WorldWideScience

Sample records for atomic energy authority

  1. Atomic Energy Authority Bill

    International Nuclear Information System (INIS)

    On the third reading of the Atomic Energy Authority Bill the following matters were discussed: safety research and thermal reactor work - how funded when the Authority is operating on trading fund basis; future financial framework of the Authority; capital investment; loans; effect of change on Authority employees. (U.K.)

  2. Atomic Energy Authority Act 1954

    International Nuclear Information System (INIS)

    This Act provides for the setting up of an Atomic Energy Authority for the United Kingdom. It also makes provision for the Authority's composition, powers, duties, rights and liabilities, and may amend, as a consequence of the establishment of the Authority and in connection therewith, the Atomic Energy Act, 1946, the Radioactive Substances Act 1948 and other relevant enactments. (NEA)

  3. Atomic Energy Authority Act 1971

    International Nuclear Information System (INIS)

    This Act provides for the transfer of property, rights, liabilities and obligations of parts of the undertaking of the United Kingdom Atomic Energy Autority, to two new Compagnies set up for this purpose: the Bristish Nuclear Fuels Limited, and the Radiochemical Centre Limited. Patents licences and registered designs owned by the Autority at the time of the transfer are not included therein. The Act also includes amendments to the Nuclear Installations Act 1965, notably as regards permits to operate granted to a body corporate. Finally, the Schedule to this Act lays down a certain number of provisions relating to security and the preservation of secrets. (NEA)

  4. Atomic Energy Authority Act, No. 19 of 1969

    International Nuclear Information System (INIS)

    Act to provide for the establishment of an Atomic Energy Authority and an advisory committee to advise such authority, to specify the power, duties, rights and functions of such authority, and to provide for matters connected therewith or incidental thereto

  5. Decommissioning in the United Kingdom Atomic Energy Authority

    International Nuclear Information System (INIS)

    The United Kingdom Atomic Energy Authority's policy on decommissioning is described. Several fission reactors have already been taken out of service and the state of decommissioning is given. Estimates of the volume of decommissioning wastes are made. The wastes will be either intermediate-level or low-level wastes. Research and development programmes have been undertaken to allow decommissioning to be safe and cost-effective. Some of the contaminated facilities have been decontaminated and re-used. (U.K.)

  6. United Kingdom Atomic Energy Authority: a report on the service provided by the Authority

    International Nuclear Information System (INIS)

    Questions relating to the efficiency and costs of and the service provided by the United Kingdom Atomic Energy Authority (AEA) in carrying out its statutory functions and in meeting the objectives set out by the Secretary of State for Energy were referred to the Monopolies Commission in July 1991. This referral has required a wide-ranging inquiry into both the corporate affairs and the diverse activities of its nine businesses. The inquiry has looked at AEA's structure and organisation, its planning arrangements, financial framework and control, management and financial information systems, its use of physical assets, industrial relations, pay and employment policies, efficient use of manpower, the restructuring programme undertaken, corporate research and development, investment, project management, marketing, pricing, safety and the quality of its goods and services. A summary of the recommendations made, and target dates for implementation are included. (UK)

  7. Decisions of the atomic energy authority binding on penal law?

    International Nuclear Information System (INIS)

    The essay analyses the acquittal of the accused persons by the Landgericht Hanau in the so-called Alkem process. The author criticizes the considerations of the court to disregard in case the justifying effect of valid administrative permissions because of the abuse of rights. A criminal judge cannot ignore valid acts given by authorities which he considers to be against the law. As long as he does not identify them as invalid, he has to accept the administrative act until authorities abolish their decision. (KW)

  8. Case-control study of prostatic cancer in employees of the United Kingdom Atomic Energy Authority.

    OpenAIRE

    Rooney, C.; Beral, V; Maconochie, N.; P. Fraser; Davies, G.

    1993-01-01

    OBJECTIVE--To investigate the relation between risk of prostatic cancer and occupational exposures, especially to radionuclides, in employees of the United Kingdom Atomic Energy Authority. DESIGN--Case-control study of men with prostatic cancer and matched controls. Information about sociodemographic factors and exposures to radionuclides and other substances was abstracted and classified for each subject from United Kingdom Atomic Energy Authority records without knowledge of who had cancer....

  9. Report and accounts of the United Kingdom Atomic Energy Authority

    International Nuclear Information System (INIS)

    The report headings are: general (members, organizations and staff; information services, energy conservation; finance); technical (advanced gas-cooled reactors; water cooled reactors; fast reactors; safety and the environment; fusion; underlying research; nuclear contract work; work outside the nuclear power programme); appendices; accounts. (U.K.)

  10. Statutory Instrument No. 478, The Atomic Energy Authority Act 1971 (Appointed Day) Order 1971

    International Nuclear Information System (INIS)

    This Order fixes 1 April 1971 as the appointed day for the purposes of sections 1 and 2 of the Atomic Energy Authority Act 1971 and, accordingly, it is upon that date that the transfers provided for in that Act of parts of the undertaking of the United Kingdom Energy Authority to British Nuclear Fuels Limited and the Radiochemical Centre Limited took place. (NEA)

  11. The place of Turkish Atomic Energy Authority in nuclear energy production

    International Nuclear Information System (INIS)

    Turkish Atomic Energy Authority (TAEA), established in 1982 by the Act no: 2690, is a governmental organization directly under the direct supervision of the Prime Minister. The objective of the establisment of TAEA is the peaceful utilization of atomic energy, regarding the national policy and the related plans and programs, for the benefits of State. The main duties of TAEA, as stated in related Act, can be summarized as: to determine and progress the basis of the national policy and the related plans and programs and to submit them to be approved by the Prime Minister; to execute and to support scientific, technical and administrative studies; to give approval, permission and license to the nuclear installations; to enlighten the public in nuclear matters; to establish research and educate the personnel in the nuclear field If Turkey would participate in a Nuclear Energy Program, especially, TAEA should perform its own duties properly and in this respect, as an Authority, we should have objectives that have to be determined as State Policy

  12. Case-control study of prostatic cancer in employees of the United Kingdom Atomic Energy Authority.

    Science.gov (United States)

    Rooney, C; Beral, V; Maconochie, N; Fraser, P; Davies, G

    1993-01-01

    OBJECTIVE--To investigate the relation between risk of prostatic cancer and occupational exposures, especially to radionuclides, in employees of the United Kingdom Atomic Energy Authority. DESIGN--Case-control study of men with prostatic cancer and matched controls. Information about sociodemographic factors and exposures to radionuclides and other substances was abstracted and classified for each subject from United Kingdom Atomic Energy Authority records without knowledge of who had cancer. SUBJECTS--136 men with prostatic cancer diagnosed between 1946 and 1986 and 404 matched controls, all employees of United Kingdom Atomic Energy Authority. MAIN OUTCOME MEASURES--Documented or possible contamination with specific radionuclides. RESULTS--Risk of prostatic cancer was significantly increased in men who were internally contaminated with or who worked in environments potentially contaminated by tritium, chromium-51, iron-59, cobalt-60, or zinc-65. Internal contamination with at least one of the five radionuclides was detected in 14 men with prostatic cancer (10%) and 12 controls (3%) (relative risk 5.32 (95% confidence interval 1.87 to 17.24). Altogether 28 men with prostatic cancer (21%) and 46 controls (11%) worked in environments potentially contaminated by at least one of the five radionuclides (relative risk 2.36 (1.26 to 4.43)); about two thirds worked at heavy water reactors (19 men with prostatic cancer and 32 controls (relative risk 2.13 (1.00 to 4.52)). Relative risk of prostatic cancer increased with increasing duration of work in places potentially contaminated by these radionuclides and with increasing level of probable contamination. Prostatic cancer was not associated with exposure to plutonium, uranium, cadmium, boron, beryllium, or organic or inorganic chemicals. CONCLUSIONS--Risk of prostatic cancer risk was increased in United Kingdom Atomic Energy Authority workers who were occupationally exposed to tritium, 51Cr, 59Fe, 60Co, or 65Zn. Exposure to

  13. Collection and validation of data in the United Kingdom Atomic Energy Authority mortality study

    International Nuclear Information System (INIS)

    The United Kingdom Atomic Energy Authority mortality study investigated the relation between mortality and recorded exposure to ionising radiation among employees working at the authority's seven establishments between 1946 and 1979. This report examines the design of the study and methods of data collection and validation. The completeness of the study population was deemed to be unsatisfactory at two establishments, where records of employment before 1965 had been destroyed. Assessment of the magnitude of the deficit led to the conclusion that the data from these establishments were too incomplete for inclusion in the mortality analysis. At the other establishments validation showed that the data collected were accurate and unbiased. Certain characteristics of the 39 546 employees included in the mortality and analysis were identified which were relevant in interpreting the findings. (author)

  14. The Practice of Waste Disposal in the United Kingdom Atomic Energy Authority

    International Nuclear Information System (INIS)

    The United Kingdom Atomic Energy Authority operates establishments in locations ranging from the South of England to the North coast of Scotland. The functions of these establishments include the production and processing of nuclear fuels, the production of electricity and isotopes for commercial sale, the development of new types of reactors and the conduct of research in all the associated fields. The Authority therefore has a wide variety of wastes to deal with and they arise in a number of different places. The main high-activity wastes, both liquid and solid, are stored in special tanks and containers, while the low-activity large-volume liquid wastes are released in carefully controlled amounts to the sea or to rivers. Low-and medium- activity solid wastes are buried in selected areas where there will be no interference with water supplies, or sunk on to the sea bed. The paper summarizes the methods in use and gives typical quantities of liquid and solid waste arising annually for disposal by the various methods. (author)

  15. Case-control study of prostatic cancer in employees of the United Kingdom Atomic Energy Authority

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, C.; Maconochie, N.; Fraser, P.; Davies, G. (London School of Hygiene and Tropical Medicine (United Kingdom)); Beral, V. (Radcliffe Infirmary, Oxford (United Kingdom))

    1993-11-27

    The objective of this study was to investigate the relation between risk of prostatic cancer and occupational exposures, especially to radionuclides, in employees of the United Kingdom Atomic Energy Authority. Risk of prostatic cancer was significantly increased in men who were internally contaminated with or who worked in environments potentially contaminated by tritium, chromium-51, iron-59, cobalt-60, or zinc-65. Internal contamination with at least one of the five radionuclides was detected in 14 men with prostatic cancer (10%) and 12 controls (3%) (relative risk 5.32 (95% confidence interval 1.87 to 17.24). Altogether 28 men with prostatic cancer (21%) and 46 controls (11%) worked in environments potentially contaminated by at least one of the five radionuclides (relative risk 2.36 (1.26 to 4.43)); about two thirds worked at heavy water reactors (19 men with prostatic cancer and 32 controls (relative risk 2.13 (1.00 to 4.52)). Relative risk of prostatic cancer increased with increasing duration of work in places potentially contaminated by these radionuclides and with increasing level of probable contamination. Prostatic cancer was not associated with exposure to plutonium, uranium, cadmium, boron, beryllium, or organic or inorganic chemicals. (Author).

  16. Management of scientific staff at the Harwell Laboratory of the U.K. Atomic Energy Authority

    International Nuclear Information System (INIS)

    The primary role of the Atomic Energy Research Establishment, Harwell is to serve as the main research laboratory supporting the U.K. nuclear power development programme; in addition it undertakes research and development outside of the nuclear field for Government and industrial customers. Overall, there is the need to manage a very large number of separate and often disparate items of work and to ensure effective communication with senior managers of the nuclear power programme and with commercial customers on allocation of resources and technical progress. This is done through a version of 'matrix management'. A large proportion of the technical, commercial and staff management decisions are devolved within Harwell's matrix organisation where teams of staff required for particular items of R and D are formed by arrangements agreed locally between the two axes of the matrix. The smaller groupings of staff created in the matrix are important in providing environments where good staff management practices can be established and where a team spirit aids motivation and technical initiative. (author)

  17. Atomic energy

    CERN Multimedia

    1996-01-01

    Interviews following the 1991 co-operation Agreement between the Department of Atomic Energy (DAE) of the Government of India and the European Organization for Nuclear Research (CERN) concerning the participation in the Large Hadron Collider Project (LHC) . With Chidambaram, R, Chairman, Atomic Energy Commission and Secretary, Department of Atomic Energy, Department of Atomic Energy (DAE) of the Government of India and Professor Llewellyn-Smith, Christopher H, Director-General, CERN.

  18. The Federal Government's authority to give instructions in the licensing procedure under atomic energy law - conditions and legal protection

    International Nuclear Information System (INIS)

    In the atomic energy law of the F.R.G., the supreme federal authority on principle has the unlimited right to give instructions. This authority, however, is restricted to the subject scope of the Atomic Energy Act and the relevant statutory ordinances, and is again limited by the principle of reasonableness, and the principle of mutual consideration of the interests of Land governments and those of the Federal Government. A dispute on the legality of instructions given by the Federal Minister of the Environment, Nature Conservation and Reactor Safety to a supreme Land authority (e.g. in case of a decision on a further partial license for the Kalkar FBR in accordance with section 7 Atomic Energy Act) within the framework of the execution of federal laws is to be regarded as a dispute under public law between the Federal Government and the Land on matters of constitutional law. (Exclusive) competence of the Federal Administrative Court is excluded, and likewise is a 'dual jurisdiction' of the Federal Constitutional Court and the Federal Administrative Court. (orig./HSCH)

  19. Mortality and cancer morbidity in United Kingdom Atomic Energy Authority employees

    International Nuclear Information System (INIS)

    In 1979, in response to concern about the effects of occupational radiation doses, the UKAEA commissioned the London School of Hygiene and Tropical Medicine to carry out an epidemiological study of the health of its workforce. Two papers have been published; the first dealt with the mortality of AEA workers up to 1979 and the second covered mortality to 1986 and cancer morbidity to 1984. This report is a fuller account of the data presented in the latter paper. (author)

  20. Is there a binding link between decisions of the atomic energy authority and criminal law?

    International Nuclear Information System (INIS)

    The paper analyses the court decision on the Alkem case, which acquitted the Alkem plant operators of the charge of infringement of section 327 Penal Code, not for legal reasons, but for lack of evidence for some facts considered essential by the court. The paper discusses the charge and the judgment, the issue of justification in this case, and items such as preliminary consent by an authority, misuse of rights, objections based on criminal law, the dilution of the administrative (law) accessoriness. (RST)

  1. A Survey of the Methods Used in the United Kingdom Atomic Energy Authority For The Determination Of Radionuclides In Urine

    International Nuclear Information System (INIS)

    With the co-operation of analytical, health physics and medical staff, a survey has been made throughout the United Kingdom Atomic Energy Authority of current practice in urine analysis for radionuclides. The elements which are of greatest importance in the UKAEA programmes of urine analvsis are plutonium, uranium, tritium and fission products (notably strontium-90 and caesium-137). Other radionuclides dealt with are polonium-210, radium-226, protactinium-231, phosphorus-32, carbon-14, sulphur-35, americium-241 and thorium. In assessing the function and scope of urine analysis, the factors affecting the choice of a suitable analytical method are discussed. The sensitivity and precision of the method must be adequate in relation to the maximum permissible body burden, the excretion rate and the sampling frequency; the method must be sufficiently specific or selective to eliminate the possibility of interference by other radionuclides; and finally, the cost must be assessed in relation to all these factors, and also to the speed and convenience of the method. The sensitivity required for each radionuclide is calculated from the maximum permissible body burden by applying a representative urinary excretion rate, based on the best data available. The methods of urine analysis which are currently used in the United Kingdom Atomic Energy Authority are fully described. According to the calculated requirements for sensitivity, the best methods in use are capable of quantitatively detecting, from urinary excretion, internal contamination with one-tenth of the maximum permissible body burden of any of the above radionuclides, and with one-hundredth of the maximum permissible body burden in the case of enriched uranium, tritium, polonium-210 or caesium-137. (author)

  2. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  3. Further assessment of the effects of occupational radiation exposure in the United Kingdom Atomic Energy Authority mortality study

    International Nuclear Information System (INIS)

    The United Kingdom Atomic Energy Authority mortality study was designed to investigate the relation between exposure to ionising radiation and mortality among the Authority's employees. The study covered the years 1946 to 1979 during which time the frequency with which personal film dosimeters were issued changed from weekly to monthly, and the threshold level below which measurements were not made decreased 20-fold. Exposure from 'below threshold' readings made an important contribution to total exposure in the early years. Estimates, based on the remeasurement of a sample of old films, indicated that the average whole body exposure before 1961 may have been about double that which was measured. Furthermore, although records were kept of when dosimeters were lost or damaged, the associated exposures were unknown and could only be estimated. Workers whose dosimeter readings were missing for more than 5% of the time during which they were monitored had higher all cause mortality and higher mortality from accidents and violence than other radiation workers. The results of analyses of mortality in relation to whole body exposure were compared when (a) the exposures included estimates of the below threshold and missing exposures and (b) when these exposures were assumed to be zero. (author)

  4. The Federal authority to give instructions for the execution of Federal laws by the Lands, as shown by the administration in the field of atomic energy law

    International Nuclear Information System (INIS)

    The article discusses legal problems in the field of atomic energy law arising from the Federal authority to give instructions, discussing the required form of instructions as defined by the Constitution, the scope of the authority, the binding force of instructions, legal remedies available to instructed licensing authorities, and means of enforcement provided by the law. Art. 85, III of the Constitution defining this Federal authority has been gaining in significance in the wake of the political events that broke up the consensus in West Germany about the peaceful utilization of atomic energy. The commissioning of the SNR 300 (Kalkar) has been the first event in 1979 to induce a controversy about atomic energy, and since then the Alkem/Nukem affair and the dispute over it between the Land Hesse and the Federal government, and recently the instruction of the Federal Ministry of Reactor Safety to the Land government of Schleswig-Holstein, for re-startup of the Brokdorf reactor, have added to the topicality of this Article. The licensing procedure for the Kalkar reactor still is in progress, but the Land government of North-Rhine Westphalia has brought an action against the Federal Government before the Federal Constitutional Court. The action is against a Federal instruction of May 1988, prohibiting the Land from ordering an expert opinion by the TUeV (Technical Inspection Association) for investigating possible similarities between the Chernobyl and the Kalkar reactor stations. (orig./HP)

  5. Duties, responsibilities and jurisdictions of Turkish Atomic Energy Authority (TAEK) and the new projects that the TAEK is presently involved

    International Nuclear Information System (INIS)

    The TAEK, reporting to the Prime Minister, has the duty to determine the national policy and the related plans and programs for peaceful use of nuclear energy for the benefit of Turkey. The TAEK consists of a President, three Vice Presidents, an Atomic Energy Commission, an Advisory Council, Specialized Department and Research and Training Centers. At present, the TAEK is involved in the following new projects: - Seismic upgrading of TR-1 (1 MW) and TR-2 (5 MW) Research Reactors in its Cekmece Nuclear Research and Training Center in Istanbul; - Design and construction of 500 keV (20 m A) linear electron accelerator in its Ankara Nuclear Agriculture and Animal Research Center (ANTHAM) in Saraykoy, Ankara; - Bidding for the construction of a 30 MeV (350 μA) proton and 15 MeV (30 μA) deuteron accelerator (cyclotron type) in ANTHAM

  6. Report and accounts of the United Kingdom Atomic Energy Authority for the year ended 31 March 1988. Revised ed.

    International Nuclear Information System (INIS)

    Over the year reviewed, three major changes in the Authority's structure and organisation were made. These are designed to secure a coherent nuclear energy research programme that meets customers needs, to develop new areas of business and to monitor the quality and scientific standards of research within the Authority. The technical report section covers a summary of the 1987-8 position of advanced gas-cooled reactors, pressurized water reactor safety research, the Winfrith reactor, fusion, fuel cycle research, general nuclear safety research, nuclear instrumentation, radiological protection research, safeguards research, underlying research, decommissioning and waste management operations and the fast reactor programme based on the Dounreay prototype fast reactor. Industrial and Environmental technology includes a variety of topics including oil and gas technology and the development of renewable energy sources, especially wind power. The work of each of the Authority's establishments is summarized. There is a separate booklet on the Winfrith research establishment. The accounts for the year to 31 March 1988 are presented. (U.K.)

  7. Materials on atomic energy problems

    International Nuclear Information System (INIS)

    The author cites and comments legal opinions on problems of atomic energy, i.e. the decision of the Federal Constitutional Court concerning Kalkar and the plutonium economy; Judges of the Federal Constitutional Court on technology and hazards; the 'atomic state'; plutonium at Gorleben; a new safety philosophy after Harrisburg; salt domes unsuitable for atomic waste. (HSCH) 891 HP/HSCH 892 MB

  8. Report and accounts of the United Kingdom Atomic Energy Authority for the year ended 31 March 1979

    International Nuclear Information System (INIS)

    The General Report, summarizing the work of the Authority, is followed by the Technical Report under the following headings: advanced gas-cooled reactor, water-cooled reactors, fast reactor, nuclear safety and the environment, R and D contract work for the nuclear industry, controlled nuclear fusion, underlying research, work outside the nuclear power programme. Appendices list Authority senior staff, Authority reactors and major facilities, and functions of Authority establishments. The Authority accounts are presented. (U.K.)

  9. Atomic energy utilization

    International Nuclear Information System (INIS)

    As observed worldwide, sufficient consensus has not been obtained on the peaceful utilization of atomic energy, but why has only France showed the relatively smooth advance ? Is it the result of the PR activities by enterprises ? The author visited two French nuclear facilities in June-July, 1990, and experienced the way of acceptance of the peaceful utilization of atomic energy and the action of enterprises in France. The French Electric Power Corp. (EDF) already clarified the guideline to the society about 'How to obtain the trust of public for atomic energy'. The gist of the contents of this EDF guideline is shown. The investigation by the authors can be judged as illustrating concretely the posture of enterprises to endeavor for the realization of this EDF guideline. The serious consideration on communication and community, the opening of information to public and sincere response, the fostering of the expression techniques of those in charge of PR, the immediate notice at the time of accidents, the maintenance of information transmission systems and so on carried out for 30 years contributed to the fostering of trust. The points of social psychology for national consensus and the investigation in the La Hague reprocessing plant and the Super Phenix in Creys Malville are reported. (K.I.)

  10. Implementation of self-sustaining GA/GC system in Turkish Atomic Energy Authority accordance to Internationally harmonized requirements

    International Nuclear Information System (INIS)

    In trade, health, safety and environmental protection, users of a laboratory's analytical services are more and more in need of proof of the reliability and credibility of results using internationally accepted standards. The model project of International Atomic Energy Agency (IAEA) is coded RER/2/004 and entitled Quality Control (QC) and Quality Assurance (QA) for Nuclear Analytical Techniques had been approved in 1999 for a period of two years aiming at the implementation of a comprehensive QA/QC protocol in nuclear analytical laboratories (NALs) of Member States following the ISO 17025 quid. Member States are Turkey, Slovakia, Slovenia, Romania, Poland, Latvia, Hungary,Estonia, Croatia, Belarus, Armenia and Agency's Laboratory Seibersdorf which made appropriate staff and facilities available for full participation in the project. In this summary, major goals of participation in the project, core stones of implementation in NALs (gamma, X-rays and alpha/beta), establishing the quality system, improvements of technical and management requirements as well as achievements and difficulties during two year program were discussed in detail. Progress of the nuclear analytical laboratories was monitored by IAEA staff using a concise scorning system that was applied to the submitted progress reports and the audit reviews. Two proficiency tests were applied to evaluate the technical competence of the laboratories by selected radionuclides of environmental importance. The main objective of the exercise were to validate the accuracy and precision of the measurements and to provide feedback to the participants on the performance of methods. PT sample results on gamma and alpha/beta measurements of NALs in center are compatible. It is expected that the reasonable progress gained in this project, will reflect as inching towards accreditation of NALs in near future.In addition to NALs of Centers in Ankara and Istanbul individual IAEA TC project for advanced nondestructive

  11. Decree no. 2013-490/PRN from 4 December 2013 provides for the creation, organisation, attributions and operation of the Nigerian High Authority for Atomic Energy

    International Nuclear Information System (INIS)

    This decree concerns the creation, attributions, organization and operation of The Nigerian High Authority Atomic Energy (HANEA). The HANEA is a public service under the Office of President of the Republic. Its main tasks of supervision, coordination and promotion of all peaceful nuclear applications, including nuclear power and ionizing radiation in relation to all departments and other structures concerned. The HANEA is headed by a President to the rank of Minister and includes the following components: a cabinet of President, Secretary General, six Departments and Private Secretary.

  12. Atomic Energy Control Act

    International Nuclear Information System (INIS)

    This act provides for the establishment of the Atomic Energy Control Board. The board is responsible for the control and supervision of the development, application and use of atomic energy. The board is also considered necessary to enable Canada to participate effectively in measures of international control of atomic energy

  13. Report and accounts of the United Kingdom Atomic Energy Authority for the year ended 31 March 1975

    International Nuclear Information System (INIS)

    The report is in three sections: the first is a general survey of nuclear power development, work outside the nuclear power field, finance and staff; the second section deals in more detail with the several reactor programmes being pursued by the Authority, and also covers nuclear safety and the environment, R and D contract work for the nuclear industry, controlled nuclear fusion, and underlying research; the third section deals with the non-nuclear programme and the applied nuclear programme (including radioactive tracer techniques and electrotechnology). Appendices contain lists of the Authority's senior staff, reactors, major facilities and establishments. The accounts for the year are presented. (U.K.)

  14. Report and accounts of the United Kingdom Atomic Energy Authority for the year ended 31 March 1980

    International Nuclear Information System (INIS)

    The report is in two parts: general (International Nuclear Fuel Cycle Evaluation; nuclear power development; safety and the environment; fusion; underlying research in support of reactor development; work outside the nuclear power programme; members, organisation and staff; energy conservation; information services; finance); and technical (advanced gas-cooled reactor; water-cooled reactors; fast reactor; safety and the environment; R and D contract work for the nuclear industry; fusion; underlying research; work outside the nuclear power programme). (U.K.)

  15. Law on Atomic Energy

    International Nuclear Information System (INIS)

    The Law defines the legislative foundation and concepts for peaceful uses of atomic energy in Vietnam. The Law, including 11 chapters, 93 articles and coming into force on the 1 Jan 2009, regulates utilization of atomic energy and assurance of safety and security. The Law contains issues: general provisions; measures to promote development and application of atomic energy for peaceful purposes; radiation safety, nuclear safety and security of radioactive sources, nuclear material and facilities; exploration, exploitation and processing radioactive ores; transportation, import and export of radioactive materials and nuclear equipment; atomic energy application services; declaration and licensing; response to radiation or nuclear incidents and compensation for damage caused by these incidents. (VAEC)

  16. Economic feasibility study to Raise the operational capacity of the Electron Beam Accelerator at the National Centre for Radiation Research and Technology, atomic Energy Authority, Egypt

    International Nuclear Information System (INIS)

    The study aims to investigate the economic feasibility to raise the operational capacity of the accelerator at the National Center for Radiation Research and Technology, Atomic Energy Authority, Egypt, through proposal of additional processing of power cables as it have 4 thousand operating hours per year of total 6 thousand hours per year. The study involved three sections; the first section included the technical aspects and marketing, the second section was concerned with financial analysis, and the third section included the national return of the project. In the first part, the electronic and technical requirements of the accelerator were studied to raise the capacity of the accelerator and to identify the time trend of demand for services in marketing. The second section included the financial feasibility of the project which was carried out through two parts; the first part deal with the analysis of costs of the project including identifying of investment, spending, labor costs, operating expenses, the annual installment of the annual depreciation expense with the total annual costs and operating costs per hour and ton. The second part was carried out to evaluated business profitability of the project, preparation of the annual cash flow, calculation of the internal rate of return, payback period of capital, and the analysis of sensitivity of the project in terms of its ability to achieve profitable business in the event of increasing costs and decreasing revenue. The third section was carried out to raise the operational capacity of the accelerator at the Egyptian Atomic Energy Authority to generate added value for national income, and to study the social rate of return for the project and examine the project's ability to provide new employment opportunities. The study showed the possibility and the importance of the project implemented at the level of private investment and national security.

  17. A consideration of the functional fixation hypothesis, and the effects of accounting data on managerial decision-making in the United Kingdom Atomic Energy Authority

    International Nuclear Information System (INIS)

    The study involves the application of the functional fixation hypothesis, developed by psychology researchers, to accounting. In this context one is concerned with the effect of previous experience with accounting reports, which may condition an individual to assign meanings to accounting outputs according to the label used, regardless of the accounting methods employed. The study then proceeds to look at its effects on the aggregate of investors comprising the capital market. The study then concentrates on the effects of fixation on managers in the United Kingdom Atomic Energy Authority. Managers from two establishments, divided into four experimental groups made decisions on two case studies, which differed only in the accounting method used, and which provided sufficient footnote information to allow conversion to the other method. Differences in decisions were measured, the results showing that, to varying degrees, managers were fixated with 'total costs' and that those who had greater experience of using reports for a variety of decisions, over a period of time, tended to be less fixated and more likely to adjust the numbers presented, where appropriate. Resource allocation appeared to be influenced by changes in overhead allocation procedures. Finally the specific implications of the results to management accounting and to accounting in the Authority are considered, and the importance of producing accounting reports which accurately model reality and which are decision-orientated is stressed, as is the need to break down restricting functional barriers. (author)

  18. Atomic Energy Control Board

    International Nuclear Information System (INIS)

    This paper has been prepared to provide an overview of the responsibilities and activities of the Atomic Energy Control Board. It is designed to address questions that are often asked concerning the establishment of the Atomic Energy Control Board, its enabling legislation, licensing and compliance activities, federal-provincial relationships, international obligations, and communications with the public

  19. Atomic Energy Act 1946

    International Nuclear Information System (INIS)

    This Act provides for the development of atomic energy in the United Kingdom and for its control. It details the duties and powers of the competent Minister, in particular his powers to obtain information on and to inspect materials, plant and processes, to control production and use of atomic energy and publication of information thereon. Also specified is the power to search for and work minerals and to acquire property. (NEA)

  20. Dangerous Energy : Atomic

    International Nuclear Information System (INIS)

    This book describes the disaster in Chernobyl, Russia. Through the accident It reveals the dangerous nuclear energy with a lot of problems on the nuclear power plants which includes four reasons about propelling development of atomic and criticism about that, eight reasons against development of atomic, the problem in 11 -12 nuclear power plant, the movement of antagonism towards nuclear waste in Anmyon island, cases of antinuclear in foreign country and building of new energy system.

  1. Atomic Energy Basics, Understanding the Atom Series.

    Science.gov (United States)

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  2. Report and accounts of the United Kingdom Atomic Energy Authority for the year ended 31 March 1981 together with the Comptroller and Auditor General's report on the accounts submitted to the Secretary of State for Energy in accordance with the Atomic Energy Authority Act 1954

    International Nuclear Information System (INIS)

    The report falls under the headings: general (nuclear power development; safety and the environment; fusion; underlying research; Select Committee on Energy; work outside the nuclear power programme; members, organisation and staff; energy conservation; information services; finance); technical (advanced gas-cooled reactor; water-cooled reactors; fast reactor; safety and the environment; nuclear contract work; nuclear fusion; underlying research; work outside the nuclear power programme); appendices (Authority senior staff; functions of Authority establishments; Authority reactors and major facilities); accounts. (U.K.)

  3. Atomic Energy (factories) rules: 1988

    International Nuclear Information System (INIS)

    These rules are made by the Central Government under the Factories Act, 1948 and extend to all factories engaged in carrying out the purposes of the Atomic Energy Act, 1962. The rules cover the requirements of inspecting staff, health aspects, personnel safety, personnel welfare, working hours, employment of young persons, special provisions in case of dangerous manufacturing processes or operations, supplemental rules for administrative aspects and special powers of competent authority. (M.G.B.)

  4. Meteorology and atomic energy

    International Nuclear Information System (INIS)

    The science of meteorology is useful in providing information that will be of assistance in the choice of favorable plant locations and in the evaluation of significant relations between meteorology and the design, construction, and operation of plant and facilities, especially those from which radioactive or toxic products could be released to the atmosphere. Under a continuing contract with the Atomic Energy Commission, the Weather Bureau has carried out this study. Some of the meteorological techniques that are available are summarized, and their applications to the possible atmospheric pollution deriving from the use of atomic energy are described. Methods and suggestions for the collection, analysis, and use of meteorological data are presented. Separate abstracts are included of 12 chapters in this publication for inclusion in the Energy Data Base

  5. Law project adopted by the Senate and authorizing the ratification of the additional protocol to the agreement between France, the European atomic energy community and the international atomic energy agency relative to the application of warranties in France

    International Nuclear Information System (INIS)

    This project of law concerns an additional protocol to the agreement of warranties signed on September 22, 1998 between France, the European atomic energy community and the IAEA. This agreement concerns the declaration of all information relative to the R and D activities linked with the fuel cycle and involving the cooperation with a foreign country non endowed with nuclear weapons. These information include the trade and processing of nuclear and non-nuclear materials and equipments devoted to nuclear reactors (pressure vessels, fuel loading/unloading systems, control rods, force and zirconium tubes, primary coolant pumps, deuterium and heavy water, nuclear-grade graphite), to fuel reprocessing plants, to isotope separation plants (gaseous diffusion, laser enrichment, plasma separation, electromagnetic enrichment), to heavy water and deuterium production plants, and to uranium conversion plants. (J.S.)

  6. Atomic energy in India: 50 years

    International Nuclear Information System (INIS)

    This fiftieth year of India's political independence also about coincides with the fiftieth year of the formal organisation of the Atomic Energy Programme in India. While the first Atomic Energy Act was passed in April 1948 - vesting the Government of India with exclusive authority for all activities relating to the development of atomic energy in the country - the first Atomic Energy Commission was constituted on August 10, 1948 as the apex policy making body for the programme. The present monograph is a review to trace the evolution and growth of the programme over the past fifty years

  7. Atomic Energy Commission Act, 1963

    International Nuclear Information System (INIS)

    Promulgated in 1963, the Atomic Energy Commission Act (204) established and vested in the Ghana Atomic Energy Commission the sole responsibility for all matters relating to the peaceful uses of atomic energy in the country. Embodied in the Act are provisions relating to the powers, duties, rights and liabilities of the Commission. (EAA)

  8. Atomic Energy Research benchmark activity

    International Nuclear Information System (INIS)

    The test problems utilized in the validation and verification process of computer programs in Atomic Energie Research are collected into one bunch. This is the first step towards issuing a volume in which tests for VVER are collected, along with reference solutions and a number of solutions. The benchmarks do not include the ZR-6 experiments because they have been published along with a number of comparisons in the Final reports of TIC. The present collection focuses on operational and mathematical benchmarks which cover almost the entire range of reaktor calculation. (Author)

  9. Law project (no. 1329) adopted by the Senate and authorizing the ratification of the agreement between the French Republic, the European Atomic Energy Community and the International Atomic Energy Agency relative to the enforcement of warranties in the framework of the treaty of nuclear weapons prohibition in South America and the Caribbeans area (two protocols together)

    International Nuclear Information System (INIS)

    The French Senate adopted on January 6, 2004 the project of law which authorizes the ratification of the agreement between France, the European atomic energy community and the IAEA about the enforcement of warranties in the framework of the treaty of interdiction of nuclear weapons in South America and in the Caribbean area signed in Vienna (Austria) on March 21, 2000. The text of this treaty is attached to this law. (J.S.)

