WorldWideScience

Sample records for atomic beam sources

  1. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  2. Radio frequency atomic hydrogen beam source

    International Nuclear Information System (INIS)

    A simple, convenient rf discharge source for the production of an intense beam of hydrogen atoms is described. The design and operation is such that the discharge tube can be operated over a period of several thousand hours, producing an intense beam with dissociation approx.95%

  3. A new atomic beam source: The ''candlestick''

    Science.gov (United States)

    Hau, Lene Vestergaard; Golovchenko, J. A.; Burns, Michael M.

    1994-12-01

    The design of a novel-type of atomic beam source which provides for long term, stable operation at high emission rates is reported. The heart of the design is the ``candlestick'' where liquid source material is transported by capillary action to a localized hot emission region. A surrounding cavity kept at the melting point for the source material shields the vacuum chamber walls from this region. The atomic beam escaping from the source is collimated, and uncollimated atoms are transported back to the liquid reservoir at the bottom of the ``candlestick'' by capillary action. This design has advantages over traditional oven designs: localized heating provides for large emission rates under high vacuum conditions, collimation is combined with recycling and conservation of source material, and the use of capillarity allows any orientation of the beam source. The source has been tested with sodium, and we believe that the design is useful for a broad range of applications including thin-film evaporation, molecular beam epitaxy, and semiconductor surface doping. With the low thermal mass of the emission section, the source could be optimized for pulsed mode operation. Furthermore, it is anticipated that the design ideas presented here could form the basis for a supersonic source with very high Mach numbers.

  4. A Compact, High-Flux Cold Atom Beam Source

    Science.gov (United States)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  5. A microwave discharge atom beam source of high intensity

    International Nuclear Information System (INIS)

    A 2.45 GHz microwave discharge atom beam source of compact design has been developed. A standard extended quarter wavelength cavity design has been used in conjunction with a simple discharge tube and cooling arrangement. The source, while primarily designed for the production of atomic hydrogen, has also been tested with oxygen and nitrogen. The characteristics of the microwave source are compared with those of a Slevin type radiofrequency RF source and the influence of different cleaning procedures on performance have been investigated. Unlike the Slevin source the performance of the microwave source is not critically dependent on the cleaning procedure or gas purity. For hydrogen, both sources could provide a dissociation fraction of about 90% but the beam intensity obtainable from the microwave source (>1014 atoms cm-3) at the exit of a 1 mm capillary tube was significantly greater than that from the Slevin source. For oxygen, where the performance of the Slevin source was poor, the microwave source provided a dissociation fraction of up to about 60% and a beam density of about 1013 atoms cm-3. (Author)

  6. A microwave discharge atom beam source of high intensity

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, A.; Hughes, M.P.; Geddes, J.; Gilbody, H.B. (Queen' s Univ., Belfast, Northern Ireland (United Kingdom). Dept. of Pure and Applied Physics)

    1992-05-01

    A 2.45 GHz microwave discharge atom beam source of compact design has been developed. A standard extended quarter wavelength cavity design has been used in conjunction with a simple discharge tube and cooling arrangement. The source, while primarily designed for the production of atomic hydrogen, has also been tested with oxygen and nitrogen. The characteristics of the microwave source are compared with those of a Slevin type radiofrequency RF source and the influence of different cleaning procedures on performance have been investigated. Unlike the Slevin source the performance of the microwave source is not critically dependent on the cleaning procedure or gas purity. For hydrogen, both sources could provide a dissociation fraction of about 90% but the beam intensity obtainable from the microwave source (>10{sup 14} atoms cm{sup -3}) at the exit of a 1 mm capillary tube was significantly greater than that from the Slevin source. For oxygen, where the performance of the Slevin source was poor, the microwave source provided a dissociation fraction of up to about 60% and a beam density of about 10{sup 13} atoms cm{sup -3}. (Author).

  7. An atomic beam source for actinide elements: concept and realization

    International Nuclear Information System (INIS)

    For ultratrace analysis of actinide elements and studies of their atomic properties with resonance ionization mass spectroscopy (RIMS), efficient and stable sources of actinide atomic beams are required. The thermodynamics and kinetics of the evaporation of actinide elements and oxides from a variety of metals were considered, including diffusion, desorption, and associative desorption. On this basis various sandwich-type filaments were studied. The most promising system was found to consist of tantalum as the backing material, an electrolytically deposited actinide hydroxide as the source of the element, and a titanium covering layer for its reduction to the metal. Such sandwich sources were experimentally proven to be well suited for the production of atomic beams of plutonium, curium, berkelium and californium at relatively low operating temperatures and with high and reproducible yields. (orig.)

  8. Optimization of atomic beam sources for polarization experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Martin; Nass, Alexander; Stroeher, Hans [IKP, Forschungszentrum Juelich (Germany)

    2013-07-01

    For experiments with spin-polarized protons and neutrons a dense target is required. In current atomic beam sources an atomic hydrogen or deuterium beam is expanded through a cold nozzle and a system of sextupole magnets and RF-transition units selects a certain hyperfine state. The achievable flux seems to be limited to about 10{sup 17} particles per second with a high nuclear polarization. A lot of experimental and theoretical effort has been undertaken to understand all effects and to increase the flux. However, improvements have remained marginal. Now, a Monte Carlo simulation based on the DSMC part of the open source C++ library OpenFOAM is set up in order to get a better understanding of the flow and to optimize the various elements. It is intended to include important effects like deflection from magnetic fields, recombination on the walls and spin exchange collisions in the simulation and make quantitative predictions of changes in the experimental setup. The goal is to get a tool that helps to further increase the output of an atomic beam source. So far, a new binary collision model, magnetic fields, RF-transition units and a tool to measure the collision age are included. The next step will be to couple the whole simulation with an optimization algorithm implementing Adaptive Simulated Annealing (ASA) in order to automatically optimize the atomic beam source.

  9. Internal polarized deuterium target with cryogenic atomic beam source

    CERN Document Server

    Dyug, M V; Lazarenko, B A; Mishnev, S I; Nikolenko, D M; Rachek, Igor A; Shestakov, Yu V; Sadykov, R S; Toporkov, D K; Zevakov, S A; Osipov, A V; Stibunov, V N

    2002-01-01

    Description of the polarized deuterium gas target used at the VEPP-3 electron storage ring for experiments on elastic and inelastic ed scattering is given. Superconducting sextupole magnets with the pole tip magnetic field up to 4.8 T are used in atomic beam source (ABS) to focus atoms. The flux of polarized atoms injected into the storage cell was measured to be 8.2x10 sup 1 sup 6 at/s for deuterium and 7.9x10 sup 1 sup 6 at/s for hydrogen. The measured target thickness 8x10 sup 1 sup 3 at/cm sup 2 is consistent with the thickness calculated from the measured beam intensity. The effective tensor polarization of the deuterium target during the experiment was found to be P sub z sub z =0.397. Further improvements of the target and possible limitation of the beam intensity from ABS are discussed.

  10. Optimization of atomic beam sources for polarization experiments

    International Nuclear Information System (INIS)

    For experiments with spinpolarized protons and neutrons a dense target is required. In current atomic beam sources an atomic hydrogen or deuterium beam is expanded through a cold nozzle and a system of sextupole magnets and RF-transition units selects a certain hyperfine state. The achievable flux seems to be limited to about 1017 particles per second with a high nuclear polarization. A lot of experimental and theoretical effort has been undertaken to understand all effects and to increase the flux. However, improvements have remained marginal. Now, a Monte Carlo simulation based on the DSMC part of the open source C++ library OpenFOAM is set up in order to get a better understanding of the flow and to optimize the various elements. The goal is to include important effects like deflection from a magnetic field, recombination on the walls and spin exchange collisions in the simulation and make quantitative predictions of changes in the experimental setup. The goal is to get a tool that helps to further increase the output of an atomic beam source.

  11. Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments

    Science.gov (United States)

    Sibener, S. J.; Buss, R. J.; Lee, Y. T.

    1978-05-01

    A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.

  12. High-flux beam source for cold, slow atoms or molecules

    OpenAIRE

    Maxwell, S. E.; Brahms, N.; deCarvalho, R.; Helton, J.; Nguyen, S V; Patterson, D; Doyle, J. M.; Glenn, D. R.; Petricka, J.; DeMille, D.

    2005-01-01

    We demonstrate and characterize a high-flux beam source for cold, slow atoms or molecules. The desired species is vaporized using laser ablation, then cooled by thermalization in a cryogenic cell of buffer gas. The beam is formed by particles exiting a hole in the buffer gas cell. We characterize the properties of the beam (flux, forward velocity, temperature) for both an atom (Na) and a molecule (PbO) under varying buffer gas density, and discuss conditions for optimizing these beam paramete...

  13. A Simulator for Producing of High Flux Atomic Oxygen Beam by Using ECR Plasma Source

    Institute of Scientific and Technical Information of China (English)

    Shuwang DUO; Meishuan LI; Yaming ZHANG

    2004-01-01

    In order to study the atomic oxygen corrosion of spacecraft materials in low earth orbit environment, an atomic oxygen simulator was established. In the simulator, a 2.45 GHz microwave source with maximum power of 600 W was launched into the circular cavity to generate ECR (electron cyclotron resonance) plasma. The oxygen ion beam moved onto a negatively biased Mo plate under the condition of symmetry magnetic mirror field confine, then was neutralized and reflected to form oxygen atom beam. The properties of plasma density, electron temperature, plasma space potential and ion incident energy were characterized. The atomic oxygen beam flux was calibrated by measuring the mass loss rate of Kapton during the atomic 5~30 eV and a cross section of φ80 mm could be obtained under the operating pressure of 10-1~10-3 Pa. Such a high flux source can provide accelerated simulation tests of materials and coatings for space applications.

  14. CO/sub 2/ laser sustained CW discharge atomic beam source

    International Nuclear Information System (INIS)

    A high pressure, supersonic, laser sustained plasma nozzle beam source has been developed for the production of intense (>1019 particles s1-sr-1) beams of atomic and/or radical species having kinetic energies in the range of 1 to 10 eV. A high plasma temperature (10 to 30,000 K) is produced in the throat of a hydrodynamic expansion nozzle by sustaining a cw optical discharge in a gas using a high power cw CO2 laser. Gas mixtures are expanded through the nozzle/discharge region creating energetic atoms and molecules. An oxygen atom beam has been produced with a kinetic energy of 2 to 3 eV and an intensity of approx. 1018 O-atoms s-1sr-1. O-atom collisions (1 eV) from an uncharacterized nickel surface shows strong specular scattering with approximately 50% energy loss to the surface. Argon beams having kinetic energies between 5 to 10 eV with intensities of >1019 atoms s-1sr-1 have also been produced. 13 refs., 8 figs

  15. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    International Nuclear Information System (INIS)

    A high intensity (1019O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 1022 O-atoms/cm2 in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3--8 atmospheres of rare gas/O2 mixtures. Visible and infrared photon flux levels of 1 watt/cm2 have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3 /times/ 10/sup /minus/24/ cm /+-/ 50%) has an activation energy of 0.8 Kcal/mole over the temperature range of 25/degree/C to 100/degree/C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H2O, NO, CO2). Teflon reacts with ∼0.1--0.2 efficiency to that of kapton at 25/degree/C and both surfaces show a rug-like texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50% accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described. 9 figs

  16. Bright focused ion beam sources based on laser-cooled atoms

    Science.gov (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-03-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  17. Bright focused ion beam sources based on laser-cooled atoms

    CERN Document Server

    McClelland, J J; Knuffman, B; Twedt, K A; Schwarzkopf, A; Wilson, T M

    2015-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 uK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Never...

  18. An atomic beam source for fast loading of a magneto-optical trap under high vacuum

    DEFF Research Database (Denmark)

    McDowall, P.D.; Hilliard, Andrew; Grünzweig, T.;

    2012-01-01

    We report on a directional atomic beam created using an alkali metal dispenser and a nozzle. By applying a high current (15 A) pulse to the dispenser at room temperature we can rapidly heat it to a temperature at which it starts dispensing, avoiding the need for preheating. The atomic beam produced...

  19. New source of MeV negative ion and neutral atom beams

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Avetisyan, S., E-mail: sargis@gist.ac.kr [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 500-712 (Korea, Republic of); Braenzel, J.; Schnürer, M. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin 12489 (Germany); Prasad, R. [Institute for Laser and Plasma Physics, Heinrich Heine University, Duesseldorf 40225 (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen’s University of Belfast, Belfast BT7-1NN (United Kingdom); Jequier, S.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, CEA, CNRS, University of Bordeaux, 33405 Talence (France)

    2016-02-15

    The scenario of “electron-capture and -loss” was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities.

  20. Polarized atomic hydrogen beam

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Crowe, D.M.; Lubell, M.S.; Tang, F.C.; Vasilakis, A.; Mulligan, F.J.; Slevin, J.

    1988-12-01

    We describe the design and operating characteristics of a simple polarized atomic hydrogen beam particularly suitable for applications to crossed beams experiments. In addition to experimental measurements, we present the results of detailed computer models, using Monte-Carlo ray tracing techniques, optical analogs, and phase-space methods, that not only provide us with a confirmation of our measurement, but also allow us to characterize the density, polarization, and atomic fraction of the beam at all points along its path. As a subsidiary result, we also present measurements of the relative and absolute efficiencies of the V/G Supavac mass analyzer for masses 1 and 2.

  1. Candlestick rubidium beam source

    Science.gov (United States)

    Walkiewicz, M. R.; Fox, P. J.; Scholten, R. E.

    2000-09-01

    We describe a long-lived, bright and intense rubidium atomic beam source based on a previously published recirculating candlestick design for sodium, with several modifications and enhancements. The device operates for thousands of hours without maintenance, with brightness of 1.9×1022 m-2 s-1 sr-1.

  2. Imaging an atomic beam using fluorescence

    Institute of Scientific and Technical Information of China (English)

    Ming He(何明); Jin Wang(王谨); Mingsheng Zhan(詹明生)

    2003-01-01

    A fluorescence detection scheme is applied to image an atomic beam. Using two laser diodes as the sources of detection light and pumping light respectively, the fluorescence image of the atomic beam is then observed by a commercial CCD-camera, which is corresponding to the atomic state and velocity distribution. The detection scheme has a great utilization in the experiments of cold atoms and atomic optics.

  3. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  4. High flux source of cold rubidium atoms

    International Nuclear Information System (INIS)

    We report on the production of a continuous, slow, and cold beam of 87Rb atoms with an extremely high flux of 3.2x1012 atoms/s, a transverse temperature of 3 mK, and a longitudinal temperature of 90 mK. We describe the apparatus created to generate the atom beam. Hot atoms are emitted from a rubidium candlestick atomic beam source and transversely cooled and collimated by a 20 cm long atomic collimator section, boosting overall beam flux by a factor of 50. The Rb atomic beam is then decelerated and longitudinally cooled by a 1 m long Zeeman slower

  5. High flux source of cold rubidium atoms

    Science.gov (United States)

    Slowe, Christopher; Vernac, Laurent; Hau, Lene Vestergaard

    2005-10-01

    We report on the production of a continuous, slow, and cold beam of Rb87 atoms with an extremely high flux of 3.2×1012atoms/s, a transverse temperature of 3mK, and a longitudinal temperature of 90mK. We describe the apparatus created to generate the atom beam. Hot atoms are emitted from a rubidium candlestick atomic beam source and transversely cooled and collimated by a 20cm long atomic collimator section, boosting overall beam flux by a factor of 50. The Rb atomic beam is then decelerated and longitudinally cooled by a 1m long Zeeman slower.

  6. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    Science.gov (United States)

    Kolmogorov, A.; Atoian, G.; Davydenko, V.; Ivanov, A.; Ritter, J.; Stupishin, N.; Zelenski, A.

    2014-02-01

    The RHIC polarized H- ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ˜0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  7. Gaussian Schell Source as Model for Slit-Collimated Atomic and Molecular Beams

    CERN Document Server

    McMorran, Ben

    2008-01-01

    We show how to make a Gaussian Schell-model (GSM) beam. Then we compare the intensity profile, the transverse coherence width and the divergence angle of a GSM beam with those same properties of a beam that is collimated with two hard-edged slits. This work offers an intuitive way to understand various interferometer designs, and we compare our results with data.

  8. Atomic laser-beam finder.

    Science.gov (United States)

    Viering, Kirsten; Medellin, David; Mo, Jianyong; Raizen, Mark G

    2012-11-01

    We report on an experimental method to align a laser beam to a cloud of atoms trapped in a magneto-optical trap (MOT). We show how balanced lock-in detection leads to a very sensitive method to align the laser beam to the atoms in the plane perpendicular to the propagation direction. This provides a very reliable and fast way of aligning laser beams to atoms trapped in a MOT.

  9. A cold 87Rb atomic beam

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Jia; Feng Yan-Ying; Xue Hong-Bo; Zhou Zhao-Ying; Zhang Wen-Dong

    2011-01-01

    We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms.The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap.Via a radiation pressure difference generated by a specially designed leak tunnel along one trapping laser beam,the atoms are pushed out continuously with low velocities and a high flux.The most-probable velocity in the beam is varied from 9 m/s to 19 m/s by varying the detuning of the trapping laser beams in the magneto-optical trap and the flux can be tuned up to 4× 109 s-1 by increasing the intensity of the trapping beams.We also present a simple model for describing the dependence of the beam performance on the magneto-optical trap trapping laser intensity and the detuning.

  10. Dielectric barrier discharge source for supersonic beams

    Energy Technology Data Exchange (ETDEWEB)

    Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-10-15

    We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.

  11. Single beam atom sorting machine

    International Nuclear Information System (INIS)

    We create two overlapping one-dimensional optical lattices using a single laser beam, a spatial light modulator and a high numerical aperture lens. These lattices have the potential to trap single atoms, and using the dynamic capabilities of the spatial light modulator may shift and sort atoms to a minimum atom-atom separation of 1.52 μm. We show how a simple feedback circuit can compensate for the spatial light modulator's intensity modulation

  12. A polarized atomic hydrogen beam

    OpenAIRE

    Chan, N; Crowe, D.M.; Lubell, M. S.; Tang, F.C.; Vasilakis, A.; Mulligan, F. J.; Slevin, J.

    1988-01-01

    We describe the design and operating characteristics of a simple polarized atomic hydrogen beam particularly suitable for applications to crossed beams experiments. In addition to experimental measurements, we present the results of detailed computer models, using Monte-Carlo ray tracing techniques, optical analogs, and phase-space methods, that not only provide us with a confirmation of our measurement, but also allow us to characterize the density, polarization, and atomic fraction of the b...

  13. A polarized atomic hydrogen beam

    International Nuclear Information System (INIS)

    We describe the design and operating characteristics of a simple polarized atomic hydrogen beam particularly suitable for applications to crossed beams experiments. In addition to experimental measurements, we present the results of detailed computer models, using Monte-Carlo ray tracing techniques, optical analogs, and phase-space methods, that not only provide us with a confirmation of our measurement, but also allow us to characterize the density, polarization, and atomic fraction of the beam at all points along its path. As a subsidiary result, we also present measurements of the relative and absolute efficiencies of the V/G Supavac mass analyzer for masses 1 and 2. (orig.)

  14. Carbon beam extraction with 14.5 GHz electron cyclotron resonance ion source at Korea Atomic Energy Research Institute

    Science.gov (United States)

    Lee, Cheol Ho; Oh, Byung-Hoon; Chang, Dae-Sik; Jeong, Sun-Chan

    2014-02-01

    A 14.5 GHz Electron Cyclotron Resonance ion source (ECRIS) has been made to produce C4+ beam for using a carbon therapy facility and recently tested at KAERI. Highly charged carbon ions have been successfully extracted. When using only CO2 gas, the beam current of C4+ was almost 14 μA at 15 kV extraction voltage. To get higher current of the C4+ beam, while optimizing confinement magnetic field configuration (e.g., axial strengths at minimum and extraction side), gas-mixing (CO2/He), and biased disk were introduced. When the gas mixing ratio of the CO2/He gas is 1:8 at an operational pressure of 5 × 10-7 mbar and the disk was biased to -150 V relative to the ion source body, the highest current of the C4+ beam was achieved to be 50 μA, more than three times higher than previously observed only with CO2 gas. Some details on the operating conditions of the ECRIS were discussed.

  15. ATOMIC BEAM STUDIES IN THE RHIC H-JET POLARIMETER.

    Energy Technology Data Exchange (ETDEWEB)

    MAKDISI,Y.; ZELENSKI,A.; GRAHAM,D.; KOKHANOVSKI,S.; MAHLER,G.; NASS,A.; RITTER,J.; ZUBETS,V.; ET AL.

    2005-01-28

    The results of atomic beam production studies are presented. Improved cooling of the atoms before jet formation in the dissociator cold nozzle apparently reduces the atomic beam velocity spread and improves beam focusing conditions. A carefully designed sextupole separating (and focusing) magnet system takes advantage of the high brightness source. As a result a record beam intensity of a 12.4 {center_dot} 10{sup 16} atoms/s was obtained within 10 mm acceptance at the collision point. The results of the polarization dilution factor measurements (by the hydrogen molecules at the collision point) are also presented.

  16. Intense Atomic and Molecular Beams via Neon Buffer Gas Cooling

    CERN Document Server

    Patterson, David; Doyle, John M

    2008-01-01

    We realize a continuous guided beam of cold deuterated ammonia with a flux of 3e11 ND3 molecules/s and a continuous free-space beam of cold potassium with a flux of 1e16 K atoms/s. A novel feature of the buffer gas source used to produce these beams is cold neon, which, due to intermediate Knudsen number beam dynamics, produces a forward velocity and low-energy tail that is comparable to much colder helium-based sources. We expect this source to be trivially generalizable to a very wide range of atomic and molecular species with significant vapor pressure below 1000 K. This source has properties that make it a good starting point for laser cooling of molecules or atoms, cold collision studies, trapping, or nonlinear optics in buffer-gas-cooled atomic or molecular gases.

  17. Dual-Beam Atom Laser Driven by Spinor Dynamics

    Science.gov (United States)

    Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Aveline, David

    2007-01-01

    An atom laser now undergoing development simultaneously generates two pulsed beams of correlated Rb-87 atoms. (An atom laser is a source of atoms in beams characterized by coherent matter waves, analogous to a conventional laser, which is a source of coherent light waves.) The pumping mechanism of this atom laser is based on spinor dynamics in a Bose-Einstein condensate. By virtue of the angular-momentum conserving collisions that generate the two beams, the number of atoms in one beam is correlated with the number of atoms in the other beam. Such correlations are intimately linked to entanglement and squeezing in atomic ensembles, and atom lasers like this one could be used in exploring related aspects of Bose-Einstein condensates, and as components of future sensors relying on atom interferometry. In this atom-laser apparatus, a Bose-Einstein condensate of about 2 x 10(exp 6) Rb-87 atoms at a temperature of about 120 micro-K is first formed through all-optical means in a relatively weak singlebeam running-wave dipole trap that has been formed by focusing of a CO2-laser beam. By a technique that is established in the art, the trap is loaded from an ultrahigh-vacuum magnetooptical trap that is, itself, loaded via a cold atomic beam from an upstream two-dimensional magneto-optical trap that resides in a rubidium-vapor cell that is differentially pumped from an adjoining vacuum chamber, wherein are performed scientific observations of the beams ultimately generated by the atom laser.

  18. Cold Atom Source Containing Multiple Magneto-Optical Traps

    Science.gov (United States)

    Ramirez-Serrano, Jaime; Kohel, James; Kellogg, James; Lim, Lawrence; Yu, Nan; Maleki, Lute

    2007-01-01

    An apparatus that serves as a source of a cold beam of atoms contains multiple two-dimensional (2D) magneto-optical traps (MOTs). (Cold beams of atoms are used in atomic clocks and in diverse scientific experiments and applications.) The multiple-2D-MOT design of this cold atom source stands in contrast to single-2D-MOT designs of prior cold atom sources of the same type. The advantages afforded by the present design are that this apparatus is smaller than prior designs.

  19. Investigation of accelerated neutral atom beams created from gas cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, A., E-mail: akirkpatrick@exogenesis.us [Exogenesis Corporation, 20 Fortune Drive, Billerica, MA 01821 (United States); Kirkpatrick, S.; Walsh, M.; Chau, S.; Mack, M.; Harrison, S.; Svrluga, R.; Khoury, J. [Exogenesis Corporation, 20 Fortune Drive, Billerica, MA 01821 (United States)

    2013-07-15

    A new concept for ultra-shallow processing of surfaces known as accelerated neutral atom beam (ANAB) technique employs conversion of energetic gas cluster ions produced by the gas cluster ion beam (GCIB) method into intense collimated beams of coincident neutral gas atoms having controllable average energies from less than 10 eV per atom to beyond 100 eV per atom. A beam of accelerated gas cluster ions is first produced as is usual in GCIB, but conditions within the source ionizer and extraction regions are adjusted such that immediately after ionization and acceleration the clusters undergo collisions with non-ionized gas atoms. Energy transfer during these collisions causes the energetic cluster ions to release many of their constituent atoms. An electrostatic deflector is then used to eliminate charged species, leaving the released neutral atoms to still travel collectively at the same velocities they had as bonded components of their parent clusters. Upon target impact, the accelerated neutral atom beams produce effects similar to those normally associated with GCIB, but to shallower depths, with less surface damage and with superior subsurface interfaces. The paper discusses generation and characterization of the accelerated neutral atom beams, describes interactions of the beams with target surfaces, and presents examples of ongoing work on applications for biomedical devices.

  20. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.

  1. Enabling Nanotechnology with Focused Ion Beams from Laser Cooled Atoms

    Science.gov (United States)

    Steele, A. V.; Knuffman, B.; Orloff, J.; Maazouz, M.; McClelland, J. J.

    2011-05-01

    The Magneto-Optical Trap Ion Source (MOTIS) being developed at NIST has the potential to enable numerous advances in nanoscale science. In a MOTIS, atoms are captured into a MOT, photoionized, and accelerated to an energy of a few hundred eV to a few tens of kV. A beam formed in this way can be brought to a tight focus, competitive with the commercial focused ion beam machines deployed widely today. Additionally, the unique characteristics of this source, coupled with the user's choice of ion from the long and growing list of laser-coolable atomic species suggest that the MOTIS has the potential to advance the state of the art in applications such as imaging, nanofabrication, secondary ion mass spectrometry, and others. I will present high-resolution images from our lithium and chromium MOTIS-based focused ion beams and discuss applications which we will pursue with these new tools.

  2. Random sources for cusped beams.

    Science.gov (United States)

    Li, Jia; Wang, Fei; Korotkova, Olga

    2016-08-01

    We introduce two novel classes of partially coherent sources whose degrees of coherence are described by the rectangular Lorentz-correlated Schell-model (LSM) and rectangular fractional multi-Gaussian-correlated Schell-model (FMGSM) functions. Based on the generalized Collins formula, analytical expressions are derived for the spectral density distributions of these beams propagating through a stigmatic ABCD optical system. It is shown that beams belonging to both classes form the spectral density apex that is much higher and sharper than that generated by the Gaussian Schell-model (GSM) beam with a comparable coherence state. We experimentally generate these beams by using a nematic, transmissive spatial light modulator (SLM) that serves as a random phase screen controlled by a computer. The experimental data is consistent with theoretical predictions. Moreover, it is illustrated that the FMGSM beam generated in our experiments has a better focusing capacity than the GSM beam with the same coherence state. The applications that can potentially benefit from the use of novel beams range from material surface processing, to communications and sensing through random media. PMID:27505746

  3. Atomic physics at the advanced photon source

    International Nuclear Information System (INIS)

    Argonne's 7-GeV synchrotron light source (APS) is expected to commence operations for research early in FY 1996. The Basic Energy Sciences Synchrotron Research Center (BESSRC) is likewise expected to start its research programs at that time. As members of the BESSRC CAT (Collaborative Access Team), we are preparing, together with atomic physicists from the University of Western Michigan, the University of Tennessee, and University of Notre Dame, to initiate a series of atomic physics experiments that exploit the unique capabilities of the APS, especially its high brilliance for photon energies extending from about 3 keV to more than 50 keV. Most of our early work will be conducted on an undulator beam line and we are thus concentrating on various aspects of that beam line and its associated experimental areas. Our group has undertaken responsibilities in such areas as hutch design, evaluation of undulator performance, user policy, interfacing and instrumentation, etc. Initial experiments will probably utilize existing apparatus. We are, however, planning to move rapidly to more sophisticated measurements involving, for example, ion-beam targets, simultaneous laser excitation, and the spectroscopy of emitted photons

  4. Antiproton source beam position system

    International Nuclear Information System (INIS)

    The TeV I Beam Position Monitor (BPM) system is designed to provide a useful diagnostic tool during the commissioning and operational phases of the antiproton source. Simply stated the design goal is to provide single turn position information for intensities of > 1x109 particles, and multi-turn (clocked orbit) information for beam intensities of > 1x107 particles, both with sub-millimeter resolution. It is anticipated that the system will be used during commissioning for establishing the first turn through the Debuncher and Accumulator, for aligning injection orbits, for providing information necessary to correct closed orbits, and for measuring various machine parameters (e.g. tunes, dispersion, aperture, chromaticity). During normal antiproton operation the system will be used to monitor the beam position throughout the accumulation process

  5. Versatile compact atomic source for high resolution dual atom interferometry

    CERN Document Server

    Müller, T; Gilowski, M; Jentsch, C; Rasel, E M; Ertmer, W

    2007-01-01

    We present a compact $^{87}$Rb atomic source for high precision dual atom interferometers. The source is based on a double-stage magneto-optical trap (MOT) design, consisting of a 2-dimensional (2D)-MOT for efficient loading of a 3D-MOT. The accumulated atoms are precisely launched in a horizontal moving molasses. Our setup generates a high atomic flux ($>10^{10}$ atoms/s) with precise and flexibly tunable atomic trajectories as required for high resolution Sagnac atom interferometry. We characterize the performance of the source with respect to the relevant parameters of the launched atoms, i.e. temperature, absolute velocity and pointing, by utilizing time-of-flight techniques and velocity selective Raman transitions.

  6. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    CERN Document Server

    Chanu, Sapam Ranjita; Natarajan, Vasant

    2016-01-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  7. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    Science.gov (United States)

    Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant

    2016-08-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  8. An improved high intensity recycling helium-3 beam source.

    Science.gov (United States)

    Hedgeland, H; Kole, P R; Allison, W; Ellis, J; Jardine, A P

    2009-07-01

    We describe an improved high intensity, recycling, supersonic atomic beam source. Changes address several issues previously limiting performance and reliability of the apparatus, including the use of newly available vacuum pumps and modifications to the recycling system. We achieve a source intensity of 2.5 x 10(19) atoms/s/sr, almost twice that previously achievable during recycling. Current limits on intensity are discussed. PMID:19655995

  9. An improved high intensity recycling helium-3 beam source

    International Nuclear Information System (INIS)

    We describe an improved high intensity, recycling, supersonic atomic beam source. Changes address several issues previously limiting performance and reliability of the apparatus, including the use of newly available vacuum pumps and modifications to the recycling system. We achieve a source intensity of 2.5x1019 atoms/s/sr, almost twice that previously achievable during recycling. Current limits on intensity are discussed.

  10. Production of heavy ion beams for atomic physics studies

    International Nuclear Information System (INIS)

    A laboratory for research in atomic physics of ions has been set up around a 2 MV tandem Van de Graaff accelerator designed and built indegenously. Mass analysed negatively charged heavy ion beams from a directly extracted duoplasmatron ion source are injected through various ion-optical elements into the accelerating tube. A gas stripper at the high voltage dome changes the negative ions into positive ions which are subsequently accelerated. The high energy end of the accelerator consists of quadrupole focussing magnets and an analysing magnet. A pair of insulated tantalum slits provide corona feedback and stabilize the energy of the accelerator. A beam resolution of 5 keV at 1 MeV proton energy has been measured. A number of experiments are presently being planned to utilize the accelerator in the field of basic research in atomic physics. These include beam-foil spectroscopic measurements involving detection of decay photon/electrons, ion-induced X-ray emission, analytical applications and radiation damage studies. Electron spectrometers which are in the stage of testing include cylindrical mirror analyser and parallel plate analyser. On the accelerator front, efforts are underway to develop a new sputter ion source and computer automation for improving stability and reliability. The salient features of the accelerator and the instrumentation developed for carrying out experiments in atomic physics are reported. (author). 14 refs., 17 figs

  11. Atomic Beam Merging and Suppression of Alkali Contaminants in Multi Body High Power Targets: Design and Test of Target and Ion Source Prototypes at ISOLDE

    CERN Document Server

    Bouquerel, Elian J A; Lettry, J; Stora, T

    2009-01-01

    The next generation of high power ISOL-facilities will deliver intense and pure radioactive ion beams. Two key issues of developments mandatory for the forthcoming generation of ISOL target-ion source units are assessed and demonstrated in this thesis. The design and production of target and ion-source prototypes is described and dedicated measurements at ISOLDE-CERN of their radioisotope yields are analyzed. The purity of short lived or rare radioisotopes suffer from isobaric contaminants, notably alkalis which are highly volatile and easily ionized elements. Therefore, relying on their chemical nature, temperature controlled transfer lines were equipped with a tube of quartz that aimed at trapping these unwanted elements before they reached the ion source. The successful application yields high alkali-suppression factors for several elements (ie: 80, 82mRb, 126, 142Cs, 8Li, 46K, 25Na, 114In, 77Ga, 95, 96Sr) for quartz temperatures between 300ºC and 1100ºC. The enthalpies of adsorption on quartz were measu...

  12. Characterization of an atomic hydrogen source for charge exchange experiments

    Science.gov (United States)

    Leutenegger, M. A.; Beiersdorfer, P.; Betancourt-Martinez, G. L.; Brown, G. V.; Hell, N.; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; Porter, F. S.

    2016-11-01

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  13. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  14. Measuring the quantum statistics of an atom laser beam

    OpenAIRE

    Bradley, A. S.; Olsen, M. K.; Haine, S. A.; Hope, J. J.

    2006-01-01

    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, ...

  15. Wave mechanics of a two-wire atomic beam splitter

    International Nuclear Information System (INIS)

    We consider the problem of an atomic beam propagating quantum mechanically through an atom beam splitter. Casting the problem in an adiabatic representation (in the spirit of the Born-Oppenheimer approximation in molecular physics) sheds light on explicit effects due to nonadiabatic passage of the atoms through the splitter region. We are thus able to probe the fully three-dimensional structure of the beam splitter, gathering quantitative information about mode mixing, splitting ratios, and reflection and transmission probabilities

  16. Cluster beam sources. Part 1. Methods of cluster beams generation

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-10-01

    Full Text Available The short review on cluster beams generation is proposed. The basic types of cluster sources are considered and the processes leading to cluster formation are analyzed. The parameters, that affects the work of cluster sources are presented.

  17. Optimization of a constrained linear monochromator design for neutral atom beams.

    Science.gov (United States)

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam.

  18. A beam source model for scanned proton beams

    Science.gov (United States)

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-01

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  19. Emittance Measurements for Beams Extracted from LECR3 Ion Source

    Institute of Scientific and Technical Information of China (English)

    CaoYun; ZhaoHongwei; MaLei; ZhangZimin

    2003-01-01

    High quality ion beams are required by IMP cyclotron and atomic physics research, so it is important to research and measure beam emitt ance of ECR ion source. Intense beams extracted from ECR ion source usually have low energy, so it is suitable to use Electric-Sweep Scanner to measure the emittance. This kind of measurement is popularly used at ECR ion source, and it has some prominent merits such as high accuracy, very short time of data processing and easy expressing of the emittance pattern. So we designed and built this emittance scanner to measure emittance of the ion beams produced by LECR3 ion source. The structure of the ESS is shown in Fig.l, and the photo of the ESS is shown in Fig.2.

  20. Programmable solid state atom sources for nanofabrication

    Science.gov (United States)

    Han, Han; Imboden, Matthias; Stark, Thomas; Del Corro, Pablo G.; Pardo, Flavio; Bolle, Cristian A.; Lally, Richard W.; Bishop, David J.

    2015-06-01

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques. Electronic supplementary information (ESI) available: A document containing further information about device characterization

  1. Caborane beam from ITEP Bernas ion source for semiconductor implanters

    Energy Technology Data Exchange (ETDEWEB)

    Seleznev, D.; Hershcovitch, A.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Koshelev, V.; Kulevoy, T.; Jonson, B.; Poole, J.; Alexeyenko, O.; Gurkova, E.; Oks, E.; Gushenets, V.; Polozov, S.; Masunov, E.

    2010-02-01

    A joint research and development of steady state intense boron ion sources for hundreds of electron-volt ion implanters has been in progress for the past 5 years. The difficulties of extraction and transportation of low energy boron beams can be solved by implanting clusters of boron atoms. In Institute for Theoretical and Experimental Physics (ITEP) the Bernas ion source successfully generated the beam of decaborane ions. The carborane (C{sub 2}B{sub 10}H{sub 12}) ion beam is more attractive material due to its better thermal stability. The results of carborane ion beam generation are presented. The result of the beam implantation into the silicon wafer is presented as well.

  2. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    Science.gov (United States)

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-07-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry.

  3. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    Science.gov (United States)

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  4. Feshbach-resonance-induced atomic filamentation and quantum pair correlation in atom-laser-beam propagation

    OpenAIRE

    Zhang, Weiping; Search, Chris P.; Pu, Han; Meystre, Pierre; Wright, Ewan M.

    2002-01-01

    We study the propagation of an atom laser beam through a spatial region with a magnetic field tuned to a Feshbach resonance. Tuning the magnetic field below the resonance produces an effective focusing Kerr medium that causes a modulational instability of the atomic beam. Under appropriate circumstances, this results in beam breakup and filamentation seeded by quasi-particle fluctuations, and in the generation of correlated atomic pairs.

  5. Development of francium atomic beam for the search of the electron electric dipole moment

    Directory of Open Access Journals (Sweden)

    Sato Tomoya

    2014-03-01

    Full Text Available For the measurement of the electron electric dipole moment using Fr atoms, a Fr ion-atom conversion is one of the most critical process. An ion-atom converter based on the “orthotropic” type of Fr source has been developed. This converter is able to convert a few keV Fr ion beam to a thermal atomic beam using a cycle of the surface ionization and neutralization. In this article, the development of the converter is reported.

