is described. Several fission reactors have already been taken out of service and the state of decommissioning is given. Estimates of the volume of decommissioning wastes are made. The wastes will be either intermediate-level or low-level wastes. Research and development programmes have been undertaken to allow decommissioning to be safe and cost-effective. Some of the contaminated facilities have been decontaminated and re-used. (U.K.)

  19. Energy market opening and the national energy programme in Slovenia

    International Nuclear Information System (INIS)

    Slovenia is now moving fast toward market opening, at least in the electricity sector, due to the new Energy Law adopted in 1999. The Energy Law defines the main energy policy directions, including the sustainable development criterion. It also calls for the preparation of a National Energy Programme (NEP) to be adopted by the Parliament. According to the Law, local governments are expected to prepare local energy concepts, in line with the NEP and space planning decisions. Two most difficult challenges for national energy policies are: opening of the electricity market and meeting the Kyoto Protocol targets in the reduction of greenhouse gasses. The success of the energy sector reform depends on the fine-tuning of various instruments: market structuring and state interventions. The immediate concern for the sector in the secondary legislation, the fifty regulations that the Energy Law calls for. These regulations have to be prepared well before the date of internal electricity market opening on April 15th, 2001. The institutional structure to be established should be adapted for international competition that will start in electricity and gas no later than January 1st, 2003. It is expected that the NEP, to be prepared by spring of the year 2001, will propose complementary development strategies to cope with partially conflicting targets. Four groups of criteria shall be applied to compare the alternatives: security of supply, competitiveness of the society, preserving the space and environment quality and social cohesion. It is expected that energy market opening, not a final goal by itself, can be instrumental for the improvement of the energy sector performance on all accounts. (author)

  20. Design of atomic energy information network system

    International Nuclear Information System (INIS)

    As the 21st century is expected to induce a Knowledge based society, responding to this kind of change on our own initiative could be achieved by establishing networks among atomic energy agencies with the Atomic Energy Portal Site in a pivotal role. Thus, enabling the knowledge information from each agency to be easily shared and utilized. Furthermore, it can contribute to further researches by providing accumulated knowledge in the atomic energy, such as research output and past achievements, and by avoiding the repetition of researches on the same subjects. It could also provide remote educational data to researchers and industrial experts in atomic energy, as well as atomic energy information for general public consistently, so that we can promote our confidence in atomic energy

  1. Atomic energy indemnification system in Japan

    International Nuclear Information System (INIS)

    The Japanese legislation on the indemnification by atomic energy enterprisers for atomic energy damages, published in 1961 and enforced in 1962, includes the law concerning indemnification for atomic energy damages and the law concerning atomic energy damage indemnification contracts (hereafter referred to as ''the law concerning indemnification contracts''). While the Japanese laws are same as the foreign legislation in the provisions of the responsibility of atomic energy damages without the error of atomic energy enterprisers, exemption reasons are more important in this respect. When damages are due to exceptionally grave natural disasters or social disturbances, atomic energy enterprisers are exempted from the responsibility. Indemnification amounts are determined, but the Japanese laws do not limit then, different from the foreign regulations. The periods for demanding indemnification are not defined particularly in the law concerning indemnification contracts, and the general basic rules of the civil law are applied. As a result, the demand right terminates in 3 years after the injured persons find damage and offenders, and in 20 years since the unlawful act (Article 724, Civil law). The indemnification liability for atomic energy damages is focused on atomic energy enterprisers concerned in the same way as the foreign laws. The measures for assuring the execution of indemnification responsibility consist in principle of the firm conbination of the liability insurance contracts with private insurance companies and the indemnification contracts for atomic energy damages with the state. The damages of employes suffered in works are excluded from indemnification, which has been the main issue of discussion since the enactment of atomic energy laws. (Okada, K.)

  2. Real options valuation of fusion energy R and D programme

    International Nuclear Information System (INIS)

    This paper aims to perform a real options valuation of fusion energy R and D programme. Strategic value of thermonuclear fusion technology is estimated here based on the expected cash flows from construction and operation of fusion power plants and the real options value arising due to managerial flexibility and the underlying uncertainty. First, a basic investment option model of Black-Scholes type is being considered. Then, a fuzzy compound real R and D option model is elaborated, which reflects in a better way the multi-stage nature of the programme and takes into account the imprecision of information as one of the components of the overall programme uncertainty. Two different strategies are compared: 'Baseline' corresponding to a relatively moderate pace of fusion research, development, demonstration and deployment activities vs. 'Accelerated' strategy, which assumes a rapid demonstration and massive deployment of fusion. The conclusions are drawn from the model calculations regarding the strategic value of fusion energy R and D and the advantages of accelerated development path. - Research highlights: → Real options analysis of fusion R and D, demonstration and deployment (RDDD) programme. → ENPV of fusion RDDD programme is calculated using stochastic probabilistic simulation. → Fusion RDDD programme exhibits substantial positive real options value: Euro 245 billion. → Fuzzy compound real option valuation method provides more robust results.

  3. A proposed programme for energy risk research

    International Nuclear Information System (INIS)

    The report consists of two parts. Part I presents an overview of technological risk management, noting major contributions and current research needs. Part II details a proposed program of energy research, including discussions of some seven recommended projects. The proposed energy risk research program addresses two basic problem areas: improving the management of energy risks and energy risk communication and public response. Specific recommended projects are given for each. (Auth.)

  4. Atomic energy in Latin America

    International Nuclear Information System (INIS)

    Most countries in Latin America, including all those on the mainland, are Members of the Agency. Interest in the possibilities of nuclear energy has led to considerable activity, much of it in direct collaboration with the IAEA. Member States in the region are: Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru, Uruguay, Venezuela. Of these, Argentina, Brazil, Colombia and Venezuela are operating, and Mexico and Uruguay are constructing, research reactors, while Chile and Peru are studying proposals. Argentina, Brazil, Mexico and Uruguay have all agreed to accept Agency safeguards for reactors. The possibility of future needs for nuclear power is under examination by several countries, in some cases being related to desalination of water. All atomic work in Latin America is devoted to peaceful uses, and note-worthy progress has been made with proposals for a treaty which would make the whole region a militarily de-nuclearized zone. It is proposed that when this comes into effect the Agency will be asked to apply the controls developed in its safeguards system, and to carry out the inspections necessary to establish that work in progress is solely for peaceful purposes

  5. Quantifying the savings of an industry energy efficiency programme

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, C.J. [Sustainable Energy Research Group, Department of Civil and Environmental Engineering, University College Cork, Cork (Ireland); Gallachoir, B.P.O. [Environmental Research Institute, University College Cork, Lee Road, Cork (Ireland)

    2012-05-15

    In a developed economy, improving the energy performance of the industry sector can make an important contribution to achieving national energy efficiency goals. Policy measures aimed at increasing energy efficiency in industry must be proven to be effective. In Ireland one such measure is the Large Industry Energy Network (LIEN) programme. LIEN is a voluntary network of large energy users, facilitated by the national energy agency, working to maintain strong energy management practices. In this paper, we combine top-down methods for analysing national energy statistics with company-level figures supplied by LIEN participants to quantify the energy savings achieved by the companies and to determine the fraction of national savings that can be attributed to them. By comparing the collective performance of participant companies with the performance of the rest of industry we provide an indication of the effectiveness of the programme and quantify the savings that may be directly attributable to it. These figures when combined with national energy forecasts for industry help us assess the likely contribution of the programme to future national energy savings targets.

  6. Atomic Energy Act 1953-1966

    International Nuclear Information System (INIS)

    The Atomic Energy Act 1953-1966 establishes the Australian Atomic Energy Commission and lays down its powers, duties, rules of procedure and financing. The members of the Commission are appointed by the Governor-General. It is responsible, inter alia, for all activities covering uranium research, mining and trading as well as for atomic energy development and nuclear plant construction and operation. Its duties also include training of scientific research workers and collection and dissemination of information on atomic energy. For purposes of security, the Act further-more prescribes sanctions in relation to unauthorised acquisition or communication of information on this subject. Finally, the Act repeals the Atomic Energy (Control of Materials) Act 1946 and 1952. (NEA)

  7. White paper on atomic energy in 1995

    International Nuclear Information System (INIS)

    This is the White Paper on the Atomic Energy, 1995. This was prepared on general trends of the atomic power in Japan for recent one year. This paper is composed of two parts, which are the subjective part and the reference part. In Chapter 1 of the subjective part, summaries on international trend of non-proliferation and national trend focussing to nuclear fuel recycling and an attitude of Japanese government on treatment and disposal of high-level radioactive wastes essential for promoting the nuclear fuel recycling policy were shown. In Chapter 2, some concrete descriptions were shown at center of their recent trends, on establishment of international reliability for non-proliferation of nuclear weapon, safety security of atomic energy, promotion of information opening and peoples' understandings, present status and future trend on nuclear power generation, nuclear power generation due to light water reactor system, research and development of nuclear fuel recycling, back end countermeasure, promotion of diverse development and basic research on nuclear science technology, international cooperation in atomic energy field, promotive base for atomic energy development and utilization, and development and utilization, and development of nuclear industries. Furthermore, in the reference part, some reports were introduced on main decisions in the Atomic Energy Commission, talk of the chief of the Atomic Energy Commission, and governmental estimates and year table relating to the atomic energy, and so forth. (G.K.)

  8. Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs

    Energy Technology Data Exchange (ETDEWEB)

    Thollander, Patrik; Danestig, Maria; Rohdin, Patrik [Linkoeping University, (Sweden). Division of Energy Systems, Department of Management and Engineering

    2007-11-15

    The most extensive action targeting the adoption of energy efficiency measures in small- and medium-sized manufacturing industries in Sweden over the past 15 years was project Highland. This paper presents an evaluation of the first part of this local industrial energy programme, which shows an adoption rate of more than 40% when both measures that have already been implemented and measures that are planned to be implemented are included. A comparison between this programme and another major ongoing programme for the Swedish energy-intensive industry indicates that the approach used in project Highland aimed at small- and medium-sized industries is an effective way to increase energy efficiency in the Swedish industry. The major barriers to energy efficiency among the firms were related to the low priority of the energy efficiency issue. (author)

  9. Energy Technology Programmes 1993-1998. Intermediate report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Tekes energy technology research programmes were launched in 1993. The aim is to produce innovative solutions that are efficient, environmentally sound and widely - even globally - applicable. Now Tekes manages a total of 12 energy technology research programmed. Research programmed form a network linking academia and industry. Total funding for the energy technology programmed during the years 1993-1998 is estimated at some FIM 1.5 billion, about half of which will be put up by the Tekes and the rest by the industry. Funding by the Ministry of Trade and Industry covers the first full-scale applications (demonstrations) resulting from the research and development activities. Finnish technology is front-ranking in the efficient use of energy, combustion technology, renewable energy sources and environmental technology. In this report the results and the research activities of the separate programmes is presented and discussed

  10. Atomic energy levels and Grotrian diagrams

    CERN Document Server

    Bashkin, Stanley

    1975-01-01

    Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.

  11. A History of the Atomic Energy Commission

    Science.gov (United States)

    Buck, Alice L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  12. A History of the Atomic Energy Commission

    Energy Technology Data Exchange (ETDEWEB)

    Buck, A.L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  13. History of the Atomic Energy Commission

    International Nuclear Information System (INIS)

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations

  14. Future developments in the Atomic Energy Corporation of SA

    International Nuclear Information System (INIS)

    The Atomic Energy Corporation of S.A. (AEC) has been forced, by significant changes in its external environment, to redirect many of its areas of focus. Promising developments in the AEC are highlighted. The AEC considers its efforts to develop an alternative cost-effective enrichment technology as a strategic programme of utmost importance. A brief survey is given of some of the significant future developments being undertaken within the AEC. All these developments should be seen to foster more economic nuclear power and technology for the future needs of South Africa and to advance the AEC on its drive towards commercialisation. 5 figs., 1 tab., 2 refs

  15. Atomic energy. Section 5.6.2

    International Nuclear Information System (INIS)

    A brief outline is given of the research programme planned for Institutt for Atomenergi (IFA) in the years 1977-81. Research on nuclear power technology will be carried out within the Halden Reactor Project. IFA will also participate in the international Marviken programme and in American safety projects in the framework of IEA. Other activities will include energy technology research, also in IEA, mathematical and isotope methods in the petroleum field, isotope production and applications, fundamental research in solid state physics and process and environment technology. (JIW)

  16. Why? The nuclear and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwangwoong

    2009-01-15

    This book is a science comic book for students in elementary school, which contains energy and life such as our body and energy, animal and energy, plant and energy, kinetic energy, potential energy and the principle of the conservation of energy in the first part. The second part explains fossil fuel like coal, petroleum and natural gas. Next it deals with electric power, nuclear energy such as atom and molecule, nuclear fusion and energy for future like solar cell and black hole power plant.

  17. The Future of Atomic Energy

    Science.gov (United States)

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  18. Energy Wave Model of Atom

    Institute of Scientific and Technical Information of China (English)

    伍细如

    2015-01-01

    proton emits energy wave, electron could sits any position away from nucleus, but be the most stable just when it sits at the trough of energy wave, and this position accords with Bohr radius and Schr?dinger equation.

  19. The role of wind energy in the programme of power supply of northern Russia territories

    Energy Technology Data Exchange (ETDEWEB)

    Bezroukikh, P. [Ministry for Fuel and Energy, Moscow (Russian Federation)

    1995-12-31

    In this article examined technical, management and economic problems has been arising during working out of above mentioned Power Supply Programm based on the renewable energy sources usage and proved the leading role of wind energy in this Programm. (author)

  20. Ps-atom scattering at low energies

    CERN Document Server

    Fabrikant, I I

    2015-01-01

    A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend the Ps-atom cross sections, obtained previously in the impulse approximation [Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data are not available in this low-energy region, our results describe well the tendency of the measured cross sections to drop with decreasing velocity at $v<1$ a.u. Our results show that the effect of the Ps-atom van der Waals interaction is weak compared to the polarization interaction in electron-atom and positron-atom scattering. As a result, the Ps scattering length for both Ar and Kr is positive, and the Ramsauer-Townsend minimum is not observed for Ps scattering from these targets. This makes Ps scattering quite different from electron scattering in the low-energy region, in contrast to the inter...

  1. Atomic energy to advance human progress

    International Nuclear Information System (INIS)

    Dr Manmohan Singh, the prime minister of India on the occasion of the inaugural ceremony of international conference on peaceful uses of atomic energy said that the return of India to the international nuclear global main streams is of high significance not only for India but for global energy security as well. It is not beyond the imagination of the human mind to devise solutions and strategies that exploit the vast potential of atomic energy to advance human progress, while assuring global peace and security

  2. ATOMIZATION CAUSED BY BOTTOM FLOW ENERGY DISSIPATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bottom flow energy dissipation is one of the common energydissipation methods for flood-releasing structures with high water head. Measures of this energy dissipation depend mainly on the turbulent action of hydraulic jump.In this paper, the physical process and the calculating methods of the atomization caused by bottom flow energy dissipation were studied, the computation models of atomization quantity for the self-aerated flow in overflow and hydraulic jump regions are presented, and the main results are of theoretical and practical significance for the hydraulic and electric engineering.

  3. The Wind Energy programme - SFOE Research Programme 2000 - 2003; Programm Wind. Konzept BFE-Forschungsprogramm 'Wind' 2000 - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.

    2001-07-01

    This document, issued by the Swiss Federal Office of Energy (SFOE) describes the concept behind the Swiss wind energy programme. The first part of the report discusses the origins and development of the wind energy programme in Switzerland, discussing the importance of wind energy and policy matters associated with its promotion. The experience gained during the previous research programmes is reviewed. The degree to which targets were reached, promotional activities, the central government's own wind energy activities and the results of a programme evaluation are discussed. Lists of projects that have been realised and activities that have been carried out are presented and positive and negative influences on development are noted. A second part is dedicated to the goals of the wind energy programme in terms of target figures for the year 2010 and the strategies chosen to reach these goals, including pilot and demonstration projects (P and D) and promotional activities. Details of the P and D programme including lists of wind-power projects to be supported, the priorities that have been set and information and further education that is to be provided, are given. New activities in the wind power area such as the development of new type of wind turbine especially suited to alpine conditions are discussed. The role of the Swiss Association for Wind Energy 'Suisse Eole' as a network-partner in the wind energy programme is discussed. An appendix provides details of wind energy projects in Switzerland, market partners and customers. The results of a survey made of wind energy activities at Swiss institutes of higher education are presented.

  4. The mean excitation energy of atomic ions

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  5. The Harnessed Atom: Nuclear Energy & Electricity.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  6. Systematic Calculations of Total Atomic Binding Energies

    International Nuclear Information System (INIS)

    We have calculated total atomic binding energies of 3- to 91-electron ions of all atoms with Z=3 to 118, in the Dirac-Fock model, for applications to atomic mass determination from highly-charged ions. In this process we have determined the ground-state configuration of many ions for which it was not known. We also provide total electronic correlation including Breit correlation for iso-electronic series of beryllium, neon, magnesium and argon, using the multiconfiguration Dirac-Fock approach.

  7. Real options valuation of fusion energy R and D programme

    Energy Technology Data Exchange (ETDEWEB)

    Bednyagin, Denis [Ecole Polytechnique Federale de Lausanne (EPFL), Station 18, CH-1015 (Switzerland); EIC Partners AG, Seefeldstrasse 19, 8008 Zurich (Switzerland); Gnansounou, Edgard [Ecole Polytechnique Federale de Lausanne (EPFL), Station 18, CH-1015 (Switzerland)

    2011-01-15

    This paper aims to perform a real options valuation of fusion energy R and D programme. Strategic value of thermonuclear fusion technology is estimated here based on the expected cash flows from construction and operation of fusion power plants and the real options value arising due to managerial flexibility and the underlying uncertainty. First, a basic investment option model of Black-Scholes type is being considered. Then, a fuzzy compound real R and D option model is elaborated, which reflects in a better way the multi-stage nature of the programme and takes into account the imprecision of information as one of the components of the overall programme uncertainty. Two different strategies are compared: 'Baseline' corresponding to a relatively moderate pace of fusion research, development, demonstration and deployment activities vs. 'Accelerated' strategy, which assumes a rapid demonstration and massive deployment of fusion. The conclusions are drawn from the model calculations regarding the strategic value of fusion energy R and D and the advantages of accelerated development path. (author)

  8. SwissEnergy - The follow-up programme to 'Energy 2000'

    International Nuclear Information System (INIS)

    This document, issued by the Swiss Federal Office of Energy (SFOE) describes the basic ideas behind the 'SwissEnergy' energy policy programme which follows on from the 'Energy 2000' action programme. The first part of the report discusses the need for the programme and reviews the experience gained during the 'Energy 2000' programme. The degree to which targets were reached, co-operation issues and the results of an evaluation are discussed. Further sections are dedicated to the goals of SwissEnergy in terms of target figures for the year 2010 and the strategies chosen to reach these goals. The various areas addressed by the programme such as building, industry, traffic, public authorities, new energy technologies and renewable energy are examined. The legal basis of measures to be taken and the instruments proposed for use are discussed. These include agreements with the various actor-groups involved as well as promotional measures, regulations and certificate systems. Finally, the organisation and co-ordination of the federal and cantonal authorities as well as private organisations and agencies is discussed and methods for the supervision and evaluation of action taken under the programme are described

  9. Department of Atomic Energy, annual report, 1980-81

    International Nuclear Information System (INIS)

    The annual report of the Department of Atomic Energy (DAE) of the Government of India for the period of the fiscal year 1980-81 surveys the work of DAE, its various constituent units and aided institutions. The main thrust of the DAE's programme in the country is directed towards peaceful uses of atomic energy - primarily for generation of electric power and also for application of radioisotopes and radiation in medicine, agriculture, and industry. The research and development (R and D) activities of the Bhabha Atomic Research Centre (BARC) at Bombay, the major R and D establishment of DAE, in the fields of nuclear physics, solid state physics, chemistry and materials science, isotope and radiation applications, reactor technology and radioactive waste management are described in detail. The R and D activities of the Reactor Research Centre at Kalpakkam and the aided institutions such as the Tata Institute of Fundamental Research and the Tata Memorial Centre, both at Bombay, and the Saha Institute of Nuclear Physics at Calcutta are reviewed in brief. Progress of the MHD project, the heavy water plant projects, the thermal research reactor R-5 project at BARC and nuclear power plant projects at Narora and Kalpakkam is surveyed. Performance of industrial production units such as nuclear power stations at Tarapur and Kota, the Nuclear Fuel Complex at Hyderabad, Atomic Minerals Division, ISOMED - the radiation sterilisation plant for medical products, the Indian Rare Earths Ltd., the Electronics Corporation of India Ltd., and the Uranium Corporation of India Ltd., is reported. India's participation in the activities of the International Atomic Energy Agency and collaboration with other countries are also mentioned. (M.G.B.)

  10. Department of Atomic Energy: Annual report, 1983-84

    International Nuclear Information System (INIS)

    The annual report of the Department of Atomic Energy for the financial year 1983-84 describes its activities under the headings: Nuclear Power, Research and Development, Public Sector Undertakings, and Other Activities. The report surveys: (1) the performance of nuclear power plants at Tarapur, Kota and Kalpakkam, heavy water plants, fuel fabrication and reprocessing plants, and waste management facilities, (2) the research and development activities of Bhabha Atomic Research Centre at Bombay and its constituent units at various locations in the country, Reactor Research Centre at Kalpakkam, the aided institutes, namely, Tata Institute of Fundamental Research and Tata Memorial Centre, both at Bombay, and Saha Institute of Nuclear Physics at Calcutta, (3) performance of public sector undertakings: Indian Rare Earths Ltd., Uranium Corporation of India Ltd., and Electronics Corporation of India Ltd., (4) progress of nuclear power projects at Narora and Kakrapar, Orissa Sand Complex Project, MHD project at Tiruchirapalli, DHRUVA (formerly known as R-5) project at Bombay, Fast Breeder Test Reactor and 500 MW Prototype Fast Breeder Reactor projects at Kalpakkam, and heavy water projects at Thal-Vaishet and Manuguru, and (5) other activities including technology transfer; training; service to industry, agriculture and medicine in use of radioisotopes and radiation, export of radioisotopes, allied products and nuclear instruments; international relations; countrywide radiation safety programme, exploration of atomic minerals; information and publicity etc. An Atomic Energy Regulatory Board was established during the report year for the special purpose of carrying out regulatory and safety functions specified in the Atomic Energy Act of the Government of India. (M.G.B.)

  11. Review and prospects of Atomic Energy Law

    International Nuclear Information System (INIS)

    At the 7th German Symposium on Atomic Energy Law which took place on March 16th, 1983 in Goettingen the Undersecretary of State of the Federal Ministery of the Interior, Dr. Guenter Hartkopf, delivered the opening speech. The speech deals with the conditions set by constitutional law and ethics, improvement of nuclear liability, guide line for incident response, participation of the public in licensing procedures under atomic energy law, necessary measures to prevent damage, the concept of waste management. Also in future the safety of the citizens has absolute priority. (orig./HSCH)

  12. Atomic orbital self-energy and electronegativity

    CERN Document Server

    Ribeiro, Mauro

    2016-01-01

    In this work, atomic calculations were performed within the local-density and generalized-gradient approximations of exchange and correlation density functionals within density-functional theory to provide accurate periodic trends of first ionization energies and electron affinities of the atomic series from hydrogen to xenon. Electronegativities were determined directly from Mulliken's formula and were shown to be equivalently calculated rather by using Slater-Janak's transition state or by calculating the electrostatic self-energies of the orbitals involved in the transition to ions. Finally, comparisons were made with other theoretical and experimental results, including Mulliken-Jaff\\'e's electronegativity scale.

  13. Peaceful uses of atomic energy

    International Nuclear Information System (INIS)

    The IAEA's statutory mandate is to promote all applications of nuclear energy for peaceful purposes. While non-power applications - in agriculture, medicine, industry, etc. - have become widely used and mostly accepted, nuclear power has become more controversial and is facing serious public acceptance problems. Public concern centres on three issues - radioactive wastes, nuclear accidents and the risk of nuclear weapons proliferation. Any discussion of the acceptability or desirability of nuclear power is meaningful only if the alternatives are considered in parallel. The role of nuclear power and other energy sources in electricity generation is discussed and the factors in favour of nuclear energy outlined. Although the Chernobyl accident had strong impact on public opinion in many countries, it has until now had small direct impact on the prospects of nuclear power in the world as a whole. The IAEA's nuclear safety activities and the post-Chernobyl strengthening of international cooperation to minimise nuclear accident consequences are described. The IAEA's safeguards system and its application to Australia's uranium are reviewed. Through this system with its on-site inspections, the IAEA continuously verifies that nuclear materials and nuclear installations submitted to it (some 95% of all fissionable material and of all installations in non-nuclear weapon states) remain in exclusively peaceful use

  14. Institute of Atomic Energy - Annual Report 1999

    International Nuclear Information System (INIS)

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 1999. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well

  15. Institute of Atomic Energy - Annual Report 1998

    International Nuclear Information System (INIS)

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute in 1998. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well

  16. Ghana Atomic Energy Commission: Annual Report 2001

    International Nuclear Information System (INIS)

    This report covers the activities and research progams of the Ghana Atomic Energy Commission for the year 2001. The research programs and associated publications have been grouped under the three main institutes of the Commission namely National Nuclear Research Institute, Radiation Protection Institute and Biotechnology and Nuclear Agricultre Research Institute

  17. Zero-point energy of ultracold atoms

    Science.gov (United States)

    Salasnich, Luca; Toigo, Flavio

    2016-06-01

    We analyze the divergent zero-point energy of a dilute and ultracold gas of atoms in D spatial dimensions. For bosonic atoms we explicitly show how to regularize this divergent contribution, which appears in the Gaussian fluctuations of the functional integration, by using three different regularization approaches: dimensional regularization, momentum-cutoff regularization and convergence-factor regularization. In the case of the ideal Bose gas the divergent zero-point fluctuations are completely removed, while in the case of the interacting Bose gas these zero-point fluctuations give rise to a finite correction to the equation of state. The final convergent equation of state is independent of the regularization procedure but depends on the dimensionality of the system and the two-dimensional case is highly nontrivial. We also discuss very recent theoretical results on the divergent zero-point energy of the D-dimensional superfluid Fermi gas in the BCS-BEC crossover. In this case the zero-point energy is due to both fermionic single-particle excitations and bosonic collective excitations, and its regularization gives remarkable analytical results in the BEC regime of composite bosons. We compare the beyond-mean-field equations of state of both bosons and fermions with relevant experimental data on dilute and ultracold atoms quantitatively confirming the contribution of zero-point-energy quantum fluctuations to the thermodynamics of ultracold atoms at very low temperatures.

  18. Philippine Atomic Energy Commission: Annual report 1983

    International Nuclear Information System (INIS)

    This publication gives the highlights of the research and development projects of the Philippine Atomic Energy Commission in agriculture and food, nuclear fuels and power system technology, medicine, public health and nutrition, environmental surveillance, supportive basic research, social response to nuclear technology, nuclear licensing and safeguards, supportive technology and international and local linkages including manpower development. (ELC)

  19. Danish Atomic Energy Commission 1974/75

    International Nuclear Information System (INIS)

    Activities of the Danish Atomic Energy Commission and the Risoe eesearch Establishment for the period April1, 1974 to March 31, 1975 are summarized. The operations of the various facilities at the Research Establishment are revised. Operating staff levels and financial data are tabulated, a selected list of staff publications is given, and the design data on research facilities are presented. (B.P.)

  20. Energy dissipation in multifrequency atomic force microscopy.

    Science.gov (United States)

    Pukhova, Valentina; Banfi, Francesco; Ferrini, Gabriele

    2014-01-01

    The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed. The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved. The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip-sample interaction. PMID:24778976

  1. Energy dissipation in multifrequency atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Valentina Pukhova

    2014-04-01

    Full Text Available The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed. The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved. The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip–sample interaction.

  2. Philippine Atomic Energy Commission: Annual report 1982

    International Nuclear Information System (INIS)

    This publication enumerates the research and development activities of the Philippine Atomic Energy Commission with priorities geared towards achieving the economic and social upliftment of the Filipinos in the field of agriculture, energy, industry, health and environment. Highlights are summaries of investigations and studies of great importance in crop improvement, animal production, nuclear fuels, nutrition research, not to mention its supportive technology, technical services, nuclear information and public acceptance, and nuclear manpower development. (RTD)

  3. Viet Nam National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Vietnam National Atomic Energy Commission (VINATOM) is a governmental body in charge of organizing and coordinating activities related to use of nuclear energy for peaceful purpose. VINATOM in structure consists of the Nuclear Research Institute (Dalat), the Institute of Nuclear Science and Technology (Hanoi), the Institute for Technology of Radioactive and Rare Elements (Hanoi), and the Centre for Nuclear Technique Application (Ho Chi Minh City). This catalogue introduces profiles of nuclear R and D activities under management by VINATOM. (N.H.A)

  4. International Atomic Energy Agency annual report 2006

    International Nuclear Information System (INIS)

    The Annual Report reviews the results of the Agency's programme according to the three pillars of technology, safety and verification. The main part of the report generally follows the programme structure as given in The Agency's Programme and Budget 2006-2007 (GC(49)/2). The introductory chapter seeks to provide a thematic analysis, based on the three pillars, of the Agency's activities within the overall context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2006 and Background to the Safeguards Statement. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM, and is also available on the Agency's web site at http://www.iaea.org/Worldatom/Documents/Anrep/Anrep2006/. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The topics covered in the chapter related to technology are: nuclear power; nuclear fuel cycle and materials technologies; capacity building and nuclear knowledge maintenance for sustainable energy development; nuclear science; food and agriculture; human health; water resources; assessment and management of marine and terrestrial environments; radioisotope production and radiation technology; safety and security; incident and emergency preparedness and response; safety of nuclear installations; radiation and transport safety; management of radioactive waste; nuclear security

  5. HRD initiatives to realize the Mission Programmes of Indira Gandhi Centre for Atomic Research

    International Nuclear Information System (INIS)

    IGCAR has developed the expertise and built comprehensive facilities to realize the mission programme of the Centre. The efforts would lead to achieving the world leadership and meet the expectation and aspiration of the nation for ensuring energy security. Taking into consideration the enhanced role FBRs are likely to play in contributing to the nuclear power component of the nation, there is a need to augment skilled manpower for the critical assignments to take up challenges in the design of plant, development of equipment and processes. Thus human resource development has been one of the areas of emphasis in the management philosophy of the Centre. Initiating the Training School programme at Kalpakkam, identifying research scholars to take up the problems in interface areas for achieving breakthroughs, attracting young people and empowering them has been the 'mantra' adopted at the Centre. Multilevel mentoring process has been built in and mentoring the young talent has been our priority. In this paper, we discuss our approach to overall human resource development at our Centre

  6. Probing Dark Energy with Atom Interferometry

    CERN Document Server

    Burrage, Clare; Hinds, E A

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  7. On the energy of electric field in hydrogen atom

    OpenAIRE

    Kornyushin, Yuri

    2009-01-01

    It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

  8. Energy 2000 Investment Programme - Effects on the economy, energy and environment

    International Nuclear Information System (INIS)

    This comprehensive final report for the Swiss Federal Office of Energy presents the results of an evaluation made of the Energy 2000 Investment Programme which was launched to stimulate the economy and help meet Switzerland's goals in the energy sector. The aims of the evaluation and the methods used are discussed. The implementation of the programme, which provided financial support for energy-relevant projects implemented by private persons and institutions, is described and comments are made on the results obtained in the various regions of Switzerland. Further, the problems encountered, such as the economic situation, the shortage of energy consultants in western Switzerland, the short time available for the programme's implementation and the limited possibilities of spreading information in the heating, ventilation and air-conditioning sector are discussed. Also, the so-called 'go-along' effect - the unintentional support of projects that would have been realised anyway - is described. The positive results of the programme - in particular the correct and efficient implementation of those projects it supported - are mentioned. The last part of the report describes the impact of the programme on the Swiss economy, the consumption and use of energy and on the environment and presents appropriate figures

  9. Atomic Mass and Nuclear Binding Energy for Fe-52 (Iron)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fe-52 (Iron, atomic number Z = 26, mass number A = 52).

  10. Atomic Mass and Nuclear Binding Energy for Sr-71 (Strontium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sr-71 (Strontium, atomic number Z = 38, mass number A = 71).

  11. Proposed general amendments to the atomic energy control regulations

    International Nuclear Information System (INIS)

    Canada's Atomic Energy Control Act defines the powers and responsibilities of the Atomic Energy Control Board (AECB). Among these is to make regulations to control the development, application and use of atomic energy. In these proposed general amendments to the Atomic Energy Control Regulations substantial changes are proposed in the designation of the authority of AECB staff, exemptions from licensing, international safeguards, duties of licensees and atomic radiation workers, security of information, and provision for hearings. The scope of the control of atomic energy has been redefined as relating to matters of health, safety, security, international safeguards, and the protection of the environment

  12. Using atom interferometry to detect dark energy

    Science.gov (United States)

    Burrage, Clare; Copeland, Edmund J.

    2016-04-01

    We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the universe on giga-parsec scales may be found through metre scale laboratory-based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints, these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the chameleon field - this has already been used to rule out large regions of the chameleon parameter space and maybe one day will be able to detect the force due to the dark energy field in the laboratory.

  13. Ground Levels and Ionization Energies for the Neutral Atoms

    Science.gov (United States)

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  14. Atomic Interferometry Test of Dark Energy

    CERN Document Server

    Brax, Philippe

    2016-01-01

    Atomic interferometry can be used to probe dark energy models coupled to matter. We consider the constraints coming from recent experimental results on models generalising the inverse power law chameleons such as $f(R)$ gravity in the large curvature regime, the environmentally dependent dilaton and symmetrons. Using the tomographic description of these models, we find that only symmetrons with masses smaller than the dark energy scale can be efficiently tested. In this regime, the resulting constraints complement the bounds from the E\\"otwash experiment and exclude small values of the symmetron self-coupling.

  15. The International Atomic Energy Agency Nuclear Security Education Strategies

    International Nuclear Information System (INIS)

    The threat of nuclear terrorism has not diminished. In response to the concerns of States, an international nuclear security framework has emerged through the establishment of a number of legally binding and non-binding international instruments which obligates or commits States to carry out a number of actions to protect against nuclear terrorism. In this context, the need for human resource development programmes in nuclear security was underscored at several International Atomic Energy Agency (IAEA) General Conferences and Board of Governors' Meetings. In the pursuit of this need, the IAEA provides a comprehensive nuclear security training programme to States on a regular basis, and has developed a concept that seeks to effectively pass ownership of nuclear security knowledge and skills to States through the establishment of a Nuclear Security Support Centre. In addition, the IAEA has developed a technical guidance titled IAEA Nuclear Security Series No. 12 - Educational Programme in Nuclear Security that consists of a model of a Master of Science (M.Sc.) and assists educational institutions to provide nuclear security education. The article sets out IAEA efforts in the area of nuclear security training and education, including the assistance to States for establishing a Nuclear Security Support Centre. It underlines the objective and content of the IAEA Nuclear Security Series No. 12, discusses different concepts on how to establish nuclear security at universities and, emphasizes on the IAEA efforts to assist educational and research institutions, and other stake holders to enhance global nuclear security by developing, sharing and promoting excellence in nuclear security education. (author)

  16. 32 CFR 2400.4 - Atomic Energy Material.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Atomic Energy Material. 2400.4 Section 2400.4... General Provisions § 2400.4 Atomic Energy Material. Nothing in this Regulation supersedes any requirement made by or under the Atomic Energy act of 1954, as amended. “Restricted Data” and...

  17. Using Atom Interferometry to Detect Dark Energy

    CERN Document Server

    Burrage, Clare

    2015-01-01

    We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the Universe on giga-parsec scales may be found through metre scale laboratory based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the ...

  18. Energy research 1998. The programme leaders` status reports; Energie-Forschung 1998. Recherche energetique 1998. Ueberblicksberichte der Programmleiter. Rapport de synthese des chefs de programme

    Energy Technology Data Exchange (ETDEWEB)

    Voirol, C. [ed.; Dubal, L. [ed.