  10. Metrology assurance of atomic energy

    International Nuclear Information System (INIS)

    The metrology assurance of the Kozloduy NPP is at a satisfactory level. The assessment is carried out following the requirements of both the authorized bodies and the recent acting documents. Considering the future development of the nuclear energy and the new demands towards nuclear safety, the metrology assurance of atomic energy needs some improvement. A thorough set of measures should be developed as: preparing of standard documentation, personnel education, purchase of new highly accurate appliances, and providing conditions for the fulfillment of some qualified metrology activities. This will take an extremely difficult and long period of time with respect to the country circumstances, the energy generation and the variety of reorganizations in all management spheres. Prerequisite for this are: the metrologist' desire to fulfill the above tasks, the NPP administration concern and actions to solve the metrology assurance problems, the understanding from the authorized bodies and other scientific institutions and the assistance on the part of some western countries, mainly France. A leading part in fulfilling this problems should be played by the NEC-SA - Kozloduy NPP. (author)

  11. Atomic energy review

    International Nuclear Information System (INIS)

    The ATOMIC ENERGY REVIEW (AER), a periodical started in 1963 in accordance with the recommendation made by the Scientific Advisory Committee, is now preparing for its tenth year of publication. The journal appears quarterly (ca 900 pages/year) and occasionally has special issues and supplements. From 1963 to 1971 AER developed into an important international high-standard scientific journal which keeps scientists in Member States informed on progress in various fields of nuclear energy. The Agency's specific role of helping 'developing countries to further their science and education' is reflected in the publication policy of the journal. The subject scope of AER, which was determined at the journal's inception, is very broad. It covers topics in experimental and theoretical physics, nuclear electronics and equipment, physics and technology of reactors and reactor materials and fuels, radio-chemistry, and industrial, medical and other uses of radioisotopes. In other words, almost any subject related to the peaceful application of nuclear energy can qualify for inclusion. Specifically, at any particular time the selection criteria for topics are influenced by the Agency's current programme and interests. AER carries comprehensive review articles, critical state-of-the-art and current awareness surveys, and reports on the important meetings organized or sponsored by the Agency. The following four subsections gradually became necessary to do justice to this variety of material: 'Reviews' proper, 'Current Research and Development', 'Special Item' and 'Conferences and Symposia'. Apart from the conference reports, one hundred and twenty-five reviews, almost all of which were published in English to make them accessible to a wide public, have so far been published

  12. Intergovernmental organisation activities: European Atomic Energy Community, International Atomic Energy Agency, OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    European Atomic Energy Community: Proposed legislative instruments, Adopted legislative instruments, Non-legislative instruments, Other activities (meetings). International Atomic Energy Agency: IAEA Action Plan on Nuclear Safety. OECD Nuclear Energy Agency: The Russian Federation to join the OECD Nuclear Energy Agency; Participation by the regulatory authorities of India and the United Arab Emirates in the Multinational Design Evaluation Programme (MDEP); NEA International Workshop on Crisis Communication, 9-10 May 2012; International School of Nuclear Law: 2013; Next NEA International Nuclear Law Essentials Course

  13. Court decision concerning the differentiation between orders by the supervisory authority pursuant to section 19, sub-sec. (3) Atomic Energy Act, and subsequent imposition of duties pursuant to section 17, sub-sec. (1), 3rd sentence, Atomic Energy Act

    International Nuclear Information System (INIS)

    The Lueneburg Higher Administrative Court has pronounced a judgement on February 16, 1989 - 7 A 108/88 - concerning the differentiation between orders by the supervisory authority (section 19, sub-sec. (3) Atomic Energy Act), and subsequent imposition of duties (section 17, sub-sec. 1, 3rd sentence Atomic Energy Act). The court decided that subsequently imposed duties exclusively aiming at minimizing the remaining risk are not permissible. The statements by Stein/Hartung in this article critically comment this court decision, which is the first in matters of an action of operators of a plant to set aside duties imposed after commissioning of the plant. The duty imposed in this case was to carry out ultrasonic testing of the centering pins of fuel elements in the upper grid plate of the Brokdorf reactor, and to replace one broken centering pin. (RST)

  14. The atomic energy basic law

    International Nuclear Information System (INIS)

    The law establishes clearly the principles that Japan makes R and D, and utilizations of atomic energy only for the peaceful purposes. All the other laws and regulations concerning atomic energy are based on the law. The first chapter lays down the above mentioned objective of the law, and gives definitions of basic concepts and terms, such as atomic energy, nuclear fuel material, nuclear source material, nuclear reactor and radiation. The second chapter provides for the establishment of Atomic Energy Commission which conducts plannings and investigations, and also makes decisions concerning R and D, and utilizations of atomic energy. The third chapter stipulates for establishment of two government organizations which perform R and D of atomic energy developments including experiments and demonstrations of new types of reactors, namely, Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. Chapters from 4th through 8th provide for the regulations on development and acquisition of the minerals containing nuclear source materials, controls on nuclear fuel materials and nuclear reactors, administrations of the patents and inventions concerning atomic energy, and also prevention of injuries due to radiations. The last 9th chapter requires the government and its appointee to compensate the interested third party for damages in relation to the exploitation of nuclear source materials. (Matsushima, A.)

  15. Proposed general amendments to the atomic energy control regulations

    International Nuclear Information System (INIS)

    Canada's Atomic Energy Control Act defines the powers and responsibilities of the Atomic Energy Control Board (AECB). Among these is to make regulations to control the development, application and use of atomic energy. In these proposed general amendments to the Atomic Energy Control Regulations substantial changes are proposed in the designation of the authority of AECB staff, exemptions from licensing, international safeguards, duties of licensees and atomic radiation workers, security of information, and provision for hearings. The scope of the control of atomic energy has been redefined as relating to matters of health, safety, security, international safeguards, and the protection of the environment

  16. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  17. The International Atomic Energy Agency's safeguards system

    International Nuclear Information System (INIS)

    A system of international safeguards has been established to provide assurance that nuclear materials in civilian use are not diverted from their peaceful purpose. The safeguards system is administered by the International Atomic Energy Agency/Department of Safeguards and devolves from treaties and other international agreements. Inspectors from the Agency verify reports from States about nuclear facilities by audits, observation, and measurements. (author)

  18. Institute of Atomic Energy - Annual Report 1999

    International Nuclear Information System (INIS)

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 1999. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well

  19. Institute of Atomic Energy - Annual Report 1998

    International Nuclear Information System (INIS)

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute in 1998. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well

  20. The development of atomic energy in Sri Lanka

    International Nuclear Information System (INIS)

    This article was written by the Institution's overseas representative Professor P.P.G.L. Siriwardene, Chairman of the Atomic Energy Authority of Sri Lanka, with the express purpose of conveying to members of the Institution a broad outline of his country's interest in the peaceful uses of atomic energy. (author)

  1. Atomic spectroscopy sympsoium, Gaithersburg, Maryland, September 23--26, 1975. [Program, abstracts, and author index

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Abstracts of one hundred papers given at the conference are presented along with the conference program and an author index. Session topics include: highly ionized atoms; laser spectroscopy and hyperfine structure; complex spectra; laser spectroscopy, radiation theory; theory of highly ionized atoms and analysis of plasmas; plasma spectroscopy, line strengths; spectral analysis, instrumentation, reference wavelengths; beam foil spectroscopy, line strengths, energy levels; absorption spectroscopy, autoionization, and related theory; and spectral analysis, instrumentation, and VUV physics. (GHT)

  2. Preemption - atomic energy

    International Nuclear Information System (INIS)

    While waiting for the federal government to develop a nuclear waste disposal strategy, California enacted legislation that bans the construction of nuclear reactors until permanent disposal technology for high-level wastes is demonstrated and approved. The US Supreme Court upheld this prohibition in Pacific Gas and Electric Co. v. State Energy Resources Conservation and Development Commission. The Court found that the California law did not attempt to regulate the construction or operation of a nuclear plant nor to infringe on federal regulation of radiation safety and nuclear wastes. The moratorium is a legitimate move by the state to avoid economic uncertainties. Federal preemption of the law would empower utilities to determine state energy needs and programs. 131 references

  3. United Kingdom Atomic Energy Authority programs

    International Nuclear Information System (INIS)

    Air cleaning systems currently in use or planned for use in radioactive waste management facilities and fuel reprocessing facilities in the United Kingdom are discussed. The importance of evaluation of alternative and advanced technologies and of waste minimization is noted. Current work in the U.K. on selective and non-selective catalytic NO sub x abatement and a new technique that uses corona discharge are described. Schemes to lower carbon 14 discharges, in particular carbon 14 that arises from carbon monoxide, are also being examined

  4. Atomic Batteries: Energy from Radioactivity

    OpenAIRE

    Kumar, Suhas

    2015-01-01

    With alternate, sustainable, natural sources of energy being sought after, there is new interest in energy from radioactivity, including natural and waste radioactive materials. A study of various atomic batteries is presented with perspectives of development and comparisons of performance parameters and cost. We discuss radioisotope thermal generators, indirect conversion batteries, direct conversion batteries, and direct charge batteries. We qualitatively describe their principles of operat...

  5. Application of an open information on atomic energy

    International Nuclear Information System (INIS)

    In the field of atomic energy, 'Gray literature' problem is not significant. Because literatures are translated as soon as possible into English and delivered to related organizations of the world. A field of atomic energy is a specific field about open literature. It is important to continue to open information both at home and abroad. (author)

  6. Conference: photovoltaic energy - local authorities - Citizen

    International Nuclear Information System (INIS)

    The French-German office for Renewable energies (OFAEnR) organised a conference on the role of photovoltaic energy, local authorities and Citizens as pillars of the energy transition. In the framework of this French-German exchange of experience, about 100 participants exchanged views on the role of local authorities and Citizens in the implementation of the energy transition. This document brings together the available presentations (slides) made during this event: 1 - Solar photovoltaics, local communities and citizens - Cornerstones of the energy revolution. Franco-German viewpoints (Daniel Belon); 2 - Structure and management of the distribution system operators in Germany. efficient, innovative and reliable: Local public enterprises in Germany (Sonja Witte); 3 - Photovoltaic energy: technical challenges for power grids - A distribution network operator's (DNO) point-of-view (Luc Simonet); 4 - The sun and the grid - challenges of the energy transition (Lars Waldmann); 5 - The role of local public authorities in the networks management: legal situation in France, Germany and in the EU (Doerte Fouquet); 6 - Towards energy transition: challenges for renewable energies - Urban solar planning tools (Henri Dupassieux); 7 - The local energy supply as a municipal task - solar land-use planning in practice in Germany (Fabio Longo); 8 - Supporting and facilitating the financing of photovoltaic projects at a community level (Arnaud Brunel); 9 - Photovoltaics in the municipality VG Arzfeld (Andreas Kruppert); 10 - For the energy revolution to be a success: Invest into renewable energy. Local, controllable and renewable 'shared energy' that is grassroots (Philippe Vachette)

  7. 29 October 2013 - Former Director-General of IAEA H. Blix on the occasion of the Thorium Energy Conference at CERN with Chair of the ThEC13 Organization Committee E. Lillestol and Author of the book “Atome Vert” (Green Atom) J.-C. de Mestral; in the LHC tunnel at Point 1 with Technology Department, Machine Protection & Electrical Integrity Group, Performance Evaluation Section Member A. Verweij.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    29 October 2013 - Former Director-General of IAEA H. Blix on the occasion of the Thorium Energy Conference at CERN with Chair of the ThEC13 Organization Committee E. Lillestol and Author of the book “Atome Vert” (Green Atom) J.-C. de Mestral; in the LHC tunnel at Point 1 with Technology Department, Machine Protection & Electrical Integrity Group, Performance Evaluation Section Member A. Verweij.

  8. Atomic Energy Commission (Amendment) Law, 1993

    International Nuclear Information System (INIS)

    The Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C.L. 308) seeks to amend the Atomic Energy Commission Act of 1963 (Act 204) so as to provide for the establishment of a Radiation Protection Board and other institutes under the Ghana Atomic Energy Commission. The Law further repeats the Atomic Energy Commission (Amendment) Law of 1982 (P.N.D.C.L. 37). (EAA)

  9. Atomic Energy Commission Act, 2000 (Act 588)

    International Nuclear Information System (INIS)

    Act 588 of the Republic of Ghana entitled, Atomic Energy Commission Act, 2000, amends and consolidates the Atomic Energy Commission Act, 204 of 1963 relating to the establishment of the Atomic Energy Commission. Act 588 makes provision for the Ghana Atomic Energy Commission to establish more institutes for the purpose of research in furtherance of its functions and also promote the commercialization of its research and development results. (E.A.A.)

  10. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  11. The State and atomic energy

    International Nuclear Information System (INIS)

    Illustrous, eloquent, and yet easy to read for the interested layman, the book begins with alleged deplorable conditions at the reprocessing centra La Hague, portrays, amongst other things, the spying on and supervision of persons in the nuclear field and in research, the misuse of fissile material, and threats and blackmail as a consequence thereof, human error as a cause of accidents, and it concludes with a nonviolent new International against the state and atomic energy, against technological tyranny. Titles of chapters: The hard road; radiation feed; the gamblers; homo atomicus; the intimidated; the ''proliferators''; nuclear terrorists; those supervised; the smooth road. It remains an open question whether the book contributes to defusing the nuclear controversy - in the book almost an ideology - and to bringing the two sides closer together. (HP)

  12. Reception, arranging and distribution of alarm messages by the atomic supervision authority and the civil protection authority of a land

    International Nuclear Information System (INIS)

    The operators of nuclear installations are obliged to inform the responsible atomic supervision authority about any accident or incident. In case of possible catastrophic effects to public or environment the responsible civil protection authority is to alarm in addition. Both authorities use independent information lines. Messages to the public and media will be prepared by an interministerial working staff. These pieces of information are also distributed by 'T-Online'. (orig.)

  13. Design of atomic energy information network system

    International Nuclear Information System (INIS)

    As the 21st century is expected to induce a Knowledge based society, responding to this kind of change on our own initiative could be achieved by establishing networks among atomic energy agencies with the Atomic Energy Portal Site in a pivotal role. Thus, enabling the knowledge information from each agency to be easily shared and utilized. Furthermore, it can contribute to further researches by providing accumulated knowledge in the atomic energy, such as research output and past achievements, and by avoiding the repetition of researches on the same subjects. It could also provide remote educational data to researchers and industrial experts in atomic energy, as well as atomic energy information for general public consistently, so that we can promote our confidence in atomic energy

  14. Amendment of Atomic Energy Basic Law and the development of Atomic Energy Administration

    International Nuclear Information System (INIS)

    This article explains the key points of the major development of Atomic Energy Administration recently made by amendments of Atomic Energy Basic Law and other two relating laws. These amendments passed through the Diet and were enacted on 7th, June, 1978. The aim of them is focussed on reinforcement and rearrangement of safety controls on nuclear reactors. Previously, although the approval of the installation plan with basic designs of a nuclear reactor has been done by Prime Minister, further approvals of detailed designs and process of construction works, as well as inspections before and after operation have been conducted by each responsible minister, respectively. That is, those controls for power reactors have been within jurisdiction of minister of Trade and Industry, and for nuclear ships' reactors minister of Transportation has been responsible. Under the new system, above mentioned ministers continue to exercise almost same controls over reactors within their jurisdiction respectively, however the new laws have established so-called ''double check'' principle in that: when each responsible minister approves the installation, detailed designs and further stages of construction and operation of the reactor, he should hear and pay a great regard for opinions of Atomic Energy Commission and Atomic Energy Safety Commission. The latter is newly established organization which has similar status and authority to the former. (J.P.N.)

  15. The International Atomic Energy Agency

    Science.gov (United States)

    Dufour, Joanne

    2004-01-01

    The dropping of atomic bombs on Hiroshima and Nagasaki in World War II inaugurated a new era in world history, the atomic age. After the war, the Soviet Union, eager to develop the same military capabilities as those demonstrated by the United States, soon rivaled the U.S. as an atomic and nuclear superpower. Faced by the possibility of…

  16. Information demand in the atomic energy and radiation protection laws. Extent of the information demand to the Federal Ministry of environment according to the information freedom law und the environmental law with respect to data available to the regulation authorities according to the atomic energy and radiation protection laws, and sensitive and safety relevant data according to the statutory order on hazardous incidents. Final report

    International Nuclear Information System (INIS)

    The final report on the extent of the information demand to the Federal Ministry of environment according to the information freedom law und the environmental law with respect to data available to the regulation authorities according to the atomic energy and radiation protection laws, and sensitive and safety relevant data according to the statutory order on hazardous incidents covers the following chapters: Scope of the project and conclusions; concept and methods of the survey; status analysis concerning the transposition of information freedom law; overview of the relevant legal fundamentals; decision support.

  17. Bill authorizing the ratification of the protocol amending the Protocol on transitional provisions annexed to the Treaty on European Union, to the Treaty on the Functioning of the European Union and to the Treaty establishing the European Atomic Energy Community

    International Nuclear Information System (INIS)

    After an indication of the European Parliament composition, this text describes the transitional provisions adopted as the Lisbon Treaty did not come into effect before the European elections held in June 2009. The document also provides the protocol text signed by the Members States and which amended the protocol on transitional provisions annexed to the Treaty on the European Union, to the Treaty on the Functioning of the European Union and to the Treaty establishing the European Atomic Energy Community. The last part of the document discusses the administrative and legal consequences of this protocol. It also recalls the history of the negotiations and indicates the present status of signatures and ratifications

  18. Atomic energy indemnification system in Japan

    International Nuclear Information System (INIS)

    The Japanese legislation on the indemnification by atomic energy enterprisers for atomic energy damages, published in 1961 and enforced in 1962, includes the law concerning indemnification for atomic energy damages and the law concerning atomic energy damage indemnification contracts (hereafter referred to as ''the law concerning indemnification contracts''). While the Japanese laws are same as the foreign legislation in the provisions of the responsibility of atomic energy damages without the error of atomic energy enterprisers, exemption reasons are more important in this respect. When damages are due to exceptionally grave natural disasters or social disturbances, atomic energy enterprisers are exempted from the responsibility. Indemnification amounts are determined, but the Japanese laws do not limit then, different from the foreign regulations. The periods for demanding indemnification are not defined particularly in the law concerning indemnification contracts, and the general basic rules of the civil law are applied. As a result, the demand right terminates in 3 years after the injured persons find damage and offenders, and in 20 years since the unlawful act (Article 724, Civil law). The indemnification liability for atomic energy damages is focused on atomic energy enterprisers concerned in the same way as the foreign laws. The measures for assuring the execution of indemnification responsibility consist in principle of the firm conbination of the liability insurance contracts with private insurance companies and the indemnification contracts for atomic energy damages with the state. The damages of employes suffered in works are excluded from indemnification, which has been the main issue of discussion since the enactment of atomic energy laws. (Okada, K.)

  19. Atomic energy: a new start

    International Nuclear Information System (INIS)

    Mr. Lilienthal says that nuclear energy for electric power generation is a fact of life and, while political and technological mistakes have been made, the US must explore new technologies and develop a safe and acceptable way to use this energy source and provide the power that can save the world population from poverty and the environment from the hazards of fossil fuels. He feels that the public needs to be better informed about how nuclear power works and the realities of natural radiation. He also feels that the economic justification for light water reactor development should be put aside in favor of safety as the prime criterion for technology choices. The lessons of Three Mile Island, the Tennessee Valley Authority, and the issues of waste management, plant siting, regulation, and proliferation are examined as the learning experiences of a new industry. The former chairman of TVA and first leader of the AEC believes a serious commitment to nuclear energy can free much of the world's nonrenewable resources for distribution elsewhere

  20. Atomic energy in Latin America

    International Nuclear Information System (INIS)

    Most countries in Latin America, including all those on the mainland, are Members of the Agency. Interest in the possibilities of nuclear energy has led to considerable activity, much of it in direct collaboration with the IAEA. Member States in the region are: Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru, Uruguay, Venezuela. Of these, Argentina, Brazil, Colombia and Venezuela are operating, and Mexico and Uruguay are constructing, research reactors, while Chile and Peru are studying proposals. Argentina, Brazil, Mexico and Uruguay have all agreed to accept Agency safeguards for reactors. The possibility of future needs for nuclear power is under examination by several countries, in some cases being related to desalination of water. All atomic work in Latin America is devoted to peaceful uses, and note-worthy progress has been made with proposals for a treaty which would make the whole region a militarily de-nuclearized zone. It is proposed that when this comes into effect the Agency will be asked to apply the controls developed in its safeguards system, and to carry out the inspections necessary to establish that work in progress is solely for peaceful purposes

  1. Atomic energy for the peace and progress

    International Nuclear Information System (INIS)

    This document is a poster of the Commission of Atomic Energy of Costa Rica. In it some uses of atomic energy in Costa Rica, are mentioned. Some of them are: the technical cooperation, which has permitted to develop and to fortify the production and control of radio pharmaceuticals in the nuclear services of medicine. The diagnoses and medical processing, to acquire new equipment and to consolidate the maintenance and service of nuclear instrumentation. By means of technical of induced mutations, they have developed agricultural resistant varieties to the environmental conditions. Control of ripeness, genetic improvement of seeds, resistance to the illnesses and efficiency of the agronomic performance. The isotopic techniques of traces have great importance to evaluate the hydric resources, and their risk of contamination with toxic metals and pesticides. Nuclear techniques have been used to obtain information and to deepen in their knowledge. A laboratory of radiology control was established in the Technological Institute of Costa Rica, to give service to the industrial installations. To access the information of this field, the Nuclear Center of Information can be consulted, in the University of Costa Rica. (author)

  2. Atomic Energy Act 1953-1966

    International Nuclear Information System (INIS)

    The Atomic Energy Act 1953-1966 establishes the Australian Atomic Energy Commission and lays down its powers, duties, rules of procedure and financing. The members of the Commission are appointed by the Governor-General. It is responsible, inter alia, for all activities covering uranium research, mining and trading as well as for atomic energy development and nuclear plant construction and operation. Its duties also include training of scientific research workers and collection and dissemination of information on atomic energy. For purposes of security, the Act further-more prescribes sanctions in relation to unauthorised acquisition or communication of information on this subject. Finally, the Act repeals the Atomic Energy (Control of Materials) Act 1946 and 1952. (NEA)

  3. White paper on atomic energy in 1995

    International Nuclear Information System (INIS)

    This is the White Paper on the Atomic Energy, 1995. This was prepared on general trends of the atomic power in Japan for recent one year. This paper is composed of two parts, which are the subjective part and the reference part. In Chapter 1 of the subjective part, summaries on international trend of non-proliferation and national trend focussing to nuclear fuel recycling and an attitude of Japanese government on treatment and disposal of high-level radioactive wastes essential for promoting the nuclear fuel recycling policy were shown. In Chapter 2, some concrete descriptions were shown at center of their recent trends, on establishment of international reliability for non-proliferation of nuclear weapon, safety security of atomic energy, promotion of information opening and peoples' understandings, present status and future trend on nuclear power generation, nuclear power generation due to light water reactor system, research and development of nuclear fuel recycling, back end countermeasure, promotion of diverse development and basic research on nuclear science technology, international cooperation in atomic energy field, promotive base for atomic energy development and utilization, and development and utilization, and development of nuclear industries. Furthermore, in the reference part, some reports were introduced on main decisions in the Atomic Energy Commission, talk of the chief of the Atomic Energy Commission, and governmental estimates and year table relating to the atomic energy, and so forth. (G.K.)

  4. Why atomic energy affects Civil Law

    Energy Technology Data Exchange (ETDEWEB)

    Knieper, R.

    1980-01-01

    Based on the decision of July 20, 1979 by the Amtsgericht Stuttgart, which dismissed the complaint filed by the Technische Werke der Stadt Stuttgart (public utility) against electricity boycotters as being unfounded for the time being, the author states that a political function is due to Civil Law. The concrete question is whether political considerations have surpassed the limits of laws and interpretations bound by the basic rights. The relationship between a customer depending on power supply and the supply monopolist exceeds contractual relationship by far since it is a social relationship: it is inescapably embraced by the customer's dependence on power supply and by the customer being subject to research work. Atomic energy is being introduced into law of contract by means of dogmatic crutches - breach of additional obligation under a contract. However, in Civil Law, there are a great number of such means enabling solutions to be corrected which seem to be inadequate.

  5. Atomic Energy Control Board vocabulary - preliminary edition

    International Nuclear Information System (INIS)

    This preliminary edition was prepared at the Board's request to help it establish a standardized terminology. It was produced by scanning the 99 French and English documents listed at the end of this Vocabulary. The documents include legislation concerning atomic energy and the transportation of radioactive materials, as well as the Board's publications, such as the Consultative Documents, Regulatory Documents and Notices. The terms included from the following areas are: radiation protection, reactor technology, nuclear fuel cycle, radioactive material packaging and transportation, radioactive waste management, uranium mines, and medical and industrial applications of radioelements. Also included are the titles of publications and the names of organizations and units. The vocabulary contains 2,589 concepts, sometimes accompanied by definitions, contexts or usage examples. Where terms have been standardized by the Canadian Committee for the Standardization of Nuclear Terminology, this has been indicated. Where possible, we have verified the terms using the TERMIUM, the Government of Canada Linguistic Data Bank. (author)

  6. Atomic energy levels and Grotrian diagrams

    CERN Document Server

    Bashkin, Stanley

    1975-01-01

    Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.

  7. Atomic Energy Amendment Act 1978, No. 31

    International Nuclear Information System (INIS)

    This Act amends certain Sections of the Atomic Energy Act 1953. The principal modifications concern the definitions of atomic energy, prescribed substances, the provision and supply of uranium in relation to the functions of the Atomic Energy Commission, compliance with the agreement with the IAEA on the application of safeguards under the Non-Proliferation Treaty as well as with any agreement with any other international organization or another country. The Act also amends the 1953 Act in respect of the control of prescribed substances and repeals the section concerning jurisdiction of courts. (NEA)

  8. A History of the Atomic Energy Commission

    Energy Technology Data Exchange (ETDEWEB)

    Buck, A.L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  9. A History of the Atomic Energy Commission

    Science.gov (United States)

    Buck, Alice L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  10. History of the Atomic Energy Commission

    International Nuclear Information System (INIS)

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations

  11. The China Institute of Atomic Energy

    International Nuclear Information System (INIS)

    The China Institute of Atomic Energy (CIAE), established in 1950, carries out multidisciplinary research in nuclear science, technology and engineering. It has three research reactors and ten low energy accelerators. The focus of its nuclear energy related R and D is on reactor engineering and technology. In the area of nuclear techniques for applications, R and D is carried out on accelerators, isotope production, nuclear electronics and utilization of radioisotopes and radiation. There is also a strong programme in basic nuclear physics and radiochemistry. New major facilities under construction in CIAE include China Advanced Research Reactor (flux 8x1014n/cm2/sec) and China Experimental Fast Reactor. China has been successfully using the products of its R and D for a variety of applications in medicine, industry, materials science etc. A dynamic research programme is tuned to attract young talent to CIEA and there is good collaboration with the Beijing University. CIEA has been an active participant of RCA programmes of the IAEA and has been a resource for many developing countries. The management expects the Institute to be a leading multidisciplinary institute in the field of nuclear science, technology and engineering. (author)

  12. Establishment of the Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    A goal of the 21. century is for society to pursue 'sustainable economic development and prosperous life by recycling resources', thus rejecting 'development based on the waste of resources'. For Japan, which has limited energy resources, it is important to secure safe, inexpensive, environmentally friendly energy resources having long-term availability. To contribute to long-term energy security and solve global environmental issues, and to create advanced competitive science and technology, the Japan Atomic Energy Agency (JAEA) was established by integrating the Japan Atomic Energy Research Institute (JAERI) and the Japan Nuclear Cycle Development Institute (JNC) in October 2005. JAEA is endeavoring to establish nuclear fuel cycles, to contribute to social improvement through hydrogen production initiated by atomic energy, and to pursue research and development of thermonuclear fusion and quantum beam technology. This paper reviews the main R and D activities of JAEA. The structure of the paper is the following: 1. Introduction; 2. Japan Atomic Energy Agency; 3. Efforts to Commercialize the Fast Reactor Cycle; 4. Monju Progress; 5. Geological Disposal of High-Level Radioactive Waste R and D; 6. High Temperature Gas-Cooled Reactor System R and D; 7. Fusion Research and Development; 8. LWR Spent Fuel Reprocessing Technology; 9. Quantum Beam Technologies; 10. Nuclear Safety Research and Regulatory Applications; 11. Basic Science and Engineering Research; 12. Contribution to the Enhanced International Nonproliferation Regimes; 13. Conclusions. To summarize, JAEA will promote the above R and D activities, addressing the following commitments: - On problems that atomic energy faces, we shall extend technical assistance in response to the government and the industrial sectors. - We shall produce technical options to attain political goals to secure medium to long-term stable energy supplies and to solve global environmental issues. - With the high potentials of atomic

  13. A Bibliography of Basic Books on Atomic Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1974-01-01

    This booklet lists selected commercially published books for the general public on atomic energy and closely related subjects. Books for young readers have school grade annotations.This booklet contains an author index, a title index, and a list of publishers’ addresses.

  14. The Future of Atomic Energy

    Science.gov (United States)

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  15. Energy Wave Model of Atom

    Institute of Scientific and Technical Information of China (English)

    伍细如

    2015-01-01

    proton emits energy wave, electron could sits any position away from nucleus, but be the most stable just when it sits at the trough of energy wave, and this position accords with Bohr radius and Schr?dinger equation.

  16. Atomic energy is hot stuff

    International Nuclear Information System (INIS)

    According to the author, it is the sun's heat and not CO2 emissions that is the cause of global warming. He then proceeds to outline the history of nuclear power and the nuclear policies of countries throughout the world as contrasted against Germany's phaseout decision. According to the author, Germany should reconsider its nuclear policy and go for nuclear power full-scale. (orig.)

  17. The international atomic energy agency's programme on inertial fusion energy

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency has been promoting international activity and collaboration related to the use of inertial fusion confinement schemes for energy production for many years. Thorough review of inertial fusion research and a detailed analysis of future prospects has been conducted. Inertial Fusion Energy is now approaching the turning point in the long history from physics oriented research to fusion energy oriented development. The programme of the International Atomic Energy Agency reflects, to some extent, this development

  18. Ps-atom scattering at low energies

    CERN Document Server

    Fabrikant, I I

    2015-01-01

    A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend the Ps-atom cross sections, obtained previously in the impulse approximation [Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data are not available in this low-energy region, our results describe well the tendency of the measured cross sections to drop with decreasing velocity at $v<1$ a.u. Our results show that the effect of the Ps-atom van der Waals interaction is weak compared to the polarization interaction in electron-atom and positron-atom scattering. As a result, the Ps scattering length for both Ar and Kr is positive, and the Ramsauer-Townsend minimum is not observed for Ps scattering from these targets. This makes Ps scattering quite different from electron scattering in the low-energy region, in contrast to the inter...

  19. Israel Atomic Energy Commission 1997 Annual Report

    International Nuclear Information System (INIS)

    radioisotope diagnostics and therapy by individually calibrated, rapidly dissolving capsules, resulted in better dose control and reduced patient and personnel exposures. The non-nuclear aspect of our work is represented this year by the fourth paper, which deals with the utilization of our plasma physics expertise in the development and parametric studies of advanced Hall thrusters for space applications. An interesting outcome of this work was the disco Query of the dependence of the electrical characteristics and performance of the thruster on the material its chamber is made of. Finally, I would like to commend once again the authors of the selected presentations as well as the entire staff of the Israel Atomic Energy Commission for their continued efforts, contributions and achievements and to wish them all many more years of fruitful endeavors

  20. White paper on atomic energy in 1984

    International Nuclear Information System (INIS)

    The annual report on atomic energy in fiscal year 1984 is published. 30 years have elapsed since the first budget related to atomic energy was established in 1954. The research, development and utilization of atomic energy in Japan have been advanced by being strictly limited to the peaceful purpose, and now, more than 20% of the total generated electric power is supplied by nuclear power generation. The state of operation showed very good results practically close to full operation, and rapid development has been observed in the application of radiation to medical treatment, industries, agriculture and other fields. In this way, atomic energy has become indispensable to national life and economical activity. Nuclear power generation has the high stability of energy supply to Japan, therefore, its promotion is positively carried out, and efforts are exerted on the early establishment of nuclear fuel cycle and the development of new type reactors. In addition to the cooperation with advanced countries, the cooperation with developing countries will be promoted hereafter in this field. The trend of the development and utilization of atomic energy, nuclear power generation, nuclear fuel cycle, the ensuring and verification of safety and environment preservation, the development of new power reactors and the utilization of plutonium, the research and development of nuclear fusion, nuclear ships and high temperature gas-cooled reactors, the utilization of radiation and others are reported. (Kako, I.)

  1. The Atomization Energy of Mg4

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The atomization energy of Mg4 is determined using the MP2 and CCSD(T) levels of theory. Basis set incompleteness, basis set extrapolation, and core-valence effects are discussed. Our best atomization energy, including the zero-point energy and scalar relativistic effects, is 24.6+/-1.6 kcal per mol. Our computed and extrapolated values are compared with previous results, where it is observed that our extrapolated MP2 value is good agreement with the MP2-R12 value. The CCSD(T) and MP2 core effects are found to have the opposite signs.