  6. PYRAMIDAL-HOLLOW-BEAM DIPOLE TRAP FOR ALKALI ATOMS

    Institute of Scientific and Technical Information of China (English)

    YIN JIAN-PING; GAO WEI-JIAN; WANG YU-ZHU; ZHU YI-FU; WANG YI-QIU

    2000-01-01

    We propose a dark gravito-optical dipole trap, for alkali atoms, consisting of a blue-detuned, pyramidal-hollow laser beam propagating upward and the gravity field. When cold atoms from a magneto-optical trap are loaded into the pyramidal-hollow beam and bounce inside the pyramidal-hollow beam, they experience efficient Sisyphus cooling and geometric cooling induced by the pyramidal-hollow beam and the weak repumping beam propagating downward. Our study shows that an ultracold and dense atomic sample with an equilibrium 3D momentum of ~ 3hk and an atomic density above the point of Bose-Einstein condensation may be obtained in this pure optical trap.

  7. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe26+ approximately 4x1010 h/s, Asub(r)sup(12+) approximately 1012 h/s intensive ion beams are produced. In the laser source a full number of C6+ ions during one laser pulse constitutes not less than 1010 from the 5x10mm2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached

  8. Laser cooling of a magnetically guided ultra cold atom beam

    Energy Technology Data Exchange (ETDEWEB)

    Aghajani-Talesh, Anoush

    2014-07-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  9. Laser cooling of a magnetically guided ultra cold atom beam

    International Nuclear Information System (INIS)

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  10. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms

    International Nuclear Information System (INIS)

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable 3P2 state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam (3P2). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms

  11. Discrimination of ionic species from broad-beam ion sources

    International Nuclear Information System (INIS)

    The performance of a broad-beam, three-grid, ion extraction system incorporating radio frequency (RF) mass discrimination was investigated experimentally. This testing demonstrated that the system, based on a modified single-stage Bennett mass spectrometer, can discriminate between ionic species having about a 2-to-1 mass ratio while producing a broad-beam of ions with low kinetic energy (less than 15 eV). Testing was conducted using either argon and krypton ions or atomic and diatomic oxygen ions. A simple one-dimensional model, which ignores magnetic field and space-charge effects, was developed to predict the species separation capabilities as well as the kinetic energies of the extracted ions. The experimental results correlated well with the model predictions. This RF mass discrimination system can be used in applications where both atomic and diatomic ions are produced, but a beam of only one of the species is desired. An example of such an application is a 5 eV atomic oxygen source. This source would produce a beam of atomic oxygen with 5 eV kinetic energy, which would be directed onto a material specimen, to simulate the interaction between the surface of a satellite and the rarefied atmosphere encountered in low-Earth orbit

  12. Measuring the quantum statistics of an atom laser beam

    CERN Document Server

    Bradley, A S; Hope, J J; Olsen, M K

    2006-01-01

    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, we show that experimental realisations of the scheme may be tested with existing methods via measurements of Glauber's intensity correlation function.

  13. Particle beam technology for control of atomic-bonding state in materials

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)

  14. An Atomic Lens Using a Focusing Hollow Beam

    Institute of Scientific and Technical Information of China (English)

    夏勇; 印建平; 王育竹

    2003-01-01

    We propose a new method to generate a focused hollow laser beam by using an azimuthally distributed 2π-phase plate and a convergent thin lens, and calculate the intensity distribution of the focused hollow beam in free propagation space. The relationship between the waist w0 of the incident collimated Gaussian beam and the dark spot size of the focused hollow beam at the focal point, and the relationship between the focal length f of the thin lens and the dark spot size are studied respectively. The optical potential of the blue-detuned focused hollow beam for 85Rb atoms is calculated. Our study shows that when the larger waist w of the incident Gaussian beam and the shorter focal length f of the lens are chosen, we can obtain an extremely small dark spot size of the focused hollow beam, which can be used to form an atomic lens with a resolution of several angstroms.

  15. Electron beam ion source and electron beam ion trap (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  16. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  17. Demonstration of a cold atom beam splitter on atom chip

    Science.gov (United States)

    Jiang, Xiaojun; Li, Xiaolin; Zhang, Haichao; Wang, Yuzhu

    2016-08-01

    We report an experimental demonstration of a new scheme to split cold atoms on an atom chip. The atom chip consists of a U-wire and a Z-wire. The cold atom cloud is initially loaded and prepared in the Z-trap, which is split into two separate parts by switching on the current of the U-wire. The two separate atom clouds have a distance more than one millimeter apart from each other and show almost symmetrical profiles, corresponding to about a 50/50 splitting ratio. Project supported by the State Key Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).

  18. Theoretical tools for atom-laser-beam propagation

    OpenAIRE

    Riou, Jean-Félix; Le Coq, Yann; Impens, François; Guerin, William; Bordé, Christian,; Aspect, Alain; Bouyer, Philippe

    2008-01-01

    We present a theoretical model for the propagation of non self-interacting atom laser beams. We start from a general propagation integral equation, and we use the same approximations as in photon optics to derive tools to calculate the atom laser beam propagation. We discuss the approximations that allow to reduce the general equation whether to a Fresnel-Kirchhoff integral calculated by using the stationary phase method, or to the eikonal. Within the paraxial approximation, we also introduce...

  19. Atom gratings produced by large angle atom beam splitters

    OpenAIRE

    Dubetsky, B.; Berman, P. R.

    2001-01-01

    An asymptotic theory of atom scattering by large amplitude periodic potentials is developed in the Raman-Nath approximation. The atom grating profile arising after scattering is evaluated in the Fresnel zone for triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It is shown that, owing to the scattering in these potentials, two \\QTR{em}{groups} of momentum states are produced rather than two distinct momentum components. The corresponding spatial density profile is cal...

  20. Cold atom dynamics in crossed laser beam waveguides

    CERN Document Server

    Torrontegui, E; Ruschhaupt, A; Guéry-Odelin, D; Muga, J G

    2010-01-01

    We study the dynamics of neutral cold atoms in an $L$-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. Complemented with a vibrational cooling process this setting works as a one-way device or "atom diode".

  1. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Tai Hyun [Department of Physics, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-02-15

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s{sup 2} {sup 1}S{sub 0}{r_reversible} 6s7s {sup 1}S{sub 0}) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm{sup 3} and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s{sup 1}S{sub 0} state via the intercombination 6s6p{sup 3}P{sub 1} state with a high signal-to-noise ratio even at the temperature of 340 Degree-Sign C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  2. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus.

    Science.gov (United States)

    Song, Minsoo; Yoon, Tai Hyun

    2013-02-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s(2)(1)S0↔ 6s7s (1)S0) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm(3) and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s(1)S0 state via the intercombination 6s6p(3)P1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle. PMID:23464193

  3. Metastable argon beam source using a surface wave sustained plasma

    International Nuclear Information System (INIS)

    A new source of metastable argon atoms in the thermal energy range is reported. The source is based on expanding a plasma sustained by electromagnetic surface waves in a quartz tube through a converging nozzle and extracting a beam from the supersonic free-expansion jet. The beam was characterized by time-of-flight measurements which yielded the absolute intensity and velocity distribution of the argon metastables. The source produced a maximum intensity of 6.2x1014 metastables per second per steradian, the highest time-averaged intensity of thermal argon metastables of any source reported to date. A simple picture of an expanding plasma in a recombination regime is used to explain the dependence of the metastable intensity on absorbed power

  4. Atomic modeling of the plasma EUV sources

    Science.gov (United States)

    Sasaki, Akira; Sunahara, Atsushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro; Tanuma, Hajime

    2009-09-01

    We present the development of population kinetics models for tin plasmas that can be employed to design an EUV source for microlithography. The atomic kinetic code is constrained for the requirement that the model must be able to calculate spectral emissivity and opacity that can be used in radiation hydrodynamic simulations. Methods to develop compact and reliable atomic model with an appropriate set of atomic states are discussed. Specifically, after investigation of model dependencies and comparison experiment, we improve the effect of configuration interaction and the treatment of satellite lines. Using the present atomic model we discuss the temperature and density dependencies of the emissivity, as well as conditions necessary to obtain high efficiency EUV power at λ = 13.5 nm.

  5. A compact design for a magnetic synchrotron to store beams of hydrogen atoms

    CERN Document Server

    van der Poel, Aernout P P; Softley, Timothy P; Bethlem, Hendrick L

    2015-01-01

    We present a design for an atomic synchrotron consisting of 40 hybrid magnetic hexapole lenses arranged in a circle. We show that for realistic parameters, hydrogen atoms with a velocity up to 600 m/s can be stored in a 1-meter diameter ring, which implies that the atoms can be injected in the ring directly from a pulsed supersonic beam source. This ring can be used to study collisions between stored hydrogen atoms and molecular beams of many different atoms and molecules. The advantage of using a synchrotron is two-fold: (i) the collision partners move in the same direction as the stored atoms, resulting in a small relative velocity and thus a low collision energy, and (ii) by storing atoms for many round-trips, the sensitivity to collisions is enhanced by a factor of 100-1000. In the proposed ring, the cross-sections for collisions between hydrogen, the most abundant atom in the universe, with any atom or molecule that can be put in a beam, including He, H$_2$, CO, ammonia and OH can be measured at energies...

  6. Intense proton beam source for ITER neutral-beam spectroscopy diagnostics

    International Nuclear Information System (INIS)

    An intense proton beam has been developed to evaluate a gas-cell neutralizer for use in an intense-neutral beam source for Tokomak Spectroscopy diagnostics. The allowed energy range of the proton stream is determined to be 50 to 70 keV from neutralization and reionization cross-sections and from the alpha particle charge exchange recombination intensity as a function of energy (baseline diagnostic). The neutralization evaluation source uses a flashover anode, magnetized, ion-diode. Neutral probes sensitive to energetic atomic and molecular hydrogen, developed to evaluate neutralizer performance, show neutral fluence from the ion-diode during the beam pulse. An array of Rogowski current probes, used to study the evolution of the current path, suggests that expansion of the anode plasma along the radial insulating magnetic field leads to impedance collapse

  7. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  8. Characterization of a metastable neon beam extracted from a commercial RF ion source

    International Nuclear Information System (INIS)

    We have used a commercial RF ion-source to extract a beam of metastable neon atoms. The source was easily incorporated into our existing system and was operative within a day of installation. The metastable velocity distribution, flux, flow, and efficiency were investigated for different RF powers and pressures, and an optimum was found at a flux density of 2 × 1012 atoms/s/sr. To obtain an accurate measurement of the amount of metastable atoms leaving the source, we insert a Faraday cup in the beam line and quench some of them using a weak 633 nm laser beam. In order to determine how much of the beam was quenched before reaching our detector, we devised a simple model for the quenching transition and investigated it for different laser powers. This detection method can be easily adapted to other noble gas atoms

  9. Characterization of a metastable neon beam extracted from a commercial RF ion source

    CERN Document Server

    Ohayon, B; Ron, G

    2015-01-01

    We have used a commercial RF ion-source to extract a beam of metastable neon atoms. The source was easily incorporated into our existing system and was operative within a day of installation. The metastable velocity distribution, flux, flow, and efficiency were investigated for different RF powers and pressures, and an optimum was found at a flux density of $2\\times10^{12}\\,$atoms/s/sr. To obtain an accurate measurement of the amount of metastable atoms leaving the source, we insert a Faraday cup in the beam line and quench some of them using a weak $633\\,$nm laser beam. In order to determine how much of the beam was quenched before reaching our detector, we devised a simple model for the quenching transition and investigated it for different laser powers. This detection method can be easily adapted to other noble gas atoms.

  10. A New ECR Ion Source for Atomic Physics Research at IMP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new Electron Cyclotron Resonance (ECR) ion source (LECR3-Lanzhou Electron Cyclotron Resonance ion source No.3) was constructed this year. The main purpose of this source is to provide highly charged ion beams for atomic physics and surface physics research. The design of this ion source is based on the IMP 14.5 GHz ECR ion source (LECR2-Lanzhou Electron Cyclotron Resonance ion source No.2) with double RF heating

  11. Research in atomic and applied physics using a 6-GeV synchrotron source

    International Nuclear Information System (INIS)

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented

  12. Atomic-Beam Magnetic Resonance Experiments at ISOLDE

    CERN Multimedia

    2002-01-01

    The aim of the atomic-beam magnetic resonance (ABMR) experiments at ISOLDE is to map the nuclear behaviour in wide regions of the nuclear chart by measuring nuclear spins and moments of ground and isomeric states. This is made through an investigation of the atomic hyperfine structure of free, neutral atoms in a thermal atomic-beam using radio-frequency techniques. On-line operation allows the study of short-lived nuclei far from the region of beta-stability.\\\\ \\\\ The ABMR experiments on the |2S^1 ^2 elements Rb, Cs, Au and Fr have been completed, and present efforts are directed towards the elements with an open p-shell and on the rare-earth elements.\\\\ \\\\ The experimental data obtained are compared with results from model calculations, giving information on the single-particle structure and on the nuclear shape parameters.

  13. Targets for neutron beam spallation sources

    International Nuclear Information System (INIS)

    The meeting on Targets for Neutron Beam Spallation Sources held at the Institut fuer Festkoerperforschung at KFA Juelich on June 11 and 12, 1979 was planned as an informal get-together for scientists involved in the planning, design and future use of spallation neutron sources in Europe. These proceedings contain the papers contributed to this meeting. For further information see hints under relevant topics. (orig./FKS)

  14. Ion beam source construction and applications

    International Nuclear Information System (INIS)

    The aim of this thesis is to improve the performance of a new shape cold cathode Penning ion source to be suitable for some applications. In this work, many trials have been made to reach the optimum dimensions of the new shape of cold Molybdenum cathode Penning ion source with radial extraction. The high output ion beam can be extracted in a direction transverse to the discharge region. The new shape cold cathode Penning ion source consists of Copper cylindrical hollow anode of 40 mm length, 12 mm diameter and has two similar cone ends of 15 mm length, 22 mm upper cone diameter and 12 mm bottom cone diameter. The two movable Molybdenum cathodes are fixed in Perspex insulator and placed symmetrically at two ends of the anode. The Copper emission disc of 2 mm thickness and has central aperture of different diameters is placed at the middle of the anode for ion beam exit. The inner surface of the emission disc is isolated from the anode by Perspex insulator except an area of diameter 5 mm to confine the electrical discharge in this area. A movable Faraday cup is placed at different distances from the emission electrode aperture and used to collect the output ion beam from the ion source. The working gases are admitted to the ion source through a hole in the anode via a needle valve which placed between the gas cylinder and the ion source. The optimum anode- cathode distance, the uncovered area diameter of the emission disc, the central aperture diameter of the emission electrode, the distance between emission electrode and Faraday cup have been determined using Argon gas. The optimum distances of the ion source were found to be equal to 6 mm, 5 mm, 2.5 mm, and 3 cm respectively where stable discharge current and maximum output ion beam current at low discharge current can be obtained. The discharge characteristics, ion beam characteristics, and the efficiency of the ion source have been measured at different operating conditions and different gas pressures using

  15. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  16. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    International Nuclear Information System (INIS)

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at λω = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5±3.8 cm/s yielding a full divergence of only 0.48 ± 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, Λ-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two-color spectroscopy experiment

  17. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  18. A high-flux BEC source for mobile atom interferometers

    CERN Document Server

    Rudolph, Jan; Grzeschik, Christoph; Sternke, Tammo; Grote, Alexander; Popp, Manuel; Becker, Dennis; Müntinga, Hauke; Ahlers, Holger; Peters, Achim; Lämmerzahl, Claus; Sengstock, Klaus; Gaaloul, Naceur; Ertmer, Wolfgang; Rasel, Ernst M

    2015-01-01

    Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a technological challenge. Here we report on the realization of a miniaturized setup, generating a flux of $4 \\times 10^5$ quantum degenerate $^{87}$Rb atoms every 1.6 s. Ensembles of $1 \\times 10^5$ atoms can be produced at a 1 Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based experiments while offering significantly higher repetition rates. The compact and robust design allows for mobile operation in a variety of...

  19. Theoretical study of a cold atom beam splitter

    CERN Document Server

    Gaaloul, Naceur; Pruvost, L; Telmini, M; Charron, E; Gaaloul, Naceur; Suzor-Weiner, Annick; Pruvost, Laurence; Telmini, Mourad; Charron, Eric

    2006-01-01

    A theoretical model is presented for the study of the dynamics of a cold atomic cloud falling in the gravity field in the presence of two crossing dipole guides. The cloud is splitted between the two branches of the guide, and we compare experimental measurements of the splitting efficiency with semi-classical simulations. We then explore the possibilities of optimization of this beam splitter. Our numerical study also gives access to detailed informations, such as the atom temperature after the splitting. It finally sets the foundation for a study of the coherence properties of the guided atoms.

  20. Atomic beam study of a superconductor's magnetic vortex lattice

    International Nuclear Information System (INIS)

    We have developed an atomic beam technique for studying magnetic vortices and vortex lattices of superconductors. Atoms moving near a superconductor's surface see a fluctuating magnetic field as they pass vortices. This field may drive magnetic resonance transitions between hyperfine states. Measuring the magnetic resonance transition probability as a function of atom velocity probes the vortex lattice autocorrelation function. We demonstrate this technique by studying the vortex lattice of a niobium film sample and measuring the sample's penetration depth. We also identify a systematic problem that we think thwarted an earlier attempt to experimentally realize this technique. copyright 1997 The American Physical Society

  1. Beam Stability at the Advanced Photon Source

    CERN Document Server

    Decker, Glenn

    2005-01-01

    The Advanced Photon Source has been in operation since 1996. Since that time, extensive incremental improvements to orbit stabilization systems have been made. This includes the addition of 80 channels of narrowband rf beam position monitors (bpm's), 40 channels of bending magnet photon bpm's, and most recently the inclusion of 36 insertion device photon bpm's into the orbit correction response matrix. In addition, considerable improvements have been made in the area of power supply regulation, both for the main multipole magnets and the steering corrector magnets. The present status of overall performance will be discussed, including long term pointing stability, reproducibility, and AC beam motion.

  2. Cluster Beams Sources. Part 2. The Formation of Cluster Beams in Nozzle Sources

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-12-01

    Full Text Available The article briefly examines the processes occurring during the formation of cluster beams in sources of clusters, using the expansion of the gas mixture through a nozzle. The basic parameters of the gas cluster flow at the outlet nozzle, leading to the formation of clusters are analyzed. Some aspects of the formation of cluster beams from aerodynamic flows are discussed.

  3. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  4. Ramsey fringes in a thermal beam of Yb atoms

    CERN Document Server

    Rathod, K D

    2014-01-01

    We use the Ramsey separated oscillatory fields (SOF) technique in a $400^\\circ$C thermal beam of Yb atoms to measure the Larmor precession frequency with high precision. For the experiment, we use the strongly-allowed ${^1S_0} \\rightarrow {^1P_1}$ transition at $399$ nm, and choose the odd isotope $^{171}$Yb with nuclear spin $I=1/2$, so that the ground state has only two magnetic sublevels $m_F = \\pm 1/2$. With a magnetic field of $22.2$ G and a separation of about $400$ mm between the oscillatory fields, the central Ramsey fringe is at $16.64$ kHz and has a width of $350$ Hz. The technique can be readily adapted to a cold atomic beam, and should be useful in experiments searching for a permanent electric dipole moment (EDM) in atoms.

  5. Electron beam ion sources for student education at universities

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Erik [DREEBIT GmbH, Dresden (Germany); Zschornack, Guenter [TU Dresden, Dresden (Germany)

    2014-07-01

    Ion beams have become essential tools used in many fields of fundamental research as well as industrial applications. Thus, it is important for todays physics students to understand the basics of ion beam creation, transportation as well as ion-surface interactions. We present results from laboratory training courses using table-top sized electron beam ion sources of the Dresden EBIT type which is able to produce a large spectrum of ions with low or high charge states. The initial ion beam is guided through several ion optical elements like Einzel lenses and deflectors, is separated by the charge-to-mass ratio of its components with a Wien-Filter or dipole analyzing magnet and is detected in a Faraday Cup. A specific assembly for laboratory training as used at the Technische Universitaet Dresden and the Jagiellonian University in Krakow, Poland, is introduced. In typical experiments, students analyze the charge-to-mass ratio spectrum from a Dresden EBIT measured using a Wien Filter. The composition of the extracted ion beam can be manipulated by the gas pressure or the ionisation time. In a wider context, the atomic physics processes occurring especially during the production of highly charged ions also appear in nuclear fusion facilities as well as in many astrophysical phenomena, for example supernovas. Such aspects can be discussed in order to help students connect to modern research carried out at large international facilities.

  6. LOW ENERGY BEAM-GAS SPECTROSCOPY OF HIGHLY IONISED ATOMS

    OpenAIRE

    Desesquelles, J.; Denis, A.; Druetta, M.; Martin, S.

    1989-01-01

    Features of low energy beam-gas spectroscopic source are reviewed and compared to those of other light sources. Measurement techniques are surveyed. They include the study of wavelength of heavy multiply charged ions in visible and u.v. ranges from normal excited states, doubly excited states, high n levels and doubly excited Rydberg levels.

  7. Ion beam measurements at the superconducting ECR ion source SECRAL

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Jan; Rossbach, Jon; Lang, Ralf; Maimone, Fabio; Spaedtke, Peter; Tinschert, Klaus [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Sun, Liangting; Cao, Yun; Zhao, Hongwei [Institute of Modern Physics, Lanzhou, GS (China)

    2009-08-15

    Measurement of the charge-state distribution, the beam profile, the beam emittance of the named ion source are presented. Furthermore computer simulations of the magnetic flux-density distribution in this source are described. (HSI)

  8. A cost-effective high-flux source of cold ytterbium atoms

    Science.gov (United States)

    Song, Bo; Zou, Yueyang; Zhang, Shanchao; Cho, Chang-woo; Jo, Gyu-Boong

    2016-10-01

    We report a cost-effective way to prepare high-flux slow ytterbium atoms with extremely low-power 399-nm light suitable for the production of quantum degenerate ytterbium gases. By collimating an atomic beam through an array of micro-capillary tubes, we obtain a bright atomic beam through the Zeeman slower operating at low light power of only 15 mW for the source. We achieve the loading rate of 2 × 107 s-1 into the intercombination magneto-optical trap (MOT) and a sufficient steady-state MOT atom number of 2 × 108 for 174Yb atoms. Our apparatus highlights an efficient method to obtain slow ytterbium atoms using a simple low-power 399-nm laser system.

  9. The effect of laser beam size in a zig-zag collimator on transverse cooling of a krypton atomic beam

    Indian Academy of Sciences (India)

    Vivek Singh; V B Tiwari; S Singh; S R Mishra; H S Rawat

    2014-07-01

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser beam, significantly reduces the value of transverse velocity capture range of the collimator. The experimental observations show the trend similar to that obtained from simulations. Our study can be particularly useful where a small zig-zag collimator is required.

  10. Neutral atom beam technique enhances bioactivity of PEEK

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Joseph, E-mail: jkhoury@exogenesis.us [Exogenesis Corporation, Billerica, MA 01821 (United States); Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C. [Exogenesis Corporation, Billerica, MA 01821 (United States)

    2013-07-15

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants.

  11. Proposal for a magneto-optical beam splitter for atoms

    OpenAIRE

    Pfau, Tilman; Adams, Charles S.; Mlynek, Jürgen

    1993-01-01

    In this letter we present a theoretical study of the coherent diffraction of three-level atoms from a light field with a polarization gradient (counterpropagating crossed linearly polarized beams) and a static magnetic field applied parallel to the laser propagation direction. We show that for a particular ratio of the laser field intensity and the magnetic-field strength, there occurs a resonance between the Larmor precession of the magnetic alignment and the Rabi oscillations. On resonance ...

  12. Focusing Light Beams To Improve Atomic-Vapor Optical Buffers

    Science.gov (United States)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy

    2010-01-01

    Specially designed focusing of light beams has been proposed as a means of improving the performances of optical buffers based on cells containing hot atomic vapors (e.g., rubidium vapor). There is also a companion proposal to improve performance by use of incoherent optical pumping under suitable conditions. Regarding the proposal to use focusing: The utility of atomic-vapor optical buffers as optical storage and processing devices has been severely limited by nonuniform spatial distributions of intensity in optical beams, arising from absorption of the beams as they propagate in atomic-vapor cells. Such nonuniformity makes it impossible to optimize the physical conditions throughout a cell, thereby making it impossible to optimize the performance of the cell as an optical buffer. In practical terms simplified for the sake of brevity, "to optimize" as used here means to design the cell so as to maximize the group delay of an optical pulse while keeping the absorption and distortion of the pulse reasonably small. Regarding the proposal to use incoherent optical pumping: For reasons too complex to describe here, residual absorption of light is one of the main impediments to achievement of desirably long group delays in hot atomic vapors. The present proposal is directed toward suppressing residual absorption of light. The idea of improving the performance of slow-light optical buffers by use of incoherent pumping overlaps somewhat with the basic idea of Raman-based slow-light systems. However, prior studies of those systems did not quantitatively answer the question of whether the performance of an atomic vapor or other medium that exhibits electromagnetically induced transparency (EIT) with Raman gain is superior to that of a medium that exhibits EIT without Raman gain.

  13. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  14. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  15. A source of translationally cold molecular beams

    Science.gov (United States)

    Sarkozy, Laszlo C.

    Currently the fields studying or using molecules with low kinetic energies are experiencing an unprecedented growth. Astronomers and chemists are interested in chemical reactions taking place at temperatures below or around 20 K, spectroscopists could make very precise measurements on slow molecules and molecular physicists could chart the potential energy surfaces more accurately. And the list continues. All of these experiments need slow molecules, with kinetic energies from around 10 cm-1 down to 0. Several designs of cold sources have already been made. The most interesting ones are presented. This work describes the design and the testing of a cold source based on the collisional cooling technique: the molecules of interest are cooled well below their freezing point by a precooled buffer gas. This way condensation is avoided. The source is a copper cell cooled to 4.2 K by an external liquid helium bath. The cell is filled with cold buffer gas (helium). The molecules of choice (ammonia) are injected through a narrow tube in the middle of the cell. The cold molecules leave the cell through a 1 millimeter hole. Two versions of pulsing techniques have been employed: a shutter blade which covers the source hole and opens it only for short moments, and a chopper that modulates the beam further downstream. Both produced pulse lengths around 1 millisecond. The source is tested in an experiment in which the emerging molecules are focused and detected. Time of flight technique is used to measure the kinetic energies. Two detectors have been employed: a microwave cavity to analyze the state of the molecules in the beam, and a mass spectrometer to measure the number density of the particles. The molecules coming out of the source hole are formed into a beam by an electrostatic quadrupole state selector. The quantum mechanical aspects and the elements of electrodynamics involved in the focusing are described. A computer simulation program is presented, which helped

  16. An Atmospheric Atomic Oxygen Source for Cleaning Smoke Damaged Art Objects

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Norris, Mary Jo

    1998-01-01

    Soot and other carbonaceous combustion products deposited on the surfaces of porous ceramic, stone, ivory and paper can be difficult to remove and can have potentially unsatisfactory results using wet chemical and/or abrasive cleaning techniques. An atomic oxygen source which operates in air at atmospheric pressure, using a mixture of oxygen and helium, has been developed to produce an atomic oxygen beam which is highly effective in oxidizing soot deposited on surfaces by burning candles made of paraffin, oil or rendered animal fat. Atomic oxygen source operating conditions and the results of cleaning soot from paper, gesso, ivory, limestone and water color-painted limestone are presented,

  17. A stationary source of non-classical or entangled atoms

    OpenAIRE

    Fleischhauer, M.; Gong, S.

    2001-01-01

    A scheme for generating continuous beams of atoms in non-classical or entangled quantum states is proposed and analyzed. For this the recently suggested transfer technique of quantum states from light fields to collective atomic excitation by Stimulated Raman adiabatic passage [M.Fleischhauer and M.D. Lukin, Phys.Rev.Lett. 84, 5094 (2000)] is employed and extended to matter waves.

  18. Sources of polarized ions and atoms

    International Nuclear Information System (INIS)

    In this presentation we discuss methods of producing large quantities of polarized atoms and ions (Stern-Gerlach separation, optical pumping, and spin-exchange) as well as experimental methods of measuring the degree of polarization of atomic systems. The usefulness of polarized atoms in probing the microscopic magnetic surface properties of materials will also be discussed. 39 refs., 5 figs., 2 tabs

  19. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  20. Matter-wave beam splitter on an atom chip for a portable atom-interferometer

    CERN Document Server

    Kim, S J; Gang, S T; Kim, J B

    2016-01-01

    We construct a matter-wave beam splitter using 87Rb Bose-Einstein condensate on an atom chip. Through the use of radio-frequency-induced double-well potentials, we were able to split a BEC into two clouds separated by distances ranging from 2.8 {\\mu}m to 57 {\\mu}m. Interference between these two freely expanding BECs has been observed. By varying the rf-field amplitude, frequency, or polarization, we investigate behaviors of the beam-splitter. From the perspective of practical use, our BEC manipulation system is suitable for application to interferometry since it is compact and the repetition rate is high due to the anodic bonded atom chip on the vacuum cell. The portable system occupies a volume of 0.5 m3 and operates at a repetition rate as high as ~0.2 Hz.

  1. Ramsey fringes in a thermal beam of Yb atoms

    OpenAIRE

    Rathod, K. D.; Natarajan, Vasant

    2014-01-01

    We use the Ramsey separated oscillatory fields (SOF) technique in a $400^\\circ$C thermal beam of Yb atoms to measure the Larmor precession frequency with high precision. For the experiment, we use the strongly-allowed ${^1S_0} \\rightarrow {^1P_1}$ transition at $399$ nm, and choose the odd isotope $^{171}$Yb with nuclear spin $I=1/2$, so that the ground state has only two magnetic sublevels $m_F = \\pm 1/2$. With a magnetic field of $22.2$ G and a separation of about $400$ mm between the oscil...

  2. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    Science.gov (United States)

    Rathod, K. D.; Singh, P. K.; Natarajan, Vasant

    2014-09-01

    We demonstrate generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman Slower. They are then subjected to a pair of molasses beams inclined at $45^\\circ$ with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate selective deflection of the bosonic isotope $^{174}$Yb, and the fermionic isotope $^{171}$Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  3. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    CERN Document Server

    Rathod, K D; Natarajan, Vasant

    2013-01-01

    We demonstrate generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman Slower. They are then subjected to a pair of molasses beams inclined at $45^\\circ$ with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate selective deflection of the bosonic isotope $^{174}$Yb, and the fermionic isotope $^{171}$Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  4. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    Indian Academy of Sciences (India)

    K D Rathod; P K Singh; Vasant Natarajan

    2014-09-01

    We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45° with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope 174Yb and the fermionic isotope 171Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  5. One Atomic Beam as a Detector of Classical Harmonic Vibrations with Micro Amplitudes and Low Frequencies

    CERN Document Server

    Wong, Werner

    2013-01-01

    We propose a simplest detector of harmonic vibrations with micro amplitudes and low frequencies, i.e. the detector consisting of one atomic beam. Here the atomic beam is induced by a plane harmonic wave and has a classical collective harmonic vibrations, which vibrant directions are perpendicular to the wave vectors of atomic beam. Compared with the detector consisting of atomic Mach-Zehnder interferometer, the new detector has two advantages: (1) it is suitable for the detection of the harmonic vibrations induced either by a longitudinal plane harmonic wave or by a transverse plane harmonic wave; (2) the quantum noise fluctuation of the atomic beam is exactly zero.

  6. The development of the high intensity electron cyclotron resonance ion source at China Institute of Atomic Energy.

    Science.gov (United States)

    Tang, B; Ma, R; Ma, Y; Chen, L; Huang, Q; Liang, H; Cui, B; Jiang, W

    2014-02-01

    High-current microwave ion source has been under development over 15 years for accelerator driven sub-critical system research at China Institute of Atomic Energy, and the beam intensity higher than 140 mA proton beam is produced by this ion source with long lifetime and high reliability. The emittance of high intensity continue-wave and pulse beam is measured on a test-bench in the laboratory. Based on the good performance of this proton ion source, a new 120 mA deuterium ion source is proposed for a high intensity neutron generator. The ion source details and status will be presented. PMID:24593490

  7. Coherence and its application in the beam-foil light source

    Science.gov (United States)

    Liu, C. H.; Bashkin, S.

    1974-01-01

    The beam-foil light source is shown to be very useful in spectroscopic work. Not only the lifetimes of highly excited, multiply charged atoms can be measured in a straightforward way, but also the fine-structure and hyperfine-structure separations and the Lande factors can be obtained due to the fact that the coherent excitations are created in the impulsive beam-foil collision. The theories suggested to explain the origin of coherence are presently incomplete.

  8. Atom trapping in a bottle beam created by a diffractive optical element

    CERN Document Server

    Ivanov, V V; Saffman, M; Kemme, S A; Ellis, A R; Brady, G R; Wendt, J R; Biedermann, G W; Samora, S

    2013-01-01

    A diffractive optical element (DOE) has been fabricated for creating blue detuned atomic bottle beam traps. The DOE integrates several diffractive lenses for trap creation and imaging of atomic fluorescence. We characterize the performance of the DOE and demonstrate trapping of cold Cesium atoms inside a bottle beam.

  9. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, A. N. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); INMETRO, Av. Nossa Senhora das Graças, 50 25250-020 Duque de Caxias, RJ (Brazil); Li, M. S. [Instituto de Física de São Carlos, Universidade de São Paulo, Ave. Trabalhador São Carlense, 400, 13565-590 São Carlos, SP (Brazil)

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  10. Crossed beam reactive scattering of oxygen atoms and surface scattering studies of gaseous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Sibener, S.J.

    1979-09-01

    A high pressure, radio frequency discharge nozzle beam source was developed for the production of very intense (greater than or equal to 10/sup 18/ atoms sr/sup -1/ sec/sup -1/) supersonic beams of oxygen atoms. This source is capable of producing seeded beams of ground state O(/sup 3/P/sub J/) atoms when dilute oxygen-argon mixtures are used, with molecular dissociation levels exceeding 80% being realized for operation at pressures up to 350 torr. When dilute oxygen-helium mixtures are employed both ground state O(/sup 3/P/sub J/) and excited state O(/sup 1/D/sub 2/) atoms are present in the terminal beam, with molecular dissociation levels typically exceeding 60% being achieved for operation at pressures up to 200 torr. Atomic oxygen mean translational energies from 0.14 to 0.50 eV were obtained using the seeded beams technique, with Mach numbers as high as 10 (FWHM ..delta.. v/v approx. = 20%) being realized. The IC1, CF/sub 3/I, C/sub 6/H/sub 6/, and C/sub 6/D/sub 6/ reactions are discussed in detail. The IC1 and CF/sub 3/I studies have enabled us to determine an improved value for the bond energy of the IO radical: D/sub o/(IO) = 55 +- 2 kcal/mole. The IO product angular and velocity distributions have been used to generate center-of-mass flux contour maps, which indicate that these two reactions proceed via relatively long-lived collision complexes whose mean lifetimes are slightly shorter than their respective rotational periods. The O(/sup 3/P/sub J/) + C/sub 6/H/sub 6/ and C/sub 6/D/sub 6/ reactions were studied in order to elucidate the reaction mechanism, and, in particular, to identify the primary reaction products produced in these reactions. Finally, a series of beam-surface scattering experiments are described which examined the internal and translational energy dependence of molecular condensation probabilities for collisions involving either CC1/sub 4/ or SF/sub 6/ and their respective condensed phases. 117 references. (JFP)

  11. Crossed beam reactive scattering of oxygen atoms and surface scattering studies of gaseous condensation

    International Nuclear Information System (INIS)

    A high pressure, radio frequency discharge nozzle beam source was developed for the production of very intense (greater than or equal to 1018 atoms sr-1 sec-1) supersonic beams of oxygen atoms. This source is capable of producing seeded beams of ground state O(3P/sub J/) atoms when dilute oxygen-argon mixtures are used, with molecular dissociation levels exceeding 80% being realized for operation at pressures up to 350 torr. When dilute oxygen-helium mixtures are employed both ground state O(3P/sub J/) and excited state O(1D2) atoms are present in the terminal beam, with molecular dissociation levels typically exceeding 60% being achieved for operation at pressures up to 200 torr. Atomic oxygen mean translational energies from 0.14 to 0.50 eV were obtained using the seeded beams technique, with Mach numbers as high as 10 (FWHM Δ v/v approx. = 20%) being realized. The IC1, CF3I, C6H6, and C6D6 reactions are discussed in detail. The IC1 and CF3I studies have enabled us to determine an improved value for the bond energy of the IO radical: D/sub o/(IO) = 55 +- 2 kcal/mole. The IO product angular and velocity distributions have been used to generate center-of-mass flux contour maps, which indicate that these two reactions proceed via relatively long-lived collision complexes whose mean lifetimes are slightly shorter than their respective rotational periods. The O(3P/sub J/) + C6H6 and C6D6 reactions were studied in order to elucidate the reaction mechanism, and, in particular, to identify the primary reaction products produced in these reactions. Finally, a series of beam-surface scattering experiments are described which examined the internal and translational energy dependence of molecular condensation probabilities for collisions involving either CC14 or SF6 and their respective condensed phases. 117 references

  12. Molecular beam studies of oxide reduction by atomic hydrogen

    International Nuclear Information System (INIS)

    The graphite and oxide internals of a CTR are susceptible to chemical corrosion as well as to physical degradation by high-energy particles. Reactions of thermal atomic hydrogen with oxides are being studied. The hydrogen used is at thermal energy (0.22 eV). Typical data are reported for the H/UO2 system. The reaction probability is plotted as a function of solid temperature at fixed beam intensity and moculation frequency. The reaction probability increases from low temperature to a high-temperature plateau at about 13000C. Here the reaction rate is limited solely by the sticking probability of H on the surface; about one in seven of the incident atoms is chemisorbed by the surface and ultimately returns to the gas phase as water vapor. A reaction model comprising sticking, recombination to H2, solution and diffusion of H in the bulk of the UO2, surface reaction of adsorbed H with lattice oxygen atoms to produce the hydroxyl radical, and production of water is constructed. The rate constants for the elementary steps in the mechanism are tabulated. 2 figures, 2 tables

  13. Novel Atomic Mirror with a Blue-Detuned Semi-Gaussian Beam

    Institute of Scientific and Technical Information of China (English)

    郑萍; 高伟建; 印建平

    2003-01-01

    A novel and simple atomic mirror composed of a blue-detuned semi-Gaussian beam is proposed. From the Fresnel diffraction theory, the intensity distributions of a collimated GaUssian laser beam diffracted by the straight edge of a semi-infinite opaque plate are studied. The optical potential of the semi-Gaussian beam for 85 Rb atoms and its spontaneous emission probability are calculated and compared with the performance of the evanescent-wave mirror. Our study shows that the blue-detuned semi-Gaussian beam, as a novel atomic mirror, can be used to reflect atomic beam efliciently, and under the same beam parameters and lower normal atomic velocity, the performance of the semi-Gaussian-beam mirror is better than that of the evanescent-wave mirror.