    1999-03-01

    This report is a collection of the annual reports written by the 20 energy research programme leaders of the Swiss Federal Office of Energy about their activities in 1998. There is also a report of the Energy Research Coordinator reviewing the progress achieved in 1998. Finally, the organisation of the Swiss energy research is shortly presented, and useful addresses are given

  19. Challenges of atomic energy regulation in Indian context

    International Nuclear Information System (INIS)

    Over the years, India has mastered all the stages of the nuclear fuel cycle, which include mining, processing and fabrication of nuclear fuel; design, construction, and operation of nuclear power reactors and research reactors; reprocessing of spent fuel and management of radioactive wastes. Ionising radiation is also used widely in medical, industrial and research areas. Since its inception, Department of Atomic Energy (DAE) was enforcing radiological safety in the country through in-house or ad-hoc committees, till a dedicated regulatory body (AERB) was set up 25 years ago. Today India is operating 19 nuclear power plants with different vintages (2 BWRs and 17 PHWRs) and another 8 (1 PFBR, 5 PHWRs and 2 PWRs) are in various stages of construction. Recently there are new evolutionary reactors (AHWRs) for which design has been completed and are on the threshold for consideration for construction. To match the rapid growth in the need for power India is also about to take up construction of large evolutionary PWRs of foreign design. This variety in the Indian nuclear power programme has come up due to a systematic evaluation and optimisation of the resources and technology available within the country. Added to this is the growing use of radiation in non-power applications. As the safety supervision of this huge programme is the responsibility of AERB, it faces various challenges, like, - Strategies for regulating wide variety of nuclear and radiation facilities with wide dispersal; - Meeting present day expectations with regard to nuclear and radiation safety and nuclear security; - The safety and security of large number of radioactive sources spread over such a vast country and of the associated import/export guidance; - Ensuring safety of old plants by periodic reviews and by prescribing adequate safety upgradation and ageing management programme; -Adaptation of the regulatory system and of regulations to new and foreign design nuclear technologies and

  20. 24. IAEA Fusion Energy Conference. Programme and Book of Abstracts

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) fosters the exchange of scientific and technical results in nuclear fusion research through its series of Fusion Energy Conferences. The 24th IAEA Fusion Energy Conference (FEC 2012) aims to provide a forum for the discussion of key physics and technology issues as well as innovative concepts of direct relevance to fusion as a source of nuclear energy. With a number of next-step fusion devices currently being implemented - such as the International Thermonuclear Experimental Reactor (ITER) in Cadarache, France, and the National Ignition Facility (NIF) in Livermore, USA - and in view of the concomitant need to demonstrate the technological feasibility of fusion power plants as well as the economical viability of this method of energy production, the fusion community is now facing new challenges. The resolution of these challenges will dictate research orientations in the present and coming decades. The scientific scope of FEC 2012 is, therefore, intended to reflect the priorities of this new era in fusion energy research. The conference aims to be a platform for sharing the results of research and development efforts in both national and international fusion experiments that have been shaped by these new priorities, and thereby help in pinpointing worldwide advances in fusion theory, experiments, technology, engineering, safety and socio-economics. Furthermore, the conference will also set these results against the backdrop of the requirements for a net energy producing fusion device and a fusion power plant in general, and will thus help in defining the way forward. With the participation of international organizations such as the ITER International Organization and EURATOM, as well as the collaboration of more than forty countries and several research institutes, including those working on smaller plasma devices, it is expected that this conference will, as in the past, serve to identify possibilities and means for a

  1. Views on Finnish energy technology programmes. Environmentally viable results for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Hannus, S.; Alakangas, E. [ed.

    1996-12-31

    Finland`s exports of energy technology have been growing dynamically over the past few years and they have now exceeded net imports of oil. Highly efficient technology has not only been applied to the national energy economy but also exported to more than 140 other countries. Finnish skills in this field are the result of many traditional factors: the cold climate, long distances between towns, energy-intensivity industry and the lack of fossil fuels in Finland. In addition to these geographical and natural factors, Finnish expertise in energy has been radically influenced by especially favourable organizational and institutional conditions: the mechanisms for competition in the domestic marketplace ant strong networking both in Finland and abroad. The small home market has also been a stimulus for exports. Finland`s potential new subdivisions of energy fields include automation and IT for energy production systems, which is based on strong Finnish expertise and success in information technology. Another new field with potential is photoelectric systems, an area in which Finland is already well placed on the market. The extensive utilization of solar energy in northern latitudes calls for the seasonal storage of energy. The use of hydrogen as a means of storing solar power has been studied with good results in the NEMO 2 Technology Programme. In addition Finland put great emphasis on renewable energy sources like biomass, combustion processes and environmental technologies related to the energy sector. Harvesting and utilisation of biomass has been studied in the national BIOENERGIA programme. Combustion processes have been studied in the LIEKKI 2 programme. A variety of different energy related environmental technologies have been studied in the S1HTI 2 programme

  2. Atomic energy wants new personality. An essay of education and personality in atomic energy

    International Nuclear Information System (INIS)

    New personality in atomic energy consists of personification of independence, democracy and publication. They are able to create new technologies and new plants with safety and maintenance. The technical experts and all the parties concerned have to explain the situation and the conditions of atomic energy in order to justify the people's trust in them. Only good personality with morals can obtain the confidence of the nation. It is important for new technical experts and all the parties concerned to receive an education related to sociality. (S.Y.)

  3. European atomic energy law. Nuclear energy laws. 2. ed.

    International Nuclear Information System (INIS)

    The present re-edition closes a gap that had existed in particular in the German literature on European atomic energy law. This field of law is becoming more and more important through the introduction of new directives and regulations. The textbook starts with a discussion of the principles and international regulations of European atomic energy law. Forming its core is a presentation of the Euratom Treaty with all its regulations, directives, and decisions taken by the European Commission and the European Court of Justice. Since the Fukushima disaster, and as a result of the still ongoing renaissance of nuclear energy in many countries outside of Europe, a substantial demand has grown for information on international and specifically European nuclear energy law.

  4. The industrial development of atomic energy

    International Nuclear Information System (INIS)

    Countries with large stock of fissile material and producing large quantity of nuclear pure 235U and 239Pu are able to allocate part of the stock to non military research. For countries with low stock of fissile material, all the stock is allocated to military research. An economical and technical solution has to be find to dedicate a part of fissile material to non military research and develop the atomic energy industry. It stated the industrial and economical problems and in particular the choice between the use of enriched fuel with high refining cost or depleted fuel with low production cost. It discusses of four possible utilizations of the natural resources: reactors functioning with pure fissile material (235U or 239Pu) or concentrated material (235U mixed with small quantities of 238U after an incomplete isotopic separation), breeder reactors functioning with enriched material mixed with 238U or Thorium placed in an appropriate spatial distribution to allow neutrons beam to activate 238U or Thorium with the regeneration of fissile material in 239Pu, reactors using natural uranium or low enriched uranium can also produce Plutonium with less efficiency than breeder reactors and the last solution being the use of natural uranium with the only scope of energy production and no production of secondary fissile material. The first class using pure fissile material has a low energy efficiency and is used only by large fissile material stock countries to accumulate energy in small size fuel for nuclear engines researches for submarines and warships. The advantage of the second class of reactors, breeder reactors, is that they produce energy and plutonium. Two type of breeder reactor are considered: breeder reactor using pure fissile material and 238U or breeder reactor using the promising mixture of pure fissile material and Thorium. Different projects are in phase of development in United States, England and Scotland. The third class of reactor using natural

  5. Atom-interferometry constraints on dark energy

    CERN Document Server

    Hamilton, Paul; Haslinger, Philipp; Simmons, Quinn; Müller, Holger; Khoury, Justin

    2015-01-01

    If dark energy---which drives the accelerated expansion of the universe---consists of a new light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. There has, however, been much theoretical progress in developing theories with screening mechanisms, which can evade detection by suppressing forces in regions of high density, such as the laboratory. One prominent example is the chameleon field. We reduce the effect of this screening mechanism by probing the chameleon with individual atoms rather than bulk matter. Using a cesium matter-wave interferometer near a spherical mass in an ultra-high vacuum chamber, we constrain a wide class of dynamical dark energy theories. Our experiment excludes a range of chameleon theories that reproduce the observed cosmic acceleration.

  6. Constitutionality of the Atomic Energy Act

    International Nuclear Information System (INIS)

    Roma locuta, causa finita. The Federal Constitutional Court declared in its decree of 8 August 1978 the peaceful uses of nuclear energy (Paragraph 7 sub-section 1 and 2 Atomic Energy Act) in NPPs of the so-called fast breeder type as constitutional for the time being. The excellent simplicity of the explanations, namely about the anavoidability and social adequancy of the so-called residual risk in a highly technical society and about the determining influence of practical ratio as a measure for the estimation of the residual risk which must be born by all citizens, creates a good clarification on the level of constitutional law. However, it remains, to be seen whether the decree can give the administrative courts any orientation help in the future and whether it will lead to an improved legal protection of all participants and a more effective handling of administrative processes. (orig.)

  7. Ninth German symposium on atomic energy law

    International Nuclear Information System (INIS)

    The symposium dealt with the forthcoming amendment to the Atomic Energy Law. There was an introductory presentation of the plans of the Federal Government for the amendment the aims attached to the amendment as seen by the Social Democratic Party and the revival of the nuclear option. The topics of the five work sessions were: questions concerning constitutional law - Laender administration on behalf of the Federal Government - subordinate legislation in the system of energy law; legislation on liability; financial security financing of decommissioning; licensing, supervision, retrofitting; waste disposal, ultimate waste disposal, fuel cycle. All lectures held in the work sessions and the reports on the discussions following them are included. Finally the amendment project was considered from the technological point of view and a resume was drawn. All 22 lectures have been seperately prepared for retrieval from the database. (HSCH)

  8. Atomic energy for the peace and progress

    International Nuclear Information System (INIS)

    This document is a poster of the Commission of Atomic Energy of Costa Rica. In it some uses of atomic energy in Costa Rica, are mentioned. Some of them are: the technical cooperation, which has permitted to develop and to fortify the production and control of radio pharmaceuticals in the nuclear services of medicine. The diagnoses and medical processing, to acquire new equipment and to consolidate the maintenance and service of nuclear instrumentation. By means of technical of induced mutations, they have developed agricultural resistant varieties to the environmental conditions. Control of ripeness, genetic improvement of seeds, resistance to the illnesses and efficiency of the agronomic performance. The isotopic techniques of traces have great importance to evaluate the hydric resources, and their risk of contamination with toxic metals and pesticides. Nuclear techniques have been used to obtain information and to deepen in their knowledge. A laboratory of radiology control was established in the Technological Institute of Costa Rica, to give service to the industrial installations. To access the information of this field, the Nuclear Center of Information can be consulted, in the University of Costa Rica. (author)

  9. Atomic Structure of Benzene Which Accounts for Resonance Energy

    OpenAIRE

    Heyrovska, Raji

    2008-01-01

    Benzene is a hexagonal molecule of six carbon atoms, each of which is bound to six hydrogen atoms. The equality of all six CC bond lengths, despite the alternating double and single bonds, and the surplus (resonance) energy, led to the suggestion of two resonanting structures. Here, the new atomic structure shows that the bond length equality is due to three carbon atoms with double bond radii bound to three other carbon atoms with resonance bond radii (as in graphene). Consequently, there ar...

  10. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Katori, Hidetoshi [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-15

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  11. Atomic Mass and Nuclear Binding Energy for Ra-226 (Radium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Ra-226 (Radium, atomic number Z = 88, mass number A = 226).

  12. Atomic Structure of Benzene Which Accounts for Resonance Energy

    CERN Document Server

    Heyrovska, Raji

    2008-01-01

    Benzene is a hexagonal molecule of six carbon atoms, each of which is bound to six hydrogen atoms. The equality of all six CC bond lengths, despite the alternating double and single bonds, and the surplus (resonance) energy, led to the suggestion of two resonanting structures. Here, the new atomic structure shows that the bond length equality is due to three carbon atoms with double bond radii bound to three other carbon atoms with resonance bond radii (as in graphene). Consequently, there are two kinds of CH bonds of slightly different lengths. The bond energies account for the resonance energy.

  13. Atomic Energy Control Board vocabulary - preliminary edition

    International Nuclear Information System (INIS)

    This preliminary edition was prepared at the Board's request to help it establish a standardized terminology. It was produced by scanning the 99 French and English documents listed at the end of this Vocabulary. The documents include legislation concerning atomic energy and the transportation of radioactive materials, as well as the Board's publications, such as the Consultative Documents, Regulatory Documents and Notices. The terms included from the following areas are: radiation protection, reactor technology, nuclear fuel cycle, radioactive material packaging and transportation, radioactive waste management, uranium mines, and medical and industrial applications of radioelements. Also included are the titles of publications and the names of organizations and units. The vocabulary contains 2,589 concepts, sometimes accompanied by definitions, contexts or usage examples. Where terms have been standardized by the Canadian Committee for the Standardization of Nuclear Terminology, this has been indicated. Where possible, we have verified the terms using the TERMIUM, the Government of Canada Linguistic Data Bank. (author)

  14. Israel Atomic Energy Commission 1997 Annual Report

    International Nuclear Information System (INIS)

    The 1997 Annual Report is published in a special year for Israel, marking the 50th anniversary of its independece and statehood. From its inception, and the election of a distinguished scientist as its first president, Israel has regarded science and technology as a central pillar for future AEC development and a lever for improved quality of life of its people. The Israel Atomic Energy Commission, which will be celebrating its own anniversary in a few years, has made a modest but significant contribution to the establishment and growth of the technological infrastructure of the country. The first article in this Annual Report focuses attention on yet another aspect of our continuing investigation of the basic properties of technologically interesting and important materials, presented in our 1994 and 1996 Annual Reports. The current entry describes an application of the nuclear Time Differential Perturbed Angular Correlation technique to the study of the structure and properties of metal-hydrogen compounds, of potential interest within the framework of future, environmentally attractive hydrogen-burning energy systems, and in fusion power reactors. The second article also relates to some basic aspects of nuclear fusion. A theoretical study of the behavior and properties of laser-generated hot plasmas resulted in the proposal of a new confinement scheme, in which a plasma generated by circularly polarized laser light is confined in a miniature magnetic bottle created by magnetic fields induced in the plasma by the same light. The paper discusses the conditions under which such confinement and ensuing energy gain may be achieved. Measurements of actual axial magnetic fields generated in plasma by intense circularly polarized laser light are also reported. The third report describes one of our ongoing efforts to improve and streamline the techniques and procedures used in medical applications of radioisotopes. Replacement of the customary )311 solutions for

  15. International Atomic Energy Agency Annual Report 2014

    International Nuclear Information System (INIS)

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  16. Determination of Atomic Data Pertinent to the Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  17. Policies and programmes on new and renewable energy in the Philippines

    International Nuclear Information System (INIS)

    The New and Renewable Energy Programme aims at accelerating the promotion and commercialization of new and renewable energy systems. In pursuit of this goal, the Programme has the following policies: (a) pursue the large-scale use of new and renewable energy sources (NRSE), (b) enhance energy self-sufficiency through continuous exploration, development and exploitation of indigenous energy sources and (c) encourage greater private sector investment and participation in all energy activities. The strategies to be implemented include the intensification of R and D and the demonstration of technologically feasible and socio-environmentally acceptable NRSE; the institutionalization of area-based energy planning and management for NRSE; the encouragement of a favourable market environment for manufacturers, suppliers and users of NRSE; the promotion of commercially viable energy sources such as solar and wind energy, and continuing applied R and D for less-advanced technologies such as ocean thermal and wave energy conversion, fuel cells and municipal wastes. The sub programmes of the New and Renewable Energy Program are as follows: The technology sub programme aims at developing economically viable NRSE to levels of technical maturity at which NRSE can compete commercially with conventional energy; The commercialization sub programme envisages the creation of a favourable market environment to encourage private sector investment and participation in NRSE projects and activities; The promotion sub programme attempts to heighten public awareness of NRSE; The area-based energy sub programme is a mechanism for accelerating the promotion and commercialization of new and renewable energy systems at the regional and subregional levels using a decentralized, area-based approach. (author)

  18. Israel Atomic Energy Commission 1996 Annual Report

    International Nuclear Information System (INIS)

    Selecting the research efforts to be highlighted in the Israel Atomic Energy Commission's Annual Report from the large body and broad spectrum of ongoing work is not an easy task. The extensive bibliography of published results attached to the report attests to the scope of this difficulty. Of the many worthwhile projects, four were chosen to represent best the current trends in the continuing R and D program at the research centers of the Israel Atomic Energy Commission. One of these trends is the growing cooperation with private industry, in an attempt to gear our R and D programs to respond to market demands. Another feature, noted already several years ago, is the extensive collaboration of our scientists and engineers with colleagues at other institutions, in Israel and abroad. some of the work reported is part of evolving international industrial cooperation projects, illustrating both these trends. Following a trend common to many nuclear research centers around the world, a substantial part of our research effort is non-nuclear in nature. This is illustrated in the first article, which deals with advances in the application of non-linear optics in diverse fields of science and technology. These include state-of-the-art solid-state lasers, rapid modulation of light signals, development and generation of tunable sources of coherent light, optical data storage and the microscopic probing of biological and inorganic samples. The present work reports on a range of R and D, from the fundamentals of non-linear optical materials to proof-of-principle demonstrations of non-linear subwavelength resolution microscopy, to fabrication of prototype commercial tunable laser systems The second report considers the microstrain characteristics in some alloys using X-ray diffraction (XRD). The research utilizes XRD line broadening effects to study the characteristics of alloys from especially prepared surfaces. These characteristics include the homogeneity of alloying

  19. Annual report 1982-83 [of the Department of Atomic Energy, India

    International Nuclear Information System (INIS)

    The annual report of the Department of Atomic Energy (DAE) of the Government of India for the financial year 1982-83 surveys the work of its various establishments. The major thrust of the DAE's programme is directed towards peaceful uses of atomic ener%y - primarily for electric power generation and applications of radiation and radioisotopes in medicine, agriculture and industry. The Bhabha Atomic Research Centre at Bombay is the major R and D establishment of the DAE and its activities in the fields of nuclear physics, chemistry and materials science, radiochemistry, nuclear fuels, reactor engineering, radiation protection, radioactive waste management and applications of radiation and radioactive isotopes are described in detail. The R and D activities of the Reactor Research Centre at Kanpakkam, the Tata Institute of Fundamental Research and the Tata A1emorial Centre, both at Bombay, and the Saha Institute of Nuclear Physics at Calcutta are described in brief. The performance of the Tarapur Atomic Power Station, the Rajasthan Atomic Power Station, the Nuclear Fuel Complex at Hyderabad, the Atomic Minerals Division, Uranium Corporation of India Ltd at Jaduguda, various heavy water plants and other industrial units of DAE is reported. Progress of nuclear power projects at Narora and Kakrapar, R-5 Project at Bombay and FBTR Project at Kalpakkam is described. India's participation in the activities of the International Atomic Energy Agency is also mentioned. (M.G.B.)

  20. Atomic energy policy in fiscal year 1985

    International Nuclear Information System (INIS)

    The international demand and supply of petroleum advance in relaxed condition at present, but tend to get stringent in long term. Nuclear power is the most promising substitute energy for petroleum, and in Japan, 28 nuclear power plants with 20.56 million kW output are in operation, generating 20.4% of the total generated power in 1983. According to the perspective of long term power supply, the installed capacity of nuclear power plants will reach 62 million kW and 27% of the total installed capacity by 2000. It is important to positively deal with the industrialization of nuclear fuel cycle, the upgrading of nuclear power generation, the development of the reactors of new types and so on, preparing for the age that nuclear power generation will become the center of power supply. The atomic energy policy of the Ministry of International Trade and Industry in fiscal year 1985 is reflected to the budget, financial investment and funding and other measures based on the above viewpoint. The outline of the budget and financial investment and funding for fiscal year 1985 is explained. The points are the promotion of industrialization of nuclear fuel cycle, the promotion of nuclear power generation and the promotion of understanding and cooperation of nation on the location of electric power sources. (Kako, I.)

  1. Devising and carrying out an evaluation of the Energy 2000 programme of action

    International Nuclear Information System (INIS)

    The efficiency of the Swiss programme 'Energy 2000' (1990-2000) has been subjected to a systematic and continuous evaluation by independent experts. Between 1991 and 1999 various aspects of the programme have been investigated in some 50 scientific investigations. The results are summarized in this book. On one hand we present a differentiated picture of the causal connections between the most significant legal measures and voluntary actions. On the other hand we draw conclusions for the future Swiss energy policy, well aware of the fact that the translation of experiences from the past into the future may be affected considerably by new boundary conditions. The book is divided into three parts: In the first part the organisational frame of the programme is presented, and the question is addressed whether the basic principles formulated in shaping the programme have turned put to be appropriate. In the second part the knowledge resulting from the evaluations of the efficacy of the legal measures, the conflict solving discussion groups, and the actions initiated by the nine departments of the programme, is reviewed. In the third part the results of the evaluations are combined and conclusions are drawn for the shaping of the follow-up programme for the coming decade. In addition Hans-Luzius Schmid, assistant director of the Swiss Federal Office of Energy and director of the 'Energy 2000' programme presents some of his considerations on the longer term development of Switzerland's energy policy and on the role of his office

  2. Quantum Effects at Low Energy Atom-Molecule Interface

    OpenAIRE

    Deb, B.; Rakshit, A.; Hazra, J.; Chakraborty, D.

    2013-01-01

    Quantum interference effects in inter-conversion between cold atoms and diatomic molecules are analysed. Within the framework of Fano's theory, continuum-bound anisotropic dressed state formalism of atom-molecule quantum dynamics is presented. This formalism is applicable in photo- and magneto-associative strong-coupling regimes. The significance of Fano effect in ultracold atom-molecule transitions is discussed. Quantum effects at low energy atom-molecule interface are important for explorin...

  3. Magnetospheric imaging with low-energy neutral atoms.

    OpenAIRE

    1991-01-01

    Global imaging of the magnetospheric charged particle population can be achieved by remote measurement of the neutral atoms produced when magnetospheric ions undergo charge exchange with cold exospheric neutral atoms. Previously suggested energetic neutral atom imagers were only able to measure neutral atoms with energies typically greater than several tens of keV. A laboratory prototype has been built and tested for a different type of space plasma neutral imaging instrument, which allows ne...

  4. The comparison and coordination of national policies and programmes in the energy research and development sector

    International Nuclear Information System (INIS)

    Inventory of programmes and expenditures in the field of energy research and development, which are financed from the public sector funds of the Member States and of the European Communities (1974-1976)

  5. International Atomic Energy Agency activities in decommissioning

    International Nuclear Information System (INIS)

    Full text: The International Atomic Energy Agency (IAEA) has been addressing the safety and technical issues of decommissioning for over 20 years, but their focus has been primarily on planning. Up to know, the activities have been on an ad hoc basis and sometimes, important issues have been missed. A new Action Plan on the Decommissioning of Nuclear Facilities has recently been approved by the Agency's board of Governors which will focus the Agency's efforts and ensure that our Member States' concerns are addressed. The new initiatives associated with this Action Plan will help ensure that decommissioning activities in the future are performed in a safe and coherent manner. The International Atomic Energy Agency (IAEA) has been preparing safety and technical documents concerning decommissioning since the mid-1980's. There have been over 30 documents prepared that provide safety requirements, guidance and supporting technical information. Many of these documents are over 10 years old and need updating. The main focus in the past has been on planning for decommissioning. During the past five years, a set of Safety Standards have been prepared and issued to provide safety requirements and guidance to Member States. However, decommissioning was never a real priority with the Agency, but was something that had to be addressed. To illustrate this point, the first requirements documents on decommissioning were issued as part of a Safety Requirements [1] on pre-disposal management of radioactive waste. It was felt that decommissioning did not deserve its own document because it was just part of the normal waste management process. The focus was mostly on waste management. The Agency has assisted Member States with the planning process for decommissioning. Most of these activities have been focused on nuclear power plants and research reactors. Now, support for the decommissioning of other types of facilities is being requested. The Agency is currently providing technical

  6. International Atomic Energy Agency Annual Report 2011

    International Nuclear Information System (INIS)

    The IAEA Annual Report 2011 aims to summarize only the significant activities of the Agency during the year in question. This report covers the period 1 January to 31 December 2011. The main part of the report, starting on page 21, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2011 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available in electronic form only on iaea.org, along with the Annual Report.

  7. Solar and Geothermal Energy: New Competition for the Atom

    Science.gov (United States)

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  8. Books on Atomic Energy for Adults and Children

    Energy Technology Data Exchange (ETDEWEB)

    None

    1969-01-01

    This booklet contains two lists of atomic energy books, one for students and one for adults. The student list has grade annotations. The lists are not all-inclusive but comprise selected basic books on atomic energy and closely related subjects.

  9. The development of atomic energy in Sri Lanka

    International Nuclear Information System (INIS)

    This article was written by the Institution's overseas representative Professor P.P.G.L. Siriwardene, Chairman of the Atomic Energy Authority of Sri Lanka, with the express purpose of conveying to members of the Institution a broad outline of his country's interest in the peaceful uses of atomic energy. (author)

  10. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    The law establishes the Japan Atomic Energy Research Institute in accordance with the Basic Act on Atomic Energy as a government corporation for the purpose of promoting R and D and utilizations of atomic energy (first chapter). The second chapter concerns the directors, advisers and personnel of the institute, namely a chairman of the board of directors, a vice-chairman, directors not more than seven persons, and auditors not more than two persons. The chairman represents and supervises the intitute, whom the prime minister appoints with the agreement of Atomic Energy Commission. The vice-chairman and other directors are nominated by the chairman with the approval of the prime minister, while the auditors are appointed by the prime minister with the advice of the Atomic Energy Commission. Their terms of office are 4 years for directors and 2 years for auditors. The third chapter defines the scope of activities of the institute as follows: basic and applied researches on atomic energy; design, construction and operation of nuclear reactors; training of researchers and technicians; and import, production and distribution of radioisotopes. Those activities should be done in accordance with the basic development and utilization plans of atomic energy established by the prime minister with the determination of Atomic Energy Commission. The fourth chapter provides for the finance and accounting of the institute, and the fifth chapter requires the supervision of the institute by the prime minister. (Matsushima, A.)

  11. Review on Malaysia's national energy developments: Key policies, agencies, programmes and international involvements

    Energy Technology Data Exchange (ETDEWEB)

    Chua, Shing Chyi; Oh, Tick Hui [Faculty of Engineering and Technology, Multimedia University, Bukit Beruang, 75450 Melaka (Malaysia)

    2010-12-15

    This paper aims to present a review on Malaysia's national energy developments by looking at various angles in terms of renewable energy and energy efficiency. Energy demand and consumption by sectors are presented as well as the fuel mix in electricity generation. Key energy policies implemented from the incorporation of Malaysia's national oil company, Petronas in 1974 until the National Green Technology Policy 2009 and a future policy will be addressed. The roles of key players as well as important agencies in energy development are briefly presented. Key programmes in energy development such as Malaysian Industrial Energy Efficiency Improvement Project, Small Renewable Energy Power Programme and Building Energy Efficiency Programme are discussed as well as successful initiatives from the programmes. Malaysia's international involvements towards reduction of greenhouse gas emissions and carbon emissions especially Montreal Protocol and Kyoto Protocol are highlighted. As a conclusion, Malaysia is aware of its role in formulating its national energy development policies, sensitive towards the country's development towards the environment and utilization of energy resources as well as conscientious and responsive towards the call for sustainable development in promoting renewable energy and energy efficiency. (author)

  12. Atomic level spatial variations of energy states along graphene edges.

    Science.gov (United States)

    Warner, Jamie H; Lin, Yung-Chang; He, Kuang; Koshino, Masanori; Suenaga, Kazu

    2014-11-12

    The local atomic bonding of carbon atoms around the edge of graphene is examined by aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy loss spectroscopy (EELS). High-resolution 2D maps of the EELS combined with atomic resolution annular dark field STEM images enables correlations between the carbon K-edge EELS and the atomic structure. We show that energy states of graphene edges vary across individual atoms along the edge according to their specific C-C bonding, as well as perpendicular to the edge. Unique spectroscopic peaks from the EELS are assigned to specific C atoms, which enables unambiguous spectroscopic fingerprint identification for the atomic structure of graphene edges with unprecedented detail.

  13. Young students's opinion about atomic energy

    International Nuclear Information System (INIS)

    The present research work was performed in answer to a requirement that the CNEA-RC made to students of the Public and Institutional Relations Degree of the UES21, as a part of activities carried out in the framework of the Academic Cooperation Agreement between both institutions. In this case the students had to attend the Professional Practical course during the first semester of 2006, which included a short period in some company or organization. The Degree of Knowledge and the Opinion of the students from the Cycle of Specialization of the Province of Cordoba Educational System (ages between 15 and 17 years old), on the activities that are made in the site of CNEA-RC and DIOXITEK SA at Alta Cordoba neighborhood in Cordoba city has been analyzed. The same aspects were analyzed for Dioxitek's activities (equipment, raw materials, risk performance, etc.). Although the activities made at CNEA-RC involved during 2005/6 about 4000 students, due to the short time available for the practical part only the data of two schools located near the facilities were processed. Three aspects of the space conformed between the public and the general opinion were analyzed: the customs, the stereotypes and the attitudes of the people. These aspects were taken as the characteristics to describe to the opinions, their direction and intensity. The analysis was based on an exploratory investigation of type, characterized by its flexibility. The field work was of quantitative character. The surveys were structured with closed questions (categories of answers delimited previously on which the students must answer). For its design we used diverse sources of intelligence, such as pages of Internet, pamphlets, magazines, annual balances of the organizations, etc. The main results were the following: 1) The greater percentage of students declared to have little information on Atomic Energy. Only 4% declared to have abundant knowledge on the subject. 2) A 38% of the students indicated that

  14. Evaluation of programme for energy management in buildings; Evaluering av program for energiledelse i bygg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Enova SF needed to evaluate the programmes for energy management for greater and smaller building owners. The question was: What has been the impact of the Buildings Network and the energy management programmes for greater and smaller building owners on energy conservation and economic life , and are the programmes operated efficiently? The buildings which participated in the Buildings Network in 1996 - 2002 had an average reduction of the energy consumption of about 7 per cent, which is somewhat less than the supposed potential of 10 per cent. There is some uncertainty in this calculation and the true figure is probably 1 or 2 per cent higher. Whether this energy conservation tendency has continued after Enova took over the responsibility for the programme in 2002 is too early to measure. It is very probable that the public support to the projects has triggered off the saving, that is, there has been few free riders. After 2002, Enova has made the programme more efficient and the cost per building has been halved in the period 2001 - 2003. But some of the original infrastructure of the programme has been discontinued.

  15. Annual report of the Department of Atomic Energy, 1976-77

    International Nuclear Information System (INIS)

    Research and development work in various research units, and activities and achievements of various public undertakings of the Department of Atomic Energy, India, during 1976-77 are reported. Construction of the 100 MW-thermal research reactor at Trombay and the Fast Breeder Test Reactor at Kalpakkam is in progress. Work on desalination, MHD and in seismology in continued. Report on performance of the Tarapur and Rajasthan Atomic Power Stations and progress of construction of the nuclear power stations at Kalpakkam and Narora is given. Fuelling machine carriage and shielding and plug assemblies for the second unit of the Rajasthan Atomic Power Station have been indigenously fabricated. A novel technique for prospecting nuclear minerals, termed as BARC-TEFUREX has been evolved and is being used successfully. The country-wide radiological protection programme covers 42,000 radiation workers in 2,280 institutions. (M.G.B.)

  16. Areas and programmes of technical assistance

    International Nuclear Information System (INIS)

    The cooperation between the Atomic Energy Commission of Costa Rica, and the International Atomic Energy Agency, has permitted to carry out programmes and projects which agree with the national objectives of development. In the areas of environmental hydrology; physical sciences and chemistry; industry and geological sciences; health and animal production; biological sciences, agriculture and alimentation; scientific and technical information. (author)

  17. Atomic energy and science disclosure in Cordoba

    International Nuclear Information System (INIS)

    In September 2009, considering the existing interest in public communication of scientific activities that are developed locally, a group of researchers and communicators from Córdoba, decided to form the Network of Outreach of Córdoba. Its stated objectives of the Constitutive Act are presented in this paper along with the main activities undertaken to date and plans for the future. Since that time, the Management of Institutional Relations of the CNEA in Córdoba became involved in public circulation of scientific knowledge, in what has proven to be a framework that ensures an adequate level of debate to present nuclear national activities. This will involve collaborative efforts with professional institutions involved in research, teaching and communicating science. The main objective was to encourage the transfer of knowledge to optimize available resources, improving the methodological approaches and generating creative products tailored to regional needs, in order to promote the democratization of science and nuclear technology. This paper consists of two parts. On the one hand describes the activities of the Network during the year 2011 shows results with particular emphasis on topics related to atomic energy, and secondly, shows the desirability of promoting such activities in the CNEA. Among the main actions considered, highlighting the institutional participation in the official Ministry of Science and Technology Fair participation in Science and Technology Provincial Cordoba 2011, issue of the radio program 'Green Light: Science and technology everyday life' by National Technological University Radio and a network of forty provincial stations, and active participation in the Course of Specialization in Public Communication of Science and Scientific Journalism, organized by the School of Information Sciences and the Faculty of Mathematics, Physics and Astronomy, National University of Cordoba, among others. (author)

  18. Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination

    Science.gov (United States)

    Krükow, Artjom; Mohammadi, Amir; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H.

    2016-05-01

    We study three-body recombination of Ba++Rb +Rb in the mK regime where a single 138Ba+ ion in a Paul trap is immersed into a cloud of ultracold 87Rb atoms. We measure the energy dependence of the three-body rate coefficient k3 and compare the results to the theoretical prediction, k3∝Ecol-3 /4, where Ecol is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is determined by at least two different micromotion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s -wave regime.

  19. Energy scaling of cold atom-atom-ion three-body recombination

    CERN Document Server

    Krükow, Artjom; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H

    2015-01-01

    We study three-body recombination of Ba$^+$ + Rb + Rb in the mK regime where a single $^{138}$Ba$^{+}$ ion in a Paul trap is immersed into a cloud of ultracold $^{87}$Rb atoms. We measure the energy dependence of the three-body rate coefficient $k_3$ and compare the results to the theoretical prediction, $k_3 \\propto E_{\\textrm{col}}^{-3/4}$ where $E_{\\textrm{col}}$ is the collision energy. We find agreement if we assume that the non-thermal ion energy distribution is determined by at least two different micro-motion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed into an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s-wave regime.

  20. SIHTI 2 - Energy and environmental technology. Yearbook 1993 of the research programme. Project reports

    International Nuclear Information System (INIS)

    The SIHTI 2 research programme on energy and environmental technology, established by the Finnish Ministry of Trade and Industry, is concentrating on areas of environmental technology that are vital to Finland or in which Finns can engage in pioneering research. The promotion of product development within the environmental technology industry produces solutions for reducing the emissions of the energy sector. It is also a way of boosting Finland's share of the world market for such technology. The objectives of the programme are to cut down harmful emissions, recycle raw materials, reduce the amount of byproducts and wastes and achieve a greater utilization of wastes. In addition, an objective is to create basic information about the effects of environmental protection technology for the other research programmes financed by the Ministry of Trade and Industry. The development of internationally comparable research, monitoring and measurement methods creates a basis for wide-ranging international cooperation. The programme, to be carried out in 1993 - 1998, is in part a continuation of the previous SIHTI programme. New areas of research are environmental problems connected with energy in the forest and base metal industries as well as the systematic development of life-cycle analyses. This publication is yearbook 1993 of the programme. It contains the project reports of the research and joint development projects and information about the participating institutions

  1. International Nuclear Information System. 1988-2002. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalogue lists all sales publications and products of the International Atomic Energy Agency dealing with the International Nuclear Information System (INIS), and issued during the period 1 January 1990 - 31 July 2002. Most publications are issued in English, though some are also available in other languages. This is noted as E for English, F for French, G for German, R for Russian and S for Spanish before the relevant ISBN number. Some INIS Reference Series publications are available in electronic form from the INIS Clearinghouse. For more details on the INIS publications programme, please visit the INIS web site mentioned above

  2. Report and accounts of the United Kingdom Atomic Energy Authority

    International Nuclear Information System (INIS)

    The report headings are: general (members, organizations and staff; information services, energy conservation; finance); technical (advanced gas-cooled reactors; water cooled reactors; fast reactors; safety and the environment; fusion; underlying research; nuclear contract work; work outside the nuclear power programme); appendices; accounts. (U.K.)

  3. Annual report 1984-85 [of the Department of Atomic Energy, of the Government of India

    International Nuclear Information System (INIS)

    Research and Development (R and D) activities of the research establishments of the Department of Atomic Energy (DAE), performance of various production units and public sector undertakings of DAE and progress of various projects underway are reported. The report covers the period of the financial year 1984-85. The research establishments of DAE are the Bhabha Atomic Research Centre at Bombay and the Reactor Research Centre at Kalpakkam. DAE production units include atomic power stations for electricity generation at Tarapur, Kota and Kalpakkam; heavy water plants around the country and the Nuclear Fuel Complex at Hyderabad. Public sector undertaking of the Department are Indian Rare Earths Ltd., Electronic Corporation of India Ltd., and Uranium Corporation of India Ltd. The Atomic Minerals Division of the Department is mainly engaged in the R and D activities pertaining to exploration, prospecting and development of mineral resources needed for nuclear power programme. The Department's objective is to achieve the target of 10,000 MWe of nuclear power generating capacity by the year 2000. The Department's Nuclear Power Board operates the atomic power stations and is charged with the responsibility of design, construction and commissioning of atomic power projects at Narora and Kakrapar. The Department also financially supports the Tata Institute of Fundamental Research, the Tata Memorial Centre, both at Bombay and the Saha Institute of Nuclear Physics at Calcutta. The R and D activities of these institutions are also described in brief in this report. (M.G.B.)

  4. Streaming current of a rotary atomizer for energy harvesting

    NARCIS (Netherlands)

    Nguyen, Trieu; Boer, de H.; Tran, T.; Berg, van den A.; Eijkel, J.C.T.; Zengerle, R.

    2013-01-01

    We present the experimental results of an energy conversion system based on a rotary atomizer and the streaming current phenomenon. The advantage of using a rotary atomizer instead of a channel or membrane micropore as in conventional pressure-driven approached is that the centrifugal force exerted

  5. International Atomic Energy Agency Annual Report 2010

    International Nuclear Information System (INIS)

    The Annual Report 2010 aims to summarize only the significant activities of the Agency during the year in question The main part of the report, starting on page 17, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'Overview', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement and Background to the Safeguards Statement and Summary. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM and is also available on the Agency's web site at http://www.iaea.org./Publications/ Reports/index.html. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this report do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear-Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) The term 'nuclear weapon State' is as used in the NPT.