  2. Atomic energy to advance human progress

    International Nuclear Information System (INIS)

    Dr Manmohan Singh, the prime minister of India on the occasion of the inaugural ceremony of international conference on peaceful uses of atomic energy said that the return of India to the international nuclear global main streams is of high significance not only for India but for global energy security as well. It is not beyond the imagination of the human mind to devise solutions and strategies that exploit the vast potential of atomic energy to advance human progress, while assuring global peace and security

  3. ATOMIZATION CAUSED BY BOTTOM FLOW ENERGY DISSIPATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bottom flow energy dissipation is one of the common energydissipation methods for flood-releasing structures with high water head. Measures of this energy dissipation depend mainly on the turbulent action of hydraulic jump.In this paper, the physical process and the calculating methods of the atomization caused by bottom flow energy dissipation were studied, the computation models of atomization quantity for the self-aerated flow in overflow and hydraulic jump regions are presented, and the main results are of theoretical and practical significance for the hydraulic and electric engineering.

  4. The mean excitation energy of atomic ions

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  5. The Harnessed Atom: Nuclear Energy & Electricity.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  6. Nuclear fuel cycles as reflected in the atomic energy laws

    International Nuclear Information System (INIS)

    The author measures the stations of the nuclear fuel cycles against the requirements laid down by the constitution and the Atomic Energy Act. All safety-relevant installations of the nuclear fuel cycles for LWR-type and FBR-type reactor stations are explained and defined in the first section of the book, stating facts and technical aspects including the capacity problems in connection with spent fuel management and the resulting need for interim storage facilities. The following sections on the legal aspects discuss the various installations in comparison to the legal requirements and definitions of the Atomic Energy Act. The author emphasizes the separation of competences for the determination of safety-relevant facts (natural sciences and engineering), and for weighting decisions on the required prevention of damage (state powers). The licensing requirements given in section 7, sub-sec. (2) Atomic Energy Act and their respective relationships are examined in detail. The lines of concretization emanating from section 7, sub-sec. (2), no. 3 Atomic Energy Act are followed up down to the lowest level of legislative powers, and essential deficits in the light of constitutional law are pointed out, together with suggestions for improvement. Within the frame of a constitutional interpretation of section 7, sub-sec. (2), no. 3 Atomic Energy Act, the author analyses the decisions of the Federal Constitutional Court concerning the protective obligations of the state and their validity with regard to future generations, showing that the Federal Constitutional Court applies higher safety standards than those currently used by the administrative bodies. On this basis, the author develops a national, arithmetical average of natural radiation burden to serve as a substantive criterion for determining the borderline between damage prevention and risk to be accepted. (orig./HP)

  7. Systematic Calculations of Total Atomic Binding Energies

    International Nuclear Information System (INIS)

    We have calculated total atomic binding energies of 3- to 91-electron ions of all atoms with Z=3 to 118, in the Dirac-Fock model, for applications to atomic mass determination from highly-charged ions. In this process we have determined the ground-state configuration of many ions for which it was not known. We also provide total electronic correlation including Breit correlation for iso-electronic series of beryllium, neon, magnesium and argon, using the multiconfiguration Dirac-Fock approach.

  8. Bremsstrahlung spectra from atoms and ions at low relativistic energies

    International Nuclear Information System (INIS)

    Analytic expressions for bremsstrahlung spectra from neutral atoms and ions, including the polarizational bremsstrahlung contribution in a stripped atom approximation, are developed for electron scattering at energies of 10-2000 keV. A modified Elwert factor and a simple higher Born correction are used for the Coulomb spectrum, with ordinary bremsstrahlung screening effects in ions and atoms adequately characterized in the non-relativistic Born approximation. In parallel with the development of this analytic description, new numerical results are obtained for ordinary bremsstrahlung from ions and from bare nuclei, appreciably extending the available data set which can be used to study dependences on element, ionicity, energy and the fraction of incident energy radiated. The accuracy of predictions with the analytic expressions is then determined by comparison with the full numerical relativistic partial-wave results for ordinary bremsstrahlung and with non-relativistic numerical results in the Born approximation or in partial waves for the polarizational amplitude. (author)

  9. General engineering ethics and multiple stress of atomic energy engineering

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kunihiko [Shibaura Inst. of Tech., Tokyo (Japan)

    1999-08-01

    The factors, by which the modern engineering ethics has been profoundly affected, were classified to three categories, namely mental blow, the destruction of human function and environment damage. The role of atomic energy engineering in the ethic field has been shown in the first place. It is pointed out that it has brought about the mental blow by the elucidation of universal truth and discipline and the functional disorder by the power supply. However, the direct effect of radiation to the human kinds is only a part of the stresses comparing to the accumulation of the social stress which should be taken into account of by the possibility of disaster and the suspicion of the atomic energy politics. An increase in the multiple stresses as well as the restriction of criticism will place obstacles on the promotion of atomic energy. (author)

  10. General engineering ethics and multiple stress of atomic energy engineering

    International Nuclear Information System (INIS)

    The factors, by which the modern engineering ethics has been profoundly affected, were classified to three categories, namely mental blow, the destruction of human function and environment damage. The role of atomic energy engineering in the ethic field has been shown in the first place. It is pointed out that it has brought about the mental blow by the elucidation of universal truth and discipline and the functional disorder by the power supply. However, the direct effect of radiation to the human kinds is only a part of the stresses comparing to the accumulation of the social stress which should be taken into account of by the possibility of disaster and the suspicion of the atomic energy politics. An increase in the multiple stresses as well as the restriction of criticism will place obstacles on the promotion of atomic energy. (author)

  11. Peaceful uses of atomic energy

    International Nuclear Information System (INIS)

    The IAEA's statutory mandate is to promote all applications of nuclear energy for peaceful purposes. While non-power applications - in agriculture, medicine, industry, etc. - have become widely used and mostly accepted, nuclear power has become more controversial and is facing serious public acceptance problems. Public concern centres on three issues - radioactive wastes, nuclear accidents and the risk of nuclear weapons proliferation. Any discussion of the acceptability or desirability of nuclear power is meaningful only if the alternatives are considered in parallel. The role of nuclear power and other energy sources in electricity generation is discussed and the factors in favour of nuclear energy outlined. Although the Chernobyl accident had strong impact on public opinion in many countries, it has until now had small direct impact on the prospects of nuclear power in the world as a whole. The IAEA's nuclear safety activities and the post-Chernobyl strengthening of international cooperation to minimise nuclear accident consequences are described. The IAEA's safeguards system and its application to Australia's uranium are reviewed. Through this system with its on-site inspections, the IAEA continuously verifies that nuclear materials and nuclear installations submitted to it (some 95% of all fissionable material and of all installations in non-nuclear weapon states) remain in exclusively peaceful use

  12. Israel Atomic Energy Commission 1996 Annual Report

    International Nuclear Information System (INIS)

    , hardness and residual thermal stress. Although this work is of a more basic nature, its applications are already in sight. The third report describes the utilization of passive, dry-air cooling systems for major installations, such as cooling the containment of the Westinghouse AP-600 advanced pressurized water reactor. Good and economic passive dry-air cooling systems would be among the best solutions for containment cooling at inland sites, especially in arid areas. Noninvasive medical diagnostic methods utilizing radioactive materials have been standard far many years. The most common of these relies on using a gamma camera to determine the distribution of injected or ingested radioisotope-labeled compounds in the human body. The 30-year-old camera technology, although vastly improved over the years, is still handicapped by energy and spatial resolution limitations of the detectors, by the size and bulk of the instrument and other technical problems. The need for further development of an improved, more efficient and compact imaging system is clear. Such a system, based on solid-state detectors, is described in the last report. I would like to commend the authors of the selected presentations as well as the entire staff of the Israel Atomic Energy Commission for their valuable contributions and achievements and wish them all further success in their continuing fruitful endeavors

  13. Review and prospects of Atomic Energy Law

    International Nuclear Information System (INIS)

    At the 7th German Symposium on Atomic Energy Law which took place on March 16th, 1983 in Goettingen the Undersecretary of State of the Federal Ministery of the Interior, Dr. Guenter Hartkopf, delivered the opening speech. The speech deals with the conditions set by constitutional law and ethics, improvement of nuclear liability, guide line for incident response, participation of the public in licensing procedures under atomic energy law, necessary measures to prevent damage, the concept of waste management. Also in future the safety of the citizens has absolute priority. (orig./HSCH)

  14. International Atomic Energy Agency activities in decommissioning

    International Nuclear Information System (INIS)

    Full text: The International Atomic Energy Agency (IAEA) has been addressing the safety and technical issues of decommissioning for over 20 years, but their focus has been primarily on planning. Up to know, the activities have been on an ad hoc basis and sometimes, important issues have been missed. A new Action Plan on the Decommissioning of Nuclear Facilities has recently been approved by the Agency's board of Governors which will focus the Agency's efforts and ensure that our Member States' concerns are addressed. The new initiatives associated with this Action Plan will help ensure that decommissioning activities in the future are performed in a safe and coherent manner. The International Atomic Energy Agency (IAEA) has been preparing safety and technical documents concerning decommissioning since the mid-1980's. There have been over 30 documents prepared that provide safety requirements, guidance and supporting technical information. Many of these documents are over 10 years old and need updating. The main focus in the past has been on planning for decommissioning. During the past five years, a set of Safety Standards have been prepared and issued to provide safety requirements and guidance to Member States. However, decommissioning was never a real priority with the Agency, but was something that had to be addressed. To illustrate this point, the first requirements documents on decommissioning were issued as part of a Safety Requirements [1] on pre-disposal management of radioactive waste. It was felt that decommissioning did not deserve its own document because it was just part of the normal waste management process. The focus was mostly on waste management. The Agency has assisted Member States with the planning process for decommissioning. Most of these activities have been focused on nuclear power plants and research reactors. Now, support for the decommissioning of other types of facilities is being requested. The Agency is currently providing technical

  15. Atomic Energy Act and ordinances. 8. ed.

    International Nuclear Information System (INIS)

    The new issue of the text contains the Atomic Energy Act (AtG) in its new wording of the announcement of 31 Oct 76, the new wording of the ordinances put in effect in 1977: Atomic procedure ordinance (AtVfV), radiation protection ordinance (SSU), and atomic financial security ordinance (AtDeckV); furthermore the x-ray ordinance (RoeV) of 1978 in its wording which has been changed by the radiation protection ordinance. Also printed are the cost ordinance (AtKostV) of 1971, the food irradiation ordinance (LebensmBestrV) in the wording of 1975 and the medicine ordinance (ArzneimV) in the wording of 1971. An addition was made by adding to the liability laws the Paris agreement (PUE) on the liability towards third persons in the field of nuclear energy in the wording of the announcement of 5 Feb 76. (orig./HP)

  16. France: the local authorities bank on the renewable energies

    International Nuclear Information System (INIS)

    This paper presents the projects developed in the framework of the energy policy in ten french local authorities. The photovoltaic power, the geothermal energy, the biomass and the wind energy are used. (A.L.B.)

  17. Ghana Atomic Energy Commission: Annual Report 2001

    International Nuclear Information System (INIS)

    This report covers the activities and research progams of the Ghana Atomic Energy Commission for the year 2001. The research programs and associated publications have been grouped under the three main institutes of the Commission namely National Nuclear Research Institute, Radiation Protection Institute and Biotechnology and Nuclear Agricultre Research Institute

  18. Philippine Atomic Energy Commission: Annual report 1983

    International Nuclear Information System (INIS)

    This publication gives the highlights of the research and development projects of the Philippine Atomic Energy Commission in agriculture and food, nuclear fuels and power system technology, medicine, public health and nutrition, environmental surveillance, supportive basic research, social response to nuclear technology, nuclear licensing and safeguards, supportive technology and international and local linkages including manpower development. (ELC)

  19. International Atomic Energy Agency: Highlights of activities

    International Nuclear Information System (INIS)

    This document provides a brief, well-illustrated summary of the activities of the International Atomic Energy Agency in the months up to September 1992. Especially mentioned are the programmes to enhance the safety of nuclear power, from the study of nuclear reactors to assessing the radiological consequences of reactor accidents, and the areas of non-proliferation and safeguards

  20. International Atomic Energy Agency. Highlights of activities

    International Nuclear Information System (INIS)

    This document provides a brief, well-illustrated summary of the activities of the International Atomic Energy Agency in the months up to September 1991. Especially mentioned are the programmes to enhance the safety of nuclear power, from the study of nuclear reactors to assessing the radiological consequences of reactor accidents, and the areas of non-proliferation and safeguards

  1. Danish Atomic Energy Commission 1974/75

    International Nuclear Information System (INIS)

    Activities of the Danish Atomic Energy Commission and the Risoe eesearch Establishment for the period April1, 1974 to March 31, 1975 are summarized. The operations of the various facilities at the Research Establishment are revised. Operating staff levels and financial data are tabulated, a selected list of staff publications is given, and the design data on research facilities are presented. (B.P.)

  2. Atomic Energy Act with ordinances. 16. ed.

    International Nuclear Information System (INIS)

    The convenient edition contains the entire body of German atomic energy and radiation protection laws in their updated version as of June 1992. Thus it also takes the amendments of the Atomic Energy Act (Article 22 Paragraph 1 Sentence 1 and Paragraph 3 as well as Article 46 Paragraph 3 Atomic Energy Act) into account on the basis of the Law on the Establishment of a Federal Export Office from February 28, 1992 (Code of Federal Laws I, pp. 376 ff). As a result of this law, which became effective as of April 1, 1992, within the scope of business of the Federal Ministry for Economic Affairs, a federal export office was established which was endowed with the status of a federal agency. This office is in charge of administrative and supervisory tasks on the federal level. Within the framework of the atomic energy law this agency is in charge of export and import permits as well as the supervision of the export and import of nuclear fuel and other radioactive materials. (orig./HP)

  3. Viet Nam National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Vietnam National Atomic Energy Commission (VINATOM) is a governmental body in charge of organizing and coordinating activities related to use of nuclear energy for peaceful purpose. VINATOM in structure consists of the Nuclear Research Institute (Dalat), the Institute of Nuclear Science and Technology (Hanoi), the Institute for Technology of Radioactive and Rare Elements (Hanoi), and the Centre for Nuclear Technique Application (Ho Chi Minh City). This catalogue introduces profiles of nuclear R and D activities under management by VINATOM. (N.H.A)

  4. Philippine Atomic Energy Commission: Annual report 1982

    International Nuclear Information System (INIS)

    This publication enumerates the research and development activities of the Philippine Atomic Energy Commission with priorities geared towards achieving the economic and social upliftment of the Filipinos in the field of agriculture, energy, industry, health and environment. Highlights are summaries of investigations and studies of great importance in crop improvement, animal production, nuclear fuels, nutrition research, not to mention its supportive technology, technical services, nuclear information and public acceptance, and nuclear manpower development. (RTD)

  5. Cooperation in research in the European Atomic Energy Community (EURATOM)

    International Nuclear Information System (INIS)

    This work studies the legal instruments for cooperative research granted to Euratom under the Treaty establishing the European Atomic Energy Community, and the conditions whereby concrete use was made of these instruments. This assessment of Euratom's efforts to launch a community nuclear industry is accompanied by an analysis of the respective roles of the bodies of the Community, the Council and the Commission, as well as of the circumstances which, according to the author, have led to a paralysis of this institution. (NEA)

  6. Independence of regulator authority of energy market

    International Nuclear Information System (INIS)

    From the 90's the European directives on energy markets have devoted increasing attention to the institution of national independent regulators. This paper aims at underlying the influence that the European law has on the design of national regulators and in particular on the importance and the meaning of their independence. Short reference will be made to the Italian experience as well.

  7. High energy neutral atoms from high intensity laser plasma interaction

    International Nuclear Information System (INIS)

    Interaction of a high intensity laser with solid targets leads to acceleration of ions from the surface of the target. Ion acceleration is governed by electron dynamics at the target vacuum interface setting up a charge separation. This electron cloud near the target interface can also provide a neutralizing background for ions that have been accelerated. The accelerated ions are thus detected as a high energy neutral atom on a detector. Further, due to the inherent contrast profile of high intensity lasers a pre-plasma is almost always formed and neutral atoms can be detected. The ion and neutral atom energies are measured by a Thomson parabola spectrometer coupled with a 'time of flight' measurement. The neutral atom energies are obtained from the time of flight. The TIFR 20TW laser with an intensity contrast 10-5 was used to carry out the experiment. Defocusing the target led to a 2 fold increase in the neutral atom yield suggesting the role of the pre-plasma. Using a high contrast laser we attempt to tune the recombination dynamics for efficient neutralization of ions by using a controlled pre-plasma. (author)

  8. Probing Dark Energy with Atom Interferometry

    CERN Document Server

    Burrage, Clare; Hinds, E A

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  9. Local energy equation for two-electron atoms and relation between kinetic energy and electron densities

    International Nuclear Information System (INIS)

    In early work, Dawson and March [J. Chem. Phys. 81, 5850 (1984)] proposed a local energy method for treating both Hartree-Fock and correlated electron theory. Here, an exactly solvable model two-electron atom with pure harmonic interactions is treated in its ground state in the above context. A functional relation between the kinetic energy density t(r) at the origin r=0 and the electron density p(r) at the same point then emerges. The same approach is applied to the Hookean atom; in which the two electrons repel with Coulombic energy e2/r12, with r12 the interelectronic separation, but are still harmonically confined. Again the kinetic energy density t(r) is the focal point, but now generalization away from r=0 is also effected. Finally, brief comments are added about He-like atomic ions in the limit of large atomic number. (author)

  10. Atomic energy and science disclosure in Cordoba

    International Nuclear Information System (INIS)

    In September 2009, considering the existing interest in public communication of scientific activities that are developed locally, a group of researchers and communicators from Córdoba, decided to form the Network of Outreach of Córdoba. Its stated objectives of the Constitutive Act are presented in this paper along with the main activities undertaken to date and plans for the future. Since that time, the Management of Institutional Relations of the CNEA in Córdoba became involved in public circulation of scientific knowledge, in what has proven to be a framework that ensures an adequate level of debate to present nuclear national activities. This will involve collaborative efforts with professional institutions involved in research, teaching and communicating science. The main objective was to encourage the transfer of knowledge to optimize available resources, improving the methodological approaches and generating creative products tailored to regional needs, in order to promote the democratization of science and nuclear technology. This paper consists of two parts. On the one hand describes the activities of the Network during the year 2011 shows results with particular emphasis on topics related to atomic energy, and secondly, shows the desirability of promoting such activities in the CNEA. Among the main actions considered, highlighting the institutional participation in the official Ministry of Science and Technology Fair participation in Science and Technology Provincial Cordoba 2011, issue of the radio program 'Green Light: Science and technology everyday life' by National Technological University Radio and a network of forty provincial stations, and active participation in the Course of Specialization in Public Communication of Science and Scientific Journalism, organized by the School of Information Sciences and the Faculty of Mathematics, Physics and Astronomy, National University of Cordoba, among others. (author)

  11. German Atomic Energy Act turns fifty

    International Nuclear Information System (INIS)

    The German Atomic Energy Act entered into force on January 1, 1960. It turns fifty at the beginning of 2010. Is this a reason to celebrate or rather the opposite? Lawyers, in principle, can view old pieces of legislation from 2 perspectives: On the one hand, aged laws are treated in a spirit of veneration and are celebrated as proven. On the other hand, an anniversary of this kind can be a welcome reason for demands to abolish or, at least, fundamentally renew that law. Over the past half century, the German Atomic Energy Act went through stormy and varied phases both of a legal and a political character. Its 50th anniversary is likely to spark off very conflicting evaluations as well. A review of legal history shows that the German or, rather, the Federal German Atomic Energy Act (AtG) was not a first-of-its-kind piece of legislation but stemmed from the 1957 EURATOM Treaty, in a way representing a latecomer of that treaty. The Atomic Energy Act experienced a number of important developments throughout its history: - In 1975, compulsory licensing of fuel element factories was introduced. - The back end of the fuel cycle, especially final storage, were incorporated in the Atomic Energy Act comprehensively first in 1976. - In 1985, legislators decided in favor of unlimited nuclear liability. - In 1994 and 1998, only some innovations in special items were introduced under the headings of environmental impact assessment and suitability for repository storage because the controversy about nuclear power did not permit a fundamental alignment towards a more comprehensive modern safety law. - The decision to opt out of the peaceful uses of nuclear power in 2002 drew the final line so far of decisions about directions of nuclear law in a major amendment. In parallel, the decisions by the Federal Constitutional Court and the Federal Administrative Court in the late 1970s and, above all, the 1980s provided important assistance which has remained valid to this day. What is

  12. Estimate of atomic nuclear energy related expenses

    International Nuclear Information System (INIS)

    When the increases in world population and energy consumption, limited natural sources, environmental problems on the earth as well as the trends of international society were taken into consideration and the global society in the 21st century was surveyed, it is thought important to steadily progress the development of nuclear energy. Based on these aspects, the nuclear energy development of Japan in 1996 was designed aiming at stable secure of energy and qualitative rising of the standard of life and improvement of welfare in human society on the conditions of sticking to peaceful use and safety secure. The fundamental policies were confirmed as follows: 1) development of nuclear energy policies. 2) establishment of an integrated system for light water reactor typed nuclear power generation. 3) development of recycling system of nuclear fuel. 4) development of atomic energy technology and enforcement of its basic research. Based on these principles, the expenses necessary to perform the above policies were estimated to be ca. 5000 x 108 yen in total. The expenses for major facilities concerned were as follows; Japan Atomic Energy Research Institute 1280 x 108 yen, Power Reactor and Nuclear Fuel Development Corporation 2384 x 108 yen, National Institute of Radiological Science 171 x 108 yen, National Facilities for Developmental Scientific Research 24 x 108 yen and Institute of Physical and Chemical Research 126 x 108 yen. (M.N.)

  13. Current trend of atomic energy development in Japan - 2

    International Nuclear Information System (INIS)

    The atomic energy power generation is recognized to be important to solve the problems of the competitive relations among the Asian developing countries due to the increasing dependency on the crude oil produced in the Middle East and the insecurity of transport route of the oil. The reorganization and inauguration of JNC(former PNC) has been carried out for the development of liquid metal reactor and related fuel cycle technology as the national development project to prevent the global green house effect and to continue the economic development. The construction of light water reactor, the utilization of plutonium in light water reactor and the enrichment and reprocessing of spent fuel of light water reactor are classified as proven technologies which will be covered by the industry. The government will lead to the environment favorable for introduction of the atomic energy and will monitor the situation. The specifics of atomic energy development project and the development system for the 21th century will be contained in the long term atomic energy development plan which will be completed by 2000 and the reorganization operation has been initiated. (author). 41 refs., 5 tabs., 30 figs

  14. On the energy of electric field in hydrogen atom

    OpenAIRE

    Kornyushin, Yuri

    2009-01-01

    It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

  15. Atoms

    International Nuclear Information System (INIS)

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  16. Atomic Mass and Nuclear Binding Energy for Fe-52 (Iron)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fe-52 (Iron, atomic number Z = 26, mass number A = 52).

  17. Atomic Mass and Nuclear Binding Energy for Sr-71 (Strontium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sr-71 (Strontium, atomic number Z = 38, mass number A = 71).

  18. Using atom interferometry to detect dark energy

    Science.gov (United States)

    Burrage, Clare; Copeland, Edmund J.

    2016-04-01

    We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the universe on giga-parsec scales may be found through metre scale laboratory-based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints, these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the chameleon field - this has already been used to rule out large regions of the chameleon parameter space and maybe one day will be able to detect the force due to the dark energy field in the laboratory.

  19. Bill project authorizing the ratification of association agreement between the European Union and the European Atomic Energy Community and their member states, on the one hand, and Georgia, on the other hand. (accelerated procedure). Nr 2791

    International Nuclear Information System (INIS)

    This bill project mainly contains the text of the association agreement between the EU and Euratom on the one hand, and Georgia on the other hand. This agreement contains a statement of objectives, a presentation of general principles, of issues of cooperation in the field of foreign policy and security, of issues related to freedom, security and justice, of issues related to trade and associated issues, to economic cooperation, to cooperation in other fields (transports, energy, environment, climate, industrial policy, and so on), to financial support and fraud prevention. Numerous appendices are related to these different topics

  20. Basic law of atomic energy for pacific uses

    International Nuclear Information System (INIS)

    This law comprehend information about the pacific uses of atomic energy. Likewise it creates the Commission of Atomic Energy and stipulates: it s organization and functions, regulations and licensures, responsibilities, income and patrimony. (SGB)

  1. Design of an alpha-particle counting system at a defined solid angle at Turkish atomic energy authority-Sarayköy nuclear research and training center (TAEK-SANAEM)

    Science.gov (United States)

    Seferinoğlu, Meryem; Yeltepe, Emin

    2015-12-01

    The design details of an alpha-particle counting set-up at a defined solid angle (ACS-DSA) constructed in Radionuclide Metrology Department at TAEK-SANAEM for use in the primary standardization of radioactive solutions and determination of nuclear decay data of alpha-particle emitters is presented. The counting system is designed such that the solid angle is very well-defined and directly traceable to the national standards. The design involves mechanical construction of different parts like the source chamber, various coaxial flanges, and circular diaphragms in front of the passivated implanted planar silicon (PIPS®) detector, distance tubes, a digital caliper and a sliding piston to allow for different measurement configurations. All geometric configurations are easily changeable and characterisable with high accuracy which facilitates the solid angle calculation. A mixed alpha source was counted to check performance of assembled ACS-DSA system and good energy resolution and low peak tailing in the alpha energy spectrum was observed for small diaphragm apertures and far source-to-detector geometries.

  2. White paper on atomic energy in 2004

    International Nuclear Information System (INIS)

    Since the publication of its last White Paper on Nuclear Energy in 2003, the Atomic Energy Commission of Japan (AEC) summarized trends covering all aspects of nuclear energy over the period up to December 2004. This paper is comprised of a main document and supplementary materials. The first chapter of the main document summarizes the current activities toward national and international understanding and trust promotion of nuclear energy divided along the topics of 'Restoring trust', 'Structuring trust toward new enterprise implementation', 'Establishment of understanding and trust of international society', 'AEC's activities toward creation of new Long-Term Program', and 'Establishment of future understanding and trust. 'The second chapter summarized recent trends of national and private activities based on the Long-Term Program created in November 2000, covering the topics 'Nuclear Energy Policy in Japan', 'Harmony between People, Society and Nuclear Energy', 'Nuclear Power Generation and the Nuclear Fuel Cycle', 'Diversified Development of Nuclear Science and Technology', 'Utilization of Radiation Contributing to People's Lives', 'Harmony between International Society and Nuclear Energy', and 'Foundation to Promote Research, Development and Utilization of Nuclear Energy'. The supplementary materials include lists of AEC decisions, nuclear energy budgets, year-by-year data tables, and other such similar materials. (T. Tanaka)

  3. Using Atom Interferometry to Detect Dark Energy

    CERN Document Server

    Burrage, Clare

    2015-01-01

    We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the Universe on giga-parsec scales may be found through metre scale laboratory based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the ...

  4. The concept of installation, precautionary measures against accidents, and action by stages in atomic energy law

    International Nuclear Information System (INIS)

    The Federal Administrative Court's decision of December 19, 1985, on the Wyhl-reactor was of fundamental importance for the atomic energy law. This holds especially the definition of 'installation' according to The Atomic Energy Act, the precautionary measures against damages and the guidelines implementing the administrative rules, which are binding for the courts. Besides, the author examines the responsibility of the administration for the assessment of risks, the protection of third parties and the prodecure by steps in atomic energy law. In the author's opinion, the decision in the first place serves to strengthen legal security, but also raises new questions. (orig./HSCH)

  5. The licensing procedure under Atomic Energy Law

    International Nuclear Information System (INIS)

    This post-doctoral thesis of 1981 has been updated to include developments in this field up to the year 1983. The author discusses in detail all questions relating to the peaceful uses of nuclear energy in the Federal Republic of Germany, predominantly from the point of view of administrative law. He investigates nuclear energy and its contribution to electricity supplies with a view to other energy sources, renewable energy sources, alternative energy policies, nuclear fuel and the fuel cycle, development of the nuclear industry, nuclear power stations in operation, under construction, or in development. Following a survey of the nuclear controversy, both on the national and the international level, the author reviews the legal system and arising controversies in the Federal Republic of Germany, defining the purpose of this thesis to be the systematic analysis of the available legal instruments, in order to show structural deficiencies in the planning law relating to nuclear power stations, and thus reasons of ambiguities within the licensing procedure. The author studies the following terms and requirements: licensing requirements and licensability, the licensing method and scenario, the legal character of licences, their contents and effects within the stepwise procedure, and due publication. (HSCH)

  6. Self-energy corrections in muonic atoms

    International Nuclear Information System (INIS)

    Numerical values of the Bethe logarithm for the 1s, 2s, 2p and 3p states in muonic atoms have been computed by assuming a uniform nuclear charge distribution of radius r0=1.2Asup(1/3)fm. The accuracy of the results has been checked against several sum rules obeyed by the oscillator strengths. The possible relevance of these results for more realistic models of the charge distribution is also discussed, and the lowest-order Lamb shift correction to muonic energy levels is reexamined

  7. Atomic energy wants new personality. An essay of education and personality in atomic energy

    International Nuclear Information System (INIS)

    New personality in atomic energy consists of personification of independence, democracy and publication. They are able to create new technologies and new plants with safety and maintenance. The technical experts and all the parties concerned have to explain the situation and the conditions of atomic energy in order to justify the people's trust in them. Only good personality with morals can obtain the confidence of the nation. It is important for new technical experts and all the parties concerned to receive an education related to sociality. (S.Y.)

  8. Atomic energy as an humane endeavor: Retrospective on its development

    International Nuclear Information System (INIS)

    This report is a speech delivered in Tokyo, Japan, by the author. It covers the historical aspects of atomic energy, from the pre-fission days until present. Such pioneer experiments conducted by O. Hahn, L. Meitner, and F. Strassmann to describe barium isotopes as the result of bombardment of uranium with neutrons are discussed. The author also discussed in detail the pre-war nuclear research at Berkeley, a leading center of nuclear research. Such important events as the synthesis and identification of cobalt-60, iodine-131, and technetium-99m are also discussed. The author discussed the nuclear power as a source of electricity and the perspective on the future of nuclear power. 32 refs., 19 figs., 5 tabs

  9. The International Atomic Energy Agency: Structure, organs, and practice

    International Nuclear Information System (INIS)

    As a special organization of the UN system the International Atomic Energy Agency (IAEA) bears world-wide responsibility for the promotion of peaceful uses of nuclear power as well as for the control of preventing its misuse for non-peaceful purposes. Based on this fundamental objective of the IAEA a survey of structure, organs and practice of the Agency is given. Particularly, those special programmes are detailed which are of importance to the use of nuclear power for energy generation, and those contributions of the IAEA are concerned which it has to make as the international control authority to prevent the proliferation of nuclear weapons. In conclusions, the future activities of the IAEA and the cooperation of the GDR with the IAEA are dealt with. (author)

  10. Local authorities in the context of energy and climate policy

    International Nuclear Information System (INIS)

    Several measures to boost the energy system towards a low-carbon future can be planned and implemented by local authorities, such as energy-saving initiatives in public buildings and lighting, information campaigns, and renewable energy pilot projects. This work analyzes the public administration's role in energy and climate policies by assessing carbon-lowering measures for properties and services managed directly by local governments in central Italy. Both short- and long-term schemes were considered in the analysis of local authority energy strategies. The MARKAL-TIMES energy model was applied to long-term energy planning to assess the effect of low-carbon initiatives on public-sector energy consumption up to 2030. Two energy scenarios were built, i.e. a Business As Usual (BAU) scenario based on current or soon-to-be-adopted national policies, and an Exemplary Public Scenario (EPS) including some further virtuous local policies suggested by local authorities. Our results show that a 20% primary energy reduction can be achieved with respect to the baseline year by means of short-term energy policies (5-year time span), while a primary energy saving of about 30% can be reached with longer-term energy policies (25-year time span), even after taking the increase in energy demand into account. This work goes to show the part that local governments can play in energy policy and their contribution to the achievement of climate goals. - Highlights: ► Assessment of Local Administration (LA) role in energy and climate policy. ► Analysis of both short-term and long-term carbon lowering measures. ► Use of MARKAL-TIMES model generator for long-term energy analysis. ► 20% primary energy reduction can be reached with short-term energy policies. ► 30% primary energy reduction can be reached with longer-term energy policies.

  11. The industrial development of atomic energy

    International Nuclear Information System (INIS)

    Countries with large stock of fissile material and producing large quantity of nuclear pure 235U and 239Pu are able to allocate part of the stock to non military research. For countries with low stock of fissile material, all the stock is allocated to military research. An economical and technical solution has to be find to dedicate a part of fissile material to non military research and develop the atomic energy industry. It stated the industrial and economical problems and in particular the choice between the use of enriched fuel with high refining cost or depleted fuel with low production cost. It discusses of four possible utilizations of the natural resources: reactors functioning with pure fissile material (235U or 239Pu) or concentrated material (235U mixed with small quantities of 238U after an incomplete isotopic separation), breeder reactors functioning with enriched material mixed with 238U or Thorium placed in an appropriate spatial distribution to allow neutrons beam to activate 238U or Thorium with the regeneration of fissile material in 239Pu, reactors using natural uranium or low enriched uranium can also produce Plutonium with less efficiency than breeder reactors and the last solution being the use of natural uranium with the only scope of energy production and no production of secondary fissile material. The first class using pure fissile material has a low energy efficiency and is used only by large fissile material stock countries to accumulate energy in small size fuel for nuclear engines researches for submarines and warships. The advantage of the second class of reactors, breeder reactors, is that they produce energy and plutonium. Two type of breeder reactor are considered: breeder reactor using pure fissile material and 238U or breeder reactor using the promising mixture of pure fissile material and Thorium. Different projects are in phase of development in United States, England and Scotland. The third class of reactor using natural

  12. European atomic energy law. Nuclear energy laws. 2. ed.

    International Nuclear Information System (INIS)

    The present re-edition closes a gap that had existed in particular in the German literature on European atomic energy law. This field of law is becoming more and more important through the introduction of new directives and regulations. The textbook starts with a discussion of the principles and international regulations of European atomic energy law. Forming its core is a presentation of the Euratom Treaty with all its regulations, directives, and decisions taken by the European Commission and the European Court of Justice. Since the Fukushima disaster, and as a result of the still ongoing renaissance of nuclear energy in many countries outside of Europe, a substantial demand has grown for information on international and specifically European nuclear energy law.