  14. Focused ion beams using a high-brightness plasma source

    Science.gov (United States)

    Guharay, Samar

    2002-10-01

    High-brightness ion beams, with low energy spread, have merits for many new applications in microelectronics, materials science, and biology. Negative ions are especially attractive for the applications that involve beam-solid interactions. When negative ions strike a surface, especially an electrically isolated surface, the surface charging voltage is limited to few volts [1]. This property can be effectively utilized to circumvent problems due to surface charging, such as device damage and beam defocusing. A compact plasma source, with the capability to deliver either positive or negative ion beams, has been developed. H- beams from this pulsed source showed brightness within an order of magnitude of the value for beams from liquid-metal ion sources. The beam angular intensity is > 40 mAsr-1 and the corresponding energy spread is 1 Acm-2 and a spot size of 100 nm. Such characteristics of focused beam parameters, using a dc source, will immediately open up a large area of new applications. [1] P. N. Guzdar, A. S. Sharma, S. K. Guharay, "Charging of substrates irradiated by particle beams" Appl. Phys. Lett. 71, 3302 (1997). [2] S. K. Guharay, E. Sokolovsky, J. Orloff, "Characteristics of ion beams from a Penning source for focused ion beam applications" J. Vac. Sci Technol. B17, 2779 (1999).

  15. Two-step resonance ionization spectroscopy of Na atomic beam using cw and pulsed lasers

    International Nuclear Information System (INIS)

    Two-step photoionization of sodium atomic beam has been carried out using a cw and a pulsed dye lasers. Sodium ions have been detected by a time of flight method in order to reduce background noise. With a proper power of the pulsed dye laser the sodium atomic beam has been irradiated by a resonant cw dye laser. The density of the sodium atomic beam is estimated to be 103 cm-3 at the ionization area. (author)

  16. Measurement of Velocity Distribution in Atomic Beam by Diode Laser with Narrow Line width

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; WANG Fengzhi; YANG Donghai; WANG YiQiu

    2001-01-01

    In this paper, by using the detecting laser beam interacts with the atomic beam at a sharp angle and the Doppler frequency shift effect, the velocity distribution in cesium atomic beam is measured with a diode laser of narrow linewidth of 1 MHz. The effects of the atomic natural line width and cycling transition detecting factor on the measured results have been analyzed. Finally, the measured results have been compared with the theoretical calculation.

  17. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Claude

    2009-10-28

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  18. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    OpenAIRE

    Rathod, KD; Singh, PK; Natarajan, Vasant

    2014-01-01

    We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45(a similar to) with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope Yb-174 and the fermionic isotope Yb-171. Using...

  19. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms; Experiences d'optique atomique coherente ou non avec un jet superfin d'atomes metastables de gaz rares

    Energy Technology Data Exchange (ETDEWEB)

    Grucker, J

    2007-12-15

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable {sup 3}P{sub 2} state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ({sup 3}P{sub 2}). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms.

  20. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Hanada, M., E-mail: hanada.masaya@jaea.go.jp; Kojima, A.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka-shi, Ibaraki-ken 319-0913 (Japan); Yamano, Y. [Saitama University, Saitama, Saitama-ken 338-8570 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-02-15

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  1. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.

    Science.gov (United States)

    Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  2. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.

    Science.gov (United States)

    Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications. PMID:26932050

  3. BEAM INSTRUMENTATION FOR THE SPALLATION NEUTRON SOURCE RING.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.L.; CAMERON,P.R.; SHEA,T.J.; CONNOLLY,R.C.; KESSELMAN,M.

    1999-03-29

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. [1] The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10{sup -4}. A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring.

  4. Laser ion source for high brightness heavy ion beam

    Science.gov (United States)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  5. Manipulation and analysis of atomic and molecular beams using transmission gratings and Fresnel zone plates

    Energy Technology Data Exchange (ETDEWEB)

    Grisenti, R.E.

    2000-06-01

    In this thesis experimental results on the diffraction of rare gas atoms (He, Ne, Ar, Kr) and molecular (D{sub 2}) beams by a 100 nm period transmission grating and on the focusing of a helium atom beam through a Fresnel zone plate have been reported. (orig.)

  6. Atomic scattering from an adsorbed monolayer solid with a helium beam that penetrates to the substrate

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd

    2013-01-01

    Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated...

  7. Atomic scattering from an adsorbed monolayer solid with a helium beam that penetrates to the substrate

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd

    2013-01-01

    Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated by...

  8. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong

    2002-01-01

    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  9. Preparation of state purified beams of He, Ne, C, N, and O atoms

    Science.gov (United States)

    Jankunas, Justin; Reisyan, Kevin S.; Osterwalder, Andreas

    2015-03-01

    The production and guiding of ground state and metastable C, N, and O atoms in a two-meter-long, bent magnetic guide are described. Pure beams of metastable He(3S1) and Ne(3P2), and of ground state N(4S3/2) and O(3P2) are obtained using an Even-Lavie valve paired with a dielectric barrier discharge or electron bombardment source. Under these conditions no electronically excited C, N, or O atoms are observed at the exit of the guide. A general valve with electron impact excitation creates, in addition to ground state atoms, electronically excited C(3P2; 1D2) and N(2D5/2; 2P3/2) species. The two experimental conditions are complimentary, demonstrating the usefulness of a magnetic guide in crossed or merged beam experiments such as those described in Henson et al. [Science 338, 234 (2012)] and Jankunas et al. [J. Chem. Phys. 140, 244302 (2014)].

  10. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba+ ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  11. Rare isotope beams at ISAC—target & ion source systems

    Science.gov (United States)

    Bricault, Pierre G.; Ames, Friedhelm; Dombsky, Marik; Kunz, Peter; Lassen, Jens

    2014-01-01

    The present status of the ISAC facility for rare isotopes beams after its first 10 years of operation is presented. Planning for the ISAC facility started in 1985 with the Parksville workshop on radioactive ion beams (Buchmann and D'Auria 1985). It was put on halt by the KAON proposal and planning was only resumed in 1993 after the cancellation of KAON. The ISAC facility was built to satisfy the scientific need for accelerated beams of rare isotopes for use in applications such as nuclear physics, nuclear astrophysics, atomic and condensed matter physics as well as medicine. At the time of the ISAC proposal submission, a number of facilities were either planned or under construction. In order to have an impact in the field, the requirements and specifications for the driver beam intensity on target was set to 100 μA, 500 MeV protons, which for ISAC results in a driver beam power of 50 kW.

  12. Velocity distribution measurements in atomic beams generated using laser induced back-ablation

    CERN Document Server

    Denning, A; Lee, S; Ammonson, M; Bergeson, S D

    2008-01-01

    We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltzmann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a sub-thermal atomic beam.

  13. Intense metal ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    We have developed an ion source which can produce high current beams of metal ions. The source uses a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted, so we have called this source the MEVVA ion source. The metal plasma is created simply and efficiently and no carrier gas is required. Beams have been produced from metallic elements spanning the periodic table from lithium through uranium, at extraction voltages from 10 to 60 kV and with beam currents as high as 1.1 Amperes (electrical current in all charge states). A brief description of the source is given and its possible application as an ion source for heavy ion fusion is considered. Beams such as C+ (greater than or equal to99% of the beam in this species and charge state), Cr2+ (80%), and Ta/sup 3+,4+,5+/ (mixed charge states) have been produced. Beam emittance measurements and ways of increasing the source brightness are discussed

  14. Velocity Distribution of Effective Atoms in a Small Optically Pumped Cesium Beam Frequency Standard

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; WANG Fengzhi; YANG Donghai; WANG YiQiu

    2001-01-01

    In this paper, the velocity distribution of effective atoms in a small optically pumped cesium beam frequency standard has been achieved from the Fourier transforms of the experimentally recorded Ramsey patterns. The result fits well with the theoretical calculation. The second order Doppler shift correction of the small cesium atomic clock is obtained from the velocity distribution of effective atoms.

  15. Metastable states' population of uranium atoms produced by electron-beam heating

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Akihiko; Ogura, Koichi [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Kyoto (Japan)

    2000-08-01

    The metastable states' population densities of uranium atoms produced by electron-beam heating were measured by the laser induced fluorescence method. The atomic excitation temperature derived from the metastable state distribution was lower than the evaporation surface temperature. With increasing deposition rate, the atomic excitation temperature decreased to about 2000 K. (author)

  16. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  17. Ion beams in SEM: An experiment towards a high brightness low energy spread electron impact gas ion source

    NARCIS (Netherlands)

    Jun, D.S.; Kutchoukov, V.G.; Kruit, P.

    2011-01-01

    A next generation ion source suitable for both high resolution focused ion beam milling and imaging applications is currently being developed. The new ion source relies on a method of which positively charged ions are extracted from a miniaturized gas chamber where neutral gas atoms become ionized b

  18. Generation of energetic He atom beams by a pulsed positive corona discharge

    International Nuclear Information System (INIS)

    Time-of-flight measurements were made of neutral helium atom beams extracted from a repetitive, pulsed, positive-point corona discharge. Two strong neutral peaks, one fast and one slow, were observed, accompanied by a prompt photon peak and a fast ion peak. All peaks were correlated with the pulsing of the discharge. The two types of atoms appear to be formed by different mechanisms at different stages of the corona discharge. The fast atoms had energies of 190 eV and were formed at the onset of the pulsing, approximately 0.7 μs before the maximum of the photon peak. The slow peak, composed of electronically metastable He atoms, originated 30 50 μs after the photon pulse, and possessed a nearly thermal velocity distribution. The velocity distribution was typical of an undisturbed supersonic expansion with a stagnation temperature of 131 K and a speed ratio of 3.6. Peak intensities and velocities were measured as a function of source voltage, stagnation pressure, and skimmer voltage. copyright 1997 American Institute of Physics

  19. Narrow linewidth single laser source system for onboard atom interferometry

    CERN Document Server

    Theron, Fabien; Renon, Geoffrey; Bidel, Yannick; Zahzam, Nassim; Cadoret, Malo; Bresson, Alexandre

    2014-01-01

    We present an original compact and robust laser system for atom interferometry based on a frequency-doubled telecom laser. Thanks to an original stabilization architecture on a saturated absorption, we obtain a frequency agile laser system allowing fast tuning of the laser frequency over 1 GHz in few ms using only a single laser source. The different laser frequencies used for atom interferometry are created by changing dynamically the frequency of the laser and by creating sidebands using a phase modulator. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components, which are intrinsically less stable, and to make the setup compact, much less sensitive to vibrations and thermal fluctuations. This source provides spectral linewidth below 2.5 kHz required for precision atom interferometry, and particularly for an high performance atomic inertial sensor.

  20. Dual-wavelength laser source for onboard atom interferometry.

    Science.gov (United States)

    Ménoret, V; Geiger, R; Stern, G; Zahzam, N; Battelier, B; Bresson, A; Landragin, A; Bouyer, P

    2011-11-01

    We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components, which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations. The source provides the frequency agility and phase stability required for atom interferometry and can easily be adapted to other cold atom experiments. We have shown its robustness by achieving the first dual-species K-Rb magneto-optical trap in microgravity during parabolic flights.

  1. A reflex electron beam discharge as a plasma source for electron beam generation

    International Nuclear Information System (INIS)

    A reflex electron beam glow discharge has been used as a plasma source for the generation of broad-area electron beams. An electron current of 120 A (12 A/cm/sup 2/) was extracted from the plasma in 10 μs pulses and accelerated to energies greater than 1 keV in the gap between two grids. The scaling of the scheme for the generation of multikiloamp high-energy beams is discussed

  2. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    International Nuclear Information System (INIS)

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO2+ with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H2 densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH+, CH2+, and CH4+ have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  3. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Borodi, Gheorghe

    2008-12-09

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO{sub 2}{sup +} with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H{sub 2} densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH{sup +}, CH{sub 2}{sup +}, and CH{sub 4}{sup +} have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  4. Narrow linewidth single laser source system for onboard atom interferometry

    OpenAIRE

    Theron, Fabien; Carraz, Olivier; Renon, Geoffrey; Bidel, Yannick; Zahzam, Nassim; Cadoret, Malo; Bresson, Alexandre

    2014-01-01

    A compact and robust laser system for atom interferometry based on a frequency-doubled telecom laser is presented. Thanks to an original stabilization architecture on a saturated absorption setup, we obtain a frequency-agile laser system allowing fast tuning of the laser frequency over 1 GHz in few ms using a single laser source. The different laser frequencies used for atom interferometry are generated by changing dynamically the frequency of the laser and by creating sidebands using a phase...

  5. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  6. Detailed atomic modeling of Sn plasmas for the EUV source

    International Nuclear Information System (INIS)

    An atomic model of Sn plasmas is developed to calculate coefficients of radiative transfer, based on the calculated atomic data using the Hullac code. We find that the emission spectrum and conversion efficiency depend critically on the wavelength and spectral structure of the 4d-4f transition arrays. Satellite lines, which have a significant contribution to the emission, are determined after iterative calculations by changing the number of levels in the atomic model. We also correct transition wavelengths through comparison with experiments. Using the present emissivity and opacity, the radiation hydrodynamics simulation will be carried out toward the optimization of the EUV source

  7. Detailed atomic modeling of Sn plasmas for the EUV source

    Science.gov (United States)

    Sasaki, A.; Sunahara, A.; Nishihawra, K.; Nishikawa, T.; Koike, F.; Tanuma, H.

    2008-05-01

    An atomic model of Sn plasmas is developed to calculate coefficients of radiative transfer, based on the calculated atomic data using the Hullac code. We find that the emission spectrum and conversion efficiency depend critically on the wavelength and spectral structure of the 4d-4f transition arrays. Satellite lines, which have a significant contribution to the emission, are determined after iterative calculations by changing the number of levels in the atomic model. We also correct transition wavelengths through comparison with experiments. Using the present emissivity and opacity, the radiation hydrodynamics simulation will be carried out toward the optimization of the EUV source.

  8. Generation of tubular beams of negative hydrogen ions by a surface plasma source

    International Nuclear Information System (INIS)

    The results of experiments on obtaining a tubular beam of hydrogen negative ions from a surface plasma source with emission ring slit of 100 mm diameter are described in the study. Conditions of burning of a high current ring discharge generating effectively hydrogen negative ions with current density up to 2.1 A/cm2 are investigated. The possibility of generation of intensive tubular beams of hydrogen negative ions by surface plasma sources is shown, the 2.4 A ion beam is obtained. The results of preliminary experiments on accelerating tubular beam up to 135 keV are described. Azymuthally uniform current density distribution of intensive tubular beams generated by discharges with a close electron drift in a surface plasma source with emission ring slit, absence of high-frequency oscillations in optimal conditions of sources operation as well as the possibility of the most complete use of generated by the discharge negative ions flow show the prospects of development of these sources for fast atom injectors

  9. Extracting source parameters from beam monitors on a chopper spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Abernathy, Douglas L [ORNL; Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2015-01-01

    The intensity distributions of beam monitors in direct-geometry time-of-flight neutron spectrometers provide important information about the instrument resolution. For short-pulse spallation neutron sources in particular, the asymmetry of the source pulse may be extracted and compared to Monte Carlo source simulations. An explicit formula using a Gaussian-convolved Ikeda-Carpenter distribution is given and compared to data from the ARCS instrument at the Spallation Neutron Source.

  10. Laser sources for precision spectroscopy on atomic strontium

    OpenAIRE

    Poli, N.; Ferrari, G; Prevedelli, M.; Sorrentino, F.; Drullinger, R. E.; Tino, G. M.

    2006-01-01

    We present a new laser setup designed for high-precision spectroscopy on laser cooled atomic strontium. The system, which is entirely based on semiconductor laser sources, delivers 200 mW at 461 nm for cooling and trapping atomic strontium from a thermal source, 4 mW at 497 nm for optical pumping from the metastable View the MathML source state, 12 mW at 689 nm on linewidth less than 1 kHz for second-stage cooling of the atomic sample down to the recoil limit, 1.2 W at 922 nm for optical trap...

  11. Atomic physics with high-brightness synchrotron x-ray sources

    International Nuclear Information System (INIS)

    A description of atomic physics experiments that we intend to carry out at the National Synchrotron Light Source is given. Emphasis is given to work that investigates the properties of multiply charged ions. The use of a synchrotron storage ring for highly charged heavy ions is proposed as a way to produce high current beams which will make possible experiments to study the photoexcitation and ionization of multiply charged ions for the first time. Experiments along the same lines which are feasible at the proposed Advanced Light Source are considered briefly. 7 refs., 2 figs

  12. A compact 3.5-dB squeezed light source with atomic ensembles

    CERN Document Server

    Bao, Guzhi; Chen, Bing; Guo, Jinxian; Shen, Heng; Chen, Liqing; Zhang, Weiping

    2015-01-01

    We reported a compact squeezed light source consisting of an diode laser near resonant on 87Rb optical D1 transition and an warm Rubidium vapor cell. The -4dB vacuum squeezing at 795 nm via nonlinear magneto-optical rotation was observed when applying the magnetic field orthogonal to the propagation direction of the light beam. This compact squeezed light source can be potentially utilized in the quantum information protocols such as quantum repeater and memory, and quantum metrology such as atomic magnetometer.

  13. Application of cold beam of atoms and molecules for studying luminescence of oxygen atoms stimulated by metastable helium

    International Nuclear Information System (INIS)

    We describe a method for creating a high flux beam of cold atoms and molecules. By using this beam method, spectroscopic studies of the afterglow of oxygen-helium gas mixtures at cryogenic temperatures were performed. The cooling by helium vapor of a helium jet containing trace amounts of oxygen after passing through a radiofrequency discharge zone led to the observation of strong emissions from atomic oxygen. The effect results from the increased efficiency of energy transfer from metastable helium atoms and molecules to the atomic oxygen in the cold dense helium vapor. The effect might find application for the detection of small quantities of impurities in helium gas as well as possible laser action

  14. Calculation of electron beam source with a variable intensity

    International Nuclear Information System (INIS)

    Calculation on an electron beam source with a variable intensity of the current on the output is presented. Such beams are planned to be used at surface metal treatment (casehardening). The problem of analysis and synthesis of source electromagnetic system is computerized with the use of display. When analysis is performed in calculated electromagnetic fields due to electrodes and solenoid, equation of motion for electron emission was solved. The synthesis (the choice of source optimal parameters) was realized by numerical experiment. The form of electrodes, their potentials, which produce electron beams with a cross section of 3 mm2 on output at 5A current have been found. It is shown that the variation of position of emitting electrode or of deflecting electrode potential could change twice the current on the source output

  15. Cold electron sources using laser-cooled atoms

    Science.gov (United States)

    McCulloch, Andrew J.; Sparkes, Ben M.; Scholten, Robert E.

    2016-08-01

    Since the first observation of electron diffraction in 1927, electrons have been used to probe the structure of matter. High-brightness sources of thermal electrons have recently emerged that are capable of simultaneously providing high spatial resolving power along with ultrafast temporal resolution, however they are yet to demonstrate the holy grail of single-shot diffraction of non-crystalline objects. The development of the cold atom electron source, based around the ionisation of laser cooled atoms, has the potential to contribute to this goal. Electron generation from laser cooled atoms is in its infancy, but in just ten years has moved from a proposal to a source capable of performing single-shot diffraction imaging of crystalline structures. The high brightness, high transverse coherence length, and small energy spread of cold electron sources are also potentially advantageous for applications ranging from seeding of x-ray free-electron lasers and synchrotrons to coherent diffractive imaging and microscopy. In this review we discuss the context which motivates the development of these sources, the operating principles of the source, and recent experimental results. The achievements demonstrated thus far combined with theoretical proposals to alleviate current bottlenecks in development promise a bright future for these sources.

  16. ATOMIC BEAM POLARIZATION MEASUREMENT OF THE RHIC POLARIZED H-JET TARGET.

    Energy Technology Data Exchange (ETDEWEB)

    MAKDISI,Y.; NASS,A.; GRAHAM,D.; KPONOU,A.; MAHLER,G.; MENG,W.; RITTER,J.; ET AL.

    2005-01-28

    The RHIC polarized H-Jet measures the polarization of the RHIC proton beam via elastic scattering off a nuclear polarized atomic hydrogen beam. The atomic beam is produced by a dissociator, a beam forming system and sextupole magnets. Nuclear polarization is achieved by exchanging occupation numbers of hyperfine states using high frequency transitions. The polarization was measured using a modified form of a Breit-Rabi polarimeter including focusing magnets and another set of high frequency transitions. The sampling of a large part of the beam and low noise electronics made it possible to measure the polarization to a high degree of accuracy in a very short time period (1 min). Using this system, we measured no depolarization of the atomic beam due to the RF fields of the bunched proton beam. Time-of-Flight measurements were done using a fast chopper and a QMA at the position of the RHIC interaction point to determine the areal density of the atomic beam seen by the RHIC beam.

  17. Beam position monitor data acquisition for the Advanced Photon Source

    International Nuclear Information System (INIS)

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems

  18. Status of the hydrogen and deuterium atomic beam polarized target for NEPTUN experiment

    Science.gov (United States)

    Balandikov, N. I.; Ershov, V. P.; Fimushkin, V. V.; Kulikov, M. V.; Pilipenko, Yu. K.; Shutov, V. B.

    1995-09-01

    NEPTUN-NEPTUN-A is a polarized experiment at Accelerating and Storage Complex (UNK, IHEP) with two internal targets. Status of the atomic beam polarized target that is being developed at the Joint Institute for Nuclear Research, Dubna is presented.

  19. Final design of the beam source for the MITICA injector

    Energy Technology Data Exchange (ETDEWEB)

    Marcuzzi, D., E-mail: diego.marcuzzi@igi.cnr.it; Agostinetti, P.; Dalla Palma, M.; De Muri, M.; Chitarin, G.; Gambetta, G.; Marconato, N.; Pasqualotto, R.; Pavei, M.; Pilan, N.; Rizzolo, A.; Serianni, G.; Toigo, V.; Trevisan, L.; Visentin, M.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova (Italy); Boilson, D.; Graceffa, J.; Hemsworth, R. S. [ITER Organization, Route de Vinon-sur-Verdon, 13067 St Paul Lez Durance (France); and others

    2016-02-15

    The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.

  20. Quasi-Bessel beams from asymmetric and astigmatic illumination sources.

    Science.gov (United States)

    Müller, Angelina; Wapler, Matthias C; Schwarz, Ulrich T; Reisacher, Markus; Holc, Katarzyna; Ambacher, Oliver; Wallrabe, Ulrike

    2016-07-25

    We study the spatial intensity distribution and the self-reconstruction of quasi-Bessel beams produced from refractive axicon lenses with edge emitting laser diodes as asymmetric and astigmatic illumination sources. Comparing these to a symmetric mono-mode fiber source, we find that the asymmetry results in a transition of a quasi-Bessel beam into a bow-tie shaped pattern and eventually to a line shaped profile at a larger distance along the optical axis. Furthermore, we analytically estimate and discuss the effects of astigmatism, substrate modes and non-perfect axicons. We find a good agreement between experiment, simulation and analytic considerations. Results include the derivation of a maximal axicon angle related to astigmatism of the illuminating beam, impact of laser diode beam profile imperfections like substrate modes and a longitudinal oscillation of the core intensity and radius caused by a rounded axicon tip. PMID:27464190

  1. Electron Beam Collimation for the Next Generation Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  2. Measuring the Proton Beam Polarization From The Source To RHIC

    Science.gov (United States)

    Makdisi, Yousef I.

    2008-02-01

    Polarimeters are necessary tools for measuring the beam polarization during the acceleration process as well as a yardstick for performing spin physics experiments. In what follows, I will describe the principles of measuring the proton beam polarization and the techniques that are employed at various energies. I will present a tour of the polarimetry employed at the BNL Relativistic Heavy Ion collider (RHIC) polarized proton complex as it spans the full spectrum from the source to collider energies.

  3. Measuring the proton beam polarization from the source to RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi,Y.

    2007-09-10

    Polarimeters are necessary tools for measuring the beam polarization during the acceleration process as well as a yardstick for performing spin physics experiments. In what follows, I will describe the principles of measuring the proton beam polarization and the techniques that are employed at various energies. I will present a tour of the polarimetry employed at the BNL Relativistic Heavy Ion collider (RHIC) polarized proton complex as it spans the full spectrum from the source to collider energies.

  4. Magnetic focusing of cold atomic beam with a 2D array of current-carrying wires

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Min Yun; Jianping Yin

    2006-01-01

    @@ A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam,formed by an array of square current-carrying wires,is proposed.We calculate the spatial distributions of the magnetic fields from the array of current-carrying wires and the magnetic focusing potential for cold rubidium atoms,and study the dynamic focusing processes of cold atoms passing through the magnetic micro-lens array and its focusing properties by using Monte-Carlo simulations and trajectory tracing method.The result shows that the proposed micro-lens array can be used to focus effectively a cold atomic beam,even to load ultracold atoms or a BEC sample into a 2D optical lattice formed by blue detuned hollow beams.

  5. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  6. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  7. Tabletop Ultrabright Kiloelectronvolt X-Ray Sources from Xe and Kr Hollow Atom States

    Science.gov (United States)

    Sankar, Poopalasingam

    Albert Einstein, the father of relativity, once said, "Look deep into nature, and then you will understand everything better". Today available higher resolution tabletop tool to look deep into matters and living thing is an x-ray source. Although the available tabletop x-rays sources of the 20th century, such as the ones used for medical or dental x-rays are tremendously useful for medical diagnostics and industry, a major disadvantage is that they have low quality skillful brightness, which limits its resolution and accuracy. In the other hand, x-ray free-electrons laser (XFEL) and synchrotron radiation sources provided extreme bright x-rays. However, number of applications of XFEL and synchrotron such as medical and industrials, has been hampered by their size, complexity, and cost. This has set a goal of demonstrating x-ray source with enough brightness for potential applications in an often-called tabletop compact x-ray source that could be operated in university laboratory or hospitals. We have developed two tabletop ultrabright keV x-ray sources, one from a Xe hollow-atom states and the other one from Kr hollow-atom stares with a unique characteristic that makes them complementary to currently-available extreme-light sources; XFEL, and synchrotron x-ray source. Upgraded tabletop ultra-fast KrF* pump-laser interacts with target rare-gas clusters and produces hollow-atom states, which later coherently collapse to the empty inner-shell and thereby generate keV x-ray radiation. The KrF* pump-laser beam is self-focused and forms a self-channel to guide the generated x-ray radiation in the direction of the pump-laser beam to produce directed x-ray beam. Xe (M) x-ray source operates at 1.2-1.6 nm wavelength while the Kr(L) x-ray source operates in 600-800 pm wavelength. System is mounted upon 3 optical-tables (5´x12´) with two KrF amplifiers at a repetition rate of 0.1 Hz. A lower bound for brightness value for both Xe and Kr x-ray sources is 1026 photons s-1mm-2

  8. Pulsed rotating supersonic source for merged molecular beams

    Science.gov (United States)

    Sheffield, Les; Hickey, Mark; Krasovitskiy, Vitaliy; Rathnayaka, Daya; Lyuksyutov, Igor; Herschbach, Dudley

    2012-10-01

    We continue the characterization of a pulsed rotating supersonic beam source. The original device was described by M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001). The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, and a shutter gate eliminate the main handicap of the original device in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1--0.6 ms (depending on rotor speed) and containing ˜10^12 molecules at lab speeds as low as 35 m/s and ˜10^15 molecules at 400 m/s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O2, NO2, NH3, and SF6. For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when using two merged beams. By closely matching the beam speeds, very low relative collision energies can be attained without making either beam very slow.

  9. Electron beam ion source and electron beam ion trap (invited)a)

    Science.gov (United States)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  10. Long Plasma Source for Heavy Ion Beam Charge Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Davidson, R.C.; Logan, B.G.; Seidl, P.A.; Waldron, W.

    2008-06-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. The plasma source should operate at low neutral pressures and without strong externally-applied fields. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage ({approx} 8 kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO{sub 3} source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5 x 10{sup 10} cm{sup -3} density range. The source was integrated into the NDCX device for charge neutralization and beam compression experiments, and yielded current compression ratios {approx} 120. Present research is developing multi-meter-long and higher density sources to support beam compression experiments for high energy density physics applications.

  11. Ferroelectric Plasma Source for Heavy Ion Beam ChargeNeutralization

    Energy Technology Data Exchange (ETDEWEB)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson,Ronald C.; Yu, Simon; Waldron, William; Logan, B. Grant

    2005-10-01

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage ({approx} 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 10{sup 11} cm{sup -3}. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K{sup +} ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments.

  12. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    International Nuclear Information System (INIS)

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ∼ 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage (∼ 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 1011 cm-3. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K+ ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments

  13. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    F Osswald; R Rebmeister

    2002-11-01

    A negative-ion sputter source has been studied in order to increase the beam intensity delivered by the Vivitron tandem injector. The aim was to characterize the influence on the beam intensity of some factors related to the configuration of the source such as the shape of the target holder, the target surface topography and the anode/cathode voltage. The paper reports the results carried out by experimentation on a test facility and on the injector itself as well as the investigations performed with computer simulations.

  14. Laser sources for precision spectroscopy on atomic strontium.

    Science.gov (United States)

    Poli, N; Ferrari, G; Prevedelli, M; Sorrentino, F; Drullinger, R E; Tino, G M

    2006-04-01

    We present a new laser setup designed for high-precision spectroscopy on laser cooled atomic strontium. The system, which is entirely based on semiconductor laser sources, delivers 200 mW at 461 nm for cooling and trapping atomic strontium from a thermal source, 4 mW at 497 nm for optical pumping from the metastable P23 state, 12 mW at 689 nm on linewidth less than 1 kHz for second-stage cooling of the atomic sample down to the recoil limit, 1.2 W at 922 nm for optical trapping close to the "magic wavelength" for the 0-1 intercombination line at 689 nm. The 689 nm laser was already employed to perform a frequency measurement of the 0-1 intercombination line with a relative accuracy of 2.3 x 10(-11), and the ensemble of laser sources allowed the loading in a conservative dipole trap of multi-isotopes strontium mixtures. The simple and compact setup developed represents one of the first steps towards the realization of a transportable optical standards referenced to atomic strontium. PMID:16527534

  15. Quantum Entanglement Dynamics of Two Atoms in Quantum Light Sources

    Institute of Scientific and Technical Information of China (English)

    杨榕灿; 李杰; 王军民; 张天才

    2011-01-01

    Quantum entanglement dynamics of two Tavis Cummings atoms interacting with the quantum light sources in a cavity is investigated. The results show the phenomenon that the concurrence disappears abruptly in a finite time, which depends on the initial atomic states and the properties of squeezed states. We find that there are two decoherence- free states in squeezed vacuum fields; one is the singlet state, and the other entangled state is the state that combines both excited states and ground states with a relative phase being equal to the phase of the squeezed state.

  16. Compact electron-beam source for formation of neutral beams of very low vapor pressure materials

    Science.gov (United States)

    Rutherford, J. A.; Vroom, D. A.

    1978-01-01

    In order to form metal vapors for neutral beam studies, an electron-beam heater and a power supply have been designed. The source, which measures about 30 x 50 x 70 mm, consists of a filament, accelerating plate (defined by pole pieces), and a supported target. The electrons from the filament are focused by the field penetration through a 2 mm slit in the high-voltage cage. They are then accelerated to about 5 kV to a ground plate. The electrons then follow a path in the magnetic field and strike the sample to be heated on its front surface. The assembly is attached to a water-cooled base plate. The electron beam source has produced beams of Ta and C particles with densities of about 10 to the 8th power/cu cm.

  17. Numerical Investigation Of The Bombardment Of A Graphene Sheet By A Beam Of Carbon Atoms

    Directory of Open Access Journals (Sweden)

    O.V. Khomenko

    2009-01-01

    Full Text Available Classical molecular dynamics simulations of the bombardment of a graphene sheet by a beam of carbon atoms are carried out. Covalent bonds in the irradiated sample are described by the Brenner potential. The approximation of elastic balls interacting with graphene via the Lennard-Jones potential is used for particles in a beam. The influence of the energy and density of irradiating carbon atoms and of the presence of a thermostat on physical processes occurring during the collisions with the sample is investigated. Energy values of the particles in a beam, which are enough for the sample destruction, are defined.

  18. RFI hydrogen beam source system for materials testing

    International Nuclear Information System (INIS)

    A Radio Frequency Induction (RFI) ion source system has been designed, constructed and tested for integration as a fast rise time (≅100μsec), long pulse to CW heat source for the Sandia National Laboratories Plasma and Materials Test Facility (PMTF). The ion source system to be described is capable of producing a 40kV, 20A hydrogen beam and providing a uniform heat flux of up to 2.0 kWatt/cm/sup 2/ at targets, with areas in excess of 100cm/sup 2/, located ≅4. meters from the accelerator. An intense plasma is produced in the RFI ion source by inductive coupling of RF energy at a frequency of 1.5MHz to plasma electrons which are collisionally heated and maintain the discharge. Since no hot cathode structures are required with this plasma production techniques, source impurities are reduced and system control and reliability is enhanced. Source current density and extracted beam current is determined for a given source geometry, solely by the quantity of RF power coupled to the source. The beam current is thus controlled by the amplitude to the low level oscillator feeding the PA. Previous RFI sources we have built have been operated to extractable hydrogen or deuterium current densities of up to 500mA/cm/sup 2/ and have provided measured beam species fractions of 72/17/11% for H/sup +//H/sub 2//sup +//H/sub 3//sup +/, respectively, during 80k Volt extraction tests at LBL

  19. A two-dimensional lattice of blue detuned atom traps using a projected Gaussian beam array

    CERN Document Server

    Piotrowicz, M J; Maller, K; Li, G; Zhang, S; Isenhower, L; Saffman, M

    2013-01-01

    We describe a new type of blue detuned optical lattice for atom trapping which is intrinsically two dimensional, while providing three-dimensional atom localization. The lattice is insensitive to optical phase fluctuations since it does not depend on field interference between distinct optical beams. The array is created using a novel arrangement of weakly overlapping Gaussian beams that creates a two-dimensional array of dark traps which are suitable for magic trapping of ground and Rydberg states. We analyze the spatial localization that can be achieved and demonstrate trapping and detection of single Cs atoms in 6 and 49 site two-dimensional arrays.

  20. Proceedings of the workshop on atomic physics with fast heavy-ion beams

    International Nuclear Information System (INIS)

    The Workshop on Atomic Physics with Fast Heavy-Ion Beams was held in the Physics Division, Argonne National Laboratory on January 20 and 21, 1983. The meeting brought together approx. 50 practitioners in the field of accelerator-based atomic physics. The workshop was held to focus attention on possible areas of atomic physics research which would benefit from use of the newest generation of accelerators designed to produce intense high-quality beams of fast heavy ions. Abstracts of individual paper were prepared separately for the data base

  1. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  2. Preliminary design of the advanced quantum beam source

    International Nuclear Information System (INIS)

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and γ-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries

  3. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    International Nuclear Information System (INIS)

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10−3 mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source

  4. An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    CERN Document Server

    Eismann, Ulrich; Canalias, Carlota; Zukauskas, Andrius; Trénec, Gérard; Vigué, Jacques; Chevy, Frédéric; Salomon, Christophe

    2011-01-01

    We present an all solid-state narrow line-width laser source emitting $670\\,\\mathrm{mW}$ output power at $671\\,\\mathrm{nm}$ delivered in a diffraction-limited beam. The source is based on a frequency-doubled diode-end-pumped ring laser operating on the ${^4F}_{3/2} \\rightarrow {^4I}_{13/2}$ transition in Nd:YVO$_4$. By using periodically-poled potassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over $100\\,\\rm GHz$ is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented.

  5. Mid-IR laser source using hollow waveguide beam combining

    Science.gov (United States)

    Elder, Ian F.; Thorne, Daniel H.; Lamb, Robert A.; Jenkins, R. M.

    2016-03-01

    Hollow waveguide technology is a route to efficient beam combining of multiple laser sources in a compact footprint. It is a technology appropriate for combining free-space or fibre-coupled beams generated by semiconductor, fibre or solidstate laser sources. This paper will present results of a breadboard mid-IR system comprising four laser sources combined using a hollow waveguide optical circuit. In this approach the individual dichroic beam combiner components are held in precision alignment slots in the hollow waveguide circuit and the different input wavelengths are guided between the components to a common output port. The hollow waveguide circuit is formed in the surface of a Macor (machinable glass-ceramic) substrate using precision CNC machining techniques. The hollow waveguides have fundamentally different propagation characteristics to solid core waveguides leading to transmission characteristics close to those of the atmosphere while still providing useful light guidance properties. The transmission efficiency and power handling of the hollow waveguide circuit can be designed to be very high across a broad waveband range. Three of the sources are quantum cascade lasers (QCLs), a semiconductor laser technology providing direct generation of midwave IR output. The combined beams provide 4.2 W of near diffraction-limited output co-boresighted to better than 20 µrad. High coupling efficiency into the waveguides is demonstrated, with negligible waveguide transmission losses. The overall transmission of the hollow waveguide beam combining optical circuit, weighted by the laser power at each wavelength, is 93%. This loss is dominated by the performance of the dichroic optics used to combine the beams.