  6. International Atomic Energy Agency Annual Report 2012

    International Nuclear Information System (INIS)

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2012. - The IAEA Annual Report 2012 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report, starting on page 17, generally follows the programme structure as given in The Agency's Programme and Budget 2012-2013 (GC(55)/5). - The introductory chapter, 'Overview', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2012 and Background to the Safeguards Statement. - Additional information covering various aspects of the Agency's programme is available, in electronic form only, on iaea.org, along with the Annual Report. - Except where indicated, all sums of money are expressed in United States dollars. - The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. - The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. - The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non- Nuclear-Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear-weapon State' is as used

  7. International Atomic Energy Agency Annual Report 2009

    International Nuclear Information System (INIS)

    The Annual Report 2009 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report generally follows the programme structure as given in The Agency's Programme and Budget 2008-2009 (GC(51)/2). The introductory chapter, '2009 in Perspective', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2009 and Background to the Safeguards Statement. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional infomation covering various aspects of the Agency's programme is provided on the attached CD-ROM, and is also available on the Agency's web site at http://www.iaea.org/Publications/Reports/Anrep2009/index.html. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear-Weapon States (United Natinos document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear weapon State' is as used in the NPT

  8. International Atomic Energy Agency Annual Report 2013

    International Nuclear Information System (INIS)

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2013. The IAEA Annual Report 2013 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report, starting on page 15, generally follows the programme structure as given in The Agency's Programme and Budget 2012-2013 (GC(55)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2013 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available, in electronic form only, on iaea.org, along with the Annual Report. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear- Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear-weapon State' is as used in

  9. Renewable Energy Programmes in India: Status and Future Prospects

    International Nuclear Information System (INIS)

    Renewable energy sources and technologies have potential to provide solutions to the long-standing energy problems being faced by the developing countries. The renewable energy sources like wind energy, solar energy, biomass energy and fuel cell technology can be used to overcome energy shortage in India. To meet the energy requirement for such a fast growing economy, India will require an assured supply of 3-4 times more energy than the total energy consumed today. The renewable energy is one of the options to meet this requirement. India is increasingly adopting responsible renewable energy techniques and taking positive steps towards carbon emissions, cleaning the air and ensuring a more sustainable future. In India, from the last two and half decades there has been a vigorous pursuit of activities relating to research, development, demonstration, production and application of a variety of renewable energy technologies for use in different sectors. In this paper, efforts have been made to summarize the availability, current status, major achievements and future potentials of renewable energy options in India. This paper also assesses specific policy interventions for overcoming the barriers and enhancing deployment of renewable energy devices for the future. (author)

  10. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES`s share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  11. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    International Nuclear Information System (INIS)

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES's share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  12. Quantum Effects at Low Energy Atom-Molecule Interface

    CERN Document Server

    Deb, B; Hazra, J; Chakraborty, D

    2013-01-01

    Quantum interference effects in inter-conversion between cold atoms and diatomic molecules are analysed. Within the framework of Fano's theory, continuum-bound anisotropic dressed state formalism of atom-molecule quantum dynamics is presented. This formalism is applicable in photo- and magneto-associative strong-coupling regimes. The significance of Fano effect in ultracold atom-molecule transitions is discussed. Quantum effects at low energy atom-molecule interface are important for exploring coherent phenomena in hither-to unexplored parameter regimes.

  13. The United Nations development programme initiative for sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Hurry, S.

    1997-12-01

    Energy is central to current concerns about sustainable human development, affecting economic and social development; economic growth, the local, national, regional, and global environment; the global climate; a host of social concerns, including poverty, population, and health, the balance of payments, and the prospects for peace. Energy is not an end in itself, but rather the means to achieve the goals of sustainable human development. The energy systems of most developing countries are in serious crisis involving insufficient levels of energy services, environmental degradation, inequity, poor technical and financial performance, and capital scarcity. Approximately 2.5 billion people in the developing countries have little access to commercial energy supplies. Yet the global demand for energy continues to grow: total primary energy is projected to grow from 378 exajoules (EJ) per year in 1990 to 571 EJ in 2020, and 832 EJ in 2050. If this increase occurs using conventional approaches and energy sources, already serious local (e.g., indoor and urban air pollution), regional (eg., acidification and land degradation), and global (e.g., climate change) environmental problems will be critically aggravated. There is likely to be inadequate capital available for the needed investments in conventional energy sources. Current approaches to energy are thus not sustainable and will, in fact, make energy a barrier to socio-economic development. What is needed now is a new approach in which energy becomes an instrument for sustainable development. The two major components of a sustainable energy strategy are (1) more efficient energy use, especially at the point of end-use, and (2) increased use of renewable sources of energy. The UNDP Initiative for Sustainable Energy (UNISE) is designed to harness opportunities in these areas to build upon UNDP`s existing energy activities to help move the world toward a more sustainable energy strategy by helping program countries.

  14. Introducing the Resources and Energy Analysis Programme (REAP)

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Alistair; Wiedmann, Thomas; Barrett, John; Minx, Jan; Scott, Kate; Dawkins, Elena; Owen, Anne; Briggs, Julian; Gray, Ian

    2010-02-15

    REAP is a highly sophisticated model that helps policy makers to understand and measure the environmental pressures associated with human consumption. It can be used at the local, regional and national levels and generates indicators on: - Carbon dioxide and greenhouse gas emissions measured in tonnes per capita; - The Ecological Footprint required to sustain an area in global hectares per capita; - The Material Flows of products and services through an area measured in thousands of tonnes. REAP contains several unique features and has applications in a wide range of policy areas including transport, housing and planning. The programme's powerful scenario tool models the impacts of policy and creates plausible scenarios of the future. These scenarios can be set against targets or compared to alternative futures based on different trends or assumptions

  15. Ghana Atomic Energy Commission : at a glance. 3. ed.

    International Nuclear Information System (INIS)

    The brochure provides a brief history of the establishment and functions of the Ghana Atomic Energy Commission. It also provides information on the structure, facilities and activities of existing research institutes and centres

  16. Atomic Energy of Canada Limited annual report 1987-88

    International Nuclear Information System (INIS)

    The annual report of Atomic Energy of Canada Limited for the fiscal year ended March 31, 1988 covers: Research Company; CANDU Operations; Radiochemical Company; Medical Products Division; The Future; Financial Sections; Board of Directors and Officers; and AECL locations

  17. Annual Report 2002 of the Institute of Atomic Energy

    International Nuclear Information System (INIS)

    Annual Report of the Institute of Atomic Energy described the results of the research works carried out at the Institute in 2002 year. The Report contains the information on technical and research studies developed by all Institute Departments and Laboratories

  18. Atomic Energy Authority Act, No. 19 of 1969

    International Nuclear Information System (INIS)

    Act to provide for the establishment of an Atomic Energy Authority and an advisory committee to advise such authority, to specify the power, duties, rights and functions of such authority, and to provide for matters connected therewith or incidental thereto

  19. Probing the Planck Scale in Low-Energy Atomic Physics

    OpenAIRE

    Bluhm, Robert

    2001-01-01

    Experiments in atomic physics have exceptional sensitivity to small shifts in energy in an atom, ion, or bound particle. They are particularly well suited to search for unique low-energy signatures of new physics, including effects that could originate from the Planck scale. A number of recent experiments have used CPT and Lorentz violation as a candidate signal of new physics originating from the Planck scale. A discussion of these experiments and their theoretical implications is presented.

  20. Gravitational Corrections to Energy-Levels of a Hydrogen Atom

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen-Hua; LIU Yu-Xiao; LI Xi-Guo

    2007-01-01

    The first-order perturbations of the energy levels of a hydrogen atom in central internal gravitational field are investigated.The internal gravitational field is produced by the mass of the atomic nucleus.The energy shifts are calculated for the relativistic 1S,2S,2P,3S,3P,3D,4S,and 4P levels with Schwarzschild metric.The calculated results show that the gravitational corrections are sensitive to the total angular momentum quantum number.

  1. Application of atomic energy in agriculture

    International Nuclear Information System (INIS)

    The Annual report 1974 of the Association EURATOM-ITAL describes the results obtained in 1974 in the following sections: Radiation effects; Genetic studies; Soil-plants studies; Methodology; Practical applications, services, courses. The radiation effects studies are concerned with: primary radiation effects, mutation breeding, preservation of food by means of radiation, radiation genetics of insect pests. In the soil-plant studies, the following topics are dealt with: uptake of specific elements by plants, behavior of specific elements in the soil and water environment, heavy metals in plants and soils. The methodology part of the programme is concerned with: methodology related to dosimetric, other physical and instrumental studies; methodology related to studies on biological material; methodology related to soil-studies. Practical applications, services, courses include: mutation breeding of economically important crops, food preservation by irradiation, services to other institutions mainly in the Netherlands, courses, newsletters. The report also lists publications issued and not yet issued

  2. Determination of Surface Exciton Energies by Velocity Resolved Atomic Desorption

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Wayne P.; Joly, Alan G.; Beck, Kenneth M.; Sushko, Petr V.; Shluger, Alexander L.

    2004-08-20

    We have developed a new method for determining surface exciton band energies in alkali halides based on velocity-resolved atomic desorption (VRAD). Using this new method, we predict the surface exciton energies for K1, KBr, KC1, and NaC1 within +0.15 eV. Our data, combined with the available EELS data for alkali fluorides, demonstrate a universal linear correlation with the inverse inter-atomic distance in these materials. The results suggest that surface excitons exist in all alkali halides and their excitation energies can be predicted from the known bulk exciton energies and the obtained correlation plot.

  3. Glossary of scientific and technical terms in atomic energy

    International Nuclear Information System (INIS)

    In order to facilitate the task of Arabic speaking scientists in the field of nuclear energy, the Atomic Energy Commission of Syria assigned a committee constituted of leading physicists and chemists at Damascus University, the aim of the commission was to include the Arabic equivalent of the terms cited in English, French, Russian and Spanish in the glossary published by the United Nations, 1958 ''Atomic Energy Glossary of Technical Terms.'' The result of the committee's work was this glossary containing approximately 6000 terms in the field of nuclear energy which are given in Arabic, English, French, Russian and Spanish

  4. Two atoms scattering at low and cold energies

    Indian Academy of Sciences (India)

    Hasi Ray

    2014-12-01

    A modified static-exchange model is developed to study the collision of an atom with another atom. It includes the effect of long-range dipole–dipole van der Waals interaction between two atoms in addition to the exact effect of short-range force due to Coulomb exchange between two system electrons. Both these interactions dominate at colder energies. The system is treated as a four-centre problem in the centre-of-mass frame. The present ab-initio model is useful to study the two-atomic collisions at low energies, as well as cold energies. The new code is applied to study the scattering of positronium (Ps) by hydrogen (H), both in their ground states.

  5. INDIAN SCHOOL TEACHERS’ PERSPECTIVE ON GLOBALISATION OF EDUCATION: A Case Study of Atomic Energy Education Society School Teachers

    OpenAIRE

    M. Rajesh; Nair, Sindhu P

    2009-01-01

    Globalisation has become an enduring reality of our times and more so in the field of education. Teachers are the harbingers of change in the global economy and school teachers have a major role in shaping the attitude of the society towards all social and economic phenomena including that of globalisation. At the Regional Centre of IGNOU situated at Cochin, Kerala an unique training programme was conducted for a year to train school teachers of the Atomic Energy Education Society (AEES) one ...

  6. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  7. CPT Magnetometer with Atomic Energy Level Modulation

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-Bin; DU Run-Chang; LIU Chao-Yang; GU Si-Hong

    2008-01-01

    We propose and experimentally investigate a coherent population trapping state based magnetometer prototype with87 Rb atoms.Through modulating Zeeman sublevels with an ac magnetic field,not only a phase sensitive detection scheme suitable for miniature magnetometer is realized,but also the detection resolution of magnetic field intensity could be improved by a factor of two.Our study result indicates that it is a promising low power consumption miniature sensitive low magnetic field sensor offering spatially resolved measurement at the sub-millimetre level.

  8. Evaluating the co-benefits of low-income energy-efficiency programmes

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, Grayson; Campbell, Nina

    2011-06-15

    The International Energy Agency's Energy Efficiency Unit (EEU) has begun a new programme of work on innovative energy-efficiency policies for mitigating fuel poverty. The IEA's current research focuses on the potential for low-income weatherisation programmes to address poor housing quality -- the main driver of fuel poverty -- as well as innovative methods for financing and evaluating such programmes. A common problem is that the energy-saving benefits accruing to fuel-poor households barely offset the investment required, suggesting a weak return on government spending. However, these investments have additional co-benefits for participants as well as for energy providers, property owners, local communities and society as a whole. This first IEA workshop focused on methods for incorporating the range of co-benefits into evaluation of low-income weatherisation programmes. The presentations given by top experts in the fuel poverty field are summarised in this report, along with conclusions and proposals for further research.

  9. Chameleon dark energy and atom interferometry

    Science.gov (United States)

    Elder, Benjamin; Khoury, Justin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul

    2016-08-01

    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a three-dimensional nonlinear partial differential equation. This paper calculates the chameleonic force using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the partial differential equation to a one-dimensional ordinary differential equation. We examine the effects of approximations made in previous efforts on this subject and calculate the chameleonic force in a setup that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its offset from the center, and the effects of the chamber walls. Remarkably, the acceleration on a test atomic particle is found to differ by only 20% from the approximate analytical treatment. These results allow us to place rigorous constraints on the parameter space of chameleon field theories, although ultimately the constraint we find is the same as the one we reported in Hamilton et al. because we had slightly underestimated the size of the vacuum chamber. This computational technique will continue to be useful as experiments become even more precise and will also be a valuable tool in optimizing future searches for chameleon fields and related theories.

  10. Department of Atomic Energy [India]: Annual report 1979-1980

    International Nuclear Information System (INIS)

    The work of the research establishments, projects undertaken and public sector undertakings of the Department of Atomic Energy during the financial year 1979-80 is surveyed. The research and development activities of the Bhabha Atomic Research Centre at Bombay, the Reactor Research Centre at Kalpakkam, the Tata Institute of Fundamental Research at Bombay, the Saha Institute of Nuclear Physics at Calcutta and the Tata Memorial Centre at Bombay are described. An account of the progress of heavy water production plant projects, the Madras and Narora Atomic Power Projects, the MHD project and the 100 MW thermal research reactor R-5 Project at Trombay is given. Performance of the Tarapur and Rajasthan Atomic Power Stations, Nuclear Fuel Complex at Hyderabad, Atomic Minerals Division, ISOMED (the radiation sterilisation plant for medical products) at Bombay, the Indian Rare Earths Ltd., the Uranium Corporation of India Ltd., and the Electronics Corporation of India Ltd., Hyderabad is reported. (M.G.B.)

  11. Unparticle contribution to the hydrogen atom ground state energy

    Science.gov (United States)

    Wondrak, Michael F.; Nicolini, Piero; Bleicher, Marcus

    2016-08-01

    In the present work we study the effect of unparticle modified static potentials on the energy levels of the hydrogen atom. By using Rayleigh-Schrödinger perturbation theory, we obtain the energy shift of the ground state and compare it with experimental data. Bounds on the unparticle energy scale ΛU as a function of the scaling dimension dU and the coupling constant λ are derived. We show that there exists a parameter region where bounds on ΛU are stringent, signaling that unparticles could be tested in atomic physics experiments.

  12. Energy and decay width of the pi-K atom

    CERN Document Server

    Jallouli, H

    2006-01-01

    The energy and decay width of the pi-K atom are evaluated in the framework of the quasipotential-constraint theory approach. The main electromagnetic and isospin symmetry breaking corrections to the lowest-order formulas for the energy shift from the Coulomb binding energy and for the decay width are calculated. They are estimated to be of the order of a few per cent. We display formulas to extract the strong interaction S-wave pi-K scattering lengths from future experimental data concerning the pi-K atom.

  13. A study of the effects of the programme 'Energy 2000' on the Swiss market

    International Nuclear Information System (INIS)

    This is a study's summary of the effects of the programme 'Energy 2000' set up by the Swiss government along with its regional counterparts and the Swiss industry in response to the energy policy article in the Swiss Constitution adopted by a referendum in 1990. The question was whether 'Energy 2000' has an influence on the market, and especially whether the principles of the market economy, which any governmental promotion programme has to comply with, have been effectively obeyed. The study has been done in the course of the 9th year of 'Energy 2000', which aims at promoting energy conservation and renewable energy sources. The study focuses on the work-out of an analytical project able to estimate the interventions' consequences of the State on the market, from a point of view of economy and law. The authors present recommendations applicable to a follow-up programme beginning 2001, after the completion of 'Energy 2000'. The report also includes a response of the Swiss Federal Office of Energy to the formulated recommendations and, more generally, to the whole content of the report

  14. Basic plan of development and utilization of atomic energy, 1980

    International Nuclear Information System (INIS)

    The stable acquisition of energy is indispensable for the maintenance and improvement of national living standard and the development of social economy. The supply of oil tends to be tight in medium and long term perspective. Japan must acquire oil stably, save oil consumption as far as possible, and develop substitute energy. The development and utilization of atomic energy must be promoted as the most important subject in the energy policy because it is the most promising substitute energy. The nuclear power stations in operation in Japan are 21 plants with 15 million kW capacity, and it is equivalent to 12% of the total power generation. Adding the plants under construction and in preparation, the total becomes 35 plants and 28 million kW, but the construction is behind schedule due to the difficulty in the location of new power stations. As for the research and development on atomic energy, the establishment of nuclear fuel cycle such as the enrichment of uranium, the reprocessing of fuel and the treatment and disposal of radioactive wastes, the development of power reactors of new types, the research on nuclear fusion and so on have been endeavored. The maintenance of health of people and the preservation of environment are the prerequisities to the promotion of atomic energy. Japan contributes to form the new order on the basis of the results of INFCE. The development and utilization of atomic energy in 1980 are forwarded based on the basic policy described. (Kako, I.)

  15. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    K Chakrabarti

    2001-04-01

    Low energy positron impact ionization of atomic hydrogen is studies theoretically using the hyperspherical partial wave method of Das [1] in constant 12, equal energy sharing geometry. The TDCS reveal considerable differences in physics compared to electron impact ionization under the same geometry.

  16. An atomic clockwork using phase dependent energy shifts

    CERN Document Server

    De Munshi, D; Mukherjee, M

    2011-01-01

    A frequency stabilized laser referenced to an unperturbed atomic two level system acts as the most accurate clock with femtosecond clock ticks. For any meaningful use, a Femtosecond Laser Frequency Comb (FLFC) is used to transfer the atomic clock accuracy to electronically countable nanosecond clock ticks. Here we propose an alternative clockwork based on the phenomenon that when an atomic system is slowly evolved in a cyclic path, the atomic energy levels gather some phase called the geometric phase. This geometric phase dependent energy shift has been used here to couple the two frequency regimes in a phase coherent manner. It has also been shown that such a technique can be implemented experimentally, bypassing the highly involved setup of a FLFC.

  17. Non—conservation of energy arising from atomic dipole interactions and its effects on light field and coupled atoms

    Institute of Scientific and Technical Information of China (English)

    DongChuan-Hua

    2003-01-01

    The interactions between coulpled atoms and a single mode of a quantized electromagnetic field, which involve the terms originating from the dipole interactions, are discussed. In the usual Jaynes-Cummings model for coupled atoms, the terms of non-conservation of energy originating from dipole interactions are neglected, however, we take them into consideration in this paper. The effects of these terms on the evolutions of quantum statistic properties and squeezing of the field, the squeezing of atomic dipole moments and atomic population inversion are investigated. It has been shown that the coupling between atoms modulates these evolutions of fields and atoms. The terms of non-conservation of energy affect these evolutions of field and atoms slightly. They also have effects on the squeezing of the field, the squeezing of atomic dipole and atomic population inversions. The initial states of atoms also affect these properties.

  18. Non-conservation of energy arising from atomic dipole interactions and its effects on light field and coupled atoms

    Institute of Scientific and Technical Information of China (English)

    董传华

    2003-01-01

    The interactions between coupled atoms and a single mode of a quantized electromagnetic field, which involve the terms originating from the dipole interactions, are discussed. In the usual Jaynes Cummings model for coupled atoms,the terms of non-conservation of energy originating from dipole interactions are neglected, however, we take them into consideration in this paper. The effects of these terms on the evolutions of quantum statistic properties and squeezing of the field, the squeezing of atomic dipole moments and atomic population inversion are investigated. It has been shown that the coupling between atoms modulates these evolutions of fields and atoms. The terms of non-conservation of energy affect these evolutions of fields and atoms slightly. They also have effects on the squeezing of the field, the squeezing of atomic dipole and atomic population inversions. The initial states of atoms also affect these properties.

  19. Chameleon Dark Energy and Atom Interferometry

    CERN Document Server

    Elder, Benjamin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul

    2016-01-01

    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a 3-dimensional nonlinear partial differential equation (PDE). In this paper, we introduce a new technique for calculating the chameleonic force, using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the PDE to a 1-dimensional ordinary differential equation (ODE). We examine the effects of approximations made in previous efforts on this subject, and calculate the chameleonic force in a set-up that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its o...

  20. An international peer review of the biosphere modelling programme of the US Department of Energy's Yucca mountain site characterization project. Report of the IAEA International Review Team

    International Nuclear Information System (INIS)

    The United States Department of Energy (DOE) has a project for characterizing the site of a facility for disposing of radioactive waste located at Yucca Mountain Nevada, USA (the Yucca Mountain Site Characterization Project). This Project has developed an approach for assessing the future potential impact of any releases of radionuclides to the biosphere from a potential disposal facility sited at Yucca Mountain The DOE requested the International Atomic Energy Agency (IAEA) to organize an independent international expert review of the assessment methodology being used in its biosphere modelling programme. The IAEA accepted the request in the context of its statutory obligation to provide for the application of its established international standards of safety for the protection of health, at the request of a State, to any of that State's activities in the field of atomic energy. The terms of reference of the peer review were to review the biosphere assessment methodology being used for the total system performance assessment of the potential disposal facility. The main purpose was to analyze critically the proposed rationale and methodology and to identify consistencies and inconsistencies between methods being used in the frame of the Project and those established in international standards or in international programmes such as the IAEA's Biosphere Modelling and Assessment Programme (BIOMASS). This report presents the consensus view of the international experts convened by the IAEA for carrying out the review

  1. The International Atomic Energy Agency - IAEA

    International Nuclear Information System (INIS)

    The origens, functions and objectives of the IAEA are analysed. The application of safeguards to avoid military uses of nuclear energy is discussed. In the final section the agrement between Brazil and Germany regarding IAEA safeguards, as well as the competence for executing the brazilian program are explained. It is, then, an informative study dealing with nuclear energy and its peaceful path, the creation of International Fuel Cycle Evaluation and nonproliferation

  2. The environmental energy sector programme. Poland: Appendices to feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The appendices contain Energy Law, Act of 10 April 1997 and also more specific details from the feasibility study for the procurement of a financial solution to the modernisation of the combined heat and power plant in the city of Zielona Gora, Poland. (EHS)

  3. Annual report 1985-86 [of the Department of Atomic Energy of the Government of India

    International Nuclear Information System (INIS)

    The performance and activities during the financial year 1985-86 of the Department of Atomic Energy (DAE), India and its various units are reported. The various units of the DAE can broadly be categorised into groups: research establishments, production units and public sector undertakings. After taking a general survey, the detailed report is presented under the chapters entitled: (1) nuclear power, (2) research and development, (3) Atomic Energy Regulatory Board, (4) public sector undertakings, and (5) other activities. Some of the other activities include international relations in the field of nuclear energy, information services, organization of training courses to meet the requirements of programmes of the DAE, technology transfer, financial support to institutions and universities for research in nucler science, and sponsoring of conferences, symposia etc. in the field of nuclear science and its applications. Major achievements of the DAE during the report period are: (1) attainment of criticality by the indigenously designed and built 100 MWt research reactor DHRUVA at Trombay, Bombay, (2) attainment of criticality by the Fast Breeder Test Reactor at Kalpakkam, (3) commissioning of the second unit of the Madras Atomic Power Station and its subsequent synchronisation with the power grid, (4) commissioning of the vitrification plant for management of high level radioactive wastes at Tarapur, and (5) successful testing of a 5 mwt MHD pilot at Tiruchirapalli. (author)

  4. Energy economics basics - Emphasis programme 2004 - 2007; Schwerpunktprogramm EWG 2004 bis 2007

    Energy Technology Data Exchange (ETDEWEB)

    Gutzwiller, L.

    2005-07-01

    This report from the Swiss Federal Office of Energy (SFOE) examines the work done within the framework of the interdisciplinary energy economics programme on scenarios and instruments for energy policy-making and economics, as well as on social and environmental aspects. The report reviews the emphasis and goals of the next phase of the programme for the period 2004 - 2007. A research road map is discussed that is to identify promising technologies that will provide a substantial contribution to meeting the goal of creating the so-called '2000-Watt Society'. The road map is to also help identify technologies that provide socio-economic advantages and identify bottlenecks and restraints on the propagation of energy-efficient technologies in the building and transport areas.

  5. The future of the ''intelligent Energy for Europe'' programme stakeholders consultation on the framework programme for competitiveness and innovation (CIP) Energie-Cites Opinion; L'Avenir du Programme ''Energie Intelligente Europe'' consultation des acteurs sur le programme pour la competitivite et l nnovation Avis d nergie-Cites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-11-01

    The European Commission has launched a Consultation relative to the integration of support programmes to energy efficiency (EIE Programme) in the Competitiveness and Innovative Programme (CIP), this one being integrated in the Lisbon process. This consultation offers the opportunity to Energie-Cites to define its opinion on the relationships between Sustainable energy, Competitiveness and Innovation. - If Europe is to become the most competitive and innovative region in the world, it must consider this objective from the angle of sustainable growth, that is, by promoting the efficient use of fossil resources and by controlling the effluents and waste that are generated by the transformation of energy. What is at stake for Europe is its capacity to propose an energy model (consumption and production) that can be reproducible in the rest of the world. In other hands, the integration of energy efficiency and renewable energy support programmes into a broader scheme (CIP) covering very different areas, with no links between them and with no clear information regarding both the financial amounts and sources involved, entails a major risk, that of reducing, or even suppressing support at a time when we need it most. From the current understanding of the situation, Energie-Cites is not favourable to such integration. (A.L.B.)

  6. The licensing procedure under Atomic Energy Law

    International Nuclear Information System (INIS)

    This post-doctoral thesis of 1981 has been updated to include developments in this field up to the year 1983. The author discusses in detail all questions relating to the peaceful uses of nuclear energy in the Federal Republic of Germany, predominantly from the point of view of administrative law. He investigates nuclear energy and its contribution to electricity supplies with a view to other energy sources, renewable energy sources, alternative energy policies, nuclear fuel and the fuel cycle, development of the nuclear industry, nuclear power stations in operation, under construction, or in development. Following a survey of the nuclear controversy, both on the national and the international level, the author reviews the legal system and arising controversies in the Federal Republic of Germany, defining the purpose of this thesis to be the systematic analysis of the available legal instruments, in order to show structural deficiencies in the planning law relating to nuclear power stations, and thus reasons of ambiguities within the licensing procedure. The author studies the following terms and requirements: licensing requirements and licensability, the licensing method and scenario, the legal character of licences, their contents and effects within the stepwise procedure, and due publication. (HSCH)

  7. A tentative programme towards a full scale energy amplifier

    CERN Document Server

    Rubbia, Carlo

    1996-01-01

    We present a proposal of a full scale demonstration plant of the Energy Amplifier (EA), following the conceptual design of Ref. [1]. Unlike the presently on going CERN experiments, reaction rates will be sufficiently massive to permit demonstrating the practical feasibility of energy generation on an industrial scale and to tackle the complete family chains of [1] the breeding process in Thorium fuel, [2] the burning of the self-generated Actinides, [3] the Plutonium (higher Actinides) burning of spent fuel from ordinary Reactors and [4] Fuel reprocessing/regeneration. The accelerator must provide a beam power which is commensurate to the rate of transformations which are sought. No existing accelerator can meet such a performance and a dedicated facility must be built. We describe an alternative based on the superconducting cavities (SC) now in standard use at the LEP \\[e^+-e^-\\] collider which is scheduled to terminate its operation by year 200 After this time, with reasonable modifications, the fully opera...

  8. Renewable energy rural electrification. Sustainability aspects of the Mexican programme in practice

    International Nuclear Information System (INIS)

    During the last 20 years Mexico has been fertile ground for rural projects using renewable energy technologies. In many cases, however, sustainability aspects were either improperly handled or essentially ignored. Such was the case, for instance, with solar thermal water pumping projects, solar water desalination, and even complete 'solar towns'. Painful but important lessons were learned from such failed projects. Now, sustainability is the focal point of a current rural electrification programme with renewable energy. As of this writing, over 24,000 individual home photovoltaic lighting systems have already been installed in different regions of Mexico; another 12,000 systems are estimated to have been installed in rural areas as a result of private commercial activities; seven village-size hybrid systems (photovoltaic-wind and photovoltaic-wind-diesel) have also been implemented. With this, the Mexican renewable energy rural electrification programme stands among the largest programmes of its kind in the world today. The question of the programme's sustainability has been a major concern at the Electrical Research Institute of Mexico (IIE), where activities have been under way since the start to lend it technical support. The lessons learned in the process will be discussed in this article. (author). 8 refs

  9. Scientists speak of the peaceful use of atomic energy

    International Nuclear Information System (INIS)

    Experts from Argentina, Cuba, Mexico, Peru and Costa Rica have met in that last country, to offer the forum 'Peaceful uses of atomic energy: prospects for Costa Rica'. Specialists were invited by the Centro de Investigacion en Biologia Celular y Molecular (CIBCM) of the Universidad de Costa Rica (UCR) and the Centro de Investigacion en Biotecnologia (CIB) of Instituto Tecnologico de Costa Rica. The forum has developed around the theme the usefulness of atomic energy for science, and importance for the development of the country. The peaceful use of atomic energy was explained by specialists in each country, specifically in the field of health, industry, agriculture, industrial equipment sterilization, medical products, body tissues and crops

  10. Bremsstrahlung spectra from atoms and ions at low relativistic energies

    International Nuclear Information System (INIS)

    Analytic expressions for bremsstrahlung spectra from neutral atoms and ions, including the polarizational bremsstrahlung contribution in a stripped atom approximation, are developed for electron scattering at energies of 10-2000 keV. A modified Elwert factor and a simple higher Born correction are used for the Coulomb spectrum, with ordinary bremsstrahlung screening effects in ions and atoms adequately characterized in the non-relativistic Born approximation. In parallel with the development of this analytic description, new numerical results are obtained for ordinary bremsstrahlung from ions and from bare nuclei, appreciably extending the available data set which can be used to study dependences on element, ionicity, energy and the fraction of incident energy radiated. The accuracy of predictions with the analytic expressions is then determined by comparison with the full numerical relativistic partial-wave results for ordinary bremsstrahlung and with non-relativistic numerical results in the Born approximation or in partial waves for the polarizational amplitude. (author)

  11. General engineering ethics and multiple stress of atomic energy engineering

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kunihiko [Shibaura Inst. of Tech., Tokyo (Japan)

    1999-08-01

    The factors, by which the modern engineering ethics has been profoundly affected, were classified to three categories, namely mental blow, the destruction of human function and environment damage. The role of atomic energy engineering in the ethic field has been shown in the first place. It is pointed out that it has brought about the mental blow by the elucidation of universal truth and discipline and the functional disorder by the power supply. However, the direct effect of radiation to the human kinds is only a part of the stresses comparing to the accumulation of the social stress which should be taken into account of by the possibility of disaster and the suspicion of the atomic energy politics. An increase in the multiple stresses as well as the restriction of criticism will place obstacles on the promotion of atomic energy. (author)

  12. General engineering ethics and multiple stress of atomic energy engineering

    International Nuclear Information System (INIS)

    The factors, by which the modern engineering ethics has been profoundly affected, were classified to three categories, namely mental blow, the destruction of human function and environment damage. The role of atomic energy engineering in the ethic field has been shown in the first place. It is pointed out that it has brought about the mental blow by the elucidation of universal truth and discipline and the functional disorder by the power supply. However, the direct effect of radiation to the human kinds is only a part of the stresses comparing to the accumulation of the social stress which should be taken into account of by the possibility of disaster and the suspicion of the atomic energy politics. An increase in the multiple stresses as well as the restriction of criticism will place obstacles on the promotion of atomic energy. (author)

  13. International nuclear low and atomic energy

    International Nuclear Information System (INIS)

    The aim of this work is to put points on the codification of international law of nuclear energy and its uses in military and peaceful in the first part. The second part was devoted for the imperfection of the law of international nuclear.

  14. Energy conservation 1999-2002. Programme of action; Energiebesparing 1999-2002. Actieprogramma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    In this programme of action it is described what contribution the Dutch government expects from different sectors and target groups in the Dutch society. Also an overview is given of the tools that can be used to realize energy conservation targets. Activities for energy efficiency improvements concern a goal-oriented approach of final consumers, a clear division of responsibilities within the Dutch government, and an important role for the intermediary organizations. In the programme of action eight different groups of final consumers are distinguished: the energy-intensive industry, the medium-sized businesses, the profit sector, medium and small businesses, the agricultural sector, the non-profit sector, governmental bodies, and households. The tools that can be applied are bench-marking and long-range agreements on energy efficiency improvements for the energy-intensive industry, and taxes and levies, counselling and regulations for the other sectors. It is stressed that the programme of action can only be successful if every party involved (governmental departments, intermediaries, such as municipalities, energy suppliers and societal organizations) are willing to cooperate actively. Special attention is paid to the subject of monitoring to control the progress and quality of the activities and measures to be taken

  15. International Atomic Energy Agency annual report 2007: 50 years of atoms for peace

    International Nuclear Information System (INIS)

    The Annual Report reviews the results of the Agency's programme according to the three pillars of technology, safety and verification. The main part of the report generally follows the programme structure as given in The Agency's Programme and Budget 2006-2007 (GC(49)/2). The introductory chapter seeks to provide a thematic analysis, based on the three pillars, of the Agency's activities within the overall context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2007 and Background to the Safeguards Statement. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM, and is also available on the Agency's web site at http://www.iaea.org/Worldatom/Documents/Anrep/Anrep2007/. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The topics covered in the chapter related to technology are: nuclear power; nuclear fuel cycle and materials technologies; capacity building and nuclear knowledge maintenance for sustainable energy development; nuclear science; food and agriculture; human health; water resources; assessment and management of marine and terrestrial environments; radioisotope production and radiation technology; safety and security; incident and emergency preparedness and response; safety of nuclear installations; radiation and transport safety; management of radioactive waste; nuclear security

  16. The tenth Arab conference on peaceful uses of atomic energy

    International Nuclear Information System (INIS)

    This conference includes the paper presented at the tenth Arab conference of the peaceful uses of Nuclear Atomic Energy that is organized by AAEA (Arab Atomic Energy Agency) in cooperation with Iraqi Ministry of Science and Technology and Kurdistan government , held in Erbil (Iraq) from 12-16 December 2010. This conference consists of three volumes covering the following concepts: Analysis and Material Improvement, Soil fertility, Water Recourse Management, Nuclear Medicine and Biological Irradiation, Isotopes Production, Improvement of Plant and Animal Production, Decommissioning and Dismantling of Nuclear Facilities, Radioactive Waste Management, Nuclear Safety and Security of Radiation Protection, Pest Control and Food Irradiation Processing

  17. Atom-interferometry constraints on dark energy

    OpenAIRE

    Hamilton, Paul; Jaffe, Matt; Haslinger, Philipp; Simmons, Quinn; Müller, Holger; Khoury, Justin

    2015-01-01

    If dark energy --- which drives the accelerated expansion of the universe --- consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultra-high vacu...

  18. Philippine Atomic Energy Commission 1972 - 1980

    International Nuclear Information System (INIS)

    This publication presents in a nutshell the organization, its facilities and equipment resources and its thrusts and accomplishments as contributions to the country's programs from 1972 to 1981. It enumerates its research and development program geared toward basic needs like food and agriculture, energy studies; industry and engineering, medicine, public health and nutrition, improvement of the human environment and other basic objective researches. Equally important besides its research and development program are its other functions on nuclear regulation and safety, technical extension services, nuclear public acceptance, nuclear manpower development, and its commitments in international affairs by means of bilateral agreements. (author)

  19. Energy prices and the promotion of energy conservation. A background study for energy conservation programme

    International Nuclear Information System (INIS)

    The prices of fuels in the international markets affect the development of consumer prices of energy in Finland. In the near future no factors can be foreseen, which would cause major increases in the prices of oil, coal or gas. It can thus not be expected that increased fuel prices would motivate more efficient energy conservation. In international comparison, consumer prices of energy have been relatively low in Finland. This applies especially to electricity. After the removal of price controls, energy prices have been determined by the markets. The influence of the public authorities in energy pricing is put into effect through taxation. The price of energy has a fairly small effect on energy consumption in a short term, but longer term effects are more significant. Energy products are faxed in all western countries. (orig.)

  20. International Atomic Energy Agency: Personal reflections

    International Nuclear Information System (INIS)

    This set of personal recollections reflect a variety of views from twenty-five people who have played major roles in shaping the policies of the IAEA or have made notable contributions to its work at different periods of its history. They provide individual insights - often from a rarely available insider's perspective - into particular aspects of the development of an international organization and thus complement the History of the IAEA written by David Fischer. The articles in this collection illustrate some of the complexities involved in the work of an international organization, where the Governing Bodies consist of over a hundred Member States, with different levels of industrial development, different political outlooks and different interests in the benefits of nuclear energy or concerns about the spread of nuclear weapons

  1. Correlated energy transfer between two ultracold atomic species

    Science.gov (United States)

    Krönke, Sven; Knörzer, Johannes; Schmelcher, Peter

    2015-05-01

    We study a single atom as an open quantum system, which is initially prepared in a coherent state of low energy and oscillates in a one-dimensional harmonic trap through an interacting ensemble of NA bosons, held in a displaced trap [arXiv:1410.8676]. The non-equilibrium quantum dynamics of the total system is simulated by means of an ab-initio method, giving us access to all properties of the open system and its finite environment. In this talk, we focus on unraveling the interplay of energy exchange and correlations between the subsystems, which are coupled in such a spatio-temporally localized manner. We show that an inter-species interaction-induced level splitting accelerates the energy transfer between the atomic species for larger NA, which becomes less complete at the same time. System-environment correlations prove to be significant except for times when the excess energy distribution among the subsystems is highly imbalanced. These correlations result in incoherent energy transfer processes, which accelerate the early energy donation of the single atom. By analyzing correlations between intra-subsystem excitations, certain energy transfer channels are shown to be (dis-)favored depending on the instantaneous direction of transfer.