  13. Constitutionality of the Atomic Energy Act

    International Nuclear Information System (INIS)

    Roma locuta, causa finita. The Federal Constitutional Court declared in its decree of 8 August 1978 the peaceful uses of nuclear energy (Paragraph 7 sub-section 1 and 2 Atomic Energy Act) in NPPs of the so-called fast breeder type as constitutional for the time being. The excellent simplicity of the explanations, namely about the anavoidability and social adequancy of the so-called residual risk in a highly technical society and about the determining influence of practical ratio as a measure for the estimation of the residual risk which must be born by all citizens, creates a good clarification on the level of constitutional law. However, it remains, to be seen whether the decree can give the administrative courts any orientation help in the future and whether it will lead to an improved legal protection of all participants and a more effective handling of administrative processes. (orig.)

  14. Ninth German symposium on atomic energy law

    International Nuclear Information System (INIS)

    The symposium dealt with the forthcoming amendment to the Atomic Energy Law. There was an introductory presentation of the plans of the Federal Government for the amendment the aims attached to the amendment as seen by the Social Democratic Party and the revival of the nuclear option. The topics of the five work sessions were: questions concerning constitutional law - Laender administration on behalf of the Federal Government - subordinate legislation in the system of energy law; legislation on liability; financial security financing of decommissioning; licensing, supervision, retrofitting; waste disposal, ultimate waste disposal, fuel cycle. All lectures held in the work sessions and the reports on the discussions following them are included. Finally the amendment project was considered from the technological point of view and a resume was drawn. All 22 lectures have been seperately prepared for retrieval from the database. (HSCH)

  15. Proceedings of the twentieth symposium of atomic energy research

    International Nuclear Information System (INIS)

    The present volume contains 69 papers, presented on the twentieth symposium of atomic energy research, held in Hanasaari, Espoo, Finland, 20-24 September 2010. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation - according to the presentation sequence on the Symposium. (Author)

  16. Proceedings of the eleventh Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 57 papers, presented on the eleventh Symposium of Atomic Energy Research, held in Csopak, Hungary, 24-28 September 2001. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Improvement of Neutron Physical Codes and Methods, Reactor Kinetics and Dynamics, Thermal-Hydraulics, Spent Fuel - Criticality Radiation, Fuel Behaviour, Spent Fuel Transmutation, Evaluation of Reactor Physical Measurements, Core Design-Core Calculations-according to the presentation sequence on the Symposium (Author)

  17. Proceedings of the 16. Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 56 papers, presented on the sixteenth Symposium of Atomic Energy Research, held in Bratislava, Slovakia, 25-29 September 2006. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation, Core Operation Experiments and Code Validation, Fuel Management, Core Surveillance and Monitoring, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning, and Radwaste, Actinide Transmutation and Spent Fuel Disposal - according to the presentation sequence on the Symposium (Author)

  18. Enthalpies of formation and atomization energies of rare earth halides

    International Nuclear Information System (INIS)

    On the basis of experimentally determined atomization energies and formation enthalpies of gaseous rare earth chlorides and theoretical insights of quantum-chemical model ''atom in a molecule'' the analysis of the known literature data on formation enthalpies and atomization energies for lanthanide fluorides, bromides and iodides has been carried out and their values are assessed for unexplored molecules

  19. Energy management in seaports: A new role for port authorities

    International Nuclear Information System (INIS)

    Ports are characterised by the geographical concentration of high–energy demand and supply activities, because of their proximity to power generation facilities and metropolitan regions, and their functions as central hubs in the transport of raw materials. In the last decades the need to better understand and monitor energy-related activities taking place near or within the port has become more apparent as a consequence of the growing relevance of energy trades, public environmental awareness and a bigger industry focus on energy efficiency. The uptake in the port sector of innovative technologies, such as onshore power supply, or alternative fuels, such as LNG, and the increasing development of renewable energy installations in port areas, also calls for more attention to energy matters within port management. So far, however, few port authorities have actively pursued energy management strategies. The necessity for port authorities to actively manage their energy flows stems from their efforts to plan, coordinate and facilitate the development of economic activities within the port, and as a consequence of the heavier weight that sustainability is given within the port management strategies. Through the analysis of the experiences of two European ports, Hamburg and Genoa, that have already attempted to coordinate and rationalise their energy needs, this paper will argue that for the ports of the future active energy management can offer substantial efficiency gains, can contribute to the development of new alternative revenue sources and in the end, improve the competitive position of the port. - Highlights: • Port authorities are required to engage in energy management in order to diversify and respond to environmental pressure. • Energy management in ports has not been investigated sufficiently and offers opportunities for cost savings. • Port authorities can promote energy management by coordinating power generation, energy use and the uptake of

  20. EPA (Environmental Protection Agency) and state authority over DOE (Department of Energy) groundwater radionuclides

    International Nuclear Information System (INIS)

    This paper summarizes the extent of US Environmental Protection Agency (EPA) and State authority to regulate radionuclides in the groundwater beneath US Department of Energy (DOE) facilities. Radioactively contaminated groundwater is a potential problem for many DOE facilities, but the EPA and the States must establish legal authority before requiring remedial action or regulating discharges. While regulatory authority with respect to nonradioactive constituents has been clearly established, the same is not true for radioactive constituents. The question of facility radionuclide regulation entails issues such as sovereign immunity, Atomic Energy Act authority, the definition of federally permitted release, and the general lack of a Federal groundwater protection program. This paper addresses these issues through a review of statutes, court opinions, Congressional activities, EPA and State authority (for each state having a DOE operations office within its jurisdiction), and DOE field office experience. Experience at the DOE Savannah River Operations Office, Aiken, South Carolina, is highlighted

  1. Atomic Structure of Benzene Which Accounts for Resonance Energy

    OpenAIRE

    Heyrovska, Raji

    2008-01-01

    Benzene is a hexagonal molecule of six carbon atoms, each of which is bound to six hydrogen atoms. The equality of all six CC bond lengths, despite the alternating double and single bonds, and the surplus (resonance) energy, led to the suggestion of two resonanting structures. Here, the new atomic structure shows that the bond length equality is due to three carbon atoms with double bond radii bound to three other carbon atoms with resonance bond radii (as in graphene). Consequently, there ar...

  2. Summary of the law relating to atomic energy and radioactive substances

    International Nuclear Information System (INIS)

    The law relating to atomic energy and radioactive substances in the United Kingdom is summarized under the following headings: the Common Law; legislation (Atomic Energy Act 1946; Radioactive Substances Acts 1948 and 1960; Electricity (Amendment) Act 1961; Nuclear Installations Act 1965 and 1969 (and subordinate legislation); Secretary of State for Trade and Industry Order 1970; Radiological Protection Act 1970 (as amended); Air Navigation (Restriction of Flying)(Atomic Energy Establishments) Regulations 1981; Nuclear Safeguards and Electricity (Finance) Act 1978; legislation relating to the UK Atomic Energy Authority); Regulations under the Factories Act 1961; Regulations relating to educational establishments; Regulations and Orders relating to food and medicines; Regulations, etc., affecting the transport of radioactive materials; Regulations under the Social Security Act 1975; control of import and export; the Euratom Treaty; important non-statutory Codes of Practice, etc.; international conventions, etc., relating to the peaceful use of atomic energy and radioactive substances, in which the United Kingdom is interested; foreign legislation. (U.K.)

  3. Adiabatic principles in atom-diatom collisional energy transfer

    International Nuclear Information System (INIS)

    This work describes the application of numerical methods to the solution of the time dependent Schroedinger equation for non-reactive atom-diatom collisions in which only one of the degrees of freedom has been removed. The basic method involves expanding the wave function in a basis set in two of the diatomic coordinates in a body-fixed frame (with respect to the triatomic complex) and defining the coefficients in that expansion as functions on a grid in the collision coordinate. The wave function is then propagated in time using a split operator method. The bulk of this work is devoted to the application of this formalism to the study of internal rotational predissociation in NeHF, in which quasibound states of the triatom predissociate through the transfer of energy from rotation of the diatom into translational energy in the atom-diatom separation coordinate. The author analyzes the computed time dependent wave functions to calculate the lifetimes for several quasibound states; these are in agreement with time independent quantum calculations using the same potential. Moreover, the time dependent behavior of the wave functions themselves sheds light on the dynamics of the predissociation processes. Finally, the partial cross sections of the products in those processes is determined with multiple exit channels. These show strong selectivity in the orbital angular momentum of the outgoing fragments, which the author explains with an adiabatic channel interpretation of the wave function's dynamics. The author also suggests that the same formalism might profitably be used to investigate the quantum dynamics of open-quotes quasiresonant vibration-rotation transferclose quotes, in which remarkably strong propensity rules in certain inelastic atom-diatom collision arise from classical adiabatic invariance theory

  4. Decree no. 2005-79 from January 26, 2005, authorizing the Atomic Energy Commission to proceed to the definitive shutdown and dismantling operations of the nuclear facility no.21, named Siloette research reactor, in the Grenoble city territory (Isere); Decret no. 2005-79 du 26 janvier 2005, autorisant le Commissariat a l'Energie Atomique a proceder aux operations de mise a l'arret definitif et de demantelement de l'installation nucleaire de base no.21 denommee reacteur de recherche Siloette sur le territoire de la commune de Grenoble (Isere)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-15

    On May 26, 2003, the French atomic energy commission (CEA) addressed an authorization demand for the definitive shutdown and dismantling of the Siloette research reactor. After a technical and administrative instruction of this demand by the French nuclear safety authority (ASN), a project of decree has been presented on July 6, 2004 at the permanent section of the inter-ministry commission of basic nuclear facilities. The commission gave its favourable judgment which is the object of this decree. (J.S.)

  5. Decree no. 2005-78 from January 26, 2005, authorizing the Atomic Energy Commission to proceed to the definitive shutdown and dismantling operations of the nuclear facility no.20, named Siloe reactor, in the Grenoble city territory (Isere); Decret no. 2005-78 du 26 janvier 2005, autorisant le Commissariat a l'energie atomique a proceder aux operations de mise a l'arret definitif et de demantelement de l'installation nucleaire de base no.20 denommee reacteur Siloe sur le territoire de la commune de Grenoble (Isere)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-15

    On March 19, 2003, the French atomic energy commission (CEA) addressed an authorization demand for the definitive shutdown and dismantling of the Siloe reactor. After a technical and administrative instruction of this demand by the French nuclear safety authority (ASN), a project of decree has been presented on July 6, 2004 at the permanent section of the inter-ministry commission of basic nuclear facilities. The commission gave its favourable judgment which is the object of this decree. (J.S.)

  6. Atomic Mass and Nuclear Binding Energy for Bh-318 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-318 (Bohrium, atomic number Z = 107, mass number A = 318).

  7. Atomic Mass and Nuclear Binding Energy for Bh-356 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-356 (Bohrium, atomic number Z = 107, mass number A = 356).

  8. Atomic Mass and Nuclear Binding Energy for Bh-322 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-322 (Bohrium, atomic number Z = 107, mass number A = 322).

  9. Atomic Mass and Nuclear Binding Energy for Bh-351 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-351 (Bohrium, atomic number Z = 107, mass number A = 351).

  10. Atomic Mass and Nuclear Binding Energy for Bh-310 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-310 (Bohrium, atomic number Z = 107, mass number A = 310).

  11. Atomic Mass and Nuclear Binding Energy for Bh-336 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-336 (Bohrium, atomic number Z = 107, mass number A = 336).

  12. Atomic Mass and Nuclear Binding Energy for Bh-299 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-299 (Bohrium, atomic number Z = 107, mass number A = 299).

  13. Atomic Mass and Nuclear Binding Energy for Bh-288 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-288 (Bohrium, atomic number Z = 107, mass number A = 288).

  14. Atomic Mass and Nuclear Binding Energy for Bh-359 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-359 (Bohrium, atomic number Z = 107, mass number A = 359).

  15. Atomic Mass and Nuclear Binding Energy for Bh-343 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-343 (Bohrium, atomic number Z = 107, mass number A = 343).

  16. Atomic Mass and Nuclear Binding Energy for Bh-304 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-304 (Bohrium, atomic number Z = 107, mass number A = 304).

  17. Atomic Mass and Nuclear Binding Energy for Bh-280 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-280 (Bohrium, atomic number Z = 107, mass number A = 280).

  18. Atomic Mass and Nuclear Binding Energy for Bh-349 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-349 (Bohrium, atomic number Z = 107, mass number A = 349).

  19. Atomic Mass and Nuclear Binding Energy for Bh-325 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-325 (Bohrium, atomic number Z = 107, mass number A = 325).

  20. Atomic Mass and Nuclear Binding Energy for Bh-332 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-332 (Bohrium, atomic number Z = 107, mass number A = 332).

  1. Atomic Mass and Nuclear Binding Energy for Bh-306 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-306 (Bohrium, atomic number Z = 107, mass number A = 306).

  2. Atomic Mass and Nuclear Binding Energy for Bh-324 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-324 (Bohrium, atomic number Z = 107, mass number A = 324).

  3. Atomic Mass and Nuclear Binding Energy for Bh-293 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-293 (Bohrium, atomic number Z = 107, mass number A = 293).

  4. Atomic Mass and Nuclear Binding Energy for Bh-327 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-327 (Bohrium, atomic number Z = 107, mass number A = 327).

  5. Atomic Mass and Nuclear Binding Energy for Bh-350 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-350 (Bohrium, atomic number Z = 107, mass number A = 350).

  6. Atomic Mass and Nuclear Binding Energy for Bh-308 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-308 (Bohrium, atomic number Z = 107, mass number A = 308).

  7. Atomic Mass and Nuclear Binding Energy for Bh-358 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-358 (Bohrium, atomic number Z = 107, mass number A = 358).

  8. Atomic Mass and Nuclear Binding Energy for Bh-321 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-321 (Bohrium, atomic number Z = 107, mass number A = 321).

  9. Atomic Mass and Nuclear Binding Energy for Bh-345 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-345 (Bohrium, atomic number Z = 107, mass number A = 345).

  10. Atomic Mass and Nuclear Binding Energy for Bh-286 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-286 (Bohrium, atomic number Z = 107, mass number A = 286).

  11. Atomic Mass and Nuclear Binding Energy for Bh-307 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-307 (Bohrium, atomic number Z = 107, mass number A = 307).

  12. Atomic Mass and Nuclear Binding Energy for Bh-303 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-303 (Bohrium, atomic number Z = 107, mass number A = 303).

  13. Atomic Mass and Nuclear Binding Energy for Bh-312 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-312 (Bohrium, atomic number Z = 107, mass number A = 312).

  14. Atomic Mass and Nuclear Binding Energy for Bh-294 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-294 (Bohrium, atomic number Z = 107, mass number A = 294).

  15. Atomic Mass and Nuclear Binding Energy for Bh-326 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-326 (Bohrium, atomic number Z = 107, mass number A = 326).

  16. Atomic Mass and Nuclear Binding Energy for Bh-273 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-273 (Bohrium, atomic number Z = 107, mass number A = 273).

  17. Atomic Mass and Nuclear Binding Energy for Bh-284 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-284 (Bohrium, atomic number Z = 107, mass number A = 284).

  18. Atomic Mass and Nuclear Binding Energy for Bh-315 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-315 (Bohrium, atomic number Z = 107, mass number A = 315).

  19. Atomic Mass and Nuclear Binding Energy for Bh-328 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-328 (Bohrium, atomic number Z = 107, mass number A = 328).

  20. Atomic Mass and Nuclear Binding Energy for Bh-311 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-311 (Bohrium, atomic number Z = 107, mass number A = 311).

  1. Atomic Mass and Nuclear Binding Energy for Bh-353 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-353 (Bohrium, atomic number Z = 107, mass number A = 353).

  2. Atomic Mass and Nuclear Binding Energy for Bh-348 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-348 (Bohrium, atomic number Z = 107, mass number A = 348).

  3. Atomic Mass and Nuclear Binding Energy for Bh-360 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-360 (Bohrium, atomic number Z = 107, mass number A = 360).

  4. Atomic Mass and Nuclear Binding Energy for Bh-347 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-347 (Bohrium, atomic number Z = 107, mass number A = 347).

  5. Atomic Mass and Nuclear Binding Energy for Bh-277 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-277 (Bohrium, atomic number Z = 107, mass number A = 277).

  6. Atomic Mass and Nuclear Binding Energy for Bh-309 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-309 (Bohrium, atomic number Z = 107, mass number A = 309).

  7. Atomic Mass and Nuclear Binding Energy for Bh-340 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-340 (Bohrium, atomic number Z = 107, mass number A = 340).

  8. Atomic Mass and Nuclear Binding Energy for Bh-285 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-285 (Bohrium, atomic number Z = 107, mass number A = 285).

  9. Atomic Mass and Nuclear Binding Energy for Bh-341 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-341 (Bohrium, atomic number Z = 107, mass number A = 341).

  10. Atomic Mass and Nuclear Binding Energy for Bh-283 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-283 (Bohrium, atomic number Z = 107, mass number A = 283).

  11. Atomic Mass and Nuclear Binding Energy for Bh-305 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-305 (Bohrium, atomic number Z = 107, mass number A = 305).

  12. Atomic Mass and Nuclear Binding Energy for Bh-331 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-331 (Bohrium, atomic number Z = 107, mass number A = 331).

  13. Atomic Mass and Nuclear Binding Energy for Bh-342 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-342 (Bohrium, atomic number Z = 107, mass number A = 342).

  14. Atomic Mass and Nuclear Binding Energy for Bh-300 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-300 (Bohrium, atomic number Z = 107, mass number A = 300).

  15. Atomic Mass and Nuclear Binding Energy for Bh-330 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-330 (Bohrium, atomic number Z = 107, mass number A = 330).

  16. Atomic Mass and Nuclear Binding Energy for Bh-296 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-296 (Bohrium, atomic number Z = 107, mass number A = 296).

  17. Atomic Mass and Nuclear Binding Energy for Bh-338 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-338 (Bohrium, atomic number Z = 107, mass number A = 338).

  18. Atomic Mass and Nuclear Binding Energy for Bh-270 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-270 (Bohrium, atomic number Z = 107, mass number A = 270).

  19. Atomic Mass and Nuclear Binding Energy for Bh-320 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-320 (Bohrium, atomic number Z = 107, mass number A = 320).

  20. Atomic Mass and Nuclear Binding Energy for Bh-346 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-346 (Bohrium, atomic number Z = 107, mass number A = 346).

  1. Atomic Mass and Nuclear Binding Energy for Bh-274 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-274 (Bohrium, atomic number Z = 107, mass number A = 274).

  2. Atomic Mass and Nuclear Binding Energy for Bh-357 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-357 (Bohrium, atomic number Z = 107, mass number A = 357).

  3. Atomic Mass and Nuclear Binding Energy for Bh-319 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-319 (Bohrium, atomic number Z = 107, mass number A = 319).

  4. Atomic Mass and Nuclear Binding Energy for Bh-337 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-337 (Bohrium, atomic number Z = 107, mass number A = 337).

  5. Atomic Mass and Nuclear Binding Energy for Bh-329 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-329 (Bohrium, atomic number Z = 107, mass number A = 329).

  6. Atomic Mass and Nuclear Binding Energy for Bh-276 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-276 (Bohrium, atomic number Z = 107, mass number A = 276).

  7. Atomic Mass and Nuclear Binding Energy for Bh-335 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-335 (Bohrium, atomic number Z = 107, mass number A = 335).

  8. Atomic Mass and Nuclear Binding Energy for Bh-314 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-314 (Bohrium, atomic number Z = 107, mass number A = 314).

  9. Atomic Mass and Nuclear Binding Energy for Bh-281 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-281 (Bohrium, atomic number Z = 107, mass number A = 281).

  10. Atomic Mass and Nuclear Binding Energy for Bh-282 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-282 (Bohrium, atomic number Z = 107, mass number A = 282).

  11. Atomic Mass and Nuclear Binding Energy for Bh-339 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-339 (Bohrium, atomic number Z = 107, mass number A = 339).

  12. Atomic Mass and Nuclear Binding Energy for Bh-275 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-275 (Bohrium, atomic number Z = 107, mass number A = 275).

  13. Atomic Mass and Nuclear Binding Energy for Bh-289 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-289 (Bohrium, atomic number Z = 107, mass number A = 289).

  14. Atomic Mass and Nuclear Binding Energy for Bh-316 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-316 (Bohrium, atomic number Z = 107, mass number A = 316).

  15. Atomic Mass and Nuclear Binding Energy for Bh-354 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-354 (Bohrium, atomic number Z = 107, mass number A = 354).

  16. Atomic Mass and Nuclear Binding Energy for Bh-355 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-355 (Bohrium, atomic number Z = 107, mass number A = 355).

  17. Atomic Mass and Nuclear Binding Energy for Bh-295 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-295 (Bohrium, atomic number Z = 107, mass number A = 295).

  18. Atomic Mass and Nuclear Binding Energy for Bh-272 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-272 (Bohrium, atomic number Z = 107, mass number A = 272).

  19. Atomic Mass and Nuclear Binding Energy for Bh-334 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-334 (Bohrium, atomic number Z = 107, mass number A = 334).

  20. Atomic Mass and Nuclear Binding Energy for Bh-279 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-279 (Bohrium, atomic number Z = 107, mass number A = 279).

  1. Atomic Mass and Nuclear Binding Energy for Bh-323 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-323 (Bohrium, atomic number Z = 107, mass number A = 323).

  2. Atomic Mass and Nuclear Binding Energy for Bh-352 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-352 (Bohrium, atomic number Z = 107, mass number A = 352).

  3. Atomic Mass and Nuclear Binding Energy for Bh-298 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-298 (Bohrium, atomic number Z = 107, mass number A = 298).

  4. Atomic Mass and Nuclear Binding Energy for Bh-317 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-317 (Bohrium, atomic number Z = 107, mass number A = 317).

  5. Atomic Mass and Nuclear Binding Energy for Bh-344 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-344 (Bohrium, atomic number Z = 107, mass number A = 344).

  6. Atomic Mass and Nuclear Binding Energy for Bh-302 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-302 (Bohrium, atomic number Z = 107, mass number A = 302).

  7. Atomic Mass and Nuclear Binding Energy for Bh-292 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-292 (Bohrium, atomic number Z = 107, mass number A = 292).

  8. Atomic Mass and Nuclear Binding Energy for Bh-287 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-287 (Bohrium, atomic number Z = 107, mass number A = 287).

  9. Atomic Mass and Nuclear Binding Energy for Bh-301 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-301 (Bohrium, atomic number Z = 107, mass number A = 301).

  10. Atomic Mass and Nuclear Binding Energy for Bh-291 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-291 (Bohrium, atomic number Z = 107, mass number A = 291).

  11. Atomic Mass and Nuclear Binding Energy for Bh-278 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-278 (Bohrium, atomic number Z = 107, mass number A = 278).

  12. Atomic Mass and Nuclear Binding Energy for Bh-290 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-290 (Bohrium, atomic number Z = 107, mass number A = 290).

  13. Atomic Mass and Nuclear Binding Energy for Bh-333 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-333 (Bohrium, atomic number Z = 107, mass number A = 333).

  14. Atomic Mass and Nuclear Binding Energy for Bh-268 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-268 (Bohrium, atomic number Z = 107, mass number A = 268).

  15. Atomic Mass and Nuclear Binding Energy for Bh-313 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-313 (Bohrium, atomic number Z = 107, mass number A = 313).

  16. Atomic Mass and Nuclear Binding Energy for Bh-271 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-271 (Bohrium, atomic number Z = 107, mass number A = 271).

  17. Atomic Mass and Nuclear Binding Energy for Bh-269 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-269 (Bohrium, atomic number Z = 107, mass number A = 269).

  18. Atomic Mass and Nuclear Binding Energy for Bh-297 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-297 (Bohrium, atomic number Z = 107, mass number A = 297).

  19. Atomic Structure of Benzene Which Accounts for Resonance Energy

    CERN Document Server

    Heyrovska, Raji

    2008-01-01

    Benzene is a hexagonal molecule of six carbon atoms, each of which is bound to six hydrogen atoms. The equality of all six CC bond lengths, despite the alternating double and single bonds, and the surplus (resonance) energy, led to the suggestion of two resonanting structures. Here, the new atomic structure shows that the bond length equality is due to three carbon atoms with double bond radii bound to three other carbon atoms with resonance bond radii (as in graphene). Consequently, there are two kinds of CH bonds of slightly different lengths. The bond energies account for the resonance energy.

  20. Atomic energy law in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Atomic Energy Law, presenting itself 18 years after the Atomic Law (AtG) having taken effect in the Federal Republic of Germany, has developed considerably during the past three years which was also due to the controversy between supporters and opponents of nuclear energy becoming more intensive. In order to gain their ends both parties refer to the AtG and expect both the executive and legislative power to follow their interpretation of the laws. The reason for this lies mainly in the latitude of evaluating and judging the criteria which the law has granted its users, especially the administrative authorities and the courts. Thus political and juridicial fundamental decisions in favour of the peaceful use of nuclear energy might be jeopardized. Therefore all ambignous passages of the law which can be detected by critically evaluating numerous and partly inconsistent decisions of courts, should be eliminated, in particular for reasons of its validity. Also, administration and court should be given concrete standards for rating the application of the law, especially for the assessment and acceptance of the risks rising from the peaceful use of nuclear energy. (orig./HP)

  1. Information policies of nuclear energy authorities in Switzerland

    International Nuclear Information System (INIS)

    The nuclear energy authorities inform the general public openly and without delay, within the bounds of the legislative and licensing procedures, about all important decisions and occurrences. In addition, the nuclear supervisory board (Swiss Federal Nuclear Safety Inspectorate, HSK) provides details regarding its supervisory activities, mainly in the form of annual reports and by replying to questions from the media. The National Cooperative for the Storage of Radioactive Waste, Nagra, is particularly active with regard to communication. Special importance is also attached to the notification of government authorities and the media in the event of a malfunction in a nuclear power plant, and extensive preparations are being made within the framework of emergency planning for handling such an occurrence. In addition to the government authorities, there are a number of other offices which regularly provide information to the general public on matters related to nuclear energy. (author). 1 tab., 1 fig

  2. Philippine Atomic Energy Commission 1972 - 1980

    International Nuclear Information System (INIS)

    This publication presents in a nutshell the organization, its facilities and equipment resources and its thrusts and accomplishments as contributions to the country's programs from 1972 to 1981. It enumerates its research and development program geared toward basic needs like food and agriculture, energy studies; industry and engineering, medicine, public health and nutrition, improvement of the human environment and other basic objective researches. Equally important besides its research and development program are its other functions on nuclear regulation and safety, technical extension services, nuclear public acceptance, nuclear manpower development, and its commitments in international affairs by means of bilateral agreements. (author)

  3. Atomic energy law after the opt-out. Alive and fascinating. Report about the 14th German atomic energy law symposium 2012

    International Nuclear Information System (INIS)

    Atomic energy law remains a living, fascinating subject matter. Nearly 200 participants were convinced of this impression at the 14th German Atomic Energy Law Symposium held in Berlin on November 19-20, 2012. Under the scientific chairmanship of Professor Dr. Martin Burgi, Ludwig Maximilian University of Munich, the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), after an interruption of 5 years, again organized a scientific conference about practice-related topics of atomic energy and radiation protection law. Atomic energy law once again proved to be a reference area for sophisticated issues of constitutional law and administrative law above and beyond its technical confines. The agenda of the 14th German Atomic Energy Law Symposium featured a broad spectrum of topics ranging from backfitting of nuclear power plants to European atomic energy and radiation protection law, to challenges facing national legal systems in the execution of atomic energy law, to legal issues connected with decommissioning and waste management, and on to the topical subject of finding a repository site. The 14th German Atomic Energy Law Symposium, on the whole, again demonstrated that an open discourse between science and practice is able to furnish important contributions to the implementation of laws in a balanced way rooted in practice. Especially the contributions dealing with the independence of public authorities and their organization, the doctrine of the reservation of functions of the executive branch, and planning by laws contain additional provisions able to influence the continued development of administrative law also above and beyond atomic energy law. The BMU also referred to a decision just heard from Brussels to the effect that a new European Safety Directive would be published as early as in 2013. As a consequence of the nuclear stress tests conducted EU-wide, the Directive is to lay down provisions about transparency, material

  4. A study of the kinetic energy density functional for atoms

    International Nuclear Information System (INIS)

    This paper studies the rigorous kinetic energy density functional at the level of the Hartree-Fock method for closed electron shell atoms. The behaviour of the kinetic energy and its components, is analysed as the atomic number N increases. It is shown that the increments of the specific energies for two consecutive closed electron shells atoms depend distinctly on the electron configuration of the last electron shell. 35 refs, 1 fig., 4 tabs

  5. Atomic energy policy in fiscal year 1985

    International Nuclear Information System (INIS)

    The international demand and supply of petroleum advance in relaxed condition at present, but tend to get stringent in long term. Nuclear power is the most promising substitute energy for petroleum, and in Japan, 28 nuclear power plants with 20.56 million kW output are in operation, generating 20.4% of the total generated power in 1983. According to the perspective of long term power supply, the installed capacity of nuclear power plants will reach 62 million kW and 27% of the total installed capacity by 2000. It is important to positively deal with the industrialization of nuclear fuel cycle, the upgrading of nuclear power generation, the development of the reactors of new types and so on, preparing for the age that nuclear power generation will become the center of power supply. The atomic energy policy of the Ministry of International Trade and Industry in fiscal year 1985 is reflected to the budget, financial investment and funding and other measures based on the above viewpoint. The outline of the budget and financial investment and funding for fiscal year 1985 is explained. The points are the promotion of industrialization of nuclear fuel cycle, the promotion of nuclear power generation and the promotion of understanding and cooperation of nation on the location of electric power sources. (Kako, I.)

  6. Atomic Energy Control Act, c A.19, s.1

    International Nuclear Information System (INIS)

    The Revised Statutes of Canada 1985 entered into force on 12 December 1988, revoking the previous Atomic Energy Control Act and replacing it with a new version. The new Act (Chapter A-16 of the Revised Statutes) updates the previous text and makes some linguistic corrections. The Atomic Energy Control Act establishes the Atomic Energy Control Board and sets out its duties and powers which include, in particular, the making of regulations for developing, controlling and licensing the production, application and use of atomic energy

  7. Determination of Atomic Data Pertinent to the Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  8. Law project (no. 1329) adopted by the Senate and authorizing the ratification of the agreement between the French Republic, the European Atomic Energy Community and the International Atomic Energy Agency relative to the enforcement of warranties in the framework of the treaty of nuclear weapons prohibition in South America and the Caribbeans area (two protocols together); Projet de loi (no. 1329) adopte par le Senat autorisant la ratification de l'accord entre la Republique francaise, la Communaute europeenne de l'energie atomique et l'Agence internationale de l'energie atomique relatif a l'application de garanties dans le cadre du traite visant l'interdiction des armes nucleraires en Amerique latine et dans les Caraibes (ensemble deux protocoles)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    The French Senate adopted on January 6, 2004 the project of law which authorizes the ratification of the agreement between France, the European atomic energy community and the IAEA about the enforcement of warranties in the framework of the treaty of interdiction of nuclear weapons in South America and in the Caribbean area signed in Vienna (Austria) on March 21, 2000. The text of this treaty is attached to this law. (J.S.)

  9. Decision no. 2011-DC-0224 of the French nuclear safety authority from May 5, 2011, ordering the French atomic energy and alternative energies commission (CEA) to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0224 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant au Commissariat a l'Energie Atomique et aux energies alternatives (CEA) de proceder a une evaluation complementaire de la surete de certaines de ses installations nucleaires de base au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the French atomic energy commission (CEA). (J.S.)

  10. Magnetospheric imaging with low-energy neutral atoms.

    OpenAIRE

    1991-01-01

    Global imaging of the magnetospheric charged particle population can be achieved by remote measurement of the neutral atoms produced when magnetospheric ions undergo charge exchange with cold exospheric neutral atoms. Previously suggested energetic neutral atom imagers were only able to measure neutral atoms with energies typically greater than several tens of keV. A laboratory prototype has been built and tested for a different type of space plasma neutral imaging instrument, which allows ne...

  11. Quantum Effects at Low Energy Atom-Molecule Interface

    OpenAIRE

    Deb, B.; Rakshit, A.; Hazra, J.; Chakraborty, D.

    2013-01-01

    Quantum interference effects in inter-conversion between cold atoms and diatomic molecules are analysed. Within the framework of Fano's theory, continuum-bound anisotropic dressed state formalism of atom-molecule quantum dynamics is presented. This formalism is applicable in photo- and magneto-associative strong-coupling regimes. The significance of Fano effect in ultracold atom-molecule transitions is discussed. Quantum effects at low energy atom-molecule interface are important for explorin...