  6. Beam quality of a non-ideal atom laser

    OpenAIRE

    Riou, Jean-Félix; Guerin, William; Le Coq, Yann; Fauquembergue, Marie; Bouyer, Philippe; Josse, Vincent; Aspect, Alain

    2006-01-01

    International audience We study the propagation of a non-interacting atom laser distorted by the strong lensing effect of the Bose-Einstein Condensate (BEC) from which it is outcoupled. We observe a transverse structure containing caustics that vary with the density within the residing BEC. Using WKB approximation, Fresnel-Kirchhoff integral formalism and ABCD matrices, we are able to describe analytically the atom laser propagation. This allows us to characterize the quality of the non-id...

  7. A miniaturized, high flux BEC source for precision atom interferometry

    Science.gov (United States)

    Herr, Waldemar; Rudolph, Jan; Popp, Manuel; Rasel, Ernst; Quantus Collaboration

    2013-05-01

    Atom chips have proven to be excellent sources for the fast production of ultra-cold gases due to their outstanding performance in evaporative cooling. However, the total number of atoms has previously been limited by the small volume of their magnetic traps. To overcome this restriction, we have developed a novel loading scheme that allows us to produce Bose-Einstein condensates of a few 105 87Rb atoms every two seconds. The apparatus is designed to be operated in microgravity at the drop tower in Bremen, where even higher numbers of atoms can be achieved in the absence of any gravitational sag. Using the drop tower's catapult mode, our setup will perform atom interferometry during nine seconds in free fall. Thus, the fast loading scheme allows for interferometer sequences of up to seven seconds - interrogation times which are inaccessible for ground based devices. The QUANTUS project is supported by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant number DLR 50WM1131. Leibniz Universitaet Hannover, Universitaet Bremen, HU Berlin, Universitaet Hamburg, Universitaet Ulm, TU Darmstadt, MPQ-Garching.

  8. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  9. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  10. Generation of slow muon beam by laser resonant ionization of muonium atoms

    International Nuclear Information System (INIS)

    We report first results of re-acceleration of thermal muons, which were generated by laser resonant ionization of muonium atoms. The re-accelerated beam (slow muon beam) has better energy resolution and space distribution compared to initial surface muon beam, and its use will extend the scope of muon spin relaxation technique from bulk material to thin film, multi-layers, surfaces and extremely small samples. The yield of slow muons obtained during the first beam time was 0.03 muons/s

  11. Intense source of cold cesium atoms based on a two-dimensional magneto–optical trap with independent axial cooling and pushing

    Science.gov (United States)

    Jia-Qiang, Huang; Xue-Shu, Yan; Chen-Fei, Wu; Jian-Wei, Zhang; Li-Jun, Wang

    2016-06-01

    We report our studies on an intense source of cold cesium atoms based on a two-dimensional (2D) magneto–optical trap (MOT) with independent axial cooling and pushing. The new-designed source, proposed as 2D-HP MOT, uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam. With the independent pushing beam, the atomic flux can be substantially optimized. The total atomic flux maximum obtained in the 2D-HP MOT is 4.02 × 1010 atoms/s, increased by 60 percent compared to the traditional 2D+ MOT in our experiment. Moreover, with the pushing power 10 μW and detuning 0Γ, the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20. The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s. The dependences of the atomic flux on the pushing power and detuning are studied in detail. The experimental results are in good agreement with the theoretical model. Project supported by the National Natural Science Foundation of China (Grant No. 11304177).

  12. Intense source of cold cesium atoms based on a two-dimensional magneto-optical trap with independent axial cooling and pushing

    CERN Document Server

    Huang, J Q; Wu, C F; Zhang, J W; Feng, Y Y; Wang, L J

    2015-01-01

    We report our studies on an intense source of cold cesium atoms based on a two-dimensional magneto-optical trap with independent axial cooling and pushing. The new-designed source, proposed as 2D-HP MOT, uses hollow laser beams for axial cooling and a thin pushing laser beam for cold atomic beam extraction. Regulated independently by the pushing beam, the atomic flux can be substantially optimized. The atomic flux maximum obtained in the 2D-HP MOT is $4.02\\times 10^{10}$ atoms/s, increased by 60 percent compared to the traditional 2D$^+$ MOT in our experiment. Moreover, with the pushing power 10 $\\mu$W and detuning $0\\Gamma$, the 2D-HP MOT can generate a rather intense cold cesium atomic beam with the concomitant light shift suppressed by 20 times in magnitude. The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with a FMHW of about 2.8 m/s. The dependences of the atomic flux on the pushing power and detuning are studied. The experimental results are in good agreement with the theoreti...

  13. Beam scraping efficiency in the 5 MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A.J.

    1993-12-01

    Numerical calculations have been performed to evaluate the performance of a simple beam scraping system in the lattice of a rapid cycling (30 Hz) proton accelerator designed to be a high intensity spallation neutron source. The assumption has been made that beam loss will be dominated by rf capture inefficiency at injection (600 MeV kinetic) which is simulated as described below. Comparison is made with a ``sample calculation`` intended to illustrate betatron (beam halo) scraping at full energy which was assumed to be 3 GeV. The parameters of the lattice are those of the design as of April, 1993. The results described here are restricted to a geometry wherein the primary scraper is treated as an aperture in the X (horizontal) coordinate. Evaluation of the efficacy of two dimensional scrapers, or scraping systems which employ magnetic fields remain as topics for further study. The purpose of this study was to determine to what extent beam losses can be confined to a local region of the proposed lattice. The remainder of this note describes the general methodology employed, the rf capture beam loss simulation, and the beam halo growth ``sample calculation``. Section V briefly summarizes the results of this study.

  14. UCN Source at an External Beam of Thermal Neutrons

    Directory of Open Access Journals (Sweden)

    E. V. Lychagin

    2015-01-01

    Full Text Available We propose a new method for production of ultracold neutrons (UCNs in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections from methane; also the source size could be significantly larger than the incident beam diameter. We provide preliminary calculations of cooling of neutrons. These calculations show that such a source being installed at an intense source of thermal or cold neutrons like the ILL or PIK reactor or the ESS spallation source could provide the UCN density 105 cm−3, the production rate 107 UCN/s−1. Main advantages of such an UCN source include its low radiative and thermal load, relatively low cost, and convenient accessibility for any maintenance. We have carried out an experiment on cooling of thermal neutrons in a methane cavity. The data confirm the results of our calculations of the spectrum and flux of neutrons in the methane cavity.

  15. Ion optics of RHIC electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Kuznetsov, G. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  16. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  17. Analysis of laser beam propagation effects in atomic laser isotope separation

    International Nuclear Information System (INIS)

    In the atomic laser isotope separation process, the laser beams propagate through the atomic vapor over a long distance. It has been shown that the laser-atom interactions significantly modify the laser pulse shape and propagation velocity, resulting in degradation of the isotope separation efficiency. These propagation effects have been analyzed quantitatively, and a simple scaling formula has been derived to estimate the necessary laser energy for such optically thick atomic vapor. The optimum conditions of incident laser pulse have also been discussed. (author)

  18. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  19. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  20. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  1. Pulsed rotating supersonic source used with merged molecular beams

    OpenAIRE

    Sheffield, L.; Hickey, M.; Krasovitskiy, V.; Rathnayaka, K. D. D.; Lyuksyutov, I. F.; Herschbach, D. R.

    2012-01-01

    We describe a pulsed rotating supersonic beam source, evolved from an ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, cryocooling, and a shutter gate eliminated the main handicap of the original device, in...

  2. Separation of beam and electrons in the spallation neutron source H- ion source

    International Nuclear Information System (INIS)

    The Spallation Neutron Source (SNS) requires an ion source producing an H- beam with a peak current of 35 mA at a 6.2% duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H- beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H- beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson's equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail

  3. UCN Source at an External Beam of Thermal Neutrons

    OpenAIRE

    2015-01-01

    We propose a new method for production of ultracold neutrons (UCNs) in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections ...

  4. Setup and proof of principle of SAPIS (Stored Atoms Polarized Ion Source), a novel source of polarized H-/D- ions

    International Nuclear Information System (INIS)

    The objective of this work was the setup and the proof-of-principle of a new type of negative polarized hydrogen or deuterium ion source, which is based on the charge-exchange reaction vectorH0+Cs0→vectorH-+Cs+, as for instance the Colliding-Beams-Source (CBS) at the Cooler Synchrotron COSY in Juelich. In contrast to the CBS, the use of a storage cell for the charge-exchange region promises an increase in H- current by at least an order of magnitude without considerable polarization losses. For these purposes, a new laboratory was equipped and both a polarized hydrogen/deuterium atomic beam source and an intense neutral cesium-beam source have been build-on. A Lambshift polarimeter, which allows the measurement of the nuclear polarization of the atomic as well as ionic beams, was completed with the construction of a new spin-filter. After commissioning and optimizing each of these sources, a storage cell was developed and installed in the charge-exchange region with a magnetic field. Additionally, components for the extraction, detection and analysis of the negative ion beam were installed. Following the decisive proof of principle, investigation of the properties of the storage cell, especially as to H recombination and depolarisation, was begun. Furthermore, a number of software programs was developed for the control and monitoring of different components of the sources as well as a universal measuring software for the complete installation, including the measurement and calculation of the beam polarization. At the same time, the remote control system of the Cologne source of polarized ions LASCO at the FN tandem accelerator was completely modernized. (orig.)

  5. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  6. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  7. Laser-accelerated proton beams as a new particle source

    International Nuclear Information System (INIS)

    initiated the development of a test stand to transport, focus and bunch rotate these beams by conventional ion optics and RF technology. The field strength of 7.5 T enabled collimation of protons with an energy of >10 MeV for the first time. In addition, the focusing capability of the solenoid provided a flux increase in the focal spot of about a factor of 174 at a distance of 40 cm from the source, compared to a beam without using the magnetic field. For a quantitative analysis of the experiment numerical simulations with the WarpRZ code were performed. The code, which was originally developed to study high current ion beams and aid in the pursuit of heavy-ion driven inertial confinement fusion, was modified to enable the use of laser-accelerated proton beams as particle source. The calculated energy-resolved beam parameters of RIS could be included, and the plasma simulation criteria were studied in detail. The geometrical boundaries of the experimental setup were used in the simulations. 2.99 x 109 collimated protons in the energy range of 13.5±1 MeV could be transported over a distance of 40 cm. In addition, 8.42 x 109 protons in the energy range of 6.7±0.2 MeV were focused into a spot of <2 mm in diameter. The transmission through the solenoid for both cases was about 18%. (orig.)

  8. Laser-accelerated proton beams as a new particle source

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberg, Frank

    2010-11-15

    plasma physics group of the Technische Universitat Darmstadt initiated the development of a test stand to transport, focus and bunch rotate these beams by conventional ion optics and RF technology. The field strength of 7.5 T enabled collimation of protons with an energy of >10 MeV for the first time. In addition, the focusing capability of the solenoid provided a flux increase in the focal spot of about a factor of 174 at a distance of 40 cm from the source, compared to a beam without using the magnetic field. For a quantitative analysis of the experiment numerical simulations with the WarpRZ code were performed. The code, which was originally developed to study high current ion beams and aid in the pursuit of heavy-ion driven inertial confinement fusion, was modified to enable the use of laser-accelerated proton beams as particle source. The calculated energy-resolved beam parameters of RIS could be included, and the plasma simulation criteria were studied in detail. The geometrical boundaries of the experimental setup were used in the simulations. 2.99 x 10{sup 9} collimated protons in the energy range of 13.5{+-}1 MeV could be transported over a distance of 40 cm. In addition, 8.42 x 10{sup 9} protons in the energy range of 6.7{+-}0.2 MeV were focused into a spot of <2 mm in diameter. The transmission through the solenoid for both cases was about 18%. (orig.)

  9. Nonclassically paired photons from sources based on cold atoms

    Science.gov (United States)

    Głódź, Małgorzata; Janowicz, Maciej; Kowalski, Krzysztof; Szonert, Jerzy

    2015-01-01

    In this short review some essentials concerning creation and testing of nonclassically correlated photons (biphotons) are given. In the introduction we remind the role which the experimentally produced entangled states have been playing for the foundations of the quantum physics, by witnessing against the model of local hidden variables. The well established sources of biphotons are based on spontaneous parametric down conversion in nonlinear crystals. A popular source with two BBO crystals is described, which generates pairs of photons nearly maximally entangled in polarization. Crystalbased sources rely on intrinsically broadband transitions, therefore thus produced biphotons are also broadband. Additional efforts (like applying optical cavities) are needed to reach narrowband biphotons which would comply with the requirements of some implementations in the quantum communication science. The topical issue of our article is a review of another, more recent approaches based on narrowband transitions between levels in cold atoms. Such method provides naturally narrowband biphotons. First, the principles are given of an atomic source of nonclassically paired photons, which is operated in a pulsed write-read mode. Such source is based on two separated in time Raman transitions triggered successively in two Λ-schemes. Next, cw-mode sources based (mainly) on spontaneous four wave mixing process (SFWM) are presented in a generic four-level scheme. Some underlying physics is sketched and profiles of biphoton correlation functions in the time domain are explained. Among other presented SFWM sources, one proves in testing high degree entanglement of generated biphotons, both in time-frequency and polarization (hyperentanglement).

  10. Compact, high power electron beam based terahertz sources.

    Energy Technology Data Exchange (ETDEWEB)

    Biedron, S. G.; Lewellen, J. W.; Milton, S. V.; Gopalsami, N.; Schneider, J. F.; Skubal, L.; Li, Y. L.; Virgo, M.; Gallerano, G. P.; Doria, A.; Giovenale, E.; Messina, G.; Spasovsky, I. P.; Office of The Director-Applied Science and Technology; Univ. of Maryland; ENEA

    2007-08-01

    Although terahertz (THz) radiation was first observed about 100 years ago, this portion of the electromagnetic spectrum at the boundary between the microwaves and the infrared has been, for a long time, rather poorly explored. This situation changed with the rapid development of coherent THz sources such as solid-state oscillators, quantum cascade lasers, optically pumped solid-state devices, and novel coherent radiator devices. These in turn have stimulated a wide variety of applications from material science to telecommunications, from biology to biomedicine. Recently, there have been two related compact coherent radiation devices invented able to produce up to megawatts of peak THz power by inducing a ballistic bunching effect on the electron beam, forcing the beam to radiate coherently. An introduction to the two systems and the corresponding output photon beam characteristics will be provided.

  11. The Spallation Neutron Source Beam Commissioning and Initial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Stuart [Argonne National Lab. (ANL), Argonne, IL (United States); Aleksandrov, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Assadi, Saeed [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bartoski, Dirk [University of Texas, Houston, TX (United States). Anderson Cancer Center; Blokland, Willem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Casagrande, F. [Michigan State Univ., East Lansing, MI (United States); Campisi, I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chu, C. [Michigan State Univ., East Lansing, MI (United States); Cousineau, Sarah M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crofford, Mark T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Danilov, Viatcheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deibele, Craig E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dodson, George W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feshenko, A. [Inst. for Nuclear Research (INR), Moscow (Russian Federation); Galambos, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Han, Baoxi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hardek, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Howell, Matthew P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jeon, D. [Inst. for Basic Science, Daejeon (Korea); Kang, Yoon W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasemir, Kay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kravchuk, L. [Institute for Nuclear Research (INR), Moscow (Russian Federation); Long, Cary D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamy, T. [McManamy Consulting, Inc., Middlesex, MA (United States); Pelaia, II, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Piller, Chip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plum, Michael A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R. [Tennessee Technological Univ., Cookeville, TN (United States); Purcell, John David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shea, T. [European Spallation Source, Lund (Sweden); Shishlo, Andrei P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sibley, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stockli, Martin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stout, D. [Michigan State Univ., East Lansing, MI (United States); Tanke, E. [European Spallation Source, Lund (Sweden); Welton, Robert F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Y. [Michigan State Univ., East Lansing, MI (United States); Zhukov, Alexander P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  12. Atomic physics at the Advanced Photon Source: Workshop report

    International Nuclear Information System (INIS)

    The first Workshop on Atomic Physics at the Advanced Photon Source was held at Argonne National Laboratory on March 29--30, 1990. The unprecedented brightness of the Advanced Photon Source (APS) in the hard X-ray region is expected to make possible a vast array of new research opportunities for the atomic-physics community. Starting with discussions of the history and current status of the field, presentations were made on various future directions for research with hard X-rays interacting with atoms, ions, clusters, and solids. Also important were the discussions on the design and status of the four next-generation rings coming on line during the 1990's: the ALS 1.6 GeV ring at Berkeley; the ESRF 6.0-GeV ring at Grenoble (1993); the APS 7.0-GeV ring at Argonne (1995); and the SPring-8 8.0-GeV ring in Japan (1998). The participation of more than one hundred scientists from domestic as well as foreign institutions demonstrated a strong interest in this field. We plan to organize follow-up workshops in the future emphasizing specific research topics

  13. High flux cold Rubidium atomic beam for strongly coupled Cavity QED

    CERN Document Server

    Roy, Basudev

    2012-01-01

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity QED experiments in the regime of strong coupling. A 2 $D^+$ MOT, loaded by rubidium getters in a dry film coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate of 1.5 x $10^{10}$ atoms/sec. The MM-MOT provided a continuous beam with tunable velocity. This beam was then directed through the waist of a 280 $\\mu$m cavity resulting in a Rabi splitting of more than +/- 10 MHz. The presence of sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling regime, with parameters (g, $\\kappa$, $\\gamma$)/2$\\pi$ equal to (7, 3, 6)/ 2$\\pi$ MHz.

  14. Dynamics of Finite Energy Airy Beams Carrying Orbital Angular Momentum in Multilevel Atomic Vapors

    Science.gov (United States)

    Wu, Zhenkun; Wang, Shun; Hu, Weifei; Gu, Yuzong

    2016-10-01

    We numerically investigate the dynamics of inward circular finite-energy Airy beams carrying different orbital angular momentum (OAM) numbers in a close-Λ three-level atomic vapor with the electromagnetically induced transparency (EIT) window. We report that due to the EIT induced by the microwave field, the transverse intensity distribution properties of Airy beam can be feasibly manipulated and modulated through adjusting OAM numbers l and the frequency detuning, as well as the propagation distance, in the multi-level atomic systems. What's more, the rotation of the beam also can be observed with different positions in atomic ensembles. The investigation may provide a useful tool for studying particle manipulation, signal processing and propagation in graded-index (GRIN) fibers.

  15. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  16. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT

    International Nuclear Information System (INIS)

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized 3He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem

  17. Pulsed rotating supersonic source used with merged molecular beams

    CERN Document Server

    Sheffield, L; Krasovitskiy, V; Rathnayaka, K D D; Lyuksyutov, I F; Herschbach, D R

    2012-01-01

    We describe a pulsed rotating supersonic beam source, evolved from an ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, cryocooling, and a shutter gate eliminated the main handicap of the original device, in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1-0.6 ms (depending on rotor speed) and containing ~10^12 molecules at lab speeds as low as 35 m/s and ~ 10^15 molecules at 400 m/s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O2, Cl2, NO2, NH3, and SF6. For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when...

  18. Ion Beam Plasma Interactions in the ASTRAL Helicon Plasma Source.

    Science.gov (United States)

    Boivin, R. F.; Kesterson, A.; Kamar, O.; Lin, Y.; Munoz, J.; Wang, X.

    2008-11-01

    A 100 KeV NEC duoplasmatron is used to produce an energetic ion beam (10 KeV ASTRAL helicon plasma source. The beam current and beam size are measured by a device combining Retarding Field Analyzer (RFA) and Faraday Cup (FC) features. ASTRAL produces bright intense He/Ne/Ar plasmas with the following parameters: ne = 1E11 -- 1E13 cm-3 and Te = 2 - 10 eV, B-field < 1.3 kGauss, rf power <= 2 kWatt. RF compensated Langmuir probes are used to measure Te and ne. Depending on the ion beam energy and the ratio of beam density over plasma density different wave instabilities will be generated within the plasmas. A real-time spectrum analyzer will be used to identify the wave instabilities and their evolution in the plasma. We will present early experimental results together with some preliminary theoretical simulation using 2D and 3D hybrid simulation codes. In these codes, ions are treated as fully kinetic particles while electrons are treated as a fluid. Both species are moving in a self-consistent electromagnetic field.

  19. Laser spectroscopy of atomic beams of short-lived nuclei

    International Nuclear Information System (INIS)

    A possibility of performing laser-nuclear-spectroscopic experiments at qualitatively new level aimed to solve the second-glass current problem and to search T-non invariant effects in the beta-decay of atomic nuclei is discussed. The question of the increase in efficiency of the experiments, aimed to study the main characteristics of nuclei, far from the beta-stability, by means of the laser spectroscopy methods is considered. 147 refs.; 5 figs.; 1 tab

  20. Confinement of ultracold atoms in a Laguerre-Gaussian laser beam created with diffractive optics

    CERN Document Server

    Kennedy, Sharon A; Farrar, J Tom; Akin, T G; Krzyzewski, S; Abraham, E R I

    2013-01-01

    We report 2D confinement of Rb 87 atoms in a Laguerre-Gaussian laser beam. Changing of the sign of the detuning from the atomic resonance dramatically alters the geometry of the confinement. With the laser detuned to the blue, the atoms are confined to the dark, central node of the Laguerre-Gaussian laser mode. This trapping method leads to low ac Stark shifts to the atomic levels. Alternatively, by detuning the laser to the red of the resonance, we confine atoms to the high intensity outer ring in a multiply-connected, toroidal configuration. We model the confined atoms to determine azimuthal intensity variations of the trapping laser, caused by slight misalignments of the Laguerre-Gaussian mode generating optics.

  1. Verification of high efficient broad beam cold cathode ion source.

    Science.gov (United States)

    Abdel Reheem, A M; Ahmed, M M; Abdelhamid, M M; Ashour, A H

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition. PMID:27587108

  2. An atomic coilgun: using pulsed magnetic fields to slow a supersonic beam

    Energy Technology Data Exchange (ETDEWEB)

    Narevicius, E [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Parthey, C G [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Libson, A [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Narevicius, J [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Chavez, I [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Even, U [Sackler School of Chemistry, Tel-Aviv University, Tel-Aviv (Israel); Raizen, M G [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States)

    2007-10-15

    We report the experimental demonstration of a novel method to slow atoms and molecules with permanent magnetic moments using pulsed magnetic fields. In our experiments, we observe the slowing of a supersonic beam of metastable neon from 461.0 {+-} 7.7 to 403 {+-} 16 m s{sup -1} in 18 stages, where the slowed peak is clearly separated from the initial distribution. This method has broad applications as it may easily be generalized, using seeding and entrainment into supersonic beams, to all paramagnetic atoms and molecules.

  3. Plasma diagnosis as a tool for the determination of the parameters of electron beam evaporation and sources of ionization

    Science.gov (United States)

    Mukherjee, Jaya; Dileep Kumar, V.; Yadav, S. P.; Barnwal, Tripti A.; Dikshit, Biswaranjan

    2016-07-01

    The atomic vapor generated by electron beam heating is partially ionized due to atom-atom collisions (Saha ionization) and electron impact ionization, which depend upon the source temperature and area of evaporation as compared to the area of electron beam bombardment on the target. When electron beam evaporation is carried out by inserting the target inside an insulating liner to reduce conductive heat loss, it is expected that the area of evaporation becomes significantly more than the area of electron beam bombardment on the target, resulting in reduced electron impact ionization. To assess this effect and to quantify the parameters of evaporation, such as temperature and area of evaporation, we have carried out experiments using zirconium, tin and aluminum as a target. By measuring the ion content using a Langmuir probe, in addition to measuring the atomic vapor flux at a specific height, and by combining the experimental data with theoretical expressions, we have established a method for simultaneously inferring the source temperature, evaporation area and ion fraction. This assumes significance because the temperature cannot be reliably measured by an optical pyrometer due to the wavelength dependent source emissivity and reflectivity of thin film mirrors. In addition, it also cannot be inferred from only the atomic flux data at a certain height as the area of evaporation is unknown (it can be much more than the area of electron bombardment, especially when the target is placed in a liner). Finally, the reason for the lower observed electron temperatures of the plasma for all the three cases is found to be the energy loss due to electron impact excitation of the atomic vapor during its expansion from the source.

  4. Precision measurement of transverse velocity distribution of a strontium atomic beam

    OpenAIRE

    F. Gao; Liu, H.; P. Xu; Tian, X.; Y Wang; Ren, J; Haibin Wu; Hong Chang

    2014-01-01

    We measure the transverse velocity distribution in a thermal Sr atomic beam precisely by velocity-selective saturated fluorescence spectroscopy. The use of an ultrastable laser system and the narrow intercombination transition line of Sr atoms mean that the resolution of the measured velocity can reach 0.13 m/s, corresponding to 90$\\mu K$ in energy units. The experimental results are in very good agreement with the results of theoretical calculations. Based on the spectroscopic techniques use...

  5. 12th International Symposium on Electron Beam Ion Sources and Traps and Their Applications

    CERN Document Server

    Schwarz, Stefan; Baumann, Thomas M

    2014-01-01

    The EBIST symposia date back to 1977 and have taken place every 3 to 4 years to specifically discuss progress and exchange ideas in the design, development, applications of electron beam ion sources and traps, and the physics with highly charged ions. The topics to be covered in 2014 are: - Progress and status of EBIS/T facilities, - Atomic spectroscopy of highly charged ions, - Charge-exchange and surface interaction with highly charged ions, - Charge breeding of stable and radioactive isotopes, - Nuclear physics with highly charged ions.

  6. Charged-particle beam diagnostics for the advanced photon source

    Science.gov (United States)

    Lumpkin, A. H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Wang, X.; Chung, Y.

    1993-07-01

    Plans, prototypes, and initial test results for the charged-particle beam (e -, e +) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest X-ray sources in the 10-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV injector synchrotron (IS), 7-GeV storage ring (SR), and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture.

  7. Laser sources for precision spectroscopy on atomic strontium

    OpenAIRE

    Ferrari, G; T.M. Brzozowski; R. DRULLINGER; Poli, N.; Prevedelli, M.; Toninelli, C.; Tino, G. M.

    2004-01-01

    Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, edited by Vladimir I. Ustugov abstract: We present a new laser setup suited for high precision spectroscopy on atomic strontium. The source is used for an absolute frequency measurement of the visible 5s21S0-5s5p3P1 intercombination line of strontium which is considered a possible candidate for a future optical frequency standard. The optical frequency is measured with an optical comb generator referenced to the SI t...

  8. Numerical simulation program of multicomponent ion beam transport from ECR ion source

    Institute of Scientific and Technical Information of China (English)

    MA Lei; SONG Ming-Tao; CAO Yun; ZHAO Hong-Wei; ZHANG Zi-Min; LI Xue-Qian; LI Jia-Cai

    2004-01-01

    In order to research multi-component ion beam transport process and improve transport efficiency, a special simulating program for ECR beam is becoming more and more necessary. We have developed a program written by Visual Basic to be dedicated to numerical simulation of the highly charged ion beam and to optimization of beam dynamics in transport line. In the program the exchange of electrons between highly charged ions and low chargedions or neutral atoms (residual gas in transport line) is taken into account, adopting classical molecular over-barrier model and Monte Carlo method, so the code can easily give the change of charge state distribution along the transmission line. The main advantage of the code is the ability to simultaneously simulate a large quantity of ions with different masses and charge states, and particularly, to simulate the loss of highly charged ions and the increase of low charged ions due to electron exchange in the whole transport process. Some simulations have been done to study the transmission line of LECR3[1] which is an ECR ion source for highly charged ion beam at IMP. Compared with experimental results, the simulations are considered to be successful.

  9. Advances with tungsten coil atomizers: Continuum source atomic absorption and emission spectrometry

    International Nuclear Information System (INIS)

    Two new tungsten coil spectrometers are described: a continuum source tungsten coil atomic absorption spectrometer and a tungsten coil atomic emission spectrometer. Both devices use a 150 W tungsten coil extracted from a slide projector bulb. The power is provided by a computer-controlled, solid state, constant current 0-10 A supply. The heart of the optical system is a high-resolution spectrometer with a multi-channel detector. The continuum source system employs xenon or deuterium lamps, and is capable of multi-element analyses of complex samples like engine oil, urine, and polluted water. Spiked engine oil samples give mean percent recoveries of 98 ± 9, 104 ± 9, and 93 ± 0.8 for Al, V, and Ni, respectively. Copper, Zn, and Cd are determined in urine samples; while Cd, Co, Yb, and Sr are determined in water samples. Detection limits for Cd, Zn, Cu, Yb, Sr, and Co are: 8, 40, 1, 4, 1, and 4 μg l-1. The technique of tungsten coil atomic emission spectrometry using a 150 W commercial projector bulb is reported for the first time. Calcium, Ba, and Sr are determined with detection limits of 0.01, 0.5, and 0.1 μg l-1. Relative standard deviations are lower than 10% in each case, and Sr is determined in two water standard reference materials

  10. Laser cooling of a magnetically guided ultra cold atom beam

    OpenAIRE

    Aghajani-Talesh, Anoush

    2014-01-01

    In dieser Dissertation werden zwei komplementäre Methoden für die Laserkühlung eines magnetisch geführten, ultrakalten Atomstrahls untersucht. Kombiniert könnten diese Methoden den Ausgangspunkt für eine, möglicherweise sogar kontinuierliche, Hochdurchsatzproduktion von Bose-Einstein-Kondensaten darstellen. Als erstes wird ein Mechanismus vorgestellt, mit dem sich ultrakalte Atome aus einem magnetisch geführten Atomstrahl in eine optische Dipolfalle umladen lassen. Es wird ein kontinuierli...

  11. Laser beam propagation effects in atomic laser isotope separation

    International Nuclear Information System (INIS)

    The propagation of two different-color laser pulses in the resonant three-level medium is studied. The three-level Bloch-Maxwell equations are solved numerically to analyze the change of the pulse shapes and the time-varying atomic populations. The pulse delay and the pulse shape break-up are observed especially for the first excitation laser pulse. Complete separation of the two laser pulses occur from a certain critical distance. It is shown that the rapid decrease of the ionization efficiency is caused by the separation of the two laser pulses. (author)

  12. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    Science.gov (United States)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established ˜5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-μs surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of μs after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.

  13. Biprism Electron Interferometry with a Single Atom Tip Source

    CERN Document Server

    Schütz, Georg; Pooch, Andreas; Meier, Simon; Schneeweiss, Philipp; Rauschenbeutel, Arno; Günther, Andreas; Chang, Wei-Tse; Hwang, Ing-Shouh; Stibor, Alexander

    2013-01-01

    Experiments with electron or ion matter waves require a coherent, monochromatic and long-term stable source with high brightness. These requirements are best fulfilled by single atom tip (SAT) field emitters. The performance of an iridium covered W(111) SAT is demonstrated and analyzed for electrons in a biprism interferometer. Furthermore we characterize the emission of the SAT in a separate field electron and field ion microscope and compare it with other emitter types. A new method is presented to fabricate the electrostatic charged biprism wire that separates and combines the matter wave. In contrast to other biprism interferometers the source and the biprism size are well defined within a few nanometers. The setup has direct applications in ion interferometry and Aharonov-Bohm physics.

  14. Biprism electron interferometry with a single atom tip source.

    Science.gov (United States)

    Schütz, G; Rembold, A; Pooch, A; Meier, S; Schneeweiss, P; Rauschenbeutel, A; Günther, A; Chang, W T; Hwang, I S; Stibor, A

    2014-06-01

    Experiments with electron or ion matter waves require a coherent, monochromatic and long-term stable source with high brightness. These requirements are best fulfilled by single atom tip (SAT) field emitters. The performance of an iridium covered W(111) SAT is demonstrated and analyzed for electrons in a biprism interferometer. Furthermore we characterize the emission of the SAT in a separate field electron and field ion microscope and compare it with other emitter types. A new method is presented to fabricate the electrostatic charged biprism wire that separates and combines the matter wave. In contrast to other biprism interferometers the source and the biprism size are well defined within a few nanometers. The setup has direct applications in ion interferometry and Aharonov-Bohm physics. PMID:24704604

  15. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  16. Improved design of proton source and low energy beam transport line for European Spallation Source

    Science.gov (United States)

    Neri, L.; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Torrisi, G.; Cheymol, B.; Ponton, A.; Galatà, A.; Patti, G.; Gozzo, A.; Lega, L.; Ciavola, G.

    2014-02-01

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  17. Generation of energetic He atom beams by a pulsed positive corona discharge

    OpenAIRE

    Lo, Shui-Yin; Lobo, Julio D.; Blumberg, Seth; Dibble, Theodore S.; Zhang, Xu; Tsao, Chun-Cheng; Okumura, Mitchio

    1997-01-01

    Time-of-flight measurements were made of neutral helium atom beams extracted from a repetitive, pulsed, positive-point corona discharge. Two strong neutral peaks, one fast and one slow, were observed, accompanied by a prompt photon peak and a fast ion peak. All peaks were correlated with the pulsing of the discharge. The two types of atoms appear to be formed by different mechanisms at different stages of the corona discharge. The fast atoms had energies of 190 eV and were formed at the onset...

  18. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  19. New diagnostic technique for Zeeman-compensated atomic beam slowing: technique and results

    OpenAIRE

    Molenaar, P.A.; Van Der Straten, P.; Heideman, H.G.M.; Metcalf, H.

    2001-01-01

    We have developed a new diagnostic tool for the study of Zeeman-compensated slowing of an alkali atomic beam. Our time-of-flight technique measures the longitudinal veloc- ity distribution of the slowed atoms with a resolution below the Doppler limit of 30 cm/s. Furthermore, it can map the position and velocity distribution of atoms in either ground hyperfine level inside the solenoid without any devices inside the solenoid. The technique reveals the optical pumping ef- fects, and shows in de...

  20. Atomic-scale thermocapillary flow in focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Das, K.; Johnson, H. T.; Freund, J. B., E-mail: jbfreund@illinois.edu [Mechanical Science and Engineering and Aerospace Engineering, University of Illinois at Urbana–Champaign, 1206 West Green Street MC-244, Urbana, Illinois 61801 (United States)

    2015-05-15

    Focused ion beams provide a means of nanometer-scale manufacturing and material processing, which is used for applications such as forming nanometer-scale pores in thin films for DNA sequencing. We investigate such a configuration with Ga{sup +} bombardment of a Si thin-film target using molecular dynamics simulation. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A flow model with Marangoni forcing, based upon the temperature gradient and geometry from the atomistic simulation, indeed reproduces the flow and thus could be used to anticipate such flows and their influence in applications.

  1. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  2. Background gas density and beam losses in NIO1 beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Veltri, P.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Cavenago, M. [INFN-LNL, v.le dell’Università 2, I-35020 Legnaro (PD) (Italy)

    2016-02-15

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  3. Background gas density and beam losses in NIO1 beam source

    Science.gov (United States)

    Sartori, E.; Veltri, P.; Cavenago, M.; Serianni, G.

    2016-02-01

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  4. A=225 implantation for $^{221}$Fr source for TRIUMF atom trap

    CERN Multimedia

    The FrPNC Collaboration is mounting an atom trap for parity violation experiments and precision spectroscopy on francium atoms at TRIUMF's ISAC facility. We would like to use ISOLDE's capability of simultaneously implanting A=225 (while another experiment runs online) to make a long-lived source feeding $^{221}$Fr for tests of the trap. $^{225}$Ra $\\beta$-decays to $^{225}$Ac, which then $\\alpha$-decays, producing 100 keV $^{221}$Fr t$_{1/2}$= 4.8 minute recoils. The implanted A=225 source would be shipped to TRIUMF, where it would be held for several minutes at a time a few mm from the same yttrium foil that normally receives the ISAC beam. SRIM calculations imply that 20% of the $^{221}$Fr will be implanted in a 1 cm diameter spot on the yttrium. Then the yttrium foil is moved to the trap and heated to release the Fr atoms, just as in normal ISAC online operation. A test implantation will be done at 10$^{7}$/sec production for 1 day, testing whether carbon cracking on the implantation foil in the mass separ...

  5. Optical Beam Timing Monitor Experiments at the Advanced Light Source

    International Nuclear Information System (INIS)

    We present the initial results of an experimental study of a beam timing monitor based on an optoelectronic technique. This technique uses the electrical signal from a beam position monitor to modulate the amplitude of a train of laser pulses, converting timing jitter into an amplitude jitter. This modulation is then measured with a photodetector and sampled by a fast ADC. This approach has already demonstrated sub-100fs resolution and promises even better results. Additionally, we are planning to use the technique as a way to extract the maximum possible bandwidth from a BPM, avoiding the dispersion typical of long RF cables. We show our initial results using signals from the Advanced Light Source storage ring

  6. Coherent and dynamic beam splitting based on light storage in cold atoms

    Science.gov (United States)

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457

  7. FNAL Proton Source High Intensity Operations and Beam Loss Control

    CERN Document Server

    Garcia, F G

    2014-01-01

    The 40-year-old Fermilab Proton Source machines, constituted by the Pre-Injector, Linac and the synchrotron Booster, have been the workhorse of the Fermi National Accelerator Laboratory (Fermilab). During this time, the High Energy Physics Program has demanded an increase in proton throughput, especially during the past decade with the beginning of the neutrino program at Fermilab. In order to achieve a successful program, major upgrades and changes were made in Booster. Once again, the Proton Source has been charged to double their beam throughput, while maintain the present residual activation levels, to meet the laboratory Intensity Frontier program goals until new machines are built and operational to replace the Proton Source machines. This paper discusses the present performance of Booster and the plans involved in reaching even higher intensities.

  8. Radiation forces on a three-level atom in the high-order Bessel beams

    Institute of Scientific and Technical Information of China (English)

    Wang Zheng-Ling; Yin Jian-Ping

    2008-01-01

    The general expressions of the average dissipative and dipole forces acting on a A-configuration three-level atom in an arbitrary light field are derived by means of the optical Bloch equations based on the atomic density matrix elements, and the general properties of the average dissipative and dipole forces on a three-level atom in the linearly-polarized high-order Bessel beams (HBBs) are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Meanwhile we find a saturation effect of the average dissipative force in the HBB, which comes from the saturation of the upper-level population. Our study shows that the general expressions of the average dissipative and dipole forces on the three-level atom will be simplified to those of the two-level atom under the approximation of large detuning. Finally, we study the axial and azimuthal Doppler cooling of atoms in 1D optical molasses composed of two counter-propagating HBBs and discuss the azimuthal influence of the HBB on the Doppler cooling limit. We also find that the Doppler limit of atoms in the molasses HBB is slightly below the conventional Doppler limit of hг/(2кB) due to the orbital angular momentum lh of the HBB.