  2. Energy research 2004 - Overview; Recherche energetique / Energie-Forschung 2004. Rapport de synthese des chefs de programme / Ueberblicksberichte der Programmleiter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-05-15

    This publication issued by the Swiss Federal Office of Energy (SFOE) presents an overview of advances made in energy research in Switzerland in 2004. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energies, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, combustion, fuel cells and in the process engineering areas. In the renewable energy area, projects concerning solar heating and cooling, energy storage, photovoltaics, solar chemistry and hydrogen, biomass, small-scale hydro, geothermal energy and wind energy are presented. Work being done on nuclear safety and disposal regulations as well as controlled thermonuclear fusion are discussed.

  3. A Bibliography of Basic Books on Atomic Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1974-01-01

    This booklet lists selected commercially published books for the general public on atomic energy and closely related subjects. Books for young readers have school grade annotations.This booklet contains an author index, a title index, and a list of publishers’ addresses.

  4. Annual Report 2003 of the Institute of Atomic Energy

    International Nuclear Information System (INIS)

    Annual report of the Institute of Atomic Energy, Swierk (PL), described the results of the research work carried out at the Institute in 2003 year. The report contains detailed information on technical and research studies developed by all Institute Departments and Laboratories

  5. Radiation therapy. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalog lists all sales publications of the International Atomic Energy Agency dealing with Radiation Therapy, and issued during the period 1 January 1990 - 30 April 2001. Most publications are issued in English, though some are also available in other languages. These are noted in the catalogue

  6. Atomic Energy of Canada Limited annual report 1985-86

    International Nuclear Information System (INIS)

    The annual report of Atomic Energy of Canada Limited for the fiscal year ended March 31, 1986 covers the following subjects: report from the chairman and the president; research company; CANDU operations; radiochemical company; employee performance; nuclear Canada; Financial section; and board of directors and officers

  7. Atomic Energy of Canada Limited, annual report, 1995-1996

    International Nuclear Information System (INIS)

    The 1996 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of Parliament, Minister of Natural Resources. Included in this report are messages from Marketing and Commercial Operation, Product Development, i e.CANDU and Research Reactors, CANDU research, Waste Management, Environmental Management, Financial Review and also included are copies of the financial statements

  8. Current trend of atomic energy development in Japan - 2

    International Nuclear Information System (INIS)

    The atomic energy power generation is recognized to be important to solve the problems of the competitive relations among the Asian developing countries due to the increasing dependency on the crude oil produced in the Middle East and the insecurity of transport route of the oil. The reorganization and inauguration of JNC(former PNC) has been carried out for the development of liquid metal reactor and related fuel cycle technology as the national development project to prevent the global green house effect and to continue the economic development. The construction of light water reactor, the utilization of plutonium in light water reactor and the enrichment and reprocessing of spent fuel of light water reactor are classified as proven technologies which will be covered by the industry. The government will lead to the environment favorable for introduction of the atomic energy and will monitor the situation. The specifics of atomic energy development project and the development system for the 21th century will be contained in the long term atomic energy development plan which will be completed by 2000 and the reorganization operation has been initiated. (author). 41 refs., 5 tabs., 30 figs

  9. Ground state wave function and energy of the lithium atom

    OpenAIRE

    Puchalski, Mariusz; Pachucki, Krzysztof

    2006-01-01

    Highly accurate nonrelativistic ground-state wave function and energy of the lithium atom is obtained in the Hylleraas basis set. The leading relativistic corrections,as represented by Breit-Pauli Hamiltonian, are obtained in fair agreement with the former results. The calculational method is based on the analytical evaluation of Hylleraas integrals with the help of recursion relations.

  10. Scientists credit `Atoms for Peace' for progress on energy, security

    CERN Multimedia

    Jones, D

    2003-01-01

    "Fifty years after President Eisenhower unveiled his plan for developing peaceful uses for nuclear fission, the scientific advances spawned by his Atoms for Peace program have made possible major advances in energy and national security, a panel of physicists said last week" (1 page).

  11. A history of the Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Topics covered include the pre-history of the AECB, its creation, early operations and evolution, its relations with nuclear research, the uranium industry, and the nuclear power industry, its involvement with transportation and safeguards, and some current problems. The focus is on the Atomic Energy Control Act and regulations derived from the act

  12. Delegation from the Pakistan Atomic Energy Commission (PAEC)

    CERN Multimedia

    Patrice Loiez

    2002-01-01

    L. to r.: Dr Hafeez Hoorani (NCP) and Dr Michel Della Negra, Spokesman, CMS experiment with a delegation from the Pakistan Atomic Energy Commission: Mr Saeed Ahmed, Director SES, PAEC, Mr Muhammad Naeem, Director PWI and Mr Javed Iqleem, Deputy Chairman PAEC visiting the CMS magnet assembly hall at Point 5.

  13. The World Power Conference and atomic energy

    International Nuclear Information System (INIS)

    The possibility that emerged after the last World War that useful power could be produced from nuclear fission led to optimistic estimates that nuclear power would prove to be the solution to the world's energy problems. The possible advantages of nuclear methods of power production compared with conventional means are discussed at the World Power Conference. The 1962 Conference with its theme 'The Changing Pattern of Power' will undoubtedly attract great interest in a world where the change-over from conventional to nuclear fuels for power production has started in some countries and is being actively examined in others. It is generally being realized that even though a country may possess indigenous supplies of uranium or thorium minerals, the building up of a nuclear industry i s a long and expensive process and the alternative of depending on countries more advanced in nuclear technology for the supply of materials, skill and know-how is costly in foreign exchange and international prestige. Many of the industrialized countries, still possessing supplies of conventional fuels, are preparing for the day when their reserves will become depleted and are embarking on training schemes to ensure a continuing supply of engineers and scientists skilled in nuclear arts

  14. Corrections to the Nonrelativistic Ground Energy of a Helium Atom

    Institute of Scientific and Technical Information of China (English)

    段一士; 刘玉孝; 张丽杰

    2004-01-01

    Considering the nuclear motion, we present the nonrelativistic ground energy of a helium atom by using a simple effective variational wavefunction with a flexible parameter k. Based on the result, the relativistic and radiative corrections to the nonrelativistic Hamiltonian are discussed. The high precision value of the helium ground energy is evaluated to be -2.90338 a.u. With the relative error 0.00034%.

  15. Bioenergy research programme results on the harvesting of energy wood; Bioenergian tutkimusohjelman tuloksia energiapuun korjuusta

    Energy Technology Data Exchange (ETDEWEB)

    Ryynaenen, S.

    1999-07-01

    The six-year-long Bioenergy Research Programme, which ended at the end of 1998 has been assessed to have been among the best energy-technology programmes carried out concurrently under the auspices of TEKES. The concrete results obtained have for their part contributed to the powerful increase in the use of fuelwood and small-diameter trees (logging residues) on logging sites in Finland. The competitiveness of energy wood improved greatly thanks to the technology developed in the course of the programme and the concurrent changes in taxation implemented. The expenditures goal of the research programme as regards the large-scale production of chipped small-diameter trees (logging residues) was set at FIM 45 per MWh. This can be achieved when using the harvesting methods developed in connection with the research programme for logging- residue chips involving truck-, logging-strip- or landing-based chipping and short forest-haulage distances in relatively easy harvesting conditions. The development objective as regards small-scale production of fuelwood was to reduce production costs by 20 % of what they were in 1992. This was the assignment given to the TTS-Institute and machine manufacturers. The objective was achieved in the production of a chopped firewood and longwood chips. The savings in costs were achieved by mechanising the felling of longwood using new harvester heads and by using feeder-equipped chopping machines to do the chopping. The objective in the forest haulage of logging residues was achieved by using trailers developed at the TTS-Institute. (orig.)

  16. Nuclear fuel cycles as reflected in the atomic energy laws

    International Nuclear Information System (INIS)

    The author measures the stations of the nuclear fuel cycles against the requirements laid down by the constitution and the Atomic Energy Act. All safety-relevant installations of the nuclear fuel cycles for LWR-type and FBR-type reactor stations are explained and defined in the first section of the book, stating facts and technical aspects including the capacity problems in connection with spent fuel management and the resulting need for interim storage facilities. The following sections on the legal aspects discuss the various installations in comparison to the legal requirements and definitions of the Atomic Energy Act. The author emphasizes the separation of competences for the determination of safety-relevant facts (natural sciences and engineering), and for weighting decisions on the required prevention of damage (state powers). The licensing requirements given in section 7, sub-sec. (2) Atomic Energy Act and their respective relationships are examined in detail. The lines of concretization emanating from section 7, sub-sec. (2), no. 3 Atomic Energy Act are followed up down to the lowest level of legislative powers, and essential deficits in the light of constitutional law are pointed out, together with suggestions for improvement. Within the frame of a constitutional interpretation of section 7, sub-sec. (2), no. 3 Atomic Energy Act, the author analyses the decisions of the Federal Constitutional Court concerning the protective obligations of the state and their validity with regard to future generations, showing that the Federal Constitutional Court applies higher safety standards than those currently used by the administrative bodies. On this basis, the author develops a national, arithmetical average of natural radiation burden to serve as a substantive criterion for determining the borderline between damage prevention and risk to be accepted. (orig./HP)

  17. The Department of Energy's nuclear R and D programmes [United Kingdom

    International Nuclear Information System (INIS)

    This Consultation Document reviews how the United Kingdom Department of Energy's nuclear R and D programmes support the Government's nuclear policy and reaches preliminary conclusions about their future direction. It describes the changes the Department has adopted, and is proposing, to ensure that it is better informed about the nuclear R and D it commissions and that the work is carried out cost-effectively. The areas of research reviewed are: safety; radiological protection; safeguards; reactor technology; fusion; decommissioning and waste management. (author)

  18. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  19. Arbitrary excitation of atomic hydrogen at high energies

    International Nuclear Information System (INIS)

    Because of the growing need of excitation cross-section data of atomic hydrogen by fully stripped heavy ions for the preparation of an atomic database for neutral-beam penetration in large tokamaks, we have calculated these data in the framework of the first-order Born approximation for n≤20 in the energy range of 0.1 to 1.5 MeV/amu. The present computed results are found to be in agreement with the existing observed results. From the present calculation it also appears that the contribution from subshells characterized by l>3 is always less than 2%

  20. Quickening nature's pulse: atomic agriculture at the International Atomic Energy Agency.

    Science.gov (United States)

    Hamblin, Jacob Darwin

    2015-01-01

    Mutation breeders in the 1960s seemed poised to use atomic energy to speed up mutation rates in plants in order to develop new crop varieties, for the benefit of all people. Although skepticism had slowed this work in the United States, the International Atomic Energy Agency (IAEA) nurtured the scientific field, its community of experts, and an imagined version of the future that put humans in control of their destiny. The IAEA acted as a center of dissemination and support for experts and ideas even when they had fallen from favor elsewhere. Through the lens of the IAEA, plant breeding bore the appearance of a socially progressive, ultra-modern science destined to alleviate population pressures. Administrators at the IAEA also were desperate for success stories, hoping to highlight mutation plant breeding as a potential solution to the world's ills. The community of mutation plant breeders gained a lifeline from the consistent clarion call from the Vienna-based agency to use atomic energy to understand the natural world and quicken its pulse with radioisotopes.

  1. TV programme presentations: Bang Goes the Theory by BBC (2010) and Beyond the Atom with John Ellis by Redes and Science Networks (2010)

    CERN Multimedia

    Carolyn Lee

    2011-01-01

    BBC’s Bang Goes the Theory explores various aspects of science. In this episode, presenter Dallas Campbell travels to CERN to meet physicist Tara Shears and learn more about antimatter. Other topics include breath-holding techniques such as free diving, and what exactly is horsepower and how is it measured? In addition, Redes and Science Networks have produced "Beyond the Atom with John Ellis", a TV programme presented by Eduard Punset and featuring CERN theorist John Ellis. The aim of this programme is to understand more about what matter is and what the physicists working on the LHC experiments hope to discover, including the Higgs boson, dark matter and supersymmetry. This programme is in English and Spanish with English subtitles. Bang Goes the Theory will be presented on Friday 11 March from 13:00 to 13:30 Language: English Beyond the Atom with John Ellis will be presented on Friday 11 March from 13:30 to 14:00 Language: English and Spanish with English subtitles Both will be...

  2. CANAS '01 - Colloquium analytical atomic spectroscopy; CANAS '01 - Colloquium Analytische Atomspektroskopie. Programm. Kurzfassungen der Vortraege und Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The main topics of the meeting on analytical atom spectroscopy were: optical atom spectrometry, x-ray fluorescence analysis, absorption spectroscopy, icp mass spectroscopy, trace analysis, sampling, sample preparation and quality assurance.

  3. Correlation Between Energy Transfer Rate and Atomization Energy of Some Trinitro Aromatic Explosive Molecules

    Institute of Scientific and Technical Information of China (English)

    Su-hong Ge; Xin-lu Cheng; Zheng-lai Liu; Xiang-dong Yang; Fang-fang Dong

    2008-01-01

    An assumptive theoretical relationship is suggested to describe the property of molecular atomization energy and energy transfer rate in the initiation of explosions. To investigate the relationship between atomization energy and energy transfer rate, the number of doorway modes of explosives is estimated by the theory of Dlott and Fayer in which the rate is proportional to the number of normal mode vibrations. It was evaluated frequencies of normal mode vibrations of eight molecules by means of density functional theory (DFT) at the b3p86/6-31G(d,p) level. It is found that the number of doorway modes shows a linear correlation to the atomization energies of the molecules, which were also calculated by means of the same method. A mechanism of this correlation is discussed. It is also noted that in those explosives with similar molecular structure and molecular weight, the correlation between the atomization energy and the number of doorway modes is higher.

  4. Energy and decay width of the pi-K atom

    OpenAIRE

    Jallouli, H.; Sazdjian, H.

    2006-01-01

    The energy and decay width of the pi-K atom are evaluated in the framework of the quasipotential-constraint theory approach. The main electromagnetic and isospin symmetry breaking corrections to the lowest-order formulas for the energy shift from the Coulomb binding energy and for the decay width are calculated. They are estimated to be of the order of a few per cent. We display formulas to extract the strong interaction S-wave pi-K scattering lengths from future experimental data concerning ...

  5. Development of Air Sampling Technology by the Atomic Energy Research Establishment, Harwell

    International Nuclear Information System (INIS)

    For many years the Health Physics and Medical Division of the Atomic Energy Research Establishment, Harwell, has pursued a vigorous programme of investigation and development in the field of air-sampling technology. The programme has made important contributions to the development of sampling media, the design of sampling equipment, the characterization of environmental airborne contamination and the interpretation of air-sampling data in terms of personal exposure. These developments form the basis for the present operational and research programmes in this field in the United Kingdom Atomic Energy Authority (U.K.A.E.A). . This paper, which summarizes the advances made in the Harwell laboratories in the above fields, is divided into three sections: 1. Sampling techniques. The development and characterization of glass-fibre filter papers (Stevens and Hounam) with improved surface collection properties has simplified counting procedures and has made ' possible detailed autoradiographic examination of the dust collected. The problem of energy degradation of alpha radiation by absorption in particles and paper has been studied (Stevens and Toureau). Development of charcoal-impregnated papers (Stevens and Hounam) has facilitated the detection and measurement of airborne contamination by iodine vapour. The combination of these papers with granular characoal in the May Pack (May) has given a sampling device which is now in common use for the determination and characterization of atmospheric iodine contamination. The concept and development of the personal air sampler (Sherwood and Greenhalgh) led to a better appreciation of the uncertainties of conventional air sampling and to the first quantitative demonstration of the problems of interpreting air samples in terms of personal inhalation exposure. Work on the design of a size selective head for the personal air sampler has not yet resolved the difficulties. The drawbacks of the cascade impactor as a continuous size

  6. Technical Session: Germany. Legal Issues Associated with Preparing for a Nuclear Energy Programme

    International Nuclear Information System (INIS)

    Developing and implementing a national programme for the civilian use of nuclear energy means embarking on the use of a Janus-faced form of energy. We all know that nuclear energy implies both extraordinary benefits and extraordinary risks. This fact requires a legal framework appropriate to cope with both elements of nuclear power. Legislators and State authorities have to establish a sound balance between risks and benefits. That is not at all an easy task. While excluding or limiting risks requires severe legal control mechanisms, the benefits can only fully be enjoyed if the legal framework ensures freedom of research and of economic and industrial development including the guarantee of property ownership and of investments. Combining both opposite poles seems like trying to square the circle. In case of a conflict between promotion and protection, there is no doubt that the protection against nuclear risks has to prevail. Therefore this aspect of nuclear law will be mainly dealt with in this presentation. Establishing a legal framework to tame the hazards of nuclear energy is a much more challenging task for law-makers than providing a legal basis for promoting the use of nuclear energy. With regard to the promotion of nuclear energy, States enjoy a broad range of discretion and may use a great number of legal and non-legal instruments to support the development of a nuclear programme. From a legal point of view, promoting nuclear energy does not require a specific regime. However, it does require a specific regime to control the risks of nuclear energy. States preparing for a nuclear energy programme have to be aware that the use of nuclear energy is not an exclusively national matter. In particular the risk associated with nuclear energy extends beyond national borders. Using the benefits also needs international cooperation in many fields including, e.g., research or fuel supply. Today a network of multilateral and bilateral international treaties exists

  7. Training courses run by the Department of Atomic Energy, India

    International Nuclear Information System (INIS)

    The Department of Atomic Energy (DAE), India, conducts a large number of courses covering a variety of fields, mainly concerned with nuclear energy and its applications. These courses are : (1) a comprehensive multidisciplinary course in nuclear sciences and engineering, (2) courses in safety aspects of: (a) the medical uses of radioisotopes, (b) research applications of ionising radiations, (c) the industrial applications of radiation sources, and (d) industrial radiography; (3) industrial radiographer's certification course, (4) course in hospital physics and radiological physics, (5) diploma course in radiation medicine, (6) courses in operation and maintenance of: (a) research reactors and facilities, (b) nuclear power reactors, and (7) course in exploration of atomic minerals. Detailed information on these courses, covering institutions of DAE conducting them, duration, academic requirements for admission to them, method of adimission, detailed syllabus, and general information such as fees, accommodation, stipend if any, etc. is given. (M.G.B.)

  8. High energy halogen atom reactions activated by nuclear transformations

    International Nuclear Information System (INIS)

    This program, which has been supported for twenty-four years by the Us Atomic Energy Commission and its successor agencies, has produced significant advances in the understanding of the mechanisms of chemical activation by nuclear processes; the stereochemistry of radioactivity for solution of specific problems. This program was contributed to the training of approximately seventy scientists at various levels. This final report includes a review of the areas of research and chronological tabulation of the publications

  9. Electron radiative self-energy of highly stripped heavy atoms

    International Nuclear Information System (INIS)

    A new algorithm is presented for the evaluation of the electron radiative self-energy in heavy atoms, for which Zα is not a perturbative expansion parameter. The algorithm for hydrogenic ions is presented in detail. The terms to be evaluated numerically are finite, free of spurious gauge dependent parts, and are not in the form of a subtraction. The extension to many electron ions is also discussed. copyright 1991 Academic Press, Inc

  10. Atomic Energy Board, twenty first annual report, 1977

    International Nuclear Information System (INIS)

    Progress is reported on the following: nuclear materials, nuclear power, application of radioisotopes and radiation, health and safety, and fundamental studies undertaken in the fields of physics, chemistry, metallurgy, medicine and geology during 1977. The supporting activities of the computer services, engineering sevices, waste disposal plant, instrumentation section, research reactor and analytical services are given for 1977. The report contains a bibliography of publications published by staff members and bursars of the Atomic Energy Board during 1977

  11. Radiation protection and atomic energy legislation in the Nordic countries

    International Nuclear Information System (INIS)

    The radiation protection and atomic energy laws of the Nordic countries Denmark, Finland, Iceland, Norway and Sweden are presented in this report in their status of March 1, 1984. As a background to this legislation the Nordic co-operation is briefly reviewed and the common basis for the legal texts is given. Some historical remarks for the legislation of each country are included. (orig./HP)

  12. Electromagnetic isotope separation at the China Institute of Atomic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Li Gongpan; Lin Zhizhou; Xiang Xuyang; Deng Jingting (China Inst. of Atomic Energy, Beijing, BJ (China))

    1992-08-01

    Electromagnetic isotope separation at the China Institute of Atomic Energy (CIAE) is described. Calutron, Nier-Bernas and Freeman ion sources were constructed for ion implantation systems. It was found that some enriched isotope samples were contaminated more by lighter than by heavier neighbors. This phenomenon may be explained if the sputtered particles consist of a considerable percentage of ions. A computer inspection system for recording and processing operation data has been designed. (orig.).

  13. Parity Violating Energy Shifts and Berry Phases in Atoms, I

    OpenAIRE

    Bruss, D.; Gasenzer, T.; Nachtmann, O

    1998-01-01

    We present a study of parity (P) violating contributions to the eigenenergies of stationary systems containing atoms in spatially inhomogeneous external electric fields. In this context the subtle interplay of P-violation and time reversal (T) invariance plays an important role. If the entire field configuration is chosen to exhibit chirality the energies are in general shifted by pseudoscalar contributions which change sign under a planar reflection of the field. To calculate the effects we ...

  14. Earth sciences. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Earth Sciences and issued during the period 1 January 1990 - 31 May 2001. Most publications are issued in English, though some are also available in other languages. This is noted as A for Arabic, C for Chinese, E for English, F for French, R for Russian and S for Spanish before the relevant ISBN number

  15. Low-energy collisions of antiprotons with atoms and molecules

    International Nuclear Information System (INIS)

    Time-dependent close-coupling calculations were performed using the impact parameter method for antiproton and proton collisions with alkali-metal atoms and hydrogen molecules. The targets are described as effective one-electron systems using appropriate model potentials. The proton data verify the employed method while the results for antiprotons improve the literature on these systems considerably. Cross sections for ionization and excitation as well as electron-energy spectra and stopping power will be presented.

  16. World situation of atomic energy and nuclear fuel cycle

    International Nuclear Information System (INIS)

    At the International Conference organized by the IAEA in May 1976, several sections dealt with problems of the production of atomic energy and of the nuclear fuel cycle. However, the whole spectrum of these problems was discussed including problems of economic policy, politics and ethical problems, too. Reports were presented on trends of the development of atomic energy in developed and developing countries. Besides the systems of nuclear power plants and the trends of their development, the Conference attached prominent importance to the supply of nuclear fuels and to the fuel cycle, respectively. Owing to important factors, the reprocessing of the spent nuclear fuel was emphasized. The problem area of the treatment of radioactive wastes, the protection of workers in immediate contact and of environment against radiations, the possibilities of ensuring nuclear safety, the degrees of hazards and the methods of protection of fast breeder reactors and up-to-date equipments were discussed. In contrast to earlier conferences the complex problem of the correlation of atomic energy to public opinion played an important role, too. (P.J.)

  17. Current trend of atomic energy development in Japan - 2

    Energy Technology Data Exchange (ETDEWEB)

    Cho, M.; Yang, M. H.; Yun, S. W

    1999-01-01

    The atomic energy power generation is recognized to be important to solve the problems of the competitive relations among the Asian developing countries due to the increasing dependency on the crude oil produced in the Middle East and the insecurity of transport route of the oil. The reorganization and inauguration of JNC(former PNC) has been carried out for the development of liquid metal reactor and related fuel cycle technology as the national development project to prevent the global green house effect and to continue the economic development. The construction of light water reactor, the utilization of plutonium in light water reactor and the enrichment and reprocessing of spent fuel of light water reactor are classified as proven technologies which will be covered by the industry. The government will lead to the environment favorable for introduction of the atomicenergy and will monitor the situation. The specifics of atomic energy development project and the development system for the 21th century will be contained in the long term atomic energy development plan which will be completed by 2000 and the reorganization operation has been initiated. (author). 41 refs., 5 tabs., 30 figs.

  18. Scattering of low-energy neutrinos on atomic shells

    International Nuclear Information System (INIS)

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold

  19. Status of the United States Department of Energy's site remediation programme

    International Nuclear Information System (INIS)

    The present paper provides an overview of the status of the United States Department of Energy (USDOE) site closure activities and a case study on closure of the Rocky Flats Environmental Technology Site (RFETS), concentrating on recent changes in management of the US programme and the resulting lessons learned. Over the past year, the USDOE has been changing fundamentally the way it manages its Environmental Management or cleanup programme.This programme is responsible for the cleanup of 114 sites across the United States of America.About US $6.7 billion each year are spent to manage sites, safeguard nuclear materials, dispose of waste in numerous operating low level waste disposal facilities and to manage a transuranic waste geological repository, remediate extensive surface and groundwater contamination, and deactivate and decommission thousands of excess contaminated facilities.The fundamental change is in focusing efforts on risk reduction and site closure rather than maintaining the status quo, which has lengthy closure schedules and increasing life-cycle cost estimates. The USDOE is taking lessons learned from successful projects, such as the RFETS, and applying those lessons to the entire cleanup programme. At the RFETS, a risk-based management approach is being adopted, which applies effective contracting strategies and an overall sense of urgency to produce performance that serves the interest of the workers, the public and other stake holders. The goal is to replicate this success at other sites being closed. In February 2002, the USDOE completed a comprehensive review of the Environmental Management programme, entitled the Top-to-Bottom Review.The review found numerous structural and institutional problems and identified specific remedies. The report urged the programme to transform its mission from managing risk to eliminating risk. Some of the problems and recommendations include improving contract strategy and management; moving to an accelerated

  20. Positron-Lithium Atom and Electron-Lithium Atom Scattering Systems at Intermediate and High Energies

    Institute of Scientific and Technical Information of China (English)

    K. Ratnavelu; S. Y. Ng

    2006-01-01

    @@ The coupled-channel optical method is used to study positron scattering by atomic lithium at energies ranging from the ionization threshold to 60 eV. The present method simultaneously treats the target channels and the positronium (Ps) channels in the coupled-channel method together with the continuum effects via an ab-initio optical potential. Ionization, elastic and inelastic cross sections in target channels, and the total cross section are also reported and compared with other theoretical and experimental data. A comparative study with the corresponding electron-lithium data is also reported.

  1. ADS National Programmes: China

    International Nuclear Information System (INIS)

    In China the conceptual study of an ADS concept which lasted for about five years ended in 1999. As one project of the National Basic Research Programme of China (973 Programme) in energy domain, which is sponsored by the China Ministry of Science and Technology (MOST), a five year programme of fundamental research of ADS physics and related technology was launched in 2000 and passed national review at the end of 2005. From 2007, another five year 973 Programme Key Technology Research of Accelerator Driven Subcritical System for Nuclear waste Transmutation started. The research activities were focused on HPPA physics and technology, reactor physics of external source driven subcritical assembly, nuclear data base and material study. For HPPA, a high current injector consisting of an ECR ion source, LEBT and an RFQ accelerating structure of 3.5 MeV has been built and were being improved. In reactor physics study, a series of neutron multiplication experimental study has been carrying out. The VENUS I facility has been constructed as the basic experimental platform for neutronics study in ADS blanket. VENUS I a zero power subcritical neutron multiplying assembly driven by external neutron produced by a pulsed neutron generator or 252Cf neutron source. The theoretical, experimental and simulation studies on nuclear data, material properties and nuclear fuel circulation related to ADS are carried out in order to provide the database for ADS system analysis. China Institute of Atomic Energy (CIAE), Institute of High Energy Physics (IHEP) and other Chinese institutes carried out the MOST project together. Besides CIAE, China Academy of Science (CAS) pays more and more attention to Advanced Nuclear Fuel Cycles (ANFC). A large programme of ANFC, including ADS and Th based nuclear fuel cycle, has been launched by CAS

  2. Epp names new interim execs to head Atomic Energy Canada

    International Nuclear Information System (INIS)

    Federal Energy Minister Jake Epp has named Mrs. Marnie Paiken as acting chairman and Bruce Howe as acting president of AECL (formerly Atomic Energy Canada Ltd.), the federal Crown corporation charged with the development and utilization of nuclear energy. Both appointments were made necessary by the resignations of Robert Ferchat as chairman and Stanley Hatcher as president, each citing deep differences in their respective approaches to the management of the corporation. Mrs. Paiken has been a member of AECL's board since 1985, and previously served as acting chairman from March 1989 to July 1990. Howe has been deputy minister of the federal energy department since 1988, a position he will retain while carrying out his duties as president of AECL. A search has begun to find permanent replacements

  3. A rose by any other name? New contexts and players in European energy efficiency programmes

    Energy Technology Data Exchange (ETDEWEB)

    Heiskanen, Eva; Saastamoinen, Mika (National Consumer Research Centre (Finland)); Hodson, Mike; Marvin, Simon (SURF Centre for Sustainable Urban and Regional Futures, Univ. of Salford (United Kingdom)); Kallaste, Tiit (Stockholm Environment Inst. Tallinn Centre, Tallinn (Estonia)); Maier, Petra (Consumer Association of North Rhine Westfalia (Germany)); Mourik, Ruth (Energy Research Centre of the Netherlands (ECN), Petten (Netherlands)); Rinne, Samuli (Enespa Ltd. (Finland)); Vadovics, Edina (Green Dependent Sustainable Solutions Association (Hungary))

    2009-07-01

    Until recent years, the promotion of energy efficiency has mainly been the mandate of national governments and energy utilities. As energy markets have been privatised and opened up to competition, utility-driven DSM programmes have run into increasing problems and thus often had to be re-configured and re-invented. New intermediary organisations are also called for to tackle the demand side, such as specialized energy service companies (ESCOs), energy agencies, or specific organizations that gain their funding from public benefit charges. A closer look at who is promoting energy efficiency in Europe today, however, reveals an even more diverse picture. Energy efficiency is promoted under a variety of headings, including climate change mitigation, sustainability, eco-efficiency or energy self-sufficiency. Moreover, the intermediary organizations working on energy efficiency include a variety of non-governmental organizations, public-private partnerships and regional or sectoral networks. After painting a synthesized picture of the general problems confronting energy efficiency, our paper discusses the diversity of ways in which new energy intermediaries in old and new member states of the EU are working to promote energy efficiency, and the opportunities and challenges encountered by different kinds of intermediaries. We then turn to analyse the merits of 'nesting' energy efficiency within a broader climate or sustainability agenda. This broader agenda provides some advantages for the promotion of energy efficiency, but also some special challenges. We discuss the pros and cons of hosting energy efficiency under a broader agenda on the basis of recent findings from an EC FP7 funded study called CHANGING BEHAVIOUR

  4. Annual Report 2003. Research programme 'Electricity' of the Swiss Federal Office of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Brueniger, R.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the work done in 2003 in the various research areas covered by the Swiss Electricity Research programme. Work done in the programme's five main areas - electricity transport and storage, high-temperature superconductivity, energy and information technologies, drives and electric motors, and appliances is reviewed. In the electricity transport and storage area an agreement with the Swiss Association of Electricity Producers (VSE) on the transfer of findings was made and the focus of work was set on decentralised systems. Also, the use of compressed-air storage systems was looked at and the AC corrosion of pipelines was examined. Swiss participation in an IEA Implementing Agreement for a Co-operative Programme for Assessing the Impact of High-Temperature Superconductivity on the Electric Power Sector is mentioned, as is the market potential of superconductive current limiters. A total of 8 institutions and industries are involved in theoretical or practical research in the area of high-temperature superconductors. Information and communications technologies are reviewed, including work on energy-efficient EDP server management. Work in other areas summarised includes lighting and uninterruptible power-supplies and work on the energy consumption of process control units. In the electrical drives area, work is summarised in various areas ranging from an industry agreement on the energy-efficiency of motors through to the optimisation of compressed-air systems and energy-efficient gearless drives. Efficient hotel minibars, the energy-efficiency potential in the area of water dispensers and the energy-efficiency potential of hot beverage dispensers used in the area of staff catering and the standby consumption of household appliances are just a few of the topics dealt with. Co-operation with Swiss institutions and international organisations such as the IEA is reviewed. Implementation work in the

  5. The Lund Monte Carlo programme for high energy interactions between hadrons and nuclei

    International Nuclear Information System (INIS)

    In high energy hadron-nucleus and hadron-hadron collisions low Psub(T) is the dominating feature, not explained by QCD and related to quark confinement. Nevertheless QCD inspired formulations have been used to explain low Psub(T) interactions. Experimentally observed features like cascades are still not fully explained and we do not know when and in what way the hadronization take place. We present a Monte Carlo programme for ultra relativistic nucleus-nucleus interactions where we let the projectile nucleon rescatter inside the target nucleus, get excited and then fragment according to the Lund fragmentation scheme for particle production. (Author)

  6. Atomic energy law in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Atomic Energy Law, presenting itself 18 years after the Atomic Law (AtG) having taken effect in the Federal Republic of Germany, has developed considerably during the past three years which was also due to the controversy between supporters and opponents of nuclear energy becoming more intensive. In order to gain their ends both parties refer to the AtG and expect both the executive and legislative power to follow their interpretation of the laws. The reason for this lies mainly in the latitude of evaluating and judging the criteria which the law has granted its users, especially the administrative authorities and the courts. Thus political and juridicial fundamental decisions in favour of the peaceful use of nuclear energy might be jeopardized. Therefore all ambignous passages of the law which can be detected by critically evaluating numerous and partly inconsistent decisions of courts, should be eliminated, in particular for reasons of its validity. Also, administration and court should be given concrete standards for rating the application of the law, especially for the assessment and acceptance of the risks rising from the peaceful use of nuclear energy. (orig./HP)

  7. Evolution of the Atomic Energy Corporation of South Africa

    International Nuclear Information System (INIS)

    In order to understand the AEC in its present form and its strategic positioning for the next century, it is essential that cognisance be taken of its evolution over the past 40 years and, in particular, also the external forces which triggered major strategic re-orientation actions in the past. These resulted in a fundamentally downsized organization (by about 80%) which will in the new millennium be judged on its ability to make nuclear technology available for the needs of a developing country, discharge the nuclear liabilities of the past and commercially exploit its technology base to contribute to national economic growth. The Corporation has a strong programme in isotope applications and nuclear waste management. For the future it is looking forward to develop a Pebble Bed Modular Reactor for safe nuclear energy production. (author)

  8. Energy distributions for ionization in ion-atom collisions

    CERN Document Server

    Amaya-Tapia, A

    2016-01-01

    In this paper we discuss how through the process of applying the Fourier transform to solutions of the Schr\\"odinger equation in the Close Coupling approach, good results for the ionization differential cross section in energy for electrons ejected in ion-atom collisions are obtained. The differential distributions are time dependent and through their time average, the comparison with experimental and theoretical data reported in the literature can be made. The procedure is illustrated with reasonable success in two systems, $p+H$ and $p+He$, and is expected to be extended without inherent difficulties to more complex systems. This allows advancing in the understanding of the calculation of ionization processes in ion-atom collisions.

  9. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  10. 2000-2006 National Wood Energy Programme. 2000-2005 Activities Report

    International Nuclear Information System (INIS)

    2005 was marked by key decisions which were taken with the aim of developing the biomass sector as a substitute for fossil fuels. Indeed, to achieve the ambitious objectives for renewable sources of energy set out by the July 2005 Energy Policy Orientation Programme (POPE), we must make great use of biomass, particularly to increase by 50% the share of renewable thermal energy between now and 2010 and to enable biofuels to represent 7% of all fuels used at the same date. To a lesser extent, and in conjunction with heat production, the share of biomass in renewable electricity production also needs to rise. Both the resource and key supply players are there and are ready to get organised in order to rise to these challenges. There is an abundant supply of agricultural and forest by-products. More than sixty companies organise and deliver heating wood. More than 300 government and professional promotion, regulatory, PR, finance, equipment construction and operation, research and engineering organizations are involved in this market. The strategic and economic context is highly favourable in the light of laws, directives and international agreements aiming to combat greenhouse gas emissions, but also due to the structural pressure on the price of fossil fuels. Wood energy, as a renewable energy source, has an important role to play in this context of growth. Furthermore, the wood energy sector should be developed using an exemplary sustainable development approach, which means that all the economic, social and environmental effects are taken into account. In order to comprehensively assess the sector's environmental impact, a full chapter of this report presents the work and programmes set up by ADEME to reduce pollutant emissions produced by biomass combustion, particularly from private households. Moreover, consultation and dialogue between those involved must be widened in order to enable all wood users to benefit from 'best forest use' which will be a key

  11. Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers

    Science.gov (United States)

    Banks, Bruce A.; Miller, Sharon K R.; Kneubel, Christian A.

    2014-01-01

    Experimental and analytical analysis of the atomic oxygen erosion of pyrolytic graphite as well as Monte Carlo computational modeling of the erosion of Kapton H (DuPont, Wilmington, DE) polyimide was performed to determine the hyperthermal energy of low frequency (30 to 35 kHz) plasma ashers operating on air. It was concluded that hyperthermal energies in the range of 0.3 to 0.9 eV are produced in the low frequency air plasmas which results in texturing similar to that in low Earth orbit (LEO). Monte Carlo computational modeling also indicated that such low energy directed ions are fully capable of producing the experimentally observed textured surfaces in low frequency plasmas.