  12. Recent developments at the atomic and molecular data unit of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    The Atomic and Molecular (A+M) Data Unit of the IAEA main purpose is to establish and maintain databases in support of nuclear fusion energy research. This encompasses a very large number of processes in atomic, molecular, and plasma - material interaction physics. Recent improvements and additions to these databases are presented. A prototype search engine, which searches five different sites for radiative data and two sites for electron impact excitation and ionization data is introduced. It is available at the IAEA, Weizmann Institute and GAPHYOR web sites. Data on erosion materials produced by the Co-ordinated research project (CRP) 'Plasma-interaction induced erosion of fusion reactor materials' was evaluated, fitted to physically realistic forms for angle and energy dependence and the resulting fits were added to the online electronic database. In a CRP on radiative power losses in plasmas, many lenghtly modelling calculations were carried out. In addition to providing the calculated radiated power, effective ionisation and recombination rate coefficients were derived. These data were stored along with the populations of the ion stages as well as the total radiation from each ion stage. Thus, it is possible to use these data to interpolate in temperature and electron density to obtain the radiated power at an arbitrary temperature and density. A preliminary version of a new interface to the bibliographic database at the A+M Data unit was developed, it allows the user to search by author and/or keyword. The resulting references are displayed along with a link to the home page of the journal where possible. A code for calculation electron impact excitation cross sections using the so-called 'average approximation' and a version of the Hartree-Fock atomic structure code were installed in the unit and can be run through an interface at the web page. (nevyjel)

  13. Pilot project of atomic energy technology record

    International Nuclear Information System (INIS)

    Project of the Atomic Energy Technology Record is the project that summarizes and records in each category as a whole summary from the background to the performance at all fields of nuclear science technology which researched and developed at KAERI. This project includes Data and Document Management System(DDMS) that will be the system to collect, organize and preserve various records occurred in each research and development process. To achieve these goals, many problems should be solved to establish technology records process, such as issues about investigation status of technology records in KAERI, understanding and collection records, set-up project system and selection target field, definition standards and range of target records. This is a research report on the arrangement of research contents and results about pilot project which records whole nuclear technology researched and developed at KAERI in each category. Section 2 summarizes the overview of this pilot project and the current status of technology records in domestic and overseas, and from Section 3 to Section 6 summarize contents and results which performed in this project. Section 3 summarizes making TOC(Table of Content) and technology records, Section 4 summarizes sectoral templates, Section 5 summarizes writing detailed plan of technology records, and Section 6 summarizes Standard Document Numbering System(SDNS). Conclusions of this report are described in Section 7

  14. Recent developments in atomic energy law

    International Nuclear Information System (INIS)

    The paper explains essential changes and their development not primarily from the legal point of view, but in the broader context of the events, consequences and demands that have induced recent developments on the political and legal level: The Chernobyl reactor accident and its impact on legal provisions for reactor safety and radiological protection. The political and legal disputes about the Hanau nuclear establishments; resulting effects with regard to licensing, the plutonium controversy, design of the nuclear fuel cycle, radioactive waste management, physical protection of nuclear installations, reliability of personnel, international safeguards and their implementation on national level. The paper also discusses recent court decisions concerning indicial control of administrative decisions, construction permits and transport licences, procedures under atomic energy law and water law, armed works protection forces, section 87, subsec. (1), 1st sentence of the BetrVG and permits and directives for nuclear installations, the legal position of foreigners from neighbour countries, and the legal institute of environmental impact assessment (as determined by the EC Directive of 27 June 1985). (RST)

  15. Solar and Geothermal Energy: New Competition for the Atom

    Science.gov (United States)

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  16. In defence of a European High Authority for Energy

    International Nuclear Information System (INIS)

    The energy issue is a source of growing concern in Europe. The supply of hydrocarbons vital for the efficient running of the economy and European societies, increasingly escapes the control of European leaders due to their often problematic geographical location as well as a constant rise in non-European demand. This dual edged phenomenon which is linked to the increasing scarcity of these resources, is leading to a continuous rise in prices and geopolitical threats. In order to counter these threats the European Union has to establish a common policy founded on an improved control of consumption and a diversification of the sources of supply. Increased co-ordination between Member States based on the principle of mutual solidarity appears to be one of the vital factors in this voluntary drive to master the energy issue. Does this mean in fact that Europe requires a High Authority for Energy? (author)

  17. On promotion of base technologies of atomic energy

    International Nuclear Information System (INIS)

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.)

  18. Books on Atomic Energy for Adults and Children

    Energy Technology Data Exchange (ETDEWEB)

    None

    1969-01-01

    This booklet contains two lists of atomic energy books, one for students and one for adults. The student list has grade annotations. The lists are not all-inclusive but comprise selected basic books on atomic energy and closely related subjects.

  19. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    The law establishes the Japan Atomic Energy Research Institute in accordance with the Basic Act on Atomic Energy as a government corporation for the purpose of promoting R and D and utilizations of atomic energy (first chapter). The second chapter concerns the directors, advisers and personnel of the institute, namely a chairman of the board of directors, a vice-chairman, directors not more than seven persons, and auditors not more than two persons. The chairman represents and supervises the intitute, whom the prime minister appoints with the agreement of Atomic Energy Commission. The vice-chairman and other directors are nominated by the chairman with the approval of the prime minister, while the auditors are appointed by the prime minister with the advice of the Atomic Energy Commission. Their terms of office are 4 years for directors and 2 years for auditors. The third chapter defines the scope of activities of the institute as follows: basic and applied researches on atomic energy; design, construction and operation of nuclear reactors; training of researchers and technicians; and import, production and distribution of radioisotopes. Those activities should be done in accordance with the basic development and utilization plans of atomic energy established by the prime minister with the determination of Atomic Energy Commission. The fourth chapter provides for the finance and accounting of the institute, and the fifth chapter requires the supervision of the institute by the prime minister. (Matsushima, A.)

  20. Young students's opinion about atomic energy

    International Nuclear Information System (INIS)

    The present research work was performed in answer to a requirement that the CNEA-RC made to students of the Public and Institutional Relations Degree of the UES21, as a part of activities carried out in the framework of the Academic Cooperation Agreement between both institutions. In this case the students had to attend the Professional Practical course during the first semester of 2006, which included a short period in some company or organization. The Degree of Knowledge and the Opinion of the students from the Cycle of Specialization of the Province of Cordoba Educational System (ages between 15 and 17 years old), on the activities that are made in the site of CNEA-RC and DIOXITEK SA at Alta Cordoba neighborhood in Cordoba city has been analyzed. The same aspects were analyzed for Dioxitek's activities (equipment, raw materials, risk performance, etc.). Although the activities made at CNEA-RC involved during 2005/6 about 4000 students, due to the short time available for the practical part only the data of two schools located near the facilities were processed. Three aspects of the space conformed between the public and the general opinion were analyzed: the customs, the stereotypes and the attitudes of the people. These aspects were taken as the characteristics to describe to the opinions, their direction and intensity. The analysis was based on an exploratory investigation of type, characterized by its flexibility. The field work was of quantitative character. The surveys were structured with closed questions (categories of answers delimited previously on which the students must answer). For its design we used diverse sources of intelligence, such as pages of Internet, pamphlets, magazines, annual balances of the organizations, etc. The main results were the following: 1) The greater percentage of students declared to have little information on Atomic Energy. Only 4% declared to have abundant knowledge on the subject. 2) A 38% of the students indicated that

  1. Energy dependence of the effective atomic number of soils

    International Nuclear Information System (INIS)

    The effective atomic number (Zsub(eff)) of five different soils have been calculated for different photon interaction processes to check the variation in Zsub(eff) with photon energy (10 keV to 100 MeV). For the total interaction process Zsub(eff) first increases with the increase in energy to 30-40 keV and then decreases sharply upto 400-500 keV and slowly further upto 1500-2000 keV beyond which there is small but continuous increase in Zsub(eff) with further increases in energy to 100 MeV. For photoelectric interaction Zsub(eff) increases in low energy region and then becomes independent of energy whereas for Compton scattering except below 100 keV, Zsub(eff) is constant upto 100 MeV. In case of pair production, Zsub(eff) decreases upto 3-4 MeV beyond which it becomes constant. (author). 10 refs., 4 figs

  2. Third-party protection and residual risk in Atomic Energy Act. On legally dogmatic classification of paragraph 7 Atomic Energy Act in the jurisprudence of the Federal Constitutional Law and Federal Administrative Court

    International Nuclear Information System (INIS)

    On 25th June 2009, the Council of the European Union has passed the directive 2009/71/EURATOM on a common framework for nuclear safety of nuclear installations. At first, the 12th Law amending the Atomic Energy Act supplements the Atomic Energy Act by regulations which implement the directive 2009/71/EURATIM into national law. In addition, paragraph 7 Atomic Energy Act introduces a new substantive obligation of the operators of nuclear power plants. The author of the contribution reports on whether paragraph 7 Atomic Energy Act provides additional nuclear protection or reduces the potential protection by law and jurisprudence.

  3. Atomic Energy of Canada Limited annual report 1989-1990

    International Nuclear Information System (INIS)

    In 1990, after a comprehensive industry review, the Canadian government announced that steps would be taken to revitalize the nuclear industry. Canada's nuclear utilities made a commitment to bear a large share of the cost of nuclear research and development. Atomic Energy of Canada Limited (AECL) reported its first financial loss in twelve years, as anticipated at the start of the year. Four of the 20 CANDU reactors operating worldwide were in the top ten based on lifetime performance. By year-end one foreign and two domestic utilities had announced their intention to build more CANDU units. The federal government has agreed to stabilize AECL's research funding at 1989-90 levels ($31.5 million above levels planned in 1985), has authorized AECL to negotiate with New Brunswick to build Point Lepreau-2 as the prototype for the CANDU-3 reactor, and has allowed the restructuring of AECL so utility and private sector investors can become equity partners in AECL CANDU

  4. The role and structure of the Atomic Energy Control Board

    International Nuclear Information System (INIS)

    The Atomic Energy Control Board is responsible for the control and supervision of the application and use of nuclear materials and the operation of nuclear facilities to ensure that the health and safety of people are protected and that the nuclear materials and equipment are used only in accordance with the government non-proliferation policy. Requirements for control and supervision are made into regulations subject to approval by the Governor in Council. They are applied through a comprehensive licensing system. The interpretation and implementation of the regulations are contained in a series of regulatory documents published from time to time by the Board. The functional organization of staff that assist the Board for the administration, the assessment and issuance of licenses, compliance and inspection, as well as for the management of the regulatory research program is described. (author)

  5. Proceedings of the eighth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 53 papers, presented on the eighth Symposium of Atomic Energy Research, held in Bystrice nad Perstejnem, Czech Republic, 21-25 September 1998. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Design, Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Neutron Kinetics and reactor Dynamics Methods, Safety Issues and Analysis, Rod Drop Reactivity Measurements, Criticality safety, Spent Fuel and Decommissioning, - according to the presentation sequence on the Symposium. At the end of the volume a list of the participants and an alphabetical author index is given as well

  6. Proceedings of the ninth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 57 papers. Most of the papers were presented on the ninth Symposium of Atomic Energy Research, held in Demanovska Dolina, Slovakia, 4-6 October 1999. The rest of the papers (intended to be presented but not presented due to difficulties) is included based on the decision of the organizers. The papers are in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Safety Issues, Neutron Kinetics and Reactor Dynamics, Reactivity Evaluation, High Subcriticality, Critical Safety and Spent Fuel and Spent Fuel Transmutations - according to the presentation sequence on the Symposium. At the end of the volume an alphabetical author index is given

  7. Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination

    Science.gov (United States)

    Krükow, Artjom; Mohammadi, Amir; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H.

    2016-05-01

    We study three-body recombination of Ba++Rb +Rb in the mK regime where a single 138Ba+ ion in a Paul trap is immersed into a cloud of ultracold 87Rb atoms. We measure the energy dependence of the three-body rate coefficient k3 and compare the results to the theoretical prediction, k3∝Ecol-3 /4, where Ecol is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is determined by at least two different micromotion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s -wave regime.

  8. Energy scaling of cold atom-atom-ion three-body recombination

    CERN Document Server

    Krükow, Artjom; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H

    2015-01-01

    We study three-body recombination of Ba$^+$ + Rb + Rb in the mK regime where a single $^{138}$Ba$^{+}$ ion in a Paul trap is immersed into a cloud of ultracold $^{87}$Rb atoms. We measure the energy dependence of the three-body rate coefficient $k_3$ and compare the results to the theoretical prediction, $k_3 \\propto E_{\\textrm{col}}^{-3/4}$ where $E_{\\textrm{col}}$ is the collision energy. We find agreement if we assume that the non-thermal ion energy distribution is determined by at least two different micro-motion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed into an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s-wave regime.

  9. Development of cooperation of the CIS member states in the peaceful use of atomic energy

    International Nuclear Information System (INIS)

    Full text: Cooperation platform: Attraction of potential investors; Promotion of national goods and services; Pursuit of national and commercial interests. The Commission of the CIS Member States for the Peaceful Use of Atomic Energy is a nuclear cooperation body and the CIS intergovernmental coordinating and advisory authority. The Commission of the CIS Member States for the Peaceful Use of Atomic Energy coordinates and expands the spheres of cooperation. Members of the Commission- state-appointed heads of the authorized CIS member state bodies in the peaceful use of atomic energy; Secretariat is the working body of the Commission. Expert work groups formed within the CIS members States Commission: On the status of the draft Agreement on Coordination of Interstate Relations in the Peaceful Use of Atomic Energy in the CIS Territory; On the establishment of the CIS regional center for advanced training of medical physicists; Formation of an integrated system for the maintenance of safety of the nuclear research facilities. Issues of establishing the Coalition of the CIS Nuclear Research reactors; Formation of mechanisms for the convergence of the CIS member states legal and technical regulations in the peaceful use of atomic energy; Adaptation and introduction in the CIS members states of international standards in the field of using industrial radiation technologies and ensuring radiation safety; Basic forms of the CIS cooperation in ensuring economic security of projects for the peaceful use of atomic energy; Establishment of a system for the management of intellectual assets of the CIS members states; On the use of tele medical technologies of Ros atom State Cooperation- FMBA-MEPHI in diagnosis of oncologic diseases; Development of the major components of the Concept of Ensuring Nuclear, radiation and Radio ecological; Policy of the CIS Member States in the Peaceful Use of Atomic Energy; Joint implementation of the project to establish and implement a program of

  10. Kinetic-energy density functional: Atoms and shell structure

    International Nuclear Information System (INIS)

    We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. copyright 1996 The American Physical Society

  11. International Atomic Energy Agency annual report 2006

    International Nuclear Information System (INIS)

    The Annual Report reviews the results of the Agency's programme according to the three pillars of technology, safety and verification. The main part of the report generally follows the programme structure as given in The Agency's Programme and Budget 2006-2007 (GC(49)/2). The introductory chapter seeks to provide a thematic analysis, based on the three pillars, of the Agency's activities within the overall context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2006 and Background to the Safeguards Statement. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM, and is also available on the Agency's web site at http://www.iaea.org/Worldatom/Documents/Anrep/Anrep2006/. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The topics covered in the chapter related to technology are: nuclear power; nuclear fuel cycle and materials technologies; capacity building and nuclear knowledge maintenance for sustainable energy development; nuclear science; food and agriculture; human health; water resources; assessment and management of marine and terrestrial environments; radioisotope production and radiation technology; safety and security; incident and emergency preparedness and response; safety of nuclear installations; radiation and transport safety; management of radioactive waste; nuclear security

  12. Neck of public acceptance of atomic energy in Japan

    International Nuclear Information System (INIS)

    Discussion is lacking concerning the public acceptance of atomic energy in Japan. In case of the atomic powered ship Mutsu, an opponent says that the ship carries an atomic bomb, but a member of a support group says that the ship emits soft radiation like a hot spring. This is an example of discussion, and most of discussions are made under the political interest, instead of on the scientific base. In Japan, preparatory negotiations are required in advance to the decision making meeting in most cases. Therefore, most of substantial discussions are not public. Engineers in the nuclear industry can hardly express their opinion concerning the development of atomic energy. Most of the data for discussions are not original, but foreign data. Reasons for the development of atomic energy change case by case. It is necessary to consider that people will decide their opinion according to whether the responsible person is reliable or not. Some people oppose to atomic energy to find a new sense of value. Now, all people are requested to think and discuss the problem of atomic energy calmly. (Kato, T.)

  13. Quantum Effects at Low Energy Atom-Molecule Interface

    CERN Document Server

    Deb, B; Hazra, J; Chakraborty, D

    2013-01-01

    Quantum interference effects in inter-conversion between cold atoms and diatomic molecules are analysed. Within the framework of Fano's theory, continuum-bound anisotropic dressed state formalism of atom-molecule quantum dynamics is presented. This formalism is applicable in photo- and magneto-associative strong-coupling regimes. The significance of Fano effect in ultracold atom-molecule transitions is discussed. Quantum effects at low energy atom-molecule interface are important for exploring coherent phenomena in hither-to unexplored parameter regimes.

  14. Managing public perceptions about atomic energy in India

    International Nuclear Information System (INIS)

    Dr. Homi Jehangir Bhabha, in his presidential address at the first International Conference on the Peaceful Uses of Atomic Energy in Geneva in August 1955 had said 'Acquisition by man of the knowledge of how to release and use atomic energy must be recognized as the third epoch of human history'. Indeed during the last six decades, Atomic Energy has touched practically all aspects of human life and has registered its presence in almost every part of the globe. In India too, the Department of Atomic Energy set up in 1954, has been successfully pursuing a programme with a mandate to generate electricity, produce radioisotopes and develop radiation technologies with application in the areas of healthcare, food security, industry, water management, environment, R and D etc. Besides, DAE is also engaged in developing advanced technologies such as lasers, accelerator, robotics, fast computing and biosciences

  15. Annual Report 2002 of the Institute of Atomic Energy

    International Nuclear Information System (INIS)

    Annual Report of the Institute of Atomic Energy described the results of the research works carried out at the Institute in 2002 year. The Report contains the information on technical and research studies developed by all Institute Departments and Laboratories

  16. Ghana Atomic Energy Commission : at a glance. 3. ed.

    International Nuclear Information System (INIS)

    The brochure provides a brief history of the establishment and functions of the Ghana Atomic Energy Commission. It also provides information on the structure, facilities and activities of existing research institutes and centres

  17. Atomic Energy of Canada Limited annual report 1987-88

    International Nuclear Information System (INIS)

    The annual report of Atomic Energy of Canada Limited for the fiscal year ended March 31, 1988 covers: Research Company; CANDU Operations; Radiochemical Company; Medical Products Division; The Future; Financial Sections; Board of Directors and Officers; and AECL locations

  18. Refresher training as an important factor affecting safety of atomic energy utilization facilities

    International Nuclear Information System (INIS)

    Refresher training appears to be one of the most important factors, affecting safety of atomic energy utilization facilities. To provide up-to-date refresher training programs and courses TC NRS implements best training practice based on the actual and perspective Russian national and international norms, regulations, standards and recommendations. (author)

  19. Coulomb energy averaged over the nlN-atomic states with a definite spin

    International Nuclear Information System (INIS)

    A purely group-theoretical approach, based upon the use of properties of fractional-parentage coefficients and isoscalar factors, is developed for the derivation of the Coulomb energy averaged over the states, with a definite spin, arising from an atomic configuration nlN. (author) 15 refs

  20. Activity of Water Chemistry Division of the Atomic Energy Society of Japan

    International Nuclear Information System (INIS)

    A water chemistry group in Japan started in 1982 as a special committee of the Atomic Energy Society of Japan (AESJ). In 2007 the committee has been upgraded as Water Chemistry Division. Current status of the Water Chemistry Division is briefly summarized. (author)

  1. The role of international atomic energy agency in maintaining nuclear safety competence

    International Nuclear Information System (INIS)

    This paper provides information how International Atomic Energy Agency can assist Member States in maintaining and developing nuclear safety competence. The topics covered include the development of safety standards, organisation of nuclear safety related conferences, provision of safety reviews, organisation of training courses and topical workshops and publication of training related documents. Usefulness of these activities for competence development is discussed. (author)

  2. Transport of radioactive material. 1994-2002. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This document lists all sales publications, IAEA-TECDOC Series, Training Course Series and National Competent Authorities Lists of the International Atomic Energy Agency dealing with the transport of radioactive materials during the period 1994-2002. It gives a short abstract and contents of these issues along with their costs in EURO

  3. Danish Atomic Energy Commission Annual Report 1 April 1974 -31 March 1975

    International Nuclear Information System (INIS)

    Activities of the Danish Atomic Energy Commission and the Risoe Research Establishment for the period April 1, 1974 to March 31, 1975 are summarized. The operations of the various facilities at the Research Establishment are revised. Operating staff levels and financial data are tabulated, and a list of staff publications is given. (author)

  4. Probing the Planck Scale in Low-Energy Atomic Physics

    OpenAIRE

    Bluhm, Robert

    2001-01-01

    Experiments in atomic physics have exceptional sensitivity to small shifts in energy in an atom, ion, or bound particle. They are particularly well suited to search for unique low-energy signatures of new physics, including effects that could originate from the Planck scale. A number of recent experiments have used CPT and Lorentz violation as a candidate signal of new physics originating from the Planck scale. A discussion of these experiments and their theoretical implications is presented.

  5. Gravitational Corrections to Energy-Levels of a Hydrogen Atom

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen-Hua; LIU Yu-Xiao; LI Xi-Guo

    2007-01-01

    The first-order perturbations of the energy levels of a hydrogen atom in central internal gravitational field are investigated.The internal gravitational field is produced by the mass of the atomic nucleus.The energy shifts are calculated for the relativistic 1S,2S,2P,3S,3P,3D,4S,and 4P levels with Schwarzschild metric.The calculated results show that the gravitational corrections are sensitive to the total angular momentum quantum number.

  6. Chameleon Dark Energy and Atom Interferometry

    OpenAIRE

    Elder, Benjamin; Khoury, Justin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul

    2016-01-01

    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a 3-dimensional nonlinear partial differential equation (PDE). In this paper, we introduce a new technique for calculating the chameleonic force, using a numerical relaxation scheme on a uniform g...

  7. Urgent problems of radioecology concerned with the problems of the Atomic Energy production

    International Nuclear Information System (INIS)

    Fundamentals tasks of contemporary radioecology concerning migration of natural and artificial radionuclides and the effect of ionizing radiation on natural biogeocenosis are expounded which arose from the developing production and uses of atomic energy. The authors discuss the problems of ecological control over radiation affection of ecosystems and present the classification of natural areas according to their ecological condition. The authors also stress the urgency of studies of migration in the biosphere of radionuclides of the complete nuclear fuel turnover

  8. Glossary of scientific and technical terms in atomic energy

    International Nuclear Information System (INIS)

    In order to facilitate the task of Arabic speaking scientists in the field of nuclear energy, the Atomic Energy Commission of Syria assigned a committee constituted of leading physicists and chemists at Damascus University, the aim of the commission was to include the Arabic equivalent of the terms cited in English, French, Russian and Spanish in the glossary published by the United Nations, 1958 ''Atomic Energy Glossary of Technical Terms.'' The result of the committee's work was this glossary containing approximately 6000 terms in the field of nuclear energy which are given in Arabic, English, French, Russian and Spanish

  9. Two atoms scattering at low and cold energies

    Indian Academy of Sciences (India)

    Hasi Ray

    2014-12-01

    A modified static-exchange model is developed to study the collision of an atom with another atom. It includes the effect of long-range dipole–dipole van der Waals interaction between two atoms in addition to the exact effect of short-range force due to Coulomb exchange between two system electrons. Both these interactions dominate at colder energies. The system is treated as a four-centre problem in the centre-of-mass frame. The present ab-initio model is useful to study the two-atomic collisions at low energies, as well as cold energies. The new code is applied to study the scattering of positronium (Ps) by hydrogen (H), both in their ground states.

  10. Japan Atomic Energy Research Institute in the 21st century

    International Nuclear Information System (INIS)

    Major nuclear research institutes in Japan are the Japan Atomic Energy Research Institute (JAERI), Nuclear Cycle Development Institute (JNC), National Research Institute of Radiological Science (NIRS), and the Institute of Physical and Chemical Research (RIKEN). In the 50s and 60s JAERI concentrated on the introduction of nuclear technology from overseas. Energy security issues led to the development of a strong nuclear power programme in the next two decades resulting in Japan having 50 light water cooled nuclear power plants in operation. Japan also worked on other reactor concepts. The current emphasis of JAERI is on advanced reactors and nuclear fusion. Its budget of 270 million US$ supports five research establishments. JAERI has strong collaboration with industry and university system on nuclear and other advanced research topics (neutron science, photon science). In many areas Japan has strong international links. JAERI has also been transferring know-how on radioisotope and radiation applications to the developing countries particularly through IAEA-RCA mechanisms. (author)

  11. CPT Magnetometer with Atomic Energy Level Modulation

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-Bin; DU Run-Chang; LIU Chao-Yang; GU Si-Hong

    2008-01-01

    We propose and experimentally investigate a coherent population trapping state based magnetometer prototype with87 Rb atoms.Through modulating Zeeman sublevels with an ac magnetic field,not only a phase sensitive detection scheme suitable for miniature magnetometer is realized,but also the detection resolution of magnetic field intensity could be improved by a factor of two.Our study result indicates that it is a promising low power consumption miniature sensitive low magnetic field sensor offering spatially resolved measurement at the sub-millimetre level.

  12. Cooperation in the field of nuclear energy under the auspices of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Some leading features of the main programs of the International Atomic Energy Agency. Besides its program of Technical Assistance consisting generally in the three usual elements - experts, grants and material - the Agency develops activities relating to the application of nuclear methods and techniques in food and agriculture, biology, and hydrology and industry. In view of the very nuclear energy an increased work should be asked from the agency in three fields: nuclear power plant safety, the problems of radioactive waste disposal and management and other incidental effects of nuclear energy on the environment. At last the application of safeguards for preventing fissile materials from being diverted towards military or non-authorized purposes will be also subject to increased work

  13. Atomic energy - the Basic Law and reality

    International Nuclear Information System (INIS)

    For a long time the authors have been active members of associations for the protection of life and the environment. Since the Federal Government is said to give false information, to present states of affairs only with half-truths, to withhold the extent of risks, this paper is intended to reveal facts and to point out the attack made on the Basic Law and on human rights. The authors deal with all nuclear issues under a polemical, depreciating aspect. The supplement is a collection of facts and cases. Negative statements made by scientists and politicians have been gathered to present the conflict of opinions. (HSCH)

  14. Energy management and energy autonomy of French farms: status and perspectives of action for public authorities

    International Nuclear Information System (INIS)

    This report aims at giving the present state of knowledge about possible energy savings and renewable energy production in farms, and at proposing a hierarchy of actions and measures for a better energy management and energy autonomy in French farms. As far as knowledge is concerned, the authors discuss an assessment of agriculture energy consumption in France, analyse energy costs in farms, discuss the assessment of the global energy consumption by farms, and propose a first estimate of possible energy savings. Actions leading to energy savings or renewable energy production concern various aspects: the production system, agricultural techniques, crops, use of pure vegetal oil, biogas, solar heater, solar drying, buildings, greenhouses, biomass boilers, vegetal oil cogeneration, photovoltaic energy, wind energy. Key actions are identified which concern nitrogen management, wood energy, biogas, energy management, use of cereals for heating, and so on

  15. Department of Atomic Energy [India]: Annual report 1979-1980

    International Nuclear Information System (INIS)

    The work of the research establishments, projects undertaken and public sector undertakings of the Department of Atomic Energy during the financial year 1979-80 is surveyed. The research and development activities of the Bhabha Atomic Research Centre at Bombay, the Reactor Research Centre at Kalpakkam, the Tata Institute of Fundamental Research at Bombay, the Saha Institute of Nuclear Physics at Calcutta and the Tata Memorial Centre at Bombay are described. An account of the progress of heavy water production plant projects, the Madras and Narora Atomic Power Projects, the MHD project and the 100 MW thermal research reactor R-5 Project at Trombay is given. Performance of the Tarapur and Rajasthan Atomic Power Stations, Nuclear Fuel Complex at Hyderabad, Atomic Minerals Division, ISOMED (the radiation sterilisation plant for medical products) at Bombay, the Indian Rare Earths Ltd., the Uranium Corporation of India Ltd., and the Electronics Corporation of India Ltd., Hyderabad is reported. (M.G.B.)

  16. Chameleon Dark Energy and Atom Interferometry

    CERN Document Server

    Elder, Benjamin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul

    2016-01-01

    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a 3-dimensional nonlinear partial differential equation (PDE). In this paper, we introduce a new technique for calculating the chameleonic force, using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the PDE to a 1-dimensional ordinary differential equation (ODE). We examine the effects of approximations made in previous efforts on this subject, and calculate the chameleonic force in a set-up that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its o...

  17. Unparticle contribution to the hydrogen atom ground state energy

    Science.gov (United States)

    Wondrak, Michael F.; Nicolini, Piero; Bleicher, Marcus

    2016-08-01

    In the present work we study the effect of unparticle modified static potentials on the energy levels of the hydrogen atom. By using Rayleigh-Schrödinger perturbation theory, we obtain the energy shift of the ground state and compare it with experimental data. Bounds on the unparticle energy scale ΛU as a function of the scaling dimension dU and the coupling constant λ are derived. We show that there exists a parameter region where bounds on ΛU are stringent, signaling that unparticles could be tested in atomic physics experiments.

  18. Energy and decay width of the pi-K atom

    CERN Document Server

    Jallouli, H

    2006-01-01

    The energy and decay width of the pi-K atom are evaluated in the framework of the quasipotential-constraint theory approach. The main electromagnetic and isospin symmetry breaking corrections to the lowest-order formulas for the energy shift from the Coulomb binding energy and for the decay width are calculated. They are estimated to be of the order of a few per cent. We display formulas to extract the strong interaction S-wave pi-K scattering lengths from future experimental data concerning the pi-K atom.

  19. The International Atomic Energy Agency - IAEA

    International Nuclear Information System (INIS)

    The origens, functions and objectives of the IAEA are analysed. The application of safeguards to avoid military uses of nuclear energy is discussed. In the final section the agrement between Brazil and Germany regarding IAEA safeguards, as well as the competence for executing the brazilian program are explained. It is, then, an informative study dealing with nuclear energy and its peaceful path, the creation of International Fuel Cycle Evaluation and nonproliferation

  20. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    K Chakrabarti

    2001-04-01

    Low energy positron impact ionization of atomic hydrogen is studies theoretically using the hyperspherical partial wave method of Das [1] in constant 12, equal energy sharing geometry. The TDCS reveal considerable differences in physics compared to electron impact ionization under the same geometry.

  1. Basic plan of development and utilization of atomic energy, 1980

    International Nuclear Information System (INIS)

    The stable acquisition of energy is indispensable for the maintenance and improvement of national living standard and the development of social economy. The supply of oil tends to be tight in medium and long term perspective. Japan must acquire oil stably, save oil consumption as far as possible, and develop substitute energy. The development and utilization of atomic energy must be promoted as the most important subject in the energy policy because it is the most promising substitute energy. The nuclear power stations in operation in Japan are 21 plants with 15 million kW capacity, and it is equivalent to 12% of the total power generation. Adding the plants under construction and in preparation, the total becomes 35 plants and 28 million kW, but the construction is behind schedule due to the difficulty in the location of new power stations. As for the research and development on atomic energy, the establishment of nuclear fuel cycle such as the enrichment of uranium, the reprocessing of fuel and the treatment and disposal of radioactive wastes, the development of power reactors of new types, the research on nuclear fusion and so on have been endeavored. The maintenance of health of people and the preservation of environment are the prerequisities to the promotion of atomic energy. Japan contributes to form the new order on the basis of the results of INFCE. The development and utilization of atomic energy in 1980 are forwarded based on the basic policy described. (Kako, I.)

  2. Law on the use of atomic energy for peaceful purposes

    International Nuclear Information System (INIS)

    This is an amended and corrected edition of the Bulgarian atomic energy law. Its purpose is to promote nuclear energy peaceful applications, to regulate the use of radioactive substances and instrumentation, to provide protection against the radioactive hazards. The Law also determines the status of the Governmental Regulatory Body - the CUAEPP

  3. Role of the Atomic Energy Commission

    International Nuclear Information System (INIS)

    Public health aspects of nuclear explosions fall into two categories: (1) operational safety during the conduct of the explosion; and (2) the regulation of by-product material resulting from the explosion. By statute, the AEC has the responsibility for both assuring operational safety and regulating by-product material. Current AEC safety and regulatory practices are described; future problems or needs discussed; and relationship to federal, state and local governments outlined. (author)

  4. An atomic clockwork using phase dependent energy shifts

    CERN Document Server

    De Munshi, D; Mukherjee, M

    2011-01-01

    A frequency stabilized laser referenced to an unperturbed atomic two level system acts as the most accurate clock with femtosecond clock ticks. For any meaningful use, a Femtosecond Laser Frequency Comb (FLFC) is used to transfer the atomic clock accuracy to electronically countable nanosecond clock ticks. Here we propose an alternative clockwork based on the phenomenon that when an atomic system is slowly evolved in a cyclic path, the atomic energy levels gather some phase called the geometric phase. This geometric phase dependent energy shift has been used here to couple the two frequency regimes in a phase coherent manner. It has also been shown that such a technique can be implemented experimentally, bypassing the highly involved setup of a FLFC.

  5. Order of the 9. of March 2010 approving the decision no 2010-DC-0172 of the 5. of January 2010 by the Nuclear Safety Authority specifying the limits of releases in the environment of liquid and gaseous effluents of civil base nuclear installations of the Cadarache Centre operated by the Atomic Energy Commissariat (CEA) on the district of Saint-Paul-lez-Durance (Bouches-du-Rhone department)

    International Nuclear Information System (INIS)

    This legal publication contains references to the different legal and official documents (codes, orders, minister's opinion, public surveys, administrative authorizations, local community opinion) at the root of this specification of limits related to releases in the environment of liquid and gaseous effluents of civil base nuclear installations of the Cadarache Centre operated by the Atomic Energy Commissariat (CEA) on the district of Saint-Paul-lez-Durance. These installations are listed and tables present the limits for different radioactive emissions (carbon 14, hydrogen 3, iodine, radioactive rare earths, and alpha, beta and gamma emitters) from these different installations, but also the maximum admitted concentrations for gaseous chemical effluents (HCl, HF, NOx, CO, and so on), as well as limits for thermal releases

  6. Non-conservation of energy arising from atomic dipole interactions and its effects on light field and coupled atoms

    Institute of Scientific and Technical Information of China (English)

    董传华

    2003-01-01

    The interactions between coupled atoms and a single mode of a quantized electromagnetic field, which involve the terms originating from the dipole interactions, are discussed. In the usual Jaynes Cummings model for coupled atoms,the terms of non-conservation of energy originating from dipole interactions are neglected, however, we take them into consideration in this paper. The effects of these terms on the evolutions of quantum statistic properties and squeezing of the field, the squeezing of atomic dipole moments and atomic population inversion are investigated. It has been shown that the coupling between atoms modulates these evolutions of fields and atoms. The terms of non-conservation of energy affect these evolutions of fields and atoms slightly. They also have effects on the squeezing of the field, the squeezing of atomic dipole and atomic population inversions. The initial states of atoms also affect these properties.

  7. Non—conservation of energy arising from atomic dipole interactions and its effects on light field and coupled atoms

    Institute of Scientific and Technical Information of China (English)

    DongChuan-Hua

    2003-01-01

    The interactions between coulpled atoms and a single mode of a quantized electromagnetic field, which involve the terms originating from the dipole interactions, are discussed. In the usual Jaynes-Cummings model for coupled atoms, the terms of non-conservation of energy originating from dipole interactions are neglected, however, we take them into consideration in this paper. The effects of these terms on the evolutions of quantum statistic properties and squeezing of the field, the squeezing of atomic dipole moments and atomic population inversion are investigated. It has been shown that the coupling between atoms modulates these evolutions of fields and atoms. The terms of non-conservation of energy affect these evolutions of field and atoms slightly. They also have effects on the squeezing of the field, the squeezing of atomic dipole and atomic population inversions. The initial states of atoms also affect these properties.

  8. Atomic Energy Law between politics and technology

    International Nuclear Information System (INIS)

    Papers and discussions of the 6th symposium on nuclear law, where legal experts and judges met scientists from other fields, representatives of authorities and industry, give a clear picture of the field of tension of nuclear law between politics and engineering. Problems of topical interest are legal guidelines for technical damage prevention measures, the limits of the radiation protection philosophy, inventory protection in the nuclear licensing procedure, the binding force of legal decisions, waste management provisions, and attempted reforms in liability legislation. (orig.) 891 HP/orig. 892 MB

  9. International nuclear low and atomic energy

    International Nuclear Information System (INIS)

    The aim of this work is to put points on the codification of international law of nuclear energy and its uses in military and peaceful in the first part. The second part was devoted for the imperfection of the law of international nuclear.