  9. Nonlinear effects in optical pumping of a cold and slow atomic beam

    KAUST Repository

    Porfido, N.

    2015-10-12

    By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients.

  10. Preparation and Analysis of Atom Probe Tips by Xenon Focused Ion Beam Milling.

    Science.gov (United States)

    Estivill, Robert; Audoit, Guillaume; Barnes, Jean-Paul; Grenier, Adeline; Blavette, Didier

    2016-06-01

    The damage and ion distribution induced in Si by an inductively coupled plasma Xe focused ion beam was investigated by atom probe tomography. By using predefined patterns it was possible to prepare the atom probe tips with a sub 50 nm end radius in the ion beam microscope. The atom probe reconstruction shows good agreement with simulated implantation profiles and interplanar distances extracted from spatial distribution maps. The elemental profiles of O and C indicate co-implantation during the milling process. The presence of small disc-shaped Xe clusters are also found in the three-dimensional reconstruction. These are attributed to the presence of Xe nanocrystals or bubbles that open during the evaporation process. The expected accumulated dose points to a loss of >95% of the Xe during analysis, which escapes undetected.

  11. Atomic beam magnetic resonance apparatus for systematic measurement of hyperfine structure anomalies (Bohr-Weisskopf effect)

    International Nuclear Information System (INIS)

    An atomic beam magnetic resonance (ABMR) apparatus has been constructed at Orsay, and has been installed at the CERN PS Booster ISOLDE mass separator facility for 'on-line' work with radioactive isotopes in a program to measure hyperfine structure anomalies (the Bohr-Weisskopf effect) over long isotopic chains. The hfs anomalies result from the effect of the spatial distribution of the nuclear magnetization on the atomic hfs interaction. Constructional details of the system are described: Emphasis is placed on the measurement of nuclear g-factors by a triple resonance, laser state selected, ABMR method. A precision better than 10-4 for gI values has been obtained in stable atomic beam tests, leading to hfs anomaly measurements better than 10%. Two types of detection systems are described: Laser fluorescence and surface ionization coupled with mass spectrometry. (orig.)

  12. ECR [electron cyclotron resonance] ion source beams for accelerator applications: Final report

    International Nuclear Information System (INIS)

    Reliable, easily operated ion sources are always in demand for accelerator applications. This paper reports on a systematic study of ion-beam characterisrtics and optimization of beam quality for production of light ion beams in an ECR ion source. Of particular interest is the optimization of beam brightness (defined as ion current divided by the square of the emittance), which is typically used as a figure-of-merit for accelerator-quality beams. Other areas to be discussed include the measurement of beam emittance values, the effects of various source parameters on emittances, and scaling effects from operating the same ECR source at different frequencies. 4 refs., 4 figs

  13. Ion Flux Measurements in Electron Beam Produced Plasmas in Atomic and Molecular Gases

    Science.gov (United States)

    Walton, S. G.; Leonhardt, D.; Blackwell, D. D.; Murphy, D. P.; Fernsler, R. F.; Meger, R. A.

    2001-10-01

    In this presentation, mass- and time-resolved measurements of ion fluxes sampled from pulsed, electron beam-generated plasmas will be discussed. Previous works have shown that energetic electron beams are efficient at producing high-density plasmas (10^10-10^12 cm-3) with low electron temperatures (Te < 1.0 eV) over the volume of the beam. Outside the beam, the plasma density and electron temperature vary due, in part, to ion-neutral and electron-ion interactions. In molecular gases, electron-ion recombination plays a significant role while in atomic gases, ion-neutral interactions are important. These interactions also determine the temporal variations in the electron temperature and plasma density when the electron beam is pulsed. Temporally resolved ion flux and energy distributions at a grounded electrode surface located adjacent to pulsed plasmas in pure Ar, N_2, O_2, and their mixtures are discussed. Measurements are presented as a function of operating pressure, mixture ratio, and electron beam-electrode separation. The differences in the results for atomic and molecular gases will also be discussed and related to their respective gas-phase kinetics.

  14. Inclined slot-excited annular electron cyclotron resonance plasma source for hyperthermal neutral beam generation

    Energy Technology Data Exchange (ETDEWEB)

    You, H.-J.; Kim, D.-W.; Koo, M.; Jang, S.-O.; Jung, Y.-H.; Lee, B.-J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Hong, S.-H. [Agency for Defense Development, Daejeon (Korea, Republic of)

    2011-01-15

    An inclined slot-excited antenna (ISLAN) electron cyclotron resonance (ECR) plasma source is newly designed and constructed for higher flux hyperthermal neutral beam (HNB) generation. The developed ISLAN source is modified from vertical slot-excited antenna (VSLAN) source in two aspects: one is the use of inclined slots instead of vertical slots, and the other is a cusp magnetic field configuration rather than a toroidal configuration. Such modifications allow us to have more uniform arrangement of slots and magnets, then enabling plasma generation more uniform and thinner. Moreover, ECR plasma allows higher ionization rate, enabling plasma density higher even in submillitorr pressures, therefore decreasing the collision rate and/or the reionization rate of the reflected atoms while passing through the plasma, and eventually getting higher flux of HNBs. In this paper, we report the design features and the plasma characteristics of the ISLAN source by doing plasma measurements and electromagnetic simulations. It was found that ISLAN source can be a high potential source for larger flux HNB generation; the source was found to give higher plasma densities and better uniformities than inductively coupled plasma source, particularly in low pressure ranges. Also, it is important that using ISLAN gives easier matching and better stability, i.e., ISLAN shows similar field patterns and good plasma symmetries irrespective of the variations of the mean diameter of the ring resonator and/or the presence of a limiter or a reflector, and the operating pressures.

  15. Consistency of atomic data for the interpretation of beam emission spectra

    Energy Technology Data Exchange (ETDEWEB)

    Delabie, E; Von Hellermann, M G [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Brix, M; Giroud, C; Surrey, E; Zastrow, K D [EURATOM/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Jaspers, R J E [Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven (Netherlands); Marchuk, O [Forschungszentrum Juelich, Association EURATOM-FZJ, 52425, Juelich (Germany); O' Mullane, M G [Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Ralchenko, Yu, E-mail: e.delabie@fz-juelich.d [Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-12-15

    Several collisional-radiative (CR) models (Anderson et al 2000 Plasma Phys. Control. Fusion 42 781-806, Hutchinson 2002 Plasma Phys. Control. Fusion 44 71-82, Marchuk et al 2008 Rev. Sci. Instrum. 79 10F532) have been developed to calculate the attenuation and the population of excited states of hydrogen or deuterium beams injected into tokamak plasmas. The datasets generated by these CR models are needed for the modelling of beam ion deposition and (excited) beam densities in current experiments, and the reliability of these data will be crucial to obtain helium ash densities on ITER combining charge exchange and beam emission spectroscopy. Good agreement between the different CR models for the neutral beam (NB) is found, if corrections to the fundamental cross sections are taken into account. First the H{sub {alpha}} and H{sub {beta}} beam emission spectra from JET are compared with the expected intensities. Second, the line ratios within the Stark multiplet are compared with the predictions of a sublevel resolved model. The measured intensity of the full multiplet is {approx}30% lower than expected on the basis of beam attenuation codes and the updated beam emission rates, but apart from the atomic data this could also be due to the characterization of the NB path and line of sight integration and the absolute calibration of the optics. The modelled n = 3 to n = 4 population agrees very well with the ratio of the measured H{sub {alpha}} to H{sub {beta}} beam emission intensities. Good agreement is found as well between the NB power fractions measured with beam emission in plasma and on the JET Neutral Beam Test Bed. The Stark line ratios and {sigma}/{pi} intensity ratio deviate from a statistical distribution, in agreement with the CR model in parabolic states from Marchuk et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 011002).

  16. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam

    Science.gov (United States)

    Wagner, R.; Woehl, T. J.; Keller, R. R.; Killgore, J. P.

    2016-07-01

    The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstrate detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.

  17. First test of BNL electron beam ion source with high current density electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard [CERN, CH-1211 Geneva 23 (Switzerland)

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  18. First test of BNL electron beam ion source with high current density electron beam

    International Nuclear Information System (INIS)

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given

  19. Mini-beam collimator applications at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shenglan, E-mail: sxu@anl.gov [GM/CA CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Keefe, Lisa J.; Mulichak, Anne [IMCA CAT, Argonne National Laboratory, Argonne, IL 60439 (United States); Yan Lifen; Alp, Ercan E.; Zhao Jiyong [X-ray Sciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fischetti, Robert F. [GM/CA CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-{mu}m pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio . Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside . This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-{mu}m pinhole has been added to create a 'quad-collimator', resulting in greater flexibility for the users. The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Moessbauer Microscopic system at sector 3-ID.

  20. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O7+ and 1.15 emA of O6+, more than 100 eμA of intermediate heavy ions for charge states up to Ar13+, Ca13+, Fe13+, Co14+ and Kr18+, and tens of eμA of heavy ions with charge states to Kr26+, Xe28+, Au35+, Bi34+ and U34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe36+, Au46+, Bi47+ and U48+. An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  1. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  2. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  3. Repetitive electron beam source for high power microwave experiments

    International Nuclear Information System (INIS)

    A compact pulse transformer has been developed to operate at ∼1 Hz, producing a 100 kV, 250 ns pulse. The output pulse has a ±1% flat top for 120 ns. This pulse is coupled to an electron beam diode which uses a ferroelectric ceramic disk as the source of a high current density electron beam. A portion of the pulse (∼ 2 kV) is applied across the ferroelectric causing a rapid change in the polarization state. This change results in the emission of a high density electron cloud into an accelerating diode gap. The accelerating pulse is applied across the diode gap and the electron beam is extracted into a cylindrical drift tube. A magnetic guide field is supplied by a 5 cm diameter pulsed coil system. They have reported results from the ferroelectric ceramic as an electron source. The diode gap is adjusted between 110 mm and the anode potential is varied from 0--500 V. The emitted current is measured as a function these parameters. Current densities of 70 A/cm2 have, been measured. The Child-Langmuir current density, for 500 V applied across a 4 mm gap, is 0.2 A/cm2. These results will be summarized and compared to predictions from an analytical model that has been developed. They are planning to increase the repetition rate pulser output to 500 kV, 800 A in the near future. In addition they are attempting to modulate the emitted electron cloud by applying an RF voltage at 2.45 GHz to the diode gap. Initial results from this experiment will also be presented

  4. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source

    International Nuclear Information System (INIS)

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  5. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline. PMID:22380298

  6. Precision measurement of transverse velocity distribution of a Strontium atomic beam

    CERN Document Server

    Gao, F; Xu, P; Tian, X; Wang, Y; Ren, J; Wu, Haibin; Chang, Hong

    2013-01-01

    We measure precisely the transverse velocity distribution in a thermal Sr atomic beam with a velocity selective saturated fluorescence spectroscopy. By using the ultrastable laser system and narrow intercombination transition line of Sr atoms, the resolution of the velocity measured can be reached 0.13m/s, corresponding to 90$\\mu K$ in energy unit. The experimental results are agreement very well with a theoretical calculation. With the spectroscopic techniques, the absolute frequency of the intercombination transition of $^{88}$Sr is measured by an optical-frequency comb generator referenced to the SI second through an H maser, which is given by 434 829 121 318(10)kHz.

  7. Collimation of a thulium atomic beam by two-dimensional optical molasses

    International Nuclear Information System (INIS)

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 °C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  8. Collimation of a thulium atomic beam by two-dimensional optical molasses

    Science.gov (United States)

    Sukachev, D. D.; Kalganova, E. S.; Sokolov, A. V.; Savchenkov, A. V.; Vishnyakova, G. A.; Golovizin, A. A.; Akimov, A. V.; Kolachevsky, Nikolai N.; Sorokin, Vadim N.

    2013-04-01

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 °C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz.

  9. Collimation of a thulium atomic beam by two-dimensional optical molasses

    Energy Technology Data Exchange (ETDEWEB)

    Sukachev, D D; Kalganova, E S; Sokolov, A V; Savchenkov, A V; Vishnyakova, G A; Golovizin, A A; Akimov, A V; Kolachevsky, Nikolai N; Sorokin, Vadim N

    2013-04-30

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 Degree-Sign C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  10. Some properties of atomic beam produced by laser induced ablation of Li target

    International Nuclear Information System (INIS)

    Pulsed atomic beams produced in vacuum by laser induced ablation from a lithium target are analyzed by laser induced fluorescence (LIF). The 1-mixing processes induced in the n = 9, 10 Li Rydberg states by collisions with CO2 molecules illustrate the application of the method. Resolution is limited by the 1 mm diameter of the probe laser beam. Combining LIF and absorption measurements gives nLi as a function of time at various distances from the target surface. The investigation of the Li-C02 1-mixing process in a heat pipe oven proved impossible due to the high reactivity of Li with C02. This problem was solved by renewing the Li atoms at each laser shot. Values obtained for n = 9, n = 10 are k = 17 x 10-8 and 15 x 10-8 cc/sec, respectively

  11. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  12. Two experiments with cold atoms: I. Application of Bessel beams for atom optics, and II. Spectroscopic measurements of Rydberg blockade effect

    Science.gov (United States)

    Arakelyan, Ilya

    In this dissertation we report the results of two experimental projects with laser-cooled rubidium atoms: I. Application of Bessel beams for atom optics, and II. Spectroscopic measurements of Rydberg blockade effect. The first part of the thesis is devoted to the development of new elements of atom optics based on blue-detuned high-order Bessel beams. Properties of a 4thorder Bessel beam as an atomic guide were investigated for various parameters of the hollow beam, such as the detuning from an atomic resonance, size and the order of the Bessel beam. We extended its application to create more complicated interferometer-type structures by demonstrating a tunnel lock, a novel device that can split an atomic cloud, transport it, delay, and switch its propagation direction between two guides. We reported a first-time demonstration of an atomic beam switch based on the combination of two crossed Bessel beams. We achieved the 30% efficiency of the switch limited by the geometrical overlap between the cloud and the intersection volume of the two tunnels, and investigate the heating processes induced by the switch. We also showed other applications of crossed Bessel beams, such as a 3-D optical trap for atoms confined in the intersection volume of two hollow beams and a splitter of the atomic density. The second part of this dissertation is devoted to the spectroscopic measurements of the Rydberg blockade effect, a conditional suppression of Rydberg excitations depending on the state of a control atom. We assembled a narrow-linewidth, tunable, frequency stabilized laser system at 480 nm to excite laser-cooled rubidium atoms to Rydberg states with a high principal quantum number n ˜ 50 through a two-photon transition. We applied the laser system to observe the Autler-Townes splitting of the intermediate 5p3/2 state and used the broadening of the resonance features to investigate the enhancement of Rydberg-Rydberg interactions in the presence of an external electric field.

  13. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  14. Atomic Funnel Composed of an HE11-Mode Output Hollow Beam

    Institute of Scientific and Technical Information of China (English)

    倪赟; 刘南春; 印建平

    2003-01-01

    Using exact solutions of Maxwell equations based on the vector model, we calculate the diffracted near- and far-field distributions of the HEi1-mode output beam from a micron-sized hollow optical fibre under the Fresnel approximation, and compare the differences between the HE11- and LP01-mode output beams. Our study shows that it is unsuitable to calculate the diffracted near-field distribution of the hollow fibre by using weakly waveguiding approximation, and the near- and far-field intensity distributions of the HE11-mode output beam are doughnut-like, which can be used to form a simple atomic funnel as it is blue-detuned.

  15. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    Science.gov (United States)

    O'Connor, A. P.; Grussie, F.; Bruhns, H.; de Ruette, N.; Koenning, T. P.; Miller, K. A.; Savin, D. W.; Stützel, J.; Urbain, X.; Kreckel, H.

    2015-11-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ˜7.4% for H- at a beam energy of 10 keV and ˜3.7% for C- at 28 keV. The diode laser systems used here operate at 975 nm and 808 nm, respectively, and provide high continuous power levels of up to 2 kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  16. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks.

    Science.gov (United States)

    O'Connor, A P; Grussie, F; Bruhns, H; de Ruette, N; Koenning, T P; Miller, K A; Savin, D W; Stützel, J; Urbain, X; Kreckel, H

    2015-11-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ∼7.4% for H(-) at a beam energy of 10 keV and ∼3.7% for C(-) at 28 keV. The diode laser systems used here operate at 975 nm and 808 nm, respectively, and provide high continuous power levels of up to 2 kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table. PMID:26628128

  17. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    CERN Document Server

    O'Connor, A P; Grussie, F; Koenning, T P; Miller, K A; de Ruette, N; Stützel, J; Savin, D W; Urbain, X; Kreckel, H

    2015-01-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of $\\sim$7.4\\% for H$^-$ at a beam energy of 10\\,keV and $\\sim$3.7\\% for C$^-$ at 28\\,keV. The diode laser systems used here operate at 975\\,nm and 808\\,nm, respectively, and provide high continuous power levels of up to 2\\,kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  18. Brightness limitations in multi-kiloampere electron beam sources

    International Nuclear Information System (INIS)

    Heuristic relationships such as the Lawson-Penner criterion, used to scale Free Electron Laser (FEL) amplifier gain and efficiency over orders of magnitude in beam current and brightness, have no fundamental basis. The brightness of a given source is set by practical design choices such as peak voltage, cathode type, gun electrode geometry, and focusing field topology. The design of low emittance, high current electron guns has received considerable attention at Livermore over the past few years. The measured brightnesses of the Experimental Test Accelerator (ETA) and Advanced Test Accelerator (ATA) guns are less than predicted with the EBQ gun design code; this discrepancy is due to plasma effects from the present cold, plasma cathode in the code. The EBQ code is well suited to exploring the current limits of gridless relativistic Pierce columns with moderate current density (2) at the cathode. As EBQ uses a steady-state calculation it is not amenable for study of transient phenomena at the beam head. For this purpose, a Darwin approximation code, DPC, has been written. The main component in our experimental cathode development effort is a readily modified electron gun that will allow us to test many candidate cathode materials, types and electrode geometries at field stresses up to 1 MV/cm. 6 references, 6 figures

  19. A New Technique for Diagnosing Multi-charged Ion Beams Produced by ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    ZhangZimin; ZhaoHongwei; CaoYun; MaLei; MaBaohua; LiJinyu; WangHui; FengYucheng; DuJunfeng

    2003-01-01

    In order to study the transmission properties of multi-charged ion beams between the ECR ion source and the analyzing magnet, a new diagnostic system composed of three Wien-filters with three single-wires has been built and installed on the IMP ECR source test bcnch. The single-wire is used to measure the beam profile and the beam density distribution, and the Wien-filter is used to measure the charge state distribution of ion beam.

  20. Monte Carlo source model for photon beam radiotherapy: photon source characteristics

    International Nuclear Information System (INIS)

    A major barrier to widespread clinical implementation of Monte Carlo dose calculation is the difficulty in characterizing the radiation source within a generalized source model. This work aims to develop a generalized three-component source model (target, primary collimator, flattening filter) for 6- and 18-MV photon beams that match full phase-space data (PSD). Subsource by subsource comparison of dose distributions, using either source PSD or the source model as input, allows accurate source characterization and has the potential to ease the commissioning procedure, since it is possible to obtain information about which subsource needs to be tuned. This source model is unique in that, compared to previous source models, it retains additional correlations among PS variables, which improves accuracy at nonstandard source-to-surface distances (SSDs). In our study, three-dimensional (3D) dose calculations were performed for SSDs ranging from 50 to 200 cm and for field sizes from 1x1 to 30x30 cm2 as well as a 10x10 cm2 field 5 cm off axis in each direction. The 3D dose distributions, using either full PSD or the source model as input, were compared in terms of dose-difference and distance-to-agreement. With this model, over 99% of the voxels agreed within ±1% or 1 mm for the target, within 2% or 2 mm for the primary collimator, and within ±2.5% or 2 mm for the flattening filter in all cases studied. For the dose distributions, 99% of the dose voxels agreed within 1% or 1 mm when the combined source model--including a charged particle source and the full PSD as input--was used. The accurate and general characterization of each photon source and knowledge of the subsource dose distributions should facilitate source model commissioning procedures by allowing scaling the histogram distributions representing the subsources to be tuned

  1. Industrialization and production of neutral beam ion sources for MFTF

    International Nuclear Information System (INIS)

    The existing LLNL designs of the 20 and 80kV deuterium fueled Neutral Beam Ion Source Modules (NBSM) have been industrialized and are being produced successfully for the MFTF. Industrialization includes value engineering, production engineering, cost reduction, fixturing, facilitation and procurement of components. Production assembly, inspection and testing is being performed in a large electronics manufacturing plant. Decades of experience in high voltage, high vacuum power tubes is being applied to the procedures and processes. Independent quality and reliability assurance criteria are being utilized. Scheduling of the various engineering, procurement and manufacturing task is performed by the use of a Critical Path Method (CPM) computer code, Innovative, computerized grid alignment methods were also designed and installed specifically for this project. New jointing and cleaning techniques were devised for the NBSMs. Traceability and cost control are also utilized

  2. Study of Effect of Ion Source Energy Spread on RFQ Beam Dynamics at REX-ISOLDE

    CERN Document Server

    Fraser, M A

    2013-01-01

    With an upgrade to the Electron Beam Ion Source (EBIS) at REX under consideration a study was launched in order to understand the effect of an increased energy spread from the ion source on the beam dynamics of the RFQ. Due to the increased electron beam potential needed to achieve the upgrade’s charge breeding specification it is expected that the energy spread of the beam will increase from today’s estimated value of approximately +-0.1%. It is shown through beam dynamics simulations that the energy spread can be increased to +-1% without significant degradation of the beam quality output by the RFQ.

  3. An atomic hydrogen beam to test ASACUSA’s apparatus for antihydrogen spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diermaier, M., E-mail: martin.diermaier@oeaw.ac.at; Caradonna, P.; Kolbinger, B. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Wolf, M.; Zmeskal, J.; Widmann, E. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2015-08-15

    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter counterpart to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth’s magnetic field.

  4. Beam models for radio sources. III. Offset sources and single jets

    International Nuclear Information System (INIS)

    The early stages of radio source evolution are studied using a modified version of our previously developed approach to the twin beam model. A continuous source of energy and relativistic plasma lies within a cloud of confining gas in an active galactic nucleus. The nature of ''engine'' is not specified, but we assume an initially symmetric ejection of plasma. The boundary between the relativistic plasma and the confining medium is calculated using several approximations, and we treat the source's nondimensional reduced luminosity, its offset from the confining cloud's center, and the cloud's eccentricity as the key parameters, as the other properties of the cloud can be coupled with the engine's power to give the reduced luminosity. We conclude: sources with low energy tend to form bubbles while those with higher luminosities form jets; larger offsets increase the probability of direct jet formation; higher eccentricities provide better collimation, as do smaller offsets; even low offsets produce single jets or plasmoid streams in one direction

  5. Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T{sub e} plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine; Farmer, Damon B.; Engel, Michael; Neumayer, Deborah; Han, Shu-Jen; Engelmann, Sebastian U., E-mail: suengelm@us.ibm.com; Joseph, Eric A. [IBM, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Boris, David R.; Hernández, Sandra C.; Walton, Scott G. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Lock, Evgeniya H. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-01-15

    The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare these results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.

  6. Detailed beam and plasma measurements on the vessel for extraction and source plasma analyses (VESPA) Penning H⁻ ion source.

    Science.gov (United States)

    Lawrie, S R; Faircloth, D C; Letchford, A P; Whitehead, M O; Wood, T

    2016-02-01

    A vessel for extraction and source plasma analyses (VESPA) is operational at the Rutherford Appleton Laboratory (RAL). This project supports and guides the overall ion source R&D effort for the ISIS spallation neutron and muon facility at RAL. The VESPA produces 100 mA of pulsed H(-) beam, but perveance scans indicate that the source is production-limited at extraction voltages above 12 kV unless the arc current is increased. A high resolution optical monochromator is used to measure plasma properties using argon as a diagnostic gas. The atomic hydrogen temperature increases linearly with arc current, up to 2.8 eV for 50 A; whereas the electron temperature has a slight linear decrease toward 2.2 eV. The gas density is 10(21) m(-3), whilst the electron density is two orders of magnitude lower. Densities follow square root relationships with arc current, with gas density decreasing whilst electron (and hence ion) density increases. Stopping and range of ions in matter calculations prove that operating a high current arc with an argon admixture is extremely difficult because cathode-coated cesium is heavily sputtered by argon. PMID:26932004

  7. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  8. Production of fully-stripped neon beam with the ECR ion source

    International Nuclear Information System (INIS)

    Complete text of publication follows. The ATOMKI ECRIS Laboratory celebrated the 20th anniversary of the project starting-up in 1992. Ion beams themselves are being delivered since 1996. The facility is used for low energy atomic physics research, plasma investigations and for applications. There is continuous necessity to increase the quality of the produced ion beams and plasmas in order to satisfy the diversified requirements. For example high intensity, highly charged neon ion beams with very low kinetic energy (several hundred eV/nucleon) are necessary to measure some aspect of the nowadays very intensively studied physics of nano-capillaries (guiding of highly charged ions through nanocapillaries). We were motivated to measure the intensity of a fully-stripped neon ion beam (at first time in Hungary) which is impossible with natural neon due to the (always) present molecular hydrogen ions (same charge - to- mass ratio). In order to overcome this difficulty it was decided to use isotopically enriched (99.95 %) 22Ne gas. The ECR ion source operated in standard mode. The plasma was tuned for the required charge state by changing parameters like the microwave power (klystron amplified), the biased electrode (voltage and position) and the neon-gas flow. The extraction voltage was 10 kV and the analysed beam was measured by a Faraday cup. The size of the beam was defined by (10 mm x 30 mm) slits. At first the charge state distribution (CSD) of the extracted ion beam was recorded using natural neon gas when the source was tuned for 20Ne8+ in order to get a benchmark for comparison. The natural neon gas abundances of 20Ne and 22Ne are 90.48 % and 9.25 %, respectively. By measuring the CSD of both isotopes in one setting we were able to observe (likely for the first time) the so-called isotopic anomaly, well known for nitrogen and oxygen, see figure 1. The CSD for the heavier isotope is shifted to higher charges at the cost of higher losses (output) for low charge

  9. Nuclear structure of light thallium isotopes as deduced from laser spectroscopy on a fast atom beam

    International Nuclear Information System (INIS)

    After optimizing the system by experiments on /sup 201,203,205/Tl, the neutron-deficient isotopes 189-193Tl have been studied using the collinear fast atom beam laser spectroscopy system at UNISOR on-line to the Holifield Heavy Ion Research Facility. A sensitive system for the measurements was developed since the light isotopes were available in mass-separated beams of only 7 x 104 to 4 x 105 atoms per second. By laser excitation of the 535 nm atomic transitions of atoms in the beam, the 6s27s 2S/sub 1/2/ and 6s26s 2P/sub 3/2/ hyperfine structures were measured, as were the isotope shifts of the 535 nm transitions. From these, the magnetic dipole moments, spectroscopic quadrupole moments and isotopic changes in mean-square charge radius were deduced. The magnetic dipole moments are consistent with previous data. The /sup 190,192/Tl isotopes show a considerable difference in quadrupole deformations as well as an anomalous isotope shift with respect to 194Tl. A large isomer shift in 193Tl is observed implying a larger deformation in the 9/2- isomer than in the 1/2+ ground state. The /sup 189,191,193/Tl isomers show increasing deformation away from stability. A deformed shell model calculation indicates that this increase in deformation can account for the dropping of the 9/2- band in these isotopes while an increase in neutron pairing correlations, having opposite and compensating effects on the rotational moment of inertia, maintains the 9/2- strong-coupled band structure. 105 refs., 27 figs

  10. Diffracted field distribution from a knife-edge truncated semi- Gaussian beam as an atomic (molecular) mirror

    Institute of Scientific and Technical Information of China (English)

    Zheng Ping; Gao Wei-Jian; Yin Jian-Ping

    2006-01-01

    We investigate the diffraction characteristics of an incident Gaussian beam cut by a straight edge bounding a semi-infinite opaque plane using Kirchhoff scalar wave theory in the Fresnel limit, and propose a new and simple mirror scheme to reflect atoms by using the intensity gradient induced by a blue-detuned semi-Gaussian laser beam. The optical potential of the diffracted light of the knife-cut semi-Gaussian beam for 85Rb atom and its spontaneous emission probability are calculated and compared with the performance of the evanescent-wave mirror. Our study shows that the optical potential of the diffracted light of the semi-Gaussian beam is far higher than that of the evanescent light wave, and the maximum normal velocity of the incident atoms can be far greater than that of the evanescent light wave under the same parameters, so the blue-detuned semi-Gaussian beam, as a novel atomic mirror, can be used to efficiently reflect cold atoms with a normal velocity of greater than 1 m/s. However, the intensity gradient (force) of the diffracted light of the semi-Gaussian-beam is much smaller than that of the evanescent light wave, so its spontaneous emission probability is greater than that from the evanescent-wave when the normal velocity of incident atoms is greater.

  11. Light sources generating self-splitting beams and their propagation in non-Kolmogorov turbulence.

    Science.gov (United States)

    Mei, Zhangrong

    2014-06-01

    A class of random sources producing far fields self-splitting intensity profiles with variable spacing between the x and y directions is introduced. The beam conditions for ensuring the sources to generate a beam are derived. Based on the derived analytical expression, the evolution behavior of the beams produced by these families of sources in free space and turbulence atmospheric are explored and comparatively analyzed. By changing the modulation parameters n and m, the degree of coherence of Gaussian Schell-model source in the x and y directions are modulated respectively, and then the number of splitting beams and the spacing between splitting beams can be adjusted. It is illustrated that the self-splitting intensity profile is stable when beams propagate in free space, but they eventually transformed into a Gaussian profiles when it passes at sufficiently large distances from its source through the turbulent atmosphere.

  12. Theory of longitudinal atomic beam spin echo and parity violating Berry-phases in atoms; Theorie des longitudinalen Atomstrahl-Spinechos und paritaetsverletzende Berry-Phasen in Atomen

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, T.F.

    2006-07-19

    We present a nonrelativistic theory for the quantum mechanical description of longitudinal atomic beam spin echo experiments, where a beam of neutral atoms is subjected to static electric and magnetic fields. The atomic wave function is the solution of a matrix-valued Schroedinger equation and can be written as superposition of local (atomic) eigenstates of the potential matrix. The position- and time-dependent amplitude function of each eigenstate represents an atomic wave packet and can be calculated in a series expansion with a master formula that we derive. The zeroth order of this series expansion describes the adiabatic limit, whereas the higher order contributions contain the mixing of the eigenstates and the corresponding amplitude functions. We give a tutorial for the theoretical description of longitudinal atomic beam spin echo experiments and for the so-called Fahrplan model, which is a visualisation tool for the propagation of wave packets of different atomic eigenstates. As an example for the application of our theory, we study parity violating geometric (Berry-)phases. In this context, we define geometric flux densities, which for certain field configurations can be used to illustrate geometric phases in a vector diagram. Considering an example with a specific field configuration, we prove the existence of a parity violating geometric phase. (orig.)

  13. An all-solid-state laser source at 671 nm for cold-atom experiments with lithium

    Science.gov (United States)

    Eismann, U.; Gerbier, F.; Canalias, C.; Zukauskas, A.; Trénec, G.; Vigué, J.; Chevy, F.; Salomon, C.

    2012-01-01

    We present an all-solid-state narrow-linewidth laser source emitting 670 mW output power at 671 nm delivered in a diffraction-limited beam. The source is based on a frequency-doubled diode-end-pumped ring laser operating on the 4 F 3/2→4 I 13/2 transition in Nd:YVO4. By using periodically poled potassium titanyl phosphate (ppKTP) in an external buildup cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over 100 GHz is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally, a simplified design based on intra-cavity doubling is described and first results are presented.

  14. H- beam emittance measurements for the penning and the asymmetric, grooved magnetron surface-plasma sources

    International Nuclear Information System (INIS)

    Beam-intensity and emittance measurements show that the H- beam from our Penning surface-plasma source (SPS) has twice the intensity and ten times the brightness of the H- beam from an asymmetric, grooved magnetron SPS. We deduce H- ion temperatures of 5 eV for the Penning SPS and 22 eV for the asymmetric, grooved magnetron

  15. Theory for beam-plasma millimeter-wave radiation source experiments

    International Nuclear Information System (INIS)

    This paper reports on theoretical studies for millimeter-wave plasma source experiments. In the device, millimeter-wave radiation is generated in a plasma-filled waveguide driven by counter-streaming electron beams. The beams excite electron plasma waves which couple to produce radiation at twice the plasma frequency. Physics topics relevant to the high electron beam current regime are discussed

  16. Optimization of a charge-state analyzer for electron cyclotron resonance ion source beams

    NARCIS (Netherlands)

    Saminathan, S.; Beijers, J. P. M.; Kremers, H. R.; Mironov, V.; Mulder, J.; Brandenburg, S.

    2012-01-01

    A detailed experimental and simulation study of the extraction of a 24 keV He+ beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the b

  17. Plasma studies and beam emittance measurements of 2.45 GHz microwave ion source at VECC

    International Nuclear Information System (INIS)

    A 2.45 GHz microwave ion source operating at VECC is able to produce a total beam current of ∼ 12 mA at a beam energy of 75 KeV with a microwave power of 400 W as described in. In order to optimize the performance of the ion source, we have conducted systematic studies with the variation of ion source gas flow rate, magnetic field, extraction voltage, suppressor voltage, microwave power etc. The total extracted beam current was recorded as a function of each of the earlier mentioned parameters. Moreover, we have studied the effect on extracted beam current and its transmission in the beam transport line due to dielectric and water introduction into the plasma chamber. In the best setting, we have found a total extracted beam current of 12.5 mA with a beam transmission of 70 %. Furthermore, we have also studied the extracted beam current and its transmission in the beam transport line using aluminum plasma chamber of different diameters. Finally, we have estimated the beam emittance by solenoid scan technique of a neutralized 75 KeV, 5 mA proton beam by measuring beam profile using a non-interceptive residual gas fluorescence monitor. The measured normalized rms emittance of the neutralized beam is 0.05 mm-mrad, which seems to be quite reasonable. (author)

  18. Setup and proof of principle of SAPIS (Stored Atoms Polarized Ion Source), a novel source of polarized H{sup -}/D{sup -} ions; Aufbau und Funktionsnachweis von SAPIS (Stored Atoms Polarized Ion Source), einer neuartigen Quelle polarisierter H{sup -}/D{sup -}-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Emmerich, R.

    2007-02-14

    The objective of this work was the setup and the proof-of-principle of a new type of negative polarized hydrogen or deuterium ion source, which is based on the charge-exchange reaction (vector)H{sup 0}+Cs{sup 0}{yields}(vector)H{sup -}+Cs{sup +}, as for instance the Colliding-Beams-Source (CBS) at the Cooler Synchrotron COSY in Juelich. In contrast to the CBS, the use of a storage cell for the charge-exchange region promises an increase in H{sup -} current by at least an order of magnitude without considerable polarization losses. For these purposes, a new laboratory was equipped and both a polarized hydrogen/deuterium atomic beam source and an intense neutral cesium-beam source have been build-on. A Lambshift polarimeter, which allows the measurement of the nuclear polarization of the atomic as well as ionic beams, was completed with the construction of a new spin-filter. After commissioning and optimizing each of these sources, a storage cell was developed and installed in the charge-exchange region with a magnetic field. Additionally, components for the extraction, detection and analysis of the negative ion beam were installed. Following the decisive proof of principle, investigation of the properties of the storage cell, especially as to H recombination and depolarisation, was begun. Furthermore, a number of software programs was developed for the control and monitoring of different components of the sources as well as a universal measuring software for the complete installation, including the measurement and calculation of the beam polarization. At the same time, the remote control system of the Cologne source of polarized ions LASCO at the FN tandem accelerator was completely modernized. (orig.)

  19. Development of Ultra Small Shock Tube for High Energy Molecular Beam Source

    Science.gov (United States)

    Miyoshi, Nobuya; Nagata, Shuhei; Kinefuchi, Ikuya; Shimizu, Kazuya; Takagi, Shu; Matsumoto, Yoichiro

    2008-12-01

    A molecular beam source exploiting a small shock tube is described for potential generation of high energy beam in a range of 1-5 eV without any undesirable impurities. The performance of a non-diaphragm type shock tube with an inner diameter of 2 mm was evaluated by measuring the acceleration and attenuation process of shock waves. With this shock tube installed in a molecular beam source, we measured the time-of-flight distributions of shock-heated beams, which demonstrated the ability of controlling the beam energy with the initial pressure ratio of the shock tube.

  20. Multi-channel tunable source for atomic sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR will establish the feasibility of developing compact, robust, integrated components suitable for atomic interferometry. AdvR's design is enabled...

  1. Laser Source for Atomic Gravity Wave Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an Atom Interferometry-based gravity wave detector (vs Optical Interferometry). Characterize a high power laser. Use Goddard Space Flight Center Mission...

  2. A high flux source of cold strontium atoms

    CERN Document Server

    Yang, T; Pramod, M S; Leroux, F; Kwong, C C; Hajiyev, E; Chia, Z Y; Fang, B; Wilkowski, D

    2015-01-01

    We describe an experimental apparatus capable of achieving a high loading rate of strontium atoms in a magneto-optical trap operating in a high vacuum environment. A key innovation of this setup is a two dimensional magneto-optical trap deflector located after a Zeeman slower. We find a loading rate of 6x10^9/s whereas the lifetime of the magnetically trapped atoms in the 3P2 state is 54s.

  3. Simulation study of LEBT for transversely coupled beam from an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y., E-mail: yangyao@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Dou, W. P.; Sun, L. T.; Yao, Q. G.; Zhang, Z. M.; Yuan, Y. J.; He, Y.; Zh, X. Z.; Zhao, H. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2016-02-15

    A Low-Energy intense-highly charged ion Accelerator Facility (LEAF) program has been launched at Institute of Modern Physics. This accelerator facility consists of a superconducting Electron Cyclotron Resonance (ECR) ion source, a Low Energy Beam Transport (LEBT) system, and a Radio Frequency Quadrupole (RFQ). It is especially of interest for the extracted ion beam from the ECR ion source, which is transversely coupled, and this property will significantly affect the beam transmission in the LEBT line and the matching with the downstream RFQ. In the beam transport design of LEAF, beam decoupling in the LEBT is considered to lower down the projection emittances and the feasibility of the design has been verified by beam simulation with a transversely coupled beam from the ECR ion source.