  12. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 5: straw, poultry litter and energy crops as energy sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  13. Some considerations on disposal and management of solid radioactive wastes in the Institute of Atomic Energy

    International Nuclear Information System (INIS)

    The Institute of Atomic Energy was established in 1958; it is a comprehensive institute in the field of nuclear science and technology, and it is also the oldest research centre on nuclear energy in China. At present the main facilities in the institute are: a heavy-water research reactor (HWRR) with thermal power of 15 MW (before reconstruction, the maximum thermal power of the HWRR was 10 MW), a 3 MW swimming pool light-water reactor for material testing, a few zero-power facilities, five accelerators, a nuclear fuel reprocessing technology laboratory, and three radioisotope production workshops, and so on. For the low- and intermediate-level solid radioactive waste produced at the institute, the main management measure is to store the waste in a special reinforced concrete building. The first of that kind of building was put into use in 1961. The annual average amount of low-level waste stored was 40 m3, only a very small share of that was intermediate-level waste. By the end of 1982, the entire capacity viz. 900 m3 of the storage building was used. In 1983, a new storage building with an effective volume of 900 m3 was constructed and put into use. In the operation of the new storage, the experience gained was utilized. As a larger comprehensive research institute in the field of nuclear science and technology and taking part in the nuclear energy development programme in China, the Institute of Atomic Energy is carryng out several research projects of the nuclear power safety of China. There is also a vital interest in the topic of site investigation techniques and assessment methods for underground disposal of radioactive wastes, although these studies in China are in the beginning stages

  14. The uses of atomic energy for the economic and social development in the German Democratic Republic

    International Nuclear Information System (INIS)

    A report is given on the peaceful uses of atomic energy in the GDR. The following topics are discussed: (1) present state and prospects of the utilization of atomic energy in the GDR, (2) protection against the dangers from the use of atomic energy, (3) the GDR's share in international efforts to secure the peaceful uses and to further the development of atomic energy, and (4) conclusions for the enhancement of international cooperation in the peaceful uses of atomic energy. 2 tabs., 6 figs., and 23 color and 3 black-and-white plates are included

  15. International Atomic Energy Agency. Highlights of activities. September 1993

    International Nuclear Information System (INIS)

    This document describes the most important activities of the International Atomic Energy Agency during the period September 1992 - September 1993, in particular in the following areas: (i) nuclear power; (ii) nuclear fuel cycle; (iii) radioactive waste management; (iv) comparative assessment of energy sources; (v) IAEA laboratory activities; (vi) nuclear applications in the food industry and in agriculture; (vii) human health applications of nuclear techniques, especially in the treatment and prevention of diseases and in the analysis of health problems related to the environment; (viii) industry and earth sciences; (ix) physical and chemical sciences; (x) radiation protection; (xi) safety of nuclear installations; (xii) safeguards and non-proliferation activities; (xiii) activities in the area of public and technical information such as the International Nuclear Information System (INIS) and other IAEA computerized databases and reference systems, the publication Nuclear Fusion, a monthly scientific journal of articles on thermonuclear fusion research and development, and the organization of meetings on atomic energy; and (xiv) a description of the Agency's technical assistance activities, including financial data

  16. Validation of International Atomic Energy Agency Equipment Performance Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, PJ

    2004-02-17

    Performance requirements and testing protocols are needed to ensure that equipment used by the International Atomic Energy Agency (IAEA) is reliable. Oak Ridge National Laboratory (ORNL), through the US Support Program, tested equipment to validate performance requirements protocols used by the IAEA for the subject equipment categories. Performance protocol validation tests were performed in the Environmental Effects Laboratory in the categories for battery, DC power supply, and uninterruptible power supply (UPS). Specific test results for each piece of equipment used in the validation process are included in this report.

  17. Proceedings of the twelfth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 45 papers, presented on the twelfth Symposium of Atomic Energy Research, held in Sunny Beach, Bulgaria, 22-28 September 2002. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Core Monitoring, Surveillance and Testing, Safety Issues, Core Operation and Fuel Management, Spectral and Core Calculation Methods, Spent Fuel Transmutations and Decommissioning, Neutron Kinetics and reactor Dynamics Methods, Poster Session - according to the presentation sequence on the Symposium

  18. Proceedings of the thirteenth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 58 papers, presented on the thirteenth Symposium of Atomic Energy Research, held in Dresden, Germany, 22-26 September 2003. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Core Monitoring, Surveillance and Testing, Safety Issues, Spectral and Core Calculation Methods, Core Operation and Fuel Management, Spent Fuel Transmutations and Decommissioning, Neutron Kinetics and reactor Dynamics Methods, Poster Session - according to the presentation sequence on the Symposium

  19. Low-energy scattering of electrons by atomic oxygen

    International Nuclear Information System (INIS)

    The method of polarized pseudostates has been used to calculate cross sections for the elastic scattering of electrons by atomic oxygen. These pseudostates are added to the close-coupling expansion to give a polarization potential in agreement with experimental values of polarizability. The resulting elastic cross sections are in good agreement with other theoretical calculations as well as with experiment for energies up to 10 eV. The reactance matrices obtained in this calculation have been used to calculate collision strengths for fine-structure transitions in the ground-state 3P term for electron temperatures above 5000 degree K

  20. The Atomic Energy of Canada Limited (AECL) employee health study

    International Nuclear Information System (INIS)

    A preliminary examination of records relating to past Chalk River employees provides some reassurance that large numbers of cancer deaths that might be related to occupational radiation exposure do not exist in the groups of employees studied to the end of 1982. The lack of reliable information on deaths of ex-employees who left AECL for other employment prevented the inclusion of this group in this preliminary study. This information will presumably be obtained during the course of the more comprehensive Atomic Energy of Canada Ltd. employee health study. 6 refs

  1. Proceedings of the twentieth symposium of atomic energy research

    International Nuclear Information System (INIS)

    The present volume contains 69 papers, presented on the twentieth symposium of atomic energy research, held in Hanasaari, Espoo, Finland, 20-24 September 2010. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation - according to the presentation sequence on the Symposium. (Author)

  2. Safeguards and legal matters 1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalogue lists all currently valid sales publications of the International Atomic Energy Agency dealing with Safeguards and Legal Matters. Most publications are published in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  3. Earth sciences 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    This catalogue lists sales publications of the International Atomic Energy Agency dealing with Earth Sciences issued during the period 1969-1994. Most publications are published in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all these papers have abstracts in English. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  4. NOTE FOR EDITOR: Indian School Teachers’ Perspective On Globalisation Of Education
A Case Study Of Atomic Energy Education Society School Teachers

    OpenAIRE

    M. Rajesh; NAIR, S.. P.

    2009-01-01

    Globalisation has become an enduring reality of our times and more so in the field of education. Teachers are the harbingers of change in the global economy and school teachers have a major role in shaping the attitude of the society towards all social and economic phenomena including that of globalisation. At the Regional Centre of IGNOU situated at Cochin, Kerala an unique training programme was conducted for a year to train school teachers of the Atomic Energy Education Society (AEES) one ...

  5. Programmable extraction of different energy proton beam to an experimental facility in the process of injection into the IHEP synchrotron

    International Nuclear Information System (INIS)

    The programmable different energy proton beam extraction to an experimental facility of the IHEP under injection to the IHEP proton synchrotron is realized in the following way; after inquiry from the IHEP EF transfer to a lower extraction energy and beam extraction to EF are performed. 1 ref.; 1 fig

  6. Proposal for the International Atomic Energy Agency Training Course

    International Nuclear Information System (INIS)

    The Hanford Site has hosted similar activities, including both Hanford Summits I and II. The Hanford Summits were two-day televised events to discuss the commitment of the current Presidential administration to the environmental restoration of the Hanford Site. Public involvement and strategic issues established from Hanford Summit I include: Regulatory issues, training and education, economic development and partnership, and technology transfer. Hanford Summit II provided a summary of how Secretary of Energy O'Leary is proceeding on the above strategic issues. The DOE and Westinghouse School for Environmental Excellence frequently offers a six-week course for environmental professionals and workers. Approximately thirty to forty individuals attend the training course, which provides training in environmental regulation compliance. The Hanford Site has hosted two previous International Atomic Energy Agency training courses. The courses lasted two weeks and had approximately eight to ten participants. Nuclear Material Management and Neutron Monitoring were the courses hosted by the Hanford Site

  7. Proposal for the International Atomic Energy Agency Training Course

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, T.L.

    1994-06-01

    The Hanford Site has hosted similar activities, including both Hanford Summits I and II. The Hanford Summits were two-day televised events to discuss the commitment of the current Presidential administration to the environmental restoration of the Hanford Site. Public involvement and strategic issues established from Hanford Summit I include: Regulatory issues, training and education, economic development and partnership, and technology transfer. Hanford Summit II provided a summary of how Secretary of Energy O`Leary is proceeding on the above strategic issues. The DOE and Westinghouse School for Environmental Excellence frequently offers a six-week course for environmental professionals and workers. Approximately thirty to forty individuals attend the training course, which provides training in environmental regulation compliance. The Hanford Site has hosted two previous International Atomic Energy Agency training courses. The courses lasted two weeks and had approximately eight to ten participants. Nuclear Material Management and Neutron Monitoring were the courses hosted by the Hanford Site.

  8. ASTROPHYSICS. Atom-interferometry constraints on dark energy.

    Science.gov (United States)

    Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J

    2015-08-21

    If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration. PMID:26293958

  9. International human cooperation in Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Rearing of talented persons in the area of nuclear energy is one of the important works in Japan Atomic Energy Research Institute. In this report, the present situations and future schedules of international human cooperation in this area wsere summarized. First, the recent activities of International Nuclear Technology Center were outlined in respect of international human cooperation. A study and training course which was started in cooperation with JICA and IAEA from the middle of eighties and the international nuclear safety seminar aiming at advancing the nuclear safety level of the world are now being put into practice. In addition, a study and training for rearing talented persons was started from 1996 to improve the nuclear safety level of the neighbouring countries. The activities of the nuclear research interchange system by Science and Technology Agency established in 1985 and Bilateral Co-operation Agreement from 1984 were explained and also various difficulties in the international cooperation were pointed out. (M.N.)

  10. ASTROPHYSICS. Atom-interferometry constraints on dark energy.

    Science.gov (United States)

    Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J

    2015-08-21

    If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration.

  11. The International Atomic Energy Agency: activities and relationship with Mexico

    International Nuclear Information System (INIS)

    Legal and political studies on the activities of the IAEA infer that the pacific uses of nuclear energy become more significant every day in the ambit of international relationships. The studies analyze as a whole relationships among member states. The first part is divided into four chapters, starting with the background and creation of the agency, its structure, statutes, amendments and the performance of its main organisms. It continues to describe mechanisms and programmes carried out, including cooperation agreements between the IAEA and other specialized organizations in the United Nations. It ends up with the IAEA performance resulting from different treaties. The second part examines Mexican norms on nuclear matter as well as relationships between Mexico and the IAEA. It demonstrates that achievements in the Agency have been possible because of the establishment of an international cooperation basis, which avoids duplicity of actions. The conclusions recommend joint efforts from both the developed and the developing countries in the following: a) to imbue public opinion with the goodness of nuclear energy; b) to discourage the construction and operation of nuclear installations; c) to unify national standards on nuclear safety and control; d) to decrease export restrictions, based on safeguards; e) to promote internal nuclear research in Mexico or throught regional integration agreements, with technical assistance and support from the IAEA. (author)

  12. Department of Atomic Energy [India]: Annual report 1978-79

    International Nuclear Information System (INIS)

    The research and development activities and achievements of the research organizations of the Department of Atomic Energy (DAE, India), progress of various DAE projects underway and performance of nuclear power plants and other public sector underking of DAE have been reported. The report covers the financial year 1978-79. Some of the major achievements during the year have been: (1) development of a portable local vacuum electron beam welding machine, (2) commissioning of the Variable Energy Cyclotron, Calcutta for obtaining an external beam of 30 MeV alphas, (4) locating minute leaks by tracer techniques on the 140 km. Koyali-Viramgam Oil pipeline and (5) investigation by tracer technique of geological fault at the Lakya dam site of the Kudremukh Iron Ore Project in Karnataka. The R and D work of the Bhabha Atomic Research Centre, Bombay; Reactor Research Centre, Kalpakkam; Tata Institute of Fundamental Research, Bombay; Saha Institute of Nuclear Physics, Calcutta, Tata Memorial Centre and Cancer Research Centre both at Bombay is summarised. (M.G.B.)

  13. Selecting appropriate energy efficiency indicators for the Thai Energy Conservation Promotion Programme. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Gruber, E.; Cremer, C.

    2000-06-01

    In 1992 the Thai Government passed the Energy Conservation Promotion (ECP) Act to improve energy efficiency in Thai industry and commerce. The Thai-German Energy Efficiency Promotion Project (ENEP) is supporting the Department of Energy Development and Promotion (DEDP) in its effort to implement the Energy Conservation Program for large buildings and designated factories. About 4000 buildings and factories under the Compulsory Program, have to report every 6 months their energy consumption data to DEDP. Every 3 years energy audits have to be conducted by registered energy consultants, to identify energy saving opportunities, to set saving targets and to recommend energy conservation measures. Investments in energy efficient technologies are subsidized from an Energy Conservation Fund. Data from the energy consumption reports and the energy audit reports are collected in DEDP's database for further processing. The database is structured according to the Thai Standard Industrial Classification. In order to exploit the wealth of information provided by the auditing procedure the objective of the present work carried out by the consultant FhG-ISI for DEDP/BERC on behalf of the German Gesellschaft fuer Technische Zusammenarbeit (GTZ) was to recommend an appropriate set of energy efficiency indicators. This indicator set should allow DEDP to extract from the energy consumption reports, energy audit reports and other sources, useful statistical information to monitor and improve energy efficiency in Thailand. (orig.)

  14. Embedded atom calculations of unstable stacking fault energies and surface energies in intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D. [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Zhou, S.J. [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Vailhe, C.; Mutasa, B.; Panova, J. [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    1997-01-01

    We performed embedded atom method calculations on surface energies and unstable stacking fault energies for a series of intermetallics for which interatomic potentials of the embedded atom type have recently been developed. These results were analyzed and applied to the prediction of relative ductility of these materials using the various current theories. Series of alloys with the B2 ordered structure were studied, and the results were compared to those in pure body-centered cubic (bcc) Fe. Ordered compounds with L1{sub 2} and L1{sub 0} structures based on the face-centered cubic (fcc) lattice were also studied. It was found that there is a correlation between the values of the antiphase boundary (APB) energies in B2 alloys and their unstackable stacking fault energies. Materials with higher APB energies tend to have higher unstable stacking fault energies, leading to an increased tendency to brittle fracture. {copyright} {ital 1997 Materials Research Society.}

  15. Technology programme SULA 2. Energy in steel and base metal production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    SULA 2 is the energy research programme of the steel and metal producing industry. Central steel and metal producing companies are Outokumpu, Rautaruukki, Imatra Steel and Fundia Wire which is a subsidiary of Rautaruukki. The priorities of the SULA 2 programme are in process development. Worthwhile areas of concentration in energy research by Finland include the following: Iron and steel production; Zinc production; The production of ferrochromium and stainless steel; The pyrometallurgical production of copper and nickel and Rolling and heat treatment of steel In addition to the steel and metal producers the following companies participate in some projects: Kuusakoski, Kumera, Fiskars Tools and BETKER. Research work is performed in the following universities and research centers: Helsinki University of Technology, Oulu University, Aabo Akademi University, Tampere University of Technology, VTT Energy and VTT Building Technology. The total number of projects in SULA 2 programme is 51. Of these 20 are research institute projects, 21 are company R and D projects and 10 are energy conservation projects funded by Ministry of Trade and Industry. The total research costs are ca. 130 million FIM. The major part of costs is carried by the participating companies, 62 % and by public funding (Ministry of Trade and Industry, TEKES, The Academy of Finland) 36 %. In six projects the objective of research was studying and inventing new production processes or equipment. Results so far are a new production process for the Tornio stainless steel plant and a new design of ore concentrate rotary dryer, which has been commercialized. The electric energy consumption of the melting shop in Tornio has decreased by 25 %, and the production capacity has increased accordingly. Considerable savings in production process energy consumption, estimable from production reports have been achieved in several projects. The total amount of estimable saving in specific energy consumption is about 900

  16. Atomic energy in the United States in 1992

    International Nuclear Information System (INIS)

    The use of energy may be constrained by a growing national consensus that we must choose; future courses that minimize adverse effect on public health, public safety, and the environment. It is believed nuclear power will be able to meet this challenge - more adequately than most fossil fuels. Thus it follows that the growth of nuclear power will be fostered by this trend. The United States today has contractual commitments of about 150 power plants with total capacity of about 130 million kilowatts electrical. When all of these plants are on line, by about 1980, that capacity will be equal to about 35% of our present electrical generating capacity. Of these commitments, 95% are for light water reactors - 62% for pressurized water and 33% for boiling water. The remaining 5% are high- temperature gas-cooled reactors. In this period of rapid expansion we are placing heavy emphasis on programmes to achieve higher levels of standardization, with the objective of improvements in safety, reliability and economics. Standardization will also shorten licensing reviews, provide for efficiency of labour and reduce maintenance problems. Meanwhile, improved technology in heat rejection techniques such as dry cooling will help to minimize the environmental problems, in addition, methods may be introduced to use rejected heat for beneficial purposes, such as food production in agriculture and aquaculture, as well as urban and industrial applications. Also during this period, biological research can be expected to result in continued progress toward identifying and understanding the effects of energy generation on man and his environment. With this increased knowledge, we will be better able to make wise decisions regarding the most effective use of all energy sources. The next major development step is the breeder reactor, which will achieve maximum utilization of fission fuels

  17. Development of human resources for Indian nuclear power programme

    International Nuclear Information System (INIS)

    The continuing research and development on nuclear technology by research establishments in the country and maturing of Indian industry have brought the nuclear energy programme in India to a stage where it is poised to take a quantum leap forward. The vision of expansion of nuclear power also requires a well-structured specialized human resource development programme. This paper discusses the requirements of the human resource development programme for nuclear energy, the challenges in the way of its realization, its national and international status and traces the history of nuclear education in the country. It brings out the linkage of human resource development programme with the nuclear energy programme in the country. It also describes the initiatives by the university system in the area of nuclear education and support provided by the Department of Atomic Energy to the university system by way of extra-mural funding and by providing access to research facilities. (author)

  18. Development of human resources for Indian nuclear power programme

    Indian Academy of Sciences (India)

    R B Grover; R R Puri

    2013-10-01

    The continuing research and development on nuclear technology by research establishments in the country and maturing of Indian industry have brought the nuclear energy programme in India to a stage where it is poised to take a quantum leap forward. The vision of expansion of nuclear power also requires a wellstructured specialized human resource development programme. This paper discusses the requirements of the human resource development programme for nuclear energy, the challenges in the way of its realization, its national and international status and traces the history of nuclear education in the country. It brings out the linkage of human resource development programme with the nuclear energy programme in the country. It also describes the initiatives by the university system in the area of nuclear education and support provided by the Department of Atomic Energy to the university system by way of extra-mural funding and by providing access to research facilities.

  19. Use of wind energy in the Netherlands, part 2. The multi-annual programme for wind energy 1996-2000 TWIN-2

    International Nuclear Information System (INIS)

    The Dutch government would like to achieve a cleaner energy supply in the Netherlands. The target of the government is 10% saving of fossil fuels in 2020. How this can be realized is formulated in the Third White Paper on Energy Policy, published in December 1995. The use of renewable energy sources, including wind energy, plays an important part in this national policy. For the use of wind energy the government aims at a growth of the wind turbine capacity by an average of 100 MW per year, to be realized by installing wind turbines both on land and (in the longer term) offshore. This should result into a fuel saving of 33 PJ in 2007 and 45 PJ in 2020. To stimulate the use of wind energy Novem carried out the Use of Wind Energy in the Netherlands programme (TWIN) from 1991 to 1995. This programme has given a considerable impulse to the growth of wind turbine capacity in the Netherlands. Market parties have been able to complete around 250 MW up to 1996. The programme has unfortunately not resulted in an autonomous market, so the government has ordered the implementation of the TWIN-2 follow-up programme. This follow-up programme runs from 1996 to 2000 and provides a framework for the operations which Novem will be carrying out over this period in the field of wind energy. In this brochure the main elements of the programme are outlined. Also a state-of-the-art is given since the end of 1995, as well as an overview of developments in the wind energy market, and the mission, aim and targets of the TWIN-2 programme. 12 refs

  20. Annual report 1986-87 (of the Department of Atomic Energy, Government of India)

    International Nuclear Information System (INIS)

    The activities of the various constituent units of the Department of Atomic Energy (DAE) (India) during the fiscal year 1986-87 are reported. The main thrust of the DAE's various activities is directed towards peaceful applications of nuclear energy - for generation of electric power in particular and for applications of radioisotopes and radiations in agriculture, medicine and industry in general. The various constituent units of DAE consist of research establishments, nuclear power plants, heavy water plants, nuclear fuel fabrication and reprocessing plants, industrial undertakings in public sector field which manufacture electronic equipment, and rare earth products from beach sands, uranium mines and uranium ore processing plants, regulatory and safety bodies and survey unit for exploration of atomic minerals. In addition DAE also fully funds the research programmes of the Institute of Physics at Bhubaneswar, the Saha Institute of Nuclear Physics at Calcutta, the Tata Institute of Fundamental Research and the Tata Memorial Centre both at Bombay. The report is presented in chapters entitled: (1) general survey, (2) nuclear power, (3) research and development, (4) regulatory and safety functions, (5) public sector undertakings, and (6) other activities such as international relations in the field of nuclear science and technology, financial assistance to research organization and universities, sponsoring of conferences, symposia, workshops etc. The work on three nuclear power plants at Narora, Kakrapar and Kaiga and two heavy water plants at Manuguru and Hazira is in various stages of construction. Some of the highlights of DAE's activities during the year are generation of 7273 million units of electric power by nuclear power stations, opening of a new uranium mine at Bhatin, completion of a heavy water plant at Thal, successful plasma run of the experimental MHD plant at Tiruchirapalli and commissioning of Orissa Sand Complex (OSCOM) plant which produces

  1. Seeking to Improve Low Energy Neutral Atom Detection in Space

    Science.gov (United States)

    Shappirio, M.; Coplan, M.; Chornay, D.; Collier, M.; Herrero, F.; Ogilvie, K.; Williams, E.

    2007-01-01

    The detection of energetic neutral atoms allows for the remote examination of the interactions between plasmas and neutral populations in space. Before these neutral atoms can be measured, they must first be converted to ions. For the low energy end of this spectrum, interaction with a conversion surface is often the most efficient method to convert neutrals into ions. It is generally thought that the most efficient surfaces are low work functions materials. However, by their very nature, these surfaces are highly reactive and unstable, and therefore are not suitable for space missions where conditions cannot be controlled as they are in a laboratory. We therefore are looking to optimize a stable surface for conversion efficiency. Conversion efficiency can be increased either by changing the incident angle of the neutral particles to be grazing incidence and using stable surfaces with high conversion efficiencies. We have examined how to increase the angle of incidence from -80 degrees to -89 degrees, while maintaining or improving the total active conversion surface area without increasing the overall volume of the instrument. We are developing a method to micro-machine silicon, which will reduce the volume to surface area ratio by a factor of 60. We have also examined the material properties that affect the conversion efficiency of the surface for stable surfaces. Some of the parameters we have examined are work function, smoothness, and bond structure. We find that for stable surfaces, the most important property is the smoothness of the surface.

  2. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, J. W.; Collier, M. R.; Chornay, D.; Roz, P.; Getty, S.; Cooper, J. F.; Smith, B.

    2007-12-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite, will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI- ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets, also including time variability of ENA fluxes and charge-exchange interactions in the upper atmosphere from the terrestrial ring current source.

  3. Targeting Energy Management : Analysing targets, outcomes and impacts of corporate energy and greenhouse gas management programmes

    NARCIS (Netherlands)

    Rietbergen, M.G.

    2015-01-01

    Global greenhouse gas emissions must be reduced drastically to limit global increases in temperature to the relatively safe level of maximum 2 degrees Celsius. In the coming decades, energy efficiency improvement will be the main strategy for reducing energy-related greenhouse gas emissions. Energy

  4. Atomic Mass and NuclearBinding Energy for Uup-269(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-269 (Ununpentium, atomic number Z = 115, mass number A = 269).

  5. Atomic Mass and NuclearBinding Energy for Uup-335(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-335 (Ununpentium, atomic number Z = 115, mass number A = 335).

  6. Atomic Mass and NuclearBinding Energy for Uup-332(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-332 (Ununpentium, atomic number Z = 115, mass number A = 332).

  7. Atomic Mass and NuclearBinding Energy for Uup-326(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-326 (Ununpentium, atomic number Z = 115, mass number A = 326).

  8. Atomic Mass and NuclearBinding Energy for Uup-259(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-259 (Ununpentium, atomic number Z = 115, mass number A = 259).

  9. Atomic Mass and NuclearBinding Energy for Uup-300(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-300 (Ununpentium, atomic number Z = 115, mass number A = 300).

  10. Atomic Mass and NuclearBinding Energy for Uup-317(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-317 (Ununpentium, atomic number Z = 115, mass number A = 317).

  11. Atomic Mass and NuclearBinding Energy for Uup-304(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-304 (Ununpentium, atomic number Z = 115, mass number A = 304).

  12. Atomic Mass and NuclearBinding Energy for Uup-276(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-276 (Ununpentium, atomic number Z = 115, mass number A = 276).

  13. Atomic Mass and NuclearBinding Energy for Uup-271(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-271 (Ununpentium, atomic number Z = 115, mass number A = 271).

  14. Atomic Mass and NuclearBinding Energy for Uup-321(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-321 (Ununpentium, atomic number Z = 115, mass number A = 321).

  15. Atomic Mass and NuclearBinding Energy for Uup-294(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-294 (Ununpentium, atomic number Z = 115, mass number A = 294).

  16. Atomic Mass and NuclearBinding Energy for Uup-277(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-277 (Ununpentium, atomic number Z = 115, mass number A = 277).

  17. Atomic Mass and NuclearBinding Energy for Uup-310(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-310 (Ununpentium, atomic number Z = 115, mass number A = 310).

  18. Atomic Mass and NuclearBinding Energy for Uup-306(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-306 (Ununpentium, atomic number Z = 115, mass number A = 306).

  19. Atomic Mass and NuclearBinding Energy for Uup-323(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-323 (Ununpentium, atomic number Z = 115, mass number A = 323).

  20. Atomic Mass and NuclearBinding Energy for Uup-299(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-299 (Ununpentium, atomic number Z = 115, mass number A = 299).

  1. Atomic Mass and NuclearBinding Energy for Uup-286(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-286 (Ununpentium, atomic number Z = 115, mass number A = 286).

  2. Atomic Mass and NuclearBinding Energy for Uup-282(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-282 (Ununpentium, atomic number Z = 115, mass number A = 282).

  3. Atomic Mass and NuclearBinding Energy for Uup-338(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-338 (Ununpentium, atomic number Z = 115, mass number A = 338).

  4. Atomic Mass and NuclearBinding Energy for Uup-324(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-324 (Ununpentium, atomic number Z = 115, mass number A = 324).

  5. Atomic Mass and NuclearBinding Energy for Uup-322(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-322 (Ununpentium, atomic number Z = 115, mass number A = 322).

  6. Atomic Mass and NuclearBinding Energy for Uup-305(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-305 (Ununpentium, atomic number Z = 115, mass number A = 305).

  7. Atomic Mass and NuclearBinding Energy for Uup-336(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-336 (Ununpentium, atomic number Z = 115, mass number A = 336).

  8. Atomic Mass and NuclearBinding Energy for Uup-308(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-308 (Ununpentium, atomic number Z = 115, mass number A = 308).

  9. Atomic Mass and NuclearBinding Energy for Uup-291(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-291 (Ununpentium, atomic number Z = 115, mass number A = 291).

  10. Atomic Mass and NuclearBinding Energy for Uup-320(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-320 (Ununpentium, atomic number Z = 115, mass number A = 320).

  11. Atomic Mass and NuclearBinding Energy for Uup-261(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-261 (Ununpentium, atomic number Z = 115, mass number A = 261).

  12. Atomic Mass and NuclearBinding Energy for Uup-296(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-296 (Ununpentium, atomic number Z = 115, mass number A = 296).

  13. Atomic Mass and NuclearBinding Energy for Uup-272(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-272 (Ununpentium, atomic number Z = 115, mass number A = 272).

  14. Atomic Mass and NuclearBinding Energy for Uup-258(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-258 (Ununpentium, atomic number Z = 115, mass number A = 258).

  15. Atomic Mass and NuclearBinding Energy for Uup-273(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-273 (Ununpentium, atomic number Z = 115, mass number A = 273).

  16. Atomic Mass and NuclearBinding Energy for Uup-302(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-302 (Ununpentium, atomic number Z = 115, mass number A = 302).

  17. Atomic Mass and NuclearBinding Energy for Uup-289(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-289 (Ununpentium, atomic number Z = 115, mass number A = 289).

  18. Atomic Mass and NuclearBinding Energy for Uup-334(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-334 (Ununpentium, atomic number Z = 115, mass number A = 334).

  19. Atomic Mass and NuclearBinding Energy for Uup-316(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-316 (Ununpentium, atomic number Z = 115, mass number A = 316).

  20. Atomic Mass and NuclearBinding Energy for Uup-309(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-309 (Ununpentium, atomic number Z = 115, mass number A = 309).

  1. Atomic Mass and NuclearBinding Energy for Uup-262(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-262 (Ununpentium, atomic number Z = 115, mass number A = 262).

  2. Atomic Mass and NuclearBinding Energy for Uup-319(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-319 (Ununpentium, atomic number Z = 115, mass number A = 319).

  3. Atomic Mass and NuclearBinding Energy for Uup-314(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-314 (Ununpentium, atomic number Z = 115, mass number A = 314).

  4. Atomic Mass and NuclearBinding Energy for Uup-281(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-281 (Ununpentium, atomic number Z = 115, mass number A = 281).

  5. Atomic Mass and NuclearBinding Energy for Uup-267(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-267 (Ununpentium, atomic number Z = 115, mass number A = 267).

  6. Atomic Mass and NuclearBinding Energy for Uup-329(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-329 (Ununpentium, atomic number Z = 115, mass number A = 329).

  7. Atomic Mass and NuclearBinding Energy for Uup-264(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-264 (Ununpentium, atomic number Z = 115, mass number A = 264).

  8. Atomic Mass and NuclearBinding Energy for Uup-298(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-298 (Ununpentium, atomic number Z = 115, mass number A = 298).

  9. Atomic Mass and NuclearBinding Energy for Uup-339(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-339 (Ununpentium, atomic number Z = 115, mass number A = 339).

  10. Atomic Mass and NuclearBinding Energy for Uup-278(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-278 (Ununpentium, atomic number Z = 115, mass number A = 278).

  11. Atomic Mass and NuclearBinding Energy for Uup-312(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-312 (Ununpentium, atomic number Z = 115, mass number A = 312).

  12. Atomic Mass and NuclearBinding Energy for Uup-318(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-318 (Ununpentium, atomic number Z = 115, mass number A = 318).

  13. Atomic Mass and NuclearBinding Energy for Uup-270(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-270 (Ununpentium, atomic number Z = 115, mass number A = 270).

  14. Atomic Mass and NuclearBinding Energy for Uup-263(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-263 (Ununpentium, atomic number Z = 115, mass number A = 263).

  15. Atomic Mass and NuclearBinding Energy for Uup-313(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-313 (Ununpentium, atomic number Z = 115, mass number A = 313).

  16. Atomic Mass and NuclearBinding Energy for Uup-337(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-337 (Ununpentium, atomic number Z = 115, mass number A = 337).

  17. Atomic Mass and NuclearBinding Energy for Uup-287(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-287 (Ununpentium, atomic number Z = 115, mass number A = 287).

  18. Atomic Mass and NuclearBinding Energy for Uup-279(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-279 (Ununpentium, atomic number Z = 115, mass number A = 279).

  19. Atomic Mass and NuclearBinding Energy for Uup-275(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-275 (Ununpentium, atomic number Z = 115, mass number A = 275).

  20. Atomic Mass and NuclearBinding Energy for Uup-333(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-333 (Ununpentium, atomic number Z = 115, mass number A = 333).

  1. Atomic Mass and NuclearBinding Energy for Uup-280(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-280 (Ununpentium, atomic number Z = 115, mass number A = 280).

  2. Atomic Mass and NuclearBinding Energy for Uup-266(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-266 (Ununpentium, atomic number Z = 115, mass number A = 266).

  3. Atomic Mass and NuclearBinding Energy for Uup-330(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-330 (Ununpentium, atomic number Z = 115, mass number A = 330).

  4. Atomic Mass and NuclearBinding Energy for Uup-265(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-265 (Ununpentium, atomic number Z = 115, mass number A = 265).

  5. Atomic Mass and NuclearBinding Energy for Uup-283(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-283 (Ununpentium, atomic number Z = 115, mass number A = 283).

  6. Atomic Mass and NuclearBinding Energy for Uup-297(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-297 (Ununpentium, atomic number Z = 115, mass number A = 297).

  7. Atomic Mass and NuclearBinding Energy for Uup-268(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-268 (Ununpentium, atomic number Z = 115, mass number A = 268).

  8. Atomic Mass and NuclearBinding Energy for Uup-274(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-274 (Ununpentium, atomic number Z = 115, mass number A = 274).

  9. Atomic Mass and NuclearBinding Energy for Uup-260(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-260 (Ununpentium, atomic number Z = 115, mass number A = 260).

  10. Atomic Mass and NuclearBinding Energy for Uup-307(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-307 (Ununpentium, atomic number Z = 115, mass number A = 307).

  11. Atomic Mass and NuclearBinding Energy for Uup-293(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-293 (Ununpentium, atomic number Z = 115, mass number A = 293).

  12. Atomic Mass and NuclearBinding Energy for Uup-284(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-284 (Ununpentium, atomic number Z = 115, mass number A = 284).

  13. Atomic Mass and NuclearBinding Energy for Uup-292(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-292 (Ununpentium, atomic number Z = 115, mass number A = 292).

  14. Atomic Mass and NuclearBinding Energy for Uup-328(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-328 (Ununpentium, atomic number Z = 115, mass number A = 328).

  15. Atomic Mass and NuclearBinding Energy for Uup-331(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-331 (Ununpentium, atomic number Z = 115, mass number A = 331).

  16. Atomic Mass and NuclearBinding Energy for Uup-311(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-311 (Ununpentium, atomic number Z = 115, mass number A = 311).

  17. Atomic Mass and NuclearBinding Energy for Uup-285(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-285 (Ununpentium, atomic number Z = 115, mass number A = 285).

  18. Atomic Mass and NuclearBinding Energy for Uup-315(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-315 (Ununpentium, atomic number Z = 115, mass number A = 315).

  19. Atomic Mass and NuclearBinding Energy for Uup-288(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-288 (Ununpentium, atomic number Z = 115, mass number A = 288).

  20. Atomic Mass and NuclearBinding Energy for Uup-295(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-295 (Ununpentium, atomic number Z = 115, mass number A = 295).

  1. Atomic Mass and NuclearBinding Energy for Uup-301(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-301 (Ununpentium, atomic number Z = 115, mass number A = 301).

  2. Atomic Mass and NuclearBinding Energy for Uup-303(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-303 (Ununpentium, atomic number Z = 115, mass number A = 303).

  3. Atomic Mass and NuclearBinding Energy for Uup-290(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-290 (Ununpentium, atomic number Z = 115, mass number A = 290).

  4. Atomic Mass and NuclearBinding Energy for Uup-327(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-327 (Ununpentium, atomic number Z = 115, mass number A = 327).

  5. Atomic Mass and NuclearBinding Energy for Uup-325(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-325 (Ununpentium, atomic number Z = 115, mass number A = 325).