  10. United States Atomic Energy Commission Radiation Processing of Foods Programme

    International Nuclear Information System (INIS)

    The current progress of the United States Atomic Energy Commission's Radiation Processing of Food Programme, with emphasis on the clearance of such foods for general human consumption, product development, facility design, process conditions and economics, and commercial aspects are discussed. Semi-production processing for a number of products has now become feasible. The goal is to test laboratory data under near-commercial-scale process conditions, and to obtain cost data. Either completed, or nearing completion are semi-production facilities capable of processing various foods in quantities of thousands of pounds per hour. Among them are the Marine Products Development Irradiator, the Mobile Gamma Irradiator and the Grain Products Irradiator, for bulk and packaged grain. Plans for a Hawaiian Development Irradiator are also discussed. Activities in the United States, which are related to the commercialization of radiation processing of foods, including the use of radiation for processing fresh fish and fruits, sterilized meats and other food products, are discussed. For example, a project is under way in which several agencies of the United States Government are attempting to establish a co-operative programme with industry, aimed at the development of a pilot-plant meat irradiator. These efforts are directed towards the establishment of a large facility operated by industry which would: (a) provide necessary radiation-sterilized meats for the armed services; (b) establish process conditions and economics; and (c) introduce some of the product into the civilian economy, for commercial purposes. (author)

  11. Scientists speak of the peaceful use of atomic energy

    International Nuclear Information System (INIS)

    Experts from Argentina, Cuba, Mexico, Peru and Costa Rica have met in that last country, to offer the forum 'Peaceful uses of atomic energy: prospects for Costa Rica'. Specialists were invited by the Centro de Investigacion en Biologia Celular y Molecular (CIBCM) of the Universidad de Costa Rica (UCR) and the Centro de Investigacion en Biotecnologia (CIB) of Instituto Tecnologico de Costa Rica. The forum has developed around the theme the usefulness of atomic energy for science, and importance for the development of the country. The peaceful use of atomic energy was explained by specialists in each country, specifically in the field of health, industry, agriculture, industrial equipment sterilization, medical products, body tissues and crops

  12. Inquiries about awareness and knowledge of children and pupils on the concept related with atomic energy

    International Nuclear Information System (INIS)

    There is almost no chance to learn about the words (atomic energy), (radioactivity) and (radiation) in the middle and/or high school educations in Japan, because physics is one of the options in the high school curriculum, and 80-90% of students do not like to choose physics. This inquires aim to know the level of their knowledge on energy resources, atomic energy, radioactivity, radiation, and information sources on their related knowledge. Inquiries are made for the middle and high school students in Tokushima and Tsuruga. There are coal power plants in Tokushima, while atomic power plants in Tsuruga. Fossils energy gets the highest points in Tokushima, while Atomic energy gets the highest points in Tsuruga for a present-day energy source. Solar energy sources get the highest point as a promising 21st century energy source in both prefectures, especially for female students. Radioactivity reminds them of words atomic bomb, disease, injury, and harmful, those give very negative images. Radiation reminds them of words roentgen, radiation therapy, x-ray, and hospital use, those designate a sort of plus-image. More than 50 to 60% of them obtained their knowledge from mass media, particularly, television. In addition, less than a few % of them can give any scientific description about these words. As a whole, authors can say that the students have got a certain concept for these words from information of mass media. Meanwhile the school education has approximately no effect on the formation of their concept. Authors are giving some advises and recommendations for the school education and mass media in Japan. (Y. Tanaka)

  13. Atom-interferometry constraints on dark energy

    OpenAIRE

    Hamilton, Paul; Jaffe, Matt; Haslinger, Philipp; Simmons, Quinn; Müller, Holger; Khoury, Justin

    2015-01-01

    If dark energy --- which drives the accelerated expansion of the universe --- consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultra-high vacu...

  14. Basic Law and Atomic Energy Law

    International Nuclear Information System (INIS)

    The author avails himself of the by now controversial jurisdiction on partial licences issued for nuclear power plants to argue relevant provisions of the Basic Law and to include facts which are related to the Basic Law. This is also necessary for reasons of social policy, since such a juridicial decision produces an effect which spreads far beyond the litigants. In a constitutional state that has to stand the test in the conflict arising between human rights and technical progress, the controversy on basic rights has to form a part of the trial and of the opinion. There are two sides to the rule of law: The citizen's obligation not to use violence, and his right to be strictly protected by the Basic Law. (HSCH)

  15. Why atomic energy affects Civil Law

    Energy Technology Data Exchange (ETDEWEB)

    Knieper, R.

    1980-01-01

    The author deals with the widely disparaged decision of the Stuttgart Local Court which dismissed the complaint filed against some 'electricity rate payment boycotters' as being 'unfounded for the time being'. He proceeds on the question as to whether political considerations have surpassed the disciplining limits of laws and interpretations bound by the Basic Law. He considers the real problem to be whether the protected interests of third parties may be sacrified for the sake of any ideals of freedom. The relationship between complainant and defendant is much more complex than a contractual relation, the social dependence on power supply and being at the mercy of researchers embrace this relation inescapably. To make this general problem operationable, the court resorts to the construction of 'an additional obligation under a contract being broken'.

  16. The Atomic Energy Control Board's regulatory research and support program

    International Nuclear Information System (INIS)

    The purpose of the Regulatory Research and Support Program is to augment and extend the capability of the Atomic Energy Control Board's (AECB) regulatory program beyond the capability of in-house resources. The overall objective of the program is to produce pertinent and independent scientific and other knowledge and expertise that will assist the AECB in making correct, timely and credible decisions on regulating the development, application and use of atomic energy. The objectives are achieved through contracted research, development, studies, consultant and other kinds of projects administered by the Research and Radiation Protection Branch (RRB) of the AECB

  17. The tenth Arab conference on peaceful uses of atomic energy

    International Nuclear Information System (INIS)

    This conference includes the paper presented at the tenth Arab conference of the peaceful uses of Nuclear Atomic Energy that is organized by AAEA (Arab Atomic Energy Agency) in cooperation with Iraqi Ministry of Science and Technology and Kurdistan government , held in Erbil (Iraq) from 12-16 December 2010. This conference consists of three volumes covering the following concepts: Analysis and Material Improvement, Soil fertility, Water Recourse Management, Nuclear Medicine and Biological Irradiation, Isotopes Production, Improvement of Plant and Animal Production, Decommissioning and Dismantling of Nuclear Facilities, Radioactive Waste Management, Nuclear Safety and Security of Radiation Protection, Pest Control and Food Irradiation Processing

  18. Atomic energy. Section 5.6.2

    International Nuclear Information System (INIS)

    A brief outline is given of the research programme planned for Institutt for Atomenergi (IFA) in the years 1977-81. Research on nuclear power technology will be carried out within the Halden Reactor Project. IFA will also participate in the international Marviken programme and in American safety projects in the framework of IEA. Other activities will include energy technology research, also in IEA, mathematical and isotope methods in the petroleum field, isotope production and applications, fundamental research in solid state physics and process and environment technology. (JIW)

  19. Application study of the project management on the nuclear power projects in China Institute of Atomic Energy

    International Nuclear Information System (INIS)

    The article introduced the actions of foreign and domestic nuclear power technical services in China Institute of Atomic Energy, the project management theory is applied to the organization, implementation and control of the nuclear power projects. It is analyzed the quality, schedule , investment etc of nuclear power projects, the improving measures and suggestions are bring forward on the project management organization, quality assurance, reduce cost etc. It will raise its nuclear power project management level in China Institute of Atomic Energy. (author)

  20. International Atomic Energy Agency: Personal reflections

    International Nuclear Information System (INIS)

    This set of personal recollections reflect a variety of views from twenty-five people who have played major roles in shaping the policies of the IAEA or have made notable contributions to its work at different periods of its history. They provide individual insights - often from a rarely available insider's perspective - into particular aspects of the development of an international organization and thus complement the History of the IAEA written by David Fischer. The articles in this collection illustrate some of the complexities involved in the work of an international organization, where the Governing Bodies consist of over a hundred Member States, with different levels of industrial development, different political outlooks and different interests in the benefits of nuclear energy or concerns about the spread of nuclear weapons

  1. International Atomic Energy Agency Annual Report 2010

    International Nuclear Information System (INIS)

    The Annual Report 2010 aims to summarize only the significant activities of the Agency during the year in question The main part of the report, starting on page 17, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'Overview', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement and Background to the Safeguards Statement and Summary. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM and is also available on the Agency's web site at http://www.iaea.org./Publications/ Reports/index.html. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this report do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear-Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) The term 'nuclear weapon State' is as used in the NPT.

  2. International Atomic Energy Agency Annual Report 2012

    International Nuclear Information System (INIS)

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2012. - The IAEA Annual Report 2012 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report, starting on page 17, generally follows the programme structure as given in The Agency's Programme and Budget 2012-2013 (GC(55)/5). - The introductory chapter, 'Overview', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2012 and Background to the Safeguards Statement. - Additional information covering various aspects of the Agency's programme is available, in electronic form only, on iaea.org, along with the Annual Report. - Except where indicated, all sums of money are expressed in United States dollars. - The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. - The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. - The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non- Nuclear-Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear-weapon State' is as used

  3. International Atomic Energy Agency Annual Report 2009

    International Nuclear Information System (INIS)

    The Annual Report 2009 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report generally follows the programme structure as given in The Agency's Programme and Budget 2008-2009 (GC(51)/2). The introductory chapter, '2009 in Perspective', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2009 and Background to the Safeguards Statement. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional infomation covering various aspects of the Agency's programme is provided on the attached CD-ROM, and is also available on the Agency's web site at http://www.iaea.org/Publications/Reports/Anrep2009/index.html. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear-Weapon States (United Natinos document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear weapon State' is as used in the NPT

  4. International Atomic Energy Agency Annual Report 2013

    International Nuclear Information System (INIS)

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2013. The IAEA Annual Report 2013 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report, starting on page 15, generally follows the programme structure as given in The Agency's Programme and Budget 2012-2013 (GC(55)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2013 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available, in electronic form only, on iaea.org, along with the Annual Report. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear- Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear-weapon State' is as used in

  5. Correlated energy transfer between two ultracold atomic species

    Science.gov (United States)

    Krönke, Sven; Knörzer, Johannes; Schmelcher, Peter

    2015-05-01

    We study a single atom as an open quantum system, which is initially prepared in a coherent state of low energy and oscillates in a one-dimensional harmonic trap through an interacting ensemble of NA bosons, held in a displaced trap [arXiv:1410.8676]. The non-equilibrium quantum dynamics of the total system is simulated by means of an ab-initio method, giving us access to all properties of the open system and its finite environment. In this talk, we focus on unraveling the interplay of energy exchange and correlations between the subsystems, which are coupled in such a spatio-temporally localized manner. We show that an inter-species interaction-induced level splitting accelerates the energy transfer between the atomic species for larger NA, which becomes less complete at the same time. System-environment correlations prove to be significant except for times when the excess energy distribution among the subsystems is highly imbalanced. These correlations result in incoherent energy transfer processes, which accelerate the early energy donation of the single atom. By analyzing correlations between intra-subsystem excitations, certain energy transfer channels are shown to be (dis-)favored depending on the instantaneous direction of transfer.

  6. The World Power Conference and atomic energy

    International Nuclear Information System (INIS)

    The possibility that emerged after the last World War that useful power could be produced from nuclear fission led to optimistic estimates that nuclear power would prove to be the solution to the world's energy problems. The possible advantages of nuclear methods of power production compared with conventional means are discussed at the World Power Conference. The 1962 Conference with its theme 'The Changing Pattern of Power' will undoubtedly attract great interest in a world where the change-over from conventional to nuclear fuels for power production has started in some countries and is being actively examined in others. It is generally being realized that even though a country may possess indigenous supplies of uranium or thorium minerals, the building up of a nuclear industry i s a long and expensive process and the alternative of depending on countries more advanced in nuclear technology for the supply of materials, skill and know-how is costly in foreign exchange and international prestige. Many of the industrialized countries, still possessing supplies of conventional fuels, are preparing for the day when their reserves will become depleted and are embarking on training schemes to ensure a continuing supply of engineers and scientists skilled in nuclear arts

  7. International Atomic Energy Agency Annual Report 2014

    International Nuclear Information System (INIS)

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  8. Radiation therapy. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalog lists all sales publications of the International Atomic Energy Agency dealing with Radiation Therapy, and issued during the period 1 January 1990 - 30 April 2001. Most publications are issued in English, though some are also available in other languages. These are noted in the catalogue

  9. Energy fluctuations induced by stochastic frequency changes in atom traps

    International Nuclear Information System (INIS)

    We study the quantum description of energy fluctuations induced by stochastic changes in the frequency of atom traps. Using the connection between classical and quantum descriptions of parametric oscillators, the classical cumulant expansion method is used to obtain quantum results beyond standard perturbation theory. Both the case of static and time-dependent traps are explicitly worked out

  10. Annual Report 2003 of the Institute of Atomic Energy

    International Nuclear Information System (INIS)

    Annual report of the Institute of Atomic Energy, Swierk (PL), described the results of the research work carried out at the Institute in 2003 year. The report contains detailed information on technical and research studies developed by all Institute Departments and Laboratories

  11. Environment. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    The catalogue lists all publications of the International Atomic Energy Agency dealing with the Environment issued during the period 1980-1993. The major subjects covered include: effect of agrochemical residues on soils and aquatic ecosystems, application of radioisotopes in conservation of the environment, siting of nuclear power plants, environmental isotope data and environmental contamination due to nuclear accidents

  12. Atomic Energy of Canada Limited, annual report, 1995-1996

    International Nuclear Information System (INIS)

    The 1996 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of Parliament, Minister of Natural Resources. Included in this report are messages from Marketing and Commercial Operation, Product Development, i e.CANDU and Research Reactors, CANDU research, Waste Management, Environmental Management, Financial Review and also included are copies of the financial statements

  13. On INIS atomic energy literature file of JOIS

    International Nuclear Information System (INIS)

    The International Nuclear Information System (INIS) atomic energy literature file is the file made under IAEA, and the input related to the atomic energy in Japan into this file is carried out by the Japan Atomic Energy Research Institute. Now, the service of offering the information to the users in Japan was to be made by the Japan Information Center of Science and Technology through the on-line system JOIS. The INIS file is old in the world as the data base with the objective of mechanized retrieval, and the data bases set up thereafter followed its pattern. For example, the thesaurus for the purpose of precise information retrieval and the link connecting the relation of words to words were incorporated in the data base from the beginning. The JICST on-line information system (JOIS) started the service in April, 1976, and offers the service for 13 files. Now, as the 14th, the INIS file was added. The materials since January, 1976, have been collected, and as of 1983, the total number reached about 590,000. As the features of the INIS file, the literatures, books, reports, patents and so on related to the peaceful use of atomic energy are collected. The retrieval of necessary literatures is made on-line by using key words and others. Also secondary retrieval can be utilized. (Kako, I.)

  14. Environment. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalog lists all sales publications of the International Atomic Energy Agency dealing with the Environment, and issued during the period 1 January 1990 - 30 April 2001. Most publications are issued in English, though some are also available in other languages. These are noted in the catalogue

  15. Ground state wave function and energy of the lithium atom

    OpenAIRE

    Puchalski, Mariusz; Pachucki, Krzysztof

    2006-01-01

    Highly accurate nonrelativistic ground-state wave function and energy of the lithium atom is obtained in the Hylleraas basis set. The leading relativistic corrections,as represented by Breit-Pauli Hamiltonian, are obtained in fair agreement with the former results. The calculational method is based on the analytical evaluation of Hylleraas integrals with the help of recursion relations.

  16. Scientists credit `Atoms for Peace' for progress on energy, security

    CERN Multimedia

    Jones, D

    2003-01-01

    "Fifty years after President Eisenhower unveiled his plan for developing peaceful uses for nuclear fission, the scientific advances spawned by his Atoms for Peace program have made possible major advances in energy and national security, a panel of physicists said last week" (1 page).

  17. A history of the Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Topics covered include the pre-history of the AECB, its creation, early operations and evolution, its relations with nuclear research, the uranium industry, and the nuclear power industry, its involvement with transportation and safeguards, and some current problems. The focus is on the Atomic Energy Control Act and regulations derived from the act

  18. Act No. 2690 concerning the Turkish Atomic Energy Association

    International Nuclear Information System (INIS)

    The purpose of this Act is to reorganise the Turkish Atomic Energy Commission (TAEC) into an Association (TAEA) in order to provide it with greater powers. While remaining under the direct supervision of the Prime Minister, the TAEA how has legal personality, with more independence and flexibility from the financial and administrative viewpoints. (NEA)

  19. Atomic Energy of Canada Limited annual report 1985-86

    International Nuclear Information System (INIS)

    The annual report of Atomic Energy of Canada Limited for the fiscal year ended March 31, 1986 covers the following subjects: report from the chairman and the president; research company; CANDU operations; radiochemical company; employee performance; nuclear Canada; Financial section; and board of directors and officers

  20. Corrections to the Nonrelativistic Ground Energy of a Helium Atom

    Institute of Scientific and Technical Information of China (English)

    段一士; 刘玉孝; 张丽杰

    2004-01-01

    Considering the nuclear motion, we present the nonrelativistic ground energy of a helium atom by using a simple effective variational wavefunction with a flexible parameter k. Based on the result, the relativistic and radiative corrections to the nonrelativistic Hamiltonian are discussed. The high precision value of the helium ground energy is evaluated to be -2.90338 a.u. With the relative error 0.00034%.

  1. Survey report on development and utilization of atomic energy

    International Nuclear Information System (INIS)

    The Atomic Energy Bureau of Science and Technology Agency carried out a ''Survey of Development and Utilization of Atomic Energy'' in April 1985 to investigate the expenses for research and development; the number of researchers and technical workers; and facilities for and achievements of research and development in private firms. This report outlines major results of the survey. The total sales in the atomic power supply industry was 1,755,400 million yen, of which 75.6 percent was accounted for by the sales of nuclear reactors and related apparatus. For expenses for research and development, electric business units spend more money for work entrusted to other firms than for activities by themselves, while the contrary tendency was seen in the atomic power supply industry. It is revealed that Japanese firms concentrate much effort on the development of light water reactors. Firms in the atomic power supply industry spend more money on research and development activities compared to other industries. More than 50 percent of the researchers in the industry are engaged in studies on nuclear reactors and related apparatus. The greatest achievements have been made in the field of research and development of light water reactors and waste processing/disposal. (Nogami, K.)

  2. Tenth act amending the German atomic energy act

    International Nuclear Information System (INIS)

    On January 14, 2009, the German federal government introduced into parliament the 10th Act Amending the Atomic Energy Act. In the first reading in the federal parliament, Federal Minister for the Environment Gabriel emphasized 2 main points: Intensified protection of nuclear facilities and of transports of radioactive substances against unauthorized interventions; transfer by law to the Federal Office for Radiological Protection (BfS) of decommissioning of the Asse mine. Reliability review: The amendment to Sec.12 b of the Atomic Energy Act is to meet the different safety and security conditions after the terrorist attacks on September 11, 2001 in the United States and other terrorist activities afterwards (London, Madrid) also with respect to hazards arising to nuclear facilities and nuclear transports. The bill must be seen in conjunction with the Ordinance on Reliability Reviews under the Atomic Energy Act dated July 1, 1999 which covers reviews of reliability of persons holding special responsibilities. Asse II mine: The competence of the Federal Office for Radiological Protection is achieved by an amendment to Sec.23, Para.1, Number 2, Atomic Energy Act, in which the words ''and for the Asse II mine'' are added after the word ''waste.'' Further proceedings depend on the additional provision in a new Sec.57 b, Atomic Energy Act. Accordingly, the operation and decommissioning of the Asse II mine are subject to the regulations applicable to facilities of the federation pursuant to Sec.9a, Para.3. In this way, Asse II is given the same legal status as the federal waste management facilities. Moreover, it is stipulated that the mine is to be shut down immediately. (orig.)

  3. Elemental analysis of hair samples using energy dispersive X-ray fluorescence and atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Elemental analysis of hair samples was performed using energy dispersive X-ray fluorescence. The ion exchange preconcentration technique was employed. The capacity of the exchanger used-cellulose hyphan at different pH was investigated to determine the optimum pH for the resin. The capacity of the resin to take up elements of interest from mixed solutions was also analysed using atomic absorption spectroscopy. (author)

  4. Investigation of energy thresholds of atomic and cluster sputtering of some elements under ion bombardment

    CERN Document Server

    Atabaev, B G; Lifanova, L F

    2002-01-01

    Threshold energies of sputtering of negative cluster ions from the Si(111) surface were measured at bombardment by Cs sup + , Rb sup + , and Na sup + ions with energy of 0.1-3.0 keV. These results are compared with the calculations of the similar thresholds by Bohdansky etc. formulas (3) for clusters Si sub n sup - and Cu sub n sup - with n=(1-5) and also for B, C, Al, Si, Fe, Cu atoms. Threshold energies of sputtering for the above elements were also estimated using the data from (5). Satisfactory agreement between the experimental and theoretical results was obtained. (author)

  5. Progression of technology education for atomic energy engineering in Tsuyama National College of Technology

    International Nuclear Information System (INIS)

    This paper describes the achievements of a program in which technology education is provided to cultivate practical core engineers for low-level radiation. It was made possible by means of (1) an introductory education program starting at an early age and a continuous agenda throughout college days and (2) regional collaboration. First, with regard to the early-age introductory education program and the continuous education agenda, the subjects of study related to atomic energy or nuclear engineering were reorganized as 'Subjects related to Atomic Power Education' for all grades in all departments. These subjects were included in the syllabus and the student guide book, emphasizing a continuous and consistent policy throughout seven-year college study, including the five-year system and additional two-year advanced course. Second, to promote practical education, the contents of lectures, experiments, and internships were enriched and realigned in collaboration with the Japan Atomic Energy Agency, Okayama University and The Cyugoku Electric Power Co., Inc. In addition to the expansion and rearrangement of atomic power education, research on atomic power conducted for graduation thesis projects were undertaken to enhance the educational and research activities. In consequence, it has been estimated that there is now a total of fourteen subject areas in atomic energy technology, more than eight-hundred registered students in the department, and thirteen members of the teaching staff related to atomic energy technology. Furthermore, the 'Tsuyama model' is still being developed. This program was funded by the Ministry of Education, Culture, Sports, Science and Technology. (author)

  6. Progression of technology education for atomic energy engineering in Tsuyama National College of Technology

    International Nuclear Information System (INIS)

    This paper describes the achievements of a program in which technology education is provided to cultivate practical core engineers for low-level radiation. It was made possible by means of (1) an introductory education program starting at an early age and a continuous agenda throughout college days and (2) regional collaboration. First, with regard to the early-age introductory education program and the continuous education agenda, the subjects of study related to atomic energy or nuclear engineering were reorganized as “Subjects related to Atomic Power Education” for all grades in all departments. These subjects were included in the syllabus and the student guide book, emphasizing a continuous and consistent policy throughout seven-year college study, including the five-year system and additional two-year advanced course. Second, to promote practical education, the contents of lectures, experiments, and internships were enriched and realigned in collaboration with the Japan Atomic Energy Agency, Okayama University and The Cyugoku Electric Power Co., Inc. In addition to the expansion and rearrangement of atomic power education, research on atomic power conducted for graduation thesis projects were undertaken to enhance the educational and research activities. In consequence, it has been estimated that there is now a total of fourteen subject areas in atomic energy technology, more than eight-hundred registered students in the department, and thirteen members of the teaching staff related to atomic energy technology. Furthermore, the “Tsuyama model” is still being developed. This program was funded by the Ministry of Education, Culture, Sports, Science and Technology. (author)

  7. Arbitrary excitation of atomic hydrogen at high energies

    International Nuclear Information System (INIS)

    Because of the growing need of excitation cross-section data of atomic hydrogen by fully stripped heavy ions for the preparation of an atomic database for neutral-beam penetration in large tokamaks, we have calculated these data in the framework of the first-order Born approximation for n≤20 in the energy range of 0.1 to 1.5 MeV/amu. The present computed results are found to be in agreement with the existing observed results. From the present calculation it also appears that the contribution from subshells characterized by l>3 is always less than 2%

  8. Effects of QED and Beyond from the Atomic Binding Energy

    International Nuclear Information System (INIS)

    Atomic binding energies are calculated at utmost precision. A report on the current status of Lamb-shift predictions for hydrogenlike ions, including all quantum electrodynamical corrections to first and second order in the fine structure constant α is presented. All relevant nuclear effects are taken into account. High-precision calculations for the Lamb shift in hydrogen are presented. The hyperfine structure splitting and the g factor of a bound electron in the strong electromagnetic field of a heavy nucleus is considered. Special emphasis is also put on parity violation effects in atomic systems. For all systems possible investigations beyond precision tests of quantum electrodynamics are considered

  9. High-energy electroproduction in an atomic field

    CERN Document Server

    Krachkov, P A

    2016-01-01

    The differential cross section of high-energy electroproduction in the electric field of heavy atoms is derived. The result is obtained with the exact account of the atomic field by means of the quasiclassical approximation to the wave functions in the external field. The Coulomb corrections substantially modify the differential cross section compared with the Born result. They lead to the azimuth asymmetry in the differential cross section for the polarized incoming electron. The Coulomb corrections to the total cross section are obtained in the leading logarithmic approximation.

  10. Use of atomic energy in agriculture: Future prospects in Africa

    International Nuclear Information System (INIS)

    The methods by which atomic energy can be used in agriculture vary considerably, depending on the properties of the radiations emitted by radioactive isotopes. Tracer techniques are now being applied very extensively. The phenomenon of isotope dilution has been used for making quantitative determinations. Interactions between radiation and matter have been used to induce chromosome mutations for the purpose of altering certain physiological functions or even for the complete destruction of certain living organs. In soil science these techniques can be used to study various physical properties, the dynamic properties of fertilizer elements, optimum methods of fertilizer application, evolution of organic matter and certain phenomena of soil formation. In plant physiology it has been possible to explain certain phenomena in mineral nutrition and biosynthetic metabolism. In plant genetics some important mutations have been obtained by irradiation of seeds and other plant organs. In work concerned with plant protection these methods can help clarify questions of insect biology and pesticide behaviour in the soil and in plants; in certain cases they can also contribute to the elimination of harmful insects (release of males sterilized by irradiation). Nuclear methods could also be applied to the study of numerous physiological and biochemical processes of importance in animal husbandry. In addition, irradiation can also serve as a means of achieving improved food preservation. Certain applications would appear to have priority as far as Africa is concerned, namely determination of soil moisture content by means of neutron gauges, study of the dynamic characteristics of certain fertilizer elements, rational utilization of fertilizers, plant physiology, obtaining radiation-induced mutations (in certain cases carefully chosen by experts), biology of crop parasites, sterilization of certain insects, animal physiology and the irradiation of various foodstuffs. (author)

  11. The International Atomic Energy Agency Nuclear Security Education Strategies

    International Nuclear Information System (INIS)

    The threat of nuclear terrorism has not diminished. In response to the concerns of States, an international nuclear security framework has emerged through the establishment of a number of legally binding and non-binding international instruments which obligates or commits States to carry out a number of actions to protect against nuclear terrorism. In this context, the need for human resource development programmes in nuclear security was underscored at several International Atomic Energy Agency (IAEA) General Conferences and Board of Governors' Meetings. In the pursuit of this need, the IAEA provides a comprehensive nuclear security training programme to States on a regular basis, and has developed a concept that seeks to effectively pass ownership of nuclear security knowledge and skills to States through the establishment of a Nuclear Security Support Centre. In addition, the IAEA has developed a technical guidance titled IAEA Nuclear Security Series No. 12 - Educational Programme in Nuclear Security that consists of a model of a Master of Science (M.Sc.) and assists educational institutions to provide nuclear security education. The article sets out IAEA efforts in the area of nuclear security training and education, including the assistance to States for establishing a Nuclear Security Support Centre. It underlines the objective and content of the IAEA Nuclear Security Series No. 12, discusses different concepts on how to establish nuclear security at universities and, emphasizes on the IAEA efforts to assist educational and research institutions, and other stake holders to enhance global nuclear security by developing, sharing and promoting excellence in nuclear security education. (author)

  12. Nuclear Materials Management at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    The procedures for nuclear material control are reviewed, based on the experiences at the Japan Atomic Energy Research Institute. Nuclear materials to be discussed here include: - Both natural and enriched uranium for research; - Imported enriched nuclear fuel elements for JRR-2 (10-MW CP-5), JRR-4 (1-MW swimming pool), JPDR (12.5-MW(e) BWR), and the critical assemblies for JMTR (50-MW light-water moderated) and for the propulsion reactor; - Domestically-fabricated natural uranium fuel elements for JRR-3 (10-MW heavy-water moderated); - Domestically-fabricated fuels for the critical assemblies manufactured from imported enriched uranium oxides; - Domestically-fabricated enriched fuel elements for JPDR and for the propulsion reactor manufactured from imported enriched uranium hexafluoride. Both thorium and plutonium are also under control, but excluded from the present paper. Entire administrative pattern for nuclear material control is first presented. The emphasis is placed on the domestic fabrication of enriched fuel elements from imported enriched uranium, and the details of the control procedures during and after the fabrication process are discussed. The control procedures include the chemical analysis for purity check, isotopic assay by mass spectrometry, physical and mechanical tests of fabricated products, and the careful prevention in the diversion of nuclear materials. Administrative problems being attributed to Japanese domestic situation are presented; for example, the segregation, collection and efficient recovery and practical uses of residual uranium from the fabrication process. Methods for keeping records on the storage and uses of nuclear materials are also discussed. More satisfactory control procedures for other nuclear materials such as thorium and heavy water are under progress. (author)

  13. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  14. Utilization of atomic energy in Asia and nuclear nonproliferation system

    International Nuclear Information System (INIS)

    The economical growth in East Asia is conspicuous as it was called East Asian Miracle, and also the demand of energy increased rapidly. The end of Cold War created the condition for the further development in this district. Many countries advanced positively the plan of atomic energy utilization, and it can be said that the smooth progress of atomic energy utilization is the key for the continuous growth in this district in view of the restriction of petroleum resources and its price rise in future and the deterioration of global environment. The nuclear nonproliferation treaty (NPT) has accomplished large role, but also its limitation became clear. At present, there is not the local security system in Asia, but in order that the various countries in Asia make the utilization of atomic energy and the security compatible, it is useful to jointly develop safety technology, execute security measures and form the nuclear fuel cycle as Asia. Energy and environmental problems in Asia are reported. Threat is essentially intention and capability, and the regulation only by capability regardless of intention brings about unrealistic result. The limitation of the NPT is discussed. The international relation of interdependence deepends after Cold War, and the security in Asia after Cold War is considered. As the mechanism of forming the nuclear fuel cycle for whole Asia, it is desirable to realize ASIATOM by accumulating the results of possible cooperation. (K.I.)

  15. First-principles calculation on binding energy of an interstitial hydrogen atom around a screw dislocation in BCC iron

    International Nuclear Information System (INIS)

    The binding energy of an interstitial hydrogen atom at various lattice sites around the a0/2[111] screw dislocation core in BCC iron has been determined using the first-principles calculation. The calculation was based on the core structure of a screw dislocation with symmetric displacement field, which was obtained using the large-scale supercell containing 231 atoms and 1 x 1 x 4 k-point samplings. The binding or trapping energy of a hydrogen atom at both the t-site (tetrahedral site) and o-site (octahedral site) near a core is found to be approximately 0.2 eV. (author)

  16. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    Energy Technology Data Exchange (ETDEWEB)

    Guiberteau, Ph.; Nokhamzon, J.G. [French Atomic and Alternatives Energy Commission CEA/DEN/DADN Saclay 91191 Gif-sur-Yvette Cedex (France)

    2012-07-01

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling

  17. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    International Nuclear Information System (INIS)

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling operations at the CEA

  18. Correlation Between Energy Transfer Rate and Atomization Energy of Some Trinitro Aromatic Explosive Molecules

    Institute of Scientific and Technical Information of China (English)

    Su-hong Ge; Xin-lu Cheng; Zheng-lai Liu; Xiang-dong Yang; Fang-fang Dong

    2008-01-01

    An assumptive theoretical relationship is suggested to describe the property of molecular atomization energy and energy transfer rate in the initiation of explosions. To investigate the relationship between atomization energy and energy transfer rate, the number of doorway modes of explosives is estimated by the theory of Dlott and Fayer in which the rate is proportional to the number of normal mode vibrations. It was evaluated frequencies of normal mode vibrations of eight molecules by means of density functional theory (DFT) at the b3p86/6-31G(d,p) level. It is found that the number of doorway modes shows a linear correlation to the atomization energies of the molecules, which were also calculated by means of the same method. A mechanism of this correlation is discussed. It is also noted that in those explosives with similar molecular structure and molecular weight, the correlation between the atomization energy and the number of doorway modes is higher.

  19. Energy and decay width of the pi-K atom

    OpenAIRE

    Jallouli, H.; Sazdjian, H.

    2006-01-01

    The energy and decay width of the pi-K atom are evaluated in the framework of the quasipotential-constraint theory approach. The main electromagnetic and isospin symmetry breaking corrections to the lowest-order formulas for the energy shift from the Coulomb binding energy and for the decay width are calculated. They are estimated to be of the order of a few per cent. We display formulas to extract the strong interaction S-wave pi-K scattering lengths from future experimental data concerning ...