  4. Atomic layer deposition of HfO2 on graphene through controlled ion beam treatment

    Science.gov (United States)

    Kim, Ki Seok; Oh, Il-Kwon; Jung, Hanearl; Kim, Hyungjun; Yeom, Geun Young; Kim, Kyong Nam

    2016-05-01

    The polymer residue generated during the graphene transfer process to the substrate tends to cause problems (e.g., a decrease in electron mobility, unwanted doping, and non-uniform deposition of the dielectric material). In this study, by using a controllable low-energy Ar+ ion beam, we cleaned the polymer residue without damaging the graphene network. HfO2 grown by atomic layer deposition on graphene cleaned using an Ar+ ion beam showed a dense uniform structure, whereas that grown on the transferred graphene (before Ar+ ion cleaning) showed a non-uniform structure. A graphene-HfO2-metal capacitor fabricated by growing 20-nm thick HfO2 on graphene exhibited a very low leakage current (graphene, whereas a similar capacitor grown using the transferred graphene showed high leakage current.

  5. Physics data base for the beam plasma neutron source (BPNS)

    Energy Technology Data Exchange (ETDEWEB)

    Coensgen, F.H.; Casper, T.A.; Correll, D.L.; Damm, C.C.; Futch, A.H.; Molvik, A.W.

    1990-10-12

    A 14-MeV deuterium-tritium (D-T) neutron source for accelerated end-of-life testing of fusion reactor materials has been designed on the basis of a linear two-component collisional plasma system. An intense flux (up to 5 {times} 10{sup 18}/m{sup 2}{center dot}s) of 14-MeV neutrons is produced in a fully ionized high-density (n{sub e} {approx equal} 3 {times} 10{sup 21} m{sup {minus}3}) tritium target by transverse injection of 60 MW of neutral beam power. Power deposited in the target is removed by thermal electron conduction to large end chambers, where it is deposited in gaseous plasma collectors. We show in this paper that the major physics issues have now been experimentally demonstrated. These include magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, fueling, Spitzer electron thermal conductivity, and power deposition in a gaseous plasma collector. However, an integrated system has not been demonstrated. 28 refs., 8 figs., 2 tabs.

  6. Controllable Asymmetric Matter-wave Beam Splitter and Ring Potential on an Atom Chip

    CERN Document Server

    Kim, S J; Gang, S T; Anderson, D; Kim, J B

    2015-01-01

    We have constructed an asymmetric matter-wave beam splitter and a ring potential on an atom chip with Bose-Einstein condensates using radio-frequency dressing. By applying rf-field parallel to the quantization axis in the vicinity of the static trap minima added to perpendicular rf-fields, versatile controllability on the potentials is realized. Asymmetry of the rf-induced double well is manipulated without discernible displacement of the each well along horizontal and vertical direction. Formation of an isotropic ring potential on an atom chip is achieved by compensating the gradient due to gravity and inhomogeneous coupling strength. In addition, position and rotation velocity of a BEC along the ring geometry are controlled by the relative phase and the frequency difference between the rf-fields, respectively.

  7. Precision measurement of transverse velocity distribution of a strontium atomic beam

    Directory of Open Access Journals (Sweden)

    F. Gao

    2014-02-01

    Full Text Available We measure the transverse velocity distribution in a thermal Sr atomic beam precisely by velocity-selective saturated fluorescence spectroscopy. The use of an ultrastable laser system and the narrow intercombination transition line of Sr atoms mean that the resolution of the measured velocity can reach 0.13 m/s, corresponding to 90 μK in energy units. The experimental results are in very good agreement with the results of theoretical calculations. Based on the spectroscopic techniques used here, the absolute frequency of the intercombination transition of 88Sr is measured using an optical-frequency comb generator referenced to the SI second through an H maser, and is given as 434 829 121 318(10 kHz.

  8. Precision measurement of transverse velocity distribution of a strontium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Gao, F.; Liu, H.; Tian, X. [CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi' an 710600 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, P.; Wang, Y.; Ren, J. [CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi' an 710600 (China); Wu, Haibin, E-mail: hbwu@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China); Chang, Hong, E-mail: changhong@ntsc.ac.cn [CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi' an 710600 (China); State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2014-02-15

    We measure the transverse velocity distribution in a thermal Sr atomic beam precisely by velocity-selective saturated fluorescence spectroscopy. The use of an ultrastable laser system and the narrow intercombination transition line of Sr atoms mean that the resolution of the measured velocity can reach 0.13 m/s, corresponding to 90 μK in energy units. The experimental results are in very good agreement with the results of theoretical calculations. Based on the spectroscopic techniques used here, the absolute frequency of the intercombination transition of {sup 88}Sr is measured using an optical-frequency comb generator referenced to the SI second through an H maser, and is given as 434 829 121 318(10) kHz.

  9. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    ZHANG WenTao; ZHU BaoHua; ZHANG BaoWu; LI TongBao

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size, fourth-order Runge-Kutta type algorithm. The influence of laser power on depo-sition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW, the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW, but with laser power increase, equal to 50 mW, the nonmeter structure forms the multi-crests and exacerbates.

  10. High momentum splitting of matter-waves by an atom chip field gradient beam-splitter

    CERN Document Server

    Machluf, Shimon; Folman, Ron

    2012-01-01

    The splitting of matter-waves into superposition states is a fundamental tool for studying the basic tenets of quantum behavior, as well as a building block for numerous technological applications. We report on the first realization of a beam-splitter by a combination of magnetic field gradients and a radio-frequency technique. It may be used for freely propagating or trapped atoms in a Bose-Einstein condensate or a thermal state. It has the advantageous feature of endowing its superposition state with a large differential momentum in the direction parallel or transverse to the atoms' motion, thereby, for example enabling to open large angles. As large space-time area of an interferometer increases its sensitivity, this may be used for new kinds of interferometry experiments (e.g. large angle Sagnac interferometry). Furthermore, it is also simple to use, fast, and does not require light.

  11. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size,fourth-order Runge-Kutta type algorithm.The influence of laser power on deposition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW,the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW,but with laser power increase,equal to 50 mW,the nonmeter structure forms the multi-crests and exacerbates.

  12. Fabrication of atomically smooth SrRuO3 thin films by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High-quality SrRuO3 (SRO) thin films and SrTiO3/SRO bilayer were grown epitaxially on SrTiO3 (STO)(001) substrates by laser molecular beam epitaxy. The results of in situ observation of reflection high-energy electron diffraction and ex situ X-ray diffraction θ -2θ scan indicate that the SRO thin films have good crystallinity. The measurements of atomic force microscopy and scan tunneling microscopy reveal that the surface of the SRO thin film is atomically smooth. The resistivity of the SRO thin film is 300 μΩ·cm at room temperature. Furthermore, the transmission electron microscopy study shows that the interfaces of STO/SRO and SRO/STO are very clear and no interfacial reaction layer was observed. The experimental results show that the SRO thin film is an excellent electrode material for devices based on perovskite oxide materials.

  13. Noise Effects on Entangled Coherent State Generated via Atom-Field Interaction and Beam Splitter

    Science.gov (United States)

    Najarbashi, G.; Mirzaei, S.

    2016-05-01

    In this paper, we introduce a controllable method for producing two and three-mode entangled coherent states (ECS's) using atom-field interaction in cavity QED and beam splitter. The generated states play central roles in linear optics, quantum computation and teleportation. We especially focus on qubit, qutrit and qufit like ECS's and investigate their entanglement by concurrence measure. Moreover, we illustrate decoherence properties of ECS's due to noisy channels, using negativity measure. At the end the effect of noise on monogamy inequality is discussed.

  14. Use of an Atmospheric Atomic Oxygen Beam for Restoration of Defaced Paintings

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Karla, Margaret; Norris, Mary Jo; Real, William A.; Haytas, Christy A.

    1999-01-01

    An atmospheric atomic oxygen beam has been found to be effective in removing organic materials through oxidation that are typical of graffiti or other contaminant defacements which may occur to the surfaces of paintings. The technique, developed by the National Aeronautics and Space Administration, is portable and was successfully used at the Carnegie Museum of Art to remove a lipstick smudge from the surface of porous paint on the Andy Warhol painting "Bathtub." This process was also evaluated for suitability to remove felt tip and ball point ink graffiti from paper, gesso on canvas and cotton canvas.

  15. Loading of a fountain clock with an enhanced Low-Velocity Intense Source of atoms

    CERN Document Server

    Dobrev, Georgi; Weyers, Stefan

    2016-01-01

    We present experimental work for improved atom loading in the optical molasses of a caesium fountain clock, employing a low-velocity intense source of atoms (LVIS) [Lu et al., Phys. Rev. Lett. 77, 3331 (1996)], which we modified by adding a "dark" state pump laser. With this modification the atom source has a mean flux of $4 \\times 10^{8}$ atoms/s at a mean atom velocity of $8.6$ m/s. Compared to fountain operation using background gas loading, we achieved a significant increase of the loaded and detected atom number by a factor of 40. Operating the fountain clock with a total number of detected atoms $N_{\\mathrm{at}}=2.9 \\times 10^6$ in the quantum projection noise-limited regime, a frequency instability $\\sigma_y\\left(1\\text{s}\\right)=2.7 \\times 10^{-14}$ was demonstrated.

  16. Loading a fountain clock with an enhanced low-velocity intense source of atoms

    Science.gov (United States)

    Dobrev, G.; Gerginov, V.; Weyers, S.

    2016-04-01

    We present experimental work for improved atom loading in the optical molasses of a cesium fountain clock, employing a low-velocity intense source of atoms [Lu et al., Phys. Rev. Lett 77, 3331 (1996), 10.1103/PhysRevLett.77.3331], which we modify by adding a dark-state pump laser. With this modification the atom source has a mean flux of 4 ×108 atoms/s at a mean atom velocity of 8.6 m/s. Compared to fountain operation using background gas loading, we achieve a significant increase of the loaded and detected atom number by a factor of 40. Operating the fountain clock with a total number of detected atoms Nat=2.9 ×106 in the quantum projection noise-limited regime, a frequency instability σy(1 s ) =2.7 ×10-14 is demonstrated.

  17. Experimental generation of ring-shaped beams with random sources

    CERN Document Server

    Reddy, Salla Gangi; Prabhakar, Shashi; Singh, R P

    2013-01-01

    We have experimentally reproduced ring shaped beams from the scattered Laguerre-Gaussian and Bessel- Gaussian beams. A rotating ground glass plate is used as a scattering medium and a plano convex lens collects the scattered light to generate ring shaped beams at the Fourier plane. The experimental results are in good agreement with the theoretical results of Mei and Korotkova (Opt. Lett. 38, 91{93 (2013)).

  18. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sok; Lee, Chan young; Lee, Jae Sang [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction.

  19. Laser Ion Source Operation at the TRIUMF Radioactive Ion Beam Facility

    Science.gov (United States)

    Lassen, J.; Bricault, P.; Dombsky, M.; Lavoie, J. P.; Gillner, M.; Gottwald, T.; Hellbusch, F.; Teigelhöfer, A.; Voss, A.; Wendt, K. D. A.

    2009-03-01

    The TRIUMF Resonant Ionization Laser Ion Source (RILIS) for radioactive ion beam production is presented, with target ion source, laser beam transport, laser system and operation. In this context aspects of titanium sapphire (TiSa) laser based RILIS and facility requirements are discussed and results from the first years of TRILIS RIB delivery are given.

  20. Test bench to commission a third ion source beam line and a newly designed extraction system.

    Science.gov (United States)

    Winkelmann, T; Cee, R; Haberer, T; Naas, B; Peters, A

    2012-02-01

    The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed. PMID:22380336

  1. Test bench to commission a third ion source beam line and a newly designed extraction system

    International Nuclear Information System (INIS)

    The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed.

  2. Reconstruction of Sound Source Pressures in an Enclosure Using the Phased Beam Tracing Method

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon

    2009-01-01

    Source identification in an enclosure is not an easy task due to complicated wave interference and wall reflections, in particular, at mid-high frequencies. In this study, a phased beam tracing method was applied to the reconstruction of source pressures inside an enclosure at medium frequencies....... First, surfaces of an extended source are divided into reasonably small segments. From each source segment, one beam is projected into the field and all emitted beams are traced. Radiated beams from the source reach array sensors after traveling various paths including the wall reflections. Collecting...... all the pressure histories at the field points, source-observer relations can be constructed in a matrix-vector form for each frequency. By multiplying the measured field data with the pseudo-inverse of the calculated transfer function, one obtains the distribution of source pressure. An omni...

  3. Development of beam expander system using non-linear beam optics at J-PARC spallation neutron source

    International Nuclear Information System (INIS)

    In the Japanese Spallation Neutron Source (JSNS) of Japan Proton Accelerator Research Complex (J-PARC), proton beam with a high power such as 1 MW is induced to the target consisted of mercury. As increasing in the beam power, the damage of the target becomes serious. Especially for a target for high power short pulse spallation neutron source, the damage due to the proton beam on the target vessel for liquid metal target such as mercury is reported to be proportional of 4th power of the peak intensity of the proton beam. Reduction of the peak current density at the target is a key for a constant beam operation. For reduction of the peak current density, a non-linear beam optics using octupole magnets has been developed. In order to achieve completely flat distribution, higher order magnets than the octupole are required. It was found that a considerable flat distribution can be obtained by only using octupole magnets with reduction of the magnetic field. By using the present beam expander system, the peak current density can be reduced as much as 40%, which mitigates 90% of the pitting damage at the target. (author)

  4. Alternate Funding Sources for the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J.; Swarthout, Jordan M.

    2012-09-04

    Since 1957, the International Atomic Energy Agency (IAEA) has worked to ensure the safe and responsible promotion of nuclear technology throughout the world. The IAEA operates at the intersection of the Nuclear Nonproliferation Treaty’s (NPT) fourth and third articles, which guarantee Parties to the Treaty the right to peaceful uses of nuclear technology, provided those activities are placed under safeguards verified by the IAEA. However, while the IAEA has enjoyed substantial success and prestige in the international community, there is a concern that its resources are being stretched to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As noted by the Director General (DG) in 2008, demographics suggest that every aspect of the IAEA’s operations will be in higher demand due to increasing reliance on non-carbon-based energy and the concomitant nonproliferation, safety, and security risks that growth entails. In addition to these nuclear energy concerns, the demand for technical developmental assistance in the fields of food security, resource conservation, and human health is also predicted to increase as the rest of the world develops. Even with a 100% value-for-money rating by the U.S. Office of Management and Budget (OMB) and being described as an “extraordinary bargain” by the United Nations Secretary-General’s High-level Panel on Threats, Challenges and Change, real budget growth at the Agency has been limited to zero-real growth for a better part of the last two decades. Although the 2012 regular budget (RB) received a small increase for most programs, the 2013 RB has been set at zero-real growth. As a result, the IAEA has had to defer infrastructure investments, which has hindered its ability to provide the public goods its Members seek, decreased global security and development opportunities, and functionally transformed the IAEA into a charity, dependent on extrabudgetary (EB) contributions to sustain

  5. Multiple-Beam Detection of Fast Transient Radio Sources

    Science.gov (United States)

    Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.

    2011-01-01

    A method has been designed for using multiple independent stations to discriminate fast transient radio sources from local anomalies, such as antenna noise or radio frequency interference (RFI). This can improve the sensitivity of incoherent detection for geographically separated stations such as the very long baseline array (VLBA), the future square kilometer array (SKA), or any other coincident observations by multiple separated receivers. The transients are short, broadband pulses of radio energy, often just a few milliseconds long, emitted by a variety of exotic astronomical phenomena. They generally represent rare, high-energy events making them of great scientific value. For RFI-robust adaptive detection of transients, using multiple stations, a family of algorithms has been developed. The technique exploits the fact that the separated stations constitute statistically independent samples of the target. This can be used to adaptively ignore RFI events for superior sensitivity. If the antenna signals are independent and identically distributed (IID), then RFI events are simply outlier data points that can be removed through robust estimation such as a trimmed or Winsorized estimator. The alternative "trimmed" estimator is considered, which excises the strongest n signals from the list of short-beamed intensities. Because local RFI is independent at each antenna, this interference is unlikely to occur at many antennas on the same step. Trimming the strongest signals provides robustness to RFI that can theoretically outperform even the detection performance of the same number of antennas at a single site. This algorithm requires sorting the signals at each time step and dispersion measure, an operation that is computationally tractable for existing array sizes. An alternative uses the various stations to form an ensemble estimate of the conditional density function (CDF) evaluated at each time step. Both methods outperform standard detection strategies on a test

  6. Average Dissipative and Dipole Forces on a Three-Level Atom in a Laguerre-Gaussian Beam

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-Ling; YIN Jian-Ping

    2005-01-01

    @@ By means of the optical Bloch equations based on the atomic density matrix elements, the general expressions of the average dissipative force, dipole force and the mechanical torque acting on a A-configuration three-level atom in a linearly-polarized Laguerre-Gaussian beam (LGB) with an angular momentum of lh are derived, and the general properties of the average dissipative and dipole force on the three-level atom in the linearly-polarized LGB are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Our study also shows that all of general expressions on the three-level atom will be simplified to those on the two-level atom in the approximation of large detuning.

  7. High-intensity ion sources for accelerators with emphasis on H-beam formation and transport

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Roderich [Los Alamos National Laboratory

    2009-01-01

    This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

  8. Characterization of volume type ion source for $p$, $H_2^+$ and $H_3^+$ beams

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    Recently, there is an increasing need for $H_{2}^+$ and $H_{3}^+$ ion sources. One example are ion therapy facilities, where $C^{4+}$ and $H_{3}^+$ ion beams along the linac are of great interest. Another example is a $H_{2}^+$ test beam for linacs finally operated with intense deuteron beams. At Frankfurt, a simple proton ion source is needed to test a new kind of beam injection into a magnetic storage ring\\cite{EPAC08}\\cite{EPAC06}. This article describes a volume type ion source which can deliver upto $3.05~mA$ beam current at $10~keV$ in stable dc operation. It is a hot filament driven ion source which can provide high fractions of $p$, $H_{2}^+$ or $H_{3}^+$, depending on the operation settings.

  9. Optimization of negative ion sources for a heavy-ion-beam probe

    OpenAIRE

    Nishiura, M.; Ido, T.; Shimizu, A.; Kato, S.; Tsukada, K.; Nishizawa, A.; Hamada, Y.; Matsumoto, Y.; Mendenilla, A.; Wada, M.

    2006-01-01

    The development of plasma-sputter-type negative ion sources is underway for the heavy-ion-beam probe system as plasma diagnostic beams of the large helical device (LHD) for potential and fluctuation field measurements. Our purpose is to increase the doubly charged exchanged Au^+ beam intensity to enhance the detection signal after passing through the plasmas of the LHD. For this purpose, the characterization of the Au^– ion source and the beam optics has been carried out both experimentally a...

  10. Generation of compensated ion beams from source with oscillating electrons

    CERN Document Server

    Borisko, V N; Yunakov, N N

    2000-01-01

    The generation of compensated ion beams from electrically unsymmetrical reflecting discharge was investigated.The spatial location of a compensation zone,the optimal values of operating gas pressures P=(0.8/1) centre dot 10 sup - sup 4 Torr and potential difference between cathodes DELTA U = 80B were determined.The way to control the current compensation degree of the extracted ion beam a several to 100% was found.

  11. Ribbon electron beam formation by a forevacuum plasma electron source

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A. S., E-mail: klimov@main.tusur.ru; Burdovitsin, V. A. [Tomsk State University of Control System and Radioelectronics (Russian Federation); Grishkov, A. A. [SB RAS, Institute of High Current Electronics (Russian Federation); Oks, E. M.; Zenin, A. A.; Yushkov, Yu. G. [Tomsk State University of Control System and Radioelectronics (Russian Federation)

    2016-01-15

    Results of the numerical analysis and experimental research on ribbon electron beam generation based on hollow cathode discharge at forevacuum gas pressure are presented. Geometry of the accelerating gap has modified. It lets us focus the ribbon electron beam and to transport it on a distance of several tens of centimeters in the absence of an axial magnetic field. The results of numerical simulations are confirmed by the experiment.

  12. Optical Beam Timing Monitor Experiments at the Advanced Light Source

    OpenAIRE

    Byrd, John; De Santis, Stefano; Wilcox, Rusell; Yan, Yin

    2008-01-01

    We present the initial results of an experimental study of a beam timing monitor based on an optoelectronic technique. This technique uses the electrical signal from a beam position monitor to modulate the amplitude of a train of laser pulses, converting timing jitter into an amplitude jitter. This modulation is then measured with a photodetector and sampled by a fast ADC. This approach has already demonstrated sub-100 fs resolution and promises even better results. Additionally, we are ...

  13. Production of multicharged radioactive ion beams for spiral: studies and realization of the first target-ion source system

    International Nuclear Information System (INIS)

    In the framework of the SPIRAL project, which concerns the production and the acceleration of a multicharged radioactive ions beam, the following part has been studied: production and ionization of the radioactive ions beam. A first target-source (nanogan II), devoted exclusively to the production of multicharged radioactive ions gas type beams, has been studied and tested. The diffusion efficiency has been deduced from the diffusion equations (Fick laws). This efficiency is governed by the following parameters: the temperature, the grains size of the target, the Arrhenius parameters and the radioactive period. Another study concerning the production targets is presented. It deals with the temperature distribution allowing an utilization of more than one month at a temperature of 2400 K. Another development (SPIRAL II) is devoted to the production of high neutron content radioactive atoms created by the uranium fission, from fast neutrons. The neutrons beam is produced by the ''stripping break-up'' of a deutons beam in a converter. (A.L.B.)

  14. Numerical simulation of a triode source of intense radial converging electron beam

    Science.gov (United States)

    Altsybeyev, V.; Engelko, V.; Ovsyannikov, A.; Ovsyannikov, D.; Ponomarev, V.; Fetzer, R.; Mueller, G.

    2016-10-01

    The results of numerical simulations of a triode source of an intense radial converging electron beam are presented. The role of the initial transverse velocity of electrons, defocusing effect of the controlling grid, the beam self-magnetic field, backscattering of electrons, and ion flow from the target is analyzed. It was found that the ion flow from the target essentially increases the value of the electron current. The influence of the beam self-magnetic field on electron trajectories leads to the fact that there is a critical value of the cathode-grid voltage dividing the mode of the source operation into stable and unstable. The influence of initial transverse electron energies on the beam focusing is essentially higher than the influence of the controlling grid. Backscattering of the beam electrons from the target surface increases the target ion current so that the source operation may become unstable and the distribution of the beam power density on the target becomes nonuniform with a maximum in the center. Electrons passing by the target drift along the source axis. This leads to diminishing the power density at the center of the target and to the exit of peripheral electrons from the source. Conditions for achieving required electron beam parameters (the electron kinetic energy—120 keV, the beam energy density on the target ˜40 J/cm2 on a maximum possible length of the target surface) were determined.

  15. An atomic force microscope tip as a light source

    OpenAIRE

    Lulevich, V.; Honig, Christopher D. F.; Ducker, William A.

    2005-01-01

    We present a simple method for causing the end of a silicon nitride atomic force microscope (AFM) tip to emit light, and we use this emitted light to perform scanning near-field optical microscopy. Illumination of a silicon nitride AFM tip by blue (488 nm) or green (532 nm) laser light causes the sharp part of the tip to emit orange light. Orange light is emitted when the tip is immersed in either air or water; and while under illumination, emission continues for a period of many hours withou...

  16. Beam conditions for radiation generated by an electromagnetic Hermite-Gaussian model source

    Institute of Scientific and Technical Information of China (English)

    LI Jia; XIN Yu; CHEN Yan-ru

    2011-01-01

    @@ Within the framework of the correlation theory of electromagnetic laser beams, the far field cross-spectral density matrix of the light radiated from an electromagnetic Hermite-Gaussian model source is derived.By utilizing the convergence property of Hermite polynomials, the conditions of the matrices for the source to generate an electromagnetic Hermite-Gaussian beam are obtained.Furthermore, in order to generate a scalar Hermite-Gaussian model beam, it is required that the source should be locally rather coherent in the spatial domain.

  17. Plasma and Beam Production Experiments with HYBRIS, a Microwave-assisted H- Ion source

    International Nuclear Information System (INIS)

    A two-stage ion source concept had been presented a few years ago, consisting of a proven H- ion source and a 2.45-GHz Electron Cyclotron-Resonance (ECR) type ion source, here used as a plasma cathode. This paper describes the experimental development path pursued at Lawrence Berkeley National Laboratory, from the early concept to a working unit that produces plasma in both stages and creates a negative particle beam. Without cesiation applied to the second stage, the H- fraction of this beam is very low, yielding 75 micro-amperes of extracted ion beam current at best. The apparent limitations of this approach and envisaged improvements are discussed

  18. RF broad-beam low-energy ion source with electron compensation

    Directory of Open Access Journals (Sweden)

    Zykov A. V.

    2010-03-01

    Full Text Available Characteristics of single-grid RF ion source with 250 mm beam diameter and 1A beam current have been studied. Energy distribution functions of electrons and ions emitted by the source have been measured. It is shown that the emitted electron current is sufficient for full ion beam current compensation. The technique of ion to electron current ratio control allowing to change this ratio in wide range is proposed. Using the ICP in the source allows to rich high current density in the low ion energy range with the possibility of independent control of ion energy and current density.

  19. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    International Nuclear Information System (INIS)

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development

  20. Optical Guiding of Trapped Atoms by a Blue-Detuned Hollow Laser Beam in the Horizontal Direction

    Institute of Scientific and Technical Information of China (English)

    JIANG Kai-Jun; LI Ke; WANG Jin; ZHAN Ming-Sheng

    2005-01-01

    @@ Optical guiding of 85 Rb atoms in a magneto-optical trap (MOT) by a blue-detuned horizontal hollow laser beam is demonstrated experimentally. The guiding efficiency and the velocity distribution of the guided atoms are found to have strong dependence on the detuning of the guiding laser. In particular, the optimum guiding occurs when the blue detuning of the hollow laser beam is approximately equal to the hyperfine structure splitting of the 85Rb ground states, in good agreement with the theoretical analysis based on a three-level model.

  1. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    Jiang Ran; Meng Lingguo; Zhang Xijian; Hyung-Suk Jung; Cheol Seong Hwang

    2012-01-01

    Atomic layer deposition ofan Al2O3 dielectric on ultrathin graphite is studied in order to investigate the integration of a high k dielectric with graphite-based substrates.Electron beam irradiation on the graphite surface is followed by a standard atomic layer deposition of Al2O3.Improvement of the Al2O3 layer deposition morphology was observed when using this radiation exposure on graphite.This result may be attributed to the amorphous change of the graphite layers during electron beam irradiation.

  2. A 20 kV, 5 A, 1 ns Risetime Pulsed Electron Beam Source

    Institute of Scientific and Technical Information of China (English)

    Chen Yulan; Zeng Zhengzhong; Wang Haiyang; Ma Lianying

    2005-01-01

    A 20 kV, 1 ns risetime pulsed electron beam source was developed using an extremely small gap (0.1 mm) diode driven by a sub-nanosecond risetime, 10 kV rectangular pulse generator. A beam current of 5 A was detected by using a fast response Faraday cup at a distance of 2 cm away from a grid anode. The shot to shot variation of the electron beam pulse was less than 10%.

  3. A 20 kV, 5 A, 1 ns Risetime Pulsed Electron Beam Source

    International Nuclear Information System (INIS)

    A 20 kV, 1 ns risetime pulsed electron beam source was developed using an extremely small gap (0.1 mm) diode driven by a sub-nanosecond risetime, 10 kV rectangular pulse generator. A beam current of 5 A was detected by using a fast response Faraday cup at a distance of 2 cm away from a grid anode. The shot to shot variation of the electron beam pulse was less than 10%

  4. Pragmatic development of a laser ion source for intense highly-charged ion beam

    International Nuclear Information System (INIS)

    Recently, applications of high-charge-state (including fully stripped) heavy-ion beams have been attracting interest in both physics and industry. To enhance their usefulness, more intense beams are required. Cancer therapy using carbon ions is a particularly promising heavy-ion beam application. Due to advances in laser technology, the laser ion source (LIS) has become one of the most popular sources for generating highly charged and intense heavy-ion beams. The project to develop a high-intensity LIS was started on June 2009. In our project, whose ultimate goal is to apply a heavy-ion accelerator for cancer therapy, we have almost completed designing the LIS, and manufacturing will commence soon. We intend to measure the source performance by performing plasma and beam tests up until the end of March 2011. We will report the outline and a progress of the project. (author)

  5. Design of the low energy beam transport line for the China spallation neutron source

    Institute of Scientific and Technical Information of China (English)

    LI Jin-Hai; OUYANG Hua-Fu; FU Shi-Nian; ZHANG Sua-Shun; HE Wei

    2008-01-01

    The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper.The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.

  6. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  7. Candlestick oven with a silica wick provides an intense collimated cesium atomic beam

    Science.gov (United States)

    Pailloux, A.; Alpettaz, T.; Lizon, E.

    2007-02-01

    This article shows that readily available glass and silica fibers and braids are suitable capillary structure for recirculating ovens, such as candlestick ovens, becoming then an alternative wick material to conventional metal based capillary structures. In order to study wettability and capillarity of metallic liquid cesium on borosilicate and silica microstructures, samples were selected, prepared, and tested experimentally. The contact angle of cesium on silica glass was roughly measured: θ =35°±10°. A commercially available silica braid was then introduced inside a candlestick oven to transfer the metallic liquid cesium from the cold reservoir to the hot emission point of the candlestick. A collimated cesium atomic beam of intensity of 2×1016at./ssr was obtained, stable and reproducible. Furthermore, this modified oven is easy to handle daily.

  8. Selective population of ground terms in /sup 14/N atoms after ion-beam--surface interaction at grazing incidence

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.; Langheim, M.; Schirmacher, A.; Zimny, R.; Andra, H.J.

    1984-04-02

    The orientation of angular momenta in the ground terms of /sup 14/N atoms after the interaction of 350-keV /sup 14/N/sup +/ ions with a solid surface at grazing incidence is investigated by a Zeeman quantum-beat technique. After the ion-solid interaction, a term-selective and highly polarized fast beam of nitrogen atoms is observed. The phenomenon is interpreted in terms of a Pauli-principle--induced selective population.

  9. Note: A versatile radio-frequency source for cold atom experiments.

    Science.gov (United States)

    Li, Na; Wu, Yu-Ping; Min, Hao; Yang, Tao; Jiang, Xiao

    2016-08-01

    A radio-frequency (RF) source designed for cold atom experiments is presented. The source uses AD9858, a direct digital synthesizer, to generate the sine wave directly, up to 400 MHz, with sub-Hz resolution. An amplitude control circuit consisting of wideband variable gain amplifier and high speed digital to analog converter is integrated into the source, capable of 70 dB off isolation and 4 ns on-off keying. A field programmable gate array is used to implement a versatile frequency and amplitude co-sweep logic. Owing to modular design, the RF sources have been used on many cold atom experiments to generate various complicated RF sequences, enriching the operation schemes of cold atoms, which cannot be done by standard RF source instruments. PMID:27587180

  10. Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-06-01

    53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.

  11. Highly collimated source of cold Rubidium atoms from a two dimensional magneto-optical trap

    CERN Document Server

    Carrat, Vincent; Jacquey, Marion; Tabosa, José W; de Lesegno, Bruno Viaris; Pruvost, Laurence

    2013-01-01

    Using a blue detuned laser shaped in a Laguerre-Gaussian donut mode we highly collimate the output of a two dimensional magneto-optical trap. The resulting atomic beam has a 1 mm diameter, its divergence is reduced from 40 down to 3 mrad and the atomic density is increased by a factor of 200. The collimation effect has been studied versus the order of the Laguerre-Gaussian mode (up to 10) and the laser atom frequency detuning (2 to 120 GHz). The 2D-colli-MOT study allows us to determine the best conditions which minimize the atom heating due to residual light absorption and optimize the collimation effect. The 2D-colli MOT could provide a new tool to fill a 3D-MOT using lasers with millimeter range diameters and thus sparing the laser power.

  12. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  13. 77 FR 12226 - Sadex Corp.; Filing of Food Additive Petition (Animal Use); Electron Beam and X-Ray Sources for...

    Science.gov (United States)

    2012-02-29

    ... Petition (Animal Use); Electron Beam and X-Ray Sources for Irradiation of Poultry Feed and Poultry Feed... regulations be amended to provide for the safe use of electron beam and x-ray sources for irradiation of... use of electron beam and x- ray sources for irradiation of poultry feed and poultry feed...

  14. The Spectral Index and Beaming Effect for Radio Sources

    Indian Academy of Sciences (India)

    J. Pan; J. H. Fan

    2011-03-01

    In this paper, we revisited the relationship between the spectral index and the core-dominance parameter using a larger sample of blazars. Conclusively, we explain that the spectral index is associated with the core-dominance parameter using the two-component relativistic beaming model.

  15. Integrated MEMS mass sensor and atom source for a ``Fab on a Chip''

    Science.gov (United States)

    Han, Han; Imboden, Matthias; Stark, Thomas; Bishop, David

    2014-03-01

    ``Fab on a Chip'' is a new concept suggesting that the semiconductor fabrication facility can be integrated into a single silicon chip for nano-manufacturing. Such a chip contains various MEMS devices which can work together, operating in a similar way as a conventional fab does, to fabricate nano-structures. Here we present two crucial ``Fab on a chip'' components: the MEMS mass sensor and atomic evaporation source. The mass sensor is essentially a parallel plate capacitor with one suspended plate. When incident atoms deposit on the suspended plate, the mass change of the plate can be measured by detecting the resonant frequency shift. Using the mass sensor, a mass resolution of 3 fg is achieved. The MEMS evaporation source consists of a polysilicon plate suspended by two electrical leads with constrictions. By resistively heating the plate, this device works as a tunable atom flux source. By arranging many of these devices into an array, one can build a multi-element atom evaporator. The mass sensor and atom source are integrated so that the mass sensor is used to monitor and characterize the atomic flux. A material source and a sensor to monitor the fabrication are two integral components for our ``Fab on a Chip.''

  16. The thermophysics of electron beam evaporative sources: Annual report, 21 April 1986-20 April 1987

    International Nuclear Information System (INIS)

    This report presents work accomplished in preparing equipment for study of evaporative electron beam sources. Faraday cups and x-ray imaging equipment were developed. Due to other commitments, the future of this work is uncertain

  17. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Energy Technology Data Exchange (ETDEWEB)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Kuechler, D.; Toivanen, V. [CERN, BE/ABP/HSL, 1211 Geneva 23 (Switzerland)

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  18. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    Science.gov (United States)

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented. PMID:26931949

  19. The Stark effect of 1H and 4He+ in the beam foil source

    International Nuclear Information System (INIS)

    The appearance of Stark patterns obtained with a beam-foil source differed from those characteristically obtained from gas discharge sources. In the former source excitation of the hydrogenic ions occurred in a brief time interval (14s) during the passage of a high velocity unidirectional beam of ions which produces non-statistical population distributions for the Stark perturbed states. The relative intensities of Stark perturbed components of the Hsub(β) hydrogen line and the Fsub(α) ionized helium line have been measured in a beam-foil source. In each case an initial population of states of principal quantum number n = 4 due to radiative decay and Stark mixing, and comparing the resultant patterns with the observed patterns. The inferred population distributions indicate that the states of low orbital angular momentum (L) are preferentially populated, and alignment referred to the beam axis is produced such that states with lower z component of L are preferentially populated. (author)

  20. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    Science.gov (United States)

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  1. Off-Beam Gamma-Ray Pulsars and Unidentified EGRET Sources in the Gould Belt

    CERN Document Server

    Harding, A K; Harding, Alice K.; Zhang, Bing

    2001-01-01

    We investigate whether gamma-ray pulsars viewed at a large angle to the neutron star magnetic pole could contribute to the new population of galactic unidentified EGRET sources associated with the Gould Belt. The faint, soft nature of these sources is distinctly different from both the properties of unidentified EGRET sources along the galactic plane and of the known gamma-ray pulsars. We explore the possibility, within the polar cap model, that some of these sources are emission from pulsars seen at lines of sight that miss both the bright gamma-ray cone beams and the radio beam. The off-beam gamma-rays come from high-altitude curvature emission of primary particles, are radiated over a large solid angle and have a much softer spectrum than that of the main beams. We estimate that the detectability of such off-beam emission is about a factor of 4-5 higher than that of the on-beam emission. At least some of the radio-quiet Gould Belt sources detected by EGRET could therefore be such off-beam gamma-ray pulsars...

  2. Light and/or atomic beams to detect ultraweak gravitational effects

    Directory of Open Access Journals (Sweden)

    Tartaglia Angelo

    2014-06-01

    Full Text Available We shall review the opportunities lent by ring lasers and atomic beams interferometry in order to reveal gravitomagnetic effects on Earth. Both techniques are based on the asymmetric propagation of waves in the gravitational field of a rotating mass; actually the times of flight for co- or counter-rotating closed paths turn out to be different. After discussing properties and limitations of the two approaches we shall describe the proposed GINGER experiment which is being developed for the Gran Sasso National Laboratories in Italy. The experimental apparatus will consist of a three-dimensional array of square rings, 6m × 6m, that is planned to reach a sensitivity in the order of 1prad/√Hertz or better. This sensitivity would be one order of magnitude better than the best existing ring, which is the G-ring in Wettzell, Bavaria, and would allow for the terrestrial detection of the Lense-Thirring effect and possibly of deviations from General Relativity. The possibility of using either the ring laser approach or atomic interferometry in a space mission will also be considered. The technology problems are under experimental study using both the German G-ring and the smaller G-Pisa ring, located at the Gran Sasso.