  6. Enhancing energy efficiency in public buildings: The role of local energy audit programmes

    International Nuclear Information System (INIS)

    In the objective of reaching the “nearly zero-energy buildings” target set by the European Union, municipalities cover a crucial role in advocating and implementing energy-efficient measures on a local scale. Based on a dataset of 322 municipalities in Northern Italy, we carried out a statistical analysis to investigate which factors influence the adoption of energy efficiency in municipal buildings. In particular, the analysis focuses on four categories of factors: (i) capacity building for energy efficiency, (ii) existing structure and competences for energy efficiency, (iii) technical and economic support for energy efficiency, and (iv) spill-over effect caused by adoption of “easier” energy-efficient measures. Our results show that capacity building through training courses and technical support provided by energy audits affect positively the adoption of energy efficiency in municipal buildings. The size of the municipal authority, the setting of local energy policies for residential buildings and funding for energy audits are not correlated with energy efficiency in public buildings, where the “plucking of low hanging fruit” often prevails over more cost-effective but long-term strategies. Finally, our results call for the need to promote an efficient knowledge management and a revision of the Stability and Growth Pact. - Highlights: • Public procurement supports the deployment of the energy efficiency of buildings. • Energy audits and other factors influence energy efficiency in public buildings. • Econometric analysis applied to data from 322 municipalities in Northern Italy. • Municipalities need to overtake the “plucking of low-hanging fruit”. • Knowledge management should be associated with removal of budget constraints

  7. Programme wood/energy 2000-2006. Activity Report for 2000-2004

    International Nuclear Information System (INIS)

    When ADEME launched its Wood fuel programme throughout all of France in late 1999, its aim was to guide this resource supply chain to maturity and stable development in all user sectors: domestic, multi-family housing, commercial/institutional and industrial applications. To this end the Wood fuel Programme 2000-2006 was assigned objectives and endowed with significant financial means for studies and coordination in order to support and carry out general-interest projects, piloted by ADEME. The stated goal was to replace fossil fuels, avoid carbon emissions and establish quality assurance standards for household firewood and wood-fired devices. This report makes a status of ADEME's Wood fuel programme for the 2000-2004 era: - Domestic heating: After a drop during the 1990's, figures since 1999 of sales of wood-fuel domestic heating equipment (closed heaters, glass-door fires and stoves) have shown a significant rise. On average over 30 years, wood consumption has risen to 7.2 million TOE (40 million cubic metres) per year; - Industry: It is thought there are 1000 wood-fired heaters (above 1 megawatt) used in French industry. These are found mainly in timber-based industries and in timber crushing plants. This amounts to a total power output of 2.5 gigawatts. In the primary and secondary wood processing industries, the increase in the number of wood-fired boilers and energy produced has reached 5% per year Results of a call for carbon energy projects (APEC) was 61 submitted of which 52 were selected; 9 projects pending (166.5 K of aid from ADEME); and 35 projects begun (1,649 K of aid from ADEME). - Local authority and service sector wood-fired heating systems: At the end of 2004, the number of local authority active boilers was 641, producing 430 megawatts. This is an increase of an average of 13% year on year since 2000. By the end of 2004, the target had already been met for the number of boilers being financed (1,090). By 2006 however we still need to generate a

  8. Atomic Energy of Canada Limited annual report 1999-2000

    International Nuclear Information System (INIS)

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor

  9. Atomic Energy of Canada Limited annual report 2000-2001

    International Nuclear Information System (INIS)

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor

  10. Atomic Energy Law and the right of life and health

    International Nuclear Information System (INIS)

    The paper is a review of the dissertation submitted for the certificate of habilitation by Professor Degenhardt belonging to the series of publications 'Law-Technology-Economy'. Beneath the somewhat- summary title Kernenergierecht (atomic energy law) there is hidden the first systematic treatment of all the fundamental questions of constitutional law, of general law and naturally of the special nuclear administrative law and of the law of administrative proceedings which occurred in decisions of different administrative courts concerning several nuclear power plants in the Federal Republic of Germany. Despite the plainness of his own viewpoint this impressive, sophisticated and balanced inventory is certainly welcome to all interested people and it is very useful for the further treatment of these problems. (orig./HSCH)

  11. Atomic Energy of Canada Limited annual report 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor.

  12. Atomic Physics in the Quest for Fusion Energy and ITER

    Energy Technology Data Exchange (ETDEWEB)

    Charles H. Skinner

    2008-02-27

    The urgent quest for new energy sources has led developed countries, representing over half of the world population, to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction and operation of ITER. Data on high-Z ions will be important in this quest. Tungsten plasma facing components have the necessary low erosion rates and low tritium retention but the high radiative efficiency of tungsten ions leads to stringent restrictions on the concentration of tungsten ions in the burning plasma. The influx of tungsten to the burning plasma will need to be diagnosed, understood and stringently controlled. Expanded knowledge of the atomic physics of neutral and ionized tungsten will be important to monitor impurity influxes and derive tungsten concentrations. Also, inert gases such as argon and xenon will be used to dissipate the heat flux flowing to the divertor. This article will summarize the spectroscopic diagnostics planned for ITER and outline areas where additional data is needed.

  13. Atomic Energy of Canada Limited annual report 1989-1990

    International Nuclear Information System (INIS)

    In 1990, after a comprehensive industry review, the Canadian government announced that steps would be taken to revitalize the nuclear industry. Canada's nuclear utilities made a commitment to bear a large share of the cost of nuclear research and development. Atomic Energy of Canada Limited (AECL) reported its first financial loss in twelve years, as anticipated at the start of the year. Four of the 20 CANDU reactors operating worldwide were in the top ten based on lifetime performance. By year-end one foreign and two domestic utilities had announced their intention to build more CANDU units. The federal government has agreed to stabilize AECL's research funding at 1989-90 levels ($31.5 million above levels planned in 1985), has authorized AECL to negotiate with New Brunswick to build Point Lepreau-2 as the prototype for the CANDU-3 reactor, and has allowed the restructuring of AECL so utility and private sector investors can become equity partners in AECL CANDU

  14. Proceedings of the eighth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 53 papers, presented on the eighth Symposium of Atomic Energy Research, held in Bystrice nad Perstejnem, Czech Republic, 21-25 September 1998. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Design, Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Neutron Kinetics and reactor Dynamics Methods, Safety Issues and Analysis, Rod Drop Reactivity Measurements, Criticality safety, Spent Fuel and Decommissioning, - according to the presentation sequence on the Symposium. At the end of the volume a list of the participants and an alphabetical author index is given as well

  15. International Atomic Energy Agency Publications. Catalogue 1980-1995

    International Nuclear Information System (INIS)

    This catalogue lists all sales publications of the International Atomic Energy Agency issued from 1980 up to the end of 1995 an still available. Some earlier titles which form part of an established series or are still considered of importance have been included. Most Agency publications are issued in English, though some are also available in Chinese, French, Russian or Spanish. This is noted as C for Chinese, E for English, F for French, R for Russian and S For Spanish by the relevant ISBN number. Proceedings of conferences, symposia, seminars and panels, of experts contain papers in their original language (English, French, Russian or Spanish) with abstracts in English and in the original language

  16. The Atomic Energy Control Board and the uranium mining industry

    International Nuclear Information System (INIS)

    The Atomic Energy Control Board controls prescribed substances and nuclear facilities through a licensing system. It is only recently that this system has been applied to the uranium industry. There are four stages in the licensing procedure before a Mine-Mill Facility Operating Licence is issued: exploration requires an underground exploration permit; site approval is needed before the start of the development stage; development approval is required before the construction of the mill and waste management facilities and depends on the information in a preliminary safety report; the granting of a final operating licence occurs after the Board is satisfied with the final safety report, operating policies and principles, tailings management, and decommissioning plans. The Board has resource management policies designed to ensure that uranium reserves are available to meet Canada's needs. The administration of safeguards is also the Board's responsibility. (LL)

  17. Atomic Energy of Canada Limited annual report 1999-2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor.

  18. Proceedings of the ninth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 57 papers. Most of the papers were presented on the ninth Symposium of Atomic Energy Research, held in Demanovska Dolina, Slovakia, 4-6 October 1999. The rest of the papers (intended to be presented but not presented due to difficulties) is included based on the decision of the organizers. The papers are in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Safety Issues, Neutron Kinetics and Reactor Dynamics, Reactivity Evaluation, High Subcriticality, Critical Safety and Spent Fuel and Spent Fuel Transmutations - according to the presentation sequence on the Symposium. At the end of the volume an alphabetical author index is given

  19. Higher Ionization Energies of Atoms in Density Functional Theory

    CERN Document Server

    Argaman, Uri; Kraisler, Eli

    2014-01-01

    Density functional theory (DFT) is an exact alternative formulation of quantum mechanics, in which it is possible to calculate the total energy, the spin and the charge density of many-electron systems in the ground state. In practice, it is necessary to use uncontrolled approximations that can mainly be verified against experimental data. Atoms and ions are simple systems, where the approximations of DFT can be easily tested. We have calculated within DFT the total energies, spin and higher ionization energies of all the ions of elements with 1 $\\leq$ Z $\\leq$ 29. We find the calculations in close agreement with experiment, with an error of typically less than ca. 1% for 1 $\\leq$ Z $\\leq$ 29. Surprisingly, the error depends on the electronic configuration of the ion in both local spin density approximation (LSDA) and Perdew-Burke-Ernzerhof general gradient approximation (PBE-GGA) and independent of both self-interaction correction (SIC) and relativistic corrections. Larger errors are found for systems in whi...

  20. Change of Energy of the Cubic Subnanocluster of Iron Under Influence of Interstitial and Substitutional Atoms.

    Science.gov (United States)

    Nedolya, Anatoliy V; Bondarenko, Natalya V

    2016-12-01

    Energy change of an iron face-centred cubic subnanocluster was evaluated using molecular mechanics method depending on the position of a carbon interstitial atom and substitutional atoms of nickel. Calculations of all possible positions of impurity atoms show that the energy change of the system are discrete and at certain positions of the atoms are close to continuous.In terms of energy, when all impurity atoms are on the same edge of an atomic cluster, their positions are more advantageous. The presence of nickel atoms on the edge of a cubic cluster resulted in decrease of potential barrier for a carbon atom and decrease in energy in the whole cluster. A similar drift of a carbon atom from central octahedral interstitial site to the surface in the direction occurred under the influence of surface factors.Such configuration corresponds to decreasing symmetry and increasing the number of possible energy states of a subnanocluster, and it corresponds to the condition of spontaneous crystallization process in an isolated system.Taking into account accidental positions of the nickel atom in the iron cluster, such behaviour of the carbon atom can explain the mechanism of growth of a new phase and formation of new clusters in the presence of other kind of atoms because of surface influence. PMID:26754941

  1. The reaction efficiency of thermal energy oxygen atoms with polymeric materials

    Science.gov (United States)

    Koontz, S. L.; Nordine, Paul

    1990-01-01

    The reaction efficiency of several polymeric materials with thermal-energy (0.04 eV translational energy), ground-state (O3P) oxygen atoms was determined by exposing the materials to a room temperature gas containing a known concentration of atomic oxygen. The reaction efficiency measurements were conducted in two flowing afterglow systems of different configuration. Atomic oxygen concentration measurements, flow, transport and surface dose analysis is presented in this paper. The measured reaction efficiencies of Kapton, Mylar, polyethylene, D4-polyethylene and Tedlar are .001 to .0001 those determined with high-energy ground-state oxygen atoms in low earth orbit or in a high-velocity atom beam. D4-polyethylene exhibits a large kinetic isotope effect with atomic oxygen at thermal but not hyperthermal atom energies.

  2. ISOLDE PROGRAMME

    CERN Multimedia

    Fedosseev, V; Lynch, K M; Grob, L K; Herfurth, F; Scheidenberger, C; Geppert, C; Gorges, C; Ratajczyk, T; Vogel, S; Munch, M K; Nieminen, P; Pakarinen, J J A; Lecesne, N; Bouzomita, H; Grinyer, J; Marques moreno, F M; Parlog, M; Pedroza, J; Ghetta, V; Lozeva, R; Guillemaud mueller, D S; Cottereau, E; Cheikh mhamed, M; Tusseau nenez, S; Tungate, G; Walker, P M; Smith, A G; Fitzpatrick, C; Dominik, W M; Karny, M; Ciemny, A A; Nyman, G H; Thies, R M A; Lindberg, S K G; Langouche, G F; Delaure, B J P; Mayet, P; Ory, G T; Kesteloot, N J K; Papuga, J; Dehairs, M H R; Callens, M; Domnanich, K A; Richter, D; Lutter, R J; Wiehr, S; Tengblad, O; Nacher gonzalez, E; Jungclaus, A; Ribeiro jimenez, G; Marroquin alonso, I; Cal gonzalez, J; Paziy, V; Salsac, M; Murphy, C; Podolyak, Z F; Bajoga, A D; Butler, P; Pritchard, A; Steer, A N; Fox, S P; Wadsworth, B A; Truesdale, V L; Al monthery, M; Hass, M; Guttormsen, M S; Badea, M N; Calinescu, S; Cederkall, J A; Zemlyanoy, S; Golovkov, M; Wu, C; Harrichunder, S; Ncube, M; Gerten, R F; Lehnert, J; Gladnishki, K A; Pospisil, S; Datta pramanik, U; Benzoni, G; Fedorov, D; Molkanov, P; Pfeiffer, B; Griesel, T; Wehner, L W; Mikkelsen, M; Recchia, F; Smith, J F; Kelly, C M; De melo bandeira tavares, P M; Vieira, J M; Martins da silva, M A; Lima lopes, A M; Mader, J; Kessler, P; Laurent, B G; Schweikhard, L C; Marx, G H; Kulczycka, E; Komorowska, M; Da silva, M F; Goncalves marques, C P; Baptista peres, M A; Welander, J E; Coeck, S; Ryssens, W A M; Knoops, G; Vanbuel, J; Reiter, P; Miller, C; Martin sanchez-cano, D; Wiens, A; Blazhev, A A; Braun, N; Cappellazzo, M V; Birkenbach, B; Gerst, R; Dannhoff, M F; Sithole, M J; Bilgier, B; Nardelli, S; Vetter, U; Araujo mendes, C M; Valencia marin, E; Pantea, E; Hessberger, F P; Leduc, A J; Mitsuoka, S; Carbonari, A W; Buchegger, F J; Garzon camacho, A; Stachura, M K; Stora, T; Marsh, B A; Thiboud, J A; Antalic, S; Stahl, C; Bauer, C; Thurauf, M; Maass, B; Sturm, S; Boehm, C; Ways, M; Heylen, H; Riisager, K; Ruotsalainen, P A; Bastin, B; Duval, F T; Penessot, G; Flechard, X D; Desrues, P; Giovinazzo, J; Blank, B A; Kurtukian nieto, T; Ascher, P E L; Roccia, S; Matea, I; Croizet, H A G; Bonnin, C M; Morfouace, P; Smith, A J; Guin, R; Banerjee, D; Ohtsubo, T; Zhukov, M V; Tengborn, E A; Dessagne, P; Juscamaita vivanco, Y; De rydt, M A E; Vermaelen, P; Monten, R; Yang, X; De coster, A; Kruecken, R; Nowak, A K; Cano ott, D; Murphy, A S J; Shand, C M; Regan, P H; Jones, G D; Herzberg, R; Ikin, P; Davies, P J; Napoli, D R; Scarel, G; Larsen, A; Tornyi, T G; Pascu, S G; Stroe, L; Toma, S; Jansson, K; Dronjak fahlander, M; Krupko, S; Hurst, A M; Veskovic, M; Nikolov, J; Sibanda, W N; Rocchini, M; Deicher, M; Wichert, T; Wolf, E; Kronenberg, J; Helmke, A; Meliani, Z; Ivanov, V S; Kuti, I; Halasz, Z; Henry, M O; Bras de sequeira amaral, V; Espirito santo, F; Carvalho teixeira, R C; Rosendahl, S; Speidel, K; Agarwal, I; Faul, T; Kownacki, J M; Martins correia, J G; Lorenz, K; Costa miranda, S M; Granadeiro costa, A R; Da costa pereira, L M; Keupers, M; Stukken, R; Wursten, E J; Kotthaus, T; Pfeiffer, M; Stegemann, S T; Gironi, L; Cakirli, R B; Jensen, A; Romstedt, F; Constantino silva furtado, I; Heredia cardona, J A; Jordan martin, M D; Montaner piza, A; Plewinski, F; Mesli, A; Pichard, A; Fallis starhunter, J P; Voulot, D; Mrazek, J; Ugryumov, V; Savreux, R P; Kojouharov, I M; Stegmann, R; Fitting, J; Lauer, M; Kirsebom, O S; Jensen, K L; Jokinen, A; Rahkila, P J; Hager, U D K; Dubois, M; Orr, N A; Fabian, X; Huikari, J E; Goigoux, T; Magron, C; Zakari, A A; Maietta, M; Bachelet, C E M; Roussiere, B; Li, R; Foster, R M; Mertzimekis, T; Gislason, H P; Shayestehaminzadeh, S; Qi, B; Mukai, M; Watanabe, Y; Willmann, L; Kurcewicz, W; Wimmer, K; Meisel, Z P; Lievens, P; Neyens, G; Darby, I G; Descamps, B O; Ceruti, S; Bunka, M; Vermeulen, C; Podadera aliseda, I; Alcorta moreno, M; Pesudo fortes, V; Algora, A; Zielinska, M; Korten, W; Wang, C H; Lotay, G J; Mason, P; Rice, S J; Willenegger, L M; Judson, D S; Revill, J P; Andreev, A; Yavuzkanat, N; Kumar, V; Zamfir, N - V; Deleanu, D; Jeppesen, H B; Pain, S D; Stracener, D W; Matousek, V; Venhart, M; Birova, M; Li, X; Stuchbery, A E; Lellep, G M; Chakraborty, S; Leoni, S; Chupp, T; Yilmaz, C; Severin, G; Garcia ramos, J E; Hadinia, B; Mc glynn, E; Monteiro de sena silvares de carvalho, I; Friedag, P; Koos, V; Meot, V H; Pauwels, D B; Jancso, A; Srebrny, J; Alves, E J; David bosne, E; Dexters, W M M; Velten, P; Kalkuehler, M; Albers, M; Bharuth-ram, K; Akkus, B; Hemmingsen, L B S; Pedersen, J T; Dos santos redondo, L M; Rubio barroso, B; Kozlov, V; Mokhles gerami, A; Bernardo da silva, E; Unzueta solozabal, I; Schell, J; Szybowicz, M; Lassen, J; Johnston, K; Miyazaki, A; Macko, M; Coquard, L; Bloch, T P; Bonig, E S; Ignatov, A; Paschalis, S; Schilling, M; Habermann, T; Von hahn, R; Minaya ramirez, E E; Manea, V; Karthein, J; Moore, I D; Wang, Y; Saastamoinen, A J; Grahn, T; Herzan, A; Stolze, S M; Clement, E; Dijon, A; Shornikov, A; Lienard, E; Gibelin, J D; Pain, C; Canchel, G; Simpson, G S; Latrasse, L P; Forest, D H; Billowes, J; Flanagan, K; Strashnov, I; Binnersley, C L; Simpson, J; Morrall, P S; Grant, A F; Charisopoulos, S; Lagogiannis, A; Bhattacharya, C; Olafsson, S; Tornqvist, H T; Heinz, A M; White iv, E R; Vermote, S L; Courtin, S; Marechal, F; Randisi, G; Rajabali, M M; Lannoo, B J M; Frederickx, R; De coster, T J C; Roovers, N; De lemos lima, T A; Haller, S; Rizzi, M; Reichert, S B; Bonn, J; Thirolf, P G; Garcia rios, A R; Gugliermina, V M; Cubero campos, M A; Sanchez tembleque, V; Benito garcia, J; Senoville, M; Mountford, D J; Gelletly, W; Alharbi, T S T; Wilson, E; Rigby, S V; Andreoiu, C; Paul, E S; O'neill, G G; Harkness, L J; Wraith, C; Van esbroeck, K; Wadsworth, R; Cubiss, J G; Doherty, D T; Harding, R; Vaintraub, S; Mandal, S K; Hadynska-klek, K; Scarpa, D; Hoff, P; Syed naeemul, H; Borcea, R; Balabanski, D L; Marginean, R; Rotaru, F; Rudolph, D; Fahlander, C H; Chudoba, V; Naidoo, D; Veselsky, M; Kliman, J; Raisanen, J A; Dietrich, M; Maung maung than, M M T; Reed, M W; Danchev, M T; Ray, J; Roy, M; Hammen, M; Capponi, L; Veghne csatlos, M M; Fryar, J; Da silva fenta, A E; Mirzadeh vaghefi, S P; Trindade pereira, A M; De pinho oliveira, G N; Bakenecker, A; Tramm, C; Germic, V; Morel, P A; Kowalczyk, M; Matejska-minda, M; Ringvall moberg, A; Kana, T; Vermeeren, B R M; Dockx, K; Mantovan, R; Fransen, C H; Radeck, F; Schneiders, D W; Steinbach, T; Vibenholt, J E; Magnussen, M J; Stevnhoved, H M; Comas lijachev, V; Dasenbrock-gammon, N M; Perkowski, J; Matveev, Y; Garcia borge, M J; Molholt, T E; Srnka, D; Dlouhy, Z; Beck, D; Homm, I; Eliseev, S; Blaum, K; Probst, M B; Kaiser, C J; Papadakis, F; Peura, P J; Greenlees, P T; Auranen, K; Delahaye, P; Traykov, E K; Perez loureiro, D; Mery, A A; Couratin, C; Tsekhanovich, I; Lunney, D; Gaulard, C V; Althubiti, N A S; Mottram, A D; Das, S K; Van de walle, J; Mazzocchi, C; Jonson, B N G; Woehr, A; Lesher, S R; Zuber, K T; Koudriavtsev, I; De witte, H J; Van den bergh, P A M; Raabe, R; Depuydt, M J F; Radulov, D P; Elseviers, J; Reynders, K L T; Sels, S M C; Verlinde, M; Delombaerde, L; De maesschalck, D; Tarasava, K; Gernhaeuser, R A; Weinzierl, W; Wendt, K; Achtzehn, T; Gottwald, T; Schug, M; Rossel, R E; Dominguez reyes, R R; Briz monago, J A; Koester, U H; Bunce, M R; Bowry, M D; Nakhostin, M; Shearman, R; Cresswell, J R; Joss, D T; Gredley, A; Groombridge, D; Siem, S; Weterings, J A; Renstrom, T; Szpak, B T; Luczkowski, M J; Ghita, D; Bezbakh, A; Bollmann, J; Bhattacharya, P; Roy, S; Rahaman, M A; Wlodarski, T; Carvalho soares, J; Barzakh, A; Werner, V R; Schertz, F; Froemmgen, N E; Liberati, V; Foy, B E; Weinheimer, C P; Zboril, M; Figuera, P; Simon, R E; Popescu, L A; Czosnyka, T; Miranda jana, P A; Buescher, J S L; Plociennik, W A; Ruchowska, E E; Chiara, C J; Eberth, J H; Thomas, T; Thole, P; Queiser, M T; Lo bianco, G; D'amico, F; Muller, S; Sanchez alarcon, R M; Tain enriquez, J L; Orrigo, S E A; Orlandi, R; Plazaola muguruza, F C; Lepareur, N G; Wildner, E; Kowalska, M; Malbrunot, S; Slezak, M; Roeckl, E; Schrieder, G H; Ilieva, S K; Koenig, K L; Amoretti, M A; Lommen, J M; Fynbo, H O U; Weyer, G O P; Koldste, G T; Madsboll, K; Jensen, J H; Nieminen, A M; Reponen, M; Villari, A; Thomas, J; Saint-laurent, M; Sorlin, O H; Carniol, B; Pereira lopez, J; Grevy, S; Plaisir, C; Marie-jeanne, M J; Georgiev, G P; Etile, A M; Le blanc, F M; Verney, D; Stefan, G I; Assie, M; Suzuki, D; Guillot, J; Vazquez rodriguez, L; Campbell, P; Deacon, A N; Ware, T; Flueras, A; Xie, L; Banerjee, K; Piersa, M; Johansson, H T; Schwarz, S; Welker, A; Krauth, M R; Perrot, F; Aumont, J; Sferrazza, M; Van duppen, P L E; Versyck, S; Dehaes, J; Bree, N C F; Neyskens, P; Martinez palenzuela, Y; De groote, R P; Carlier, L M F; De schepper, S; Dewolf, K W A; Kabir, L R; Garcia ruiz, R F; Khodery ahmad, M A; Zadvornaya, A; Xu, Z; Smolders, P; Krastev, P; Rapisarda, E; Reber, J A; Mattolat, C F; Raeder, S; Habs, D; Martinez perez, T; Fraile prieto, L M; Vidal, M; Perez liva, M; Calvo portela, P; Ulla pedrera, F J; Domingo pardo, C; Morales lopez, A I; Wood, R T; Lalkovski, S; Page, R; Petri, M; Barton, C J; Nichols, A J; Vermeulen, M J; Bloor, D M; Henderson, J; Wilson, G L; De angelis, G; Buerger, A; Klintefjord, M L; Fornal, B A; Marginean, R; Sava, T; Suvaila, R; Lica, R; Costache, C; Mihai, R; Ionescu, A; Baeck, T M; Masenda, H; Sedlak, M; Koskelo, O K; Kyaw myat, K M; Ganguly, B; Goncalves marques, J; Cardoso, S; Seliverstov, M; Niessen, B D; Gutt, L E; Chapman, R; Spagnoletti, P N; Lopes, C; De oliveira amorim, C; Batista lopes, C M; Araujo, J; Schielke, S J; Daugas, J R; Gaudefroy, L; Chevrier, R; Szunyogh, D M; Napiorkowski, P J; Wrzosek-lipska, K; Wahl, U; Catarino, N; Pereira carvalho alves de sequeira, M; Decoster, S J; Porobic, T; Walters, W; Hess, H E; Holler, A; Bettermann, L; Geibel, K; Taprogge, J; Lewandowski, L T N; Manchado de sola, F; Das gupta, S; Thulstrup, P W; Heinz, U; Neidherr, D M; Gumenyuk, O; Peaker, A R; Wakabayashi, Y; Roder, J; Abrahams, K J; Mach, H A; Souza ribeiro junior, I; He, J; Giles, T J; Dorsival, A; Kalaninova, Z; Venos, D; Kraemer, J; Saha, S; Neugart, R; Eronen, T O; Kreim, K D; Heck, M K; Goncharov, M; Julin, R J; Jakobsson, E H U; Eleon, C; Achouri, N L; Fontbonne, C M; Alfaurt, P; Kusoglu, A; Wilkins, S G; Brown, A R; Imai, N; Pomorski, M J; Janiak, L; Nilsson, T; Stroke, H H; Stanja, J; Dangelser, E; Heenen, P; Mallion, S N; Diriken, J V J; Ghys, L H L; Khamehchi, M A; Van beveren, C; Gins, W A M; Bouma, J T; Mcnulty, J F; Berger, C J; Ohlert, C M; Schwerdtfeger, W; Becerril reyes, A D; Perea martinez, A; Martinez perez, M C; Margerin, V; Rudigier, M; Alexander, T D; Patel, Z V; Hammond, N; Wearing, F; Patel, A; Jenkins, D G; Debernardi, A; Giacoppo, F; Tveten, G M; Krolas, W A; Stanoiu, M A; Rickert, E U; Ter-akopian, G; Cline, D; Riihimaeki, I A; Simon, K D; Wagner, F E; Turker, M; Neef, M H; Jakubek, J; Vagena, E; Bottoni, S; Nishimura, K; Correia, J; Rodrigues valdrez, C J; Ostrowski, A N; Hallmann, O; Scheck, M; Wady, P T; Lane, J; Krasznahorkay, A J; Kunne sohler, D; Meaney, A J; Baptista barbosa, M; Hochschulz, F; Roig, O; Houngbo, D; Behan, C C; Kargoll, S; Kemnitz, S; Redondo cubero, A; Dirkx, D; Tallarida, G; Kaczarowski, R; Finke, F; Linnemann, A; Altenkirch, R; Saed-samii, N; Ansari, S H; Dlamini, W B; Adoons, V N; Ronning, C R; Guadilla gomez, V; Herlert, A J; Judge, S M; Catherall, R; Lettry, J; Lindroos, M; Wenander, F J C; Madurga flores, M; Zakoucky, D; Catchen, G L; Noertershaeuser, W; Kroell, T; Leske, J; Shubina, D; Murray, I M; Pancin, J; Delaunay, F; Poincheval, J J L; Audirac, L L; Gerbaux, M T; Aouadi, M; Sole, P G P; Fallot, M P; Onillon, A; Duchemin, C; Formento cavaier, R; Audi, G; Lau, C; Martin, J A; Barre, N H; Berry, T A; Procter, T J; Farooq-smith, G J; Bladen, L K; Axiotis, M; Muto, S; Jeong, S C; Hirayama, Y; Korgul, A B; Minamisono, K; Bingham, C R; Aprahamian, A; Bucher, B M; Huyse, M L; Himpe, P; Ferrer garcia, R; Sambi, S; Budincevic, I; Neven, M; Bomans, P; Romano, N; Maugeri, E A; Klupp, S C; Dehn, M H; Heinke, R M; Maira vidal, A; Vedia fernandez, M V; Ibanez garcia, P B; Bruyneel, B J E; Materna, T; Al-dahan, N; Alazemi, N; Carroll, R J; Babcock, C; Laird, A M; Eleme, Z; Dhal, A; Valiente dobon, J J; Sahin, E; Goergen, A; Maj, A; Bednarczyk, P A; Borcea, C; Negoita, F; Suliman, G; Marginean, N M; Sotty, C O; Negret, A L; Nae, S A; Nita, C; Golubev, P I; Knyazev, A; Jost, C U; Petrik, K; Strisovska, J; Vaeyrynen, S A; Dracoulis, G D; Rainovski, G I; Uher, J; Fernandez dominguez, B; Chakraborty, P; Avigo, R; Galaviz redondo, D; Castro ribeiro da silva, M; Bernards, C W; Falahat, S; Lekovic, F; Dorrer, H J; Derkx, X; Angus, L J; Sandhu, K S; Gregor, E; Byrne, D J; Haas, H; Lourenco, A A; Sousa pereira, S M; Esteves de araujo, J P; Sousa, J B; De melo mendonca, T M; Tavares de sousa, C; Guerreiro dos santos oliveira custodio, L M; Da rocha rodrigues, P M; Yamaguchi, T; Thompson, P C; Rosenbusch, M; Wienholtz, F; Fischer, P; Iwanicki, J S; Rusek, K M; Hanstorp, D; Severijns, N; Vanpoucke, B R S; Finlay, P E J; Park, S H; Warr, N V; Doornenbal, P C; Imig, A; Seidlitz, M; Moschner, K; Vogt, A; Kaya, L; Martel bravo, I; Orduz, A K; Serot, O; Litvinov, Y; Bommert, M; Hensel, S; Markevich, V; Nishio, K; Ota, S; Matos, I; Zenkevich, A; Picado sandi, E; Forstner, O

    2002-01-01

    The experiments aim at a broad exploration of the properties of atomic nuclei far away from the region of beta stability. Furthermore, the unique radioactive beams of over 60~elements produced at the on-line isotope separators ISOLDE-2 and ISOLDE-3 are used in a wide programme of atomic, solid state and surface physics. Around 300 scientists are involved in the project, coming from about 70 laboratories. \\\\ \\\\ The electromagnetic isotope separators are connected on-line with their production targets in the extracted 600 MeV proton or 910~MeV Helium-3 beam of the Synchro-Cyclotron. Secondary beams of radioactive isotopes are available at the facility in intensities of 10$^1

  3. Protocol Additional to the agreement between France, the European Atomic Energy Community and the International Atomic Energy Agency for the application of safeguards in France

    International Nuclear Information System (INIS)

    The text of the Protocol Additional to the Agreement between France, the European Atomic Energy Community and the International Atomic Energy Agency for the Application of Safeguards in France is reproduced in the Annex to this document for the information of all Members. The Additional Protocol was approved by the Board of Governors on 11 June 1998. It was signed in Vienna on 22 September 1998. Pursuant to Article 16 of the Additional Protocol, the Protocol entered into force on 30 April 2004, the date on which the Agency received written notification that the European Atomic Energy Community and France had met their respective internal requirements for entry into force

  4. A study on the improvement of the legal system concerning Korean Atomic Energy Act

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Il Un; Jung, Jong Hak; Kim, Jae Ho; Moon, Jong Wook; Kim, In Sub [Chungnam National Univ., Taejon (Korea, Republic of)

    1998-03-15

    Cause-effect analysis, adjustment, and generalization of the current atomic energy act are contents of this research. These are to be based on the legal theory. Analysis of the current atomic energy act from the viewpoint of constitutional law and administrative law. Review of the other domestic legal systems which have similar problems as the atomic energy act has. Inquiry about the operation of nuclear legal systems of foreign nations.

  5. A study on the improvement of the legal system concerning Korean Atomic Energy Act

    International Nuclear Information System (INIS)

    Cause-effect analysis, adjustment, and generalization of the current atomic energy act are contents of this research. These are to be based on the legal theory. Analysis of the current atomic energy act from the viewpoint of constitutional law and administrative law. Review of the other domestic legal systems which have similar problems as the atomic energy act has. Inquiry about the operation of nuclear legal systems of foreign nations

  6. Energy from the Atom. A Basic Teaching Unit on Energy. Revised.

    Science.gov (United States)

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 9-12 social studies and/or physical science classes, this 4-8 day unit focuses on four topics: (1) the background and history of atomic development; (2) two common types of nuclear reactors (boiling water and pressurized water reactors); (3) disposal of radioactive waste; and (4) the future of nuclear energy. Each topic…

  7. Atomic Energy Act and Related Legislation. Environmental Guidance Program Reference Book: Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This report presents information related to the Atomic Energy Act and related legislation. Sections are presented pertaining to legislative history and statutes, implementing regulations, and updates.

  8. International Atomic Energy Agency Annual Report 2014 [Spanish Version

    International Nuclear Information System (INIS)

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  9. International Atomic Energy Agency Annual Report 2014 [French Version

    International Nuclear Information System (INIS)

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  10. International Atomic Energy Agency Annual Report 2014 [Chinese Version

    International Nuclear Information System (INIS)

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  11. Swiss energy research programme on solar heat and storage for 2008-2011; Programme de recherche energetique. Chaleur solaire et stockage pour la periode 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Hadorn, J.-C.

    2009-07-15

    This report published by the Swiss Federal Office of Energy (SFOE) takes a look at the research programme on solar heat and heat storage for the years 2008 - 2011. This document presents some aspects of the solar thermal market in 2007, summarizes the main solar thermal technologies for buildings and sketches the main topics of the 'Solar Heat and Heat Storage' research programme. Research and development issues looked at focus mainly on the heating and cooling of buildings. The research and development issues for solar thermal technologies during the period 2008-2011 include improved performance and durability of solar collectors and components, new coatings for solar collectors based on nano-materials as well as simplified and standardised systems for solar heating and cooling. Building Integration and integration in existing heating systems and long-term work with a focus on new materials for storing heat for use in residential buildings are discussed. Also, calculation methods and simulation tools are examined. Pilot and demonstration projects are reviewed.

  12. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 3: converting wood fuel to energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  13. The nuclear power safety programme of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    The expanded role of the IAEA in the field of nuclear power safety will be discussed. Emphasis will be given to the NUSS program (the letters being an acronym for Nuclear Safety Standards) to establish internationally accepted safety codes and guides for nuclear power plants dealing with governmental regulatory organizations, siting, design, operation and quality assurance. Other activities discussed will be advisory services, exchange of information and training, emergency accident assistance, and technical assistance. (orig./RW)

  14. South Africa [National and regional programmes on the production of hydrogen using nuclear energy

    International Nuclear Information System (INIS)

    development of a national nuclear policy in 2007, South Africa decided for the promotion of an ambitious nuclear power plant construction programme. It has been projected that an additional 40 GW of electricity will be required over the next 20 years in South Africa. By 2030, nuclear energy should provide 30% of electricity in South Africa, from a fleet of LWRs and HTGRs.

  15. Atomic energy law after the opt-out. Alive and fascinating. Report about the 14th German atomic energy law symposium 2012

    International Nuclear Information System (INIS)

    Atomic energy law remains a living, fascinating subject matter. Nearly 200 participants were convinced of this impression at the 14th German Atomic Energy Law Symposium held in Berlin on November 19-20, 2012. Under the scientific chairmanship of Professor Dr. Martin Burgi, Ludwig Maximilian University of Munich, the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), after an interruption of 5 years, again organized a scientific conference about practice-related topics of atomic energy and radiation protection law. Atomic energy law once again proved to be a reference area for sophisticated issues of constitutional law and administrative law above and beyond its technical confines. The agenda of the 14th German Atomic Energy Law Symposium featured a broad spectrum of topics ranging from backfitting of nuclear power plants to European atomic energy and radiation protection law, to challenges facing national legal systems in the execution of atomic energy law, to legal issues connected with decommissioning and waste management, and on to the topical subject of finding a repository site. The 14th German Atomic Energy Law Symposium, on the whole, again demonstrated that an open discourse between science and practice is able to furnish important contributions to the implementation of laws in a balanced way rooted in practice. Especially the contributions dealing with the independence of public authorities and their organization, the doctrine of the reservation of functions of the executive branch, and planning by laws contain additional provisions able to influence the continued development of administrative law also above and beyond atomic energy law. The BMU also referred to a decision just heard from Brussels to the effect that a new European Safety Directive would be published as early as in 2013. As a consequence of the nuclear stress tests conducted EU-wide, the Directive is to lay down provisions about transparency, material

  16. Energy research programme on photovoltaics for the 2008 - 2011 period; Energieforschungsprogramm Photovoltaik fuer die Jahre 2008 - 2011

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S.

    2008-09-15

    This report for the Swiss Federal Office of Energy (SFOE) presents and discusses the Swiss Energy Research Programme on Photovoltaics for the period 2008 - 2011. The programme is to continue the tried and tested concept of previous years and will involve all the important players in the Swiss photovoltaics area. The report reviews the situation at the international level and the situation in Switzerland. Future developments are discussed. Financing aspects are looked at and the main focal points for the period are listed, including solar cells, solar modules and building integration, electrical system technology, international co-operation and pilot and demonstration projects. In a chapter on national co-operation, competence centres and industry are looked at and co-operation with other Swiss federal and cantonal institutions as well as with private institutions and the electricity industry is reviewed. Operational aspects of the programme such as project submission and assessment, project management and controlling are discussed. Information and communication work, including seminars, conferences and the Internet are discussed. The report is concluded with lists of research and development projects as will as pilot and demonstration projects, references and internet links. Appendices include a review of photovoltaic technologies, an extract from the Swiss Energy Research Concept for 2008 - 2011, a review of the various factors and competencies involved and an overview of international programmes and networks.

  17. New MSc programme in Sustainable Energy at Risø DTU

    DEFF Research Database (Denmark)

    Ryde, M.

    2007-01-01

    In September 2008, the fi rst batch of students will start a new MSc programme which is based at Risø DTU. It is a two-year study programme, so the students will be well into their studies when the UN’s climate conference is held in Copenhagen in 2009...

  18. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota [Department of Physics, Toho University, Miyama, Funabashi, Chiba 274-8510 (Japan); Kato, Daiji; Murakami, Izumi [National Institute for Fusion Science, Toki, Gifu 509-5292, Japan and Department of Fusion Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan); Sakaue, Hiroyuki A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kenmotsu, Takahiro [Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394 (Japan); Furuya, Kenji [Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Motohashi, Kenji, E-mail: motohashi@toyo.jp [Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan and Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  19. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

    CERN Document Server

    Rupp, Matthias; Müller, Klaus-Robert; von Lilienfeld, O Anatole

    2011-01-01

    We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schr\\"odinger equation is mapped onto a non-linear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross-validation over more than seven thousand small organic molecules yields a mean absolute error of ~10 kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves.