  20. Training course for border guards organized by the Institute of Atomic Energy in Swierk, Poland

    International Nuclear Information System (INIS)

    Danger of illegal trade in radioactive and fissile material has recently increased due to disintegration of the former Soviet Union. A substantial part of these materials is suspected to be smuggled through Poland to Western Europe. Proper countermeasures like establishing radiation detecting gates at border crossings and specific training programs for border guards have been set up by Polish authorities. On request of Polish Border Guard Command the Institute of Atomic Energy (IAE) has prepared a series of training courses for border guard officers. The courses covered both theoretical and practical subjects concerned with radiation safety and were focused on detection and safeguarding of radioactive or fissile material at border crossings. (author)

  1. Summary of the law relating to atomic energy and radioactive substances as at March 1979

    International Nuclear Information System (INIS)

    This summary is intended to be a 'signpost' to the relevant law in the United Kingdom, but does not cover any aspect in detail. It falls under the following headings: common law; legislation (Atomic Energy Act 1946 and subordinate legislation; Radioactive Substances Act 1948 and subordinate legislation; Radioactive Substances Act 1960; Electricity (Amendment) Act 1961; Nuclear Installations Acts 1965 and 1969 and subordinate legislation; the Secretary of State for Trade and Industry Order 1970; Radiological Protection Act 1970 as amended by the Health and Safety at Work etc. Act 1974; Air Navigation (Restriction of Flying)(Atomic Energy Establishments) Regulations 1976; Nuclear Safeguards and Electricity (Finance) Act 1978; legislation relating to the United Kingdom Atomic Energy Authority); regulations under the Factories Act 1961; regulations relating to educational establishments; regulations and orders relating to food and medicines; regulations, rules etc. affecting the transport of radioactive materials; regulations under the Social Security Act 1975; control of import and export; the Euratom Treaty; important non-statutory codes of practice etc.; international conventions, regulations etc. relating to the peaceful use of atomic energy and radioactive substances, in which the United Kingdom is interested; foreign legislation. (U.K.)

  2. Department of Atomic Energy: Annual report, 1983-84

    International Nuclear Information System (INIS)

    The annual report of the Department of Atomic Energy for the financial year 1983-84 describes its activities under the headings: Nuclear Power, Research and Development, Public Sector Undertakings, and Other Activities. The report surveys: (1) the performance of nuclear power plants at Tarapur, Kota and Kalpakkam, heavy water plants, fuel fabrication and reprocessing plants, and waste management facilities, (2) the research and development activities of Bhabha Atomic Research Centre at Bombay and its constituent units at various locations in the country, Reactor Research Centre at Kalpakkam, the aided institutes, namely, Tata Institute of Fundamental Research and Tata Memorial Centre, both at Bombay, and Saha Institute of Nuclear Physics at Calcutta, (3) performance of public sector undertakings: Indian Rare Earths Ltd., Uranium Corporation of India Ltd., and Electronics Corporation of India Ltd., (4) progress of nuclear power projects at Narora and Kakrapar, Orissa Sand Complex Project, MHD project at Tiruchirapalli, DHRUVA (formerly known as R-5) project at Bombay, Fast Breeder Test Reactor and 500 MW Prototype Fast Breeder Reactor projects at Kalpakkam, and heavy water projects at Thal-Vaishet and Manuguru, and (5) other activities including technology transfer; training; service to industry, agriculture and medicine in use of radioisotopes and radiation, export of radioisotopes, allied products and nuclear instruments; international relations; countrywide radiation safety programme, exploration of atomic minerals; information and publicity etc. An Atomic Energy Regulatory Board was established during the report year for the special purpose of carrying out regulatory and safety functions specified in the Atomic Energy Act of the Government of India. (M.G.B.)

  3. Department of Atomic Energy, annual report, 1980-81

    International Nuclear Information System (INIS)

    The annual report of the Department of Atomic Energy (DAE) of the Government of India for the period of the fiscal year 1980-81 surveys the work of DAE, its various constituent units and aided institutions. The main thrust of the DAE's programme in the country is directed towards peaceful uses of atomic energy - primarily for generation of electric power and also for application of radioisotopes and radiation in medicine, agriculture, and industry. The research and development (R and D) activities of the Bhabha Atomic Research Centre (BARC) at Bombay, the major R and D establishment of DAE, in the fields of nuclear physics, solid state physics, chemistry and materials science, isotope and radiation applications, reactor technology and radioactive waste management are described in detail. The R and D activities of the Reactor Research Centre at Kalpakkam and the aided institutions such as the Tata Institute of Fundamental Research and the Tata Memorial Centre, both at Bombay, and the Saha Institute of Nuclear Physics at Calcutta are reviewed in brief. Progress of the MHD project, the heavy water plant projects, the thermal research reactor R-5 project at BARC and nuclear power plant projects at Narora and Kalpakkam is surveyed. Performance of industrial production units such as nuclear power stations at Tarapur and Kota, the Nuclear Fuel Complex at Hyderabad, Atomic Minerals Division, ISOMED - the radiation sterilisation plant for medical products, the Indian Rare Earths Ltd., the Electronics Corporation of India Ltd., and the Uranium Corporation of India Ltd., is reported. India's participation in the activities of the International Atomic Energy Agency and collaboration with other countries are also mentioned. (M.G.B.)

  4. Challenges of atomic energy regulation in Indian context

    International Nuclear Information System (INIS)

    Over the years, India has mastered all the stages of the nuclear fuel cycle, which include mining, processing and fabrication of nuclear fuel; design, construction, and operation of nuclear power reactors and research reactors; reprocessing of spent fuel and management of radioactive wastes. Ionising radiation is also used widely in medical, industrial and research areas. Since its inception, Department of Atomic Energy (DAE) was enforcing radiological safety in the country through in-house or ad-hoc committees, till a dedicated regulatory body (AERB) was set up 25 years ago. Today India is operating 19 nuclear power plants with different vintages (2 BWRs and 17 PHWRs) and another 8 (1 PFBR, 5 PHWRs and 2 PWRs) are in various stages of construction. Recently there are new evolutionary reactors (AHWRs) for which design has been completed and are on the threshold for consideration for construction. To match the rapid growth in the need for power India is also about to take up construction of large evolutionary PWRs of foreign design. This variety in the Indian nuclear power programme has come up due to a systematic evaluation and optimisation of the resources and technology available within the country. Added to this is the growing use of radiation in non-power applications. As the safety supervision of this huge programme is the responsibility of AERB, it faces various challenges, like, - Strategies for regulating wide variety of nuclear and radiation facilities with wide dispersal; - Meeting present day expectations with regard to nuclear and radiation safety and nuclear security; - The safety and security of large number of radioactive sources spread over such a vast country and of the associated import/export guidance; - Ensuring safety of old plants by periodic reviews and by prescribing adequate safety upgradation and ageing management programme; -Adaptation of the regulatory system and of regulations to new and foreign design nuclear technologies and

  5. Annual meeting on nuclear technology '88. Technical session on focal points of the atomic energy law and the radiation protection law in 1988

    International Nuclear Information System (INIS)

    This issue of Annual Meeting on Nuclear Technology reports presents the papers of the technical session on 'Focal points of the atomic energy law and the radiation protection law in 1988'. The titles are: Is there a binding link between decisions of the atomic energy authority and criminal law? Conclusions to be drawn from the Alkem case court decision. - Recent developments in atomic energy law. - Current radiation protection law. - Codetermination at plant level in a nuclear installation. - The legal position of foreigners from neigbour countries in the field of atomic energy law. The licensing of nuclear installations near the border. (RST)

  6. Atomic physics experiments at the high energy storage ring

    Science.gov (United States)

    Stöhlker, Thomas; Litvinov, Yuri A.; the SPARC Collaboration

    2015-11-01

    Facility for Antiproton and Ion Research (FAIR), will offer unprecedented experimental opportunities. The Stored Particles Atomic Research Collaboration (SPARC) at FAIR aims at creating a worldwide unique research program with highly charged ions by utilizing storage ring and trapping facilities. The foreseen experiments will address physics at strong, ultra-short electromagnetic fields including the fundamental interactions between electrons and heavy nuclei as well as the experiments at the border between nuclear and atomic physics. In view of the staged construction of the FAIR facility, SPARC worked out an early realization scheme for experiments with highly-charged heavy-ions at relativistic energies to be conducted in the High-Energy Storage Ring.

  7. Training courses run by the Department of Atomic Energy, India

    International Nuclear Information System (INIS)

    The Department of Atomic Energy (DAE), India, conducts a large number of courses covering a variety of fields, mainly concerned with nuclear energy and its applications. These courses are : (1) a comprehensive multidisciplinary course in nuclear sciences and engineering, (2) courses in safety aspects of: (a) the medical uses of radioisotopes, (b) research applications of ionising radiations, (c) the industrial applications of radiation sources, and (d) industrial radiography; (3) industrial radiographer's certification course, (4) course in hospital physics and radiological physics, (5) diploma course in radiation medicine, (6) courses in operation and maintenance of: (a) research reactors and facilities, (b) nuclear power reactors, and (7) course in exploration of atomic minerals. Detailed information on these courses, covering institutions of DAE conducting them, duration, academic requirements for admission to them, method of adimission, detailed syllabus, and general information such as fees, accommodation, stipend if any, etc. is given. (M.G.B.)

  8. Theory of ion-atom collisions at high energy, I

    International Nuclear Information System (INIS)

    Electron capture process by an ion from a neutral atom is one of the fundamental problems in the theory of atomic collision physics. Here a brief review is given mainly on the processes of non-radiative and radiative electron capture (charge transfer and REC). The main mechanism which govern the charge transfer process is introduced and the characteristic feature which is predicted by the theory is explained. As for the radiative electron capture process, after introducting the present theories, the full-quantum mechanical theoretical treatment is introduced. The theory leads a result which includes some inconsistency with formulae obtained by guage transformation. The relativistic quantum mechanical treatment is being tried in order to remove this inconsistency. The some results including mass and velocity dependence are reported and discussed. (author)

  9. White paper on atomic energy in 1992. 1992 ed.

    International Nuclear Information System (INIS)

    In Japan, where more than 80% of the energy resources depends on the import from foreign countries, and the steady growth of energy demand is expected, it is important to secure the stable supply of energy. The nuclear power which is superior in the stability of supply and the economy is regarded as one of main energy sources, and its development and utilization have been promoted positively. Besides, in the global environment problems such as global warming and acid rain, its superiority was pointed out. By the recent change of international circumstances, nuclear arm reduction advances, but the fear of the diffusion of nuclear substances and the flowing-out of the men and technologies related to nuclear arms is brought about. The contributions to reliable nuclear nonproliferation system and the heightening of the safety of nuclear power generation in the world are expected for Japan. In this book, the circumstances of atomic energy accompanying the change of international situation and the role of Japan, the present state of atomic energy in foreign countries and Japan, nuclear power generation, nuclear fuel cycle, the securing of safety and environment preservation, the development of new power reactors, nuclear fusion and others are reported. The related materials are attached. (K.I.)

  10. High energy halogen atom reactions activated by nuclear transformations

    International Nuclear Information System (INIS)

    This program, which has been supported for twenty-four years by the Us Atomic Energy Commission and its successor agencies, has produced significant advances in the understanding of the mechanisms of chemical activation by nuclear processes; the stereochemistry of radioactivity for solution of specific problems. This program was contributed to the training of approximately seventy scientists at various levels. This final report includes a review of the areas of research and chronological tabulation of the publications

  11. The Atomic Energy of Canada Limited (AECL) employee health study

    International Nuclear Information System (INIS)

    The Atomic Energy Health Study formally began in April 1980. The purpose of the study is to determine the causes of death among a population of radiation workers and to compare this information with data available for the causes of death in the general population. The study population and the implementation are briefly discussed. The aim of the study is to determine the real occupational risk of being a radiation worker. 3 refs

  12. Electron radiative self-energy of highly stripped heavy atoms

    International Nuclear Information System (INIS)

    A new algorithm is presented for the evaluation of the electron radiative self-energy in heavy atoms, for which Zα is not a perturbative expansion parameter. The algorithm for hydrogenic ions is presented in detail. The terms to be evaluated numerically are finite, free of spurious gauge dependent parts, and are not in the form of a subtraction. The extension to many electron ions is also discussed. copyright 1991 Academic Press, Inc

  13. Environment, 1986-1997. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Environment and issued during the period of 1986-1997. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain papers in languages other than English, but all of these papers have abstracts in English

  14. Radiation protection and atomic energy legislation in the Nordic countries

    International Nuclear Information System (INIS)

    The radiation protection and atomic energy laws of the Nordic countries Denmark, Finland, Iceland, Norway and Sweden are presented in this report in their status of March 1, 1984. As a background to this legislation the Nordic co-operation is briefly reviewed and the common basis for the legal texts is given. Some historical remarks for the legislation of each country are included. (orig./HP)

  15. Electromagnetic isotope separation at the China Institute of Atomic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Li Gongpan; Lin Zhizhou; Xiang Xuyang; Deng Jingting (China Inst. of Atomic Energy, Beijing, BJ (China))

    1992-08-01

    Electromagnetic isotope separation at the China Institute of Atomic Energy (CIAE) is described. Calutron, Nier-Bernas and Freeman ion sources were constructed for ion implantation systems. It was found that some enriched isotope samples were contaminated more by lighter than by heavier neighbors. This phenomenon may be explained if the sputtered particles consist of a considerable percentage of ions. A computer inspection system for recording and processing operation data has been designed. (orig.).

  16. Parity Violating Energy Shifts and Berry Phases in Atoms, I

    OpenAIRE

    Bruss, D.; Gasenzer, T.; Nachtmann, O

    1998-01-01

    We present a study of parity (P) violating contributions to the eigenenergies of stationary systems containing atoms in spatially inhomogeneous external electric fields. In this context the subtle interplay of P-violation and time reversal (T) invariance plays an important role. If the entire field configuration is chosen to exhibit chirality the energies are in general shifted by pseudoscalar contributions which change sign under a planar reflection of the field. To calculate the effects we ...

  17. Atomic Energy Board, twenty first annual report, 1977

    International Nuclear Information System (INIS)

    Progress is reported on the following: nuclear materials, nuclear power, application of radioisotopes and radiation, health and safety, and fundamental studies undertaken in the fields of physics, chemistry, metallurgy, medicine and geology during 1977. The supporting activities of the computer services, engineering sevices, waste disposal plant, instrumentation section, research reactor and analytical services are given for 1977. The report contains a bibliography of publications published by staff members and bursars of the Atomic Energy Board during 1977

  18. Nucleus : the history of Atomic Energy of Canada Limited

    International Nuclear Information System (INIS)

    This book is a history of Atomic Energy of Canada Limited, a Canadian federal government crown corporation, from its creation to the present day. It explores the development of nuclear technology in Canada from its original military objectives to the present day. Peaceful applications in electrical power generation and medical radioisotope production. It chronicles a major international scientific development and the domestic industrial and political strategies that accompanied it

  19. Earth sciences. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Earth Sciences and issued during the period 1 January 1990 - 31 May 2001. Most publications are issued in English, though some are also available in other languages. This is noted as A for Arabic, C for Chinese, E for English, F for French, R for Russian and S for Spanish before the relevant ISBN number

  20. Low-energy collisions of antiprotons with atoms and molecules

    International Nuclear Information System (INIS)

    Time-dependent close-coupling calculations were performed using the impact parameter method for antiproton and proton collisions with alkali-metal atoms and hydrogen molecules. The targets are described as effective one-electron systems using appropriate model potentials. The proton data verify the employed method while the results for antiprotons improve the literature on these systems considerably. Cross sections for ionization and excitation as well as electron-energy spectra and stopping power will be presented.

  1. World situation of atomic energy and nuclear fuel cycle

    International Nuclear Information System (INIS)

    At the International Conference organized by the IAEA in May 1976, several sections dealt with problems of the production of atomic energy and of the nuclear fuel cycle. However, the whole spectrum of these problems was discussed including problems of economic policy, politics and ethical problems, too. Reports were presented on trends of the development of atomic energy in developed and developing countries. Besides the systems of nuclear power plants and the trends of their development, the Conference attached prominent importance to the supply of nuclear fuels and to the fuel cycle, respectively. Owing to important factors, the reprocessing of the spent nuclear fuel was emphasized. The problem area of the treatment of radioactive wastes, the protection of workers in immediate contact and of environment against radiations, the possibilities of ensuring nuclear safety, the degrees of hazards and the methods of protection of fast breeder reactors and up-to-date equipments were discussed. In contrast to earlier conferences the complex problem of the correlation of atomic energy to public opinion played an important role, too. (P.J.)

  2. Atomic energy law after the opt-out. Alive and fascinating. Report about the 14{sup th} German atomic energy law symposium 2012; Atomrecht nach dem Ausstieg. Lebendig und spannend. Tagungsbericht 14. Deutsches Atomrechtssymposium 2012

    Energy Technology Data Exchange (ETDEWEB)

    Leidinger, Tobias [Gleiss Lutz Rechtsanwaelte, Duesseldorf (Germany)

    2013-01-15

    Atomic energy law remains a living, fascinating subject matter. Nearly 200 participants were convinced of this impression at the 14{sup th} German Atomic Energy Law Symposium held in Berlin on November 19-20, 2012. Under the scientific chairmanship of Professor Dr. Martin Burgi, Ludwig Maximilian University of Munich, the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), after an interruption of 5 years, again organized a scientific conference about practice-related topics of atomic energy and radiation protection law. Atomic energy law once again proved to be a reference area for sophisticated issues of constitutional law and administrative law above and beyond its technical confines. The agenda of the 14{sup th} German Atomic Energy Law Symposium featured a broad spectrum of topics ranging from backfitting of nuclear power plants to European atomic energy and radiation protection law, to challenges facing national legal systems in the execution of atomic energy law, to legal issues connected with decommissioning and waste management, and on to the topical subject of finding a repository site. The 14{sup th} German Atomic Energy Law Symposium, on the whole, again demonstrated that an open discourse between science and practice is able to furnish important contributions to the implementation of laws in a balanced way rooted in practice. Especially the contributions dealing with the independence of public authorities and their organization, the doctrine of the reservation of functions of the executive branch, and planning by laws contain additional provisions able to influence the continued development of administrative law also above and beyond atomic energy law. The BMU also referred to a decision just heard from Brussels to the effect that a new European Safety Directive would be published as early as in 2013. As a consequence of the nuclear stress tests conducted EU-wide, the Directive is to lay down provisions about

  3. Scattering of low-energy neutrinos on atomic shells

    International Nuclear Information System (INIS)

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold

  4. Positron-Lithium Atom and Electron-Lithium Atom Scattering Systems at Intermediate and High Energies

    Institute of Scientific and Technical Information of China (English)

    K. Ratnavelu; S. Y. Ng

    2006-01-01

    @@ The coupled-channel optical method is used to study positron scattering by atomic lithium at energies ranging from the ionization threshold to 60 eV. The present method simultaneously treats the target channels and the positronium (Ps) channels in the coupled-channel method together with the continuum effects via an ab-initio optical potential. Ionization, elastic and inelastic cross sections in target channels, and the total cross section are also reported and compared with other theoretical and experimental data. A comparative study with the corresponding electron-lithium data is also reported.

  5. The New York Power Authority`s energy-efficient refrigerator program for the New York City Housing Authority -- 1997 savings evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R.G.; Miller, J.D.

    1998-09-01

    This document describes the estimation of the annual energy savings achieved from the replacement of 20,000 refrigerators in New York City Housing Authority (NYCHA) public housing with new, highly energy-efficient models in 1997. The US Department of Housing and Urban Development (HUD) pays NYCHA`s electricity bills, and agreed to reimburse NYCHA for the cost of the refrigerator installations. Energy savings over the lifetime of the refrigerators accrue to HUD. Savings were demonstrated by a metering project and are the subject of the analysis reported here. The New York Power Authority (NYPA) identified the refrigerator with the lowest life-cycle cost, including energy consumption over its expected lifetime, through a request for proposals (RFP) issued to manufacturers for a bulk purchase of 20,000 units in 1997. The procurement was won by Maytag with a 15-ft{sup 3} top-freezer automatic-defrost refrigerator rated at 437 kilowatt-hours/year (kWh/yr). NYCHA then contracted with NYPA to purchase, finance, and install the new refrigerators, and demanufacture and recycle materials from the replaced units. The US Department of Energy (DOE) helped develop and plan the project through the ENERGY STAR{reg_sign} Partnerships program conducted by its Pacific Northwest National Laboratory (PNNL). PNNL designed the metering protocol and occupant survey used in 1997, supplied and calibrated the metering equipment, and managed and analyzed the data collected by NYPA. The objective of the 1997 metering study was to achieve a general understanding of savings as a function of refrigerator label ratings, occupant effects, indoor and compartment temperatures, and characteristics (such as size, defrost features, and vintage). The data collected in 1997 was used to construct models of refrigerator energy consumption as a function of key refrigerator and occupant characteristics.

  6. Opinions of Cordoba's politicians and journalists on atomic energy

    International Nuclear Information System (INIS)

    The perception of the nuclear energy of journalist of the Cordoba city and of the member of the legislative body of the Province was investigated. In general a high degree of ignorance on nuclear energy and its uses was found. The majority of them considers nuclear energy a great danger for the society and describes it as a potential damage for health and environment. Little is known about medical applications, food irradiation, etc. As a consequence nuclear energy has no priority in journalist and lawmakers agendas. (author)

  7. Safety philiosophies in technology-related law discussed for the example of atomic energy law

    International Nuclear Information System (INIS)

    In practice, legal ruling and its technical implementation stand isolated side by side. Taking the example of atomic energy law, the reasons for this situation and the significance of the deficit in the legal control of technology are examined. It is discussed how the controlling capacity of the law can be increased through the legal implementation of safety philosophies for technology. The paper deals with the problematic realtionship between technical and legal norms, with safety philosophies in the sense of mental approaches, safety concepts or safety postulates and their legal significance, and with the safety philosophy adhered to by the authorities and courts. The following learning processes in safety philosophy are described: new concepts of protection within the field of determinism, probabilistic safety concepts as well as concepts for the reduction of damage potential. Altogether it can be stated that the safety philosophy currently adhered to in Federal German licensing practice is not the only possible one; rather, that there are many different ways of conceptualizing, stipulating and checking technical safety. At least in the field of atomic energy law, this insight has a twofold significance: de lege lata there are several ways of operationalizing the licence requirements laid down in Article 7 of the Atomic Energy Law and the legally defined requirements for a licence withdrawal with the aid of technical licensing criteria. In all cases the legal wording is indeterminate and does not prescribe any specific safety philosophy. De lege ferenda it must be noted that amendments to the Atomic Energy Law entail a regularization of safety philosophy. This is a political necessity if the Atomic Energy Law is to be developed further and thus maintained as a modern security law. (orig.)

  8. Epp names new interim execs to head Atomic Energy Canada

    International Nuclear Information System (INIS)

    Federal Energy Minister Jake Epp has named Mrs. Marnie Paiken as acting chairman and Bruce Howe as acting president of AECL (formerly Atomic Energy Canada Ltd.), the federal Crown corporation charged with the development and utilization of nuclear energy. Both appointments were made necessary by the resignations of Robert Ferchat as chairman and Stanley Hatcher as president, each citing deep differences in their respective approaches to the management of the corporation. Mrs. Paiken has been a member of AECL's board since 1985, and previously served as acting chairman from March 1989 to July 1990. Howe has been deputy minister of the federal energy department since 1988, a position he will retain while carrying out his duties as president of AECL. A search has begun to find permanent replacements

  9. Determination of the effective atomic and mass numbers for mixture and compound materials in high energy photon interactions

    International Nuclear Information System (INIS)

    In consideration the radiological properties of materials and studying the scattering processes in atomic and nuclear physics, the effective atomic and mass numbers is widely employed. These numbers have been calculated for any mixed or composite materials in interaction with high energy photons (Linac in radiation therapy). A pair equation in terms of these numbers is obtained. The first equation has been derived from the conservation of mass energy law and the second by minimizing the binding energy from the semiempirical mass formula (Myers and Swiatecki formula) that gives a relation between atomic and mass numbers for stable nuclei approximately. By these equations one can obtain the effective atomic and mass numbers for any compound or mixed materials uniquely. These numbers are calculated for some materials and compared with the other studies. (author)

  10. French alternative energies and atomic energy commission decommissioning programme and feedback experience

    International Nuclear Information System (INIS)

    Since the French Atomic Energy Commission (CEA) was founded in 1945 to carry out research programs on use of nuclear, and its application. France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. Since the 1960's and 1970's in all its centers, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling program financing now from two dedicated funds, close to 15 B-euros for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with its industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2018, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R strategy, programme and feedback experience inside the CEA's Nuclear Energy Division and its progress since ICEM 14 in 2011's conference in Reims. (authors)

  11. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  12. Energy distributions for ionization in ion-atom collisions

    CERN Document Server

    Amaya-Tapia, A

    2016-01-01

    In this paper we discuss how through the process of applying the Fourier transform to solutions of the Schr\\"odinger equation in the Close Coupling approach, good results for the ionization differential cross section in energy for electrons ejected in ion-atom collisions are obtained. The differential distributions are time dependent and through their time average, the comparison with experimental and theoretical data reported in the literature can be made. The procedure is illustrated with reasonable success in two systems, $p+H$ and $p+He$, and is expected to be extended without inherent difficulties to more complex systems. This allows advancing in the understanding of the calculation of ionization processes in ion-atom collisions.

  13. Road to archiving of information relating to the Fukushima Nuclear Accident by the Japan Atomic Energy Agency Library

    International Nuclear Information System (INIS)

    We introduce post-Great East Japan Earthquake situation of the Japan Atomic Energy Agency Library and our efforts to distribute information about the TEPCO Fukushima Daiichi Nuclear Power Station Accident. After that, we describe our activities about the archiving of information relating to the Fukushima Nuclear Accident and its feature. (author)

  14. Activity of the Atomic Energy Society of Japan for compiling the consensus standard on nuclear criticality safety control

    International Nuclear Information System (INIS)

    Activity of the Atomic Energy Society of Japan for compiling the consensus standard on nuclear criticality safety control is presented. The standard recommends an enhancement of nuclear criticality safety throughout a life cycle of facility in terms of a concept of 'barriers against criticality'. (author)

  15. Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers

    Science.gov (United States)

    Banks, Bruce A.; Miller, Sharon K R.; Kneubel, Christian A.

    2014-01-01

    Experimental and analytical analysis of the atomic oxygen erosion of pyrolytic graphite as well as Monte Carlo computational modeling of the erosion of Kapton H (DuPont, Wilmington, DE) polyimide was performed to determine the hyperthermal energy of low frequency (30 to 35 kHz) plasma ashers operating on air. It was concluded that hyperthermal energies in the range of 0.3 to 0.9 eV are produced in the low frequency air plasmas which results in texturing similar to that in low Earth orbit (LEO). Monte Carlo computational modeling also indicated that such low energy directed ions are fully capable of producing the experimentally observed textured surfaces in low frequency plasmas.

  16. Safety regulatory infrastructure of peaceful use of atomic energy in the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    There are 4 research reactors in the Republic of Kazakstan; Industrial power reactor BN-350 of Mangyshlak NPP that was shut down by Governmental Decree in April of 1999 now is under decommissioning programme. National Atomic Company 'Kazatomprom' has uranium mining and processing facilities. Wide spectrum of uranium products is produced by Ulba Metallurgical Plant. Also, large amount of radioactive sources are in use in industry, medicine, agriculture and other fields, total amount of which exceeds 80,000. For regulation of peaceful use of atomic energy, in 1992 the Atomic Energy Agency was established in the Republic, which is named now the Atomic Energy Committee. Legal and regulatory basis was developed. Primarily, it is the Law on Use of Atomic Energy, in which main principles of nuclear activity safety and maintenance of nuclear weapon non-proliferation regime in the country were established. In interaction with other state authorities, Atomic Energy Committee supervises nuclear and radiation safety, and state licensing of nuclear activities is the main mechanism. List of licensing activities was defined in the Law 'On Licensing' and 'On use of Atomic Energy', and licensing provisions were established by the Governmental Decree no. 100 of 1998, which approved Provisions on Licensing of Nuclear Activities. In 1993 Kazakhstan joined the Nuclear Weapon Non-Proliferation Treaty as a non-nuclear-weapon state, in connection with which in 1994 a Safeguards Agreement was signed with IAEA. This Agreement was enforced in 1995 by Decree of the President of the Republic. A State System of Accountancy of Nuclear Materials was developed; regular reports on nuclear materials inventories are presented to the IAEA, inspections are carried out for verification of declared inventories of nuclear materials on the country facilities and other information related with peaceful nuclear activity of the Republic. Now Additional Protocol to this Agreement is being prepared for

  17. Innovation projects of atomic energy institute of national nuclear center RK in the area of peaceful use of atomic energy

    International Nuclear Information System (INIS)

    Institute of Atomic Energy of National Nuclear Center RK (IAE NNC RK) is located in Kurchatov. The city is situated at the border of former Semipalatinsk test site. The institute includes two reactor complexes - IGR and Baikal-1, which are rather distant from Kurchatov. Main activities of IAE NNC RK are: 1. Experimental researches of the nuclear power reactors safety; 2. Experimental researches of behavior of the structural materials for fusion and fission facilities under reactor irradiation; 3. Management of radioactive wastes; 4. Participation in the projects on decommissioning of the fast neutron reactor BN-350; 5. innovation projects: creation of first Kazakhstan's fusion reactor - tokamak KTM for materials; research and testing; development of new technologies (irradiated Be-recycling); development of new reactor technologies - project on creation of high temperature gas-cooled reactor KHTR. IAE NNC RK jointly with Japanese Atomic Energy Agency and with participation of Japanese Atomic Power Company is performing the activities on experimental substantiation of design of active core of prospective fast neutron reactor. Main goal of out-of-pile experiments at the EAGLE facility is obtaining of the information on fuel movement processes under conditions simulating the accident with melting of fast reactor core containing tube-design fuel assembly. Batch mixture is loaded into graphite crucible; then it is melded into electric melting furnace and poured into melt top trap. The outlet pipe is melted by the melt, which is poured into bottom melt trap through the pipe with sodium

  18. Nuclear shell energies and deformations in atomic mass formula

    International Nuclear Information System (INIS)

    Our group has for several years been studying a method of calculating nuclear shell energies and incorporating them into a mass formula. This method is characterized by the calculation of single-particle levels in an extended spherical Woods-Saxon potential, the extraction of crude shell energy, the refinement of crude shell energy due to residual interactions, and the incorporation into a mass formula. Here, we report the advance of this work focusing especially on nuclear deformations, and give some preliminary results and remarks. (author)

  19. International Atomic Energy Agency. Highlights of activities. September 1993

    International Nuclear Information System (INIS)

    This document describes the most important activities of the International Atomic Energy Agency during the period September 1992 - September 1993, in particular in the following areas: (i) nuclear power; (ii) nuclear fuel cycle; (iii) radioactive waste management; (iv) comparative assessment of energy sources; (v) IAEA laboratory activities; (vi) nuclear applications in the food industry and in agriculture; (vii) human health applications of nuclear techniques, especially in the treatment and prevention of diseases and in the analysis of health problems related to the environment; (viii) industry and earth sciences; (ix) physical and chemical sciences; (x) radiation protection; (xi) safety of nuclear installations; (xii) safeguards and non-proliferation activities; (xiii) activities in the area of public and technical information such as the International Nuclear Information System (INIS) and other IAEA computerized databases and reference systems, the publication Nuclear Fusion, a monthly scientific journal of articles on thermonuclear fusion research and development, and the organization of meetings on atomic energy; and (xiv) a description of the Agency's technical assistance activities, including financial data

  20. Terrestrial magnetospheric imaging: Numerical modeling of low energy neutral atoms

    International Nuclear Information System (INIS)

    Imaging of the terrestrial magnetosphere can be performed by detection of low energy neutral atoms (LENAs) that are produced by charge exchange between magnetospheric plasma ions and cold neutral atoms of the Earth's geocorona. As a result of recent instrumentation advances it is now feasible to make energy-resolved measurements of LENAs from less than I key to greater than 30 key. To model expected LENA fluxes at a spacecraft, we initially used a simplistic, spherically symmetric magnetospheric plasma model.6 We now present improved calculations of both hydrogen and oxygen line-of-sight LENA fluxes expected on orbit for various plasma regimes as predicted by the Rice University Magnetospheric Specification Model. We also estimate expected image count rates based on realistic instrument geometric factors, energy passbands, and image accumulation intervals. The results indicate that presently proposed LENA instruments are capable of imaging of storm time ring current and potentially even quiet time ring current fluxes, and that phenomena such as ion injections from the tail and subsequent drifts toward the dayside magnetopause may also be deduced

  1. Transfer of electricity quotas under the Atomic Energy Act

    International Nuclear Information System (INIS)

    On April 27, 2002, the 'Act of the Planned Termination of the Use of Nuclear Power for Industrial Electricity Generation - Atomic Energy Act' entered into force. It was preceded, among other things, by the 'Agreement between the Federal Government and the Power Utilities of June 14, 2000' in which the Red-Gree federal government and the operators of nuclear power plants had agreed on a timetable of termination and on the conditions of nuclear power plant operation for the residual plant operating life. One major part of that Agreement, which later was incorporated also in the Atomic Energy Act, are provisions about flexibiling the residual periods of operation of existing nuclear power plants. The arguments underlying the act on opting out of the use of nuclear power cite, as a key reason for the possibility to transfer electricity quotas, the constitutional principle of protection of bona fide acts. The transfer possibility opened up in the law is to 'allow the best possible residual periods of operation in the light of both plant operation and the national economy' to be agreed upon for each individual nuclear power plant. In principle, the Atomic Energy Act provides for any transfer of electricity quotas from one German nuclear power plant to another. An approval procedure is required for transfer from younger to older plants. Transfers from older to younger plants can be arranged without any approval. The article covers the basic legal principles and consequences, the details of the approval procedure, and the transfer of the electricity quotas attributed to the Muelheim-Kaerlich nuclear power plant. (orig.)

  2. Validation of International Atomic Energy Agency Equipment Performance Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, PJ

    2004-02-17

    Performance requirements and testing protocols are needed to ensure that equipment used by the International Atomic Energy Agency (IAEA) is reliable. Oak Ridge National Laboratory (ORNL), through the US Support Program, tested equipment to validate performance requirements protocols used by the IAEA for the subject equipment categories. Performance protocol validation tests were performed in the Environmental Effects Laboratory in the categories for battery, DC power supply, and uninterruptible power supply (UPS). Specific test results for each piece of equipment used in the validation process are included in this report.

  3. Proceedings of the twelfth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 45 papers, presented on the twelfth Symposium of Atomic Energy Research, held in Sunny Beach, Bulgaria, 22-28 September 2002. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Core Monitoring, Surveillance and Testing, Safety Issues, Core Operation and Fuel Management, Spectral and Core Calculation Methods, Spent Fuel Transmutations and Decommissioning, Neutron Kinetics and reactor Dynamics Methods, Poster Session - according to the presentation sequence on the Symposium

  4. Proceedings of the eighth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    These are the remaining 9 papers, presented on the eighth Symposium of Atomic Energy Research, held in Bystrice nad Perstejnem, Czech Republic, 21-25 September 1998. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Design, Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Neutron Kinetics and reactor Dynamics Methods, Safety Issues and Analysis, Rod Drop Reactivity Measurements, Criticality safety, Spent Fuel and Decommissioning, - according to the presentation sequence on the Symposium

  5. Proceedings of the thirteenth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 58 papers, presented on the thirteenth Symposium of Atomic Energy Research, held in Dresden, Germany, 22-26 September 2003. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Core Monitoring, Surveillance and Testing, Safety Issues, Spectral and Core Calculation Methods, Core Operation and Fuel Management, Spent Fuel Transmutations and Decommissioning, Neutron Kinetics and reactor Dynamics Methods, Poster Session - according to the presentation sequence on the Symposium

  6. Safeguards and legal matters 1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalogue lists all currently valid sales publications of the International Atomic Energy Agency dealing with Safeguards and Legal Matters. Most publications are published in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  7. Low-energy scattering of electrons by atomic oxygen

    International Nuclear Information System (INIS)

    The method of polarized pseudostates has been used to calculate cross sections for the elastic scattering of electrons by atomic oxygen. These pseudostates are added to the close-coupling expansion to give a polarization potential in agreement with experimental values of polarizability. The resulting elastic cross sections are in good agreement with other theoretical calculations as well as with experiment for energies up to 10 eV. The reactance matrices obtained in this calculation have been used to calculate collision strengths for fine-structure transitions in the ground-state 3P term for electron temperatures above 5000 degree K

  8. The Atomic Energy of Canada Limited (AECL) employee health study

    International Nuclear Information System (INIS)

    A preliminary examination of records relating to past Chalk River employees provides some reassurance that large numbers of cancer deaths that might be related to occupational radiation exposure do not exist in the groups of employees studied to the end of 1982. The lack of reliable information on deaths of ex-employees who left AECL for other employment prevented the inclusion of this group in this preliminary study. This information will presumably be obtained during the course of the more comprehensive Atomic Energy of Canada Ltd. employee health study. 6 refs

  9. Future developments in the Atomic Energy Corporation of SA

    International Nuclear Information System (INIS)

    The Atomic Energy Corporation of S.A. (AEC) has been forced, by significant changes in its external environment, to redirect many of its areas of focus. Promising developments in the AEC are highlighted. The AEC considers its efforts to develop an alternative cost-effective enrichment technology as a strategic programme of utmost importance. A brief survey is given of some of the significant future developments being undertaken within the AEC. All these developments should be seen to foster more economic nuclear power and technology for the future needs of South Africa and to advance the AEC on its drive towards commercialisation. 5 figs., 1 tab., 2 refs

  10. Spatial aspects of electron energy degradation in atomic oxygen

    Science.gov (United States)

    Singhal, R. P.; Green, A. E. S.

    1981-01-01

    Spatial (radial and longitudinal) yield spectra for electron energy degradation in atomic oxygen have been obtained using a Monte Carlo method for 25 eV to 10 keV incident electrons. Four-dimensional yield spectra have been analytically represented in terms of a model containing three simple microplumes. We find that the scaled spatial yield spectra for O is approximately the same as for N2. This feature provides a basis for inferring yield spectra for any atmosphere gas or mixture of gases.

  11. Earth sciences 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    This catalogue lists sales publications of the International Atomic Energy Agency dealing with Earth Sciences issued during the period 1969-1994. Most publications are published in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all these papers have abstracts in English. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  12. Proceedings of the fifteenth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    The present volume contains 59 papers, presented on the fifteenth Symposium of Atomic Energy Research, held in Znojmo, Czech Republic, 3-7 October 2005. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Design, Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Neutron Kinetics and Reactor Dynamics Methods, Criticality Safety, Spent Fuel, and CFD Codes Application - according to the presentation sequence on the Symposium

  13. The uses of atomic energy for the economic and social development in the German Democratic Republic

    International Nuclear Information System (INIS)

    A report is given on the peaceful uses of atomic energy in the GDR. The following topics are discussed: (1) present state and prospects of the utilization of atomic energy in the GDR, (2) protection against the dangers from the use of atomic energy, (3) the GDR's share in international efforts to secure the peaceful uses and to further the development of atomic energy, and (4) conclusions for the enhancement of international cooperation in the peaceful uses of atomic energy. 2 tabs., 6 figs., and 23 color and 3 black-and-white plates are included

  14. Third-party protection and residual risk in Atomic Energy Act. On legally dogmatic classification of paragraph 7 Atomic Energy Act in the jurisprudence of the Federal Constitutional Law and Federal Administrative Court; Drittschutz und Restrisiko im Atomrecht. Zur rechtsdogmatischen Einordnung des paragraph 7d AtG in die Rechtsprechung des Bundesverfassungs- und des Bundesverwaltungsgerichts

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, Hans-Wolfgang

    2012-03-15

    On 25th June 2009, the Council of the European Union has passed the directive 2009/71/EURATOM on a common framework for nuclear safety of nuclear installations. At first, the 12th Law amending the Atomic Energy Act supplements the Atomic Energy Act by regulations which implement the directive 2009/71/EURATIM into national law. In addition, paragraph 7 Atomic Energy Act introduces a new substantive obligation of the operators of nuclear power plants. The author of the contribution reports on whether paragraph 7 Atomic Energy Act provides additional nuclear protection or reduces the potential protection by law and jurisprudence.

  15. Acceleration of atomic clusters in the MeV energy range by the 1 MV Tandetron accelerator

    International Nuclear Information System (INIS)

    Atomic clusters of Bn, Cn, Aln, Sin and Cun can be accelerated in the MeV energy range by using the 1 MV Tandetron accelerator at the University of Tsukuba. The negative cluster ions are generated by a Cesium sputtering ion source and extracted by the energy of 20 keV. The charge exchange from negative to positive cluster ion is achieved by collision with stripper gas in a gas cell at the high voltage terminal. It is necessary to accelerate cluster ions as the same energy ratio (MeV/atom) for the interaction experiment between cluster ions and the target. The terminal voltage of the 1 MV Tandetron accelerator is possible to be varied from 0.1 to 1.0 MV. We select the accelerating energy to 0.24 MeV/atom for small cluster ions (n ≤ 8). Experimental results obtained with accelerating Cn cluster ions are reported. (author)

  16. An extended formula for the energy spectrum of sputtered atoms from a material irradiated by light ions

    International Nuclear Information System (INIS)

    We extend a formula proposed by Kenmotsu et al. (hereafter Paper I), which fits with the energy spectrum of atoms sputtered from a heavy material hit by low-energy light ions (H+, D+, T+, He+) by taking into account an inelastic energy loss neglected in Paper I. We assume that primary knock-on atoms produced by ions backscattered at large angles do not lose energy while penetrating the material up to the surface, instead of the energy-loss model used in Paper I. The extended formula is expressed in terms of a normalized energy-distribution function and is compared with the data calculated with the ACAT code for 50 eV, 100 eV and 1 keV D+ ions impinging on a Fe target. Our formula fits well with the data in a wide range of incident energy. (author)

  17. The Low-Energy Inelastic Scattering of Electrons by Atomic Systems

    International Nuclear Information System (INIS)

    The R-matrix method is used to calculate collision strength and cross sections for low-energy inelastic scattering of electrons by atomic systems. Application refers to the carbon neutral atoms, and to the C IV and Ar III atomic ions. Since the collision models applied are very closed, the differences in the resulting cross sections and collisions strengths reflect the differences in the target description. In C I the calculation is made more difficult by the fact that low-energy electron scattering is dominated by a resonance due to the 1s22s22p33P0 state of C-. The theoretical prediction of the location of this resonance, and of the 1s22s22p34S0 and 2D0 bound states of C-, depends on a balance between short-range correlation and long range polarization effects. In our work the importance of including configuration interaction wave functions both in the target-state expansion and in the (N+1)-electron quadratically, integrable function expansion was investigated. Results are compared with the existing reported data. We have calculated fine structure splitting in the Ar III using the R-matrix method. Two independent atomic structure calculations have been performed. Results from the Breit-Pauli -and the Dirac- Atomic -R matrix relativistic calculations are analysed comparatively. Cross sections and collision strengths are provided for selected weak and intercombination transitions allowing explicitly for resonance effects. Convergence of the partial wave expansion is ensured by examining the partial collision strengths at collision energy up to 20Ry. (author)

  18. An atomic empire a technical history of the rise and fall of the British atomic energy programme

    CERN Document Server

    Hill, C N

    2013-01-01

    Britain was the first country to exploit atomic energy on a large scale, and at its peak in the mid-1960s, it had generated more electricity from nuclear power than the rest of the world combined.The civil atomic energy programme grew out of the military programme which produced plutonium for atomic weapons. In 1956, Calder Hall power station was opened by the Queen. The very next year, one of the early Windscale reactors caught fire and the world's first major nuclear accident occurred.The civil programme ran into further difficulty in the mid-1960s and as a consequence of procrastination in

  19. ASTROPHYSICS. Atom-interferometry constraints on dark energy.

    Science.gov (United States)

    Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J

    2015-08-21

    If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration. PMID:26293958

  20. International human cooperation in Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Rearing of talented persons in the area of nuclear energy is one of the important works in Japan Atomic Energy Research Institute. In this report, the present situations and future schedules of international human cooperation in this area wsere summarized. First, the recent activities of International Nuclear Technology Center were outlined in respect of international human cooperation. A study and training course which was started in cooperation with JICA and IAEA from the middle of eighties and the international nuclear safety seminar aiming at advancing the nuclear safety level of the world are now being put into practice. In addition, a study and training for rearing talented persons was started from 1996 to improve the nuclear safety level of the neighbouring countries. The activities of the nuclear research interchange system by Science and Technology Agency established in 1985 and Bilateral Co-operation Agreement from 1984 were explained and also various difficulties in the international cooperation were pointed out. (M.N.)

  1. Public opinion on atomic energy after JCO accident

    International Nuclear Information System (INIS)

    JCO accident happened on September 30, 1999. This book deals with the public opinion of atomic energy after JCO accident in Japan and comparison with that of USA and France. The analysis of public opinion structure is also shown. The important chapter is the eighth chapter an opinion survey after the accident, of which sampling areas consisted of three areas such as JCO accident area, the nuclear power plants and the general cities. The analytical results of data showed that the public opinion in Tokai-mura and Naka-machi, the JCO accident area, indicated moderate opinions. It is the interesting results were obtained that the moderate tendency of opinion was in order JCO accident area, the nuclear power plants and the general cities. People's attitude toward nuclear energy related to their social values. Abstract of JCO accident, JCO structure, the effects of accident on the environment and news stories about the accident are reported. (S.Y.)

  2. Proposal for the International Atomic Energy Agency Training Course

    International Nuclear Information System (INIS)

    The Hanford Site has hosted similar activities, including both Hanford Summits I and II. The Hanford Summits were two-day televised events to discuss the commitment of the current Presidential administration to the environmental restoration of the Hanford Site. Public involvement and strategic issues established from Hanford Summit I include: Regulatory issues, training and education, economic development and partnership, and technology transfer. Hanford Summit II provided a summary of how Secretary of Energy O'Leary is proceeding on the above strategic issues. The DOE and Westinghouse School for Environmental Excellence frequently offers a six-week course for environmental professionals and workers. Approximately thirty to forty individuals attend the training course, which provides training in environmental regulation compliance. The Hanford Site has hosted two previous International Atomic Energy Agency training courses. The courses lasted two weeks and had approximately eight to ten participants. Nuclear Material Management and Neutron Monitoring were the courses hosted by the Hanford Site

  3. Department of Atomic Energy [India]: Annual report 1978-79

    International Nuclear Information System (INIS)

    The research and development activities and achievements of the research organizations of the Department of Atomic Energy (DAE, India), progress of various DAE projects underway and performance of nuclear power plants and other public sector underking of DAE have been reported. The report covers the financial year 1978-79. Some of the major achievements during the year have been: (1) development of a portable local vacuum electron beam welding machine, (2) commissioning of the Variable Energy Cyclotron, Calcutta for obtaining an external beam of 30 MeV alphas, (4) locating minute leaks by tracer techniques on the 140 km. Koyali-Viramgam Oil pipeline and (5) investigation by tracer technique of geological fault at the Lakya dam site of the Kudremukh Iron Ore Project in Karnataka. The R and D work of the Bhabha Atomic Research Centre, Bombay; Reactor Research Centre, Kalpakkam; Tata Institute of Fundamental Research, Bombay; Saha Institute of Nuclear Physics, Calcutta, Tata Memorial Centre and Cancer Research Centre both at Bombay is summarised. (M.G.B.)

  4. Freedom or security - the unsolvable dilemma of atomic energy

    International Nuclear Information System (INIS)

    The threat of a non-peaceful use of atomic energy is not a fixed quantity. The hazard may increase depending on the social situation and the insentity of social crises emerging. In view of the damage potential involved with atomic energy, the principle of 'dynamic protection of civil rights' requires security measures to be intensified according to growing threat. The restrictions of freedom connected with enhanced security measures are to be felt already today. The pressure for security of nuclear installations or material creates a dilemma: any security step-up will be done at the expense of freedom, and conserving freedom will mean reducing security. The pressure for security which is achieved by the instruments of balancing the objects of legal protection and following the principle of reasonablenesse, will eventually lead to a de facto decline of the civil rights by way of a clandestine and gradual change of legal terms and definitions. We even then would be living in a constitutional state. But what will freedom then mean? The civil rights would still be incorporated in our Basic Law, but protection in practical life will have been decreased. (orig./HSCH)

  5. Annual report 1985-86 [of the Department of Atomic Energy of the Government of India

    International Nuclear Information System (INIS)

    The performance and activities during the financial year 1985-86 of the Department of Atomic Energy (DAE), India and its various units are reported. The various units of the DAE can broadly be categorised into groups: research establishments, production units and public sector undertakings. After taking a general survey, the detailed report is presented under the chapters entitled: (1) nuclear power, (2) research and development, (3) Atomic Energy Regulatory Board, (4) public sector undertakings, and (5) other activities. Some of the other activities include international relations in the field of nuclear energy, information services, organization of training courses to meet the requirements of programmes of the DAE, technology transfer, financial support to institutions and universities for research in nucler science, and sponsoring of conferences, symposia etc. in the field of nuclear science and its applications. Major achievements of the DAE during the report period are: (1) attainment of criticality by the indigenously designed and built 100 MWt research reactor DHRUVA at Trombay, Bombay, (2) attainment of criticality by the Fast Breeder Test Reactor at Kalpakkam, (3) commissioning of the second unit of the Madras Atomic Power Station and its subsequent synchronisation with the power grid, (4) commissioning of the vitrification plant for management of high level radioactive wastes at Tarapur, and (5) successful testing of a 5 mwt MHD pilot at Tiruchirapalli. (author)

  6. Final results of the fifth three-dimensional dynamic Atomic Energy Research benchmark problem calculations

    International Nuclear Information System (INIS)

    The paper gives a brief survey of the fifth three-dimensional dynamic Atomic Energy Research benchmark calculation results received with the code DYN3D/ATHLET at NRI Rez. This benchmark was defined at the seventh Atomic Energy Research Symposium (Hoernitz near Zittau, 1997). Its initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and hot shutdown conditions with one stuck out control rod group. The calculations were performed with the externally coupled codes ATHLET Mod.1.1 Cycle C and DYN3DH1.1/M3. The standard WWER-440/213 input deck of ATHLET code was adopted for benchmark purposes and for coupling with the code DYN3D. The first part of paper contains a brief characteristics of NPP input deck and reactor core model. The second part shows the time dependencies of important global and local parameters. In comparison with the results published at the eighth Atomic Energy Research Symposium (Bystrice nad Pernstejnem, 1998), the results published in this paper are based on improved ATHLET descriptions of control and safety systems. (Author)

  7. Proceedings of the nineteenth symposium of atomic energy research on WWER reactor physics and reactor safety

    International Nuclear Information System (INIS)

    The present volume contains 55 papers, presented on the nineteenth symposium of atomic energy research, held in Varna, Bulgaria, 21-25 September 2009. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation - according to the presentation sequence on the Symposium. (Author)

  8. Proceedings of the seventeenth Symposium of Atomic Energy Research, Vol. I

    International Nuclear Information System (INIS)

    The present volume contains 83 papers, presented on the eleventh Symposium of Atomic Energy Research, held in Yalta, Ukraine, 23-29 September 2007. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation, History of TIC/AER - according to the presentation sequence on the Symposium (Author)

  9. Radioactive waste management in the atomic energy enterprises of the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    There have been many atomic energy branch enterprises operating in the territory of Kazakhstan during more than 30 years. They are: the nuclear power plant (NPP) BN-350 in Aktau city, the Ulba metallurgical plant producing nuclear fuel for the NPP, and four research reactors of the National Nuclear Centre of the Republic of Kazakhstan. One of the research reactors is located in Almaty, and the three others are located in Kurchatov-city (on the former Semipalatinsk Test Site). This paper presents the procedures for radioactive waste management in the NPP BN-350, which were used during its operation. (author)

  10. The activity of Ministry for Atomic Energy of the Russian Federation

    International Nuclear Information System (INIS)

    The structure and the history of the Ministry for Atomic Energy are discussed. The fundamental principles of activity in the following fields: the scientific research activity, the NPP construction and operation, nuclear weapons and disarmament, reactor engineering, instrument making, microelectronics, mechanical engineering, construction industry and international cooperation are presented. The information about this industry as a self-contained scientific and technical complex of technologically related industries concerned with the mining of the row materials from which to make components for military equipment: which the reprocessing of spent fuel and the subsequent storage and disposal of radioactive waste has been given. (author)

  11. Risk analysis of process plants: approach of the Atomic Energy Regulatory Board

    International Nuclear Information System (INIS)

    The analysis of the probable consequences and effects of the hazardous chemicals used in the process plants plays a vital role in regulatory decision-making. This analysis is required in the entire life cycle of the process plant. This paper presents the detail of risk analysis required at various life cycle stages viz. siting, design, and operation of a process plant. It also describes the regulatory methodology and safety review process adopted by Atomic Energy Regulatory Board (AERB) to ensure safety of the plant in its entire life cycle. (author)

  12. Proceedings of the seventeenth Symposium of Atomic Energy Research, Vol. II

    International Nuclear Information System (INIS)

    The present volume contains 83 papers, presented on the eleventh Symposium of Atomic Energy Research, held in Yalta, Ukraine, 23-29 September 2007. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation, History of TIC/AER - according to the presentation sequence on the Symposium (Author)

  13. Applications of Atomic Energy in African economic and social development plans

    International Nuclear Information System (INIS)

    The paper describes briefly the basic principles of nuclear techniques applied in: raw materials development, including resources inventory; power; food and agriculture, including preservation and conservation; industry; medicine and biology; water resources development; and education and training, including manpower resources. It relates these subjects to situations and problems as they are to be found in individual African countries or sub-regions of the Continent. It suggests relative priorities and reveals that applications of atomic energy can only be beneficial on an inter-sectoral basis. Certain conclusions are put forward which may be relevant to the preparation and implementation of development plans at the national level. (author)

  14. Some energy levels, which can be used in atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    In this study the bibliographical data concerning energy levels, isotope shifts and hyperfine splitting constants of the following elements were collected: Fe, Ca, Nd, Eu, Dy, La, Pb, Sm, Ba, Ti, Ta, Mg, V, Zr, Pu, Na, K, Li, Tc, Ni, Ag, Sn, Bk, Am, Np, Th. This Database is very useful for AVLIS and can help by choosing the equipment for atomic vapor laser isotope separation. Wavelength, waveform and bandwidth of the used laser are determined by this data. The properties of the vaporizer, separation chamber, and collection system are influenced by this data. This database is also necessary for calculations of the excitation selectivity. (author)

  15. Quality assurance and quality control programme in the personal dosimetry department of the Greek Atomic Energy Commission

    International Nuclear Information System (INIS)

    A quality assurance (QA) and quality control (QC) programme was applied to the personal monitoring department (TLD based) of the Greek Atomic Energy Commission. This programme was designed according to the recommendations of international bodies such as the International Organization for Standardization, the International Electrotechnical Commission, the International Atomic Energy Agency and the European Commission. This paper deals with the presentation of the QA/QC programme which includes administrative data and information, technical checking of the equipment, acceptance tests of new equipment and dosemeters, issuing and processing of the dosemeters, dose evaluation, record keeping and reporting, traceability and reproducibility, handling of complaints, internal reviews and external audits. (author)

  16. ROLE OF THE LOCAL AUTHORITIES IN THE REGIONAL DEVELOPMENT OF RENEWABLE ENERGY

    OpenAIRE

    ZAMFIR Andreea

    2012-01-01

    This study investigates the role of the local authorities in the regional development of renewable energy with an eye to reveal the need for cooperation between the private companies and the local public authorities. Therefore, this study reveals firstly the new significance of renewable energy within the context of the Third Industrial Revolution, and secondly, the role of the local authorities in this new conceptual framework. The results of this study may be used for future research in the...

  17. Studies on the effective atomic numbers of some human tissues in the energy region 15-100 keV

    International Nuclear Information System (INIS)

    The effective atomic numbers for total photon interaction in muscle, bone, brain, heart, kidney, liver, lungs, ovaries, pancreas, spleen and tongue are evaluated using three different methods, for practical use in the energy region 15-100 keV. Muscle, brain, heart, kidney, lungs, ovaries, pancreas, spleen, tongue and water, bone and silicon; liver and oxygen are found to behave in an approximately similar manner in this energy region. (author)

  18. The International Atomic Energy Agency and the technical cooperation

    International Nuclear Information System (INIS)

    One of the main objectives of the Agency is developing the peaceful uses of nuclear energy in the world. This is done through the technical assistance provided by the Agency to developing countries which means transferring technology and providing advice on the technical and scientific aspects of the projects forwarded by the governments. The main issues covered by the technical assistance are field procurement, expert services, fellowships and training courses. (author). 2 refs

  19. Neutron capture therapy for cancer: development at the National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) involves the concurrent presence of a flux of neutrons of adequate energy and Boron 10 as a capture agent. They interact to damage tumor cells but fail to produce significant damage to healthy tissue because the destructive effect occurs mainly in the tumor cells that have selectively accumulated boron. This technique is applied for the treatment of brain tumors of the glioblastoma multiform type and melanoma in different locations. The aim of this project at CNEA is to develop the technological, scientific, clinical know-how and facilities to undertake clinical trials in Argentina. The development of the irradiation facility, the clinical beam and dosimetry was developed at the RA-6 reactor, Bariloche Atomic Center. Treatment planning, instrumentation for the neutron beam, boron measurements, neutron beam for small animal irradiation at the RA-1 reactor and basic research in radiobiology, microdosimetry and autoradiography were developed at Constituyentes Atomic Center. It is also conducted an intense activity in accelerator based BNCT. The infusions to be injected to the patients are prepared at Ezeiza Atomic Center. The clinics of BNCT radiotherapy is developed at the Roffo Institute of Oncology and the neurosurgery at the Argerich Hospital. At present, the project is close to start in the following months to treat melanoma in the limbs, when the authorization procedure is completed. (author)

  20. Research and development for construction of 'computational infrastructure in atomic energy research field' based on grid computing technology

    International Nuclear Information System (INIS)

    The Center for Computational Science and e-Systems of the Japan Atomic Energy Agency (CCSE/JAEA) has started a program to construct an international computational infrastructure in atomic energy research field called the AEGIS (Atomic Energy Grid InfraStructure) in April, 2006. The development is based on numerous experiences and technologies acquired from the development of the STA (Seamless Thinking Aid) and the ITBL (Information Technology Based Laboratory) infrastructure software. In this paper, we will introduce two key achievements prior to the AEGIS program: 'Interoperable system between UNICORE in Germany and ITBL' which achieves international sharing of computational resources, and the 'STARPC Plus' which can construct a compact grid system. (author)

  1. Seeking to Improve Low Energy Neutral Atom Detection in Space

    Science.gov (United States)

    Shappirio, M.; Coplan, M.; Chornay, D.; Collier, M.; Herrero, F.; Ogilvie, K.; Williams, E.

    2007-01-01

    The detection of energetic neutral atoms allows for the remote examination of the interactions between plasmas and neutral populations in space. Before these neutral atoms can be measured, they must first be converted to ions. For the low energy end of this spectrum, interaction with a conversion surface is often the most efficient method to convert neutrals into ions. It is generally thought that the most efficient surfaces are low work functions materials. However, by their very nature, these surfaces are highly reactive and unstable, and therefore are not suitable for space missions where conditions cannot be controlled as they are in a laboratory. We therefore are looking to optimize a stable surface for conversion efficiency. Conversion efficiency can be increased either by changing the incident angle of the neutral particles to be grazing incidence and using stable surfaces with high conversion efficiencies. We have examined how to increase the angle of incidence from -80 degrees to -89 degrees, while maintaining or improving the total active conversion surface area without increasing the overall volume of the instrument. We are developing a method to micro-machine silicon, which will reduce the volume to surface area ratio by a factor of 60. We have also examined the material properties that affect the conversion efficiency of the surface for stable surfaces. Some of the parameters we have examined are work function, smoothness, and bond structure. We find that for stable surfaces, the most important property is the smoothness of the surface.

  2. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, J. W.; Collier, M. R.; Chornay, D.; Roz, P.; Getty, S.; Cooper, J. F.; Smith, B.

    2007-12-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite, will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI- ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets, also including time variability of ENA fluxes and charge-exchange interactions in the upper atmosphere from the terrestrial ring current source.

  3. Atomic Energy of Canada Limited annual report 2000-2001

    International Nuclear Information System (INIS)

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor

  4. Atomic Energy of Canada Limited annual report 1999-2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor.

  5. Atomic Energy of Canada Limited annual report 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor.

  6. Atomic Energy of Canada Limited annual report 1999-2000

    International Nuclear Information System (INIS)

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor

  7. International Atomic Energy Agency Publications. Catalogue 1980-1995

    International Nuclear Information System (INIS)

    This catalogue lists all sales publications of the International Atomic Energy Agency issued from 1980 up to the end of 1995 an still available. Some earlier titles which form part of an established series or are still considered of importance have been included. Most Agency publications are issued in English, though some are also available in Chinese, French, Russian or Spanish. This is noted as C for Chinese, E for English, F for French, R for Russian and S For Spanish by the relevant ISBN number. Proceedings of conferences, symposia, seminars and panels, of experts contain papers in their original language (English, French, Russian or Spanish) with abstracts in English and in the original language

  8. Safeguards and legal matters 1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Safeguards and Legal Matters issued during the period 1970-1994. Most publications are published in English, through some are also available in French, Russian and Spanish. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. If publications are also available in other languages than English, this is noted as C for Chinese, F for French, R for Russian and S for Spanish by the relevant ISBN number. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  9. New atomic beam studies at low energies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Neynaber, R.H.; Rutherford, J.A.; Vroom, D.A.

    1975-10-08

    Final cross sections have been obtained for charge transfer between the ions O/sup +/ and N/sup +/ and the neutral atoms uranium and thorium. In the course of these measurements, cross sections were also obtained for some of the other charge transfer reactions. A second task completed was the measurement of cross sections for the reaction of Al/sup +/ with molecular nitrogen and oxygen. Attempts were made to measure cross sections for other processes involving these reactants, but no measurable signals could be detected. A final set of experiments involved a search for a route for formation of H/sub 3/O/sup +/ using NO/sup +/ as a precursor. No conclusive evidence for such a process could be found in the energy range covered by the experiments. (GRA)

  10. Atomic Energy Law and the right of life and health

    International Nuclear Information System (INIS)

    The paper is a review of the dissertation submitted for the certificate of habilitation by Professor Degenhardt belonging to the series of publications 'Law-Technology-Economy'. Beneath the somewhat- summary title Kernenergierecht (atomic energy law) there is hidden the first systematic treatment of all the fundamental questions of constitutional law, of general law and naturally of the special nuclear administrative law and of the law of administrative proceedings which occurred in decisions of different administrative courts concerning several nuclear power plants in the Federal Republic of Germany. Despite the plainness of his own viewpoint this impressive, sophisticated and balanced inventory is certainly welcome to all interested people and it is very useful for the further treatment of these problems. (orig./HSCH)

  11. Atomic Physics in the Quest for Fusion Energy and ITER

    International Nuclear Information System (INIS)

    The urgent quest for new energy sources has led developed countries, representing over half of the world population, to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction and operation of ITER. Data on high-Z ions will be important in this quest. Tungsten plasma facing components have the necessary low erosion rates and low tritium retention but the high radiative efficiency of tungsten ions leads to stringent restrictions on the concentration of tungsten ions in the burning plasma. The influx of tungsten to the burning plasma will need to be diagnosed, understood and stringently controlled. Expanded knowledge of the atomic physics of neutral and ionized tungsten will be important to monitor impurity influxes and derive tungsten concentrations. Also, inert gases such as argon and xenon will be used to dissipate the heat flux flowing to the divertor. This article will summarize the spectroscopic diagnostics planned for ITER and outline areas where additional data is needed.

  12. The Atomic Energy Control Board and the uranium mining industry

    International Nuclear Information System (INIS)

    The Atomic Energy Control Board controls prescribed substances and nuclear facilities through a licensing system. It is only recently that this system has been applied to the uranium industry. There are four stages in the licensing procedure before a Mine-Mill Facility Operating Licence is issued: exploration requires an underground exploration permit; site approval is needed before the start of the development stage; development approval is required before the construction of the mill and waste management facilities and depends on the information in a preliminary safety report; the granting of a final operating licence occurs after the Board is satisfied with the final safety report, operating policies and principles, tailings management, and decommissioning plans. The Board has resource management policies designed to ensure that uranium reserves are available to meet Canada's needs. The administration of safeguards is also the Board's responsibility. (LL)

  13. Higher Ionization Energies of Atoms in Density Functional Theory

    CERN Document Server

    Argaman, Uri; Kraisler, Eli

    2014-01-01

    Density functional theory (DFT) is an exact alternative formulation of quantum mechanics, in which it is possible to calculate the total energy, the spin and the charge density of many-electron systems in the ground state. In practice, it is necessary to use uncontrolled approximations that can mainly be verified against experimental data. Atoms and ions are simple systems, where the approximations of DFT can be easily tested. We have calculated within DFT the total energies, spin and higher ionization energies of all the ions of elements with 1 $\\leq$ Z $\\leq$ 29. We find the calculations in close agreement with experiment, with an error of typically less than ca. 1% for 1 $\\leq$ Z $\\leq$ 29. Surprisingly, the error depends on the electronic configuration of the ion in both local spin density approximation (LSDA) and Perdew-Burke-Ernzerhof general gradient approximation (PBE-GGA) and independent of both self-interaction correction (SIC) and relativistic corrections. Larger errors are found for systems in whi...

  14. Atomic Mass and NuclearBinding Energy for Uup-269(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-269 (Ununpentium, atomic number Z = 115, mass number A = 269).

  15. Atomic Mass and NuclearBinding Energy for Uup-335(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-335 (Ununpentium, atomic number Z = 115, mass number A = 335).

  16. Atomic Mass and NuclearBinding Energy for Uup-332(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-332 (Ununpentium, atomic number Z = 115, mass number A = 332).

  17. Atomic Mass and NuclearBinding Energy for Uup-326(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-326 (Ununpentium, atomic number Z = 115, mass number A = 326).

  18. Atomic Mass and NuclearBinding Energy for Uup-259(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-259 (Ununpentium, atomic number Z = 115, mass number A = 259).

  19. Atomic Mass and NuclearBinding Energy for Uup-300(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-300 (Ununpentium, atomic number Z = 115, mass number A = 300).

  20. Atomic Mass and NuclearBinding Energy for Uup-317(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-317 (Ununpentium, atomic number Z = 115, mass number A = 317).

  1. Atomic Mass and NuclearBinding Energy for Uup-304(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-304 (Ununpentium, atomic number Z = 115, mass number A = 304).

  2. Atomic Mass and NuclearBinding Energy for Uup-276(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-276 (Ununpentium, atomic number Z = 115, mass number A = 276).

  3. Atomic Mass and NuclearBinding Energy for Uup-271(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-271 (Ununpentium, atomic number Z = 115, mass number A = 271).

  4. Atomic Mass and NuclearBinding Energy for Uup-321(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-321 (Ununpentium, atomic number Z = 115, mass number A = 321).

  5. Atomic Mass and NuclearBinding Energy for Uup-294(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-294 (Ununpentium, atomic number Z = 115, mass number A = 294).

  6. Atomic Mass and NuclearBinding Energy for Uup-277(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-277 (Ununpentium, atomic number Z = 115, mass number A = 277).

  7. Atomic Mass and NuclearBinding Energy for Uup-310(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-310 (Ununpentium, atomic number Z = 115, mass number A = 310).

  8. Atomic Mass and NuclearBinding Energy for Uup-306(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-306 (Ununpentium, atomic number Z = 115, mass number A = 306).

  9. Atomic Mass and NuclearBinding Energy for Uup-323(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-323 (Ununpentium, atomic number Z = 115, mass number A = 323).

  10. Atomic Mass and NuclearBinding Energy for Uup-299(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-299 (Ununpentium, atomic number Z = 115, mass number A = 299).

  11. Atomic Mass and NuclearBinding Energy for Uup-286(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-286 (Ununpentium, atomic number Z = 115, mass number A = 286).

  12. Atomic Mass and NuclearBinding Energy for Uup-282(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-282 (Ununpentium, atomic number Z = 115, mass number A = 282).

  13. Atomic Mass and NuclearBinding Energy for Uup-338(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-338 (Ununpentium, atomic number Z = 115, mass number A = 338).

  14. Atomic Mass and NuclearBinding Energy for Uup-324(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-324 (Ununpentium, atomic number Z = 115, mass number A = 324).

  15. Atomic Mass and NuclearBinding Energy for Uup-322(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-322 (Ununpentium, atomic number Z = 115, mass number A = 322).

  16. Atomic Mass and NuclearBinding Energy for Uup-305(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-305 (Ununpentium, atomic number Z = 115, mass number A = 305).

  17. Atomic Mass and NuclearBinding Energy for Uup-336(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-336 (Ununpentium, atomic number Z = 115, mass number A = 336).

  18. Atomic Mass and NuclearBinding Energy for Uup-308(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-308 (Ununpentium, atomic number Z = 115, mass number A = 308).

  19. Atomic Mass and NuclearBinding Energy for Uup-291(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-291 (Ununpentium, atomic number Z = 115, mass number A = 291).

  20. Atomic Mass and NuclearBinding Energy for Uup-320(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-320 (Ununpentium, atomic number Z = 115, mass number A = 320).