  3. Gate-Tunable Atomically Thin Lateral MoS2 Schottky Junction Patterned by Electron Beam.

    Science.gov (United States)

    Katagiri, Y; Nakamura, T; Ishii, A; Ohata, C; Hasegawa, M; Katsumoto, S; Cusati, T; Fortunelli, A; Iannaccone, G; Fiori, G; Roche, S; Haruyama, J

    2016-06-01

    Among atomically thin two-dimensional (2D) materials, molybdenum disulfide (MoS2) is attracting considerable attention because of its direct bandgap in the 2H-semiconducting phase. On the other hand, a 1T-metallic phase has been revealed, bringing complementary application. Recently, thanks to top-down fabrication using electron beam (EB) irradiation techniques, in-plane 1T-metal/2H-semiconductor lateral (Schottky) MoS2 junctions were demonstrated, opening a path toward the co-integration of active and passive two-dimensional devices. Here, we report the first transport measurements evidencing the formation of a MoS2 Schottky barrier (SB) junction with barrier height of 0.13-0.18 eV created at the interface between EB-irradiated (1T)/nonirradiated (2H) regions. Our experimental findings, supported by state-of-the-art simulation, reveal unique device fingerprint of SB-based field-effect transistors made from atom-thin 1T layers. PMID:27152475

  4. A study for the improvements of radio frequency ion source performance and ion beam quality

    International Nuclear Information System (INIS)

    In this work emphasis was given to improve ion beam obtained from the RF ion source. Thus, the objectives of this work are: a - Production of higher ion charge state which requires an intense plasma. This is achieved by the use of D.C magnetic field, the use of electron injection into the plasma, and the work run at optimum discharge pressure. b - Increasing the value of the extracted current. c - Improving ion beam quality by its interaction with electron beam. The production of multiply charged ions requires an intense plasma. This leads of the use of RF ion source with radial extraction, central constriction, and electron injection into plasma, together with magnetic field perpendicular to RF field. The plasma intensity could be increased from n e = 10 9 electrons/c m3 up to 10 12 electrons/cm 3. The ion beam was analyzed by a sector magnet and is found to contain a larger percentage of Ar +4 than that without electron injection. To improve ion source efficiency, this means increasing ion current for the same, or lower RF power and gas consumption. A new design of RF ion source of small size and having a magnetic mirror - like shape could yield a current up to 12 m. A at extracting voltage 3 K.V and pressure = 20 m.Torr. Electrons were injected into the ion beam from filaments around the beam . Such electrons decrease the space charge repulsive forces between the particles. Samples of the beam profiles are traced by ion beam scanner, with and without suppression to electrons . From these samples we could deduce a decrease of ion beam emittance due to the effect of beam neutralization, which agrees with the theoretical work made for the effect of neutralization on the beam emittance

  5. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com [Variable Energy Cyclotron Centre, 1-AF, Bidhannagar, Kolkata 700 064 (India)

    2015-11-15

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  6. Sparse cortical source localization using spatio-temporal atoms.

    Science.gov (United States)

    Korats, Gundars; Ranta, Radu; Le Cam, Steven; Louis-Dorr, Valérie

    2015-08-01

    This paper addresses the problem of sparse localization of cortical sources from scalp EEG recordings. Localization algorithms use propagation model under spatial and/or temporal constraints, but their performance highly depends on the data signal-to-noise ratio (SNR). In this work we propose a dictionary based sparse localization method which uses a data driven spatio-temporal dictionary to reconstruct the measurements using Single Best Replacement (SBR) and Continuation Single Best Replacement (CSBR) algorithms. We tested and compared our methods with the well-known MUSIC and RAP-MUSIC algorithms on simulated realistic data. Tests were carried out for different noise levels. The results show that our method has a strong advantage over MUSIC-type methods in case of synchronized sources. PMID:26737185

  7. Atomic data mining numerical methods, source code SQlite with Python

    OpenAIRE

    Khwaldeh, Ali; Tahat, Amani; Martí Rabassa, Jordi; Tahat, Mofleh

    2013-01-01

    This paper introduces a recently published Python data mining book (chapters, topics, samples of Python source code written by its authors) to be used in data mining via world wide web and any specific database in several disciplines (economic, physics, education, marketing. etc). The book started with an introduction to data mining by explaining some of the data mining tasks involved classification, dependence modelling, clustering and discovery of association rules. The book addressed that ...

  8. Ramping up the Spallation Neutron Source beam power with the H- source using 0 mg Cs/day

    International Nuclear Information System (INIS)

    This paper describes the ramp up of the beam power for the Spallation Neutron Source by ramping up the pulse length, the repetition rate, and the beam current emerging from the H- source. Starting out with low repetition rates (≤10 Hz) and short pulse lengths (≤0.2 ms), the H- source and low-energy beam transport delivered from Lawrence Berkeley National Laboratory exceeded the requirements with almost perfect availability. This paper discusses the modifications that were required to exceed 0.2 ms pulse length and 0.2% duty factor with acceptable availability and performance. Currently, the source is supporting neutron production at 1 MW with 38 mA linac beam current at 60 Hz and 0.9 ms pulse length. The pulse length will be increased to ∼1.1 ms to meet the requirements for neutron production with a power between 1 and 1.4 MW. A medium-energy beam transport (MEBT) beam current of 46 mA with a 5.4% duty factor has been demonstrated for 32 h. A 56 mA MEBT beam current with a 4.1% duty factor has been demonstrated for 20 min at the conclusion of a 12-day production run. This is close to the 59 mA needed for 3 MW neutron productions. Also notable is the Cs2CrO4 cesium system, which dispenses ∼10 mg of Cs during the startup of the ion source, sufficient for producing the required 38 mA for 4 weeks without significant degradation.

  9. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Tamura, M.; Aihara, T.; Uchiyama, A. [SHI Accelerator Service Ltd., 1-17-6 Osaki, Shinagawa, Tokyo 141-0032 (Japan)

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  10. Physical conditions for sources radiating a cosh-Gaussian model beam

    Institute of Scientific and Technical Information of China (English)

    LI Jia

    2011-01-01

    Based on the coherence theory of diffracted optical field and the model for partially coherent beams, analytical expressions for the cross-spectral density and the irradiance spectral density in the far zone are derived, respectively. Utilizing the theoretical model of radiation from secondary planar sources, the physical conditions for sources generating a cosh-Gaussian (CHG) beam are investigated. Analytical results demonstrate that the parametric conditions strongly depend on the coherence property of sources. When almost coherence property is satisfied in the source plane, the conditions are the same as those for fundamental Gaussian beams; when partial coherence or almost incoherence property is satisfied in the spatial source plane, the conditions are the same as those for Gaussian-Schell model beams. The results also indicate that the variance of cosine parameters has no influence on the conditions. Our results may provide potential applications for some investigations such as the modulations of cosh-Gaussian beams and the designs of source beam parameters.

  11. High-Brightness Beams from a Light Source Injector The Advanced Photon Source Low-Energy Undulator Test Line Linac

    CERN Document Server

    Travish, G; Borland, M; Hahne, M; Harkay, K C; Lewellen, J W; Lumpkin, Alex H; Milton, S V; Sereno, N S

    2000-01-01

    The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by high-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventional linacs. Improvements have been made to the Advanced Photon Source (APS) injector linac in order to produce and characterize high-brightness beams. Specifically, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) FEL in support of fourth-generation light source research. The enhancements to the linac technical and diagnostic capabilities that allowed for self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm are described. Recent results, includi...

  12. Prospects for Forbidden-Transition Spectroscopy and Parity Violation Measurements using a Beam of Cold Stable or Radioactive Atoms

    CERN Document Server

    Sanguinetti, S; Lintz, M; Jacquier, P; Wasan, A; Bouchiat, M A; Jacquier, Ph.

    2003-01-01

    Laser cooling and trapping offers the possibility of confining a sample of radioactive atoms in free space. Here, we address the question of how best to take advantage of cold atom properties to perform the observation of as highly forbidden a line as the 6S-7S Cs transition for achieving, in the longer term, Atomic Parity Violation measurements in radioactive alkali isotopes. Another point at issue is whether one might do better with stable, cold atoms than with thermal atoms. To compensate for the large drawback of the small number of atoms available in a trap, one must take advantage of their low velocity. To lengthen the time of interaction with the excitation laser, we suggest choosing a geometry where the laser beam exciting the transition is colinear to a slow, cold atomic beam, either extracted from a trap or prepared by Zeeman slowing. We also suggest a new observable physical quantity manifesting APV, which presents several advantages:specificity, efficiency of detection, possibility of direct calib...

  13. Stimulated Raman Adiabatic Passage for Improved Performance of a Cold Atom Electron and Ion Source

    CERN Document Server

    Sparkes, B M; Taylor, R J; Spiers, R W; McCulloch, A J; Scholten, R E

    2016-01-01

    We experimentally implement high-efficiency coherent excitation to a Rydberg state using stimulated Raman adiabatic passage in a cold atom electron and ion source, leading to a peak efficiency of 85%, a 1.7 times improvement in excitation probability relative to incoherent pulsed-laser excitation. Using streak measurements and pulsed electric field ionization of the Rydberg atoms we demonstrate electron bunches with duration of 250 ps. High-efficiency excitation will increase source brightness, crucial for ultrafast electron diffraction experiments, while using coherent excitation to high-lying Rydberg states could allow for the reduction of internal bunch heating and the creation of a high-speed single ion source.

  14. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  15. Suppression of single cesium atom heating in a microscopic optical dipole trap for demonstration of an 852nm triggered single-photon source

    CERN Document Server

    Liu, Bei; He, Jun; Wang, Junmin

    2016-01-01

    We investigate single cesium (Cs) atom heating owing to the momentum accumulation process induced by the resonant pulsed excitation in a microscopic optical dipole trap formed by a strongly focused 1064 nm laser beam. The heating depends on the trap frequency which restricts the maximum repetition rate of pulsed excitation. We experimentally verify the heating of a single atom and then demonstrate how to suppress it with an optimized pulsed excitation/cooling method. The typical trap lifetime of single Cs atom is extended from 108 +/- 6 us to 2536 +/- 31 ms, and the corresponding number of excitation increases from ~ 108 to ~ 360000. In applying this faster cooling method, we use the trapped single Cs atom as a triggered single-photon source at an excitation repetition rate of 10 MHz. The second-order intensity correlations of the emitted single photons are characterized by implementing Hanbury Brown and Twiss setup, and clear anti-bunching effect has been observed.

  16. Single-Shot Electron Diffraction using a Cold Atom Electron Source

    CERN Document Server

    Speirs, Rory W; Nugent, Keith A; Sparkes, Benjamin M; Scholten, Robert E

    2015-01-01

    Cold atom electron sources are a promising alternative to traditional photocathode sources for use in ultrafast electron diffraction due to greatly reduced electron temperature at creation, and the potential for a corresponding increase in brightness. Here we demonstrate single-shot, nanosecond electron diffraction from monocrystalline gold using cold electron bunches generated in a cold atom electron source. The diffraction patterns have sufficient signal to allow registration of multiple single-shot images, generating an averaged image with significantly higher signal-to-noise ratio than obtained with unregistered averaging. Reflection high-energy electron diffraction (RHEED) was also demonstrated, showing that cold atom electron sources may be useful in resolving nanosecond dynamics of nanometre scale near-surface structures.

  17. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    Science.gov (United States)

    Dubreuil, B.; Harnafi, M.

    1989-07-01

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.

  18. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    International Nuclear Information System (INIS)

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5--13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 A2 are measured; they increase with n as opposed to the plateau observed for Li/sup */ colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n yields n' changing processes with large cross sections (10--100 A2) are also observed even in the case of large electronic energy change (ΔE/sub nn'/>103 cm/sup -1/). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes

  19. Photoluminescence from GaAs nanodisks fabricated by using combination of neutral beam etching and atomic hydrogen-assisted molecular beam epitaxy regrowth

    Energy Technology Data Exchange (ETDEWEB)

    Kaizu, Toshiyuki; Okada, Yoshitaka [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Tamura, Yosuke; Igarashi, Makoto; Hu, Weiguo; Tsukamoto, Rikako [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamashita, Ichiro [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Samukawa, Seiji [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2012-09-10

    We have fabricated GaAs nanodisk (ND) structures by using a combination of neutral beam etching process and atomic hydrogen-assisted molecular beam epitaxy regrowth. We have observed clear photoluminescence (PL) emissions from GaAs NDs. The peak energy showed a blueshift due to the quantum confinement in three spatial dimensions, and it agreed with the theoretically estimated transition energy. The PL results also showed that the cap-layer disks act as radiative recombination centers. We have confirmed that the PL emission originates from the GaAs NDs, and our approach is effective for the fabrication of high quality ND structures.

  20. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  1. Generation of oxygen, carbon and metallic ion beams by a compact microwave source

    International Nuclear Information System (INIS)

    A small microwave ion source fabricated from a quartz tube and enclosed externally by a cavity has been operated with different geometries and for various gases in a cw mode. This source has been used to generate oxygen ion beams with energy as low as 5.5 eV. Beam energy spread has been measured to be less than 1 eV. By installing different metal plates on the front extraction electrode, metallic ion beams such as (Be, Cu, Al, etc.) can be produced

  2. Proton beam production by a laser ion source with hydride target

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M., E-mail: okamura@bnl.gov [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Stifler, C. [Engineering Physics Systems Department, Providence College, Providence, Rhode Island 02918 (United States); Palm, K. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Steski, D.; Kanesue, T. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa (Japan); Kumaki, M. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo (Japan)

    2016-02-15

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam.

  3. Propagation characteristics of Bessel beams generated by continuous, incoherent light sources.

    Science.gov (United States)

    Altıngöz, Ceren; Yalızay, Berna; Akturk, Selcuk

    2015-08-01

    We investigate the propagation behavior of Bessel beams generated by incoherent, continuous light sources. We perform experiments with narrowband and broadband light emitting diodes, and, for comparison, with a laser diode. We observe that the formation of Bessel beams is affected minimally by temporal coherence, while spatial coherence determines the longitudinal evolution of the beam profile. With spatially incoherent beams, the fringe contrast is comparable to the coherent case at the beginning of the Bessel zone, while it completely fades away by propagation, turning into a cylindrical light pipe. Our results show that beam shaping methods can be extended to cases of limited spatial coherence, paving the way for potential new uses and applications of such sources. PMID:26367302

  4. Simulation of ultrasonic surface waves with multi-Gaussian and point source beam models

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinyu [Center for NDE, Iowa State University, Ames, IA, 50011, USA and Dept. of Mechanical Eng., Beijing Institute of Technology, Beijing, 100081 (China); Schmerr, Lester W. Jr.; Li, Xiongbing [Center for NDE, Iowa State University, Ames, IA, 50011 (United States); Sedov, Alexander [Dept. of Mechanical Eng., Lakehead University, Thunder Bay, ON (Canada)

    2014-02-18

    In the past decade, multi-Gaussian beam models have been developed to solve many complicated bulk wave propagation problems. However, to date those models have not been extended to simulate the generation of Rayleigh waves. Here we will combine Gaussian beams with an explicit high frequency expression for the Rayleigh wave Green function to produce a three-dimensional multi-Gaussian beam model for the fields radiated from an angle beam transducer mounted on a solid wedge. Simulation results obtained with this model are compared to those of a point source model. It is shown that the multi-Gaussian surface wave beam model agrees well with the point source model while being computationally much more efficient.

  5. Preliminary design of bellows for the DNB beam source by EJMA and FE linear analysis

    International Nuclear Information System (INIS)

    In piping system, U-shaped Bellows are widely used among flexible elements. In general, bellows are typically design for Fatigue behavior according to the EJMA standard based on empirically generated fatigue curves. The present work proposes a methodology in the design of bellows by design by analyses and validates its design by EJMA standard. A linear FE approach is chosen to in line with the EJMA standard. The proposed methodology is benchmarked with the available literatures. The same practice is implemented in the preliminary design of a U-shaped bellows in the water line circuits of DNB beam source. DNB Beam Source is a negative ion source-based neutral beam generator for ITER operates at 100KV. The beam divergence (intrinsic) and magnetic fields from ITER torus causes deflection of beams. This calls for beam optic alignment, which are assured by BS Movement mechanism system. To accomplish the above movement requirements, bellows, which is a stringent of its kind (± 22 mm axial, ± 45 mm lateral within 400mm available space with single ply), is designed between the beam source and possible rigid interface-cooling lines coming from HVB. The paper describes right from conceptual stage to preliminary design. Optimization tools are adopted in the selecting bellow dimensions using MATLAB. At the end a coordinated approach between FE based assessment (in ANSYS) and widely applied code, EJMA is implemented for the validation of design and found FE approach is a very conservative than later in the present case. (author)

  6. Low-Energy Plasma Focus Device as an Electron Beam Source

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Khan

    2014-01-01

    Full Text Available A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5×1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  7. Low-Energy Plasma Focus Device as an Electron Beam Source

    Science.gov (United States)

    Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952

  8. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  9. Growth of GaNAs/GaAs multiple quantum well by molecular beam epitaxy using modulated N radical beam source

    International Nuclear Information System (INIS)

    GaNAs/GaAs multiple quantum well (MQW) structures have been grown on GaAs(001) substrates by molecular beam epitaxy (MBE) using modulated N radical beam source under optimized conditions, wherein the amount of N2 gas flow, RF-power and shutter sequence are systematically controlled. Clear and flat GaNAs/GaAs interfaces were observed in the cross-sectional transmission electron microscopy (TEM) measurements. Fine MQW structures originating from the precise control of the modulated N radical beam have been demonstrated as clear satellite peaks from the X-ray diffraction (XRD) measurements and sharp photoluminescence (PL) peaks. The step-like behaviors in the absorption spectra which reflect the density of state in two-dimensional systems, were clearly observed for all MQW samples. (authors)

  10. Detection of slow atoms confined in a Cesium vapor cell by spatially separated pump and probe laser beams

    CERN Document Server

    Todorov, Petko; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel

    2013-01-01

    The velocity distribution of atoms in a thermal gas is usually described through a Maxwell-Boltzman distribution of energy, and assumes isotropy. As a consequence, the probability for an atom to leave the surface under an azimuth angle {\\theta} should evolve as cos {\\theta}, in spite of the fact that there is no microscopic basis to justify such a law. The contribution of atoms moving at a grazing incidence towards or from the surface, i.e. atoms with a small normal velocity, here called "slow" atoms, reveals essential in the development of spectroscopic methods probing a dilute atomic vapor in the vicinity of a surface, enabling a sub-Doppler resolution under a normal incidence irradiation. The probability for such "slow" atoms may be reduced by surface roughness and atom-surface interaction. Here, we describe a method to observe and to count these slow atoms relying on a mechanical discrimination, through spatially separated pump and probe beams. We also report on our experimental progresses toward such a g...

  11. Development of the RF Ion Sources for Focused Ion Beam Accelerators

    OpenAIRE

    V. Voznyi; Miroshnichenko, V.; S. Mordyk; D. Shulha; V. Storizhko; Tokman, V.

    2014-01-01

    The paper presents the results of investigations of ion sources developed in the IAP of NAS of Ukraine for generation of high brightness ion beams with small energy spread. A series of RF ion sources operated at the frequency of 27.12 MHz were studied: the inductive RF ion source, the helicon ion source, the multi-cusp RF ion source, and the sputter type RF source of metal ions. A global model and transformer model were applied for calculation of RF source plasma parameters. Ion energy spread...

  12. Microwave plasma source for neutral-beam injection systems. Quarterly technical progress report

    International Nuclear Information System (INIS)

    The overall program is described and the technical and programmatic reasons for the decision to pursue both the RFI and ECH sources into the current hydrogen test stage is discussed. We consider the general characteristics of plasma sources in the parameter regime of interest for neutral beam applications. The operatonal characteristics, advantages and potential problems of RFI and ECH sources are discussed. In these latter two sections we rely heavily on experience derived from developing RFI and ECH ion engine sources for NASA

  13. [The glow discharge as an atomization and ionization source

    International Nuclear Information System (INIS)

    This is to summarize the research progress in this project at the University of Florida over the past 13 months. In keeping with the directions of the Federal Demonstration Project, the report will be brief, presenting an overview of the major findings. We have continued the study of the glow discharge, primarily as an ionization source for elemental analysis. Glow discharge interest continues to grow in the analytical chemistry community as evidenced by the number of special symposia at major conferences, by the new researchers entering the field, and by the introduction of new instrumentation. There is little doubt that glow discharge mass spectrometry, for example, is now a major technique in the elemental analysis of solids

  14. Laser-Accelerated Proton Beams as a New Particle Source

    OpenAIRE

    Nürnberg, Frank

    2010-01-01

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. Today's high power, ultrashort pulse laser systems are capable of achieving laser intensities up to 10^21 W/cm^2. When focused onto thin foil targets, extremely high field gradients of the order of TV/m are produced on the rear side of the target resulting in the acceleration of protons to multi-MeV energies with an exponential spectrum including up to 10^13 particles. This a...

  15. Damage effects of {ion}/{atom} beam milling on MNOS (Al/Si 3N 4/SiO 2/Si) capacitors

    Science.gov (United States)

    Bangert, U.; Belson, J.; Wilson, I. H.

    1984-02-01

    Low energy argon ion and atom beams produced by saddle field sources have been used to study changes in CVD Si 3N 4/SiO 2/Si structures after bombardment of the bare nitride at a particle energy of 2.9 keV. Interface state densities Nst and flatband voltages VFB were extracted from high frequency (1.3 MHz) and quasi-static C- V curves. Bombardment was found to induce an increase in Nst and positive and negative charge storage associated with the nitride (or the nitride/oxide interface). The effect was more pronounced under ion bombardment. On the supposition that displacement damage is similar for ion and atom bombardments the differences in charge storage are interpreted in terms of enhanced trapping under the field associated with ion bombardment.

  16. Prize for Industrial Applications of Physics Talk: Low energy spread Ion source for focused ion beam systems-Search for the holy grail

    Science.gov (United States)

    Ward, Bill

    2011-03-01

    In this talk I will cover my personal experiences as a serial entrepreneur and founder of a succession of focused ion beam companies (1). Ion Beam Technology, which developed a 200kv (FIB) direct ion implanter (2). Micrion, where the FIB found a market in circuit edit and mask repair, which eventually merged with FEI corporation. and (3). ALIS Corporation which develop the Orion system, the first commercially successful sub-nanometer helium ion microscope, that was ultimately acquired by Carl Zeiss corporation. I will share this adventure beginning with my experiences in the early days of ion beam implantation and e-beam lithography which lead up to the final breakthrough understanding of the mechanisms that govern the successful creation and operation of a single atom ion source.

  17. Effects of a dielectric material in an ion source on the ion beam current density and ion beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y., E-mail: yutaka-fujiwara@aist.go.jp; Sakakita, H.; Nakamiya, A. [Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki 305-8577 (Japan); Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568 (Japan); Hirano, Y.; Kiyama, S. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568 (Japan)

    2016-02-15

    To understand a strong focusing phenomenon that occurs in a low-energy hydrogen ion beam, the electron temperature, the electron density, and the space potential in an ion source with cusped magnetic fields are measured before and after the transition to the focusing state using an electrostatic probe. The experimental results show that no significant changes are observed before or after the transition. However, we found unique phenomena that are characterized by the position of the electrostatic probe in the ion source chamber. Specifically, the extracted ion beam current density and energy are obviously enhanced in the case where the electrostatic probe, which is covered by a dielectric material, is placed close to an acceleration electrode.

  18. High-current pulse sources of broad beams of gas and metal ions for surface treatment

    International Nuclear Information System (INIS)

    This paper reviews the experimental study, development, and improvement of various types of processing ion sources undertaken in association with the joint program performed in recent years by the Institute of Electrophysics and the Institute of High-Current Electronics of the Russian Academy of Sciences. The beam parameters (type and energy of ions, current density, cross-sectional area of the beam, permissible content of impurities, etc.) should meet the requirements of particular ion beam treatment conditions, while the ion source itself should be simple and reliable in operation. Technical and service characteristics of the developed ion sources permit their use for ion-beam modification of materials, preparation of surfaces and ion-assisted deposition of thin films, and in some other applications. The sources under consideration employ high-current glow discharges with a hollow cathode or in crossed electric and magnetic fields, and low-pressure arc discharges and vacuum arc. Cold cathodes enhance reliability of the ion sources when they work at a high residual gas pressure or in the reactive gas media. The repetitive pulse mode of the plasma and beam generation provides optimum conditions for stable operation of the discharge, control of the average beam current over a wide range, and formation of homogeneous large-cross-section beams. The paper describes techniques used to realize high-current discharges at a reduced pressure, methods for producing a stable, dense and homogeneous plasma in a large volume, techniques of formation of large-cross-section homogeneous beams, and also findings on the mass-charge composition of the plasma and beams produced. Some design versions of the sources are given. At voltages from 10 to 100 kV, the pulse duration of 10 to 1000 μs, and the pulse repetition rate of 1 to 500 Hz these sources provide the current density of ∼1-10 mA/cm2 in beams having the cross-sectional area of a few hundreds of square centimeters. The

  19. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    International Nuclear Information System (INIS)

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  20. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirscht, Julian

    2015-08-15

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  1. H- source and beam transport experiments for a new RFQ

    International Nuclear Information System (INIS)

    A new RFQ preinjector is being built for the 200 MeV Linac at the AGS. For injection into this RFQ, a symmetric emittance has been obtained from a circular aperture magnetron H- source. Transport studies are beginning to address possible problems with space charge or instabilities in the 35 keV line. A volume H- source is being tested as an eventual replacement for the magnetron

  2. Survey, alignment, and beam stability at the Advanced Light Source

    International Nuclear Information System (INIS)

    This paper describes survey and alignment at the Lawrence Berkeley Laboratories Advanced Light Source (ALS) accelerators from 1993 to 1997. The ALS is a third generation light source requiring magnet alignment to within 150 microns. To accomplish this, a network of monuments was established and maintained. Monthly elevation surveys show the movement of the floor over time. Inclinometers have recently been employed to give real time information about magnet, vacuum tank and magnet girder motion in the ALS storage ring

  3. About possibilities of obtaining focused beams of thermal neutrons of radionuclide source

    International Nuclear Information System (INIS)

    Full text: In the last years significant progress is achieved in development of neutron focusing methods (concentrating neutrons in a given direction and a small area). In this, main attention is given to focusing of neutron beams of reactor, particularly cold neutrons and their applications. [1,2]. However, isotope sources also let obtain intensive neutron beams and solve quite important (tasks) problems (e.g. neutron capture therapy for malignant tumors) [3], and an actual problems is focusing of neutrons. We developed a device on the basis of californium source of neutrons, allowing to obtain focused (preliminarily) beam of thermal neutrons with the aid of respective choice of moderators, reflectors and geometry of their disposition. Here, fast neutrons and gamma rays in the beam are minimized. With the aid of the model we developed on the basis of Monte-Carlo method, it is possible to modify aforementioned device and dynamics of output neutrons in wide energy range and analyze ways of optimization of neutron beams of isotope sources with different neutron outputs. Device of preliminary focusing of thermal neutrons can serve as a basis for further focus of neutrons using micro- and nano-capillar systems. It is known that, capillary systems performed with certain technology can form beam of thermal neutrons increasing its density by more than two orders of magnitude and effectively divert beams up to 20o with length of system 15 cm

  4. Study of a microwave power source for a two-beam accelerator

    International Nuclear Information System (INIS)

    A theoretical and experimental study of a microwave power source suitable for driving a linear e+e- collider is reported. The power source is based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept, is driven by a 5-MeV, 1-kA induction accelerator electron beam, and operates at X-band frequencies. The development of a computer code to simulate the transverse beam dynamics of an intense relativistic electron beam transiting a system of microwave resonant structures is presented. This code is time dependent with self-consistent beam-cavity interactions and uses realistic beam parameters. Simulations performed with this code are compared with analytical theory and experiments. The concept of spacing resonant structures at distances equal to the betatron wavelength of the focusing system to suppress the growth of transverse instabilities is discussed. Simulations include energy spread over the beam to demonstrate the effect of Landau damping and establish the sensitivity of the betatron wavelength spacing scheme to errors in the focusing system. The design of the Reacceleration Experiment is described in detail and includes essentially all the issues related to a full scale RK-TBA microwave source. A total combined power from three output structures in excess of 170 MW with an amplitude stability of ±4% over a 25 ns pulse was achieved. The results of the experiment are compared to simulations used during the design phase to validate the various codes and methods used. The primary issue for the RK-TBA concept is identified as transverse beam instability associated with the excitation of higher order modes in the resonant structures used for extracting microwave power from the modulated beam. This work represents the first successful experimental demonstration of repeated cycles of microwave energy extraction from and reacceleration of a modulated beam

  5. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source

    Science.gov (United States)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm-1. For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm-1. With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.

  6. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited).

    Science.gov (United States)

    Vondrasek, R; Levand, A; Pardo, R; Savard, G; Scott, R

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci (252)Cf source to produce radioactive beams with intensities up to 10(6) ions∕s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for (23)Na(8+), 15.6% for (84)Kr(17+), and 13.7% for (85)Rb(19+) with typical breeding times of 10 ms∕charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The project has been commissioned with a radioactive beam of (143)Ba(27+) accelerated to 6.1 MeV∕u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities. PMID:22380254

  7. Single stage ECR source for the radioactive ion beam project in Louvain- la-Neuve

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Vanhorenbeeck, J.; Baeten, F.; Dom, C.; Darquennes, D.; Delbar, T.; Jongen, Y.; Huyse, M.; Reusen, G.; Van Duppen, P. and others

    1989-01-01

    In 1987 the project RIB (Radioactive Ion Beam) was started at Louvain-La - Neuve, to produce and accelerate radioactive nuclei of C, N, O, F and Ne. Within the framework of this project, a single stage E.C.R. source will be built. The general scheme of the project and the design of the source are discussed.

  8. Calculation of ion beam species extracted from a hydrogen ion source

    International Nuclear Information System (INIS)

    Ion species from a hydrogen ion source are calculated as a function of the electron density on the assumption that the energy distribution of electrons in the source is Maxwellian with temperatures 8 to 12 eV. The beam fraction of ion species depends only on the electron density, and the proton ratio increases with electron density. (author)

  9. Electron Cyclotron Resonance Ion Sources (ECRIS) for cyclotrons and radioactive beam production

    International Nuclear Information System (INIS)

    Improvements in Electron Cyclotron Resonance Ion Sources are discussed. These improvements include improvements in the charge-state distribution to increase the fraction of high charge-state current, improvement in production of beams of metallic ions, and reduction of construction cost and energy consumption for such sources

  10. Optimization of the beam extraction systems for the Linac4 H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. A.; Lettry, J.; Scrivens, R.; Steyaert, D. [CERN, 1211 Geneva 23 (Switzerland); Midttun, Ø. [University of Oslo, P.O. Box 1048, 0316 Oslo (Norway); CERN, 1211 Geneva 23 (Switzerland); Valerio-Lizarraga, C. A. [Departamento de Investigación en Fisica, Universidad de Sonora, Hermosillo (Mexico); CERN, 1211 Geneva 23 (Switzerland)

    2015-04-08

    The development of the Linac 4 and its integration into CERN’s acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H{sup −} beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H{sup −} beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm· mrad. The previously installed beam extraction system has been designed for an H{sup −} ion beam intensity of 20 mA produced by an RF-volume source with an electron to H{sup −} ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H{sup −} ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H{sup −} source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  11. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented. PMID:20192366

  12. Evaluation of ozone concentration for a white beam line hutch at Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    In the synchrotron radiation source Indus-2, 26 synchrotron radiation beam lines are planned, out of which 7 beam lines are operational and several are in installation stage. For carrying out experiments, SR beam is brought out to air through the beam lines (which are housed in shielded hutches). Due to the interaction of SR with air, ozone is produced, which is a noxious gas and is hazardous, if inhaled in excess. The production of ozone is high in white beam lines in comparison with pink and monochromatic beam lines. In the present paper ozone generation for a white beam line of Indus-2 is estimated. The ozone production rate, saturation concentration, ventilation rate and delay time are also estimated. The saturation concentration of ozone for the white beam line (energy dispersive X-ray diffraction beam line) BL-11 was found to be 0.965 ppm for 100 cm interaction path length and 51.45 m3 hutch volume without any ventilation. The paper presents the details of the calculation and the results. (author)

  13. Lattice design of medium energy beam transport line for n spallation neutron source

    International Nuclear Information System (INIS)

    A 1 GeV H- injector linac is being designed at RRCAT for the proposed Indian Spallation Neutron Source (ISNS). The front-end of the injector linac will consist of Radiofrequency Quadrupole (RFQ) linac, which will accelerate the H- beam from 50 keV to 3 MeV. The beam will be further accelerated in superconducting Single Spoke Resonators (SSRs). A Medium Energy Beam Transport (MEBT) line will be used to transport the beam from the exit of RFQ to the input of SSR. The main purpose of MEBT is to carry out beam matching from RFQ to SSR, and beam chopping. In this paper, we describe the optimization criteria for the lattice design of MEBT. The optimized lattice element parameters are presented for zero and full (15 mA) current case. Beam dynamics studies have been carried out using an envelope tracing code Trace-3D. Required beam deflection angle due to the chopper housed inside the MEBT for beam chopping has also been estimated. (author)

  14. Coherence properties of focused X-ray beams at high brilliance synchrotron sources

    CERN Document Server

    Singer, A

    2013-01-01

    An analytical approach describing properties of focused partially coherent X-ray beams is presented. The method is based on the results of statistical optics and gives both the beam size and transverse coherence length at any distance behind an optical element. In particular, here we consider Gaussian Schell-model beams and thin optical elements. Limiting cases of incoherent and fully coherent illumination of the focusing element are discussed. The effect of the beam defining aperture, typically used in combination with focusing elements at synchrotron sources to improve transverse coherence, is also analyzed in detail. As an example the coherence properties in the focal region of compound refractive lenses at the PETRA III synchrotron source are analyzed.

  15. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  16. Hot hydrogen atoms in a water-vapor microwave plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Tatarova, E.; Dias, F.M.; Ferreira, C.M. [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal)

    2009-12-15

    A study of the hydrogen Balmer line shape in a water-vapor, microwave slot-antenna excited plasma source operated at 2.45 GHz is reported. The emission profiles of the H{sub {alpha}} and H{sub {beta}} lines are well fitted by Gaussian profiles. Excited hydrogen atoms are detected in the remote plasma zone of the source up to 30 cm distance from the exciting antennas. The measured Doppler temperature corresponding to the H{sub {beta}} line broadening is about three times higher than the rotational temperature of the hydrogen molecular Fulcher-{alpha} band. It has been found clear evidence for the existence of a local source of excited ''hot'' hydrogen atoms in the ''microwave field free'' remote plasma zone. The measured Doppler broadening of the O(777.4 nm) triplet line indicates that ''hot'' oxygen atoms, with an energy around 0.3 eV, are also created in this source. Exothermic electron-ion and ion-ion recombination processes as well as DC distributed potentials existing in inhomogeneous remote plasma are possible local sources of ''hot'' atoms in the far remote plasma zone. (author)

  17. Shaping the electron beams with submicrosecond pulse duration in sources and electron accelerators with plasma emitters

    CERN Document Server

    Gushenets, V I

    2001-01-01

    One studies the techniques in use to shape submicrosecond electron beams and the physical processes associated with extraction of electrons from plasma in plasma emitters. Plasma emitter base sources and accelerators enable to generate pulse beams with currents varying from tens of amperes up to 10 sup 3 A, with current densities up to several amperes per a square centimeter, with pulse duration constituting hundreds of nanoseconds and with high frequencies of repetition

  18. RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W J; Hartemann, F V; Tremaine, A M; Springer, P T; Le Sage, G P; Barty, C P J; Rosenzweig, J B; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Slaughter, D R; Anderson, S

    2002-10-16

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.

  19. Time structure of the particle beam source and current sheath filamentation in the plasma focus

    International Nuclear Information System (INIS)

    In previous work the authors have described a method for determining the energy spectrum N(E) of the ion beam emitted from a localized (point) source in the plasma focus pinch. In systematic applications the time structure of the beam source (dN/dt) is assumed to be the same as that of the x-ray localized source recorded from scintillation detector signal with a ≅ 2-5 ns time resolution [the spectrum is derived from the ion time of flight ΔtΓE/sup -1/2/; Δt from the conditions x(t)xMax N/Max x = N(t + Δt) on x-ray signal (x) and particle signal N]. The energy spectrum with a high resolution (ΔE ≤ 0.0 l E) from an alternative method - i.e. from magnetic analyzer data - is essentially the same as that from time of flight. This confirms that the time structure of the ion beam source in the high energy region (E > 0.3 MeV) fits the x-ray (and electron beam) source structure. At any specific time tau (i.e., within a sufficiently small time interval δt during the emission time ≅ 5-50 ns of the beam) the beam is emitted with an amplitude N(E) which is sharply peaked at a specific value of the energy E = E(tau). A correlation of the filamentary structure of the x-ray source with a filamentary structure of the ion source can also be established on a space scale of ≤ 10μm

  20. Structural design study of a proton beam window for a 1-MW spallation neutron source

    CERN Document Server

    Teraoku, T; Ishikura, S; Kaminaga, M; Maekawa, F; Meigo, S I; Terada, A

    2003-01-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to m...

  1. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    Science.gov (United States)

    Lychagin, E. V.; Mityukhlyaev, V. A.; Muzychka, A. Yu.; Nekhaev, G. V.; Nesvizhevsky, V. V.; Onegin, M. S.; Sharapov, E. I.; Strelkov, A. V.

    2016-07-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium (4He). The PIK reactor is chosen as a perspective example of application of this idea, which consists of installing 4He UCN source in the beam of thermal or cold neutrons and surrounding the source with moderator-reflector, which plays the role of cold neutron (CN) source feeding the UCN source. CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator-reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of 4He source with solid methane (CH4) or/and liquid deuterium (D2) moderator-reflector. We show that such a source with CH4 moderator-reflector at the PIK reactor would provide the UCN density of ~1·105 cm-3, and the UCN production rate of ~2·107 s-1. These values are respectively 1000 and 20 times larger than those for the most intense UCN user source. The UCN density in a source with D2 moderator-reflector would reach the value of ~2·105 cm-3, and the UCN production rate would be equal ~8·107 s-1. Installation of such a source in a beam of CNs would slightly increase the density and production rate.