  20. Storage exploratory project. Energy program. Final report; Projet exploratoire Stockage. Programme Energie. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Y. [Laboratoire d' Electrotechnique de Grenoble, UMR 5529 INPG/UJF - CNRS, ENSIEG, 38 - Saint-Martin-d' Heres (France); Ozil, P. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces (LEPMI), ENSEEG, 38 - Saint Martin d' Heres (France); Cheron, Y. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, CNRS, 31 - Toulouse (France); Multon, B. [Laboratoire des Sciences de l' Information et des Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE), 94 - Cachan (France); Carillo, S. [Centre Interuniversitaire de recherche et d' Ingenierie sur les Materiaux (CIRIMAT), 31 - Toulouse (France)

    2004-07-01

    The aim of this exploratory project was the analysis of the most efficient possibilities of electric power storage. It was limited to the electrochemical storage, the lead batteries which behavior is not completely characterized, the flywheel energy storage and the development of simulation. This report presents the results of the works. (A.L.B.)

  1. International Atomic Energy Agency Annual Report 2011 (Spanish Edition)

    International Nuclear Information System (INIS)

    The IAEA Annual Report 2011 aims to summarize only the significant activities of the Agency during the year in question. This report covers the period 1 January to 31 December 2011. The main part of the report, starting on page 21, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2011 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available in electronic form only on iaea.org, along with the Annual Report.

  2. International Atomic Energy Agency Annual Report 2011 (French Edition)

    International Nuclear Information System (INIS)

    The IAEA Annual Report 2011 aims to summarize only the significant activities of the Agency during the year in question. This report covers the period 1 January to 31 December 2011. The main part of the report, starting on page 21, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2011 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available in electronic form only on iaea.org, along with the Annual Report.

  3. International Atomic Energy Agency Annual Report 2011 (Russian Edition)

    International Nuclear Information System (INIS)

    The IAEA Annual Report 2011 aims to summarize only the significant activities of the Agency during the year in question. This report covers the period 1 January to 31 December 2011. The main part of the report, starting on page 21, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2011 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available in electronic form only on iaea.org, along with the Annual Report.

  4. Swiss energy research in 2008; Energie-Forschung 2008 - Ueberblicksberichte der Programmleiter / Recherche energetique 2008 - Rapports de synthese des chefs de programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    This comprehensive document published by the Swiss Federal Office of Energy (SFOE) reports on Swiss energy research in the year 2008. The overview reports made by the programme leaders are presented. In the area of efficient energy use, programme reports are presented for the following areas: Energy in buildings, traffic, electricity technologies and their usage, networks, heat-pumps and combined heat and power, combustion technologies, power station 2020 and carbon capture and storage, fuel cells and hydrogen as well as process engineering. In the renewables sector, work in the following areas is reported on: Solar thermal energy and storage, photovoltaics, industrial use of solar energy, biomass and wood energy, hydropower, geothermal energy and wind energy. Research in the area of nuclear energy and nuclear safety is reported on, as is research in the areas of regulatory safety, fusion and nuclear wastes. Finally, a report on energy-economics research is presented. The report is completed with a list of projects and an appendix containing details on the Swiss Energy Research Commission CORE and a list of those responsible for the various research programmes.

  5. SIMULATION OF THE ATOMIZED FLOW BY SLIT TYPE BUCKET ENERGY DISSIPATOR

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-he; DUAN Hong-dong

    2005-01-01

    Slit type bucket is one kind of flip bucket for energy dissipation generally used in the hydraulic project.In this paper the atomized flow produced behind this energy dissipator is analyzed, a numerical model for the aerated jet considering air entrainment and air resistance force is suggested, and simulation of the rain resulted by the atomized flow is also discussed.Furthermore, the prototype observation data for the atomized flow of Dongjiang Hydropower Station is used to verify the model suggested.

  6. Tritium handling experience at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I. [Atomic Energy of Canad Limited - AECL, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  7. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-01

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting. PMID:27246652

  8. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-01

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting.

  9. A calculation of internal kinetic energy and polarizability of compressed argon from the statistical atom model

    NARCIS (Netherlands)

    Seldam, C.A. ten; Groot, S.R. de

    1952-01-01

    From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of a

  10. Danish Atomic Energy Commission Annual Report 1 April 1975 - 28 April 1976

    International Nuclear Information System (INIS)

    Activities of the Danish Atomic Energy Commission and the Research Establishment Risoe for the period 1 April 1975 - 28 April 1976 are summarized. Financial data are tabulated, and a list of staff publications is given. This is the last report before the dissolution of the Danish Atomic Energy Commission. (B.P.)

  11. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral atoms: Theory, comparisons, and application to Ca

    CERN Document Server

    Barklem, Paul S

    2016-01-01

    A theoretical method for the estimation of cross sections and rates for excitation and charge transfer processes in low-energy hydrogen atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in the neutral atom-hydrogen atom system, is presented. The calculation of potentials and non-adiabatic radial couplings using the method is demonstrated. The potentials are used together with the multi-channel Landau-Zener model to calculate cross sections and rate coefficients. The main feature of the method is that it employs asymptotically exact atomic wavefunctions, which can be determined from known atomic parameters. The method is applied to Li+H, Na+H, and Mg+H collisions, and the results compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically important problem of Ca+H collisions, and rate coefficients are calculated for temperatures in the range 1000-20000 K.

  12. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  13. Atomic and molecular data for radiotherapy and radiation research. Final report of a co-ordinated research programme

    International Nuclear Information System (INIS)

    The report includes 9 chapters and an appendix: Development of particle therapy in cancer management. Expectations and justification of the heavy-ion therapy programs; Ionization by fast charged particles; Electron collision cross sections; Low energy electron interaction with condensed matter; Photoabsorption, photoionization, and photodissociation cross sections; Collision processes between ions and excited neutrals and surrounding molecules; Stopping powers, ranges, and straggling; Yields of ionization and excitation in irradiated matter; Track structure quantities; ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping powers and ranges for electrons, protons, and helium ions (appendix). A separate abstract was prepared for each chapter. Refs, figs and tabs

  14. INDIAN SCHOOL TEACHERS’ PERSPECTIVE ON GLOBALISATION OF EDUCATION: A Case Study of Atomic Energy Education Society School Teachers

    Directory of Open Access Journals (Sweden)

    M. RAJESH

    2009-10-01

    Full Text Available Globalisation has become an enduring reality of our times and more so in the field of education. Teachers are the harbingers of change in the global economy and school teachers have a major role in shaping the attitude of the society towards all social and economic phenomena including that of globalisation. At the Regional Centre of IGNOU situated at Cochin, Kerala an unique training programme was conducted for a year to train school teachers of the Atomic Energy Education Society (AEES one of the elite educational organisations of the country in ICT applications. This opportunity was utilised by the researchers to conduct a study that holds multiple portends for policy makers to channel the direction of the forces affecting the globalisation of education.

  15. Finnish bioenergy research programme

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    Finland is a leading country in the use of biofuels and has excellent opportunities to increase the use of biofuels by up to 25-30 %. The Finnish Government has set an objective for the promotion of bioenergy. The aim is to increase the use of bioenergy by about 25 % from the present level by 2005, and the increment corresponds to 1.5 million tonnes of oil equivalent (toe) per year. The R and D work has been considered as an important factor to achieve this ambitious goal. Energy research was organised into a series of research programmes in 1988 in accordance with the proposal of Finnish Energy Research Committee. The object of the research programmes is to enhance research activities and to bundle individual projects together into larger research packages. The common target of the Finnish energy research programmes is to proceed from basic and applied research to product development and pilot operation, and after that to the first commercial applications, e.g. demonstrations. As the organisation of energy research to programmes has led to good results, the Finnish Ministry of Trade and Industry decided to go on with this practice by launching new six-year programmes in 1993-1998. One of these programmes is the Bioenergy Research Programme and the co-ordination of this programme is carried out by VTT Energy. Besides VTT Energy the Finnish Forest Research Institute, Work Efficiency Institute, Metsaeteho and University of Joensuu are participating in the programme 7 refs.

  16. Country programme review Bangladesh

    International Nuclear Information System (INIS)

    A five-expert mission was organized from 21-26 August 1993 and this document reflects the findings and recommendations of the team. Intensive contacts with heads of institutions, scientists and decision making persons in various sectors in the country were co-ordinated by the Bangladesh Atomic Energy Commission. The terms of reference of the mission were: To assess the on-going TC projects; to assist the Bangladesh nationals to finalize the formulation of the new requests for 1995-96 TC programme and to establish priority areas with regard to the introduction of national projects involving accelerated technological transfer in order to catalyze national development plans in specific areas; to examine institutional framework suitable for the introduction of these priority nuclear techniques

  17. Theoretical study of atoms by the electronic kinetic energy density and stress tensor density

    CERN Document Server

    Nozaki, Hiroo; Tachibana, Akitomo

    2016-01-01

    We analyze the electronic structure of atoms in the first, second and third periods using the electronic kinetic energy density and stress tensor density, which are local quantities motivated by quantum field theoretic consideration, specifically the rigged quantum electrodynamics. We compute the zero surfaces of the electronic kinetic energy density, which we call the electronic interfaces, of the atoms. We find that their sizes exhibit clear periodicity and are comparable to the conventional atomic and ionic radii. We also compute the electronic stress tensor density and its divergence, tension density, of the atoms, and discuss how their electronic structures are characterized by them.

  18. The Formalism for Energy Changing Rate of an Accelerated Atom Coupled with Electromagnetic Vacuum Fluctuations

    Science.gov (United States)

    Zhang, Anwei

    2016-09-01

    The structure of the rate of variation of the atomic energy for an arbitrary stationary motion of the atom in interaction with a quantum electromagnetic field is investigated. Our main purpose is to rewrite the formalism in Zhu et al. (Phys Rev D 73:107501, 2006) and to deduce the general expressions of the Einstein A coefficients of an atom on an arbitrary stationary trajectory. The total rate of change of the energy and Einstein coefficients of the atom near a plate with finite temperature or acceleration are also investigated.

  19. Energy Spectra of the Confined Atoms Obtained by Using B-Splines

    Institute of Scientific and Technical Information of China (English)

    SHI Ting-Yun; BAO Cheng-Guang; LI Bai-Wen

    2001-01-01

    We have calculated the energy spectra of one- and two-electron atoms (ions) centered in an impenetrable spherical box by variational method with B-splines as basis functions. Accurate results are obtained for both large and small radii of confinement. The critical box radius of confined hydrogen atom is also calculated to show the usefulness of our method. A partial energy degeneracy in confined hydrogen atom is found when the radius of spherical box is equal to the distance at which a node of single-node wavefunctions of free hydrogen atom is located.

  20. Nuclear Materials Management at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    The procedures for nuclear material control are reviewed, based on the experiences at the Japan Atomic Energy Research Institute. Nuclear materials to be discussed here include: - Both natural and enriched uranium for research; - Imported enriched nuclear fuel elements for JRR-2 (10-MW CP-5), JRR-4 (1-MW swimming pool), JPDR (12.5-MW(e) BWR), and the critical assemblies for JMTR (50-MW light-water moderated) and for the propulsion reactor; - Domestically-fabricated natural uranium fuel elements for JRR-3 (10-MW heavy-water moderated); - Domestically-fabricated fuels for the critical assemblies manufactured from imported enriched uranium oxides; - Domestically-fabricated enriched fuel elements for JPDR and for the propulsion reactor manufactured from imported enriched uranium hexafluoride. Both thorium and plutonium are also under control, but excluded from the present paper. Entire administrative pattern for nuclear material control is first presented. The emphasis is placed on the domestic fabrication of enriched fuel elements from imported enriched uranium, and the details of the control procedures during and after the fabrication process are discussed. The control procedures include the chemical analysis for purity check, isotopic assay by mass spectrometry, physical and mechanical tests of fabricated products, and the careful prevention in the diversion of nuclear materials. Administrative problems being attributed to Japanese domestic situation are presented; for example, the segregation, collection and efficient recovery and practical uses of residual uranium from the fabrication process. Methods for keeping records on the storage and uses of nuclear materials are also discussed. More satisfactory control procedures for other nuclear materials such as thorium and heavy water are under progress. (author)

  1. National Atomic Energy Commission. Decree No. 1540, August 30 1994

    International Nuclear Information System (INIS)

    One of the objectives of the reorganization process of Argentina's public sector was to transfer to the private sector some of the Nation's productive activities, including those concerning the nuclear field. As a consequence, by Decree No. 1540 of August 30, 1994, (B.O. 2-Dec-94), CNEA's functions were partially reorganized. According to Decree No. 1540, the National Atomic Energy Commission (CNEA) maintained the missions and functions established by Decree-Law No. 22.498/56, with the exception of the regulation and surveillance of nuclear activities and the nuclear power generation activities. For the fulfillment of these activities, both the National Board of Nuclear Regulation (Ente Nacional Regulador Nuclear - ENREN) and Nucleoelectrica Argentina S.A. (NASA), were created. The National Board of Nuclear Regulation (ENREN), as an autarchical entity reporting to the Presidency of the Nation, shall be administered by a Board of Directors and shall be responsible for surveying and controlling all nuclear activities, shall suggest regulations and standards to ensure radiological and nuclear safety, personal protection, a controlled use of nuclear materials, licensing and surveillance of nuclear installations, and compliance with international safeguards. Nucleoelectrica Argentina S.A. (NASA) shall be organised as a corporation, reporting to the Ministry of Economy and Public Works and Services (Ministerio de Economia y Obras y Servicios Publicos) who will approve its statures. NASA shall take care of nuclear power generation at the Atucha I and Embalse nuclear power plants, as well as the construction, start-up and operation of the Atucha II nuclear power plant. As far as royalties are concerned, the Decree obliges Nucleoelectrica Argentina S.A. to pay CNEA for the performance of research and development activities, and to the ENREN an yearly regulatory tax per megawatt of installed nuclear power generation capacity. Also, Nucleoelectrica Argentina S.A. is declared

  2. 2003-2004 ACADEMIC TRAINING PROGRAMME (Renewable) Energy Policy in the EU Members States and the Accession States

    CERN Multimedia

    Françoise Benz

    2003-01-01

    13, 14, 15, 16, 17 October 2003 2003-2004 ACADEMIC TRAINING PROGRAMME LECTURE SERIES Main Auditorium bldg. 500 (Renewable) Energy Policy in the EU Members States and the Accession States D. Reiche / Free University of Berlin, D The aim of this lecture is to discuss the transformation of the energy sectors in the EU with the main focus on obstacles and success conditions for renewable energy sources. Besides the EU-15 and the ten states which will join the EU in 2004, Bulgaria and Romania which will probably join in 2007 as well as Turkey are analysed. The factors which influence renewable energy development are described as the path dependencies/starting positions in energy policy (natural conditions for the RES, availability of fossil resources, use of nuclear power), the instruments for promoting renewable energies (as feed-in tariffs or quota obligations), the economic (level of energy prices, for example), technological (i.e. grid capacity), and cognitive environment.

  3. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    Science.gov (United States)

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  4. Single-atom electron energy loss spectroscopy of light elements

    OpenAIRE

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of e...

  5. Summary of the law relating to atomic energy and radioactive substances

    International Nuclear Information System (INIS)

    This summary is an updated version of a previous revision of the summary of the United Kingdom's legislation on atomic energy and reviews the main texts in that field. Reference is made to the regulations on atomic energy, nuclear installations, radioactive substances, transport of such substances, radiation protection etc. The Energy Act 1983 amends the third party liability provisions of the nuclear installations Act 1965 in particular by raising the limits of compensation for nuclear damage. (NEA)

  6. Resonance interaction energy between two accelerated identical atoms in a coaccelerated frame and the Unruh effect

    CERN Document Server

    Zhou, Wenting; Rizzuto, Lucia

    2016-01-01

    We investigate the resonance interaction energy between two uniformly accelerated identical atoms, interacting with the scalar field or the electromagnetic field in the vacuum state, in the reference frame coaccelerating with the atoms. We assume that one atom is excited and the other in the ground state, and that they are prepared in their correlated symmetric or antisymmetric state. Using perturbation theory, we separate, at the second order in the atom-field coupling, the contributions of vacuum fluctuations and radiation reaction field to the energy shift of the interacting system. We show that only the radiation reaction term contributes to the resonance interaction between the two atoms, while Unruh thermal fluctuations, related to the vacuum fluctuations contribution, do not affect the resonance interatomic interaction. We also show that the resonance interaction between two uniformly accelerated atoms, recently investigated in the comoving (locally inertial) frame, can be recovered in the coaccelerate...

  7. Energy research 2003 - Overview; Energie-Forschung 2003 / Recherche energetique 2003. Ueberblicksberichte der Programmleiter / Rapports de synthese des chefs de programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This publication issued by the Swiss Federal Office of Energy (SFOE) presents an overview of advances made in energy research in Switzerland in 2003. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energies, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, combustion, fuel cells and in the process engineering areas. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, small-scale hydro, geothermal energy and wind energy are presented. Work being done on nuclear safety and disposal regulations as well as controlled thermonuclear fusion are discussed.

  8. Alternate Funding Sources for the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J.; Swarthout, Jordan M.

    2012-09-04

    Since 1957, the International Atomic Energy Agency (IAEA) has worked to ensure the safe and responsible promotion of nuclear technology throughout the world. The IAEA operates at the intersection of the Nuclear Nonproliferation Treaty’s (NPT) fourth and third articles, which guarantee Parties to the Treaty the right to peaceful uses of nuclear technology, provided those activities are placed under safeguards verified by the IAEA. However, while the IAEA has enjoyed substantial success and prestige in the international community, there is a concern that its resources are being stretched to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As noted by the Director General (DG) in 2008, demographics suggest that every aspect of the IAEA’s operations will be in higher demand due to increasing reliance on non-carbon-based energy and the concomitant nonproliferation, safety, and security risks that growth entails. In addition to these nuclear energy concerns, the demand for technical developmental assistance in the fields of food security, resource conservation, and human health is also predicted to increase as the rest of the world develops. Even with a 100% value-for-money rating by the U.S. Office of Management and Budget (OMB) and being described as an “extraordinary bargain” by the United Nations Secretary-General’s High-level Panel on Threats, Challenges and Change, real budget growth at the Agency has been limited to zero-real growth for a better part of the last two decades. Although the 2012 regular budget (RB) received a small increase for most programs, the 2013 RB has been set at zero-real growth. As a result, the IAEA has had to defer infrastructure investments, which has hindered its ability to provide the public goods its Members seek, decreased global security and development opportunities, and functionally transformed the IAEA into a charity, dependent on extrabudgetary (EB) contributions to sustain

  9. Laser diagnostics of the energy spectrum of Rydberg states of the lithium-7 atom

    Energy Technology Data Exchange (ETDEWEB)

    Zelener, B. B., E-mail: bobozel@mail.ru; Saakyan, S. A.; Sautenkov, V. A.; Manykin, E. A.; Zelener, B. V.; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    The spectra of excited lithium-7 atoms prepared in a magneto-optical trap are studied using a UV laser. The laser diagnostics of the energy of Rydberg atoms is developed based on measurements of the change in resonance fluorescence intensity of ultracold atoms as the exciting UV radiation frequency passes through the Rydberg transition frequency. The energies of various nS configurations are obtained in a broad range of the principal quantum number n from 38 to 165. The values of the quantum defect and ionization energy obtained in experiments and predicted theoretically are discussed.

  10. ''Further precaution'' in Atomic Energy Law? On unconstitutionality of paragraph 7d AtG

    International Nuclear Information System (INIS)

    On 1st January 2011 the new paragraph 7d of the Atomic Energy Act became operative with the 12th Modification Law according to the Atomic Energy Law. This new paragraph introduces a new category of the nuclear-legal prevention of damage. The contribution under consideration examines how this new regulation for further precautionary actions against risks is to be understood within the existing regulations for permission and retrofitting of nuclear power plants and within the acknowledged dogmatics of the Atomic Energy Act. In addition it is examined whether this understanding of the regulations agrees with the jurisdiction of the constitutional court according to the nuclear legal protection obligations.

  11. Energy losses of fast heavy multiply charged structural ions in collisions with complex atoms

    Science.gov (United States)

    Matveev, V. I.; Sidorov, D. B.

    2007-07-01

    A nonperturbatve theory of energy losses of fast heavy multiply charged structural ions in collisions with neutral complex atoms is elaborated with allowance for simultaneous excitations of ionic and atomic electron shells. Formulas for the effective deceleration that are similar to the well-known Bethe-Bloch formulas are derived. By way of example, the energy lost by partially stripped U q+ ions (10 ≤ q ≤ 70) colliding with argon atoms and also the energy lost by Au, Pb, and Bi ions colliding with various targets are calculated. The results of calculation are compared with experimental data.

  12. The Russian Federation's Ministry of Atomic Energy: Programs and Developments

    International Nuclear Information System (INIS)

    This paper reviews select programs driving the Ministry of Atomic Energy of the Russian Federation's (Minatom) efforts to raise funds, comments on their potential viability, and highlights areas likely to be of particular concern for the US over the next three to five years. The paper's findings are: (1) Despite numerous cabinet displacements throughout the Yeltsin administration, Yevgeny Adamov was reappointed Minister on four occasions. With Boris Yeltsin's January 1, 2000 resignation, Adamov's long-term position as the head of the Ministry is more tenuous, but he will likely retain his position until at least the March 2000 elections. Acting President Vladimir Putin is unlikely to reorganize his cabinet prior to that date and there are no signs that Putin is dissatisfied with Adamov's leadership of Minatom. (2) Adamov's chief priorities are downsizing Minatom's defense sector, increasing the oversight of subsidiary bodies by the central bureaucracy and consolidating commercial elements of the Ministry within an umbrella organization called Atomprom. (3) Viktor Mikhaylov, Adamov's predecessor and critic of his reform efforts, has been relieved of his duties as First Deputy Minister. While he retains his positions as Chief of the Science Councils and Chief Scientist at Arzamas-16, his influence on Minatom's direction is greatly diminished. Adamov will likely continue his efforts to further marginalize Mikhaylov in the coming year. (4) Securing extra-budgetary sources of income continues to be the major factor guiding Minatom's international business dealings. The Ministry will continue to aggressively promote the sale of nuclear technology abroad, often to countries with questionable nonproliferation commitments. (5) Given the financial difficulties in Russia and Minatom's client states, however, few nuclear development programs will come to fruition for a number of years, if ever. Nevertheless, certain peaceful nuclear cooperation agreements should be carefully

  13. International Atomic Energy Agency fellows: Where are they now? The Department of Technical Cooperation's report on the fellowship survey

    International Nuclear Information System (INIS)

    In order to assess the impact and the quality of the International Atomic Energy Agency (IAEA) fellowship programme, the Department of Technical Cooperation conducted a survey among former fellows from the years 2001 and 2002. These fellows have all completed the fellowship training, and have had time to judge in what way their training is useful to their work in their home country. As a result of this survey, further surveys could be conducted to serve as a continuous systematic assessment of the fellowship and other programmes. Former fellows from the years 2001 and 2002 were asked to fill out a questionnaire containing questions regarding the following: Where are the former fellows now and what are they doing? How did the fellows rate the quality of the fellowship programme? How did the fellows rate the impact of the training they received through the fellowship programme, the impact on their home institution, and the impact on the TC project and their home country? The survey period was 11 February - 4 March 2005. Reaching a sufficient number of former fellows from the years 2001 and 2002 posed some difficulties. The National Liaison Officers contributed greatly in finding the former fellows' current contact information. Out of the 2067 fellows who were in the field in the years 2001 and 2002, 613 participated in the survey (meaning, 30% of all fellows from those years and 50% of those reached by email or fax). The results of the survey given below represent only the survey participants' opinions, not those of all former fellows from the years 2001 and 2002. To ensure that the results are representative of all fellows, a follow-up study of seven countries is currently being done. The IAEA fellowship programme contributes successfully to knowledge and technology transfer to fellows' home institutions, their home countries and the TC projects they are involved in, as evidenced by the following survey results: 94% of the fellows who participated in the survey

  14. Decay widths and energy shifts of pi pi and pi K atoms

    OpenAIRE

    J. Schweizer

    2004-01-01

    We calculate the S-wave decay widths and energy shifts for pi pi and pi K atoms in the framework of QCD+QED. The evaluation - valid at next-to-leading order in isospin symmetry breaking - is performed within a non-relativistic effective field theory. The results are of interest for future hadronic atom experiments.

  15. International Atomic Energy Agency Annual Report 2010 [Spanish Version

    International Nuclear Information System (INIS)

    The Annual Report 2010 aims to summarize only the significant activities of the Agency during the year in question The main part of the report, starting on page 17, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'Overview', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement and Background to the Safeguards Statement and Summary. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM and is also available on the Agency's web site at http://www.iaea.org./Publications/ Reports/index.html. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this report do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear-Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) The term 'nuclear weapon State' is as used in the NPT.

  16. International Atomic Energy Agency Annual Report 2010 [Russian Version

    International Nuclear Information System (INIS)

    The Annual Report 2010 aims to summarize only the significant activities of the Agency during the year in question The main part of the report, starting on page 17, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'Overview', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement and Background to the Safeguards Statement and Summary. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM and is also available on the Agency's web site at http://www.iaea.org./Publications/ Reports/index.html. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this report do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear-Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) The term 'nuclear weapon State' is as used in the NPT.

  17. International Atomic Energy Agency Annual Report 2010 [French Version

    International Nuclear Information System (INIS)

    The Annual Report 2010 aims to summarize only the significant activities of the Agency during the year in question The main part of the report, starting on page 17, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'Overview', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement and Background to the Safeguards Statement and Summary. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM and is also available on the Agency's web site at http://www.iaea.org./Publications/ Reports/index.html. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this report do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear-Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) The term 'nuclear weapon State' is as used in the NPT.

  18. Application of atomic energy in agriculture (Annual Report 1974)

    International Nuclear Information System (INIS)

    Activities and results over the year 1974 are reviewed in the annual report for the entire research programme comprising: lyoluminescence, perspex dosemeters, primary radiation effects in biological materials, dose fractionation effect in Saintpaulia, adventitious bud technique in mutation breeding, mutation research in potatoes, protein improvement in peas, disease resistance in tomatoes, wheat, peas and barley, food preservation, genetic pest control, genetics of higher plants, soil-plant studies, element behaviour in soils and groundwater, heavy metals in plants, liquid waste reuse after irradiation, development of methods and instruments

  19. Application of atomic energy in agriculture, annual report 1975

    International Nuclear Information System (INIS)

    Activities over the year 1975 are reviewed in the annual report for the entire research programme comprising: primary radiation effects in inert and biological material, dose fractionation effect in Saintpaulia, adventitious bud technique in mutation breeding, mutation research in potatoes, protein improvements in peas and maize, disease resistance in tomatoes, pepper, wheat and barley, food preservation, radiation genetics of insect pests, genetics of higher plants, soil-plant studies, element behaviour in the soil and water environment, heavy metals in plants and soils, development of methods and instruments

  20. Low-energy Scattering of Positronium by Atoms

    Science.gov (United States)

    Ray, Hasi

    2007-01-01

    The survey reports theoretical studies involving positronium (Ps) - atom scattering. Investigations carried out in last few decades have been briefly reviewed in this article. A brief description of close-coupling approximation (CCA), the first-Born approximation (FBA) and the Born-Oppenheimer approximation (BOA) for Ps-Atom systems are made. The CCA codes of Ray et a1 [1-6] are reinvestigated using very fine mesh-points to search for resonances. The article advocates the need for an extended basis set & a systematic study using CCAs.

  1. "Pseudo-invariant Eigen-operator" Method for Deriving Energy-Gap of an Atom-Cavity Jaynes-Cummings Hamiltonian with Atomic Centre-of-Mass Motion

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; TANG Xu-Bing

    2006-01-01

    Using the "Pseudo-invariant eigen-operator" method we find the energy-gap of the Jaynes-Cummings Hamiltonian model of an atom-cavity system. This model takes the atomic centre-of-mass motion into account. The supersymmetric structure is involved in the Hamiltonian of an atom-cavity system. By selecting suitable supersymmetric generators and using supersymmetric transformation the Hamiltonian is diagonalized and energy eigenvectors are obtained.

  2. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies.

    Science.gov (United States)

    Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W; Castillo-Alvarado, F L

    2009-07-14

    A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic energy (T(c)) is computed using the density-functional theory virial relation. Based on our calculations, it is shown that the conventional approach where atomic energies are computed using only the noninteracting part of the kinetic energy might be in error by hundreds of kJ/mol. PMID:19603962

  3. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies.

    Science.gov (United States)

    Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W; Castillo-Alvarado, F L

    2009-07-14

    A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic energy (T(c)) is computed using the density-functional theory virial relation. Based on our calculations, it is shown that the conventional approach where atomic energies are computed using only the noninteracting part of the kinetic energy might be in error by hundreds of kJ/mol.

  4. A survey of energy drinks consumption practices among student -athletes in Ghana: lessons for developing health education intervention programmes

    Directory of Open Access Journals (Sweden)

    Buxton Christiana

    2012-03-01

    Full Text Available Abstract Background Globally, young adults and college athletes are primary targets of the marketing campaigns of energy drink companies. Consequently, it is reported that young adults and college athletes consume energy drinks frequently. The purpose of this study was to determine the prevalence of energy drink consumption among student-athletes selected from seven public universities in Ghana. The study assessed the energy drink consumption patterns, types usually consumed, frequency of consumption and reasons why athletes consumed energy drinks. Methods A total number of 180 student-athletes gave their consent to participate in the study and completed a questionnaire which was administered during an inter-university sports competition. Results Most of the participants (62.2% reported consuming at least one can of energy drink in a week. A high proportion (53.6% of the respondents who drink energy drinks indicated that they did so to replenish lost energy after training or a competition. Other reasons given as to why energy drinks were consumed by the study participants included to provide energy and fluids to the body (25.9%, to improve performance (9.8% and to reduce fatigue (5.4%. Conclusion These results suggest the need to plan health education programmes to particularly correct some wrong perceptions that athletes have regarding the benefits of energy drinks and also create awareness among student-athletes about the side effects of excessive intake of energy drinks.

  5. National Nuclear Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    This annual report covers the research and commercial activities of the National Nuclear Research Institute of the Ghana Atomic Energy Commission for the year 2014. Also listed are the scientific and technical publications issued by staff.

  6. ALKEM: Public hearing held in accordance with the Atomic Energy Act on September 24, 1984

    International Nuclear Information System (INIS)

    The report presents the verbatim record of the public hearing organised in accordance with section 13 Atomic Energy Act, on the issue of a licence applied for for constructing and operating an ALKEM nuclear fuel fabrication plant, and extending the plutonium storage capacity from 460 kg of Pu to 6.7 tonnes of Pu, in compliance with section 7 Atomic Energy Act and section 4 BImSchG (air pollution abatement). (orig./HP)

  7. Highlights of the Third United Nations International Conference on the Peaceful Uses of Atomic Energy

    International Nuclear Information System (INIS)

    The Third International Conference on the Peaceful Uses of Atomic Energy did not produce any spectacular data. Many technical details of recent work were reported and the results of work already published were confirmed and amplified. It became quite clear at the Conference that atomic energy has now reached the industrial stage in various countries. The Conference can thus be seen as a sort of landmark marking the beginning of the era of nuclear power

  8. Atomic energy: agreement between Canada and the Socialist Republic of Romania

    International Nuclear Information System (INIS)

    The governments of Canada and Romania agreed to cooperate in the development and application of atomic energy for peaceful purposes, including joint research and development projects, the application of atomic energy for electricity generation and other peaceful purposes, industrial enterprises; the supply of information, material, nuclear material, equipment and facilities; licensing arrangements; access to equipment and facilities; technical assistance; scientific visits; and training. Reprocessing, enrichment, and heavy water technology are excluded. Safeguards measures are spelled out. (LL)

  9. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry`s New and Renewable Energy Programme. Vol. 4: anaerobic digestion for biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry`s New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  10. Developing technology for large-scale production of forest chips. Wood Energy Technology Programme 1999-2003. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The national Wood Energy Technology Programme was carried out by Tekes during the period 1999- 2003 to develop efficient technology for large- scale production of forest chips from small- sized trees and logging residues. This is the final report of the programme, and it outlines the general development of forest chip procurement and use during the programme period. In 2002, a sub-programme was established to address small-scale production and use of wood fuels. This sub-programme will continue to the end of 2004, and it is not reported here. The programme was coordinated by VTT Processes. As of January 2004, the programme consisted of 44 public research projects, 46 industrial or product development projects, and 29 demonstration projects. Altogether, 27 research organizations and 53 enterprises participated. The total cost of the programme was 42 M euro of which 13 M euro was provided by Tekes. The Ministry of Trade and Industry provided investment aid for the new technology employed in the demonstration projects. When the programme was launched at the end of the 1990s, the major barriers to the use of forest chips were high cost of production, shortage of reliable chip procurement organizations, and the unsatisfactory quality of fuel. Accordingly, the programme focused largely on these problems. In addition, upgrading of the fuel properties of bark was also studied. The production of forest chips must be adapted to the existing operating environment and infrastructure. In Finland, these are charaterized by rich bio-mass potential, a sophisticated and efficient organization for the procurement of industrial timber, a large capacity of heating and CHP plants to use wood fuels, the possibility to co-fire wood and peat, and the unreserved acceptance of society at large. A goal of Finnish energy and climate strategies is to use 5 million m3 (0.9 Mtoe) chips annually by 2010. The Wood Energy Technology Programme was an important link in the long chain of activities

  11. Self-energy and interaction energy of stacking fault in fcc metals calculated by embedded-atom method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The stacking fault energies of five fcc metals (Cu, Ag, Au, Ni and Al) with various quantivalences have been calculated by embedded-atom method (EAM). It indicated that the stacking fault energy is mainly determined by the metallic bond-energy and the lattice constant. Thus, monovalent fcc metals should have different stacking fault energies, contrary to Attree's conclusion. The interaction energy between stacking faults one {111} layer apart in a fcc metal is found to be 1/40-1/250 of its self-energy, while it becomes zero when the two stacking faults are two layers apart. The twin energy is just half of the energy of intrinsic stacking fault energy without the consideration of lattice relax-ation and the energy of a single intrinsic stacking fault is almost the same as that of extrinsic stacking fault, which are consistent with the results from the calculation of Lennard-Jones force between atoms, but differ from Attree's result.

  12. Annual report of the Gama Atomic Energy Research Centre, National Atomic Energy Agency, April 1975-March 1976

    International Nuclear Information System (INIS)

    Contents of this 1975-1976 Annual Report include organization structure personnel, procurement and acquisition of laboratory materials and equipment, maintenance of laboratory equipments, budgeting and financial accounts, preliminary fundamental research on plasma physics and particle physics, development of several prototypes of radiation detectors, construction of prototypes of high voltage tension, research in reactor physics, construction of BATAN Yogyakarta nuclear reactor, development of electronic equipment prototypes for reactor instrumentation, research on radiochemistry and radiation chemistry, preliminary research on uranium extraction using organic solvents, laboratory scale heavy water separation by distillation method, and research publication list. The institute's programmes for 1976-1977 are summarized. (author)

  13. Enforcement agreement between the French atomic energy commission and the federal atomic energy agency for the implementation of the framework-agreement dispositions related to the environmental multilateral program in the nuclear domain in Russian Federations during the nuclear cooperation in the framework of the G8 world partnership against the proliferation of mass destruction weapons and their related materials; Accord d'application entre le Commissariat a l'Energie Atomique et l'Agence Federale de l'Energie Atomique pour la mise en oeuvre des dispositions de l'accord-cadre relatif au programme multilateral environnemental dans le domaine nucleaire en Federation de Russie lors de la cooperation nucleaire dans le cadre du partenariat mondial du G8 contre la proliferation des armes de destruction massive et des matieres connexes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    In order to give assistance to the Russian Federations, the G8 partners have agreed to carry on joint actions in the following domains: dismantling of out-of-service nuclear submarines of the Russian navy, management of the spent fuels and wastes generated by this dismantlement, rehabilitation of fuel storage and waste management facilities, management of nuclear materials and safety of facilities or sites with a potential radiological risk. This document defines the domain of cooperation between France (CEA) and the Russian federal atomic energy agency: creation of a coordination parity technical committee, financing conditions and conclusion of contracts for joint actions, access to sites, exchange of informations, intellectual property, nuclear safety and radioprotection, changes and amendments to the agreement, enforcement and duration. A protocol relative to the access of French representatives to Russian work sites is attached. (J.S.)

  14. UKAEA underlying research programme annual report

    International Nuclear Information System (INIS)

    Investment in fundamental research is essential to the success of an organisation such as Atomic Energy Authority (AEA) Technology whose business is the selling of Research and Development (R and D) and the services relating to it. Such research supplies the scientific understanding that underpins the technical expertise of the organisation, develops new skills and techniques, and stimulates technical innovation. The resulting scientific and technical excellence is the hall-mark of a major contract R and D organisation. Fundamental research in the AEA is co-ordinated through the Underlying Research Programme. This Report describes progress made during the financial year 1988/89 within all Technical Areas of the Programme, and additionally summarises the AEA's Underlying Research on the Safe Integral Reactor design and on 'Cold Fusion'. Highlights of recent technical achievements within the Programme are described in a separate brochure. (author)

  15. Atomic Oxygen Durability Evaluation of Protected Polymers Using Thermal Energy Plasma Systems

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.; Stidham, Curtis R.; Gebauer, Linda; Lamoreaux, Cynthia M.

    1995-01-01

    The durability evaluation of protected polymers intended for use in low Earth orbit (LEO) has necessitated the use of large-area, high-fluence, atomic oxygen exposure systems. Two thermal energy atomic oxygen exposure systems which are frequently used for such evaluations are radio frequency (RF) plasma ashers and electron cyclotron resonance plasma sources. Plasma source testing practices such as ample preparation, effective fluence prediction, atomic oxygen flux determination, erosion measurement, operational considerations, and erosion yield measurements are presented. Issues which influence the prediction of in-space durability based on ground laboratory thermal energy plasma system testing are also addressed.

  16. Present state of research and development of atomic energy in five Asian countries

    International Nuclear Information System (INIS)

    The survey group for Asian atomic energy cooperation was dispatched by the Japanese government, and toured Philippines, Indonesia, Malaysia, Thailand and Bangladesh from September 7 to 19, 1980. The present state of atomic energy development and the energy situation in respective countries were surveyed through the exchange of opinion and the inspection of related facilities. The Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology was concluded in June, 1972, and 12 countries have participated in it. It was impressive that respective countries have the peculiar energy policies corresponding to their objective conditions. They regard atomic energy as the important substitute energy for petroleum, but the fear about the safety of atomic energy and the movement against nuclear power generation have been growing considerably. The research and development on atomic energy are carried out very actively in respective countries, and the construction of large-scale research centers was commenced in Indonesia, Malaysia and Bangladesh. Research reactors have been operated in Philippines, Indonesia and Thailand since about 20 years ago, and the utilization of radioisotopes and radiation has been studied. The cooperation of Japan with these countries is far behind that of other advanced countries. (Kako, I.)

  17. Theory of ion-atom collisions at high energy, I

    International Nuclear Information System (INIS)

    Electron capture process by an ion from a neutral atom is one of the fundamental problems in the theory of atomic collision physics. Here a brief review is given mainly on the processes of non-radiative and radiative electron capture (charge transfer and REC). The main mechanism which govern the charge transfer process is introduced and the characteristic feature which is predicted by the theory is explained. As for the radiative electron capture process, after introducting the present theories, the full-quantum mechanical theoretical treatment is introduced. The theory leads a result which includes some inconsistency with formulae obtained by guage transformation. The relativistic quantum mechanical treatment is being tried in order to remove this inconsistency. The some results including mass and velocity dependence are reported and discussed. (author)

  18. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  19. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben

    2012-10-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.

  20. Matter, energy, and heat transfer in a classical ballistic atom pump.

    Science.gov (United States)

    Byrd, Tommy A; Das, Kunal K; Mitchell, Kevin A; Aubin, Seth; Delos, John B

    2014-11-01

    A ballistic atom pump is a system containing two reservoirs of neutral atoms or molecules and a junction connecting them containing a localized time-varying potential. Atoms move through the pump as independent particles. Under certain conditions, these pumps can create net transport of atoms from one reservoir to the other. While such systems are sometimes called "quantum pumps," they are also models of classical chaotic transport, and their quantum behavior cannot be understood without study of the corresponding classical behavior. Here we examine classically such a pump's effect on energy and temperature in the reservoirs, in addition to net particle transport. We show that the changes in particle number, of energy in each reservoir, and of temperature in each reservoir vary in unexpected ways as the incident particle energy is varied.

  1. Annual report of the Department of Atomic Energy 1975-76

    International Nuclear Information System (INIS)

    The activities of the various constituent units of the Department of Atomic Energy such as the Bhabha Atomic Research Centre, Reactor Research Centre, Variable Energy Cyclotron, the power stations and a few others during the year 1975-76 are reported. The progress achieved in the field of atomic minerals, nuclear medicine, nuclear power, development of radioisotopes etc. are presented in detail. The responsibilities and achievements of the public sector undertakings under Department of Atomic Energy such as the Indian Rare Earth Ltd., Electronics Corporation of India Ltd., Uranium Corporation of India Ltd., are highlighted. Other activities such as planning and execution, economic and personnel health aspects, international relations etc. are also mentioned. (A.K.)

  2. Scaled-energy spectroscopy of a |M|=1 Rydberg barium atom in an electric field

    Institute of Scientific and Technical Information of China (English)

    Wang Lei; Quan Wei; Shen Li; Yang Hai-Feng; Shi Ting-Yun; Liu Xiao-Jun; Liu Hong-Ping; Zhan Ming-Sheng

    2009-01-01

    We observe strong energy-dependent quantum defects in the scaled-energy Stark spectra for |M|=1 Rydberg states of barium atoms at three scaled energies: ε= -2.000, ε= -2.500 and ε=-3.000. In an attempt to explain the observations, theoretical calculations of closed orbit theory based on a model potential including core effect are performed for non-hydrogenic atoms. While such a potential has been uniformly successful for alkali atoms with a single valence electron, it fails to match experimental results for barium atoms in the 6snp Rydberg states with two valence electrons. Our study points out that this discrepancy is due to the strong perturbation from the 5d8p state, which voids the simple approximation for constant quantum defects of principle quantum number n.

  3. Swiss Energy Research Programme 2008 - 2011. Electricity technologies and applications; Energieforschungsprogramm 2008-2011. Elektriztaetstechnologien und -Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Brueniger, R.

    2008-05-15

    This report published by the Swiss Federal Office of Energy (SFOE) discusses the results of research work done in Switzerland in the area of electricity technologies and their application. A technologies section takes a look at the conversion of heat into electricity, efficient compressed air storage and high-temperature superconductivity. In the applications area, efficient drives and motors, information technology and communication are discussed, as are electrical appliances for households and lighting. The organisation of the programme is presented and the focus of research for the period 2008 - 2011 in these areas is discussed.

  4. Opinions of Cordoba's politicians and journalists on atomic energy

    International Nuclear Information System (INIS)

    The perception of the nuclear energy of journalist of the Cordoba city and of the member of the legislative body of the Province was investigated. In general a high degree of ignorance on nuclear energy and its uses was found. The majority of them considers nuclear energy a great danger for the society and describes it as a potential damage for health and environment. Little is known about medical applications, food irradiation, etc. As a consequence nuclear energy has no priority in journalist and lawmakers agendas. (author)

  5. Anti-terror/non-proliferation efforts and South Korea's planning for atomic energy

    International Nuclear Information System (INIS)

    This study deals with the relationship between rapidly changing international security environments, the US security policy on the one hand, and policy environments of atomic energy. Based on the notion that the issue of atomic energy development is closely interrelated with the situation of international security especially after the tragic incident of 9/11, this study focuses on the impact of changing security environments on the conditions under which South Korea uses atomic power. It also deals with the subject of how the new framework of NPT, and the policy of IAEA influences upon South Korea's atomic polices in the future. This study examines the nature and contents of the US foreign policy and its efforts toward nonproliferation and counterproliferation. This study also deals with the Iranian case in which the US efforts of counterproliferation and Iranian argument for the rights of peaceful use of atomic energy based on the concept of national sovereignty. The Iranian case sheds light on the most acute aspect of current stage of nonproliferation, but also on the way of solving the North Korean nuclear crisis. This study also take issue with the future course of nonprolieration and the South Korea's policy for its maximum use of atomic energy

  6. Effective atomic numbers for photon energy absorption of some low-Z substances of dosimetric interest

    International Nuclear Information System (INIS)

    Effective atomic numbers for photon energy absorption (ZPEAeff) and effective atomic numbers for photon interaction (ZPIeff) of some low-Z substances of dosimetric interest such as A-150 tissue-equivalent plastic (A150TEP), alanine, bakelite, Gafchromic sensor (GS), plastic scintillator (PS), polyethylene, mylar, polystyrene, perspex, radiochromic dye film nylon base (RDF : NB), tissue-equivalent gas-methane based (TEG : MB) and tissue-equivalent gas-propane based (TEG : PB) have been calculated by a direct method in the energy region of 1 keV-20 MeV. Experimental mass attenuation coefficients and ZPIeff of some of these substances at selected photon energies of 26.34, 33.2, and 59.54 keV have been obtained and compared with theoretical values. The ZPEAeff and ZPIeff values steadily increases up to 6-15 keV, and then they steadily decrease up to 600-1500 keV for all the substances studied. From 1.5 MeV, the values increases with increase in energy up to 20 MeV. Significant differences up to 33.68% exist between ZPIeff and the ZPEAeff in the energy region of 10-150 keV. The single effective atomic numbers obtained using the program XMuDat (ZXMUDATeff ) are found to be significantly higher compared to those of ZPEAeff and ZPIeff values in the entire energy of interest for all the substances studied. The directly calculated ZPEAeff and ZPIeff values vary with energy compared to the energy-independent effective atomic numbers predicted by various theoretical expressions. The effects of absorption edges on effective atomic numbers and their variation with photon energy and the possibility of defining two set values of effective atomic numbers below the absorption edges of elements present in the composite substances are discussed

  7. World nuclear directory. A guide to organizations and research activities in atomic energy. 7th edition

    International Nuclear Information System (INIS)

    This book is an international guide to over 1500 organizations and laboratories which conduct or promote research, development or substantial manufacturing work in the atomic energy field. Subjects covered range from high energy nuclear physics, plasma physics and fusion technology, to radioactive waste management, economics and regulatory developments. Improvements in format have been made and the directory is indexed by title and by subject

  8. Developing the World's Digital Collection on Peaceful Uses of Atomic Energy.

    Science.gov (United States)

    Levine, Emil

    1997-01-01

    Discusses the developers/development, maintainers, and users of the digital collection on peaceful uses of nuclear energy, produced by the International Nuclear Information System (INIS) of the International Atomic Energy Agency (IAEA). Sensitive to users in both developing and highly developed countries, this system provides closer linkage…

  9. Statutory Instrument No. 478, The Atomic Energy Authority Act 1971 (Appointed Day) Order 1971

    International Nuclear Information System (INIS)

    This Order fixes 1 April 1971 as the appointed day for the purposes of sections 1 and 2 of the Atomic Energy Authority Act 1971 and, accordingly, it is upon that date that the transfers provided for in that Act of parts of the undertaking of the United Kingdom Energy Authority to British Nuclear Fuels Limited and the Radiochemical Centre Limited took place. (NEA)

  10. Nuclear shell energies and deformations in atomic mass formula

    International Nuclear Information System (INIS)

    Our group has for several years been studying a method of calculating nuclear shell energies and incorporating them into a mass formula. This method is characterized by the calculation of single-particle levels in an extended spherical Woods-Saxon potential, the extraction of crude shell energy, the refinement of crude shell energy due to residual interactions, and the incorporation into a mass formula. Here, we report the advance of this work focusing especially on nuclear deformations, and give some preliminary results and remarks. (author)

  11. On the energy levels of the hydrogen atom

    CERN Document Server

    Fewster, C J

    1993-01-01

    We re-examine the justification for the imposition of regular boundary conditions on the wavefunction at the Coulomb singularity in the treatment of the hydrogen atom in non-relativistic quantum mechanics. We show that the issue of the correct boundary conditions is not independent of the physical structure of the proton. Under the physically reasonable assumption that the finite size and structure of the proton can be represented as a positive correction to the Coulomb potential, we give a justification for the regular boundary condition, which, in contrast to the usual treatments, is physically motivated and mathematically rigorous. We also describe how irregular boundary conditions can be used to model non-positive corrections to the Coulomb potential.

  12. Direct measurement of desorption and diffusion energies of O and N atoms physisorbed on amorphous surfaces

    CERN Document Server

    Minissale, Marco; Dulieu, François

    2016-01-01

    Physisorbed atoms on the surface of interstellar dust grains play a central role in solid state astrochemistry. Their surface reactivity is one source of the observed molecular complexity in space. In experimental astrophysics, the high reactivity of atoms also constitutes an obstacle to measuring two of the fundamental properties in surface physics, namely desorption and diffusion energies, and so far direct measurements are non-existent for O and N atoms. We investigated the diffusion and desorption processes of O and N atoms on cold surfaces in order to give boundary conditions to astrochemical models. Here we propose a new technique for directly measuring the N- and O-atom mass signals. Including the experimental results in a simple model allows us to almost directly derive the desorption and diffusion barriers of N atoms on amorphous solid water ice (ASW) and O atoms on ASW and oxidized graphite. We find a strong constraint on the values of desorption and thermal diffusion energy barriers. The measured b...

  13. On-line processing of searching scientific informations and literatures on atomic energy

    International Nuclear Information System (INIS)

    The information processing using computers has been carried out in the field of atomic energy science internationally since early period, and CINDA and NEUDADA, which are the accumulation of the nuclear data on neutrons, and INIS for the search of literatures are the examples. In Japan, the Japan Atomic Energy Research Institute has functioned as the center for collecting, evaluating and distributing the international informations on atomic energy. In universities, various researcher groups have endeavored to make and utilize the data bases with the advance of functions of large computer centers. In the future plan of the Kyoto University Reactor Research Institute, the establishment of Atomic Energy Science Information Center is planned. In order to discuss the concept for this and refer to the state of activities in other fields, the short period study meeting was helt in 1979, and the special study meeting on the on-line processing of searching the scientific informations and literatures on atomic energy was established in 1980. This report summarizes the results of studies and investigations published in this special study meeting. The abstracts of five papers on various data bases are given. (Kako, I.)

  14. Technology and knowledge management in and by the Department of Atomic Energy, India

    International Nuclear Information System (INIS)

    Full text: Indian Department of Atomic Energy (DAE) has been working right from its inception for harnessing nuclear science and technology for the development of the nation based on a well-planned strategy involving simultaneous pursuit of basic research and technology development with equal rigour. Over the years, a robust institutional framework for exploiting nuclear science and technology has been put in place. Now, in its golden jubilee year, the DAE runs major research centers, academic institutions and industrial units. Basic strategy for the development of nuclear energy programme in India was formulated at a time when India hardly possessed any infrastructure to nurture any hi-tech activity. Keeping this in view, a large R and D establishment was progressively set up. This establishment, known as Bhabha Atomic Research Centre (BARC), consists of research reactors and other facilities for research and technology development. While setting up various other institutions, the Department has ensured that an organic linkage between all the institutions is maintained, and research and development lead to deployment of technologies. To achieve this objective, the DAE, besides setting up research centres, has also set up closely linked industrial units. The resulting synergy between research, technology development and industrial application has benefited all the agencies involved. As a result of all these efforts, several radiation and isotope technologies have been developed and deployed and India is self-reliant in all aspects of nuclear fuel cycle, starting with prospecting and mining of uranium and ending with the back-end of the fuel cycle, which involves reprocessing of the spent fuel and nuclear waste management. All possible mechanisms for technology management have been adopted by the DAE to harness nuclear science and engineering. Technologies developed by R and D centers have been deployed in house. Technologies have also been transferred to industrial

  15. Energy considerations in spraying process of a spill-return pressure-swirl atomizer

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • We analyse energy conversion in simplex and spill-return pressure-swirl atomizer. • Inlet (pressure) energy converts into liquid motion with nozzle efficiency ∼58%. • Kinetic energy of developed spray at closed spill line is ∼33% of the inlet energy. • It consists of energy of droplets (∼2/3) and entrained air (1/3). • Atomization efficiency is <0.3%; it declines with inlet pressure and spill opening. - Abstract: The work focuses on energy conversion during the internal flow, discharge and formation of the spray from a pressure-swirl (PS) atomizer in the simplex as well as spill-return mode. Individual energy forms are described in general and assessed experimentally for a particular PS atomizer and light heating oil as a medium. The PS spray was observed at various loads to investigate the liquid breakup process and the spray characteristics. Spatially resolved diameters and droplet velocities, measured by means of phase-Doppler anemometry, served for estimation of the energy characteristics in the PS spray. The input energy given by the potential energy of the supplied liquid partially converts into the kinetic energy (KE) in the swirling ports with hydraulic loss in per cent scale. Most of the pressure drop is associated with rotational motion in the swirl chamber with total conversion efficiency at the exit orifice ∼58%. The rest of the input energy ends up as friction loss, leaving room for improvement. The overall value (ID32) of the Sauter mean diameter of droplets in the spray, D32, varies with pressure drop Δpl powered to −0.1. The radial profiles of D32 widen with the increase in spill/feed ratio (SFR), but the ID32 remain almost constant within the studied SFR range. The spray KE at closed spill line covers the droplet KE (21–26%) and that of entrained air (10–13%), both moderately varying with Δpl. The specific KEs of both the liquid and air markedly drop down with the spill line opening

  16. A Survey of the Methods Used in the United Kingdom Atomic Energy Authority For The Determination Of Radionuclides In Urine

    International Nuclear Information System (INIS)

    With the co-operation of analytical, health physics and medical staff, a survey has been made throughout the United Kingdom Atomic Energy Authority of current practice in urine analysis for radionuclides. The elements which are of greatest importance in the UKAEA programmes of urine analvsis are plutonium, uranium, tritium and fission products (notably strontium-90 and caesium-137). Other radionuclides dealt with are polonium-210, radium-226, protactinium-231, phosphorus-32, carbon-14, sulphur-35, americium-241 and thorium. In assessing the function and scope of urine analysis, the factors affecting the choice of a suitable analytical method are discussed. The sensitivity and precision of the method must be adequate in relation to the maximum permissible body burden, the excretion rate and the sampling frequency; the method must be sufficiently specific or selective to eliminate the possibility of interference by other radionuclides; and finally, the cost must be assessed in relation to all these factors, and also to the speed and convenience of the method. The sensitivity required for each radionuclide is calculated from the maximum permissible body burden by applying a representative urinary excretion rate, based on the best data available. The methods of urine analysis which are currently used in the United Kingdom Atomic Energy Authority are fully described. According to the calculated requirements for sensitivity, the best methods in use are capable of quantitatively detecting, from urinary excretion, internal contamination with one-tenth of the maximum permissible body burden of any of the above radionuclides, and with one-hundredth of the maximum permissible body burden in the case of enriched uranium, tritium, polonium-210 or caesium-137. (author)

  17. Low-Energy Ions from Laser-Cooled Atoms

    Science.gov (United States)

    Shayeganrad, G.; Fioretti, A.; Guerri, I.; Tantussi, F.; Ciampini, D.; Allegrini, M.; Viteau, M.; Fuso, F.

    2016-05-01

    We report the features of an ion source based on two-color photoionization of a laser-cooled cesium beam outsourced from a pyramidal magneto-optical trap. The ion source operates in continuous or pulsed mode. At acceleration voltages below 300 V, it delivers some ten ions per bunch with a relative energy spread Δ Urms/U ≃0.032 , as measured through the retarding field-energy-analyzer approach. Space-charge effects are negligible thanks to the low ion density attained in the interaction volume. The performances of the ion beam in a configuration using focused laser beams are extrapolated on the basis of the experimental results. Calculations demonstrate that our low-energy and low-current ion beam can be attractive for the development of emerging technologies requiring the delivery of a small amount of charge, down to the single-ion level and its eventual focusing in the 10-nm range.

  18. Excited atomic bromine energy transfer and quenching mechanisms

    Science.gov (United States)

    Johnson, Ray O.

    1993-08-01

    Pulsed and steady-state photolysis experiments have been conducted to determine the rate coefficients for collisional deactivation of the spin-orbit excited state of atomic bromine, Br((sup 2)P(sub 1/2)). Pulsed lifetime studies for quenching by Br2 and CO2 established absolute rate coefficients at room temperature of k(sub Br2) = 1.2 +/- 0.1 x 10(exp-12) and k(sub CO2) = 1.5 +/0.2 x 10(exp-11) cu cm/molecule-s. Steady-state photolysis methods were used to determine the quenching rates for the rare gases, N2, 02, H2, D2, NO, NO2, N2O, SF6, CF4, CH4, CO, CO2, COS, SO2, H2S, HBr, HC1, and HI relative to that for Br2. Quenching rate temperature dependence was examined for Br2, CO2, N2O, HCl, COS, NO, and NO2 for temperatures from 300 to 420 K. Diffusion and three body effects were examined in order to determine the slowest relative quenching rate measurable by this experimental technique.

  19. German atomic energy law in the international framework. Proceedings. Deutsches Atomenergierecht im internationalen Rahmen. Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, N. (Goettingen Univ. (Germany). Inst. fuer Voelkerrecht) (ed.)

    1992-01-01

    The regional conference was devoted to the legal problems that ensue from German reunification against the background of the integration of German atomic energy law within international law. The elements of national atomic energy legislation required by international law and recent developments in international nuclear liability law were discussed from different perspectives. The particular problems of the application of the German Atomic Energy Act in the 5 new Laender (the territories of the former GDR) were presented and discussed, namely: The continued validity of old licences issued by the GDR; practical legal problems connected with the construction of nuclear power plants in the 5 new Laender; the legal issues connected with the final repository for radioactive wastes at Morsleben; and the new developments in radiation protection law following from the Unification Treaty and the new ICRP recommendations. All 14 lectures have been abstracted and indexed individually. (orig.).

  20. LOW ENERGY BEAM-GAS SPECTROSCOPY OF HIGHLY IONISED ATOMS

    OpenAIRE

    Desesquelles, J.; Denis, A.; Druetta, M.; Martin, S.

    1989-01-01

    Features of low energy beam-gas spectroscopic source are reviewed and compared to those of other light sources. Measurement techniques are surveyed. They include the study of wavelength of heavy multiply charged ions in visible and u.v. ranges from normal excited states, doubly excited states, high n levels and doubly excited Rydberg levels.

  1. International Atomic Energy Agency highlights of activities. 1995

    International Nuclear Information System (INIS)

    The IAEA activities are outlined in the following areas: nuclear power, nuclear fuel cycle, radioactive waste management, comparative assessment of energy sources, IAEA laboratories, research and technical cooperation, food and agriculture, human health, industry and earth sciences, physical and chemical sciences, safety of nuclear installations, radiation protection, safeguards and non-proliferation activities, public and technical information

  2. Highlights 97. International Atomic Energy Agency. Annual report

    International Nuclear Information System (INIS)

    The report outlines the IAEA activities in the following fields: nuclear power, nuclear fuel cycle, radioactive waste management, comparative assessment of nuclear power and other energy sources, food and agriculture, human health, industry and earth sciences, physical and chemical sciences, radiation safety, safety of nuclear installations, safeguards, financing

  3. Early conceptions of the liberation and exploitation of atomic energy

    International Nuclear Information System (INIS)

    In this report the early ideas about the use of nuclear energy are reviewed and compared with the historic development. The social responsibility of scientists is also discussed in this context. Since the development of nuclear reactors historically was closely connected to the nuclear weapons program in the US, there is also a review on this latter project. (107 refs.) (L.E.)

  4. Evaluation of the Danish Energy Technology Development and Demonstration Programme EDDP 2007-2010; Evaluering af Energiteknologisk Udviklings- og Demonstrationsprogram EUDP 2007-2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    As one of the largest recipients of energy research and development funds in Denmark, EDDP (Energy Technology Development and Demonstration Programme) is a central granting programme. The programme allocates funds to interesting and promising energy technologies that are either under development or ready to be tested in real life - also called demonstration. The 'Act on Energy Technology Development and Demonstration programme' shows that EDDP projects must contribute to meeting the energy and climate policy objectives for security of supplies, respect for the global climate and a cleaner environment and cost efficiency. These three objectives are related, which means that the projects supported in principle must contribute to several objectives. In addition, the programme shall support the further development of the Danish energy technological strategic strongholds, where prospects for Danish research and industry looks particularly favorable. With the desire to reveal which outputs EDDP actually generates, the EDDP's Board in January 2011 launched an evaluation of the EDDP's results and effects. The focus of the evaluation has particularly been to identify the programme's industrial effects and its contribution to reach the energy and climate policy objectives. The evaluation is thus an effect evaluation and not an actual programme evaluation. Participants from both completed and uncompleted projects participated in the evaluation. The evaluation reveals, therefore, both the results and effects that have already been achieved under the auspices of EDDP projects, and the results and effects which the various project participants expect to achieve in the longer term based on their project participation. In brief, the evaluation shows that: - EDDP projects are largely expected to contribute to Denmark's energy and climate policy objectives; - Satisfactory technological results are created in the projects; - Many projects also generate

  5. Developing technology for large-scale production of forest chips. Wood Energy Technology Programme 1999-2003. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, P. [VTT Processes, Espoo (Finland)

    2003-07-01

    Finland is enhancing its use of renewable sources in energy production. From the 1995 level, the use of renewable energy is to be increased by 50 % by 2010, and 100 % by 2025. Wood-based fuels will play a leading role in this development. The main source of wood-based fuels is processing residues from the forest industries. However, as all processing residues are already in use, an increase is possible only as far as the capacity and wood consumption of the forest industries grow. Energy policy affects the production and availability of processing residues only indirectly. Another large source of wood-based energy is forest fuels, consisting of traditional firewood and chips comminuted from low-quality biomass. It is estimated that the reserve of technically harvest-able forest biomass is 10-16 Mm' annually, when no specific cost limit is applied. This corresponds to 2-3 Mtoe or 6-9 % of the present consumption of primary energy in Finland. How much of this re-serve it will actually be possible to harvest and utilize depends on the cost competitiveness of forest chips against alternative sources of energy. A goal of Finnish energy and climate strategies is to use 5 Mm' forest chips annually by 2010. The use of wood fuels is being promoted by means of taxation, investment aid and support for chip production from young forests. Furthermore, research and development is being supported in order to create techno-economic conditions for the competitive production of forest chips. In 1999, the National Technology Agency Tekes established the five-year Wood Energy Technology Programme to stimulate the development of efficient systems for the large-scale production of forest chips. Key tar-gets are competitive costs, reliable supply and good quality chips. The two guiding principles of the programme are: (1) close cooperation between researchers and practitioners and (2) to apply research and development to the practical applications and commercialization. As of

  6. Third-party protection and residual risk in Atomic Energy Act. On legally dogmatic classification of paragraph 7 Atomic Energy Act in the jurisprudence of the Federal Constitutional Law and Federal Administrative Court

    International Nuclear Information System (INIS)

    On 25th June 2009, the Council of the European Union has passed the directive 2009/71/EURATOM on a common framework for nuclear safety of nuclear installations. At first, the 12th Law amending the Atomic Energy Act supplements the Atomic Energy Act by regulations which implement the directive 2009/71/EURATIM into national law. In addition, paragraph 7 Atomic Energy Act introduces a new substantive obligation of the operators of nuclear power plants. The author of the contribution reports on whether paragraph 7 Atomic Energy Act provides additional nuclear protection or reduces the potential protection by law and jurisprudence.

  7. Progression of technology education for atomic energy engineering in Tsuyama National College of Technology

    International Nuclear Information System (INIS)

    This paper describes the achievements of a program in which technology education is provided to cultivate practical core engineers for low-level radiation. It was made possible by means of (1) an introductory education program starting at an early age and a continuous agenda throughout college days and (2) regional collaboration. First, with regard to the early-age introductory education program and the continuous education agenda, the subjects of study related to atomic energy or nuclear engineering were reorganized as “Subjects related to Atomic Power Education” for all grades in all departments. These subjects were included in the syllabus and the student guide book, emphasizing a continuous and consistent policy throughout seven-year college study, including the five-year system and additional two-year advanced course. Second, to promote practical education, the contents of lectures, experiments, and internships were enriched and realigned in collaboration with the Japan Atomic Energy Agency, Okayama University and The Cyugoku Electric Power Co., Inc. In addition to the expansion and rearrangement of atomic power education, research on atomic power conducted for graduation thesis projects were undertaken to enhance the educational and research activities. In consequence, it has been estimated that there is now a total of fourteen subject areas in atomic energy technology, more than eight-hundred registered students in the department, and thirteen members of the teaching staff related to atomic energy technology. Furthermore, the “Tsuyama model” is still being developed. This program was funded by the Ministry of Education, Culture, Sports, Science and Technology. (author)

  8. Progression of technology education for atomic energy engineering in Tsuyama National College of Technology

    International Nuclear Information System (INIS)

    This paper describes the achievements of a program in which technology education is provided to cultivate practical core engineers for low-level radiation. It was made possible by means of (1) an introductory education program starting at an early age and a continuous agenda throughout college days and (2) regional collaboration. First, with regard to the early-age introductory education program and the continuous education agenda, the subjects of study related to atomic energy or nuclear engineering were reorganized as 'Subjects related to Atomic Power Education' for all grades in all departments. These subjects were included in the syllabus and the student guide book, emphasizing a continuous and consistent policy throughout seven-year college study, including the five-year system and additional two-year advanced course. Second, to promote practical education, the contents of lectures, experiments, and internships were enriched and realigned in collaboration with the Japan Atomic Energy Agency, Okayama University and The Cyugoku Electric Power Co., Inc. In addition to the expansion and rearrangement of atomic power education, research on atomic power conducted for graduation thesis projects were undertaken to enhance the educational and research activities. In consequence, it has been estimated that there is now a total of fourteen subject areas in atomic energy technology, more than eight-hundred registered students in the department, and thirteen members of the teaching staff related to atomic energy technology. Furthermore, the 'Tsuyama model' is still being developed. This program was funded by the Ministry of Education, Culture, Sports, Science and Technology. (author)

  9. Progression of Technology Education for Atomic Energy Engineering in Tsuyama National College of Technology

    Science.gov (United States)

    Kato, Manabu; Kobayashi, Toshiro; Okada, Tadashi; Sato, Makoto; Sasai, Yuji; Konishi, Daijiro; Harada, Kanji; Taniguchi, Hironari; Toya, Hideaki; Inada, Tomomi; Sori, Hitoshi; Yagi, Hideyuki

    This paper describes the achievements of a program in which technology education is provided to cultivate practical core engineers for low-level radiation. It was made possible by means of (1) an introductory education program starting at an early age and a continuous agenda throughout college days and (2) regional collaboration. First, with regard to the early-age introductory education program and the continuous education agenda, the subjects of study related to atomic energy or nuclear engineering were reorganized as “Subjects related to Atomic Power Education” for all grades in all departments. These subjects were included in the syllabus and the student guide book, emphasizing a continuous and consistent policy throughout seven-year college study, including the five-year system and additional two-year advanced course. Second, to promote practical education, the contents of lectures, experiments, and internships were enriched and realigned in collaboration with the Japan Atomic Energy Agency, Okayama University and The Cyugoku Electric Power Co., Inc. In addition to the expansion and rearrangement of atomic power education, research on atomic power conducted for graduation thesis projects were undertaken to enhance the educational and research activities. In consequence, it has been estimated that there is now a total of fourteen subject areas in atomic energy technology, more than eight-hundred registered students in the department, and thirteen members of the teaching staff related to atomic energy technology. Furthermore, the “Tsuyama model” is still being developed. This program was funded by the Ministry of Education, Culture, Sports, Science and Technology.

  10. Inquiries about awareness and knowledge of children and pupils on the concept related with atomic energy

    International Nuclear Information System (INIS)

    There is almost no chance to learn about the words (atomic energy), (radioactivity) and (radiation) in the middle and/or high school educations in Japan, because physics is one of the options in the high school curriculum, and 80-90% of students do not like to choose physics. This inquires aim to know the level of their knowledge on energy resources, atomic energy, radioactivity, radiation, and information sources on their related knowledge. Inquiries are made for the middle and high school students in Tokushima and Tsuruga. There are coal power plants in Tokushima, while atomic power plants in Tsuruga. Fossils energy gets the highest points in Tokushima, while Atomic energy gets the highest points in Tsuruga for a present-day energy source. Solar energy sources get the highest point as a promising 21st century energy source in both prefectures, especially for female students. Radioactivity reminds them of words atomic bomb, disease, injury, and harmful, those give very negative images. Radiation reminds them of words roentgen, radiation therapy, x-ray, and hospital use, those designate a sort of plus-image. More than 50 to 60% of them obtained their knowledge from mass media, particularly, television. In addition, less than a few % of them can give any scientific description about these words. As a whole, authors can say that the students have got a certain concept for these words from information of mass media. Meanwhile the school education has approximately no effect on the formation of their concept. Authors are giving some advises and recommendations for the school education and mass media in Japan. (Y. Tanaka)

  11. The Canadian public's awareness and perception of the Atomic Energy Control Board. V. 2

    International Nuclear Information System (INIS)

    The primary objective of the research is to measure how the Atomic Energy Control Board (AECB) stands with the Canadian public. The research examines the existing level of awareness and knowledge about the AECB and the image that people have about the Board. Another issue addressed in the research is the level of confusion within the public between the AECB and Atomic Energy of Canada Limited. The data in this report can also be used as a benchmark against which improvements can be measured from the AECB's communications programs and activities undertaken in the future

  12. Wavefunction and energy of the 1s22sns configuration in a beryllium atom

    Institute of Scientific and Technical Information of China (English)

    Huang Shi-Zhong; Ma Kun; Yu Jia-Ming; Liu Fen

    2008-01-01

    A new set of trial functions for 1s22sns configurations in a beryllium atom is suggested.A Mathematica program baaed on the variational method is developed to calculate the wavefunctions and energies of 1s22sns (n=3-6)configurations in a beryllium atom.Non-relativistic energy,polarization correction and relativistic correction which include mass correction,one- and two-body Darwin corrections,spin-spin contact interaction and orbit-orbit interaction,are calculated respectively.The results are in good agreement with experimental data.

  13. College Chemistry Students' Understanding of Potential Energy in the Context of Atomic-Molecular Interactions

    Science.gov (United States)

    Becker, Nicole M.; Cooper, Melanie M.

    2014-01-01

    Understanding the energy changes that occur as atoms and molecules interact forms the foundation for understanding the macroscopic energy changes that accompany chemical processes. In order to identify ways to scaffold students' understanding of the connections between atomic-molecular and macroscopic energy perspectives, we conducted a…

  14. The Low Energy Antiproton Ring (LEAR) some months before the start of its particle physics programme

    CERN Multimedia

    1983-01-01

    LEAR [see e.g.: H.Koziol and D. Möhl, Phys. Rep. 403-404 (2004), p.271 and references therein] and its enclosure in the PS South Hall in Jan, 1983, 4 months before the start of its particle physics programme. Visible (in red) are the 90 degree bending magnets consisting of 6 blocks each. Separated from the magnets by short straight sections are the quadrupole doublets (blue with read end-plates). The 4 long straight sections house large equipment like septa for injection/ejection, RF-cavities and later (since 1986) electron cooling and an internal target and its associated detector (JETSET experiment). Two small copper tubes spanning across the ring are coaxial lines transmitting the stochastic cooling signals from pick up to kicker. (see also photos 8205747X, 8207133, 8207541X, 8301550X,8309026X)

  15. The Low Energy Antiproton Ring (LEAR) some months before the start of its particle physics programme

    CERN Multimedia

    1983-01-01

    LEAR*)and its enclosure in the PS South Hall in Jan, 1983, 4 months before the start of its particle physics programme. Visible (in red) are the 90 degree bending magnets consisting of 6 blocks each. Separated from the magnets by short straight sections are the quadrupole doublets (blue with read end-plates). The 4 long straight sections house large equipment like septa for injection/ejection, RF-cavities and later (since 1986) electron cooling and an internal target and its associated detector (JETSET experiment). Two small copper tubes spanning across the ring are coaxial lines transmitting the stochastic cooling signals from pickup to kicker. (see also photos 8205747X, 8207133, 8207541X, 8309026) *)see e.g.: H.Koziol and D. Möhl, Phys. Rep. 403-404 (2004), p.271 and references therein

  16. Proceedings of the second Arab conference on the peaceful uses of atomic energy. Part II: A and B

    International Nuclear Information System (INIS)

    The second arab conference on the peaceful uses of atomic energy was held on 5-9 November, 1994 in Cairo. The specialists discussed peaceful uses of atomic energy in different sciences. The application of atomic energy techniques in the fields of reactor physics and engineering, nuclear chemistry, radioactive wastes, nuclear safety, radiobiology, soil and agriculture and environmental studies were discussed at the meeting. More than 1000 papers were presented in the meeting

  17. A scientific journal as a mirror of the constitutional and administrative reality of its time (VII. Atomic Energy Law)

    International Nuclear Information System (INIS)

    The article deals with the main problems of Atomic Energy Law. Legal actions relate mainly to the requirements of a licence pursuant to sec. 7 Atomic Energy Act, as in the decisions of the Federal Constitutional Court concerning Kalkar and Stade. Another problem is the utilization of radioactive residual material and the disposal of nuclear waste pursuant to sec. 9a-9c Atomic Energy Act and sec. 47 Radiation Protection Ordinance. (CW)

  18. Calculation of the surface energy of fcc metals with modified embedded-atom method

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian-Min; Ma Fei; Xu Ke-Wei

    2004-01-01

    The surface energies for 38 surfaces of fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Rh and Ir have been calculated by using the modified embedded-atom method. The results show that, for Cu, Ag, Ni, Al, Pb and Ir, the average values of the surface energies are very close to the polycrystalline experimental data. For all fcc metals, as predicted, the close-packed (111) surface has the lowest surface energy. The surface energies for the other surfaces increase linearly with increasing angle between the surfaces (hkl) and (111). This can be used to estimate the relative values of the surface energy.

  19. Programme of Investments for the Future: continuing and amplifying the action in favour of energy transition. Assessment 2014

    International Nuclear Information System (INIS)

    As the ADEME is to implement four Programmes of Investments for the Future (PIA) to support pre-industrial experimentations, research demonstrators or industry firsts in the fields of renewable energies and green chemistry, of tomorrow's vehicles and mobility, of smart power grids, and of circular economy, this report proposes indications of numbers of retained projects and of financial support in different specific fields, and brief presentations of objectives and realisations or projects in energy storage and the hydrogen sector (creation of a world leader in hydrogen production by hydrolysis, project of injection of hydrogen in gas networks), in renewable energies (projects of renewable marine energy), in smart grids (a smart grid tested at the scale of an area of activity), in mobility and transport (the necessity to install at a higher rate charging points for electric vehicles, cleaner ferries, improved performance in railway, an innovative electric bus in Nice), in energy and environmental efficiency (less consuming buildings, improvement of ecologic efficiency in agriculture and industry), and in circular economy and recycling (titanium recycling in aeronautics, fabrication of new tyres with old ones). The themes of the second wave of investments are finally presented, with notably a better efficiency in project instruction modalities (shorter delays, project support, ecologically and economically conditioned financing)

  20. Computational model for noncontact atomic force microscopy: energy dissipation of cantilever

    Science.gov (United States)

    Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M.

    2016-09-01

    We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.