  2. Novel neutralized-beam intense neutron source for fusion technology development

    International Nuclear Information System (INIS)

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D0 and T0 beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T0 + T+ space-charge-neutralized beam incident on either a LiD or gas D2 target with calculated 14-MeV neutron yields of 2 x 1015/s, 7 x 1015/s, or 1.6 x 1016/s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm2

  3. Development of microwave ion source and low energy beam transport system for high current cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, V.S., E-mail: pandit@vecc.gov.in; Sing Babu, P.; Goswami, A.; Srivastava, S.; Misra, A.; Chatterjee, Mou; Nabhiraj, P.Y.; Yadav, R.C.; Bhattacharya, S.; Roy, S.; Nandi, C.; Pal, G.; Thakur, S.K.

    2013-12-15

    A 2.45 GHz microwave ion source and a low energy beam transport system have been developed to study the high intensity proton beam injection into a 10 MeV, 5 mA compact cyclotron. We have extracted proton beam more than 10 mA at 80 kV as measured by the DCCT after the extraction and a well collimated beam of 7 mA (through 1 cm × 1 cm slit) at the faraday cup 1.5 m away from the source. The transport of protons from the ion source in the presence of H{sub 2}{sup +}, H{sub 3}{sup +} species has been studied using PIC simulations through our transport line which consists of two solenoids. We have also installed a small dipole magnet with similar field as that of the cyclotron along with vacuum chamber, spiral inflector and few diagnostic elements at the end of the beam line. In the preliminary testing of inflection, we achieved 1 mA beam on the faraday cup at the exit of inflector with ∼60% transmission efficiency.

  4. Dual-source multi-energy CT with triple or quadruple x-ray beams

    Science.gov (United States)

    Yu, Lifeng; Li, Zhoubo; Leng, Shuai; McCollough, Cynthia H.

    2016-03-01

    Energy-resolved photon-counting CT (PCCT) is promising for material decomposition with multi-contrast agents. However, corrections for non-idealities of PCCT detectors are required, which are still active research areas. In addition, PCCT is associated with very high cost due to lack of mass production. In this work, we proposed an alternative approach to performing multi-energy CT, which was achieved by acquiring triple or quadruple x-ray beam measurements on a dual-source CT scanner. This strategy was based on a "Twin Beam" design on a single-source scanner for dual-energy CT. Examples of beam filters and spectra for triple and quadruple x-ray beam were provided. Computer simulation studies were performed to evaluate the accuracy of material decomposition for multi-contrast mixtures using both tri-beam and quadruple-beam configurations. The proposed strategy can be readily implemented on a dual-source scanner, which may allow material decomposition of multi-contrast agents to be performed on clinical CT scanners with energy-integrating detector.

  5. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    Energy Technology Data Exchange (ETDEWEB)

    Marland, S. (Tennessee Univ., Knoxville, TN (United States))

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  6. The Characteristics Of The Direct Metal Ion Beam Source And Its Applications (indium Tin Oxide)

    CERN Document Server

    Kim, D

    2001-01-01

    It is well known that thin film properties depends on its microstructures and the surface mobility is most important parameters to consider microstructures and to obtain high quality thin films. Thus, currently ion beam based deposition which can control surface mobility with kinetic energy of auxiliary gas ion investigated intensively. Recently we developed the DMIBD system which can control ion beam energy precisely under 500Ev and also ion beam flux, independently. In this work, the optimum process parameters of DMIBD such as secondary ion yields, ion/atom arrival ratios, ion energy spread, and deposition rates for various metal targets were measured as functions of Cs+ ion bombarding energy, Cs+ ion dose, and secondary ion beam energy, respectively. From the results, the secondary ion yields for C,Al,Si,Cu,Ta, and W were about 20% and the ion energy spread also less than 10% regardless of the ion beam energy. In order to investigated the effect of secondary ion beam energy on the thin film properties such...

  7. Recent developments of target and ion sources to produce ISOL beams

    CERN Document Server

    Stora, Thierry

    2013-01-01

    In this review on target and ion sources for ISOL (Isotope Separation OnLine) beams, important develop- ments from the past five years are highlighted. While at precedent EMIS conferences, a particular focus was given to a single topics, for instance specifically on ion sources or on chemical purification tech- niques, here each of the important elements present in an ISOL production unit is discussed. Fast diffus- ing nanomaterials, uranium-based targets, high power targets for next generation facilities, purification by selective adsorption, new ion sources are all part of this review. For each of these selected topics, the reported results lead to significant gains in intensity, purity, or quality of the delivered beam, or in the production of new isotope beams. Often the outcome resulted from the combination of original ideas with state-of-the-art investigations; this was carried out using very different scientific disciplines, lead- ing to understanding of the underlying chemical or physical mechanisms a...

  8. Beam-based model of broad-band impedance of the Diamond Light Source

    Science.gov (United States)

    Smaluk, Victor; Martin, Ian; Fielder, Richard; Bartolini, Riccardo

    2015-06-01

    In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  9. Investigation of multi-charged heavy ion production in an electron beam ion source

    International Nuclear Information System (INIS)

    Measurements of multi-charged heavy ions produced in an Electron Beam Ion Source (EBIS) were carried out with a test model ion source 20 cm in length. This test model utilized an electron gun placed external to the bore of the focusing solenoid in order to achieve electrostatically focussed electron beams and isolation of the vacuum surrounding the electron gun from the vacuum in the ionization region within the solenoid bore. An ultrahigh vacuum system utilizing liquid nitrogen (770K) cryopumping was used to achieve the low pressures needed in the ionization region for the operation of this ion source. Several technical problems limited the operation of this test model and prevented a thorough investigation of the ionization processes in the ion source, but the experimental results have shown qualitative agreement with the theoretical calculations for the operation of this type of ion source. Even with the problems of an insufficient vacuum and electron beam focussing field, measurable currents of C+5 and A+8 ions were produced. The present experimental results suggest that the approach taken in this work of using an external electron gun and cryopumping in the EBIS to achieve the large electron beam current density and low vacuum necessary for successful operation is a viable one. Such an ion source can be used to create highly-charged heavy ions for injection into a cyclotron or other type of particle accelerator

  10. Investigation of multi-charged heavy ion production in an electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, R.W.

    1977-12-01

    Measurements of multi-charged heavy ions produced in an Electron Beam Ion Source (EBIS) were carried out with a test model ion source 20 cm in length. This test model utilized an electron gun placed external to the bore of the focusing solenoid in order to achieve electrostatically focussed electron beams and isolation of the vacuum surrounding the electron gun from the vacuum in the ionization region within the solenoid bore. An ultrahigh vacuum system utilizing liquid nitrogen (77/sup 0/K) cryopumping was used to achieve the low pressures needed in the ionization region for the operation of this ion source. Several technical problems limited the operation of this test model and prevented a thorough investigation of the ionization processes in the ion source, but the experimental results have shown qualitative agreement with the theoretical calculations for the operation of this type of ion source. Even with the problems of an insufficient vacuum and electron beam focussing field, measurable currents of C/sup +5/ and A/sup +8/ ions were produced. The present experimental results suggest that the approach taken in this work of using an external electron gun and cryopumping in the EBIS to achieve the large electron beam current density and low vacuum necessary for successful operation is a viable one. Such an ion source can be used to create highly-charged heavy ions for injection into a cyclotron or other type of particle accelerator.

  11. Generations of dark hollow beams and their applications in laser cooling of atoms and all optical-type Bose-Einstein condensation

    Institute of Scientific and Technical Information of China (English)

    印建平; 高伟建; 王海峰; 龙全; 王育竹

    2002-01-01

    We report on a new experimental result to generate dark hollow beams by using a geometric optical method.We propose two new methods to produce focused and localized hollow laser beams by using π-phase plates. UsingMonte-Carlo simulations, we have studied the Sisyphus cooling of alkali atoms in pyramidal hollow beam gravito-opticaltraps. We discuss some potential applications of the dark hollow beams in atom optics and the preparation of an alloptically-cooled and optically-trapped atomic Bose-Einstein condensation (BEC).Our research shows that an ultracoldatomic sample with a temperature of ~ 2μK can be obtained in the pyramidal hollow beam dipole trap and an alloptical-type BEC may be realized in a far blue-detuned, hollow beam trap.

  12. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, N.; Santhana Raman, P. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Xu, X.; Pang, R.; Kan, J. A. van, E-mail: phyjavk@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2016-02-15

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.

  13. Protection and fault detection for Lawrence Berkeley Laboratory neutral beam sources

    International Nuclear Information System (INIS)

    Testing of TFTR neutral beam (NB) sources has begun at the LBL Neutral Beam System Test Facility (NBSTF). Operation at 120 kV, 65 A, 0.5 sec should be achieved soon. Because NB sources spark down frequently during conditioning, the main accelerating (accel) power supply must be interrupted within a few microseconds to avoid degrading the voltage holding capability, or even the damaging, of the NB source. A variety of improper magnitudes and/or ratios of voltages, currents, and times can occur and must be recognized as fault conditions in order to initiate a prompt interruption of the accel power supply. This paper discusses in detail the key signals which must be monitored and the manner in which they are processed in fault detector circuitry for safe operation of LBL NB sources. The paper also reviews the more standard interlocks and protective features recommended for these sources

  14. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    International Nuclear Information System (INIS)

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators

  15. Partially coherent sources which produce the same far zone optical force as a laser beam

    CERN Document Server

    Auñon, Juan Miguel

    2013-01-01

    On applying a theorem previously derived by Wolf and Collett, we demonstrate that partially coherent Gaussian Schell model uctuating sources (GSMS) produce exactly the same optical forces as a fully coherent laser beam. We also show that this kind of sources helps to control the light-matter interaction in biological samples which are very sensitive to thermal heating induced by higher power intensities; and hence the invasiveness of the manipulation. This is a consequence of the fact that the same photonic force can be obtained with a low intensity GSMS as with a high intensity laser beam.

  16. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  17. Development of an ion source for long-pulse (30-s) neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Menon, M.M.; Barber, G.C.; Blue, C.W.; Dagenhart, W.K.; Gardner, W.L.; Haselton, H.H.; Moeller, J.A.; Ponte, N.S.; Ryan, P.M.; Schecter, D.E.

    1982-01-01

    This paper describes the development of a long-pulse positive ion source that has been designed to provide high brightness deuterium beams (divergence approx. = 0.25/sup 0/ rms, current density approx. = 0.15 A cm/sup -2/) of 40 to 45 A, at a beam energy of 80 keV, for pulse lengths up to 30 s. The design and construction of the ion source components are described with particular emphasis placed on the long-pulse cathode assembly and ion accelerator.

  18. Long pulse H- beam extraction with a rf driven ion source on a high power level

    International Nuclear Information System (INIS)

    IPP Garching is investigating the applicability of rf driven negative ion sources for the neutral beam injection of International Thermonuclear Experimental Reactor. The setup of the tested source was improved to enable long pulses up to 100 kW rf power. The efficiency of negative ion production decreases at high power. The extracted H- currents as well as the symmetry of the plasma density close to the plasma grid and of the beam divergence depend on the magnetic filter field. The pulse duration is limited by the increase in coextracted electrons, which depends on the rf power and the caesium conditions on the plasma grid.

  19. An RF driven H- source and a low energy beam injection system for RFQ operation

    International Nuclear Information System (INIS)

    An RF driven H- source has been developed at LBL for use in the Superconducting Super Collider (SSC). To date, an H- current of ∼40 mA can be obtained from a 5.6-cm-diam aperture with the source operated at a pressure of about 12 m Torr and 50 kW of RF power. In order to match the accelerated H- beam into the SSC RFQ, a low-energy H- injection system has been designed. This injector produces an outgoing H- beam free of electron contamination, with small radius, large convergent angle and small projectional emittance

  20. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Küchler, D. [European Organization for Nuclear Research (CERN), 1211 Geneva 23 (Switzerland)

    2016-02-15

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  1. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    International Nuclear Information System (INIS)

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work

  2. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work. PMID:26932095

  3. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  4. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    Science.gov (United States)

    Toivanen, V.; Küchler, D.

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  5. Recent developments in production of radioactive ion beams with the selective laser ion source at the on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    The resonance ionization laser ion source (RILIS) of the ISOLDE on-line isotope separation facility is based on the method of laser stepwise resonance ionization of atoms in a hot metal cavity. The atomic selectivity of the RILIS compliments the mass selection process of the ISOLDE separator magnets to provide beams of a chosen isotope with greatly reduced isobaric contamination. Using a system of dye lasers pumped by copper vapor lasers, ion beams of 22 elements have been generated at ISOLDE with ionization efficiencies in the range of 0.5%-30%. As part of the ongoing RILIS development, recent off-line resonance ionization spectroscopy studies have determined the optimal three-step ionization schemes for yttrium, scandium, and antimony

  6. Recent developments in production of radioactive ion beams with the selective laser ion source at the on-line isotope separator ISOLDE

    Science.gov (United States)

    Catherall, R.; Fedosseev, V. N.; Köster, U.; Lettry, J.; Suberlucq, G.; Marsh, B. A.; Tengborn, E.

    2004-05-01

    The resonance ionization laser ion source (RILIS) of the ISOLDE on-line isotope separation facility is based on the method of laser stepwise resonance ionization of atoms in a hot metal cavity. The atomic selectivity of the RILIS compliments the mass selection process of the ISOLDE separator magnets to provide beams of a chosen isotope with greatly reduced isobaric contamination. Using a system of dye lasers pumped by copper vapor lasers, ion beams of 22 elements have been generated at ISOLDE with ionization efficiencies in the range of 0.5%-30%. As part of the ongoing RILIS development, recent off-line resonance ionization spectroscopy studies have determined the optimal three-step ionization schemes for yttrium, scandium, and antimony.

  7. Optical and mechanical design of the extended x-ray absorption fine structure (EXAFS) beam-line at Indus-II synchrotron source

    International Nuclear Information System (INIS)

    An extended x-ray absorption fine structure (EXAFS) beam line for x-ray absorption studies using energy dispersive geometry and position sensitive detector is being designed for the INDUS-II Synchrotron source. The beam line would be used for doing x-ray absorption experiments involving measurements of fme structures above the absorption edge of different species of atoms in a material The results of the above experiments would lead to the determination of different important structural parameters of materials viz.. inter-atomic distance. co-ordination number, degree of disorder and radial distribution function etc. The optical design of the beam line has been completed based on the working principle that a single crystal bent in the shape of an ellipse by a crystal bender would act as a dispersing as well as focusing element. The mechanical design of the beam line including the crystal bender has also been completed and discussed here. Calculations have been done to detennine the temperature profile on the different components of the beam line under exposure to synchrotron radiation and proper cooling channels have been designed to bring down the heat load on the components. (author)

  8. Atom probe tomography characterisation of a laser diode structure grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Samantha E.; Humphreys, Colin J.; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Smeeton, Tim M.; Hooper, Stewart E.; Heffernan, Jonathan [Sharp Laboratories of Europe Limited, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4GB (United Kingdom); Saxey, David W.; Smith, George D. W. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom)

    2012-03-01

    Atom probe tomography (APT) has been used to achieve three-dimensional characterization of a III-nitride laser diode (LD) structure grown by molecular beam epitaxy (MBE). Four APT data sets have been obtained, with fields of view up to 400 nm in depth and 120 nm in diameter. These data sets contain material from the InGaN quantum well (QW) active region, as well as the surrounding p- and n-doped waveguide and cladding layers, enabling comprehensive study of the structure and composition of the LD structure. Two regions of the same sample, with different average indium contents (18% and 16%) in the QW region, were studied. The APT data are shown to provide easy access to the p-type dopant levels, and the composition of a thin AlGaN barrier layer. Next, the distribution of indium within the InGaN QW was analyzed, to assess any possible inhomogeneity of the distribution of indium (''indium clustering''). No evidence for a statistically significant deviation from a random distribution was found, indicating that these MBE-grown InGaN QWs do not require indium clusters for carrier localization. However, the APT data show steps in the QW interfaces, leading to well-width fluctuations, which may act to localize carriers. Additionally, the unexpected presence of a small amount (x = 0.005) of indium in a layer grown intentionally as GaN was revealed. Finally, the same statistical method applied to the QW was used to show that the indium distribution within a thick InGaN waveguide layer in the n-doped region did not show any deviation from randomness.

  9. Electric field strength measurements in a megavolt vacuum diode using laser induced fluorescence of an atomic beam

    International Nuclear Information System (INIS)

    A combined technique of an atomic beam probing and laser-induced fluorescence spectroscopy (LIFABS) is applied for measuring of local electric field in a 1 MV, 100 kJ, 4 μsec electron diode. Laser-produced lithium beam is stepwise excited by two resonant wide-band laser beams. Stark-splitted spontaneous emission from n=4 level is detected with a polychromator. Time dependence of the electric field was inferred from splitting of the 460.3 nm lithium line. The electric field strength F grows during a pulse from 160 to 260 kV/cm in the center of a 6 cm gap. By comparing calculated and experimental F-values, expansion of the emission boundaries of the cathode and anode plasmas was reconstructed

  10. Development of high performance negative ion sources and accelerators for MeV class neutral beam injectors

    International Nuclear Information System (INIS)

    The operation of an accelerator at low pressure is an essential requirement to reduce the stripping loss of negative ions, which, in turn, results in high efficiency of the neutral beam systems. For this purpose, a vacuum insulated beam source (VIBS) has been developed at Japan Atomic Energy Research Institute, which reduces the gas pressure in the accelerator by enhanced gas conductance through the accelerator. The VIBS achieves a high voltage insulation of 1 MV by immersing the whole structure of the accelerator in vacuum with a long (∼ 1.8 m) insulation distance. Results of the voltage holding test using a long vacuum gap of 1.8 m indicate that a transition from vacuum discharge to gas discharge occurs at around 0.2 Pa m in the long vacuum gap. So far, the VIBS succeeded in accelerating a 20 mA (H-) beam up to 970 keV for 1 s. It has been demonstrated that the high voltage holding capability of the 1 MV bushing surrounding the VIBS accelerator could be drastically improved by installing new large stress rings that reduces the electric field concentration at the triple junction. After implementing this change, the VIBS sustained 1 MV stably for more than 1200 s. Acceleration of ampere class H- beams at high current density is to be started soon to demonstrate ITER relevant beam optics. The operation of a negative ion source at low pressure is also essential to reduce the stripping loss. However, it was not very easy to attain high current density H- ions at low pressure, since the destruction cross-section of the negative ion becomes large if the electron temperature is >1 eV in low pressure discharge. Using a strong magnetic filter to lower the electron temperature, and introducing higher arc discharge power to compensate for the reduction of plasma density through the filter, an H- ion beam of 310 A m-2 was extracted at a very low pressure of 0.1 Pa. This satisfies the ITER requirement of current density at one-third of the ITER design pressure (0.3 Pa

  11. Evaluation of source term induced by beam loss in the superconducting linear accelerator at RAON

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Kim, Su Na; Nam, Shin Woo; Chung, Yon Sei [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2014-11-15

    As a new world-class heavy ion accelerator, RAON is able to accelerate heavy ions from proton to uranium with the energy up to -400 MeV/u and produce rare isotopes. These high purity, high intensity, and high energy beams generate the various secondary radiation which will impact on the shielding aspects of the main linear accelerator tunnels. In the main tunnel the secondary neutrons are produced by uniform beam-loss or accident criteria. In this paper evaluations of several source terms induced by beam-loss will be discussed along with the physics model of the Monte Carlo simulation codes. The beam-loss criteria were tested for the evaluation of source term for the main beam line tunnel of the RAON accelerator. It was found that the amount of the secondary neutrons depends on the incident angle of projectile on the beam pipe and the mass and energy of projectile. The influence of selected physics models and libraries of MCNPX and PHITS has been examined. The secondary neutrons were produced most in the CEM and LAQGSM model.

  12. Two-color above threshold ionization of atoms and ions in XUV Bessel beams and combined with intense laser light

    CERN Document Server

    Seipt, D; Surzhykov, A; Fritzsche, S

    2016-01-01

    The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons from the weak but extreme ultra-violet (XUV) vortex Bessel beam, the energy and angular distribution of the photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location of the target (atoms) with regard to the beam axis. In addition, analogue to the circular dichroism in typical two-color ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position of t...

  13. Free radical hydrogen atom abstraction from saturated hydrocarbons: A crossed-molecular-beams study of the reaction Cl + C{sub 3}H{sub 8} {yields} HCl + C{sub 3}H{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; Hemmi, N.; Suits, A.G.; Lee, Y.T. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    The abstraction of hydrogen atoms from saturated hydrocarbons are reactions of fundamental importance in combustion as well as often being the rate limiting step in free radical substitution reactions. The authors have begun studying these reactions under single collision conditions using the crossed molecular beam technique on beamline 9.0.2.1, utilizing VUV undulator radiation to selectively ionize the scattered hydrocarbon free radical products (C{sub x}H{sub 2x+1}). The crossed molecular beam technique involves two reactant molecular beams fixed at 90{degrees}. The molecular beam sources are rotatable in the plane defined by the two beams. The scattered neutral products travel 12.0 cm where they are photoionized using the VUV undulator radiation, mass selected, and counted as a function of time. In the authors initial investigations they are using halogen atoms as protypical free radicals to abstract hydrogen atoms from small alkanes. Their first study has been looking at the reaction of Cl + propane {r_arrow} HCl + propyl radical. In their preliminary efforts the authors have measured the laboratory scattering angular distribution and time of flight spectra for the propyl radical products at collision energies of 9.6 kcal/mol and 14.9 kcal/mol.

  14. Formation of GaN quantum dots by molecular beam epitaxy using NH{sub 3} as nitrogen source

    Energy Technology Data Exchange (ETDEWEB)

    Damilano, B., E-mail: bd@crhea.cnrs.fr; Brault, J.; Massies, J. [CRHEA-CNRS, Centre de Recherche sur l' Hétéro-Epitaxie et ses Applications, Centre National de la Recherche Scientifique, Rue B. Grégory, Valbonne 06560 (France)

    2015-07-14

    Self-assembled GaN quantum dots (QDs) in Al{sub x}Ga{sub 1−x}N (0.3 ≤ x ≤ 1) were grown on c-plane sapphire and Si (111) substrates by molecular beam epitaxy using ammonia as nitrogen source. The QD formation temperature was varied from 650 °C to 800 °C. Surprisingly, the density and size of QDs formed in this temperature range are very similar. This has been explained by considering together experimental results obtained from reflection high-energy electron diffraction, atomic force microscopy, and photoluminescence to discuss the interplay between thermodynamics and kinetics in the QD formation mechanisms. Finally, possible ways to better control the QD optical properties are proposed.

  15. Stimulated Raman adiabatic passage for improved performance of a cold-atom electron and ion source

    Science.gov (United States)

    Sparkes, B. M.; Murphy, D.; Taylor, R. J.; Speirs, R. W.; McCulloch, A. J.; Scholten, R. E.

    2016-08-01

    We implement high-efficiency coherent excitation to a Rydberg state using stimulated Raman adiabatic passage in a cold-atom electron and ion source. We achieve an efficiency of 60% averaged over the laser excitation volume with a peak efficiency of 82%, a 1.6 times improvement relative to incoherent pulsed-laser excitation. Using pulsed electric field ionization of the Rydberg atoms we create electron bunches with durations of 250 ps. High-efficiency excitation will increase source brightness, crucial for ultrafast electron diffraction experiments, and coherent excitation to high-lying Rydberg states could allow for the reduction of internal bunch heating and the creation of a high-speed single-ion source.

  16. Production and diagnosis of krypton ion beam using a freeman ion source

    International Nuclear Information System (INIS)

    The present work investigates the processes and phenomena occur in a Freeman heavy ion source system using krypton gas. The ion source parameters are adjusted in order to obtain the desired beam current with highest efficiency. The relations between the discharge current Id and the ion beam current Ib are obtained at constant pressures and for various accelerating voltages. The curves indicate a linear dependence of ion current from plasma density. Optimization of the ion source required adjustment of the cathode current and gas pressure. The dependence of ion beam currents on the accelerating voltage is given at constant discharge current (la = 0.8 A) and for various pressures. The ion beam current reaches 3m A at 45 KV and at a pressure of 2 x 105 Torr, and a cathode current equal to 130 A. An analysis has been made for an implanted Krypton ion beam in a zinc specimen using laser ablation inductively coupled plasma mass spectrometry. Photographs show the examined zinc specimen are presented. The depth profile shows that the highest concentration of Krypton ion under the surface of the zinc specimen is located at about 10 nm

  17. Beam extraction from a laser-driven multicharged ion source (abstract)

    International Nuclear Information System (INIS)

    A newly proposed type of multicharged ion source has several potential advantages over existing types and a number of useful applications. The basic principle is that multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity (Ref. 1). Thus, charge state separation downstream is simplified or made unnecessary. Another advantage is that large currents (hundreds of amperes) can be extracted. This type of source could be used for heavy-ion fusion drivers (see Ref. 1) or storage rings. There are also industrial application such as materials processing. We describe conceptual design studies for several specific cases. For example, we discuss extraction and focusing of a 4.1 MV, 144 A beam of Xe16+ ions from an expanding plasma created by an intense laser. The maximum duration of the beam pulse is determined by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The initially diverging beam can be refocused to a small radius or made parallel by a combination of electrostatic and solenoid focusing. Our design studies are carried out first with an envelope code to determine the proper focusing parameters and then with a self-consistent particle code to optimize the beam quality. We present results from both codes and discuss several applications of this type of ion source.copyright 1998 American Institute of Physics

  18. A vacuum spark ion source: High charge state metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  19. Beam extraction from a laser-driven multicharged ion source (abstract)

    Science.gov (United States)

    Anderson, O. A.; Logan, B. Grant

    1998-02-01

    A newly proposed type of multicharged ion source has several potential advantages over existing types and a number of useful applications. The basic principle is that multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity (Ref. Reference 1). Thus, charge state separation downstream is simplified or made unnecessary. Another advantage is that large currents (hundreds of amperes) can be extracted. This type of source could be used for heavy-ion fusion drivers (see Ref. Reference 1) or storage rings. There are also industrial application such as materials processing. We describe conceptual design studies for several specific cases. For example, we discuss extraction and focusing of a 4.1 MV, 144 A beam of Xe16+ ions from an expanding plasma created by an intense laser. The maximum duration of the beam pulse is determined by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The initially diverging beam can be refocused to a small radius or made parallel by a combination of electrostatic and solenoid focusing. Our design studies are carried out first with an envelope code to determine the proper focusing parameters and then with a self-consistent particle code to optimize the beam quality. We present results from both codes and discuss several applications of this type of ion source.

  20. A vacuum spark ion source: High charge state metal ion beams

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  1. A vacuum spark ion source: High charge state metal ion beams

    International Nuclear Information System (INIS)

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described

  2. Calculating the background radiation in the vicinity of the beam catchers of the ELBE radiation source

    International Nuclear Information System (INIS)

    The ELBE radiation sources comprises beam catchers in the experimenting sites which absorb the primary electron beam as well as the generated secondary radiation. The beam catcher consists of an ultrapure graphite absorber enclosed in a water-cooled stainless steel shell. Background radiation is shielded by iron, lead and heavy concrete. The beam parameters and the position of the beam catchers differ between experimenting sites. In order to determine the dose dependence of photon and neutron fluence and the dose equivalent at the cooling shell of the beam catcher, simulations were carried out using the FLUKA code. Radiation energies of 20 MeV and 50 MeV and electron fluxes of 1 mA were considered. The spatial and energetic distributions of the dose rate equivalent provide a basis for dimensioning of the radiation shields. The calculated distributions of the energy dose rate in the beam catcher serve as a basis for assessing thermal loads on materials and for designing the cooling system. (orig.)

  3. Optimization of a plasma focus device as an electron beam source for thin film deposition

    Science.gov (United States)

    Zhang, T.; Lin, J.; Patran, A.; Wong, D.; Hassan, S. M.; Mahmood, S.; White, T.; Tan, T. L.; Springham, S. V.; Lee, S.; Lee, P.; Rawat, R. S.

    2007-05-01

    Electron beam emission characteristics from neon, argon, hydrogen and helium in an NX2 dense plasma focus (DPF) device were investigated in order to optimize the plasma focus device for deposition of thin films using energetic electron beams. A Rogowski coil and CCD based magnetic spectrometer were used to obtain temporal characteristics, total electron charge and energy distributions of electron emission from the NX2 DPF device. It is found that hydrogen should be the first choice for thin film deposition as it produces the highest electron beam charge and higher energy (from 50 to 200 keV) electrons. Neon is the next best choice as it gives the next highest electron beam charge with mid-energy (from 30 to 70 keV) electrons. The operation of NX2 with helium at voltages above 12 kV produces a mid-energy (from 30 to 70 keV) electron beam with low-electron beam charge, however, argon is not a good electron beam source for our NX2 DPF device. Preliminary results of the first ever thin film deposition using plasma focus assisted pulsed electron deposition using a hydrogen operated NX2 plasma focus device are presented.

  4. High-Intensity and High-Brightness Source of Moderated Positrons Using a Brilliant gamma Beam

    CERN Document Server

    Hugenschmidt, C; Habs, D; Thirolf, P G

    2011-01-01

    Presently large efforts are conducted towards the development of highly brilliant gamma beams via Compton back scattering of photons from a high-brilliance electron beam, either on the basis of a normal-conducting electron linac or a (superconducting) Energy Recovery Linac (ERL). Particularly ERL's provide an extremely brilliant electron beam, thus enabling to generate highest-quality gamma beams. A 2.5 MeV gamma beam with an envisaged intensity of 10^15 s^-1, as ultimately envisaged for an ERL-based gamma-beam facility, narrow band width (10^-3), and extremely low emittance (10^-4 mm^2 mrad^2) offers the possibility to produce a high-intensity bright polarized positron beam. Pair production in a face-on irradiated W converter foil (200 micron thick, 10 mm long) would lead to the emission of 2 x 10^13 (fast) positrons per second, which is four orders of magnitude higher compared to strong radioactive ^22Na sources conventionally used in the laboratory.Using a stack of converter foils and subsequent positron m...

  5. Solar ions in the heliosheath: a possible new source of heavy neutral atoms

    CERN Document Server

    Grzedzielski, S; Bzowski, M; Izmodenov, V

    2006-01-01

    We show that multiply ionized coronal C, N, O, Mg, Si, S ions carried by the solar wind and neutralized by consecutive electron captures from neutral interstellar atoms constitute an important new source of neutral atoms in the inner heliosheath, with energies up to ~ 1 keV/n. In the model we developed, the heavy ions are treated as test particles carried by hydrodynamic plasma flow (with a Monte-Carlo description of interstellar neutrals) and undergoing all relevant atomic processes determining the evolution of all charge-states of considered species (radiative and dielectronic recombination, charge exchange, photo-, and electron impact ionization). The total strength of the source is from ~10^6 g/s for S to ~10^8 g/s for O, deposited as neutrals below the heliopause. These atoms should provide, as they drift to supersonic wind region, important sources of PUIs and eventually ACRs, especially for species that are excluded from entering the heliosphere because of their ionization in the LISM. The expected cor...

  6. Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source

    CERN Document Server

    Schunk, Gerhard; Strekalov, Dmitry V; Förtsch, Michael; Sedlmeir, Florian; Schwefel, Harald G L; Göbelt, Manuela; Christiansen, Silke; Leuchs, Gerd; Marquardt, Christoph

    2015-01-01

    Photon-atom coupling, in particular for proposed quantum repeater schemes, requires pure and versatile sources of quantum light. Here we demonstrate coupling to alkali dipole transitions in the near-infrared with a tunable source of photon pairs generated via spontaneous parametric down-conversion in a whispering-gallery mode resonator (WGMR). We have developed novel wavelength tuning mechanisms, which allow for a coarse step-wise central wavelength tuning from 790 nm to 1630 nm as well as continuous tuning with MHz resolution. We demonstrate the compatibility of our source with atomic transitions, such as the D1 line of rubidium at 795 nm (idler at 1608 nm) and cesium at 895\\,nm (idler at 1312 nm). At the cesium D1 transition, we exemplarily show a continuous scanning of the signal wavelength over the Doppler-broadened absorption line, and finally a heralded single photon spectroscopy of the atomic decay. Providing this flexibility in connecting various atomic transitions with telecom wavelengths, we demonst...

  7. Development of a fast traveling-wave beam chopper for the National Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.; Jason, A.J.; Krawczyk, F.L.; Power, J.

    1997-10-01

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the National Spallation Neutron Source (NSNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns to accommodate a 402.5-MHz beam structure--beam chopping in its front end, at the beam energy 2.5 MeV. The R and D program includes both modification of the existing LANSCE coax-plate chopper to reduce parasitic coupling between adjacent plates, and development of new traveling-wave deflecting structures, in particular, based on a meander line. Using analytical methods and three-dimensional time-domain computer simulations the authors study transient effects in such structures to choose an optimal chopper design.

  8. General design of the International Fusion Materials Irradiation Facility deuteron injector: Source and beam line

    International Nuclear Information System (INIS)

    In the framework of the International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities (IFMIF-EVEDA) project, CEA/IRFU is in charge of the design and realization of the 140 mA cw deuteron Injector. The electron cyclotron resonance ion source operates at 2.45 GHz and a 4 electrode extraction system has been chosen. A 2 solenoid beam line, together with a high space charge compensation have been optimized for a proper beam injection in the 175 MHz radio frequency quadrupole. The injector will be tested with proton and deuteron beam production either in pulsed mode or in cw mode on the CEA-Saclay site before to be shipped to Japan. Special attention was paid to neutron emission due to (d,D) reaction. In this paper, the general IFMIF Injector design is reported, pointing out beam dynamics, radioprotection, diagnostics, and mechanical aspects.

  9. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    Science.gov (United States)

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.

  10. Development of a fast traveling-wave beam chopper for the National Spallation Neutron Source

    International Nuclear Information System (INIS)

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the National Spallation Neutron Source (NSNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns to accommodate a 402.5-MHz beam structure--beam chopping in its front end, at the beam energy 2.5 MeV. The R and D program includes both modification of the existing LANSCE coax-plate chopper to reduce parasitic coupling between adjacent plates, and development of new traveling-wave deflecting structures, in particular, based on a meander line. Using analytical methods and three-dimensional time-domain computer simulations the authors study transient effects in such structures to choose an optimal chopper design

  11. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    International Nuclear Information System (INIS)

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)], we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. (author)

  12. PHYSICS OF THE HIGH CURRENT DENSITY ELECTRON BEAM ION SOURCE (EBIS).

    Energy Technology Data Exchange (ETDEWEB)

    Vella, M.C.

    1980-02-01

    Interest in upgrading present heavy particle accelerators has led to study of EBIS as a possible source of high Z ions, e.g,, Ar{sup +18}. The present work has been motivated primarily by the results reported by CRYEBIS, which indicate that a space charge neutralized, external electron gun can achieve current densities of 10{sup 5} A/cm{sup 2}. Scaling relationships are developed as a basis for understanding CRYEBIS operation. The relevance of collective effects to beam equilibrium and stability is pointed out, Single electron impact ionization scaling and beam neutralization scaling indicate that higher beam voltage may be the easiest way of increasing both ionization rate and particle intensity. Consideration of radial ion confinement suggests that beam collapse to high current density may be related to the highest charge state which is energetically accessible.

  13. Growth temperature dependence of the surface segregation of Er atoms in GaAs during molecular beam epitaxy

    International Nuclear Information System (INIS)

    We have quantitatively studied the temperature dependence of the surface segregation of Er atoms in GaAs during molecular beam epitaxy using secondary ion mass spectroscopy. It was found that a significant number of Er atoms segregate to the growing surface at temperatures of 400°C and above and that the segregation decay length is approximately 0.5 µm at 500°C, indicating that the incorporation ratio of Er atoms into GaAs is less than 10-3. In contrast to the growth at higher temperatures, GaAs overlayer growth at a temperature as low as 300°C is effective in suppressing the surface segregation of Er and obtaining δ-doped structures. (author)

  14. Atomic retention and near infrared photoluminescence from PbSe nanocrystals fabricated by sequential ion implantation and electron beam annealing

    International Nuclear Information System (INIS)

    Nanocrystals of PbSe have been fabricated in a silicon dioxide matrix by sequential low energy ion implantation followed by an electron beam annealing step. Transmission electron microscopy reveals PbSe nanocrystals with typical sizes between 3 and 10 nm in the sub-surface region. Rutherford Backscattering Spectrometry has been used to study the total atomic retention, as a function of implanted atoms, following annealing. Photoluminescence was observed in various samples, at 4 K, as a broad peak between 1.4 and 2.0 μm, with observation of a dependence of the peak wavelength on annealing temperature. Room temperature photoluminescence was observed for samples with a high retention of implanted atoms, demonstrating the importance of nanocrystal density for achieving ambient temperature emission in these systems

  15. Field ionization of helium in a supersonic beam: Kinetic energy of neutral atoms and probability of their field ionization

    International Nuclear Information System (INIS)

    High detection efficiency combined with spatial resolution on a nm-scale makes the field ionization process a promising candidate for spatially resolved neutral particles detection. The effective cross-sectional area σeff can serve as a measure for the effectiveness of such a field ion detector. In the present contribution, we combine quantum-mechanical calculations of the field-modified electron density distribution near the tungsten tip surface and of the resulting local field distributions, performed using the functional integration method, with a classical treatment of the atom trajectories approaching the tip in order to calculate the σeff values for ionization of free He atoms over an apex of a tungsten field emitter tip. The calculated values are compared with experimental data for supersonic He atomic beams at two different temperatures 95 and 298 K.

  16. A High Flux Source of Cold Rubidium

    CERN Document Server

    Slowe, C; Hau, L V; Slowe, Christopher; Vernac, Laurent; Hau, Lene Vestergaard

    2004-01-01

    We report the production of a continuous, slow, and cold beam of 87-Rb atoms with an unprecedented flux of 3.2 x 10^12 atoms/s and a temperature of a few milliKelvin. Hot atoms are emitted from a Rb candlestick atomic beam source and transversely cooled and collimated by a 20 cm long atomic collimator section, augmenting overall beam flux by a factor of 50. The atomic beam is then decelerated and longitudinally cooled by Zeeman slowing.

  17. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  18. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  19. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  20. High-Brightness Beams from a Light Source Injector: The Advanced Photon Source Low-Energy Undulator Test Line Linac

    OpenAIRE

    Travish, G.; Biedron, S; Borland, M.; Hahne, M.; Harkay, K.; Lewellen, J.W.; Lumpkin, A.; Milton, S.; Sereno, N.

    2000-01-01

    The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by high-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventiona...