WorldWideScience

Sample records for atomic absorption faa

  1. Speciation determination of chromium(III) and (VI) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, K. [Department of Environmental Sciences, S.V. University, Tirupati, 517502 A.P. (India); Kumar, K. Suresh; Prasad, B.; Suvardhan, K. [Department of Chemistry, S. V. University, Tirupati, 517502 A.P. (India); Lekkala, Ramesh Babu [Department of Environmental Sciences, S.V. University, Tirupati, 517502 A.P. (India); Janardhanam, K. [Department of Environmental Sciences, S.V. University, Tirupati, 517502 A.P. (India)], E-mail: Kandukurijanardhanam@gmail.com

    2008-02-11

    bis-[2-Hydroxy-1-naphthaldehyde] thiourea was synthesized and preconcentration cloud point extraction (CPE) for speciation determination of chromium(III) and (VI) in various environmental samples with flame atomic absorption spectrometry (FAAS) has been developed. Chromium(III) complexes with bis-[2-hydroxynaphthaldehyde] thiourea is subsequently entrapped in the surfactant micelles. After complexation of chromium(III) with reagent, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant Triton X-100 after centrifugation. The effect of pH, concentration of chelating agent, surfactant, equilibration temperature and time on CPE was studied. The relative standard deviation was 2.13% and the limits of detection were around 0.18 {mu}g L{sup -1}.

  2. Combined discrete nebulization and microextraction process for molybdenum determination by flame atomic absorption spectrometry (FAAS); Avaliacao da combinacao da nebulizacao discreta e processos de microextracao aplicados a determinacao de molibdenio por espectrometria de absorcao atomica com chama (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Oviedo, Jenny A.; Jesus, Amanda M.D. de; Fialho, Lucimar L.; Pereira-Filho, Edenir R., E-mail: erpf@ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2014-04-15

    Simple and sensitive procedures for the extraction/preconcentration of molybdenum based on vortex-assisted solidified floating organic drop microextraction (VA-SFODME) and cloud point combined with flame absorption atomic spectrometry (FAAS) and discrete nebulization were developed. The influence of the discrete nebulization on the sensitivity of the molybdenum preconcentration processes was studied. An injection volume of 200 μ resulted in a lower relative standard deviation with both preconcentration procedures. Enrichment factors of 31 and 67 and limits of detection of 25 and 5 μ L{sup -1} were obtained for cloud point and VA-SFODME, respectively. The developed procedures were applied to the determination of Mo in mineral water and multivitamin samples. (author)

  3. Solvent microextraction-flame atomic absorption spectrometry (SME-FAAS) for determination of ultratrace amounts of cadmium in meat and fish samples.

    Science.gov (United States)

    Goudarzi, Nasser

    2009-02-11

    A simple, low cost and highly sensitive method based on solvent microextraction (SME) for separation/preconcentration and flame atomic absorption spectrometry (FAAS) was proposed for the determination of ultratrace amounts of cadmium in meat and fish samples. The analytical procedure involved the formation of a hydrophobic complex by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution. In suitable conditions, the complex of cadmium-APDC entered the micro organic phase, and thus, separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, a detection limit (3 sigma) of 0.8 ng L(-1) and an enrichment factor of 93 were achieved. The relative standard deviation for the method was found to be 2.2% for Cd. The interference effects of some anions and cations were also investigated. The developed method has been applied to the determination of trace Cd in meat and fish samples. PMID:19138082

  4. Use of High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS) for Sequential Multi-Element Determination of Metals in Seawater and Wastewater Samples

    Science.gov (United States)

    Peña-Vázquez, E.; Barciela-Alonso, M. C.; Pita-Calvo, C.; Domínguez-González, R.; Bermejo-Barrera, P.

    2015-09-01

    The objective of this work is to develop a method for the determination of metals in saline matrices using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Module SFS 6 for sample injection was used in the manual mode, and flame operating conditions were selected. The main absorption lines were used for all the elements, and the number of selected analytical pixels were 5 (CP±2) for Cd, Cu, Fe, Ni, Pb and Zn, and 3 pixels for Mn (CP±1). Samples were acidified (0.5% (v/v) nitric acid), and the standard addition method was used for the sequential determination of the analytes in diluted samples (1:2). The method showed good precision (RSD(%) < 4%, except for Pb (6.5%)) and good recoveries. Accuracy was checked after the analysis of an SPS-WW2 wastewater reference material diluted with synthetic seawater (dilution 1:2), showing a good agreement between certified and experimental results.

  5. Cloud point extraction of palladium in water samples and alloy mixtures using new synthesized reagent with flame atomic absorption spectrometry (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Priya, B. Krishna [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, Tirupati 517502, AP (India); Subrahmanayam, P. [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, Tirupati 517502, AP (India); Suvardhan, K. [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, Tirupati 517502, AP (India); Kumar, K. Suresh [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, Tirupati 517502, AP (India); Rekha, D. [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, Tirupati 517502, AP (India); Rao, A. Venkata [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, Tirupati 517502, AP (India); Rao, G.C. [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, Tirupati 517502, AP (India); Chiranjeevi, P. [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, Tirupati 517502, AP (India)]. E-mail: chiranjeevipattium@gmail.com

    2007-06-01

    The present paper outlines novel, simple and sensitive method for the determination of palladium by flame atomic absorption spectrometry (FAAS) after separation and preconcentration by cloud point extraction (CPE). The cloud point methodology was successfully applied for palladium determination by using new reagent 4-(2-naphthalenyl)thiozol-2yl azo chromotropic acid (NTACA) and hydrophobic ligand Triton X-114 as chelating agent and nonionic surfactant respectively in the water samples and alloys. The following parameters such as pH, concentration of the reagent and Triton X-114, equilibrating temperature and centrifuging time were evaluated and optimized to enhance the sensitivity and extraction efficiency of the proposed method. The preconcentration factor was found to be (50-fold) for 250 ml of water sample. Under optimum condition the detection limit was found as 0.067 ng ml{sup -1} for palladium in various environmental matrices. The present method was applied for the determination of palladium in various water samples, alloys and the result shows good agreement with reported method and the recoveries are in the range of 96.7-99.4%.

  6. EVALUATION OF HEAVY METALS IN ETHANOLIC LEAF EXTRACT OF ACACIA CATECHU AS INDICATOR OF POLLUTION BY ATOMIC ABSORPTION SPECTROPHOTOMETRIC (FAAS) ANALYSIS

    OpenAIRE

    Lakshmi T; Rajendran R; Antony silvester

    2013-01-01

    Acacia catechu ethanolic leaf extract were selected to determine their heavy metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant material was procured from green chem herbal extracts, Bangalore, India and was digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 6030) and the conc...

  7. EVALUATION OF HEAVY METALS IN ETHANOLIC LEAF EXTRACT OF ACACIA CATECHU AS INDICATOR OF POLLUTION BY ATOMIC ABSORPTION SPECTROPHOTOMETRIC (FAAS ANALYSIS

    Directory of Open Access Journals (Sweden)

    Lakshmi.T

    2013-06-01

    Full Text Available Acacia catechu ethanolic leaf extract were selected to determine their heavy metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant material was procured from green chem herbal extracts, Bangalore, India and was digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 6030 and the concentration of different heavy metals in the plant sample was calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Thus, on the basis of experimental outcome, it can be concluded that the plant material is safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contains heavy metals such as arsenic (As, lead (Pb and mercury (Hg and cadmium (Cd, which were present within the permissible limit.

  8. In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies

    Energy Technology Data Exchange (ETDEWEB)

    Kılınç, Ersin, E-mail: kilincersin@gmail.com [Medical Laboratory Techniques, Vocational Higher School of Healthcare Studies, Mardin Artuklu University, 47200 Mardin (Turkey); Bakırdere, Sezgin [Yıldız Technical University, Art and Science Faculy, Department of Chemistry, Esenler, TR 34220 İstanbul (Turkey); Aydın, Fırat [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbakır (Turkey); Ataman, O. Yavuz [Middle East Technical University, Faculty of Arts and Sciences, Department of Chemistry, 06800 Ankara (Turkey)

    2013-11-01

    Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL{sup −1} and 0.51 ng mL{sup −1}, respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL{sup −1} for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e. - Highlights: • Further increasing in sensitivity of SQT-AT-FAAS was obtained by using a W coated SQT. • 613 fold sensitivity enhancement was achieved by W coated SQT-AT-FAAS versus FAAS. • A sensitive, rapid and simple technique for Bi was developed with an LOD of 0.51 ng mL{sup −1}. • The technique is suggested for laboratories equipped with only a flame AA spectrometer.

  9. Quantitative determination of impurities in nuclear grade aluminum by Flame-Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    The paper deals with quantitative determination of impurity elements in nuclear grade aluminum, used as fin tubes in research reactors, by Flame-Atomic Absorption Spectrometry (F-AAS). The results have been compared with those obtained by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) method. Experimental conditions used in both the methods are given in the paper. (author)

  10. The coupling of rapidly synergistic cloud point extraction with thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Rapidly synergistic cloud point extraction (RS-CPE) was coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) to result in new CPE patterns and accelerated (1 min) protocols. It is demonstrated, for the case of copper (II) ion, that TS-FF-AAS improves the sampling efficiency and the sensitivity of FAAS determinations. Problems of nebulization associated with previous methods based on the coupling of FAAS and RS-CPE are overcome. TS-FF-AAS also improves sensitivity and gives a limit of detection for copper of 0.20 μg L-1, which is better by a factor of 32. Compared to direct FAAS, the factor is 114. (author)

  11. Use of Atomic Absorption Technique in Environmental Studies

    International Nuclear Information System (INIS)

    This chapter consists of some points including the process of atomic absorption, historical hint, key basics, the atom ionization and formation of plasma, applications in the device of atomic absorption, quantum analysis with atomic absorption, components of the device of atomic absorption, standardization of this device, atomic absorption in the the graphite furnace, supervising the analytical interventions, spectral interventions, non-spectral interventions, the utmost electric energy for atomization, preparation of standards and samples, the system of acidic digestion, similar analytical techniques.

  12. Evaluation of cadmium, lead, copper, iron and zinc in Turkish dietary vegetable oils and olives using electrothermal and flame atomic absorption spectrometry

    OpenAIRE

    Acar, Orhan

    2012-01-01

    The Cd, Pb, Cu, Fe and Zn contents of some edible vegetable oils (soybean, sunflower, flower, nut, corn and olive) and of olives (olive-1, black, green, black crushed with seeds and green crushed with seeds) were determined and evaluated by an electrothermal atomic absorption spectrometer (ETAAS) using an Sc + Ir + NH4H2PO4 chemical modifier mixture and flame atomic absorption spectrometer (FAAS) after microwave digestion. T...

  13. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Politechn Poznanska, Poznan (Poland)

    2007-03-15

    The analytical performance of coupled hydride generation - integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H{sub 2}Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangernents (a water-cooled single silica tube, double-slotted quartz tube or an 'integrated trap') was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3{sigma}), was 0.9 ng mL{sup -1} for Te. For a 2 min in situ preconcentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  14. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap.

    Science.gov (United States)

    Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz

    2015-06-01

    Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with

  15. Determination of serum lithium: comparison between atomic emission and absorption spectrometry methods

    Directory of Open Access Journals (Sweden)

    Carlos Elielton do Espírito Santo

    2014-02-01

    Full Text Available Introduction: The therapeutic monitoring of lithium, through concentration measurements, is important for individual dose adjustment, as a marker of treatment adherence and to prevent poisoning and side effects. Objectives: Validate and compare two methods - atomic emission and atomic absorption - for the determination of lithium in serum samples. Methodology: Parameters such as specificity, precision, accuracy, limit of detection (LOD and linearity were considered. The atomic absorption spectrometer was used, operating in either emission or absorption mode. For the quantitative comparison of 30 serum samples from patients with mood disorder treated with lithium, the results were submitted to Student's t-test, F-test and Pearson's correlation. Results: The limit of quantification (LOQ was established as 0.05 mEq/l of lithium, and calibration curves were constructed in the range of 0.05-2 mEq/l of lithium, using aqueous standards. Sample preparation time was reduced, what is important in medical laboratory. Conclusion: Both methods were considered satisfactory, precise and accurate and can be adopted for lithium quantification. In the comparison of quantitative results in lithium-treated patients through statistical tests, no significant differences were observed. Therefore the methods for lithium quantification by flame atomic absorption spectrometry (FAAS and flame atomic emission spectrometry (FAES may be considered similar.

  16. Determination of scandium by atomic absorption.

    Science.gov (United States)

    Kriege, O H; Welcher, G G

    1968-08-01

    A comprehensive study has been made of the determination of scandium by atomic absorption. In addition to the instrumental variables such as flame-height, slitwidth and lamp current, a number of solution variables have been studied including the effect of anions (chloride, sulfate, nitrate, and fluoride), organic solvents, and other metals on the determination of scandium. Standard conditions have been established for the detection of minor amounts of scandium in a wide variety of materials including complex alloys of iron, nickel, aluminium, magnesium, and the rare earths. PMID:18960364

  17. Spectral aspects of the determination of Si in organic and aqueous solutions using high-resolution continuum source or line source flame atomic absorption spectrometry

    Science.gov (United States)

    Kowalewska, Zofia; Pilarczyk, Janusz; Gościniak, Łukasz

    2016-06-01

    High-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was applied to reveal and investigate spectral interference in the determination of Si. An intensive structured background was observed in the analysis of both aqueous and xylene solutions containing S compounds. This background was attributed to absorption by the CS molecule formed in the N2O-C2H2 flame. The lines of the CS spectrum at least partially overlap all five of the most sensitive Si lines investigated. The 251.611 nm Si line was demonstrated to be the most advantageous. The intensity of the structured background caused by the CS molecule significantly depends on the chemical form of S in the solution and is the highest for the most-volatile CS2. The presence of O atoms in an initial S molecule can diminish the formation of CS. To overcome this S effect, various modes of baseline fitting and background correction were evaluated, including iterative background correction (IBC) and utilization of correction pixels (WRC). These modes were used either independently or in conjunction with least squares background correction (LSBC). The IBC + LSBC mode can correct the extremely strong interference caused by CS2 at an S concentration of 5% w:w in the investigated solution. However, the efficiency of this mode depends on the similarity of the processed spectra and the correction spectra in terms of intensity and in additional effects, such as a sloping baseline. In the vicinity of the Si line, three lines of V were recorded. These lines are well-separated in the HR-CS FAAS spectrum, but they could be a potential source of overcorrection when using line source flame atomic absorption spectrometry (LS FAAS). The expected signal for the 251.625 nm Fe line was not registered at 200 mg L- 1 Fe concentration in the solution, probably due to the diminished population of Fe atoms in the high-temperature flame used. The observations made using HR-CS FAAS helped to establish a "safe" level

  18. Cloud point extraction for the determination of copper in environmental samples by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2008-01-01

    Full Text Available A simple cloud point extraction procedure is presented for the preconcentration of copper in various samples. After complexation by 4-hydroxy-2-mercapto-6-propylpyrimidine (PTU, copper ions are quantitatively extracted into the phase rich in Triton X-114 after centrifugation. Methanol acidified with 0.5 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS. Analytical parameters including concentrations for PTU, Triton X-114 and HNO3, bath temperature, centrifugation rate and time were optimized. The influences of the matrix ions on the recoveries of copper ions were investigated. The detection limits (3SDb/m, n=4 of 1.6 ng mL-1 along with enrichment factors of 30 for Cu were achieved. The proposed procedure was applied to the analysis of environmental samples.

  19. 浊点萃取-火焰原子吸收法(CPE-FAAS)测定蜂蜜中痕量锰%Determination of trace manganese in honey by cloud point extracton-flame absorption spectrometry

    Institute of Scientific and Technical Information of China (English)

    杜军良; 尤海霞; 胡杨; 王秀峰

    2013-01-01

    A new method for determination of trace manganese (Ⅱ) in honey by flame atomic absorption spectrometry combined with cloud point extraction was developed.The cloud point extraction system was based on TritonX-100 as surfactant and 8-Oxyquinoline as complexing agent.The parameters affecting cloud point extraction, including pH, extraction temperature, time, ionic strength, dosage of extraction agent and complexing agent were investigated and optimized.Under the optimum conditions, a good linear relationship was observed for manganese (Ⅱ) in the range of 100~700 ng/mL with the detection limit of 5.74 ng/mL and the relative standard deviations of 1.68% (n = 11 ).The recoveries were in the range of 97.3% ~98.6%.The method was rapid, accurate, simple and suitable to apply in the determination of manganese (Ⅱ) in honey.%研究了以8-羟基喹啉为络合剂,非离子表面活性剂TritonX-100为萃取剂的浊点萃取-火焰原子吸收光谱法(CPE-FAAS)测定蜂蜜中痕量Mn(Ⅱ)的方法.研究了pH值,平衡时间,离子强度,萃取剂用量,以及络合剂用量和共存离子干扰等对萃取效果的影响.方法线性范围为100 ~ 700 ng/mL,检出限为5.74 ng/mL,相对标准偏差为1.68% (n=11),回收率为97.3% ~98.6%.

  20. Comparison of serum copper determination by colorimetric and atomic absorption spectrometric methods in seven different laboratories. The S.F.B.C. (Société Française de Biologie Clinique) Trace Element Group.

    Science.gov (United States)

    Arnaud, J; Chappuis, P; Zawislak, R; Houot, O; Jaudon, M C; Bienvenu, F; Bureau, F

    1993-02-01

    An interlaboratory collaborative trial was conducted on the determination of serum copper using two different methods, based on colorimetry (test combination Copper, Boehringer Mannheim, Mannheim, Germany) and flame atomic absorption spectrometry (FAAS). The general performance of the colorimetric method was below that of FAAS, except for sensitivity and linear range, as assessed by detection limit (0.44 versus 1.32 mumol/L) and upper limit of linearity (150 versus 50 mumol/L). The range of the between-run CVs and the recovery of standard additions were, respectively, 2.3-11.9% and 92-127% for the colorimetric method and 1.1-6.0% and 93-101% for the FAAS method. Interferences were minimal with both methods. The two techniques correlated satisfactorily (the correlation coefficients ranged from 0.945-0.970 among laboratories) but the colorimetric assay exhibited slightly higher results than the FAAS method. Each method was transferable among laboratories.

  1. Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Pedersen, Gitte Alsing; Larsen, Erik Huusfeldt

    1997-01-01

    An analytical method for the speciation of selenomethionine, selenocystine, selenite and selenate by high performance liquid chromatography (HPLC) with atomic spectrometric detection is presented. An organic polymeric strong anion exchange column was used as the stationary phase in combination...... with an aqueous solution of 6 mmol L-1 of salicylate ion at pH 8.5 as the mobile phase which allowed the isocratic separation of the four selenium analytes within 8 minutes. The separated selenium species were detected on-line by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass...

  2. Electromagnetically induced absorption in metastable 83Kr atoms

    CERN Document Server

    Kale, Y B; Mishra, S R; Singh, S; Rawat, H S

    2015-01-01

    We report electromagnetically induced absorption (EIA) resonances of sub-natural linewidth (FWHM) in metastable noble gas 83Kr* atoms using degenerate two level schemes (DTLSs). This is the first observation of EIA effect in a metastable noble gas atoms. Using these spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition from 4p55s[3/2]2 to 4p55p[5/2]3 hyperfine manifolds of 83Kr* atoms, we have measured the Lande's g-factor (gF) for the lower level (F = 13/2) of the closed transition accurately with small applied magnetic fields of few Gauss.

  3. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    Science.gov (United States)

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  4. The determination of zirconium by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    The interference of iron in the determination of zirconium by atomic absorption spectrophotometry was studied. Attempts were made to emininate this interference by complexing the iron with EDTA, ascorbic acid and hydrazine; also by the addition of ammonium fluoride to the solution. Some experiments were carried out in order to explain the results obtained

  5. ANALYSIS OF UNCERTAINTY MEASUREMENT IN ATOMIC ABSORPTION SPECTROPHOTOMETER

    Directory of Open Access Journals (Sweden)

    NEHA S.MAHAJAN

    2012-05-01

    Full Text Available A spectrophotometer is a photometer that can measure intensity as a function of the light source wavelength. The important features of spectrophotometers are spectral bandwidth and linear range of absorption or reflectance measurement. Atomic absorption spectroscopy (AAS is a very common technique for detecting chemical composition of elements in metal and its alloy. It is very reliable and simple to use. Quality of result (accuracy depends on the uncertainty of measurement value of the test. If uncertainty of measurement is more there may be doubt of about the final result. The final result of Atomic Absorption Spectrophotometer gets affected by the number of parameters; we should take in to account will calculating the final result. This paper deal with the methodology of evaluating the uncertainty of measurement of chemical composition using AAS. The study is useful for quality of measurement equipment and testing process.

  6. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  7. ADSORPTION BEHAVIOUR OF Mn(Ⅱ) AND Zn(Ⅱ) ON ATTAPULGITE WITH FAAS METHOD

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Active attapulbgite as adsorptive reagent, the adsorptive behavior of Mn(II) and Zn(II) was studied with Flame atomic absorption spectroscopy (FAAS) method. The mainly factors of influencing the adsorption and desorption of Mn(II) and Zn(II) were discussed. The interference of coexisting ions was investigated, and the actual sample determination from adzuki beans, mung beans and phosphating waste water was conducted with good result.

  8. Determination of Iron in Layered Crystal Sodium Disilicate and Sodium Silicate by Flame Atomic Absorption Spectrometry with Boric Acid as a Matrix Modifier

    Institute of Scientific and Technical Information of China (English)

    Zhi Hua WANG; Min CAI; Shu Jun WANG

    2006-01-01

    The effects of matrix silicate and experimental conditions on the determination of iron in flame atomic absorption spectrometry (FAAS) were investigated. It was found that boric acid as a matrix modifier obviously eliminated silicate interference. Under the optimum operating conditions, the determination results of iron in layered crystal sodium disilicate and sodium silicate samples by FAAS were satisfactory. The linear range of calibration curve is 0-10.5 μg.mL-1, the relative standard deviation of method is 1.2%-2.2%, the recovery of added iron is 96.0%-101%, the of iron of the standard curve method, standard addition calibration and colorimetry method was the same, but the first has the merits of rapid sample preparation, reduced contamination risks and fast analysis.

  9. Flame Atomic Absorption Spectrometric Determination of Trace Amounts of Silver after Solid-Phase Extraction with 2-Mercaptobenzothiazole Immobilized on Microcrystalline Naphthalene

    Directory of Open Access Journals (Sweden)

    Farid Shakerian

    2013-01-01

    Full Text Available A simple and sensitive solid-phase extraction (SPE procedure combined with flame atomic absorption spectrometry (FAAS was designed for the extraction and determination of trace amounts of silver. A column of immobilized 2-mercaptobenzothiazole (MBT on microcrystalline naphthalene was used as the sorbent. Silver was quantitatively retained on the column in the pH range of 0.5–6.0. After extraction, the solid mass consisting of silver complex and naphthalene was dissolved out of the column with 5.0 mL of dimethylformamide, and the analyte was determined by flame atomic absorption spectrometry (FAAS. Under the optimum experimental conditions, the adsorption capacity was found to be 1.18 mg of silver per gram of the sorbent. A sample volume of 800 mL resulted in a preconcentration factor of 160. The relative standard deviation obtained for ten replicate determinations at a concentration of 0.8 µg L−1 was 1.4%, and the limit of detection was 0.02 µg L−1. The method was successfully applied to the determination of silver in radiology film, waste water, and natural water samples. The accuracy was examined by recovery experiments, independent analysis by electrothermal atomic absorption spectrometry, and analysis of two certified reference materials.

  10. Absorption spectrum of very low pressure atomic hydrogen

    CERN Document Server

    Moret-Bailly, Jacques

    2015-01-01

    Spectra of quasars result primarily from interactions of natural light with atomic hydrogen. A visible absorption of a sharp and saturated spectral line in a gas requires a low pressure, so a long path without blushing as a cosmological redshift. Burbidge and Karlsson observed that redshifts of quasars result from fundamental redshifts, written 3K and 4K, that cause a shift of absorbed beta and gamma lines of H to alpha gas line. Thus absorbed spectrum is shifted until an absorbed line overlaps with Lyman alpha line of gas: redshift only occurs if an alpha absorption pumps atoms to 2P state. Thus, space is divided into spherical shells centered on the quasar, containing or not 2P atoms. Neglecting collisional de-excitations in absorbing shells, more and more atoms are excited until amplification of a beam having a long path in a shell, thus perpendicular to the observed ray, is large enough for a superradiant flash at alpha frequency. Energy is provided by atoms and observed ray, absorbing a line at local Lym...

  11. Modified atomic decay rate near absorptive scatterers at finite temperature

    CERN Document Server

    Suttorp, L G

    2015-01-01

    The change in the decay rate of an excited atom that is brought about by extinction and thermal-radiation effects in a nearby dielectric medium is determined from a quantummechanical model. The medium is a collection of randomly distributed thermally-excited spherical scatterers with absorptive properties. The modification of the decay rate is described by a set of correction functions for which analytical expressions are obtained as sums over contributions from the multipole moments of the scatterers. The results for the modified decay rate as a function of the distance between the excited atom and the dielectric medium show the influence of absorption, scattering and thermal-radiation processes. Some of these processes are found to be mutually counteractive. The changes in the decay rate are compared to those following from an effective-medium theory in which the discrete scatterers are replaced by a continuum.

  12. EVALUATION OF HEAVY METALS CONTENT IN EDIBLE MUSHROOMS BY MICROWAVE DIGESTION AND FLAME ATOMIC ABSORPTION SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Cristiana Radulescu

    2011-05-01

    Full Text Available The aim of this work was to determine the heavy metal (Cd, Cr, Ni, Pb, Mn, Zn, Fe and Cu content of the fruiting bodies (cap and stipe of four species (Amanita caesarea, Pleurotus ostreatus, Fistulina hepatica and Armillariella mellea and their substrate, collected from forest sites in Dâmboviţa County, Romania. The elements were determined by Flame Atomic Absorption Spectrometry (FAAS after microwave assisted digestion. From the same collecting point were taken n = 5 samples of young and mature fruiting bodies of mushrooms and their substrate. The high concentrations of lead, chrome and cadmium (Pb: 0.25 – 1.89 mg.kg-1, Cr: 0.36 – 1.94 mg.kg-1, Cd: 0.23 – 1.13 mg.kg-1 for all collected wild edible mushrooms, were determined. These data were compared with maximum level for certain contaminants in foodstuffs established by the commission of the European Committees (EC No 466/2001. A quantitative evaluation of the relationship of element uptake by mushrooms from substrate was made by calculating the accumulation coefficient (Ka. The moderately acid pH value of soil influenced the accumulation of Zn and Cd inside of the studied species. The variation of heavy metals content between edible mushrooms species is dependent upon the ability of the species to extract elements from the substrate and on the selective uptake and deposition of metals in tissue.

  13. Coprecipitation of trace amounts of silicon with aluminum hydroxide and the determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2014-01-01

    Full Text Available A simple preconcentration method of silicon based on coprecipitation with aluminum hydroxide prior to its flame atomic absorption (FAAS determination was established. The recovery values of analyte ion was higher than 95%. The parameters including types of hydroxide ion source for precipitation, acid type for dissolution step, amount of aluminum ion as collector, pH, temperature, standing and centrifuge time, and sample volume were optimized for the quantitative recovery of the analyte. The influences of matrix ions were also examined. The relative standard deviation was found to be 3.2%. The limit of detection was calculated as (0.1 mg L-1. The preconcentration factor is 100 for (200 mL solution. The proposed method was successfully applied for the determination of silicon in some water and alloy samples.

  14. FLAME ATOMIC ABSORPTION DETERMINATION OF COPPER IN CEREALS FOOD SAMPLES WITH THE PRECONCENTRATION OF POTASSIUM TETRATITANATE WHISKER

    Institute of Scientific and Technical Information of China (English)

    XU Wanzhen; ZHANG Xinghua; YAN Yongsheng; LIU Aiqin; JING Junjie

    2007-01-01

    A simple and reliable method has been developed for separation and preconcentration of trace amounts of copper ions in cereals food for subsequent measurement by flame atomic absorption spectrometry (FAAS). The Cu2+ ions are adsorbed selectively and quantitatively during the passage. The retained copper ions were desorbed from the potassium tetratitanate whisker with 10.0mL of 2mol/L sulphuric acid solutions as eluent and were determined by FAAS. The linear range was 0.05μg/mL~0.20μg/mL in the original solution with a correlation coefficient of 0.9998. The detection limit of the proposed method is 2.1ng/mL in the original solution (3σ, n=9). Determination of copper in standard ions showed that the proposed method has good accuracy (recovery was more than 95%). The method was successfully applied for recovery and determination of copper in cereals food samples.

  15. FLAME ATOMIC ABSORPTION DETERMINATION OF COPPER IN CEREALS FOOD SAMPLES WITH THE PRECONCENTRATION OF POTASSIUM TETRATITANATE WHISKER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simple and reliable method has been developed for separation and preconcentration of trace amounts of copper ions in cereals food for subsequent measurement by flame atomic absorption spectrometry (FAAS). The Cu2+ ions are adsorbed selectively and quantitatively during the passage. The retained copper ions were desorbed from the potassium tetratitanate whisker with 10.0mL of 2mol/L sulphuric acid solutions as eluent and were determined by FAAS. The linear range was 0.05μg/mL~0.20μg/mL in the original solution with a correlation coefficient of 0.9998. The detection limit of the proposed method is 2.1ng/mL in the original solution (3σ, n=9). Determination of copper in standard ions showed that the proposed method has good accuracy (recovery was more than 95%). The method was successfully applied for recovery and determination of copper in cereals food samples.

  16. Electrothermal atomization atomic absorption spectrometric determination of trace metals in uranium-plutomium fuel materials

    International Nuclear Information System (INIS)

    Atomic absorption spectrometric methods using the electrothermal mode of atomization developed for the determination of Ag, Be, Ca, Cd, Cr, Co, Cu, Fe, Li, Mn, Na, Ni, Sn and Zn in (U, Pu) solution with 4% plutonium have been described. The carbon rod atomizer has been adapted for glove box operation to enable handling of plutonium containing solution samples. Multielement solution standards with graded concentrations of the analytes and fixed concentration of the matrix are used in the standardization process. Nanogram to sub-nanogram quantities of the analytes have been determined with a precision of better than 9% RSD using 5 μl of the sample aliquots. (orig.)

  17. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry.

    Science.gov (United States)

    Abdel-Ghani, Nour T; Youssef, Ahmed F A; Awady, Mohamed A

    2005-05-01

    Two sensitive spectrophotometric and atomic absorption spectrometric procedures have been developed for determination of cinchocaine hydrochloride (Cin.Cl) in pure form and in pharmaceutical formulation. The spectrophotometric method was based on formation of an insoluble colored ion-associate between the cited drug and tetrathiocyanatocobaltate (CoTC) or hexathiocyanatochromate (CrTC) which dissolved and extracted in an organic solvent. The optimal experimental conditions for quantitative extraction such as pH, concentration of the reagents and solvent were studied. Toluene and iso-butyl alcohol proved to be the most suitable solvents for quantitative extraction of Cin-CoTC and Cin-CrTC ion-associates with maximum absorbance at 620 and 555 nm, respectively. The optimum concentration ranges, molar absorptivities, Ringbom ranges and Sandell sensitivities were also evaluated. The atomic absorption spectrometric method is based on measuring of the excess cobalt or chromium in the aqueous solution, after precipitation of the drug, at 240.7 and 357.9 nm, respectively. Linear application ranges, characteristic masses and detection limits were 57.99-361.9, 50.40 and 4.22 microg ml(-1) of Cin.Cl, in case of CoTC, while 37.99-379.9, 18.94 and 0.81 microg ml(-1) in case of CrTC. PMID:15910814

  18. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry.

    Science.gov (United States)

    Abdel-Ghani, Nour T; Youssef, Ahmed F A; Awady, Mohamed A

    2005-05-01

    Two sensitive spectrophotometric and atomic absorption spectrometric procedures have been developed for determination of cinchocaine hydrochloride (Cin.Cl) in pure form and in pharmaceutical formulation. The spectrophotometric method was based on formation of an insoluble colored ion-associate between the cited drug and tetrathiocyanatocobaltate (CoTC) or hexathiocyanatochromate (CrTC) which dissolved and extracted in an organic solvent. The optimal experimental conditions for quantitative extraction such as pH, concentration of the reagents and solvent were studied. Toluene and iso-butyl alcohol proved to be the most suitable solvents for quantitative extraction of Cin-CoTC and Cin-CrTC ion-associates with maximum absorbance at 620 and 555 nm, respectively. The optimum concentration ranges, molar absorptivities, Ringbom ranges and Sandell sensitivities were also evaluated. The atomic absorption spectrometric method is based on measuring of the excess cobalt or chromium in the aqueous solution, after precipitation of the drug, at 240.7 and 357.9 nm, respectively. Linear application ranges, characteristic masses and detection limits were 57.99-361.9, 50.40 and 4.22 microg ml(-1) of Cin.Cl, in case of CoTC, while 37.99-379.9, 18.94 and 0.81 microg ml(-1) in case of CrTC.

  19. Absorption spectrum of very low pressure atomic hydrogen

    OpenAIRE

    Moret-Bailly, Jacques

    2015-01-01

    Spectra of quasars result primarily from interactions of natural light with atomic hydrogen. A visible absorption of a sharp and saturated spectral line in a gas requires a low pressure, so a long path without blushing as a cosmological redshift. Burbidge and Karlsson observed that redshifts of quasars result from fundamental redshifts, written 3K and 4K, that cause a shift of absorbed beta and gamma lines of H to alpha gas line. Thus absorbed spectrum is shifted until an absorbed line overla...

  20. Graphite Furnace Atomic Absorption Elemental Analysis of Ecstasy Tablets

    OpenAIRE

    French, Holly E.; Michael J. Went; Gibson, Stuart J

    2013-01-01

    Abstract: Six metals (Cu, Mg, Ba, Ni, Cr, Pb) were determined in two separate batches of seized ecstasy tablets by graphite furnace atomic absorption spectroscopy (GFAAS) following digestion with nitric acid and hydrogen peroxide. Large intra-batch variations were found as expected for tablets produced in clandestine laboratories. For example, nickel in batch 1 was present in the range 0.47-13.1 ppm and in batch 2 in the range 0.35-9.06 ppm. Although batch 1 had significantly high...

  1. Spectrofluorimetric, Atomic Absorption Spectrometric and Spectrophotometric Determination of Some Fluoroquinolones

    Directory of Open Access Journals (Sweden)

    Hesham Salem

    2005-01-01

    Full Text Available Simple, accurate, sensitive and selective spectrofluorimetric, atomic absorption spectrometric and spectrophotometric methods are described for the quantitative determination of ten fluoroquinolones (amifloxacin, ciprofloxacin hydrochloride, difloxacin hydrochloride, enoxacin, enrofloxacin, lomefloxacin hydrochloride, levofloxacin, norfloxacin, ofloxacin and pefloxacin mesylate. The first method was a spectrofluorimetric method in which samples of the studied drugs in 0.1 N H2SO4 showed native fluorescence at 450 nm when excitation was at 290 nm. The calibration graph was rectilinear from 0.3-1.4 μg mL-1 (method I. Cobalt sulphate was used for precipitation of the ion associates formed from the reaction with the cited drugs. The formation and solubility of the solid complexes at the optimum conditions of pH and ionic strength values have been studied. The method depends on direct determination of the ions in the precipitate or indirect determination of the ions in the filtrate by atomic absorption spectroscopy. The optimum conditions for precipitation were carefully studied. Rectilinear calibration graphs were obtained in the range of 3-30 μg mL-1 for each of the investigated drugs. The molar ratios of the formed chelats were determined by Job's method and their association constants were also calculated (method II. Ammonium vanadate was used for the spectrophotometric determination of the selected fluoroquinolones by oxidation in sulphuric acid medium resulting in the development of a greenish blue colour measured at 766 nm which was attributed to the vanadium (IV produced by reduction of vanadium (V by the selected drugs. The optimum conditions for heating time, reagent concentration and sulphuric acid concentration were carefully studied. The accuracy and precision of the proposed method was confirmed by estimating five or six replicates within Beer's law limits were obtained in the range 10-40 μg mL-1 for each of the investigated drugs

  2. Application of atomic absorption in molecular analysis (spectrophotometry)

    International Nuclear Information System (INIS)

    The apparatus of atomic absorption has been considered by all the experts in chemical analysis as one of the most important equipments in actual utilization in such field. Among its several applications one should emphasize direct and indirect metals analyses using flame, graphite furnace, cold vapor generator,... Besides such known applications, the authors have developed at the R and D Center of CSN a patent pendent method for the utilization of such equipment for molecular analysis, in substitution of a sophisticated and specific apparatus. (Author)

  3. Organic solvents as interferents in arsenic determination by hydride generation atomic absorption spectrometry with flame atomization

    Science.gov (United States)

    Karadjova, Irina B.; Lampugnani, Leonardo; Dědina, Jiri; D'Ulivo, Alessandro; Onor, Massimo; Tsalev, Dimiter L.

    2006-05-01

    Interference effects of various organic solvents miscible with water on arsenic determination by hydride generation atomic absorption spectrometry have been studied. Arsine was chemically generated in continuous flow hydride generation system and atomized by using a flame atomizer able to operate in two modes: miniature diffusion flame and flame-in-flame. The effects of experimental variables and atomization mode were investigated: tetrahydroborate and hydrochloric acid concentrations, argon, hydrogen and oxygen supply rates for the microflame, and the distance from the atomization region to the observation zone. The nature of the species formed in the flame due to the pyrolysis of organic solvent vapors entering the flame volume together with arsine is discussed. The observed signal depression in the presence of organic solvents has been mainly attributed to the atomization interference due to heterogeneous gas-solid reaction between the free arsenic atoms and finely dispersed carbon particles formed by carbon radicals recombination. The best tolerance to interferences was obtained by using flame-in-flame atomization (5-10 ml min - 1 of oxygen flow rate), together with higher argon and hydrogen supply rates and elevated observation heights.

  4. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  5. SPECTROPHOTOMETRIC, ATOMIC ABSORPTION AND CONDUCTOMETRIC ANALYSIS OF TRAMADOL HYDROCHLORIDE

    Directory of Open Access Journals (Sweden)

    Sara M. Anis

    2011-09-01

    Full Text Available Six simple and sensitive spectroscopic and conductometric procedures (A-F were developed for the determination of tramadol hydrochloride. Methods A, B and C are based on the reaction of cobalt (II thiocyanate with tramadol to form a stable ternary complex, which could be measured by spectrophotometric (method A, atomic absorption (method B or conductometric (method C procedures. Methods D and E depend on the reaction of molybdenum thiocyanate with tramadol to form a stable ternary complex, measured by spectrophotometric means (method D or by atomic absorption procedures (method E, while method F depends on the formation of an ion pair complex between the studied drug and bromothymol blue which is extractable into methylene chloride. Tramadol hydrochloride could be assayed in the range of 80-560 and 40-–220 μg ml-1, 1-15 mg ml-1 and 2.5-22.5, 1.25-11.25 and 5-22 μg ml-1 using methods A,B,C,D,E and F, respectively. Various experimental conditions were studied. The results obtained showed good recoveries. The proposed procedures were applied successfully to the analysis of tramadol in its pharmaceutical preparations and the results were favorably comparable with the official method.

  6. Determination of molybdenum in flotation concentrates by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Molybdenum was determined by atomic absorption spectrophotometry in 0.05 N ammoniacal solution after the decomposition of the concentrate with aqua regia. Negros ore from Philippines was used as a flotation feed, which contained chalcopyrites and calcium-magnesium minerals. Among the metals tested copper, iron and the alkaline earths interfered. Less than 50 ppm of copper yielded lower results for molybdenum. Higher results came out with more than 50 ppm of copper. In the presence of iron and citric acid (0.4 g/100 ml) which is a suppressor for hydroxide formation, a lower estimation resulted for molybdenum. Calcium interfered, lower results by 2 and >10% being obtained with respective 2.5 and 20 ppm of calcium. More than 20 ppm of magnesium behaved similarly. Sodium sulfate (0.5 g/100 ml) served as the suppressor for copper, iron and citric acid; 100 ppm each of copper and iron did not interfere in this way. Interferences due to calcium and magnesium (less than 60 ppm) was able to be masked by the addition of sodium silicate (200 ppm as silica). The analysis of flotation products and synthetic samples consisting of molybdenite, chalcopyrite, calcium chloride and magnesium sulfate revealed that the atomic absorption method can be applied to the analysis of the concentrates for molybdenum with an error of about 2%. (auth.)

  7. Potassium determinations using SEM, FAAS and XRF: some experimental notes

    Science.gov (United States)

    Liritzis, I.; et al.

    The calibration of Scanning Electron Microscopy coupled with Energy Dispersive X- Rays Spec-trometry (SEM-EDS) for elemental quantitative analysis is an important task for characterization, provenance and absolute dating purposes. In particular the potassium determination is an im-portant contributor to dose rate assessments in luminescence and Electron Spin Resonance (ESR) dating. Here a SEM-EDX is calibrated on different archaeological and geoarchaeological materials against standard laboratory samples as well as measured by micro X-Rays Fluorescence (μXRF) and flame atomic absorption spectroscopy (FAAS) techniques. A common linear relationship is obtained for most elements and certain rock types used and two clear linear regressions for two types of rocks; one for granite, diorite, microgranite and sediments and another ceramic sherds, soils, marble schists, breccia. Such linear regressions become readily available for a future fast, efficient and accu-rate way of potassium determination.

  8. Transient absorption spectra of the laser-dressed hydrogen atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  9. Preconcentration and Atomization of Arsane in a Dielectric Barrier Discharge with Detection by Atomic Absorption Spectrometry.

    Science.gov (United States)

    Novák, Petr; Dědina, Jiří; Kratzer, Jan

    2016-06-01

    Atomization of arsane in a 17 W planar quartz dielectric barrier discharge (DBD) atomizer was optimized, and its performance was compared to that of a multiple microflame quartz tube atomizer (MMQTA) for atomic absorption spectrometry (AAS). Argon, at a flow rate of 60 mL min(-1), was the best DBD discharge gas. Free As atoms were also observed in the DBD with nitrogen, hydrogen, and helium discharge gases but not in air. A dryer tube filled with NaOH beads placed downstream from the gas-liquid separator to prevent residual aerosol and moisture transport to the atomizer was found to improve the response by 25%. Analytical figures of merit were comparable, reaching an identical sensitivity of 0.48 s ng (-1) As in both atomizers and limits of detection (LOD) of 0.15 ng mL(-1) As in MMQTA and 0.16 ng mL(-1) As in DBD, respectively. Compared to MMQTA, DBD provided 1 order of magnitude better resistance to interference from other hydride-forming elements (Sb, Se, and Bi). Atomization efficiency in DBD was estimated to be 100% of that reached in the MMQTA. A simple procedure of lossless in situ preconcentration of arsane was developed. Addition of 7 mL min(-1) O2 to the Ar plasma discharge resulted in a quantitative retention of arsane in the optical arm of the DBD atomizer. Complete analyte release and atomization was reached as soon as oxygen was switched off. Preconcentration efficiency of 100% was observed, allowing a decrease of the LOD to 0.01 ng mL(-1) As employing a 300 s preconcentration period. PMID:27159266

  10. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  11. Atomic absorption spectrometric determination of mineral elements in mammalian bones

    International Nuclear Information System (INIS)

    The phosphorus content of the major bones of male and female selected mammals was determined using the yellow vanadomolybdate colorimetric method. For each animal, the bone with the highest phosphorus content was used as pilot sample. Varying concentrations of strontium were added to solutions of the ashed pilot samples to minimize phosphorus interference in the determination of calcium and magnesium using flame atomic absorption spectrophotometry operated on the air-acetylene mode. At least 6,000 ppm (0.6%) of strontium was required to give optimum results for calcium. The amount of magnesium obtained from the analysis was not affected by the addition of strontium. With the incorporation of strontium in the sample solution, all elements of interest can be determined in the same sample solution. Based on this, a procedure is proposed for the determination of calcium and other elements in bones. Average recoveries of spiked calcium and magnesium were 97.85% and 98.16%, respectively at the 95% confidence level. The coefficients of variation obtained for replicate determinations using one of the samples were 0.00% for calcium, lead and sodium, 2.93% for magnesium, 3.27% for iron and 3.92% for zinc at the concentration levels found in that sample. Results from the proposed procedure compared well with those from classical chemical methods at the 95% confidence level. It is evident that calcium phosphorus, magnesium and sodium which are the most abundant elements in the bones are distributed in varying amounts both in the different types of bones and different animal species, although the general trend is Ca > P > Na > Mg for each bone considered. The calcium - phosphorus ratio is generally 3:1. The work set out to propose an atomic absorption spectrometric method for the multi-element analysis of mammalian bones with a single sample preparation and to study the distribution pattern of these elements in the bones. (Author)

  12. Near resonant absorption by atoms in intense fluctuating laser fields

    International Nuclear Information System (INIS)

    The objective of this program was to make quantitative measurements of the effects of higher-order phase/frequency correlations in a laser beam on nonlinear optical absorption processes in atoms. The success of this program was due in large part to a unique experimental capability for modulating the extracavity beam of a stabilized (approx-lt 200 kHz) continuous-wave laser with statistically-well-characterized stochastic phase (or frequency) fluctuations, in order to synthesize laser bandwidths to ∼20 MHz (depending on noise amplitude), with profiles variable between Gaussian and Lorentzian (depending on noise bandwidth). Laser driven processes investigated included the following: (1) the optical Autler-Towns effect in the 3S1/2 (F = 2, MF = 2) → 3P3/2 (F = 3, MF = 3) two- level Na resonance, using a weak probe to the 4D5/2 level; (2) the variance and spectra of fluorescence intensity fluctuations in the two-level Na resonance; (3) the Hanle effect in the 1S0 - 3P1, transition at λ = 555.6 nm in 174 Yb; (4) absorption (and gain) of a weak probe, when the probe is a time-delayed replica of the resonant (with the two-level Na transition) pump laser; and (5) four-wave-mixing in a phase-conjugate geometry, in a sodium cell, and, finally, in a diffuse atomic sodium beam. The experimental results from these several studies have provided important confirmation of advanced theoretical methods

  13. Observations of Absorption Lines from Highly Ionized Atoms

    Science.gov (United States)

    Jenkins, E. B.

    1984-01-01

    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. fewX 0.001/cucm) existing at coronal temperatures, 5.3 or = log T or = 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity 9v or = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic uv radiation from very hot, dward stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  14. Separation of seven arsenic compounds by high performance liquid chromatography with on-line detection by hydrogen-argon flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, S. H.; Larsen, Erik Huusfeldt; Pritzl, G.;

    1992-01-01

    Seven molecular forms of arsenic were separated by anion- and cation-exchange high-performance liquid chromatography (HPLC) with on-line detection by flame atomic absorption spectrometry (FAAS). The interfacing was established by a vented poly(tetrafluoroethylene) capillary tubing connecting......-to-noise ratio of the on-line AAS detector was optimized. This involved the use of the hydrogen-argon-entrained air flame, a slotted tube atom trap in the flame for signal enhancement, electronic noise damping and a high-intensity light source. The detection limits in mu-g cm-3, using 100 mm3 injections...

  15. Separation of seven arsenic compounds by high-performance liquid chromatography with on-line detection by hydrogen–argon flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, S. H.; Larsen, E. H.; Pritzl, G.;

    1992-01-01

    Seven molecular forms of arsenic were separated by anion- and cation-exchange high-performance liquid chromatography (HPLC) with on-line detection by flame atomic absorption spectrometry (FAAS). The interfacing was established by a vented poly(tetrafluoroethylene) capillary tubing connecting......-to-noise ratio of the on-line AAS detector was optimized. This involved the use of the hydrogen-argon-entrained air flame, a slotted tube atom trap in the flame for signal enhancement, electronic noise damping and a high-intensity light source. The detection limits in mu-g cm-3, using 100 mm3 injections...

  16. Micro-determination of ytterbium with electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    This communication reports the use of a pyrolytic graphite coated tube, lined with tantalum-tungsten, and a local made atomic absorption spectrometer (Model WFD-Y3) for the determination of small amount Yb in pure Y2O3 and mixed rare earth oxides. It is found that the method proposed is sensitive, reproducible and simple in manipulation. Even as low as 0.2 μg Yb in one gram sample (n x 10-7) can be determined directly without pre-concentration. It is found experimentally that the optimum condition for drying is at 150 deg C. for 20 sec, ashing at 1000 deg C. for 20 sec and atomization at 2770 deg C. for 12 sec. Within the range 1.0-18ng Yb/ml the calibration curve of Yb is linear. Before injecting into the tube, the acidity of the sample solution should be ajusted to 0.1 to 2 M with nitric or hydrochloric acid. For 5ng Yb/ml, Al(III), Ca(II) and La(III) interference, when their amount present is 50 μg/ml or more. On the other hand, Cu(II), Fe(III), Mg(II), K(I) and Y(III) in amount up to 1 mg/ml do not interfere

  17. Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Luiz [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil)], E-mail: edsonqmc@hotmail.com; Santos Roldan, Paulo dos [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil)

    2009-01-15

    A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool, or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3 mol L{sup -1} HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15 mL of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75 {mu}g L{sup -1} for lead and cadmium, respectively. For a solution containing 100 and 10 {mu}g L{sup -1} of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n = 7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%.

  18. Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry.

    Science.gov (United States)

    Silva, Edson Luiz; Roldan, Paulo Dos Santos

    2009-01-15

    A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool, or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3molL(-1) HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15mL of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75microgL(-1) for lead and cadmium, respectively. For a solution containing 100 and 10microgL(-1) of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n=7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%. PMID:18456398

  19. Comparison between EDXRF and FAAS for Zn determination in terrestrial molluscs

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Julyanne T.B.; Cantinha, Rebeca S.; Santos, Mariana L.O.; Santos, Katarine M.B.; Franca, Elvis J., E-mail: julyanne.melo@ufpe.br, E-mail: rebecanuclear@gmail.com, E-mail: marianasantos_ufpe@hotmail.com, E-mail: katarine.mizan@gmail.com, E-mail: ejfranca@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Ana M.M.A., E-mail: amdemelo@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Biofisica e Radiobiologia

    2015-07-01

    Even with the most advanced analytical techniques, achieving the true values of a given analyte in a sample cannot be an easy task. Energy Dispersive X-Ray Fluorescence (EDXRF) and Flame Atomic Absorption Spectrometry (FAAS) have been widely used for analysis of the chemical composition of biological matrices in environmental studies. However, depending on the sample matrix, a combination of techniques could be needed for the correct determination of the analyte. Zinc distribution in Littoraria angulifera and Melampus coffea is quite dependent on the environment, so that, diverse methods could be necessary to evaluate the chemical composition of these mollusks. This study aimed at the comparison between EDXRF and FAAS techniques for determining Zn in the soft tissues of terrestrial mollusks. The animals were collected in three mangroves in the State of Pernambuco, Brazil. After shell removal, tissues were lyophilized and milled in a mortar. Test portions of 500 mg were analyzed by EDXRF, followed by chemical treatment for FAAS analysis. For the quality of the analytical procedure, the standard reference material SRM 2976 Mussel Tissue was analyzed together with the samples. The results for the analysis of the certified reference material SRM 2976 indicated the quality of the analytical procedure for both techniques. Adjusted-R{sup 2} between EDXRF and FAAS results was 0.95, indicating a good equivalence of Zn determination by both techniques. However, some improvement of EDXRF determination could be necessary because of the tendency of lower results compared to FAAS, probably related to spectral interferences during the analysis. (author)

  20. Determination of gold in geologic materials by solvent extraction and atomic-absorption spectrometry

    Science.gov (United States)

    Huffman, Claude; Mensik, J.D.; Riley, L.B.

    1967-01-01

    The two methods presented for the determination of traces of gold in geologic materials are the cyanide atomic-absorption method and the fire-assay atomic-absorption method. In the cyanide method gold is leached with a sodium-cyanide solution. The monovalent gold is then oxidized to the trivalent state and concentrated by extracting into methyl isobutyl ketone prior to estimation by atomic absorption. In the fire-assay atomic-absorption method, the gold-silver bead obtained from fire assay is dissolved in nitric and hydrochloric acids. Gold is then concentrated by extracting into methyl isobutyl ketone prior to determination by atomic absorption. By either method concentrations as low as 50 parts per billion of gold can be determined in a 15-gram sample.

  1. Advances with tungsten coil atomizers: Continuum source atomic absorption and emission spectrometry

    International Nuclear Information System (INIS)

    Two new tungsten coil spectrometers are described: a continuum source tungsten coil atomic absorption spectrometer and a tungsten coil atomic emission spectrometer. Both devices use a 150 W tungsten coil extracted from a slide projector bulb. The power is provided by a computer-controlled, solid state, constant current 0-10 A supply. The heart of the optical system is a high-resolution spectrometer with a multi-channel detector. The continuum source system employs xenon or deuterium lamps, and is capable of multi-element analyses of complex samples like engine oil, urine, and polluted water. Spiked engine oil samples give mean percent recoveries of 98 ± 9, 104 ± 9, and 93 ± 0.8 for Al, V, and Ni, respectively. Copper, Zn, and Cd are determined in urine samples; while Cd, Co, Yb, and Sr are determined in water samples. Detection limits for Cd, Zn, Cu, Yb, Sr, and Co are: 8, 40, 1, 4, 1, and 4 μg l-1. The technique of tungsten coil atomic emission spectrometry using a 150 W commercial projector bulb is reported for the first time. Calcium, Ba, and Sr are determined with detection limits of 0.01, 0.5, and 0.1 μg l-1. Relative standard deviations are lower than 10% in each case, and Sr is determined in two water standard reference materials

  2. Improved limit of detection and quantitation development and validation procedure for quantification of zinc in Insulin by atomic absorption spectrometry.

    Science.gov (United States)

    Qadir, Muhammad Abdul; Ahmed, Mahmood; Haq, Iftikharul; Ahmed, Saghir

    2015-05-01

    A simple and expeditious analytical method for determination of zinc in human insulin isophane suspension by flame atomic absorption spectrophotometer (FAAS) was validated. The method was carried out on atomic absorption spectrometer with 0.4 nm bandwidth, 1.0 filter factor on deuterium (D2) background correction. The integration time was set at 3.0 second with 5.0 mA lamp current. The parameters of method validation showed adequate linearity, efficiency and relative standard deviation values were between 0.64%-1.69% (n=7), 1.31%-1.58% (n=10) for repeatability and intermediate precision respectively. The limit of detection 0.0032 μg/mL, 0.0173 μg/mL, 0.0231 μg/mL and limit of quantitation 0.0107μg/mL, 0.0578 μg/mL, 0.0694 μg/mL based on signal to noise (SN), calibration curve method (CCM) and fortification of blank (FB) were obtained respectively. The percentages of recovery for low, medium and high spiked concentration levels of zinc in human insulin were 99.38 ± 0.04 to 100.3 ± 0.03, 98.45 ± 0.38 to 100.3 ± 0.07 and 99.42 ± 0.03 to 99.42 ± 0.08 respectively. With the use of this method, five samples from each vial of human insulin isophane suspension were analyzed and the zinc content was determined. The zinc content were 22.1 ± 0.025 μg/mL and 24.3 ± 0.028 μg/mL which compliance the British Pharmacopoeia standard. PMID:26004720

  3. Determination of metallic impurities in uranium compounds of nuclear purity by atomic absorption spectrophotometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Atomic absorption spectrometry, with electrothermal atomization, has been used for the determination of Al, Cd, Cr, Fe, Mn and Ni in uranium oxide standards. The analysis were performed without sample dissolution and without uranium chemical separation. This technique is adequate for the qualification of uranium of nuclear purity according to the standard specifications. (Author)

  4. [The enhancement effect of emulsion in flame atomic absorption spectrometry].

    Science.gov (United States)

    Liu, Li-hang; Shen, Chun-yu

    2002-08-01

    A enhancement method of FAAS with emulsion as enhancement agent has been developed. The enhancement effect of emulsion made of three organic solvents (benzene, benzene-propanone, xylene), one organic reagent (dibutyl phthalate) and three emulsifiers (Tween-80, Triton X-100, OP) for iron, nickel, zinc, manganese and lead was studied. The results indicated that the enhancement is satisfactory. The emulsion with maximum enhancement percentage are respectively emulsion of benzene-OP-dibutyl phthalate with 89%, emulsion of xylene-Trition-100-dibutyl phthal with 34%, emulsion of benzene-Trition-100 with 121%, emulsion of benzene-Trition-100-dibutyl phthalate with 38% and 69% in sequence of the above elements. PMID:12938401

  5. An automatic countercurrent liquid-liquid micro-extraction system coupled with atomic absorption spectrometry for metal determination.

    Science.gov (United States)

    Mitani, Constantina; Anthemidis, Aristidis N

    2015-02-01

    A novel and versatile automatic sequential injection countercurrent liquid-liquid microextraction (SI-CC-LLME) system coupled with atomic absorption spectrometry (FAAS) is presented for metal determination. The extraction procedure was based on the countercurrent flow of aqueous and organic phases which takes place into a newly designed lab made microextraction chamber. A noteworthy feature of the extraction chamber is that it can be utilized for organic solvents heavier or lighter than water. The proposed method was successfully demonstrated for on-line lead determination and applied in environmental water samples using an amount of 120 μL of chloroform as extractant and ammonium diethyldithiophosphate as chelating reagent. The effect of the major experimental parameters including the volume of extractant, as well as the flow rate of aqueous and organic phases were studied and optimized. Under the optimum conditions for 6 mL sample consumption an enhancement factor of 130 was obtained. The detection limit was 1.5 μg L(-1) and the precision of the method, expressed as relative standard deviation (RSD) was 2.7% at 40.0 μg L(-1) Pb(II) concentration level. The proposed method was evaluated by analyzing certified reference materials and spiked environmental water samples. PMID:25435230

  6. Cloud point extraction for the preconcentration of silver and palladium in real samples and determination by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, Hossein; Yazdandoust, Saeed; Yazdandoust, Mozhdeh [Department of Chemistry, Payame Noor University (PNU), Shiraz (Iran)

    2010-03-15

    A cloud point extraction procedure is presented for the preconcentration and simultaneous determination of Ag{sup +} and Pd{sup 2+} in various samples. After complexation with 2-((2-((1H-benzo[d]imidazole-2-yl)methoxy)phenoxy)methyl)-1H-benzo[d]imidazol (BIMPI), which was used as a new chelating agent, analyte ions were quantitatively extracted to a phase rich in Triton X-114 following centrifugation, and determination was carried out by flame atomic absorption spectrometry (FAAS). Under the optimum experimental conditions (i. e., pH = 7.0, 15.0.10{sup -5} mol/L BIMPI and 0.036% (w/v) Triton X-114), calibration graphs were linear in the range of 28.0-430.0 {mu}g/L and 57.0-720.0 {mu}g/L with detection limits of 10.0 and 25.0 {mu}g/L for Ag{sup +} and Pd{sup 2+}, respectively. The enrichment factors were 35.0 and 28.0 for Ag{sup +} and Pd{sup 2+}, respectively. The method has been successfully applied to evaluate these metals in some real samples, including waste water, soil and hydrogenation catalyst samples. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Preconcentration procedure using cloud point extraction in the presence of electrolyte for cadmium determination by flame atomic absorption spectrometry

    Science.gov (United States)

    Coelho, Luciana Melo; Arruda, Marco Aurélio Zezzi

    2005-06-01

    This paper describes a micelle-mediated phase separation in the presence of electrolyte as a preconcentration method for cadmium determination by flame atomic absorption spectrometry (FAAS). Cadmium was complexed with ammonium O,O-diethyldithiophosphate (DDTP) in an acidic medium (0.32 mol l- 1 HCl) using Triton X-114 as surfactant and quantitatively extracted into a small volume (about 20 μl) of the surfactant-rich phase after centrifugation. The chemical variables that affect the cloud point extraction, such as complexing time (0 20 min), Triton X114 concentration (0.043 0.87% w/v) and complexing agent concentration (0.01 0.1 mol l- 1), were investigated. The cloud point is formed in the presence of NaCl at room temperature (25 °C), and the electrolyte concentration (0.5 5% w/v) was also investigated. Under optimized conditions, only 8 ml of sample was used in the presence of 0.043% w/v Triton X-114 and 1% (w/v) NaCl. This method permitted limits of detection and quantification of 0.9 μg l- 1 and 2.9 μg l- 1 Cd, respectively, and a linear calibration range from 3 to 400 μg l- 1 Cd. The proposed method was applied to Cd determination in physiological solutions (containing 0.9% (w/v) of NaCl), mineral water, lake water and cigarette samples (tobacco).

  8. Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, M. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Shokrollahi, A.; Ahmadi, F.; Rajabi, H.R. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, M. [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-02-11

    A cloud point extraction procedure was presented for the preconcentration of copper, nickel and cobalt ions in various samples. After complexation with methyl-2-pyridylketone oxime (MPKO) in basic medium, analyte ions are quantitatively extracted to the phase rich in Triton X-114 following centrifugation. 1.0 mol L{sup -1} HNO{sub 3} nitric acid in methanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The adopted concentrations for MPKO, Triton X-114 and HNO{sub 3}, bath temperature, centrifuge rate and time were optimized. Detection limits (3 SDb/m) of 1.6, 2.1 and 1.9 ng mL{sup -1} for Cu{sup 2+}, Co{sup 2+} and Ni{sup 2+} along with preconcentration factors of 30 and for these ions and enrichment factor of 65, 58 and 67 for Cu{sup 2+}, Ni{sup 2+} and Co{sup 2+}, respectively. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed procedure was applied to the analysis of biological, natural and wastewater, soil and blood samples.

  9. Cloud point extraction and flame atomic absorption spectrometry combination for copper(II) ion in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: ashokrollahi@mail.yu.ac.ir; Ghaedi, Mehrorang [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Hossaini, Omid; Khanjari, Narges [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-12-30

    A cloud point extraction procedure was presented for the preconcentration of copper(II) ion in various samples. After complexation by 4-(phenyl diazenyl) benzene-1,3-diamine (PDBDM) (chrysoidine), copper(II) ions were quantitatively recovered in Triton X-114 after centrifugation. 0.5 ml of methanol acidified with 1.0 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The influence of analytical parameters including ligand, Triton X-114 and HNO{sub 3} concentrations, bath temperature, heating time, centrifuge rate and time were optimized. The effect of the matrix ions on the recovery of copper(II) ions was investigated. The detection limit (3S.D.{sub b}/m, n = 10) of 0.6 ng mL{sup -1} along with preconcentration factor of 30 and enrichment factor of 41.1 with R.S.D. of 1.0% for Cu was achieved. The proposed procedure was applied to the analysis of various environmental and biological samples.

  10. Preconcentration and determination of zinc and lead ions by a combination of cloud point extraction and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, H. [Chemistry Department, Payamenore University, Shiraz (Iran); Shokrollahi, A.; Zahedi, M. [Chemistry Department, Yasouj University, Yasouj (Iran); Niknam, K. [Chemistry Department, Persian Gulf University, Bushehr (Iran); Soylak, M. [Chemistry Department, University of Erciyes, Kayseri (Turkey); Ghaedi, M.

    2009-04-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of lead(II) and zinc(II). After complexation with 3-[(4-bromophenyl) (1-H-inden-3-yl)methyl]-1 H-indene (BPIMI), the analytes were quantitatively extracted to a phase rich in Triton X-114 after centrifugation. Methanol acidified with 1 mol/L HNO{sub 3} was added to the surfactant rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of bis((1H-benzo [d] imidazol-2yl)ethyl)sulfane, Triton X-114, pH and amount of surfactant were all optimized. Detection limits (3 SDb/m) of 2.5 and 1.6 ng/mL for Pb{sup 2+} and Zn{sup 2+} along with preconcentration factors of 30 and an enrichment factor of 32 and 48 for Pb{sup 2+}and Zn {sup 2+} ions were obtained, respectively. The proposed cloud point extraction was been successfully applied for the determination of these ions in real samples with complicated matrices such as food and soil samples, with high efficiency. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Flame Atomic Absorption Determination of Gold Ion in Aqueous Samples after Preconcentration Using 9-Acridinylamine Functionalized γ-Alumina Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Karimi

    2013-01-01

    Full Text Available A simple and sensitive solid phase extraction utilizing 9-acridinylamine functionalized alumina nanoparticles was developed, and their potential use for preconcentration and subsequent determination of gold by flame atomic absorption spectrometry (FAAS was investigated. A number of parameters, namely, type, concentration, and volume of eluent, pH of the sample solution, flow rate of extraction, and volume of the sample, were evaluated. The effect of a variety of ions on preconcentration and recovery was also investigated. Gold ions were found to be recovered quantitatively at pH 3.0, with 0.1 mol L−1 thiourea in 2 mol L−1 H2SO4 as eluent. The limit of detection (LOD, defined as five times the standard deviation of the blank, was determined to be lower than 13.0 ppb. Under optimum conditions, the accuracy and precision (RSD% of the method were >98.0 and <1.5%, respectively. To gauge its ability in terms of application to real samples, the proposed method was successfully applied for determination of gold concentration in waste water samples and one soil standard material, and satisfactory results were obtained.

  12. Cloud Point Extraction Using Tergitol TMN-6 of Gold(III)in Real Samples by Flame Atomic Absorption Spectrometry Determination

    International Nuclear Information System (INIS)

    A simple, safe and rapid method on the basis of cloud point extraction (CPE) with tergitol TMN-6 had been used for the preconcentration and extraction of gold(Au) ion in selenium reduction solution sample prior to flame atomic absorption spectrometry (FAAS).Pyrrolidine dithio formic acid salt (PDFAS) which was regarded as a selective complexing agent could formed stable Au-complex with Au ion, and Au-complex could be extracted by TMN-6 at a short time. Some influencing factors such as sample pH, concentration of TMN-6, concentration of PDFAS and the effect of foreign ions were further researched .Under the optimum conditions, the limit of detection (LOD) was 1.3 meu g L/sup -1/, the calibration graph was linear in the range of 0-500 meu g/L and the relative standard deviation (RSD%) was 2.0%(n=8). The CPE method had been shown to be a useful and effective methodology for the separation of Au, with a preconcentration factor of 30. The recoveries of the spiked Au(?) ions were got in the range 95-103%. (author)

  13. Comparison of electrothermal atomization diode laser Zeeman- and wavelength-modulated atomic absorption and coherent forward scattering spectrometry

    International Nuclear Information System (INIS)

    Atomic absorption and coherent forward scattering spectrometry by using a near-infrared diode laser with and without Zeeman and wavelength modulation were carried out with graphite furnace electrothermal atomization. Analytical curves and limits of detection were compared. The magnetic field was modulated with 50 Hz, and the wavelength of the diode laser with 10 kHz. Coherent forward scattering was measured with crossed and slightly uncrossed polarizers. The results show that the detection limits of atomic absorption spectrometry are roughly the same as those of coherent forward scattering spectrometry with crossed polarizers. According to the theory with bright flicker noise limited laser sources the detection limits and linear ranges obtained with coherent forward scattering spectrometry with slightly uncrossed polarizers are significantly better than those obtained with crossed polarizers and with atomic absorption spectrometry. This is due to the fact that employing approaches of polarization spectroscopy reduce laser intensity fluctuations to their signal carried fractions

  14. Analytical Absorption Cross-Section for Photon by a Hydrogen 2s Atom

    Institute of Scientific and Technical Information of China (English)

    Boniface Otieno Ndinya; Stephen Onyango Okeyo

    2011-01-01

    We calculate the absorption cross-section for photon by a hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron atoms.With the application of the first-order term of the Baker-Hausdorf expansion, the absorption cross-section for the hydrogen 2s atom decreases to a minimum, the Cooper pair minimum, at low photon energy.Such a minimum is absent in the exact absorption cross-section for photon by a hydrogen 2s atom.We have extended the calculation for the absorption cross-section of the hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron to include the second-order term of the Baker-Hausdorf expansion and observed a great reduction in the dip associated with the Cooper pair minimum at the zero crossing.

  15. Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of nickel and manganese ions in water and food samples

    International Nuclear Information System (INIS)

    A simple, rapid, inexpensive, and nonpolluting cloud point extraction (CPE) technique has been improved for the preconcentration and determination of nickel and manganese. After complexation with p-nitrophenylazoresorcinol (Magneson I), the analytes could be competitively extracted in a surfactant octylphenoxy polyethoxyethanol (Triton X-114), prior to determination by flame atomic absorption spectrometry (FAAS). The effects of experimental conditions such as pH, concentration of chelating agent and surfactant, equilibration temperature and time on CPE were studied. Under the optimum conditions, preconcentration of a 25 mL sample solution permitted the detection of 2.7 ng mL-1 Ni2+ and 2.9 ng mL-1 Mn2+ with enrichment factors of 17 and 19 for Ni2+ and Mn2+, respectively. The developed method was applied to the determination of trace nickel and manganese in water and food samples with satisfactory results.

  16. A fast and accurate microwave-assisted digestion method for arsenic determination in complex mining residues by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A fast and accurate microwave-assisted digestion method for arsenic determination by flame atomic absorption spectrometry (FAAS) in typical, complex residues from gold mining is presented. Three digestion methods were evaluated: an open vessel digestion using a mixture of HCl:HNO3:HF acids (Method A) and two microwave digestion methods using a mixture of HCl:H2O2:HNO3 in high (Method B) and medium-pressure (Method C) vessels. The matrix effect was also investigated. Arsenic concentration from external and standard addition calibration curves (at a 95% confidence level) were statistically equal (p-value = 0.122) using microwave digestion in high-pressure vessel. The results from the open vessel digestion were statistically different (p-value = 0.007) whereas in the microwave digestion in medium-pressure vessel (Method C) the dissolution of the samples was incomplete.

  17. A fast and accurate microwave-assisted digestion method for arsenic determination in complex mining residues by flame atomic absorption spectrometry.

    Science.gov (United States)

    Pantuzzo, Fernando L; Silva, Julio César J; Ciminelli, Virginia S T

    2009-09-15

    A fast and accurate microwave-assisted digestion method for arsenic determination by flame atomic absorption spectrometry (FAAS) in typical, complex residues from gold mining is presented. Three digestion methods were evaluated: an open vessel digestion using a mixture of HCl:HNO(3):HF acids (Method A) and two microwave digestion methods using a mixture of HCl:H(2)O(2):HNO(3) in high (Method B) and medium-pressure (Method C) vessels. The matrix effect was also investigated. Arsenic concentration from external and standard addition calibration curves (at a 95% confidence level) were statistically equal (p-value=0.122) using microwave digestion in high-pressure vessel. The results from the open vessel digestion were statistically different (p-value=0.007) whereas in the microwave digestion in medium-pressure vessel (Method C) the dissolution of the samples was incomplete. PMID:19345010

  18. A fast and accurate microwave-assisted digestion method for arsenic determination in complex mining residues by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pantuzzo, Fernando L.; Silva, Julio Cesar J. [Dept. of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais (UFMG), Rua Espirito Santo, 35/206, 30160-030 Belo Horizonte, Minas Gerais (Brazil); Ciminelli, Virginia S.T., E-mail: ciminelli@demet.ufmg.br [Dept. of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais (UFMG), Rua Espirito Santo, 35/206, 30160-030 Belo Horizonte, Minas Gerais (Brazil)

    2009-09-15

    A fast and accurate microwave-assisted digestion method for arsenic determination by flame atomic absorption spectrometry (FAAS) in typical, complex residues from gold mining is presented. Three digestion methods were evaluated: an open vessel digestion using a mixture of HCl:HNO{sub 3}:HF acids (Method A) and two microwave digestion methods using a mixture of HCl:H{sub 2}O{sub 2}:HNO{sub 3} in high (Method B) and medium-pressure (Method C) vessels. The matrix effect was also investigated. Arsenic concentration from external and standard addition calibration curves (at a 95% confidence level) were statistically equal (p-value = 0.122) using microwave digestion in high-pressure vessel. The results from the open vessel digestion were statistically different (p-value = 0.007) whereas in the microwave digestion in medium-pressure vessel (Method C) the dissolution of the samples was incomplete.

  19. Determination of lead in water resources by flame atomic absorption spectrometry after pre-concentration with ammonium pyrrolidinedithiocarbamate immobilized on surfactant-coated alumina

    Directory of Open Access Journals (Sweden)

    SAYED MORTEZA TALEBI

    2007-06-01

    Full Text Available Arapid, simple, and sensitive procedure based on modified solid phase extraction was developed for the pre-concentration and determination of trace amount of lead in water resources. Lead was reacted with ammonium pyrrolidinedithiocarbamate (APDC to make a complex. The complex was then collected in a column packed with surfactant-coated alumina. The parameters affecting the collection efficiency and desorption rate of the lead complexes from the column were investigated and optimized. The collection efficiency of the lead complex on the adsorbent was excellent under the optimized conditions. The results obtained from the recovery test showed the capability and reliability of the method for the analysis of trace amounts of lead. The proposed pre-concentration procedure made it possible to apply conventional flame atomic absorption spectrometry (FAAS for the sensitive determination of trace amounts of lead in water resources.

  20. Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of nickel and manganese ions in water and food samples

    Energy Technology Data Exchange (ETDEWEB)

    Arpa Sahin, Cigdem, E-mail: carpa@hacettepe.edu.tr [Hacettepe University, Chemistry Department, 06800, Beytepe, Ankara (Turkey); Efecinar, Melis; Satiroglu, Nuray [Hacettepe University, Chemistry Department, 06800, Beytepe, Ankara (Turkey)

    2010-04-15

    A simple, rapid, inexpensive, and nonpolluting cloud point extraction (CPE) technique has been improved for the preconcentration and determination of nickel and manganese. After complexation with p-nitrophenylazoresorcinol (Magneson I), the analytes could be competitively extracted in a surfactant octylphenoxy polyethoxyethanol (Triton X-114), prior to determination by flame atomic absorption spectrometry (FAAS). The effects of experimental conditions such as pH, concentration of chelating agent and surfactant, equilibration temperature and time on CPE were studied. Under the optimum conditions, preconcentration of a 25 mL sample solution permitted the detection of 2.7 ng mL{sup -1} Ni{sup 2+} and 2.9 ng mL{sup -1} Mn{sup 2+} with enrichment factors of 17 and 19 for Ni{sup 2+} and Mn{sup 2+}, respectively. The developed method was applied to the determination of trace nickel and manganese in water and food samples with satisfactory results.

  1. Normal blood magnesium levels in volunteers of Rawalpindi by atomic absorption absorption technique

    International Nuclear Information System (INIS)

    Magnesium levels in whole blood samples of 67 healthy volunteers (mean 6.46 -+ 0.221; range 1.345 - 13.163 mg/dL) of Rawalpindi district have been determined by flame atomic absorption spectrophotometric method. Magnesium levels of 41 male and 26 female subjects including doctors, nurses, patients attendees, medical students, sweepers and peons of Rawalpindi Medical College and Rawalpindi General Hospital revealed the normal mean blood levels of 6.088 - + 0.258 mg/dL (range 1.345 - 10.679 mg/dL)and 7.060 -+ 0.375 mg/dL (range 4.495 - 13.163 mg/dL),P<0.05 respectively. Only 10 male volunteers were smokers exhibiting 6.768 -+ 0.558 mg/dL (range 4.466 -10.679 mg/dL). Significant relationship was found in magnesium levels between males and females of poor socio-economic group (P<0.05). No relationship occurred between male smokers and non-smokers and magnesium levels in the age groups of males or females or both, when data was compared by 't' test. (author)

  2. Rare earth aerosol analysis by atomic absorption spectrophotometry using electrothermal atomization

    International Nuclear Information System (INIS)

    Atomic absorption spectrophotometry (AAS) employing electrothermal atomization in a pyrolytic graphite tube is shown to be a precise and accurate method for analysis of 11 rare earth, or rare-earth-like elements in air filter samples taken in a thorium and rare earth refinery. The method is fairly rapid since it involves only fluoric acids. Each element was sequentially analyzed from the same resulting solution by using either the techniques of standard-curve calibration or that of standard additions. The two methods used on the same sample gave essentially identical results (composite ratio for 171 such trials being 0.9996). Matrix effects were negligible and no background correction was necessary. The average percent standard deviation for all duplicate trials (176) was 4.2%. Elements analyzed by this method were La, Nd, Sm, Eu, Gd, Dy, Ho, Tm, Yb, Gd, Sc and Y. Other rare earths such as erbium (Er), lutetium (Lu), and terbium (Tb), with comparable analytical sensitivity by AAS to Dy, Sm, and Nd, respectively, could presumably be analyzed by this method as well

  3. Rare earth analysis in human biological samples by atomic absorption using electrothermal atomization

    International Nuclear Information System (INIS)

    The determination of Sc and seven rare earth elements, Nd, Sm, Dy, Ho, Eu, Tm, and Yb, in biological samplesby atomic absorption spectrophotometric analysis (AAS) using electrothermal atomization in a pyrolytic graphite tube is shown to be rapid, precise and accurate. The technique utilizes the method of standard additions and linear regression analysis to determine results from peak area data. Inter-elemental interferences are negligible. The elements found sensitive enough for this type of analysis are, in order of decreasing sensitivity, Yb, Eu, Tm, Dy, Sc, Ho, Sm and Nd. The determination in these types of materials of Gd and elements less sensitive to AAS detection than Gd does not appear to be feasible. Results are presented on the concentrations of these elements in 41 samples from human subjects, cows and vegetables with normal environmental exposure to the rare earth elements. The composite percent mean deviation in peak-area readings for all samples and all elements examined was 4%. The mean standard error in the results among samples was about 6.5%

  4. Flame atomic absorption determination of trace amounts of cadmium after preconcentration using a thiol-containing task-specific ionic liquid.

    Science.gov (United States)

    Mohamadi, Maryam; Mostafavi, Ali

    2011-01-01

    Dispersive liquid-liquid microextraction (DLLME) based on a task-specific ionic liquid (TSIL) was developed for the extraction and preconcentration of trace amounts of cadmium from aqueous samples, followed by flame atomic absorption spectrometry (FAAS) determination. In the proposed approach, cadmium ions are extracted from aqueous samples using small volumes of trioctylmethylammonium thiosalicylate (TOMATS) dissolved in acetone. TOMATS is a thiol-containing TSIL that can form metal thiolate complexes due to the chelating effect of the ortho-positioned carboxylate group relative to the thiol functionality. The main parameters affecting the performance of DLLME based on TSIL, such as pH, amount of TOMATS, extraction time, injection volume, salt addition, and centrifugation time, were optimized. Under optimum conditions, an LOD of 1.16 ng/mL and a good RSD of 1.8% at 60.0 ng/mL were obtained (n=7). The proposed method was applied to tap water, wastewater, well water, and milk samples. The results showed that DLLME based on TSIL combined with FAAS is a rapid, simple, sensitive, selective, low cost, volatile organic solvent-free, and efficient analytical method for the separation and determination of trace amounts of cadmium ions. PMID:21797025

  5. Investigation of novel rapidly synergistic cloud point extraction pattern for bismuth in water and geological samples coupling with flame atomic absorption spectrometry determination

    Science.gov (United States)

    Wen, Xiaodong; Zhao, Yu; Deng, Qingwen; Ji, Shoulian; Zhao, Xia; Guo, Jie

    2012-04-01

    Rapidly synergistic cloud point extraction (RS-CPE) greatly simplified and accelerated the procedure of traditional cloud point extraction (CPE). In order to expand the application of RS-CPE, this work was carried out after the establishment of the improved extraction technique. The new established extraction method was firstly applied for bismuth extraction and determination coupled with flame atomic absorption spectrometry (FAAS) in this work. The improved RS-CPE was accomplished in the room temperature in 1 min. Non-ionic surfactant Triton X-100 (TX-100) was used as extractant. Octanol worked as cloud point revulsant and synergic reagent. TX-100 has a relatively high cloud point temperature (CPT), which limited its application in CPE. In this work, TX-100 accomplished the RS-CPE procedure in room temperature successfully. The factors influencing RS-CPE, such as concentrations of reagents, pH, conditions of phase separation, effect of environmental temperatures, salt effect and instrumental conditions, were studied systematically. Under the optimal conditions, the limit of detection (LOD) for bismuth was 4.0 μg L-1, with sensitivity enhancement factor (EF) of 43. The proposed method greatly improved the sensitivity of FAAS for the determination of bismuth and was applied to the determination of trace bismuth in real and certified samples with satisfactory analytical results. The proposed method was rapid, simple, and sensitive.

  6. A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan

    2015-05-15

    A new cloud-point extraction (CPE) for the determination of antimony species in biological and beverages samples has been established with flame atomic absorption spectrometry (FAAS). The method is based on the fact that formation of the competitive ion-pairing complex of Sb(III) and Sb(V) with Victoria Pure Blue BO (VPB(+)) at pH 10. The antimony species were individually detected by FAAS. Under the optimized conditions, the calibration range for Sb(V) is 1-250 μg L(-1) with a detection limit of 0.25 μg L(-1) and sensitive enhancement factor of 76.3 while the calibration range for Sb(III) is 10-400 μg L(-1) with a detection limit of 5.15 μg L(-1) and sensitive enhancement factor of 48.3. The precision as a relative standard deviation is in range of 0.24-2.35%. The method was successfully applied to the speciative determination of antimony species in the samples. The validation was verified by analysis of certified reference materials (CRMs).

  7. Preconcentration and determination of iron and copper in spice samples by cloud point extraction and flow injection flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Cigdem Arpa, E-mail: carpa@hacettepe.edu.tr [Hacettepe University, Chemistry Department, 06800 Beytepe, Ankara (Turkey); Tokgoez, Ilknur; Bektas, Sema [Hacettepe University, Chemistry Department, 06800 Beytepe, Ankara (Turkey)

    2010-09-15

    A flow injection (FI) cloud point extraction (CPE) method for the determination of iron and copper by flame atomic absorption spectrometer (FAAS) has been improved. The analytes were complexed with 3-amino-7-dimethylamino-2-methylphenazine (Neutral Red, NR) and octylphenoxypolyethoxyethanol (Triton X-114) was added as a surfactant. The micellar solution was heated above 50 {sup o}C and loaded through a column packed with cotton for phase separation. Then the surfactant-rich phase was eluted using 0.05 mol L{sup -1} H{sub 2}SO{sub 4} and the analytes were determined by FAAS. Chemical and flow variables influencing the instrumental and extraction conditions were optimized. Under optimized conditions for 25 mL of preconcentrated solution, the enrichment factors were 98 and 69, the limits of detection (3s) were 0.7 and 0.3 ng mL{sup -1}, the limits of quantification (10s) were 2.2 and 1.0 ng mL{sup -1} for iron and copper, respectively. The relative standard deviation (RSD) for ten replicate measurements of 10 ng mL{sup -1} iron and copper were 2.1% and 1.8%, respectively. The proposed method was successfully applied to determination of iron and copper in spice samples.

  8. Determination of trace copper in water samples by flame atomic absorption spectrometry after preconcentration on a phosphoric acid functionalized cotton chelator

    Directory of Open Access Journals (Sweden)

    XINGYAN LIU

    2008-02-01

    Full Text Available This paper reports the preparation of a phosphorylated cotton chelator (PCC by solid phase esterification of phosphoric acid (PA onto defatted cotton fibres using urea as the catalyst. The synthesized PCC was employed for the preconcentration of copper from water samples prior to its determination by flame atomic absorption spectrometry (FAAS. The preconcentration of copper was studied under both batch and column techniques. The pH range for the quantitative preconcentration of copper was 4.0–7.0. The sorption time required for each sample was less than 30 min by the batch method. The copper sorption capacity of the PCC was found to be 15.3 mg/g at the optimum pH value. Elution with 1.0 mol dm-3 hydrochloric acid was found to be quantitative. Feasible flow rates of the copper solution for quantitative sorption onto the column packed with PCC were 0.5–4.0 ml min-1, whereas the optimum flow rate of the hydrochloric acid solution for desorption was less than 1.5 ml min-1. An 80-fold preconcentration factor could be achieved under the optimum column conditions. The tolerance limits for common metal ions on the preconcentration of copper and the number of times of column reuse were investigated. The proposed method was successfully applied for the preconcentration and determination of trace copper in natural and drinking water samples by FAAS.

  9. Determination of β-lactam Antibiotics in Pharmaceutical Preparations by Uv-visible Spectrophotometry Atomic Absorption and High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    *A. J. Abdulghani

    2012-09-01

    Full Text Available The determination amoxicillin, ampicillin and cephalexin was studied by complexation of the antibiotics with Au(III and Hg(II ions in bulk and pharmaceutical preparations using uv-visible spectrophotometry, atomic absorption, and HPLC techniques. Optimum conditions for complex formation were fixed at pH 4 and (2-4 for Au(III and Hg(IIcomplexes respectively, heating temperature at (60 °C and heating time for (10 minute. All complexes were extracted from aqueous solution with benzyl alcohol prior to measurements except in the case of HPLC. The L:M ratios for all complexes were determined and stability constants were calculated using mole ratio method. The Beer's law was obeyed over the concentration range (5-60 and 5-50 µg/ml of antibiotics for Au(III and Hg(II complexes using colorimetric method and (1-25 µg/ml of Au(III for FAAS. The linearity for HPLC method was (10-110 and 10-120 µg/ml respectively. The correlation coefficients (r were (0.9981-0.9997. Generally, the highest sensitivity was recorded by FAAS.

  10. Investigation of novel rapidly synergistic cloud point extraction pattern for bismuth in water and geological samples coupling with flame atomic absorption spectrometry determination.

    Science.gov (United States)

    Wen, Xiaodong; Zhao, Yu; Deng, Qingwen; Ji, Shoulian; Zhao, Xia; Guo, Jie

    2012-04-01

    Rapidly synergistic cloud point extraction (RS-CPE) greatly simplified and accelerated the procedure of traditional cloud point extraction (CPE). In order to expand the application of RS-CPE, this work was carried out after the establishment of the improved extraction technique. The new established extraction method was firstly applied for bismuth extraction and determination coupled with flame atomic absorption spectrometry (FAAS) in this work. The improved RS-CPE was accomplished in the room temperature in 1 min. Non-ionic surfactant Triton X-100 (TX-100) was used as extractant. Octanol worked as cloud point revulsant and synergic reagent. TX-100 has a relatively high cloud point temperature (CPT), which limited its application in CPE. In this work, TX-100 accomplished the RS-CPE procedure in room temperature successfully. The factors influencing RS-CPE, such as concentrations of reagents, pH, conditions of phase separation, effect of environmental temperatures, salt effect and instrumental conditions, were studied systematically. Under the optimal conditions, the limit of detection (LOD) for bismuth was 4.0 μg L(-1), with sensitivity enhancement factor (EF) of 43. The proposed method greatly improved the sensitivity of FAAS for the determination of bismuth and was applied to the determination of trace bismuth in real and certified samples with satisfactory analytical results. The proposed method was rapid, simple, and sensitive.

  11. Evaluation of cadmium, lead, copper, iron and zinc in Turkish dietary vegetable oils and olives using electrothermal and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Acar, O.

    2012-07-01

    The Cd, Pb, Cu, Fe and Zn contents of some edible vegetable oils (soybean, sunflower, flower, nut, corn and olive) and of olives (olive-1, black, green, black crushed with seeds and green crushed with seeds) were determined and evaluated by an electrothermal atomic absorption spectrometer (ETAAS) using an Sc + Ir + NH{sub 4}H{sub 2}PO{sub 4} chemical modifier mixture and flame atomic absorption spectrometer (FAAS) after microwave digestion. The pyrolysis and atomization temperatures of Cd, Pb and Cu in sample solutions with and without the modifier mixture were investigated. The limits of detection (LOD) for analytes found are 0.1, 0.6, 0.9, 15.0 and 12.0 {mu}g L{sup -}1 for Cd, Cu, Pb, Fe and Zn, respectively. The accuracy of the procedure proposed was confirmed by analyzing bovine liver 1577b standard reference material (SRM) and a spiked sample solution. The results of the analytes found were compared with certified and added values. The relative standard deviations of the analytes found were lower than 7% and the percent of recoveries obtained ranges from 96 to 101%. The Sc + Ir + NH{sub 4}H{sub 2}PO{sub 4} mixture proposed was applied for the determination of Cd, Pb and Cu in oils and olives. The results of analytes found in the samples were compared with international and national food quality guidelines as well as with literature values. (Author) 48 refs.

  12. Non-Dispersive Atomic Absorption System for Engine Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, construct and test a first implementation of a non-dispersive technique for the measurement of atomic absorption in the plumes of liquid...

  13. Ionization of hydrogen atom by X-ray absorption in the presence of optical laser field

    International Nuclear Information System (INIS)

    The absorption of X-rays in hydrogen atom considering the irradiation of the target by an intense optical laser of frequency ω is studied. It is found that the terms of the modified scattering amplitude has different dependence on polarization vectors of X-ray fields and laser fields. There is resonance in the differential cross section for absorption at different frequencies when ω (the laser frequency) becomes nearly equal to atomic transition frequency. (author). 21 refs., 2 figs

  14. Understanding the mechanism of H atom absorption in the Pd(1 1 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Padama, Allan Abraham B. [Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños, Laguna 4031 (Philippines); Kasai, Hideaki, E-mail: kasai@dyn.ap.eg.osaka-u.ac.jp [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871 (Japan); Center for Continuing Professional Development, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2015-10-05

    Highlights: • This study elucidates the absorption of H in Pd(1 1 0) (1 × 2) missing-row surface. • Electronic structure depicts the stronger adsorption on ridge than on trough site. • The geometry of missing-row Pd(1 1 0) allows Pd atoms to accommodate H and H{sub 2}. • Assisted absorption is facilitated by the repulsion between H atoms. - Abstract: The underlying mechanism of H atom absorption in the Pd(1 1 0) (1 × 2) missing-row reconstructed surface is investigated by performing density functional theory based calculations. The stronger binding energy of H on ridge than on trough site of the missing-row surface is due to the more pronounced creation of derived bonding state as had been depicted from the electronic structure of the system. Hydrogen absorption takes place with the involvement of other incoming H atoms through an assisted absorption process that is facilitated by the repulsion between the incoming H and the absorbing H. The geometry of the missing-row surface enables the Pd atoms to accommodate the H atoms efficiently leading to H absorption as well as H{sub 2} dissociation.

  15. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    International Nuclear Information System (INIS)

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author)

  16. Optical pumping effect in absorption imaging of F=1 atomic gases

    CERN Document Server

    Kim, Sooshin; Noh, Heung-Ryoul; Shin, Y

    2016-01-01

    We report our study of the optical pumping effect in absorption imaging of $^{23}$Na atoms in the $F=1$ hyperfine spin states. Solving a set of rate equations for the spin populations under a probe beam, we obtain an analytic expression for the optical signal of the $F=1$ absorption imaging. Furthermore, we verify the result by measuring the absorption spectra of $^{23}$Na Bose-Einstein condensates prepared in various spin states with different probe beam pulse durations. The analytic result can be used in quantitative analysis of $F=1$ spinor condensate imaging and readily applied to other alkali atoms with $I=3/2$ nuclear spin such as $^{87}$Rb.

  17. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas

    CERN Document Server

    Moroshkin, Peter; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-01-01

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  18. Reduction of interference fringes in absorption imaging of cold atom cloud using eigenface method

    Institute of Scientific and Technical Information of China (English)

    Xiaolin Li; Min Ke; Bo Yan; Yuzhu Wang

    2007-01-01

    Eigenface method used in face recognition is introduced to reduce the pattern of interference fringes appearing in the absorption image of cold rubidium atom cloud trapped by an atom chip. The standard method for processing the absorption image is proposed, and the origin of the interference fringes is analyzed. Compared with the standard processing method which uses only one reference image, we take advantage of fifty reference images and reconstruct a new reference image which is more similar to the absorption image than all of the fifty original reference images. Then obvious reduction of interference fringes can be obtained.

  19. Absorption of twisted light by a mesoscopic atomic target

    Science.gov (United States)

    Peshkov, A. A.; Serbo, V. G.; Fritzsche, S.; Surzhykov, A.

    2016-06-01

    The excitation of a hydrogen-atom target by a twisted Bessel light beam is investigated. The atoms are assumed to have a Gaussian spatial distribution in the target. Theoretical analysis is performed within a nonrelativistic framework using a first-order perturbation approach and density matrix formalism. By using this theory, we derive the expressions for excitation cross sections and for alignment parameters of the excited atomic state. In particular, we make calculations for the 1s\\to 2p transition caused by the interaction of Bessel beams with the atomic target. For this transition, we analyze the population of magnetic sublevels for the excited 2p state and study how it is affected by the projection of the total angular momentum of incident light. The calculations indicate that the projection of the total angular momentum of the incident Bessel beam affects the alignment of atoms for sufficiently small targets with size less than 200 nm. This can be observed experimentally by measuring the linear polarization of the subsequent fluorescent light.

  20. Graphene for Preconcentration of Trace Amounts of Ni in Water and Paraffin-Embedded Tissues from Liver Loggerhead Turtles Specimens Prior to flame Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Hanie Arbabi Rashid

    2014-03-01

    Full Text Available A new sensitive and simple method was developed for the preconcentration of trace amounts of Ni using 1-(2-pyridylazo-2-naphthol (PAN as chelating reagent prior to its determination by flame atomic absorption spectrometry. The proposed method is based on the uti- lization of a column packed with graphene as sorbent. Several effective parameters on the extraction and complex formation were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 5.0–240.0 µg L-1 with a detection limit of 0.36 µg L-1. The relative standard deviation for ten replicate measurements of 20.0 and 100.0 µg L-1 of Ni were 3.45 and 3.18%, respectively. Comparative studies showed that graphene is superior to other adsorbents including C18 silica, graphitic carbon, and single- and multi-walled carbon nanotubes for the extraction of Ni. In the present study, we report the application of preconcentration techniques still continues increasingly for trace metal determinations by flame atomic absorption spectrometry (FAAS for quantification of Ni in Formalin-fixed paraffin-embedded (FFPE tissues from Liver loggerhead turtles. The proposed method was successfully applied in the analysis of four real environmental water samples. Good spiked recoveries over the range of 95.8–102.6% were obtained.

  1. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: A multivariate study

    Science.gov (United States)

    Arain, Salma Aslam; Kazi, Tasneem G.; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-01

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu2+) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu2+ using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046 μg L-1 and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu2+ in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu2+ in serum samples of different viral hepatitis patients and healthy controls.

  2. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: a multivariate study.

    Science.gov (United States)

    Arain, Salma Aslam; Kazi, Tasneem G; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-10

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu(2+)) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu(2+) using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046μgL(-1) and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu(2+) in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu(2+) in serum samples of different viral hepatitis patients and healthy controls.

  3. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  4. Determination of cadmium in biodiesel using microemulsion and electrothermal atomization atomic absorption spectrometry.

    Science.gov (United States)

    Lima, Adriana S; Silva, Deise G; Teixeira, Leonardo S G

    2015-01-01

    This work aimed to prepare biodiesel microemulsions for the subsequent quantification of cadmium via graphite furnace atomic absorption spectrometry (GFAAS). The biodiesel samples were prepared using n-propanol as an emulsifier, 10% (v/v) nitric acid as the aqueous phase, and biodiesel. Pseudoternary phase diagrams were constructed to determine the microemulsion region with the specified components. The optimized conditions for microemulsion formation were 57.6% (v/v) n-propanol, 21.2% (v/v) biodiesel, and 21.2% (v/v) nitric acid solution. The stability of the microemulsified system was investigated using aqueous and organic standards, and the system was found to be stable for at least 240 min. The applied pyrolysis and atomization temperatures were 800 and 2000 °C, respectively, and 5 μg of aluminum was used as the chemical modifier. The obtained limits of detection and quantification were 0.2 and 0.5 μg kg(-1), respectively, and the characteristic mass was 1.6 pg. The precision, expressed as the relative standard deviation (% R.S.D., n = 10), was 2.5% for a sample with a cadmium concentration of 6.5 μg kg(-1). The accuracy was determined from addition and recovery experiments, with results varying from 93 to 108% recovery. This study demonstrates that the proposed method based on the use of a microemulsion formation in sample preparation can be applied as an efficient alternative for the determination of cadmium in biodiesel by GFAAS. Cadmium determination in biodiesel samples of different origins (soybean, corn, cotton, and sunflower) was evaluated after acid digestion using the inductively coupled plasma-mass spectrometry (ICP-MS) technique, and the obtained results were compared to the results obtained using the proposed method. The paired t test (95% confidence level) did not show significant differences. The concentrations of cadmium found ranged from 5.3 to 8.0 μg kg(-1). PMID:25381584

  5. Flame atomic absorption spectrometric (FAAS) determination of copper, iron and zinc in food samples after solid-phase extraction on Schiff base-modified duolite XAD 761

    International Nuclear Information System (INIS)

    The present study involves the development of solid-phase extraction (SPE) procedure for the preconcentration of trace amounts of copper (Cu2+), iron (Fe3+) and zinc (Zn2+) ions on duolite XAD 761 modified by bis(2-hydroxyacetophenone)-2,2-dimethyl-1,3-propanediimine(BHAPDMPDI). The complexation between the metal ions and the proposed ligand was investigated potentiometrically. The metal ions retained on the sorbent were quantitatively determined via complexation with BHAPDMPDI. The complexed metal ions were efficiently eluted using 6 mL of 4 mol L−1 nitric acid in acetone. The influences of the analytical parameters, including pH, amounts of the ligand and the solid phase, eluent conditions and sample volume, on the recoveries of the metal ions were optimized. Using the optimized parameters, the linear response of the SPE method for Cu2+, Zn2+ and Fe3+ ions were in the ranges of 0.01–0.34, 0.01–0.28 and 0.02–0.31 μg mL−1, respectively, and the detection limits for Cu2+, Zn2+ and Fe3+ ions were 1.8, 1.6 and 2.4 μg mL−1, respectively. The proposed method exhibits a preconcentration factor of 208 for all of the ions studied and an enhancement factor for Cu2+, Fe3+ and Zn2+ ions of 34, 28 and 38, respectively. The presented results demonstrate the successful application of the proposed method for the determination of these metal ions in some real samples with high recoveries (> 95%) and reasonable relative standard deviation (RDS < 5%). Highlights: ► Highly efficient adsorbent for dye removal was synthesized. ► The sorbent was fully characterized. ► The proposed method has a potential of a waste water treatment alternative. ► Excellent properties of the sorbent have been illustrated in detail

  6. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The on-line atomization of gold volatile species was studied and the results were compared with thermodynamic calculations in several quartz atomizers, namely: diffusion flame, flame-in-gas-shield, flame-in-plain-tube, externally heated T-tube and externally heated flame-in-T-tube. Atomization mechanism in the explored devices is proposed, where volatile species are converted to thermodynamically stable AuH at elevated temperature over 500 °C and then atomized by an interaction with a cloud of hydrogen radicals. Because of its inherent simplicity and robustness, diffusion flame was employed as a reference atomizer. It yielded atomization efficiency of 70 to 100% and a very good long time reproducibility of peak area sensitivity: 1.6 to 1.8 s μg−1. Six and eleven times higher sensitivity, respectively, was provided by atomizers with longer light paths in the observation volume, i.e. externally heated T-tube and externally heated flame-in-T-tube. The latter one, offering limit of detection below 0.01 μg ml−1, appeared as the most prospective for on-line atomization. Insight into the mechanism of atomization of gold volatile species, into the fate of free atoms and into subsequent analyte transfer allowed to assess possibilities of in-atomizer preconcentration of gold volatile species: it is unfeasible with quartz atomizers but a sapphire tube atomizer could be useful in this respect. - Highlights: • On-line atomization of gold volatile species for AAS in quartz devices was studied. • Atomization mechanism was proposed and atomization efficiency was estimated. • Possibilities of in-atomizer preconcentration of gold volatile species were assessed

  7. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Yasin [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Mehmet Akif Ersoy University, Faculty of Arts & Sciences, Chemistry Department, 15030 Burdur (Turkey); Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Dědina, Jiří, E-mail: dedina@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-01-01

    The on-line atomization of gold volatile species was studied and the results were compared with thermodynamic calculations in several quartz atomizers, namely: diffusion flame, flame-in-gas-shield, flame-in-plain-tube, externally heated T-tube and externally heated flame-in-T-tube. Atomization mechanism in the explored devices is proposed, where volatile species are converted to thermodynamically stable AuH at elevated temperature over 500 °C and then atomized by an interaction with a cloud of hydrogen radicals. Because of its inherent simplicity and robustness, diffusion flame was employed as a reference atomizer. It yielded atomization efficiency of 70 to 100% and a very good long time reproducibility of peak area sensitivity: 1.6 to 1.8 s μg{sup −1}. Six and eleven times higher sensitivity, respectively, was provided by atomizers with longer light paths in the observation volume, i.e. externally heated T-tube and externally heated flame-in-T-tube. The latter one, offering limit of detection below 0.01 μg ml{sup −1}, appeared as the most prospective for on-line atomization. Insight into the mechanism of atomization of gold volatile species, into the fate of free atoms and into subsequent analyte transfer allowed to assess possibilities of in-atomizer preconcentration of gold volatile species: it is unfeasible with quartz atomizers but a sapphire tube atomizer could be useful in this respect. - Highlights: • On-line atomization of gold volatile species for AAS in quartz devices was studied. • Atomization mechanism was proposed and atomization efficiency was estimated. • Possibilities of in-atomizer preconcentration of gold volatile species were assessed.

  8. Near resonant absorption by atoms in intense fluctuating fields

    International Nuclear Information System (INIS)

    Using an atomic beam apparatus, we have carried out comprehensive measurements of fluorescence intensity, and fluctuations (variance) in the fluorescence intensity, from the 3S1/2 (F = 2, MF = 2) → 3P3/2 (F = 3, MF = 3) transition in atomic sodium, in a laser driving field on which well-characterized synthesized phase fluctuations have been imposed. These data are taken as a function of detuning of the laser from exact resonance with the transition, and for laser fields modulated with characteristically different bandwidths and amplitudes of phase noise. The experimental results are compared in detail with predictions of recently developed theoretical treatments. The methods are being extended to experimental studies of the role of phase fluctuations in four-wave mixing. 4 refs., 1 fig

  9. Absorption Spectra of a Three-Level Atom Embedded in a PBG Reservoir

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; ZHANG Han-Zhuang

    2007-01-01

    We introduce the 'decay rate' terms into the density matrix equations of an atom embedded in a photonic band gap (PSG)reservoir successfully.By utilizing the master equations,the probe absorption spectra and the refractivity properties of a three-level atom in the PBG reservoir are obtained.The interaction between the atom and the PBG reservoir as well as the effects of the quantum interference on the absorption of the atom has also been taken into account.It is interesting that two different types of the anomalous dispersion relations of refractivity are exhibited in one dispersion line.The methodology used here can be applied to theoretical investigation of quantum interference effects of other atomic models embedded in a PBG reservoir.

  10. Cloud Point Extraction and Flame Atomic Absorption Spectrometric Determination of Lead, Cadmium and Palladium in Some Food and Biological Samples

    Directory of Open Access Journals (Sweden)

    M. Soylak

    2011-12-01

    Full Text Available The proposed method is based on the complexation of the Pb2+, Cd2+ and Pd2+ ions with 3-(1-(1-H-Indol-3-Yl-3-phenylallyl-1H-indole (IPAI at pH 8.0 in the presence of Triton X-114. The phase separation occured when micellar solution was heated at 55 ◦C. The surfactant-rich phase, diluted to 0.5 mL via 1.0 mol L−1 nitric acid in methanol was directly introduced into the nebulizer of the flame atomic absorption spectrometry (FAAS. Influence of variables such as pH, amount of ligand and Triton X-114, heating time and temperature were evaluated and optimized. The optimized enhancement factors for Pb2+, Cd2+ and Pd2+ ions were 22, 33 and 23, respectively and the detection limit (DLs was between of 1.6–2.6 µgL−1. The relative standard deviation (RSD of each ion was found to be less than 4.6% at 100 µgL−1. In addition, the calibration graphs were linear in the range of 0.01-0.22 μg mL−1 for Cd2+ ion, 0.018-0.26 μg mL−1 for Pb2+ ion and 0.02-0.27 μg mL−1 for Pd2+ ion with the correlation coefficients in the range of 0.995–0.999.

  11. Preconcentration procedure using cloud point extraction in the presence of electrolyte for cadmium determination by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Melo Coelho, Luciana [Departamento de Quimica Analitica, Universidade Estadual de Campinas (Unicamp), Cidade Universitaria ' Zeferino Vaz' , 13084-971, Campinas, Sao Paulo (Brazil); Arruda, Marco Aurelio Zezzi [Departamento de Quimica Analitica, Universidade Estadual de Campinas (Unicamp), Cidade Universitaria ' Zeferino Vaz' , 13084-971, Campinas, Sao Paulo (Brazil)]. E-mail: zezzi@iqm.unicamp.br

    2005-06-30

    This paper describes a micelle-mediated phase separation in the presence of electrolyte as a preconcentration method for cadmium determination by flame atomic absorption spectrometry (FAAS). Cadmium was complexed with ammonium O,O-diethyldithiophosphate (DDTP) in an acidic medium (0.32 mol l{sup -} {sup 1} HCl) using Triton X-114 as surfactant and quantitatively extracted into a small volume (about 20 {mu}l) of the surfactant-rich phase after centrifugation. The chemical variables that affect the cloud point extraction, such as complexing time (0-20 min), Triton X114 concentration (0.043-0.87% w/v) and complexing agent concentration (0.01-0.1 mol l{sup -} {sup 1}), were investigated. The cloud point is formed in the presence of NaCl at room temperature (25 deg. C), and the electrolyte concentration (0.5-5% w/v) was also investigated. Under optimized conditions, only 8 ml of sample was used in the presence of 0.043% w/v Triton X-114 and 1% (w/v) NaCl. This method permitted limits of detection and quantification of 0.9 {mu}g l{sup -} {sup 1} and 2.9 {mu}g l{sup -} {sup 1} Cd, respectively, and a linear calibration range from 3 to 400 {mu}g l{sup -} {sup 1} Cd. The proposed method was applied to Cd determination in physiological solutions (containing 0.9% (w/v) of NaCl), mineral water, lake water and cigarette samples (tobacco)

  12. Determination of trace elements in dolomite and gypsum by atomic absorption spectrometry: overcoming the matrix interference by flotation separation

    Science.gov (United States)

    Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina

    2002-05-01

    The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.

  13. Chlorine Analysis by Diode Laser Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Joachim Koch; Aleksandr Zybin; Kay Niemax

    2000-01-01

    The general characteristics of Diode Laser Absorption Spectrometry (DLAAS) in low pressure plasmas particulary with respect to the detection of non-metals are comprehensively recapitulated and discussed. Furthermore, a detector, which is based on DLAAS in a microwave-induced low pressure plasma as an alternative technique for halogene-specific analysis of volatile compounds and polymeric matrices is described. The analytical capability of the technique is demonstrated on the chlorine-specific analysis of ablated polymer fragments as well as gas chromatographically separated hydrocarbons. Since the measurements were carried out by means of a balanced-heterodyne detection scheme, different technical noise contributions, such as laser excess and RAM noise could efficiently be suppressed and the registered absorption was limited only by the principal shot noise. Thus, in the case of the polymer analysis a chlorine-specific absolute detection limit of 10 pg could be achieved. Furthermore, fundamental investigations concerning the influence of hydrocarbons on the dissociation capability of the microwave induced plasma were performed. For this purpose, the carbon-, chlorine-and hydrogen-specific stoichiometry of the compounds were empirically determined. Deviations from the exspected proportions were found to be insignificant, implying the possibility of internal standardization relative to the response of a reference sample.

  14. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    International Nuclear Information System (INIS)

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min−1 Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml−1 Se in the DBD and 0.15 ng ml−1 Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH2 atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated

  15. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duben, Ondřej [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Hlavova 8, Prague, CZ 128 43 Czech Republic (Czech Republic); Boušek, Jaroslav [Faculty of Electrical Engineering and Communications, Brno University of Technology, Technická 1058/10, 61600 Brno (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic)

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min{sup −1} Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml{sup −1} Se in the DBD and 0.15 ng ml{sup −1} Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH{sub 2} atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated.

  16. Near resonant absorption by atoms in intense fluctuating fields

    International Nuclear Information System (INIS)

    We have completed a comprehensive study of the effects of phase/frequency fluctuations in the incident laser field on the fluorescence intensity from the 3S1/2 (F = 2, MF = 2) to 3P3/2 (F = 3, MF = 3) transition to atomic sodium. The experiments were carried out in an atomic beam apparatus with a laser driving field on which well-characterized synthesized phase-fluctuations were imposed. The mean fluorescence intensity and the fluctuations in the intensity were measured as a function of detuning of the driving field from the resonance frequency of the transition, and for several different laser powers and bandwidths of laser noise. Power spectra of the intensity fluctuations were measured for a wide range of parameters and the effects of correlated amplitude and phase fluctuations were probed. Detailed comparisons between theoretical predictions and experimental measurements were carried out, and a theoretical model was developed to include the effects of residual Doppler broadening and the nonuniform spatial intensity profile of the driving laser. Experimental investigations of effects of laser phase-noise on degenerate four- wave-mixing have been started

  17. Study on the application of cold vapor atomic absorption spectrometry and hydride generation atomic absorption spectrometry for the determination of Hg and As traces in sea water samples

    International Nuclear Information System (INIS)

    The trace amount of total mercury (Hg) and arsenic (As) in sea water samples were quantitatively determined by using the Atomic Absorption Spectrometry connected with the hydride generation technique (HG-AAS) for As, and with the cold vapour technique (CV-AAS) for Hg. The experiments were carried out at room temperature on a Hydride System Module (HS55) combined with an Atomic Absorption Spectrometer (VARIO 6, Analytik Jena AG). The effect of reductants concentration, and that of matrix on the absorption intensity of each analyzed element was studied in details. The sea water sample after fitrating through a membrane with 0.45(μm-hole size was pre-treated with an oxidant or an reductant to obtain the identical medium. The absorption intensity of each element was then measured on the VARIO-6 under the optimum parameters for spectrometer such as: maximum wavelength, current of hollow cathode lamp, and that for hydride system such as cell temperature, speed of peristaltic pump, pump time, reaction time and rewash time, ect. The analytical procedures were set-up and applied for the determination of these above mentioned elements in the synthesized sea water sample and in the real sea water samples with high precision and accuracy. (author)

  18. Entanglement-preserving absorption of single SPDC photons by a single atom

    CERN Document Server

    Huwer, J; Piro, N; Schug, M; Dubin, F; Eschner, J

    2011-01-01

    We study the controlled interaction between a single trapped Ca40+ ion and single photons belonging to entangled photon pairs. The ion is prepared as a polarization-sensitive single-photon absorber; the absorption of one photon from a pair is marked by a quantum jump of the atomic state and heralded by the coincident detection of the entangled partner photon. For three polarization basis settings of absorption and detection of the herald, we find maximum coincidences always for orthogonal polarizations. Tomographic reconstruction of the biphoton quantum state from the absorption-herald coincidences reveals 93% overlap with the maximally entangled state. This proves that the polarization entanglement shared by the photon pair is preserved in the absorption process and converted to transient photon-atom entanglement.

  19. Direct determination of selenoproteins in polyvinylidene difluoride membranes by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Sidenius, U; Gammelgaard, Bente

    2000-01-01

    were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well......A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual...

  20. Determination of traces of cadmium in zinc by flameless atomic absorption spectrophotometry after extraction

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, A.; Willmann, K.H.; Simon, F.J.

    1985-01-01

    The suitability of dithizone, diethyldithiocarbamate and tetramethylendithiocarbamate as chelating agents for the extraction-photometric cadmium determination by flameless atomic absorption spectrophotometry in the presence of zinc was investigated. It has been found that the extraction of the dithizone chelate by carbon tetrachloride permits an uninfluenced determination of cadmium in the presence of a zinc excess up to 10/sup 5/. Therefore the use of flameless atomic absorption spectrophotometry raises the selectivity as compared to photometry, because photometry only permits a 1000-fold excess of zinc. With this method 2x10/sup -4/% of cadmium in zinc can be determined without further corrections of matrix effects.

  1. Observing random walks of atoms in buffer gas through resonant light absorption

    Science.gov (United States)

    Aoki, Kenichiro; Mitsui, Takahisa

    2016-07-01

    Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  2. Observing random walks of atoms in buffer gas through resonant light absorption

    CERN Document Server

    Aoki, Kenichiro

    2016-01-01

    Using resonant light absorption, random walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured and its spectrum is obtained, down to orders of magnitude below the shot noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a gaussian light beam is computed and its analytical form is obtained. The spectrum has $1/f^2$ ($f$: frequency) behavior at higher frequencies, crossing over to a different, but well defined behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas and the atomic number density, from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  3. Determination of vanadium in food and traditional Chinese medicine by graphite furnace atomic absorption spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Various experimental conditions were described for the vanadium determination by graphite furnace atomic ab-sorption spectroscopy (GFAAS). The experiments showed that when atomization took place under the conditions where thecombination of a pyrolytic coating graphite tube and fast raising temperature were used and the temperature was stable, thesignal peak shapes could be improved, the sensitivity was enhanced, and the memory effect was removed. The vanadium infood and traditional Chinese medicinal herbs can be accurately determined using the standard curve method.

  4. Absorption spectroscopy of cold caesium atoms confined in a magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Yan Shu-Bin; Liu Tao; Geng Tao; Zhang Tian-Cai; Peng Kun-Chi; Wang Jun-Min

    2004-01-01

    Absorption spectra of cold caesium atoms confined in a magneto-optical trap are measured around D2 line at 852nm with a weak probe beam. Absorption reduction dip due to electromagnetically induced transparency (EIT)effect induced by the cooling/trapping field in a V-type three-level system and a gain peak near the cycling transition are clearly observed. Several mechanisms mixed with EIT effect in a normal V-type three-level system are briefly discussed. A simple theoretical analysis based on a dressed-state model is presented for interpretation of the absorption spectra.

  5. Padronização interna em espectrometria de absorção atômica Internal standardization in atomic absorption spectrometry

    OpenAIRE

    Kelly G. Fernandes; Mercedes de Moraes; José A. Gomes Neto; Joaquim A. Nóbrega; Pedro V. Oliveira

    2003-01-01

    This paper describes a review on internal standardization in atomic absorption spectrometry with emphasis to the systematic and random errors in atomic absorption spectrometry and applications of internal standardization in flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry. The rules for selecting an element as internal standard, limitations of the method, and some comments about the application of internal standardization in atomic absorption spectrometry...

  6. Investigations on Freon-assisted atomization of refractory analytes (Cr, Mo, Ti, V) in multielement electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Heinrich, Hans-Joachim; Matschat, Ralf

    2007-08-01

    Premixed 1% Freon in argon inner gas of various composition (CCl 2F 2, CHClF 2, CHF 3) was applied to graphite furnace atomizer to minimize unfavorable effects of carbide formation, such as signal tailing and memory effects in the simultaneous determination of Cr, Mo, Ti and V refractory analytes by electrothermal atomic absorption spectrometry using a multielement atomic absorption spectrometer. The effect of these gaseous additives was investigated when applied separately in atomization, pyrolysis and clean-out steps. The halogenation effects were analytically useful only under the precondition of using Ar-H 2 outer gas to the furnace to all heating steps, and also using this gas in the pre-atomization (drying, pyrolysis) steps. Optimum analytical performance was obtained when mixtures of 1% Freon in argon were applied just before and during the atomization step at a flow rate of 50 mL min - 1 and 2% hydrogen was used as purge gas. Using optimum conditions, signal tailings and carry-over contamination were reduced effectively and good precision (relative standard deviation below 1%) could be attained. Applying 1% CHClF 2 and an atomization temperature of 2550 °C, the characteristic masses obtained for simple aqueous solutions were 8.8 pg for Cr, 17 pg for Mo, 160 pg for Ti, and 74 pg for V. The limits of detection were 0.05, 0.2, 2.3 and 0.5 μg L - 1 for Cr, Mo, Ti and V, respectively. The developed method was applied to the analysis of digests of advanced ceramics. The accuracy of the procedure was confirmed by analyzing the certified reference material ERM-ED 102 (Boron Carbide Powder) and a silicon nitride powder distributed in the inter-laboratory comparison CCQM-P74.

  7. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry.

    Science.gov (United States)

    Sahin, Ciğdem Arpa; Tokgöz, Ilknur

    2010-05-14

    A rapid, simple and cost effective solidified floating organic drop microextraction (SFODME) and flow injection flame atomic absorption spectrometric determination (FI-FAAS) method for copper was developed. In this method, a free microdrop of 1-undecanol containing 1,5-diphenyl carbazide (DPC) as the complexing agent was transferred to the surface of an aqueous sample including Cu(II) ions, while being agitated by a stirring bar in the bulk of the solution. Under the proper stirring conditions, the suspended microdrop can remain at the top-center position of the aqueous sample. After the completion of the extraction, the sample vial was cooled by placing it in a refrigerator for 10min. The solidified microdrop was then transferred into a conical vial, where it melted immediately and diluted to 300microL with ethanol. Finally, copper ions in 200microL of diluted solution were determined by FI-FAAS. Several factors affecting the microextraction efficiency, such as type of extraction solvent, pH, complexing agent concentration, extraction time, stirring rate, sample volume and temperature were investigated and optimized. Under optimized conditions for 100mL of solution, the preconcentration factor was 333 and the enrichment factor was 324. The limit of detection (3s) was 0.4ngmL(-1), the limit of quantification (10s) was 1.1ngmL(-1) and the relative standard deviation (RSD) for 10 replicate measurements of 10ngmL(-1) copper was 0.9%. The proposed method was successfully applied to the determination of copper in different water samples. PMID:20441870

  8. On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples.

    Science.gov (United States)

    Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G

    2009-06-30

    A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 microL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 microg L(-1) and 2.1% at 2.0 microg L(-1) Cu(II), respectively, while for lead were 0.54 microg L(-1) and 1.9% at 30.0 microg L(-1) Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples. PMID:19376348

  9. Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Highlights: • Calcium-alginate-modified dien-silica gel adsorbed multivalent metal ions. • Metal ions adsorbed on CaAD were eluted using low acidic concentrations. • Flow system with CaAD-packed column enriched metal concentrations up to 50-fold. - Abstract: This study aimed to evaluate the heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel (CaAD) and incorporate this biosorbent into a flow analytical system for heavy metal ions using flame atomic absorption spectrometry (FAAS). The biosorbent was synthesized by electrostatically coating calcium alginate onto diethylenetriamine (dien)-silica gel. Copper ion adsorption tests by a batch method showed that CaAD exhibited a higher adsorption rate compared with other biosorbents despite its low maximum adsorption capacity. Next, CaAD was packed into a 1 mL microcolumn, which was connected to a flow analytical system equipped with an FAAS instrument. The flow system quantitatively adsorbed heavy metals and enriched their concentrations. This quantitative adsorption was achieved for pH 3–4 solutions containing 1.0 × 10−6 M of heavy metal ions at a flow rate of 5.0 mL min−1. Furthermore, the metal ions were successfully desorbed from CaAD at low nitric acid concentrations (0.05–0.15 M) than from the polyaminecarboxylic acid chelating resin (Chelex 100). Therefore, CaAD may be considered as a biosorbent that quickly adsorbs and easily desorbs analyte metal ions. In addition, the flow system enhanced the concentrations of heavy metals such as Cu2+, Zn2+, and Pb2+ by 50-fold. This new enrichment system successfully performed the separation and determination of Cu2+ (5.0 × 10−8 M) and Zn2+ (5.7 × 10−8 M) in a river water sample and Pb2+ (3.8 × 10−9 M) in a ground water sample

  10. Determination of nickel in blood and serum samples of oropharyngeal cancer patients consumed smokeless tobacco products by cloud point extraction coupled with flame atomic absorption spectrometry.

    Science.gov (United States)

    Arain, Sadaf Sadia; Kazi, Tasneem Gul; Arain, Jamshed Bashir; Afridi, Hassan Imran; Kazi, Atif Gul; Nasreen, Syeda; Brahman, Kapil Dev

    2014-10-01

    Oropharyngeal cancer is a significant public health issue in the world. The incidence of oropharyngeal cancer has been increased among people who have habit of chewing smokeless tobacco (SLT) in Pakistan. The aim of present study was to evaluate the concentration of nickel (Ni) in biological samples (whole blood, serum) of oral (n = 95) and pharyngeal (n = 84) male cancer patients. For comparison purposes, the biological samples of healthy age-matched referents (n = 150), who consumed and did not consumed SLT products, were also analyzed for Ni levels. As the Ni level is very low in biological samples, a preconcentration procedure has been developed, prior to analysis of analyte by flame atomic absorption spectrometry (FAAS). The Ni in acid-digested biological samples was complexed with ammonium pyrrolidinedithio carbamate (APDC), and a resulted complex was extracted in a surfactant Triton X-114. Acidic ethanol was added to the surfactant-rich phase prior to its analysis by FAAS. The chemical variables, such as pH, amounts of reagents (APDC, Triton X-114), temperature, incubation time, and sample volume were optimized. The resulted data indicated that concentration of Ni was higher in blood and serum samples of cancer patients as compared to that of referents who have or have not consumed different SLT products (p = 0.012-0.001). It was also observed that healthy referents who consumed SLT products have two to threefold higher levels of Ni in both biological samples as compared to those who were not chewing SLT products (p < 0.01).

  11. Determination of nickel in blood and serum samples of oropharyngeal cancer patients consumed smokeless tobacco products by cloud point extraction coupled with flame atomic absorption spectrometry.

    Science.gov (United States)

    Arain, Sadaf Sadia; Kazi, Tasneem Gul; Arain, Jamshed Bashir; Afridi, Hassan Imran; Kazi, Atif Gul; Nasreen, Syeda; Brahman, Kapil Dev

    2014-10-01

    Oropharyngeal cancer is a significant public health issue in the world. The incidence of oropharyngeal cancer has been increased among people who have habit of chewing smokeless tobacco (SLT) in Pakistan. The aim of present study was to evaluate the concentration of nickel (Ni) in biological samples (whole blood, serum) of oral (n = 95) and pharyngeal (n = 84) male cancer patients. For comparison purposes, the biological samples of healthy age-matched referents (n = 150), who consumed and did not consumed SLT products, were also analyzed for Ni levels. As the Ni level is very low in biological samples, a preconcentration procedure has been developed, prior to analysis of analyte by flame atomic absorption spectrometry (FAAS). The Ni in acid-digested biological samples was complexed with ammonium pyrrolidinedithio carbamate (APDC), and a resulted complex was extracted in a surfactant Triton X-114. Acidic ethanol was added to the surfactant-rich phase prior to its analysis by FAAS. The chemical variables, such as pH, amounts of reagents (APDC, Triton X-114), temperature, incubation time, and sample volume were optimized. The resulted data indicated that concentration of Ni was higher in blood and serum samples of cancer patients as compared to that of referents who have or have not consumed different SLT products (p = 0.012-0.001). It was also observed that healthy referents who consumed SLT products have two to threefold higher levels of Ni in both biological samples as compared to those who were not chewing SLT products (p < 0.01). PMID:24920259

  12. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    Science.gov (United States)

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. PMID:27260436

  13. High sensitivity probe absorption technique for time-of-flight measurements on cold atoms

    Indian Academy of Sciences (India)

    A K Mohapatra; C S Unnikrishnan

    2006-06-01

    We report on a phase-sensitive probe absorption technique with high sensitivity, capable of detecting a few hundred ultra-cold atoms in flight in an observation time of a few milliseconds. The large signal-to-noise ratio achieved is sufficient for reliable measurements on low intensity beams of cold atoms. We demonstrate the high sensitivity and figure of merit of the simple method by measuring the time-of-flight of atoms moving upwards from a magneto-optical trap released in the gravitational field.

  14. ADSORPTION BEHAVIOR OF Pb(II) ON POTASSIUM HEXATITANATE WHISKER BY FAAS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the advantage of high surface area and strong adsorption ability of potassium hexatitanate whisker, a method to determine trace Pb(II) content by combining solid phase extraction with Flame atomic absorption spectrometry (FAAS) was established. The adsorptive behavior of potassium hexatitanate whisker to Pb(II), primary influencing factors of adsorption and elution and effect of coexistence ions were investigated systemically. The optimal analytical conditions were discussed and examined. It was found that the adsorption rate of potassium hexatitanate whisker to Pb(II) was 100% at pH 4.0. Pb(II) could be eluted from potassium tetratitanate whisker with HCl (2mol/L) under boiling water for 30min. The detection limit was 5.75ng/mL, and relative standard deviation was 1.66% (n=9, CPb=2.0μg/mL).

  15. ADSORPTION BEHAVIOR OF Pb(Ⅱ) ON POTASSIUM HEXATITANATE WHISKER BY FAAS

    Institute of Scientific and Technical Information of China (English)

    CHENG Yonghua; XU Wanzhen; YAN Yongsheng; JING Junjie

    2008-01-01

    Based on the advantage of high surface area and strong adsorption ability of potassium hexatitanate whisker, a method to determine trace Pb(Ⅱ) content by combining solid phase extraction with Flame atomic absorption spectrometry (FAAS) was established.The adsorptive behavior of potassium hexatitanate whisker to Pb(Ⅱ), primary influencing factors of adsorption and elation and effect of coexistence ions were investigated systemically.The optimal analytical conditions were discussed and examined.It was found that the adsorption rate of potassium hexatitanate whisker to Pb(Ⅱ) was 100% at pH 4.0.Pb(Ⅱ) could be elated from potassium tetratitanate whisker with HCI (2mol/L) under boiling water for 30min.The detection limit was 5.75ng/mL, and relative standard deviation was 1.66% (n=9, CPb=2.0μg/mL).

  16. STUDY ON THE ADSORPTION BEHAVIOR OF Pb(Ⅱ) ON NANOMETER ATTAPULGITE BY FAAS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The adsorptive behavior of nanometer attapulgite modified by acid to Pb(II) was investigated by flame atomic absorption spectrometry (FAAS) in this paper. The mainly effect parameters on the adsorptive efficiency of Pb(II), such as the acidity of the solution, the amount of attapulgite, oscillation time and static time were studied. Also the influencing factors of the recovery efficiency of Pb(II), including the concentration of hydrochloric acid, the volume of hydrochloric acid, oscillation time and static time were investigated. The adsorptive capacity of Pb(II) on nanometer attapulgite was 26.5mg/g and the adsorptive capacity of first cycle and second cycle regenerated nanometer attapulgite were 26.5mg/g and 26.3mg/g, respectively. The results obtained indicated that the regenerated effect was good.

  17. STUDY ON THE ADSORPTION BEHAVIOR OF Pb(Ⅱ) ON NANOMETER ATTAPULGITE BY FAAS

    Institute of Scientific and Technical Information of China (English)

    LI Chunxiang; LIU Aiqin; XU Wanzhen; YAN Yongsheng

    2007-01-01

    The adsorptive behavior of nanometer attapulgite modified by acid to Pb(Ⅱ) was investigated by flame atomic absorption spectrometry (FAAS) in this paper. The mainly effect parameters on the adsorptive efficiency of Pb(Ⅱ), such as the acidity of the solution, the amount of attapulgite, oscillation time and static time were studied. Also the influencing factors of the recovery efficiency of Pb(Ⅱ), including the concentration of hydrochloric acid, the volume of hydrochloric acid, oscillation time and static time were investigated. The adsorptive capacity of Pb(Ⅱ) on nanometer attapulgite was 26.5mg/g and the adsorptive capacity of first cycle and second cycle regenerated nanometer attapulgite were 26.5mg/g and 26.3mg/g, respectively. The results obtained indicated that the regenerated effect was good.

  18. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    International Nuclear Information System (INIS)

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data. - Highlights: • Compute the values of mass attenuation coefficients (μ/ρ) of some carbohydrates. • The values of (μen/ρ) i.e. mass energy-absorption coefficient are calculated. • Effective atomic energy-absorption cross sections (σa,en). • Comparison of all (μ/ρ), (μen/ρ), (σa,en) values with XCOM program. • The measured data for carbohydrates are useful in radiation dosimetry and other fields

  19. Chemical modifiers in electrothermal atomic absorption determination of Platinum and Palladium containing preparations in blood serum

    Directory of Open Access Journals (Sweden)

    Аntonina Alemasova

    2012-11-01

    Full Text Available The biological liquids matrixes influence on the characteristic masses and repeatability of Pt and Pd electrothermal atomic absorption spectroscopy (ETAAS determination was studied. The chemical modifiers dimethylglyoxime and ascorbic acid for matrix interferences elimination and ETAAS results repeatability improvement were proposed while bioliquids ETAAS analysis, and their action mechanism was discussed.

  20. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    Science.gov (United States)

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  1. Rapid accurate analysis of metal (oxide)-on-silica catalysts by atomic absorption spectrometry

    NARCIS (Netherlands)

    Jütte, B.A.H.G.; Heikamp, A.; Agterdenbos, J.

    1979-01-01

    The catalysts, which contain 10–60% copper, chromium, nickel and silicon, are decomposed in sealed Teflon-lined vessels and analyzed by atomic absorption spectrometry. Matrix matching and bracketing standards are applied. The RSD of a single determination is about 1% for all components.

  2. Direct microcomputer controlled determination of zinc in human serum by flow injection atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Nielsen, Bent; Jensen, Arne;

    1986-01-01

    A procedure is described for the direct determination of zinc in human serum by fully automated, microcomputer controlled flow injection atomic absorption spectrometry (Fl-AAS). The Fl system is pumpless, using the negative pressure created by the nebuliser. It only consists of a three-way valve...

  3. Further study on a flow injection on-line multiplexed sorption preconcentration coupled with flame atomic absorption spectrometry for trace element determination.

    Science.gov (United States)

    Li, Yan; Jiang, Yan; Yan, Xiu-Ping

    2004-10-20

    A further study on a newly developed flow injection (FI) on-line multiplexed sorption preconcentration (MSP) using a knotted reactor coupled with flame atomic absorption spectrometry (FAAS) was carried out to demonstrate its applicability and limitation for trace element determination. For this purpose, Cr(VI), Cu(II), Ni(II) and Co(II) were selected as the analytes, and detailed comparison was made between the MSP-FAAS and conventional FI on-line sorption preconcentration FAAS in respect to retention efficiency and linear ranges of absorbance versus sample loading flow rate and total preconcentration time. Introduction of an air-flow for removal of the residual solution in the KR after each sub-injection in the MSP procedure played a decisive role in the improvement of retention efficiency. The linearity of absorbance versus sample loading flow rate or total preconcentration time was extended to a more degree for the metal ions with less stability of their PDC (pyrrolidine dithiocarbamate) complexes than those with more stable PDC complexes. It seems that the MSP procedure behaves advantages beyond the inflection points in the diagrams of absorbance versus total preconcentration time and sample loading flow rate obtained by conventional (a single continuous) preconcentration procedure. With a sample loading flow rate of 6.0mlmin(-1) and a total preconcentration time of 180s, the retention efficiencies were increased from 25, 46, 41 and 63% with a single continuous sorption preconcentration to 44, 78, 65 and 75% with a six sub-injection preconcentration procedure for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The detection limits were 0.40, 0.33, 0.31 and 0.26mugl(-1) for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The precision (R.S.D.) for eleven replicate determination of 2mugl(-1) Cr(VI), Co(II) and Ni(II), and 1mugl(-1) Cu(II), was 2.1, 4.1, 2.6 and 1.7%, respectively. PMID:18969669

  4. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    Science.gov (United States)

    Duben, Ondřej; Boušek, Jaroslav; Dědina, Jiří; Kratzer, Jan

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min- 1 Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml- 1 Se in the DBD and 0.15 ng ml- 1 Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer.

  5. Quantitative Determination of Arsenic in Bottled Drinking Water Using Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Guţu Claudia

    2013-10-01

    Full Text Available Background: Many studies have been performed in the past few years, to determine arsenic speciation in drinking water, food chain and environment, arsenic being a well-recognized carcinogenic and toxic agent mainly in its inorganic species. The instrumental techniques used for arsenic determination, such as hydride generation atomic absorption spectrometry (HGAAS, graphite furnace atomic absorption spectrometry (GFAAS and inductively coupled plasma mass spectrometry (ICP-MS, can provide a great sensitivity only on the total amount. Objective: The aim of this study was to develop a simple and rapid method and to analyze the concentration of total inorganic arsenic in bottled drinking water. Methods: Total arsenic was determined in samples from six different types of commercially available bottled drinking water using atomic absorption spectrometry with electrothermal or hydride generation vaporisation. All drinking water samples were acidified with 0.1M nitric acid to match the acidity of the standards. Results: The method was linear within the studied range (1-5 μg/L, R = 0.9943. The quantification limits for arsenic determination were 0.48 μg/L (HGAAS and 0.03 μg/L (GFAAS. The evaluated arsenic content in drinking water was within the accepted limits provided by law. Conclusions: A simple and sensitive method for the quantification of arsenic in drinking water using atomic absorbtion spectroscopy was described, which can be further used in toxicological studies. As an additional advantage, the system is very fast, efficient and environmental friendly

  6. A double cell for X-ray absorption spectrometry of atomic Zn

    CERN Document Server

    Mihelic, A; Arcon, I; Padeznik-Gomilsek, J; Borowski, M

    2002-01-01

    A high-temperature cell with a double wall design has been constructed for X-ray absorption spectrometry of metal vapors. The inner cell, assembled from a corundum tube and thin plates without welding or reshaping, serves as a container of the vapor sample. It is not vacuum tight: instead, the outer tube provides inert atmosphere. Several spectra of K-edge atomic absorption of Zn were obtained in the stationary working regime below the Zn boiling point. The K-edge profile shows an extremely strong resonance and, above the continuum threshold, coexcitations of the outer electrons.

  7. Enhancement effect of alkaline earth metal on the determination of aluminium by atomic absorption spectrometry with a graphite furnace

    OpenAIRE

    Matsusaki, Koji

    1987-01-01

    In the determination of aluminium by atomic absorption spectrometry with a graphite furnace, coexisting oxyanion salts of alkaline earth metal enhanced the aluminium atomic absorption. The relative absorbance was increased with decreasing of the ramp atomization rate and with decreasing of the sheathing gas flow rate less than 51 min^. These results show that the enhancement effect is caused by the reductivity of the carbide of alkaline earth metal which is formed in the furnace at ashing and...

  8. Hydride generation – in-atomizer collection of Pb in a quartz trap-and-atomizer device for atomic absorption spectrometry – an interference study

    Energy Technology Data Exchange (ETDEWEB)

    Novotný, Pavel [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); High School in Hořice, Husova 1414, 508 01 Hořice (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-01-01

    Interferences of selected hydride forming elements (As, Sb, Bi, Se and Sn) on lead determination by hydride generation atomic absorption spectrometry were extensively studied in both on-line atomization and preconcentration (collection) modes. The commonly used on-line atomization mode was found free of significant interferences, whereas strong interference from Bi was observed when employing the preconcentration mode with plumbane collection in a quartz trap-and-atomizer device. Interference of Bi seems to take place in the preconcentration step. Interference of Bi in the collection mode cannot be reduced by increased hydrogen radical amount in the trap and/or the atomizer. - Highlights: ► Interference study on Pb determination by in-atomizer trapping was performed for the first time. ► Bi was found as a severe interferent in the preconcentration mode (Pb:Bi ratio 1:100). ► No interference was found in the on-line atomization (no preconcentration). ► Bi interference occurs during preconcentration.

  9. Effective atomic numbers for photon energy absorption of some low-Z substances of dosimetric interest

    International Nuclear Information System (INIS)

    Effective atomic numbers for photon energy absorption (ZPEAeff) and effective atomic numbers for photon interaction (ZPIeff) of some low-Z substances of dosimetric interest such as A-150 tissue-equivalent plastic (A150TEP), alanine, bakelite, Gafchromic sensor (GS), plastic scintillator (PS), polyethylene, mylar, polystyrene, perspex, radiochromic dye film nylon base (RDF : NB), tissue-equivalent gas-methane based (TEG : MB) and tissue-equivalent gas-propane based (TEG : PB) have been calculated by a direct method in the energy region of 1 keV-20 MeV. Experimental mass attenuation coefficients and ZPIeff of some of these substances at selected photon energies of 26.34, 33.2, and 59.54 keV have been obtained and compared with theoretical values. The ZPEAeff and ZPIeff values steadily increases up to 6-15 keV, and then they steadily decrease up to 600-1500 keV for all the substances studied. From 1.5 MeV, the values increases with increase in energy up to 20 MeV. Significant differences up to 33.68% exist between ZPIeff and the ZPEAeff in the energy region of 10-150 keV. The single effective atomic numbers obtained using the program XMuDat (ZXMUDATeff ) are found to be significantly higher compared to those of ZPEAeff and ZPIeff values in the entire energy of interest for all the substances studied. The directly calculated ZPEAeff and ZPIeff values vary with energy compared to the energy-independent effective atomic numbers predicted by various theoretical expressions. The effects of absorption edges on effective atomic numbers and their variation with photon energy and the possibility of defining two set values of effective atomic numbers below the absorption edges of elements present in the composite substances are discussed

  10. Evaluation of quartz tubes as atomization cells for gold determination by thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    This work describes the development of a new analytical procedure able to determine gold by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) using nickel tubes (NiT) and quartz tubes (QT) as atomization cells. Experiments involving changes in the flow injection operational parameters, reagent concentrations and sizes of the QT were performed in order to optimize sensitivity. Under the same operational conditions, it was observed that the employment of QT increases the sensitivity of gold determination when compared to the nickel tube. Since solutions of highly concentrated hydrochloric acid showed the best performance as carriers, quartz tubes were also preferred due to its greater tolerance to corrosion by mineral acids in comparison to NiT. In addition, changes in the internal diameter of the QT revealed an important improvement in sensitivity for smaller tubes. Under optimized conditions the main figures of merit showed values close to that of graphite furnace atomic absorption spectrometry with the addition of an excellent improvement of the sample throughput. They are: LOD (3 s): 0.004 μg mL−1, sensitivity: 0.306 (μg mL−1)−1, RSD% (n = 10, 1 μg mL−1): 2.5, linear range: 0.01–4 μg mL−1 and sample throughput: 72 h−1. This new method was employed for the determination of gold in homeopathic medicines with no need of sample digestion. Validation of the analytical results will be shown. A full discussion of the most relevant findings regarding the role of the atomization cell as a strategic key for improving sensitivity will be also provided. - Highlights: ► Quartz tubes as furnaces in TS-FFAAS. ► Small tubes for controlling radial dispersion. ► Improved figures of merit for gold determination. ► Analysis of homeopathic medicines.

  11. Atomic calculations and search for variation of the fine-structure constant in quasar absorption spectra

    Science.gov (United States)

    Dzuba, V. A.; Flambaum, V. V.

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  12. Atomic calculations and search for variation of the fine structure constant in quasar absorption spectra

    CERN Document Server

    Dzuba, V A

    2008-01-01

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  13. Absorption-Dispersion Properties in a Four-Level Atomic System with Vacuum-Induced Coherence

    Institute of Scientific and Technical Information of China (English)

    WEI Hua; LI Jia-Hua; ZHAN Zhi-Ming; PENG Ju-Cun

    2005-01-01

    We discuss and analyze absorption-dispersion response for the probe field in a typical four-level atomic system with vacuum-induced coherence (VIC) arising from the cross coupling pathways associated with a pair of upper excited hyperfine levels. We find that VIC effect can preserve electromagnetically induced transparency (EIT) by using the detailed numerical simulations based on the density-matrix equations and analytical calculations in the dressed-state picture. We also show that the atomic hyperfine structure cannot be a hindrance to obtaining EIT.

  14. Absorption-Dispersion Properties in a Four-Level Atomic System with Vacuum-Induced Coherence

    Institute of Scientific and Technical Information of China (English)

    WEIHua; LIJia-Hua; ZHANZhi-Ming; PENGJu-Cun

    2005-01-01

    We discuss and analyze absorption-dispersion response for the probe field in a typical four-level atomic system with vacuum-induced coherence (VIC) arising from the cross coupling pathways associated with a pair of upper excited hyperfine levels. We find that VIC effect can preserve electromagnetically induced transparency (FIT) by using the detailed numerical simulations based on the density-matrix equations and analytical calculations in the dressed-state picture. We also show that the atomic hyperfine structure cannot be a hindrance to obtaining EIT.

  15. Absorptive reduction and width narrowing in A-type atoms confined between two dielectric walls

    Institute of Scientific and Technical Information of China (English)

    Li Yuan-Yuan; Hou Xun; Bai Jin-Tao; Yan Jun-Feng; Gan Chen-Li; Zhang Yan-Peng

    2008-01-01

    This paper investigates the absorptive reduction and the width narrowing of electromagnetically induced trans- parency (EIT) in a thin vapour film of A-type atoms confined between two dielectric walls whose thickness is comparable with the wavelength of the probe field. The absorptive lines of the weak probe field exhibit strong reductions and very narrow EIT dips, which mainly results from the velocity slow-down effects and transient behaviour of atoms in a con-fined system. It is also shown that the lines are modified by the strength of the coupling field and the ratio of L/λ, with L the film thickness and A the wavelength of the probe field. A simple robust recipe for EIT in a thin medium is achievable in experiment.

  16. Determination of metallic impurities in raw materials for radioisotope production by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Atomic absorption spectrometry has been used for the determination of traces of calcium in scandium oxide, copper in zinc, iron in cobalt oxide, manganese In ferric oxide, nickel in copper and zinc in gallium oxide. The influences on the sensitivities arising from the hollow cathode currents, the gas pressures and the acid concentrations have been considered. A study of the interferences from the metallic matrices has also been performed, the interference due to the absorption of the manganese radiation by the atoms of iron being the most outstanding . In order to remove the interfering elements and increase sensitivity, pre-concentration methods have been tested. The addition methods has also been used. (Author) 14 refs

  17. Determination of Trace Iron in High Purity Sodium Fluoride by Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A method is described for the direct determination of iron in high purity sodium fluoride using graphite furnace atomic absorption spectrometry. Interferences caused by the matrix are investigated. It is shown that the ashing temperature can be increased to 1 400°C and matrix interferences eliminated, the sensi tivity of iron increased in 1.27 fold by the addition of nickel nitrate. The method is applied to the determina tion of iron in sodium fluoride and satisfactory results are obtained.

  18. Atomic absorption determination of platinum and rhenium in deactivated catalysts based on γ-alumina

    International Nuclear Information System (INIS)

    A flame atomic absorption method has been developed for the determination of Pt and Re in deactivated catalysts based on γ-Al2O3. Hydrofluoric acid is used for catalyst dissolution. The lower determination limits are 1 μg/ml for Pt and 5 μg/ml for Re, RSD are 0.01-0.15 and 0.03-0.25 respectively

  19. Atomic-absorption spectrometric determination of trace metals in zirconium and zircaloy by discrete sample nebulization

    International Nuclear Information System (INIS)

    A discrete sample nebulization technique was employed to determine trace metals in nuclear grade zirconium and Zircaloy by flame atomic-absorption spectrometry. With 10% (w/v) sample solutions, detection limits for Cd, Cu, Mn, Ni and Pb were 0.6, 2, 1, 3, and 10 μg/g. Micro standard-addition procedures and background correction were employed to minimize matrix interferences produced by the high salt content of the aspirated solutions. (author)

  20. Atomic Absorption and Spectrophotometeric Determinations of Salicylhydroxamic Acid in Its Pure and Pharmaceutical Dosage Forms

    OpenAIRE

    SALEM, Alaa-Eldin AbdelAziz

    2003-01-01

    A new method for the indirect determination of salicylhydroxamic acid (SHAM) using atomic absorption spectrometry (AAS) was proposed. The method is based on precipitating the ion associate complex of SHAM with [Cu (NH3)4]2+. The excess, unreacted, Cu2+ ions were determined using AAS. Another spectrophotometric method based on measuring the absorbance of the formed [Cu (NH3)4]-SHAM complex in dioxane was proposed. The green color of the complex formed was measured at 330 nm. The two...

  1. Computer programs in BASIC language for atomic absorption flame spectroscopy. Part 1. Operating instructions

    International Nuclear Information System (INIS)

    These instructions describe how to use three BASIC language programs to process data from atomic absorption spectrophotometers operated in the flame mode. These programs will also control an automatic sampler if desired. The instructions cover loading the programs, responding to computer prompts, choosing among various options for processing the data, operating the automatic sampler, and producing reports. How the programs differ is also explained. Examples of computer/operator dialogue are presented for typical cases

  2. Mineral Analysis the Infusion of Black Tea Samples by Atomic Absorption Spectrometry

    OpenAIRE

    Lahiji N.; Tadayon F.; Tamiji F.; Lahiji A. H.

    2013-01-01

    Tea infusion is one of the most popular drinks around the world. Since tea infusion is known to contain several essential nutrients, it is considered a healthy beverage. In this study eight different Iranian brands of tea infusion and eleven brands imported tea infusion samples from another country for Cu, Zn, Mn and Al were determined by flame atomic absorption spectrometry after wet digestion. The results of analysis showed that the extraction rates of minerals from dry black tea to infusio...

  3. Flow injection on-line dilution for flame atomic absorption spectrometry by micro-sample introduction and dispersion using syringe pumps

    International Nuclear Information System (INIS)

    A robust flow injection (FI) on-line dilution system based on micro-sample introduction was developed for flame atomic absorption spectrometry (FAAS). Two computer programmed and stepper-motor driven syringe pumps were used for the precise and reproducible sample metering in micro-liters and carrier delivery. Factors, which might influence the performance of the system, such as sample matrix and carryover, were investigated. No inferior effects were observed with various matrices including 10% glycerol. Sample carryover effects were less than 0.4%, tested by analyzing a blank and a sample alternately. Dilution factors were decided and keyed in manually. The system was calibrated using a set of concentrated standard solutions for a given dilution factor. At a sampling frequency of 60 h-1, precisions were better than 2% R.S.D. (n=40) for dilution factors of 10-2000. The long-term stability of the system was examined by continuously running the system for a whole working day, and a precision of 2.6% R.S.D. (n=345) was obtained at a dilution factor of 1000. The system was verified by analyzing a standard copper alloy with a certified concentration of 57.4% Cu, resulting in a measurement solution with 574 mg l-1 Cu

  4. Multivariate optimization of ultrasound-assisted extraction for determination of Cu, Fe, Ni and Zn in vegetable oils by high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Trindade, Alex S N; Dantas, Alailson F; Lima, Daniel C; Ferreira, Sérgio L C; Teixeira, Leonardo S G

    2015-10-15

    An assisted liquid-liquid extraction of copper, iron, nickel and zinc from vegetable oil samples with subsequent determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was optimized by applying a full factorial design in two levels and the response surface methodology, Box-Behnken. The effects of the acid concentration and the amplitude, cycle and time of sonication on the extraction of the analytes, as well as their interactions, were assessed. In the selected condition (sonication amplitude = 66%, sonication time = 79 s, sonication cycle = 74%), using 0.5 mol L(-1) HCl as the extractant, the limits of quantification were 0.14, 0.20, 0.21 and 0.04 μg g(-1) for Cu, Fe, Ni and Zn, respectively, with R.S.D. ranging from 1.4% to 3.6%. The proposed method was applied for the determination of the analytes in soybean, canola and sunflower oils. PMID:25952852

  5. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    International Nuclear Information System (INIS)

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL-1 for Cd2+, Pb2+, Pd2+ and Ag+ along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd2+, Pb2+, Pd2+ and Ag+, respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  6. A biosorption system for metal ions on Penicillium italicum - loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations

    International Nuclear Information System (INIS)

    A solid phase extraction (SPE) preconcentration system, coupled to a flame atomic absorption spectrometer (FAAS), was developed for the determination of copper(II), cadmium(II), lead(II), manganese(II), iron(III), nickel(II) and cobalt(II) ions at the μg L-1 levels on Penicillium italicum - loaded on Sepabeads SP 70. The analytes were adsorbed on biosorbent at the pH range of 8.5-9.5. The adsorbed metals were eluted with 1 mol L-1 HCl. The influences of the various analytical parameters including pH of the aqueous solutions, sample volume, flow rates were investigated for the retentions of the analyte ions. The recovery values are ranged from 95-102%. The influences of alkaline, earth alkaline and some transition metal ions were also discussed. Under the optimized conditions, the detection limits (3 s, n = 21) for analytes were in the range of 0.41 μg L-1 (cadmium) and 1.60 μg L-1 (iron). The standard reference materials (IAEA 336 Lichen, NIST SRM 1573a Tomato leaves) were analyzed to verify the proposed method. The method was successfully applied for the determinations of analytes in natural water, cultivated mushroom, lichen (Bryum capilare Hedw), moss (Homalothecium sericeum) and refined table salt samples

  7. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry in water samples

    Directory of Open Access Journals (Sweden)

    Arpa Şahin Ç.

    2013-04-01

    Full Text Available A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME and flow injection flame atomic absorption spectrometric determination (FI-FAAS method for copper was developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5 – 20.0 ng mL–1 and the limit of detection (3s was 0.18 ng mL–1, the limit of quantification (10s was 0.58 ng mL–1. The relative standard deviation (RSD for 10 replicate measurements of 10 ng mL–1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2 and real water samples and satisfactory results were obtained.

  8. A Novel Method Using Solid-Phase Extraction with Slotted Quartz Tube Atomic Absorption Spectrometry for the Determination of Manganese in Walnut Samples.

    Science.gov (United States)

    Bitirmis, Bedrana; Trak, Digdem; Arslan, Yasin; Kendüzler, Erdal

    2016-01-01

    Mn(2+) was separated and preconcentrated using both solid-phase extraction (SPE) and a slotted quartz tube (SQT), and detected by a flame atomic absorption spectrometry (FAAS) system. Firstly, Mn(2+) was retained on a column filled with Amberlite CG-120 resin, and then retained Mn(2+) ions on the Amberlite CG-120 resin eluted with 5 mL of 4 mol/L HNO3. This part was called the "first preconcentration step". Furthermore, to determine the Mn(2+) in a walnut sample, the SQT device was also used after the separation and preconcentration of Mn(2+) from the Amberlite CG-120 resin so as to further improve the sensitivity of system. This part was called the "second preconcentration step" in this study. The enrichment factor and limit of detection values were found to be 360 fold and 0.22 μg/L, in turn, after a two-step preconcentration method. The good accuracy of method was confirmed with the use of standard reference material (spinach leaves, NIST-1570a). PMID:27302588

  9. A Green Preconcentration Method for Determination of Cobalt and Lead in Fresh Surface and Waste Water Samples Prior to Flame Atomic Absorption Spectrometry

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem Gul; Shah, Faheem; Afridi, Hassan Imran; Khan, Sumaira; Arian, Sadaf Sadia; Brahman, Kapil Dev

    2012-01-01

    Cloud point extraction (CPE) has been used for the preconcentration and simultaneous determination of cobalt (Co) and lead (Pb) in fresh and wastewater samples. The extraction of analytes from aqueous samples was performed in the presence of 8-hydroxyquinoline (oxine) as a chelating agent and Triton X-114 as a nonionic surfactant. Experiments were conducted to assess the effect of different chemical variables such as pH, amounts of reagents (oxine and Triton X-114), temperature, incubation time, and sample volume. After phase separation, based on the cloud point, the surfactant-rich phase was diluted with acidic ethanol prior to its analysis by the flame atomic absorption spectrometry (FAAS). The enhancement factors 70 and 50 with detection limits of 0.26 μg L−1 and 0.44 μg L−1 were obtained for Co and Pb, respectively. In order to validate the developed method, a certified reference material (SRM 1643e) was analyzed and the determined values obtained were in a good agreement with the certified values. The proposed method was applied successfully to the determination of Co and Pb in a fresh surface and waste water sample. PMID:23227429

  10. Cloud Point Extraction for the Determination of Trace Amounts of Cobalt in Water and Food Samples by Flame Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Shangzhi Wang

    2013-01-01

    Full Text Available A cloud point extraction (CPE procedure which was developed for the separation and preconcentration of trace amounts of cobalt is combined with flame atomic absorption spectrometry (FAAS to determine trace amounts of cobalt in water and food samples. The procedure is based on the formation of the hydrophobic complex between Co(II and 4-methoxy-2-sulfo-benzenediazoaminoazo-benzene (MOSDAA followed by its extraction into a Triton X-114 surfactant-rich phase. The parameters such as pH of sample, concentrations of MOSDAA and Triton X-114, equilibrium temperature, and equilibrium time, which affect both complexation and extraction, are optimized. Under the selected optimum conditions, the preconcentration of 10.0 mL, 0.1 μg mL−1 Co(II solution results in a limit of detection of 0.47 ng mL−1 (3σ and an enrichment factor of 19. A relative standard deviation of 2.78% (,  μg mL−1 for the determination of Co(II is obtained. The proposed method was applied for the determination of trace amounts of cobalt in river water and millet samples with satisfactory results.

  11. Optimization of cloud point extraction procedure with response surface methodology for quantification of iron by means of flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Abdolmohammad-Zadeh Hossein

    2013-01-01

    Full Text Available A simple micelle-mediated phase separation method has been developed for the pre-concentration of trace levels of iron as a prior step to determination by flame atomic absorption spectrometry (FAAS. The method is based on the cloud point extraction (CPE of iron using non-ionic surfactant polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5 without adding any chelating agent. Several variables affecting the extraction efficiency were studied and optimized utilizing central composite design (CCD and three levels full factorial design. Under the optimum conditions, the limit of detection (LOD, limit of quantification (LOQ and pre-concentration factor were 1.5 μg L-1, 5.0 μg L-1 and 100, respectively. The relative standard deviation (RSD for six replicate determinations at 50 μg L−1 Fe(III level was 1.97%. The calibration graph was linear in the rage of 5-100 μg L-1, with a correlation coefficient of 0.9921. The developed method was validated by the analysis of two certified reference materials and applied successfully to the determination of trace amounts of Fe(III in water and rice samples.

  12. On-line preconcentration system using a microcolumn packed with Alizarin Red S-modified alumina for zinc determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    A.M. Haji Shabani

    2009-01-01

    Full Text Available A simple and sensitive on-line flow injection system for determination of zinc with FAAS has been described. The method is based on the separation and preconcentration of zinc on a microcolumn of immobilized Alizarin Red S on alumina. The adsorbed analyte is then eluted with 250 µL of nitric acid (1 mol L-1 and is transported to flame atomic absorption spectrometer for quantification. The effect of pH, sample and eluent flow rates and presence of various cations and anions on the retention of zinc was investigated. The sorption of zinc was quantitative in the pH range of 5.5-8.5. For a sample volume of 25 mL an enrichment factor of 144 and a detection limit (3S of 0.2 µg L-1 was obtained. The precision (RSD, n=7 was 3.0% at the 20 µg L-1 level. The developed system was successfully applied to the determination of zinc in water samples, hair, urine and saliva.

  13. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Niknam, Ebrahim; Najibi, Asma [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2009-09-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL{sup -1} for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +} along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +}, respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  14. Coprecipitation of trace elements with Ni2+/2-Nitroso-1-naphthol-4-sulfonic acid and their determination by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ni2+/2-Nitroso-1-naphthol-4-sulfonic acid precipitate was used for the coprecipitation of Co, Pb, Cu, Fe and Zn prior to their flame atomic absorption spectrometric (FAAS) determinations in environmental samples. The precipitate could be easily dissolved with concentrated nitric acid. The recovery values for analyte ions were higher than 95%. The parameters including pH, sample volume, centrifuge time, amounts of nickel and matrix effects were optimized for the quantitative recoveries of the analytes. The relative standard deviations of cobalt, lead, copper, iron and zinc were found 4.5, 5.7, 3.8, 6.1 and 7.5%, respectively. The limit of detection was calculated as 1.05, 2.67, 1.30, 1.38, and 0.50 μg L-1 for cobalt, lead, copper, iron and zinc. The validation of the procedure was checked by the analysis of IAEA 336 lichen and SLRS 4 Riverine water standard reference materials were analyzed with satisfactory results. The presented coprecipitation procedure was successfully applied to some environmental samples for determination of analyte ions.

  15. Synthesis, characterization and application of a new chelating resin for solid phase extraction, preconcentration and determination of trace metals in some dairy samples by flame atomic absorption spectrometry.

    Science.gov (United States)

    Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz

    2016-11-15

    In this study, a simple and rapid solid phase extraction/preconcentration procedure was developed for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly(N-cyclohexylacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid) (NCA-co-DVB-co-AMPS) (hereafter CDAP) was synthesized and characterized. The influences of the analytical parameters such as pH of the sample solution, type and concentration of eluent, flow rates of the sample and eluent, volume of the sample and eluent, amount of chelating resin, and interference of ions were examined. The limit of detection (LOD) of analytes were found (3s) to be in the range of 0.65-1.90μgL(-1). Preconcentration factor (PF) of 200 and the relative standard deviation (RSD) of ⩽2% were achieved (n=11). The developed method was applied for determination of analytes in some dairy samples and certified reference materials. PMID:27283608

  16. A Green Preconcentration Method for Determination of Cobalt and Lead in Fresh Surface and Waste Water Samples Prior to Flame Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Naeemullah

    2012-01-01

    Full Text Available Cloud point extraction (CPE has been used for the preconcentration and simultaneous determination of cobalt (Co and lead (Pb in fresh and wastewater samples. The extraction of analytes from aqueous samples was performed in the presence of 8-hydroxyquinoline (oxine as a chelating agent and Triton X-114 as a nonionic surfactant. Experiments were conducted to assess the effect of different chemical variables such as pH, amounts of reagents (oxine and Triton X-114, temperature, incubation time, and sample volume. After phase separation, based on the cloud point, the surfactant-rich phase was diluted with acidic ethanol prior to its analysis by the flame atomic absorption spectrometry (FAAS. The enhancement factors 70 and 50 with detection limits of 0.26 μg L−1 and 0.44 μg L−1 were obtained for Co and Pb, respectively. In order to validate the developed method, a certified reference material (SRM 1643e was analyzed and the determined values obtained were in a good agreement with the certified values. The proposed method was applied successfully to the determination of Co and Pb in a fresh surface and waste water sample.

  17. Preconcentration of lead, cadmium and zinc on silica gel loaded with diethyldithiocarbamate prior to their determination by flame-atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rio-Segade, S. [Dept. de Quimica Analitica y Alimentaria, Univ. de Vigo, Orense (Spain); Perez-Cid, B. [Dept. de Quimica Analitica y Alimentaria, Univ. de Vigo, Orense (Spain); Bendicho, C. [Dept. de Quimica Analitica y Alimentaria, Univ. de Vigo, Orense (Spain)

    1995-04-01

    A silica gel sorbent loaded with sodium diethyldithiocarbamate has been developed for the preconcentration of lead, cadmium and zinc prior to their determination by flame-atomic absorption spectrometry (FAAS). The sorption and desorption of the metal ions was studied under both static and dynamic conditions. The metal ions were quantitatively retained on the silica gel sorbent based on an equilibrium time of less than 1 min. In case of the batch method, the effects of pH, shaking time, amount of sorbent, and desorption time were investigated. Among the desorption agents studied, only EDTA in ammonium chloride/ammonia buffer yielded quantitative recoveries. Freundlich`s sorption isotherms determined for each metal show that sufficient sorption ability is obtained. The column method allows the preconcentration of metal ions from large sample volumes (e.g. 200 mL) using a flow rate of 5 mL min{sup -1}. The influence of foreign ions present in natural waters and saline solutions was examined. The reproducibility of the total analytical method, expressed as relative standard deviation (RSD) is 1.8, 0.5 and 0.6%, for lead, cadmium and zinc, respectively. (orig.)

  18. Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation.

    Science.gov (United States)

    Nunes, Luana S; Barbosa, José T P; Fernandes, Andréa P; Lemos, Valfredo A; Santos, Walter N L Dos; Korn, Maria Graças A; Teixeira, Leonardo S G

    2011-07-15

    The aim of this work was to evaluate the microemulsification as sample preparation procedure for determination of Cu, Fe, Ni and Zn in vegetable oils samples by High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS). Microemulsions were prepared by mixing samples with propan-1-ol and aqueous acid solution, which allowed the use of inorganic aqueous standards for the calibration. To a sample mass of 0.5g, 100μL of hydrochloric acid and propan-1-ol were added and the resulting mixture diluted to a final volume of 10mL. The sample was manually shaken resulting in a visually homogeneous system. The main lines were selected for all studied metals and the detection limits (3σ, n=10) were 0.12, 0.62, 0.58 and 0.12mgkg(-1) for Cu, Fe, Ni and Zn, respectively. The relative standard deviation (RSD) ranged from 5% to 11 % in samples spiked with 0.25 and 1.5μgmL(-1) of each metal, respectively. Recoveries varied from 89% to 102%. The proposed method was applied to the determination of Cu, Fe, Ni and Zn in soybean, olive and sunflower oils. PMID:23140735

  19. Stimulated emission and multi-peaked absorption in a four level N-type atom

    Institute of Scientific and Technical Information of China (English)

    Wang Kai; Gu Ying; Gong Qi-Huang

    2007-01-01

    Absorption and refrtion of the inner transition F2 (→) F3 of the closed four level N-type atom have been investigated under a weak field. The outer transitions F1 (→) F3 and F2 (→) F4 are resonantly interacted with drive field with frequency ωc and Rabi frequency Ωc, and saturation field with ωs and Ωs, respectively. For the suitable Rabi frequencies Ωc and Ωs, we obtain the Mollow absorption spectrum of probe field. The reason is that the drive field excites the atom to the upper level F3 and simultaneously the saturation field takes the atom out of the lower level F2, leading to the stimulated emission. Meanwhile, due to the dynamic energy splitting induced by the drive and saturation fields, the two- and four-peaked absorption spectra are observed. At the zero off-resonance detuning of probe field, we also find the transfer of dispersion from negative to positive with an increment of Ωs. Finally, the refractive index enhancement is predicted for a wide spectral region.

  20. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    Science.gov (United States)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  1. Time-resolved Absorption Spectra of the Laser-dressed Hydrogen Atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-05-01

    A theoretical study of the transient absorption spectra for the laser-dressed hydrogen atom based on the accurate numerical solution of the time-dependent Schrödinger equation is presented. The timing of absorption is controlled by the time delay between an isolated extreme ultraviolet (XUV) pulse and a dressing infrared (IR) field. We identify two different kinds of physical processes in the spectra. One is the formation of dressed states, signified by the appearance of sidebands between the XUV absorption lines separated by one IR-photon energy. We show that their population is maximized when the XUV pulse coincides with the zero-crossing of the IR field, and that their energy can be manipulated by using a chirped IR field. The other process is the dynamical AC Stark shift induced by the IR field and probed by the XUV pulse. Our calculations indicate that the accidental degeneracy of the hydrogen atom leads to the multiple splittings of each XUV absorption line whose separations change in response to a slowly-varying IR envelope. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 states using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional 3-level model that neglects the dynamical AC Stark effects.

  2. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    Science.gov (United States)

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  3. Zero absorption and a large negative refractive index in a left-handed four-level atomic medium

    International Nuclear Information System (INIS)

    In this paper, we have investigated three external fields interacting with the four-level atomic system described by the density-matrix approach. The atomic system exhibits left-handedness with zero absorption and large negative refractive index. Varying the parameters of the three external fields, the properties of zero absorption and large negative refractive index from the atomic system remain unvarying. Our scheme proposes an approach to obtain a negative refractive medium with zero absorption. The zero absorption property of the atomic system may be used to amplify the evanescent waves that have been lost in the imaging by traditional lenses, and a slab fabricated by the left-handed atomic system may be an ideal candidate for designing perfect lenses.

  4. A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry.

    Science.gov (United States)

    Galbeiro, Rafaela; Garcia, Samara; Gaubeur, Ivanise

    2014-04-01

    Cloud point extraction (CPE) was used to simultaneously preconcentrate trace-level cadmium, nickel and zinc for determination by flame atomic absorption spectrometry (FAAS). 1-(2-Pyridilazo)-2-naphthol (PAN) was used as a complexing agent, and the metal complexes were extracted from the aqueous phase by the surfactant Triton X-114 ((1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol). Under optimized complexation and extraction conditions, the limits of detection were 0.37μgL(-1) (Cd), 2.6μgL(-1) (Ni) and 2.3μgL(-1) (Zn). This extraction was quantitative with a preconcentration factor of 30 and enrichment factor estimated to be 42, 40 and 43, respectively. The method was applied to different complex samples, and the accuracy was evaluated by analyzing a water standard reference material (NIST SRM 1643e), yielding results in agreement with the certified values.

  5. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  6. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bentlin, Fabrina R.S. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Pozebon, Dirce [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil)], E-mail: dircepoz@iq.ufrgs.br; Mello, Paola A.; Flores, Erico M.M. [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900 Santa Maria, RS (Brazil)

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO{sub 3}){sub 2} was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 {mu}g g{sup -1} of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  7. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Bentlin, Fabrina R S; Pozebon, Dirce; Mello, Paola A; Flores, Erico M M

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO3)2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 microg g(-1) of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES).

  8. Indirect determination of vitamin B1 in vitamin tablets by flame atomic absorption spectrometry%FAAS法间接测定维生素片中维生素B1的含量

    Institute of Scientific and Technical Information of China (English)

    贾彩云; 王亦军; 魏国涛; 赵冰冰

    2012-01-01

    建立了火焰原子吸收光谱(FAAS)法间接测定维生素B片中的维生素B1含量的方法.用过量的Ag+与硫胺素盐酸盐的Cl-反应,产生AgCl沉淀,用火焰原子分光光度计测量上清液中剩余Ag+含量进而计算出样品中维生素B1的含量.方法回收率在98%~102%之间,相对标准偏差(RSD%)在1.05%~1.87%之间,方法操作简便,快速,重现性好.%An indirect method for the determination of vitamin B1 by flame atomic absorption spectrometry (FAAS).Excess Ag+ reacted with Cl- exists in thiamine hydrochloride to form AgCl, which was separated by centrifuge. Vitamin B1 was determined indirectly by determination of Ag+ in supernatant fluid. The average recoveries were between 98% and 102% ,and the relative standard deviations (RSD%) were 1.05%-1.87%. The results showed that the method was sensitive, accurate, convenient and quick, which can be used to detect Vitamin Bj in vitamin tablets.

  9. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  10. X-ray absorption spectroscopy in electrical fields: An element-selective probe of atomic polarization

    Science.gov (United States)

    Ney, V.; Wilhelm, F.; Ollefs, K.; Rogalev, A.; Ney, A.

    2016-01-01

    We have studied a range of polar and nonpolar materials using x-ray absorption near-edge spectroscopy (XANES) in external electric fields. An energy shift of the XANES by a few meV/kV is found which scales linearly with the applied voltage, thus being reminiscent of the linear Stark effect. This is corroborated by the consistent presence of this energy shift in polar thin films and bulk crystals and its absence in nonpolar materials as well as in conducting films. The observed energy shift of the XANES is different between two atomic species in one specimen and appears to scale linearly with the atomic number of the studied element. Therefore, XANES in electrical fields opens the perspective to study atomic polarization with element specificity in a range of functional materials.

  11. Electrochemical preconcentration and hydride generation methods for trace determination of selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The use of atomic absorption spectrometry in combination with two different preconcentration/separation techniques for the determination of trace concentrations of selenium is described. Electrochemical preconcentration onto a platinum electrode with a subsequent atomization of selenium is discussed briefly. Several parameters are considered such as the presence of depolarizers, and the temperature of the electrolyzed solutions. Special attention is payed to the efficiency of the atomization step, and a method to improve this is proposed. Applications of the technique to real samples are also reported. Secondly, the separation of the selenium as the volatile selenium hydride from the sample solution is considered. Several papers in this thesis deal with commonly occurring interferants as nickel and copper and with ways of minimizing or avoiding the interferring effects, whereas other papers relate to more theoretical aspects of the hydride generation process. New methods for the determination of selenium in technical samples with high contents of nickel and copper are also presented

  12. Determination of trace and minor elements in alloys by atomic-absorption spectroscopy using an induction-heated graphite-well furnace as atom source-II.

    Science.gov (United States)

    Ashy, M A; Headridge, J B; Sowerbutts, A

    1974-06-01

    Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour. PMID:18961510

  13. Evaluation of quartz tubes as atomization cells for gold determination by thermospray flame furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Morzan, Ezequiel; Piano, Ornela; Stripeikis, Jorge; Tudino, Mabel, E-mail: tudino@qi.fcen.uba.ar

    2012-11-15

    This work describes the development of a new analytical procedure able to determine gold by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) using nickel tubes (NiT) and quartz tubes (QT) as atomization cells. Experiments involving changes in the flow injection operational parameters, reagent concentrations and sizes of the QT were performed in order to optimize sensitivity. Under the same operational conditions, it was observed that the employment of QT increases the sensitivity of gold determination when compared to the nickel tube. Since solutions of highly concentrated hydrochloric acid showed the best performance as carriers, quartz tubes were also preferred due to its greater tolerance to corrosion by mineral acids in comparison to NiT. In addition, changes in the internal diameter of the QT revealed an important improvement in sensitivity for smaller tubes. Under optimized conditions the main figures of merit showed values close to that of graphite furnace atomic absorption spectrometry with the addition of an excellent improvement of the sample throughput. They are: LOD (3 s): 0.004 {mu}g mL{sup -1}, sensitivity: 0.306 ({mu}g mL{sup -1}){sup -1}, RSD% (n = 10, 1 {mu}g mL{sup -1}): 2.5, linear range: 0.01-4 {mu}g mL{sup -1} and sample throughput: 72 h{sup -1}. This new method was employed for the determination of gold in homeopathic medicines with no need of sample digestion. Validation of the analytical results will be shown. A full discussion of the most relevant findings regarding the role of the atomization cell as a strategic key for improving sensitivity will be also provided. - Highlights: Black-Right-Pointing-Pointer Quartz tubes as furnaces in TS-FFAAS. Black-Right-Pointing-Pointer Small tubes for controlling radial dispersion. Black-Right-Pointing-Pointer Improved figures of merit for gold determination. Black-Right-Pointing-Pointer Analysis of homeopathic medicines.

  14. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    Science.gov (United States)

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  15. Spectro web: oscillator strength measurements of atomic absorption lines in the sun and procyon

    International Nuclear Information System (INIS)

    We update the online SpectroWeb database of spectral standard reference stars with 1178 oscillator strength values of atomic absorption lines observed in the optical spectrum of the Sun and Procyon (α CMi A). The updated line oscillator strengths are measured with best fits to the disk-integrated KPNO-FTS spectrum of the Sun observed between 4000 A and 6800 A using state-of-the-art detailed spectral synthesis calculations. A subset of 660 line oscillator strengths is validated with synthetic spectrum calculations of Procyon observed with ESO-UVES between 4700 A and 6800 A. The new log(gf)-values in SpectroWeb are improvements upon the values offered in the online Vienna Atomic Line Database (VALD). We find for neutral iron-group elements, such as Fe I, Ni I, Cr I, and Ti I, a statistically significant over-estimation of the VALD log((gf)-values for weak absorption lines with normalized central line depths below 15 %. For abundant lighter elements (e.g. Mg I and Ca I) this trend is statistically not significantly detectable, with the exception of Si I for which the log(gf)-values of 60 weak and medium-strong lines are substantially decreased to best fit the observed spectra. The newly measured log(gf)-values are available in the SpectroWeb database at http://spectra.freeshell.org, which interactively displays the observed and computed stellar spectra, together with corresponding atomic line data.

  16. A simple and fast method for assessment of the nitrogen–phosphorus–potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; Moutinho da Silva, Ricardo; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta, E-mail: anchieta@iq.unesp.br

    2014-11-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500–5000 mg L{sup −1} N (r = 0.9994), 100–2000 mg L{sup −1} P (r = 0.9946), and 100–2500 mg L{sup −1} K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97–105% (NO{sub 3}{sup −}-N), 95–103% (NH{sub 4}{sup +}-N), 93–103% (urea-N), 99–108% (P), and 99–102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively. - Highlights: • A single technique is proposed to analyze NPK fertilizer. • HR-CS FAAS is proposed for the first time for N, P and K determination in fertilizers. • The method employs the same sample preparation and dilution for the three analytes. • Addition of H{sub 2}O{sub 2} allows analysis of fertilizers with different nitrogen species. • Proposal provides advantages over traditional methods in terms of cost and time.

  17. Alternative approaches to correct interferences in the determination of boron in shrimps by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The aim of this study is to propose alternative techniques and methods in combination with the classical chemical modification to correct the major matrix interferences in the determination of boron in shrimps. The performance of an internal standard (Ge) for the determination of boron by the simultaneous multi-element atomic absorption spectrometry was tested. The use of internal standardization increased the recovery from 85.9% to 101% and allowed a simple correction of errors during sampling preparation and heating process. Furthermore, a new preparation procedure based on the use of citric acid during digestion and dilution steps improved the sensitivity of the method and decreased the limit of detection. Finally, a comparative study between the simultaneous multi-element atomic absorption spectrometry with a longitudinal Zeeman-effect background correction system, equipped with a transversely-heated graphite atomizer and the single element atomic absorption spectrometry with a D2 background correction system, equipped with an end-heated graphite atomizer was undertaken to investigate the different behavior of boron in both techniques. Different chemical modifiers for the determination of boron were tested with both techniques. Ni-citric acid and Ca were the optimal chemical modifiers when simultaneous multi-element atomic absorption spectrometry and single-element atomic absorption spectrometry were used, respectively. By using the single-element atomic absorption spectrometry, the calculated characteristic mass was 220 pg and the calculated limit of detection was 370 μg/kg. On the contrary, with simultaneous multi-element atomic absorption spectrometry, the characteristic mass was 2200 pg and the limit of detection was 5.5 mg/kg. - Highlights: • New approaches were developed to cope with interferences of B determination by ETAAS • Ge was used as internal standard for the determination of B by simultaneous ETAAS • Citric acid was used during digestion

  18. Alternative approaches to correct interferences in the determination of boron in shrimps by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pasias, I.N.; Pappa, Ch.; Katsarou, V.; Thomaidis, N.S., E-mail: ntho@chem.uoa.gr; Piperaki, E.A.

    2014-02-01

    The aim of this study is to propose alternative techniques and methods in combination with the classical chemical modification to correct the major matrix interferences in the determination of boron in shrimps. The performance of an internal standard (Ge) for the determination of boron by the simultaneous multi-element atomic absorption spectrometry was tested. The use of internal standardization increased the recovery from 85.9% to 101% and allowed a simple correction of errors during sampling preparation and heating process. Furthermore, a new preparation procedure based on the use of citric acid during digestion and dilution steps improved the sensitivity of the method and decreased the limit of detection. Finally, a comparative study between the simultaneous multi-element atomic absorption spectrometry with a longitudinal Zeeman-effect background correction system, equipped with a transversely-heated graphite atomizer and the single element atomic absorption spectrometry with a D{sub 2} background correction system, equipped with an end-heated graphite atomizer was undertaken to investigate the different behavior of boron in both techniques. Different chemical modifiers for the determination of boron were tested with both techniques. Ni-citric acid and Ca were the optimal chemical modifiers when simultaneous multi-element atomic absorption spectrometry and single-element atomic absorption spectrometry were used, respectively. By using the single-element atomic absorption spectrometry, the calculated characteristic mass was 220 pg and the calculated limit of detection was 370 μg/kg. On the contrary, with simultaneous multi-element atomic absorption spectrometry, the characteristic mass was 2200 pg and the limit of detection was 5.5 mg/kg. - Highlights: • New approaches were developed to cope with interferences of B determination by ETAAS • Ge was used as internal standard for the determination of B by simultaneous ETAAS • Citric acid was used during

  19. Novel atomic absorption spectrometric and rapid spectrophotometric methods for the quantitation of paracetamol in saliva: Application to pharmacokinetic studies

    Directory of Open Access Journals (Sweden)

    Issa M

    2008-01-01

    Full Text Available A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III (method I; oxidation of p-aminophenol after the hydrolysis of paracetamol (method II. Iron (II then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 µg/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 µg/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 µg/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%.

  20. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  1. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Emilene; Rampazzo, Roger T.; Dessuy, Morgana B. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Silva, Marcia M. da [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Welz, Bernhard [Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Katskov, Dmitri A. [Tshwane University of Technology (TUT), Faculty of Science, Chemistry Department, Pretoria 0001 (South Africa)

    2011-05-15

    In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd + 0.03% (m/v) Mg + 0.05% (v/v) Triton X-100 was used as the chemical modifier for both atomizers. The samples (naphtha, gasoline and petroleum condensate) were stabilized in the form of a three-component solution (detergentless microemulsion) with the sample, propan-1-ol and 0.1% (v/v) HNO{sub 3} in a ratio of 3.0:6.4:0.6. The characteristic mass of 13 pg found in the THFA was about a factor of two better than that of 28 pg obtained with the THPA; however, the limits of detection (LOD) and quantification (LOQ) were essentially the same for both atomizers (1.9 and 6.2 {mu}g L{sup -1}, respectively, for THPA, and 1.8 and 5.9 {mu}g L{sup -1}, respectively, for THFA) due to the increased noise observed with the THFA. A possible explanation for that is a partial blockage of the radiation from the hollow cathode lamp by the narrow inner diameter of this tube and the associated loss of radiation energy. Due to the lack of an appropriate certified reference material, recovery tests were carried out with inorganic and organic arsenic standards and the results were between 89% and 111%. The only advantage of the THFA found in this work was a reduction of the total analysis time by about 20% due to the 'hot injection' that could be realized with this furnace. The arsenic concentrations varied from < LOQ to 43.3 {mu}g L{sup -1} in the samples analyzed in this work.

  2. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fara, M.; Novak, F. [EGU Prague, PLC, Bichovice, Prague (Czechoslovakia)

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  3. Telecom-heralded single-photon absorption by a single atom

    Science.gov (United States)

    Lenhard, Andreas; Bock, Matthias; Becher, Christoph; Kucera, Stephan; Brito, José; Eich, Pascal; Müller, Philipp; Eschner, Jürgen

    2015-12-01

    We present, characterize, and apply the architecture of a photonic quantum interface between the near infrared and telecom spectral regions. A singly resonant optical parametric oscillator (OPO) operated below threshold, in combination with external filters, generates high-rate (>2.5 ×106s-1 ) narrowband photon pairs (˜7 MHz bandwidth); the signal photons are tuned to resonance with an atomic transition in Ca+, while the idler photons are at telecom wavelength. Interface operation is demonstrated through high-rate absorption of single photons by a single trapped ion (˜670 s-1 ), heralded by coincident telecom photons.

  4. Refraction and absorption of x rays by laser-dressed atoms

    CERN Document Server

    Buth, Christian; Young, Linda

    2008-01-01

    X-ray refraction and absorption by neon atoms under the influence of an 800 nm laser with an intensity of 10^13 W/cm^2 is investigated. For this purpose, we use an ab initio theory suitable for optical strong-field problems. Its results are interpreted in terms of a three-level model. On the Ne 1s --> 3p resonance, we find electromagnetically induced transparency (EIT) for x rays. Our work opens novel perspectives for ultrafast x-ray pulse shaping.

  5. The determination, by atomic-absorption spectrophotometry, of trace elements in sulphide concentrates

    International Nuclear Information System (INIS)

    The separation, concentration, and determination of trace elements in base-metal and sulphide concentrates are described. After the sample has been dissolved, the trace elements that form insoluble hydroxides are precipitated with lanthanum as the coprecipitant and are separated from those elements that form soluble amines with ammonia. The precipitate is dissolved, and the trace elements selenium, tellurium, arsenic, antimony, bismuth, tin, vanadium, chromium, manganese, and aluminium are determined by atomic-absorption spectrophotometry. Coefficients of variation between 1 and 10 per cent, depending on the amount of the element, were obtained, with limits of determination ranging from 0,1 to 50 p.p.m

  6. Impurities determination of uranium metal flame spectrophotometry and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    The atomic absorption flame spectrophotometry has been applied to the determination of chromium, copper, iron, lead, manganese and nickel in the metal of uranium. The first step to be done is to dissolve the uranium sample in nitric acid and then the uranium is extracted by a tributylphosphate-carbon tetrachloride solution. The aqueous phase which contains the chromium, copper, iron, lead, manganese and nickel is aspirated into an airacetylene flame. The results of this method are compared with the results of emission spectrographic method. It is found that this technique is competative to other methods in the sense that it is quite fast and accurate. (author)

  7. Ionisation of hydrogen-like atoms by a multiphoton absorption process

    International Nuclear Information System (INIS)

    The general expression for the amplitude of the probability of ionisation by a multiphoton absorption process is derived. Its non-relativistic limit is taken and the bipolar approximation is used for calculating the ionisation cross-section of hydrogen-like atoms. This latter involves the summation over intermediate virtual states by means of: a) a recursion relationship concerning angular functions, b) a particular technique which when applied to radial functions makes it possible to solve a system of inhomogeneous first-order differential equations. (authors)

  8. Direct determination of sodium and potassium in blood serum by flow injection and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    A simple and reliable method for the measurement of sodium and potassium in blood serum without any sample dilution by using flow injection and atomic absorption spectrophotometry is described. A sample throughout of 100 measurements per hour is possible. The coefficient of variation for within-run determination was about 1,14 and 2,36% for sodium and potassium, respectively, in serum samples (n=10). The method is easily adaptable to pediatric research, because of the low required sample volume of 5ul. (Author)

  9. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  10. Expressing self-absorption in the analytical function of inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Kántor, Tibor; Bartha, András

    2015-11-01

    The self-absorption of spectral lines was studied with up to date multi-element inductively coupled plasma atomic emission spectrometry (ICP-AES) instrumentation using radial and axial viewing of the plasma, as well, performing line peak height and line peak area measurements. Two resonance atomic and ionic lines of Cd and Mg were studied, the concentration range was extended up to 2000 mg/L. At the varying analyte concentration, constant matrix concentration of 10,000 mg/L Ca was ensured in the pneumatically nebulized solutions. The physical and the phenomenological formulation of the emission analytical function is overviewed and as the continuity of the earlier results the following equation is offered:

  11. Kaonic mass by critical absorption of kaonic-atom x rays

    Energy Technology Data Exchange (ETDEWEB)

    Lum, G.K.; Wiegand, C.E.; Kessler, E.G. Jr.; Deslattes, R.D.; Jacobs, L.; Schwitz, W.; Seki, R.

    1981-06-01

    The energy of x rays from the transition 6h..-->..5g in kaonic atoms of potassium falls on the K absorption edge of erbium. Measurement of the kaonic-x-ray attenuation in a precisely calibrated set of Er foils yields the x-ray energy 57 458.8 +- 6.3 eV. The kaon mass is related to energy through the Klein-Gordon equation plus corrections for radiative effects, electron screening, and other effects. The negative-kaon mass was found to be 493.640 +- 0.054 MeV/c/sup 2/ in agreement with the currently accepted value 493.669 +- 0.018 MeV/c/sup 2/ which was determined from x rays emitted by high-Z atoms where the corrections were larger than for Z = 19.

  12. Combination of dispersive liquid-liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Naseri, Mohammad Taghi; Hemmatkhah, Payam; Hosseini, Mohammad Reza Milani [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Assadi, Yaghoub [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)], E-mail: y_assadi@iust.ac.ir

    2008-03-03

    The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 {mu}L volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 {mu}g L{sup -1} with a detection limit of 0.5 {mu}g L{sup -1}. The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 {mu}g L{sup -1} of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 {mu}g L{sup -1} ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.

  13. Evaluation of cadmium, lead, copper, iron and zinc in Turkish dietary vegetable oils and olives using electrothermal and flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Acar, Orhan

    2012-10-01

    Full Text Available The Cd, Pb, Cu, Fe and Zn contents of some edible vegetable oils (soybean, sunflower, flower, nut, corn and olive and of olives (olive-1, black, green, black crushed with seeds and green crushed with seeds were determined and evaluated by an electrothermal atomic absorption spectrometer (ETAAS using an Sc + Ir + NH4H2PO4 chemical modifier mixture and flame atomic absorption spectrometer (FAAS after microwave digestion. The pyrolysis and atomization temperatures of Cd, Pb and Cu in sample solutions with and without the modifier mixture were investigated. The limits of detection (LOD for analytes found are 0.1, 0.6, 0.9, 15.0 and 12.0 μg L–1 for Cd, Cu, Pb, Fe and Zn, respectively. The accuracy of the procedure proposed was confirmed by analyzing bovine liver 1577b standard reference material (SRM and a spiked sample solution. The results of the analytes found were compared with certified and added values. The relative standard deviations of the analytes found were lower than 7% and the percent of recoveries obtained ranges from 96 to 101%. The Sc + Ir + NH4H2PO4 mixture proposed was applied for the determination of Cd, Pb and Cu in oils and olives. The results of analytes found in the samples were compared with international and national food quality guidelines as well as with literature values.

    Se han determinado los metales Cd, Cu, Pb, Fe y Zn en aceites vegetales comestibles (soja, girasol, flores, nueces, maíz y aceite de oliva y aceitunas (aceitunas-1, negra, verde, negra machacadas con semillas y verde machacadas con semillas mediante espectrometría de absorción atómica electrotérmica (ETAAS utilizando como modificador químico la mezcla Sc + Ir + NH4H2PO4 y mediante espectrometría de absorción atómica de llama (FAAS tras digestión con microondas. Se estudiaron las temperaturas de pirólisis y atomización para Cd

  14. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    International Nuclear Information System (INIS)

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D2 and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground water

  15. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za

    2015-03-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D{sub 2} and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground

  16. Multi-element analysis of manganese nodules by atomic absorption spectrometry without chemical separation

    Science.gov (United States)

    Kane, J.S.; Harnly, J.M.

    1982-01-01

    Five manganese nodules, including the USGS reference nodules A-1 and P-1, were analyzed for Co, Cu, Fe, K, Mg, Mn, Na, Ni and Zn without prior chemical separation by using a simultaneous multi-element atomic absorption spectrometer with an air-cetylene flame. The nodules were prepared in three digestion matrices. One of these solutions was measured using sixteen different combinations of burner height and air/acetylene ratios. Results for A-1 and P-1 are compared to recommended values and results for all nodules are compared to those obtained with an inductively coupled plasma. The elements Co, Cu, Fe, K, Mg, Mn, Na, Ni, and Zn are simultaneously determined with a composite recovery for all elements of 100 ?? 7%, independent of the digestion matrices, heights in the flame, or flame stoichiometries examined. Individual recoveries for Co, K, and Ni are considerably poorer in two digests than this composite figure, however. The optimum individual recoveries of 100 ?? 5% and imprecisions of 1-4%, except for zinc, are obtained when Co, K, Mn, Na and Ni are determined simultaneously in a concentrated digest, and in another analytical sequence, when Cu, Fe, Mg, Mn and Zn are measured simultaneously after dilution. Determination of manganese is equally accurate in the two sequences; its measurement in both assures internal consistency between the two measurement sequences. This approach improves analytical efficiency over that for conventional atomic absorption methods, while minimizing loss of accuracy or precision for individual elements. ?? 1982.

  17. [The application of atomic absorption spectrometry in automatic transmission fault detection].

    Science.gov (United States)

    Chen, Li-dan; Chen, Kai-kao

    2012-01-01

    The authors studied the innovative applications of atomic absorption spectrometry in the automatic transmission fault detection. After the authors have determined Fe, Cu and Cr contents in the five groups of Audi A6 main metal in automatic transmission fluid whose travel course is respectively 10-15 thousand kilometers, 20-26 thousand kilometers, 32-38 thousand kilometers, 43-49 thousand kilometers, and 52-58 thousand kilometers by atomic absorption spectrometry, the authors founded the database of primary metal content in the Audi A6 different mileage automatic transmission fluid (ATF). The research discovered that the main metal content in the automatic transmission fluid increased with the vehicles mileage and its normal metal content level in the automatic transmission fluid is between the two trend lines. The authors determined the main metal content of automatic transmission fluid which had faulty symptoms and compared it with its database value. Those can not only judge the wear condition of the automatic transmission which had faulty symptoms but also help the automobile detection and maintenance personnel to diagnose automatic transmission failure reasons without disintegration. This reduced automobile maintenance costs, and improved the quality of automobile maintenance.

  18. Determination of trace elements in ground water by two preconcentration methods using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    This is a comparative study between two different methods of preconcentration done to separate the trace elements cadmium, nickel. chromium, manganese, copper, zinc, and lead in drinking (ground) water samples taken from different locations in Gezira State, central Sudan (the map); these methods are (coprecipitation) with aluminium hydroxide and by Ammonium Pyrrolidine Dithiocarbamate (APDC) using Methyl Isobutyl Ketone (MIBK) as an organic solvent; and subsequent analysis by Atomic Absorption Spectrometry (AAS) for both methods. The result of comparison showed the superiority of the (APDC) coprecipitation method over the aluminium hydroxide coprecipitation method in the total percentage recoveries of the studied trace elements in drinking (ground) water samples, such results confirm previous studies. This study also involves direct analysis of these water samples by atomic absorption spectrometry to determine the concentrations of trace elements Cadmium, Nickel, Chromium, Manganese, Copper, Zinc and Lead and compare it to the corresponding guide line values described by the World Health Organization and the maximum concentrations of trace elements in drinking water permitted by the Sudanese Standards and Metrology Organizations (SSMO), where the concentrations of some elements in some samples were found to be different than the described values by both of the organizations. The study includes a trial to throw light on the effect of the proximity of the water samples sources to the Blue Nile river on its trace elements concentrations; no relation was proved to exist in that respect.(Author)

  19. Determination of Elements by Atomic Absorption Spectrometry in Medicinal Plants Employed to Alleviate Common Cold Symptoms

    Institute of Scientific and Technical Information of China (English)

    F Zehra Küçükbay; Ebru Kuyumcu

    2014-01-01

    Eleven important medicinal plants generally used by the people of Turkey for the treatment of com-mon cold have been studied for their mineral contents .Eleven minor and major elements (essential ,non-essen-tial and toxic) were identified in the Asplenium adiantum-nigrum L .,Althaea of ficinalis L .,Verbascum phlomoides L .,Euphorbiachamaesyce L .,Zizyphus jujube Miller ,Peganum harmala L .,Arum dioscori-dis Sm .,Sambucus nigra L .,Piper longum L .,Tussilago farfara L .and Elettariacardamomum Maton by employing flame atomic absorption and emission spectrometry and electro-thermal atomic absorption spectrom-etry .Microwave digestion procedure for total concentration was applied under optimized conditions for dissolu-tion of medicinal plants .Plant based biological certified reference materials (CRMs) served as standards for quantification .These elements are found to be present in varying concentrations in the studied plants .The baseline data presented in this work can be used in understanding the role of essential ,non-essential and toxic elements in nutritive ,preventive and therapeutic properties of medicinal plants .

  20. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of some fluoroquinolone antibacterials using ammonium reineckate

    Science.gov (United States)

    Al-Ghannam, Sheikha M.

    2008-04-01

    Three accurate, rapid and simple atomic absorption spectrometric (AAS), conductometric and colorimetric methods were developed for the determination of gatifloxacin (GTF), moxifloxacin (MXF) and sparfloxacin (SPF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone. The optimizations of various experimental conditions were described. Optimum concentration ranges for the determination of GTF, MXF and SPF were 5.0-150, 40-440 μg mL -1 and 0.10-1.5 mg mL -1 using atomic absorption (AAS), conductometric and colorimetric methods, respectively. Detection and quantification limits are ranges from 1.5 to 2.3 μg mL -1 using AAS method or 30-45 μg mL -1 using colorimetric method. The proposed procedures have been applied successfully to the analysis of these drugs in pharmaceutical formulations and the results are favourably comparable to the reference methods.

  1. New niobium and rhenium halides synthesis routes by atomic vaporization. X-ray absorption spectroscopy characterization

    International Nuclear Information System (INIS)

    New synthetic route as the so called 'chimie douce' or MVS (Metal Vapor Synthesis) has been an increasing field lately to synthesize new kind of solid state structures. Our interest is the assembly of small molecular building blocks of early transition metal halides. We illustrate the use of vaporized rare earth metals to condense NbCls units. We probed the local order around the Nb atom with X-Ray Absorption Spectroscopy, far Infra-Red and XPS in order to better understand the mechanisms involved. A first EXAFS, IR and XPS study on solid state products has shown the evolution of the NbCl5 dimer towards a chain like structure. However, the condensation patterns depends on the rare earth atoms vaporized. These results have been confirmed by X-ray Absorption ab initio calculations. Because our compounds are extremely air sensitive we have developed in situ MVS reactor to take 'snapshots' of the structural intermediates by EXAFS. This study showed the condensation of the initial NbCl5 building blocks by reduction of the Nb oxidation state by rare earth vaporization. This method is a new way of looking at condensation mechanisms via structural evolution observed by EXAFS. (author)

  2. Minimizing chemical interference errors for the determination of lithium in brines by flame atomic absorption spectroscopy analysis

    Institute of Scientific and Technical Information of China (English)

    WEN Xianming; MA Peihua; ZHU Geqin; WU Zhiming

    2006-01-01

    Chemical interferences (ionization and oxide/hydroxide formation) on the atomic absorbance signal of lithium in FAAS analysis of brine samples are elaborated in this article. It is suggested that inadequate or overaddition of deionization buffers can lead to loss of sensitivities under particular operating conditions. In the analysis of brine samples, signal enhancing and oxide/hydroxide formation inducing signal reduction resulting from overaddition of deionization buffers can be seen with varying amounts of chemical buffers. Based on experimental results, the authors have arrived at the op timized operating conditions for the detection of lithium, under which both ionization and stable compound formation can be suppressed. This is a simplified and quick method with adequate accuracy and precision for the determination of lithium in routine brine samples from chemical plants or R&D laboratories, which contain comparable amounts of lithium with some other components.

  3. Effect of Atomic Coherence on Absorption in Four-level Systems: an Analytical study

    CERN Document Server

    Sandhya, S N

    2006-01-01

    Absorption profile of a four-level ladder atomic system interacting with three driving fields is studied perturbatively and analytical results are presented. Numerical results where the driving field strengths are treated upto all orders are presented. The absorption features is studied in two regimes, i) the weak middle transition coupling, i.e. $\\Omega_2 \\Omega_{1,3}$ and ii) the strong middle transition coupling $\\Omega_2 \\Omega_{1,3}$. In case i), it is shown that the ground state absorption and the saturation characteristics of the population of level 2 reveal deviation due to the presence of upper level couplings. In particular, the saturation curve for the population of level 2 shows a dip for $\\Omega_1 = \\Omega_3$. While the populations of levels 3 and 4 show a maxima when this resonance condition is satisfied. Thus the resonance condition provides a criterion for maximally populating the upper levels. A second order perturbation calculation reveals the nature of this minima (maxima). In the second ca...

  4. 14 CFR 21.615 - FAA inspection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false FAA inspection. 21.615 Section 21.615 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION... request of the Administrator, each manufacturer of an article under a TSO authorization shall allow...

  5. Permanent modification in electrothermal atomic absorption spectrometry — advances, anticipations and reality

    Science.gov (United States)

    Tsalev, Dimiter L.; Slaveykova, Vera I.; Lampugnani, Leonardo; D'Ulivo, Alessandro; Georgieva, Rositsa

    2000-05-01

    Permanent modification is an important recent development in chemical modification techniques which is promising in view of increasing sample throughput with 'fast' programs, reducing reagent blanks, preliminary elimination of unwanted modifier components, compatibility with on-line and in situ enrichment, etc. An overview of this approach based on the authors' recent research and scarce literature data is given, revealing both success and failure in studies with permanently modified surfaces (carbides, non-volatile noble metals, noble metals on carbide coatings, etc.), as demonstrated in examples of direct electrothermal atomic absorption spectrometric (ETAAS) applications to biological and environmental matrices and vapor generation (VG)-ETAAS coupling with in-atomizer trapping of hydrides and other analyte vapors. Permanent modifiers exhibit certain drawbacks and limitations such as: poorly reproducible treatment technologies — eventually resulting in poor tube-to-tube repeatability and double or multiple peaks; impaired efficiency compared with modifier addition to each sample aliquot; relatively short lifetimes; limitations imposed on temperature programs, the pyrolysis, atomization and cleaning temperatures being set somewhat lower to avoid excessive loss of modifier; applicability to relatively simple sample solutions rather than to high-salt matrices and acidic digests; side effects of overstabilization, etc. The most important niches of application appear to be the utilization of permanently modified surfaces in coupled VG-ETAAS techniques, analysis of organic solvents and extracts, concentrates and fractions obtained after enrichment and/or speciation separations and direct ETAAS determinations of highly volatile analytes in relatively simple sample matrices.

  6. Evaluation on corrosively dissolved gold induced by alkanethiol monolayer with atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    We have monitored a gold corrosive dissolution behavior accompanied in n-alkanethiol like n-dodecanethiol assembled process with in situ quartz crystal microbalance (QCM), and then observed it with atomic force microscopy (AFM) which showed an evident image of corrosive defects or holes produced on gold substrate, corresponding to gold dissolution induced by the alkanethiol molecules in the presence of oxygen. For detection of the dissolved gold defects during alkanethiol assembled process, an atomic absorption spectroscopy (AAS) has been carried out in this paper, and the detection limit for the dissolved gold could be evaluated to be 15.4 ng/mL. The amount of dissolved gold from the substrates of gold plates as functions of immersion time, acid media, solvents and thiol concentration has been examined in the oxygen saturated solutions. In comparison with in situ QCM method, the kinetics behavior of the long-term gold corrosion on the gold plates in 1.0 mmol/L of n-dodecanethiol solution determined with AAS method was a slow process, and its corrosion rate on gold dissolution could be evaluated to be about 4.4 x 10-5 ng.cm-2.s-1, corresponding to 1.3 x 108 Au atoms.cm-2.s-1, that was much smaller than that of initial rate monitored with in situ QCM. Both kinetics equations obtained with QCM and AAS showed a consistent corrosion behavior on gold surfaces.

  7. Slurry sampling techniques for the determination of lead in Bangladeshi fish samples by electrothermal atomic absorption spectrometry with a metal tube atomizer.

    Science.gov (United States)

    Rahman, Mohammad Arifur; Kaneco, Satoshi; Suzuki, Tohru; Katsumata, Hideyuki; Ohta, Kiyohisa

    2005-05-01

    Ultrasonic slurry sampling electrothermal atomic absorption spectrometry with a metal tube atomizer has been applied to the determination of lead in Bangladeshi fish samples. The slurry sampling conditions, such as slurry stabilizing agent, slurry concentration, pyrolysis temperature for the slurried fish samples, particle size and ultrasonic agitation time, were optimized for electrothermal atomic absorption spectrometry with the Mo tube atomizer. Thiourea was used as the chemical modifier for the interference of matrix elements. The detection limit was 53 fg (3S/N). The determined amount of lead in Bangladeshi fish samples was consistent with those measured in the dissolved acid-digested samples. The advantages of the proposed methods are easy calibration, simplicity, low cost and rapid analysis.

  8. In situ emulsification microextraction using a dicationic ionic liquid followed by magnetic assisted physisorption for determination of lead prior to micro-sampling flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shokri, Masood; Beiraghi, Asadollah [Faculty of Chemistry, Kharazmi University, Tehran (Iran, Islamic Republic of); Seidi, Shahram, E-mail: s.seidi@kntu.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2015-08-19

    For the first time, a simple and efficient in situ emulsification microextraction method using a dicationic ionic liquid followed by magnetic assisted physisorption was presented to determine trace amounts of lead. In this method, 400 μL of 1.0 mol L{sup −1} lithium bis (trifluoromethylsulfonyl) imide aqueous solution, Li[NTf{sub 2}], was added into the sample solution containing 100 μL of 1.0 mol L{sup −1} 1,3-(propyl-1,3-diyl) bis (3-methylimidazolium) chloride, [pbmim]Cl{sub 2}, to form a water immiscible ionic liquid, [pbmim][NTf{sub 2}]{sub 2}. This new in situ formed dicationic ionic liquid was applied as the acceptor phase to extract the lead-ammonium pyrrolidinedithiocarbamate (Pb-APDC) complexes from the sample solution. Subsequently, 30 mg of Fe{sub 3}O{sub 4} magnetic nanoparticles (MNPs) were added into the sample solution to collect the fine droplets of [pbmim][NTf{sub 2}]{sub 2}, physisorptively. Finally, MNPs were eluted by acetonitrile, separated by an external magnetic field and the obtained eluent was subjected to micro-sampling flame atomic absorption spectrometry (FAAS) for further analysis. Comparing with other microextraction methods, no special devices and centrifugation step are required. Parameters influencing the extraction efficiency such as extraction time, pH, concentration of chelating agent, amount of MNPs and coexisting interferences were studied. Under the optimized conditions, this method showed high extraction recovery of 93% with low LOD of 0.7 μg L{sup −1}. Good linearity was obtained in the range of 2.5–150 μg L{sup −1} with determination coefficient (r{sup 2}) of 0.9921. Relative standard deviation (RSD%) for seven repeated measurements at the concentration of 10 μg L{sup −1} was 4.1%. Finally, this method was successfully applied for determination of lead in some water and plant samples. - Highlights: • A dicationic ionic liquid was used as the extraction solvent, for the first time. • A

  9. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mirabi, Ali; Dalirandeh, Zeinab [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Rad, Ali Shokuhi, E-mail: a.shokuhi@qaemshahriau.ac.ir [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe{sub 3}O{sub 4} as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L{sup −1} HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml{sup −1} and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results. - Highlights: • MNPs method is economical, simple, rapid and sensitive for trace analysis of Cd. • High preconcentration factor was obtained easily through this method. • A detection limit at ng mL{sup −1} level was achieved with 100.0 mL of sample. • This method provides good repeatability and extraction efficiency in a short time.

  10. Fast determination of trace elements in organic fertilizers using a cup-horn reactor for ultrasound-assisted extraction and fast sequential flame atomic absorption spectrometry.

    Science.gov (United States)

    Teixeira, Leonel Silva; Vieira, Heulla Pereira; Windmöller, Cláudia Carvalhinho; Nascentes, Clésia Cristina

    2014-02-01

    A fast and accurate method based on ultrasound-assisted extraction in a cup-horn sonoreactor was developed to determine the total content of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn in organic fertilizers by fast sequential flame atomic absorption spectrometry (FS FAAS). Multivariate optimization was used to establish the optimal conditions for the extraction procedure. An aliquot containing approximately 120 mg of the sample was added to a 500 µL volume of an acid mixture (HNO3/HCl/HF, 5:3:3, v/v/v). After a few minutes, 500 µL of deionized water was added and eight samples were simultaneously sonicated for 10 min at 50% amplitude, allowing a sample throughput of 32 extractions per hour. The performance of the method was evaluated with a certified reference material of sewage sludge (CRM 029). The precision, expressed as the relative standard deviation, ranged from 0.58% to 5.6%. The recoveries of analytes were found to 100%, 109%, 96%, 92%, 101%, 104% and 102% for Cd, Cr, Cu, Mn, Ni, Pb and Zn, respectively. The linearity, limit of detection and limit of quantification were calculated and the values obtained were adequate for the quality control of organic fertilizers. The method was applied to the analysis of several commercial organic fertilizers and organic wastes used as fertilizers, and the results were compared with those obtained using the microwave digestion procedure. A good agreement was found between the results obtained by microwave and ultrasound procedures with recoveries ranging from 80.4% to 117%. Two organic waste samples were not in accordance with the Brazilian legislation regarding the acceptable levels of contaminants.

  11. Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry.

    Science.gov (United States)

    Gürkan, Ramazan; Korkmaz, Sema; Altunay, Nail

    2016-08-01

    A new ultrasonic-thermostatic-assisted cloud point extraction procedure (UTA-CPE) was developed for preconcentration at the trace levels of vanadium (V) and molybdenum (Mo) in milk, vegetables and foodstuffs prior to determination via flame atomic absorption spectrometry (FAAS). The method is based on the ion-association of stable anionic oxalate complexes of V(V) and Mo(VI) with [9-(diethylamino)benzo[a]phenoxazin-5-ylidene]azanium; sulfate (Nile blue A) at pH 4.5, and then extraction of the formed ion-association complexes into micellar phase of polyoxyethylene(7.5)nonylphenyl ether (PONPE 7.5). The UTA-CPE is greatly simplified and accelerated compared to traditional cloud point extraction (CPE). The analytical parameters optimized are solution pH, the concentrations of complexing reagents (oxalate and Nile blue A), the PONPE 7.5 concentration, electrolyte concentration, sample volume, temperature and ultrasonic power. Under the optimum conditions, the calibration curves for Mo(VI) and V(V) are obtained in the concentration range of 3-340µgL(-1) and 5-250µgL(-1) with high sensitivity enhancement factors (EFs) of 145 and 115, respectively. The limits of detection (LODs) for Mo(VI) and V(V) are 0.86 and 1.55µgL(-1), respectively. The proposed method demonstrated good performances such as relative standard deviations (as RSD %) (≤3.5%) and spiked recoveries (95.7-102.3%). The accuracy of the method was assessed by analysis of two standard reference materials (SRMs) and recoveries of spiked solutions. The method was successfully applied into the determination of trace amounts of Mo(VI) and V(V) in milk, vegetables and foodstuffs with satisfactory results. PMID:27216654

  12. Novel analytical reagent for the application of cloud-point preconcentration and flame atomic absorption spectrometric determination of nickel in natural water samples

    Energy Technology Data Exchange (ETDEWEB)

    Suvardhan, K. [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, AP (India); Rekha, D. [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, AP (India); Kumar, K. Suresh [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, AP (India); Prasad, P. Reddy [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, AP (India); Kumar, J. Dilip [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, AP (India); Jayaraj, B. [Department of Mathematics, S.V. University, Tirupati 517502, AP (India); Chiranjeevi, P. [Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, AP (India)]. E-mail: chiranjeevipattium@gmail.com

    2007-06-01

    Cloud-point extraction was applied as a preconcentration of nickel after formation of complex with newly synthesized N-quino[8,7-b]azin-5-yl-2,3,5,6,8,9,11,12octahydrobenzo[b][1,4,7,10,13] pentaoxacyclopentadecin-15-yl-methanimine, and later determined by flame atomic absorption spectrometry (FAAS) using octyl phenoxy polyethoxy ethanol (Triton X-114) as surfactant. Nickel was complexed with N-quino[8,7-b]azin-5-yl-2,3,5,6,8,9,11,12 octahydrobenzo[b][1,4,7,10,13]pentaoxacyclopentadecin-15-yl-methanimine in an aqueous phase and was kept for 15 min in a thermo-stated bath at 40 deg. C. Separation of the two phases was accomplished by centrifugation for 15 min at 4000 rpm. The chemical variables affecting the cloud-point extraction were evaluated, optimized and successfully applied to the nickel determination in various water samples. Under the optimized conditions, the preconcentration system of 100 ml sample permitted an enhancement factor of 50-fold. The detailed study of various interferences made the method more selective. The detection limits obtained under optimal condition was 0.042 ng ml{sup -1}. The extraction efficiency was investigated at different nickel concentrations (20-80 ng ml{sup -1}) and good recoveries (99.05-99.93%) were obtained using present method. The proposed method has been applied successfully for the determination of nickel in various water samples and compared with reported method in terms of Student's t-test and variance ratio f-test which indicate the significance of present method over reported and spectrophotometric methods at 95% confidence 0011lev.

  13. Cloud point extraction for determination of lead in blood samples of children, using different ligands prior to analysis by flame atomic absorption spectrometry: A multivariate study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Faheem, E-mail: shah_ceac@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Naeemullah, E-mail: khannaeemullah@ymail.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Arain, Muhammad Balal, E-mail: bilal_ku2004@yahoo.com [Department of Chemistry, University of Science and Technology, Bannu, KPK (Pakistan); Baig, Jameel Ahmed, E-mail: jab_mughal@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2011-09-15

    Highlights: {yields} Trace levels of lead in blood samples of healthy children and with different kidney disorders {yields} Pre-concentration of Pb{sup +2} in acid digested blood samples after chelating with two complexing reagents. {yields} Multivariate technique was used for screening of significant factors that influence the CPE of Pb{sup +2} {yields} The level of Pb{sup +2} in diseased children was significantly higher than referents of same age group. - Abstract: The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of lead (Pb{sup 2+}) from digested blood samples after simultaneous complexation with ammonium pyrrolidinedithiocarbamate (APDC) and diethyldithiocarbamate (DDTC) separately. The complexed analyte was quantitatively extracted with octylphenoxypolyethoxyethanol (Triton X-114). The multivariate strategy was applied to estimate the optimum values of experimental factors. Acidic ethanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometer (FAAS). The detection limit value of Pb{sup 2+} for the preconcentration of 10 mL of acid digested blood sample was 1.14 {mu}g L{sup -1}. The accuracy of the proposed methods was assessed by analyzing certified reference material (whole blood). Under the optimized conditions of both CPE methods, 10 mL of Pb{sup 2+} standards (10 {mu}g L{sup -1}) complexed with APDC and DDTC, permitted the enhancement factors of 56 and 42, respectively. The proposed method was used for determination of Pb{sup 2+} in blood samples of children with kidney disorders and healthy controls.

  14. Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry.

    Science.gov (United States)

    Gürkan, Ramazan; Korkmaz, Sema; Altunay, Nail

    2016-08-01

    A new ultrasonic-thermostatic-assisted cloud point extraction procedure (UTA-CPE) was developed for preconcentration at the trace levels of vanadium (V) and molybdenum (Mo) in milk, vegetables and foodstuffs prior to determination via flame atomic absorption spectrometry (FAAS). The method is based on the ion-association of stable anionic oxalate complexes of V(V) and Mo(VI) with [9-(diethylamino)benzo[a]phenoxazin-5-ylidene]azanium; sulfate (Nile blue A) at pH 4.5, and then extraction of the formed ion-association complexes into micellar phase of polyoxyethylene(7.5)nonylphenyl ether (PONPE 7.5). The UTA-CPE is greatly simplified and accelerated compared to traditional cloud point extraction (CPE). The analytical parameters optimized are solution pH, the concentrations of complexing reagents (oxalate and Nile blue A), the PONPE 7.5 concentration, electrolyte concentration, sample volume, temperature and ultrasonic power. Under the optimum conditions, the calibration curves for Mo(VI) and V(V) are obtained in the concentration range of 3-340µgL(-1) and 5-250µgL(-1) with high sensitivity enhancement factors (EFs) of 145 and 115, respectively. The limits of detection (LODs) for Mo(VI) and V(V) are 0.86 and 1.55µgL(-1), respectively. The proposed method demonstrated good performances such as relative standard deviations (as RSD %) (≤3.5%) and spiked recoveries (95.7-102.3%). The accuracy of the method was assessed by analysis of two standard reference materials (SRMs) and recoveries of spiked solutions. The method was successfully applied into the determination of trace amounts of Mo(VI) and V(V) in milk, vegetables and foodstuffs with satisfactory results.

  15. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe3O4 as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L−1 HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml−1 and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results. - Highlights: • MNPs method is economical, simple, rapid and sensitive for trace analysis of Cd. • High preconcentration factor was obtained easily through this method. • A detection limit at ng mL−1 level was achieved with 100.0 mL of sample. • This method provides good repeatability and extraction efficiency in a short time

  16. Simple hollow fiber renewal liquid membrane extraction method for pre-concentration of Cd(II) in environmental samples and detection by Flame Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    A hollow fiber renewal liquid membrane (HFRLM) extraction method to determine cadmium (II) in water samples using Flame Atomic Absorption Spectrometry (FAAS) was developed. Ammonium O,O-diethyl dithiophosphate (DDTP) was used to complex cadmium (II) in an acid medium to obtain a neutral hydrophobic complex (ML2). The organic solvent introduced to the sample extracts this complex from the aqueous solution and carries it over the poly(dimethylsiloxane) (PDMS) membrane, that had their walls previously filled with the same organic solvent. The organic solvent is solubilized inside the PDMS membrane, leading to a homogeneous phase. The complex strips the lumen of the membrane where, at higher pH, the complex Cd-DDTP is broken down and cadmium (II) is released into the stripping phase. EDTA was used to complex the cadmium (II), helping to trap the analyte in the stripping phase. A multivariate procedure was used to optimize the studied variables. The optimized variables were: sample (donor phase) pH 3.25, DDTP concentration 0.05% (m/v), stripping (acceptor phase) pH 8.75, EDTA concentration 1.5 x 10-2 mol L-1, extraction temperature 40 deg. C, extraction time 40 min, a solvent mixture N-butyl acetate and hexane (60/40%, v/v) with a volume of 100 μL, and addition of ammonium sulfate to saturate the sample. The sample volume used was 20 mL and the stripping volume was 165 μL. The analyte enrichment factor was 120, limit of detection (LOD) 1.3 μg L-1, relative standard deviation (RSD) 5.5% and the working linear range 2-30 μg L-1.

  17. Simultaneous determination of antimony and boron in beverage and dairy products by flame atomic absorption spectrometry after separation and pre-concentration by cloud-point extraction.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan

    2016-01-01

    A new cloud-point extraction (CPE) method was developed for the pre-concentration and simultaneous determination of Sb(III) and B(III) by flame atomic absorption spectrometry (FAAS). The method was based on complexation of Sb(III) and B(III) with azomethine-H in the presence of cetylpyridinium chloride (CPC) as a signal-enhancing agent, and then extraction into the micellar phase of Triton X-114. Under optimised conditions, linear calibration was obtained for Sb(III) and B(III) in the concentration ranges of 0.5-180 and 2.5-600 μg l(-1) with LODs of 0.15 and 0.75 μg l(-1), respectively. Relative standard deviations (RSDs) (25 and 100 μg l(-1) of Sb(III) and B(III), n = 6) were in a range of 2.1-3.8% and 1.9-2.3%, respectively. Recoveries of spiked samples of Sb(III) and B(III) were in the range of 98-103% and 99-102%, respectively. Measured values for Sb and B in three standard reference materials were within the 95% confidence limit of the certified values. Also, the method was used for the speciation of inorganic antimony. Sb(III), Sb(V) and total Sb were measured in the presence of excess boron before and after pre-reduction with an acidic mixture of KI-ascorbic acid. The method was successfully applied to the simultaneous determination of total Sb and B in selected beverage and dairy products.

  18. ANALYSIS OF VARIOUS METAL IONS IN SOME MEDICINAL PLANTS USING ATOMIC ABSORPTION SPECTROPHOTOMETER

    Directory of Open Access Journals (Sweden)

    Y.L. Ramachandra*, C. Ashajyothi and Padmalatha S. Rai

    2012-07-01

    Full Text Available Metal ions such as iron , lead, copper, nickel, cadmium , chromium and zinc were investigated in medicinally important plants Alstonia scholaris, Tabernaemontana coronariae, Asparagus racemosus, Mimosa pudica, Leucas aspera and Adhatoda vasica applying atomic absorption spectrophotometer techniques. The purpose of this study was to standardize various metal ion Contamination in indigenous medicinal plants. Maximum concentration of lead was present in Leucas aspera and Adhatoda vasica followed by Alstonia scholaris, Tabernaemontana coronariae and Asparagus racemosus. The concentration of lead in Mimosa pudica was below the detectable level. The maximum concentration of zinc was detected in Adhatoda vasica followed by Leucas aspera, Asparagus racemosus, Tabernaemontana coronariae, Alstonia scholaris and Mimosa pudica. The concentration of Cadmium, nickel and chromium was below the detectable level.

  19. Analysis of soil reference materials for vanadium(+5) species by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Solid Certified Reference Materials (CRMs) with known vanadium(+5) content are currently not commercially available. Because of this, vanadium species have been determined in solid CRMs of soil, viz. CRM023-50, CRM024-50, CRM049-50, SQC001 and SQC0012. These CRMs are certified with only total vanadium content. Vanadium(+5) was extracted from soil reference materials with 0.1 M Na2CO3. The quantification of V(+5) was carried out by electrothermal atomic absorption spectrometry (ET-AAS). The concentration of V(+5) in the analyzed CRMs was found to be ranging between 3.60 and 86.0 μg g-1. It was also found that SQC001 contains approximately 88% of vanadium as V(+5) species. Statistical evaluation of the results of the two methods by paired t-test was in good agreement at 95% level of confidence.

  20. Neutron activation analysis and atomic absorption spectrophotometry for the analysis of fresh, pasteurised and powder milk

    Energy Technology Data Exchange (ETDEWEB)

    Wasim, M.; Rehman, S.; Arif, M.; Fatima, I.; Zaidi, J.H. [Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Chemistry Div.

    2012-07-01

    This study shows the application of semi-absolute k{sub 0} instrumental neutron activation analysis (k{sub 0}-INAA), epithermal neutron activation analysis (ENAA) and atomic absorption spectrophotometry (AAS) for the determination of 21 elements (Br, Ca, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sc Sr, and Zn) in different types of milk samples. The ENAA was required for the determination of iodine, AAS for Cu, Ni and Pb and the rest of the elements were measured by k{sub 0}-INAA. Thirteen elements (Br, Ca, Cl, Cs, Cu, Fe, K, Mg, Na, P, Rb, Sr and Zn) were identified in all milk samples. Ni was detected in eleven and Pb in two samples. Concentrations of most of the elements were within the ranges of the world reported data. The data was further explored by principal component analysis to find relationships between samples and elements. (orig.)

  1. DETERMINATION OF NICKLE CONTENTS IN SELECTED VANASPATI GHEE THROUGH ATOMIC ABSORPTION SPECTROPHOTOMETER

    Directory of Open Access Journals (Sweden)

    Waqas Ahmad

    2014-12-01

    Full Text Available To convert vegetable edible oils into vanaspati ghee, nickel is used as a catalyst in the hydrogenation process. A simple and fast method for the trace level determination of nickel in ghee is reported. In this different methods were applied for the extraction of residual nickel from ghee samples. Using toluene, as organic solvents, an acid mixture was used for the extraction of nickel. Extracted nickel was quantified with atomic absorption. Among the organic solvents, toluene proved to be the best solvent mediating a 95% extraction of nickel from ghee samples. Nickel was extracted and determined in ten different brands of ghee and in all samples its amount was well above the permissible limit of WHO (0.2 μg/g. Other metals like lead, zinc, copper, and cadmium were also determined and their concentrations were found to be much below the WHO permissible limits.

  2. Determination of Trace Selenium in Electrolytic Manganese by Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    YAO Jun; ZHOU Fang-qin; MA Cheng-jin; TUO Yong; LIU Jian-ben; WU Zhu-qin; TAN Zhu-zhong

    2003-01-01

    The effects of four types of graphite tube and five matrix modifiers on the determination of selenium by graphite furnace atomic absorption spectrometry were compared.The results show that platform thermolysis coat graphite tube and magnesium nitrate and cobaltco as matrix modifer can get a high sensitivity and a good recovery.The optimized working conditions and interference in the determination were invesigated.This result is consistent with that of XRF.The recovery is from 100.8 % to102.2 %,the relative standard deviation is from 3.47% to 5.56 % (n=9),and the detection limit of selenium is 378 pg (C=44.5μg/g to 97.3μg/g.).The proposed method can be applied to the rapid determination of selenium in electrolytic manganese.

  3. Laser absorption spectroscopy diagnostics of helium metastable atoms generated in dielectric barrier discharge cryoplasmas

    Science.gov (United States)

    Urabe, Keiichiro; Muneoka, Hitoshi; Stauss, Sven; Sakai, Osamu; Terashima, Kazuo

    2015-10-01

    Cryoplasmas, which are plasmas whose gas temperatures are below room temperature (RT), have shown dynamic changes in their physical and chemical characteristics when the gas temperature in the plasmas (Tgp) was decreased from RT. In this study, we measured the temporal behavior of helium metastable (Hem) atoms generated in a parallel-plate dielectric barrier discharge at ambient gas temperatures (Tga) of 300, 100, and 14 K and with a gas density similar to atmospheric conditions by laser absorption spectroscopy. The increments of Tgp to Tga were less than 20 K. We found from the results that the Hem lifetime and maximum density become longer and larger over one order of magnitude for lower Tga. The reasons for the long Hem lifetime at low Tga are decreases in the rate coefficients of three-body Hem quenching reactions and in the amounts of molecular impurities with boiling points higher than that of He.

  4. The direct determination of HgS by thermal desorption coupled with atomic absorption spectrometry

    Science.gov (United States)

    Coufalík, Pavel; Zvěřina, Ondřej; Komárek, Josef

    2016-04-01

    This research was aimed at the direct determination of HgS in environmental samples by means of thermal desorption coupled with atomic absorption spectrometry. Operating parameters of the apparatus used for thermal desorption (including a prototype desorption unit) are described in this work, as well as the procedure for measuring mercury release curves together with an evaluation of the analytical signal including two methods of peak integration. The results of thermal desorption were compared with HgS contents obtained by sequential extraction. The limits of quantification of the proposed method for the selective determination of the black and red forms of HgS were 4 μg kg- 1 and 5 μg kg- 1, respectively. The limit of quantification of red HgS in soils was 35 μg kg- 1. The developed analytical procedure was applied to soil and sediment samples from historical mining areas.

  5. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    Science.gov (United States)

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions. PMID:27236436

  6. Atomic Absorption Spectrometric Method for Estimation of Diclofenac sodium and Mefenamic acid in Pharmaceutical Formulations

    Directory of Open Access Journals (Sweden)

    Sunil Jawla

    2010-01-01

    Full Text Available Diclofenac sodium and Mefenamic acid have been quantified in tablet dosage form by atomic absorption spectrometry (AAS. These methods are based on formation of the metal complexes of Diclofenac sodium and Mefenamic acid with cupric chloride and cobaltous chloride. The first method is based on reaction of both the drugs with cupric chloride to give light blue colored metal complexes, which are then extracted with dichloromethane and digested with 0.1 M nitric acid. Both the drugs are indirectly estimated via determination of copper content in the formed complexes by AAS. The second method is based on the formation of pink colored complexes of both the drugs with cobaltous chloride. These metal complexes are extracted with dichloromethane and estimated via determination of cobalt content in the formed complexes after digestion with 0.1 M nitric acid by AAS.

  7. Removal of iron interferences by solvent extraction for geochemical analysis by atomic-absorption spectrophotometry

    Science.gov (United States)

    Zhou, L.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    Iron is a common interferent in the determination of many elements in geochemical samples. Two approaches for its removal have been taken. The first involves removal of iron by extraction with methyl isobutyl ketone (MIBK) from hydrochloric acid medium, leaving the analytes in the aqueous phase. The second consists of reduction of iron(III) to iron(II) by ascorbic acid to minimize its extraction into MIBK, so that the analytes may be isolated by extraction. Elements of interest can then be determined using the aqueous solution or the organic extract, as appropriate. Operating factors such as the concentration of hydrochloric acid, amounts of iron present, number of extractions, the presence or absence of a salting-out agent, and the optimum ratio of ascorbic acid to iron have been determined. These factors have general applications in geochemical analysis by atomic-absorption spectrophotometry. ?? 1985.

  8. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    Science.gov (United States)

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. PMID:27566338

  9. Estimation of lead and cadmium in various food commodities by electrothermal atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    The determination of lead and cadmium was carried out in various types of food commodities including poultry farm chicken eggs, integrated diet of winter season for the inhabitants of Rawalpindi/Islamabad area and different brands of baby cereals, employing electrothermal atomic absorption spectrophotometric technique. The results showed that integrated diet contained the highest amount of lead whereas the maximum concentration of cadmium was observed in samples of baby cereals. The effect of mechanical food processing on the concentration levels of these elements was discussed. The results obtained were compared with the reported values for other countries. Intake values of these toxic elements through these food articles were calculated and compared with the tolerance levels of WHO. (author)

  10. Preconcentration of Vanadium(Ⅴ) on Crosslinked Chitosan and Determination by Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method is proposed for the preconcentration of vanadium(Ⅴ) with crosslinked chitosan (CCTS) and determination by graphite furnace atomic absorption spectrometry (GFAAS). The adsorption rate of vanadium(Ⅴ) by CCTS was 97% at pH 4.0, and vanadium(Ⅴ) was eluted from crosslinked chitosan with 2 mL 2.0 mol*L-1 chlorhydric acid and determined by GFAAS. The detection limit (3σ,n=7) for vanadium(Ⅴ) was 4.8×1 0-12g and the relative standard deviation (R.S.D) at concentration level of 2.6 μg*L-1 is less than 3.6%. The method shows a good selectivity and high sensitivity, and it was applied to determination of vanadium(Ⅴ) in oyster and water samples. The analytic recoveries are (97±5)%.

  11. A summary of transition probabilities for atomic absorption lines formed in low-density clouds

    Science.gov (United States)

    Morton, D. C.; Smith, W. H.

    1973-01-01

    A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.

  12. Determination of lanthanides in yttrium and praseodymium oxides by atomic absorption spectrophotometry using a graphite furnace

    International Nuclear Information System (INIS)

    The operational conditions for the graphite furnace, the instrumental parameters and the sensitivity for the determination of Pr, Nd, Sm, Eu, Y, Gd, Dy, Er, Ho, Tm, and Yb in Y2O3 and Pr2O3 by atomic absorption spectrophotometry are presented. The analyses were carried out into a highly pure argon atmosphere and using pyrolytic graphite tube and graphite supporting electrodes. The accuracy and precision of the method were checked through analyses of synthetic lanthanides mixtures. The concentration range of the lanthanides varied from 0,003 to 3,5% in Y2O3 and from 0,001 to 3,5% in Pr2O3. (Author)

  13. Determination of molybdenum in silicates through atomic absorption spectrometry using pre-concentration by active carbon

    International Nuclear Information System (INIS)

    An analytical procedure for molybdenum determination in geological materials through Atomic Absorption Spectrometry, after pre-concentration of the Mo-APDC complex in activated carbon, has been developed, which is needed in order to reduce the dilution effect in the sample decomposition. During the development of this method the influence of pH, the amount of APDC for complexation of Mo and the interference of Fe, Ca, Mn, Al, K, Na, Mg and Ti were tested. It was shown that none of these causes any significant effect on the Mo determination proposed. The results of the analysis at the international geochemical reference samples JB-1 (basalt) and GH (granite) were very accurate and showed that the detection limit in rocks (1,00g) is 0,6 ppm, when using sample dilution of 1 ml and microinjection techniques. (author)

  14. Observations of absorption lines from highly ionized atoms. [of interstellar medium

    Science.gov (United States)

    Jenkins, Edward B.

    1987-01-01

    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. few x 0.001/cu cm) existing at coronal temperatures log T = 5.3 or 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity (v = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic UV radiation from very hot, dwarf stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  15. Wet sample digestion for quantification of vanadium(V) in serum by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Three types of pressure digestion systems used prior to the determination of the ultratrace element vanadium by electrothermal atomic absorption spectrometry were evaluated: The high-pressure ashing (HPA) system, the DAB III pressure digestion system and the pressurized microwave digestion (PMD) system. Complete sample digestion and no loss of graphite tube sensitivity as well as reliable vanadium values could only be achieved with HPA digests of freeze-dried serum. The mean recovery rate was 98% and no loss of tube sensitivity could be observed. Using non-lyophilized serum the mean recovery rate was 70%. The DAB III digestion system, vicarious for closed pressure digestion in steel bombs with an allowable temperature up to about 200C, cannot be recommended to mineralize human biological material for vanadium determinations, because the remaining not completely decomposed organic compounds extracted together with the vanadium-cupferron complex caused a marked carbon-buildup and formation of carbides in the graphite tube were found to change the shape of the absorption signals distinctly, and to decline the tube sensitivity strongly (about 25%) so that reliable results cannot be achieved. The recovery rate was too low in general (about 50%). In addition, a subsequent treatment of the DAB III digests with perchloric acid was unsuccessful. The PMD system proved to be not suited, because the samples became highly contaminated by vanadium possibly from the titan seal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Methylmercury determination in biological samples using electrothermal atomic absorption spectrometry after acid leaching extraction

    Energy Technology Data Exchange (ETDEWEB)

    Saber-Tehrani, Mohammad; Hashemi-Moghaddam, Hamid; Givianrad, Mohammad Hadi; Abroomand-Azar, Parviz [Islamic Azad University, Department of Chemistry, Science and Research Branch, Tehran (Iran)

    2006-11-15

    An efficient and sensitive method for the determination of methylmercury in biological samples was developed based on acid leaching extraction of methylmercury into toluene. Methylmercury in the organic phase was determined by electrothermal atomic absorption spectrometry (ETAAS). The methylmercury signal was enhanced and the reproducibility increased by formation of certain complexes and addition of Pd-DDC modifier. The complex of methylmercury with DDC produced the optimum analytical signal in terms of sensitivity and reproducibility compared to complexes with dithizone, cysteine, 1,10-phenanthroline, and diethyldithiocarbamate. Method performance was optimized by modifying parameters such as temperature of mineralization, atomization, and gas flow rate. The limit of detection for methylmercury determination was 0.015 {mu}g g{sup -1} and the RSD of the whole procedure was 12% for human teeth samples (n=5) and 15.8% for hair samples (n=5). The method's accuracy was investigated by using NIES-13 and by spiking the samples with different amounts of methylmercury. The results were in good agreement with the certified values and the recoveries were 88-95%. (orig.)

  17. Monitoring heavy metals pollution in Bandar Emam region by using atomic absorption technique

    International Nuclear Information System (INIS)

    The level and distribution of five heavy metals Ni, V, Cr, Pb, and Cd in the sediments waters of three areas Bandar Emam were investigated by the use of atomic absorption technique. Metals have been analyzed for different grain size fractions. These metals levels in sediment are expressed as μgg4+ and metal level in water is expressed as ppm. The concentrations of the elements under investigation is much higher than the concentrations of these elements and these of mean in sediments and waters which were compared with the concentration of these elements in the earth crust and international atomic energy agency and ICRP standards. Significant variations in the level of these metals were considered due to: atmospheric fall out as well as waste waters disposal and anthropogenic inputs, Ni and V were due to non-anthropogenic sources and analysis indicate that the sources of Cr and Cd are mainly oil pollution. High level of lead was considered due to inputs from oil discarded solid waters and the prior high rate petrol combustion lead. Monitoring water and sediments, in other words periodic or continuous determination of the amounts of ionizing radiation in water and sediments is one of the positive steps against the pollution in these regions

  18. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry.

    Science.gov (United States)

    Zhang, Yanlin; Adeloju, Samuel B

    2012-04-01

    A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH(4) were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe(3+), Cu(2+) and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu(2+) and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe(3+) gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg(2+). Due to similarity of resulting sensitivity, Hg(2+) was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h(-1).

  19. Matrix elimination method for the determination of precious metals in ores using electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Salih, Bekir; Celikbiçak, Omür; Döker, Serhat; Doğan, Mehmet

    2007-03-28

    Poly(N-(hydroxymethyl)methacrylamide)-1-allyl-2-thiourea) hydrogels, poly(NHMMA-ATU), were synthesized by gamma radiation using (60)Co gamma source in the ternary mixture of NHMMA-ATU-H(2)O. These hydrogels were used for the specific gold, silver, platinum and palladium recovery, pre-concentration and matrix elimination from the solutions containing trace amounts of precious metal ions. Elimination of inorganic matrices such as different transition and heavy metal ions, and anions was performed by adjusting the solution pH to 0.5 that was the selective adsorption pH of the precious metal ions. Desorption of the precious metal ions was performed by using 0.8 M thiourea in 3M HCl as the most efficient desorbing agent with recovery values more than 95%. In the desorption medium, thiourea effect on the atomic signal was eliminated by selecting proper pyrolysis and atomization temperatures for all precious metal ions. Precision and the accuracy of the results were improved in the graphite furnace-atomic absorption spectrometer (GFAAS) measurements by applying the developed matrix elimination method performing the adsorption at pH 0.5. Pre-concentration factors of the studied precious metal ions were found to be at least 1000-fold. Detection limits of the precious metal ions were found to be less than 10 ng L(-1) of the all studied precious metal ions by using the proposed pre-concentration method. Determination of trace levels of the precious metals in the sea-water, anode slime, geological samples and photographic fixer solutions were performed using GFAAS clearly after applying the adsorption-desorption cycle onto the poly(NHMMA-UTU) hydrogels. PMID:17386783

  20. Determination of calcium content in prawn meat using microwave digestion-flame atomic absorption spectrometry%微波消解-FAAS测定虾肉中钙的质量分数

    Institute of Scientific and Technical Information of China (English)

    马海霞; 杨贤庆; 杨燕

    2011-01-01

    The calcium content in prawn meat was determined by using microwave digestion-flame atomic absorption spectrometry ( FAAS) , and the optimal conditions of microwave digestion and FAAS program were studied. The results show that the optimal amount of digestion reagent HNO3 is 5. 0 mL when the sampling amount of prawn meat is 0. 500 g. The optimal microwave digestion program for calcium determination in prawn meat is multistep digestion process D, which includes 3 steps: 1) power400 W, ratio 100% , heat-up time 5 min, digestion temperature 120 ℃ for 5 min; 2) power 800 W, ratio 100% , heat-up time 5 min, digestion temperature 150 ℃ for 10 min; 3) power 800 W, ratio 100% , heat-up time 10 min, and digestion temperature 180 ℃ for 10 min. The calcium content in microwave-digested solution remains stable within 48 h. Under those conditions, the relative standard deviation ( RSD) of determination is 5. 284% , and the recovery of calcium is 91% ~98%. The microwave digestion-FAAS method is rapid, accurate, economical and safe in determining the calcium content in prawn meat%采用微波消解-火焰原子吸收光谱法(flame atomic absorption spectrometry,FAAS)测定虾肉中钙(Ca)元素的质量分数,对微波消解前处理的条件进行了研究.试验结果显示,最佳的微波消解体系为取样量0.500 g,以硝酸( HNO3)作为消解溶剂,用量5.0 mL,最适微波消解程序为多步消解程序D,包含3个步骤:1)功率400W,比例100%,升温5 min,消解温度120℃,保持5 min;2)功率800 W,比例100%,升温5 min,消解温度150℃,保持10 min;3)功率800 W,比例100%,升温10 min,消解温度180℃,保持10 min.样品消解液在常温或冷藏条件下保存48 h之内的稳定性良好.经微波消解前处理后虾肉样品中w(Ca)的相对标准偏差(relative standard deviation,RSD)为5.284%,加标回收率为91%~98%.微波消解-FAAS测定虾肉中的w(Ca)具有样品处理时间短、试剂用量少、结果准确和安全性高等优点.

  1. Atomic Transition Frequencies, Isotope Shifts, and Sensitivity to Variation of the Fine Structure Constant for Studies of Quasar Absorption Spectra

    Science.gov (United States)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, α = {e}2/hslash c , could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that α varies spatially (61). That is, in one direction on the sky α seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger.

  2. Absorption-amplification response with or without spontaneously generated coherence effect in a four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    李家华; 杨文星; 彭菊村

    2004-01-01

    We discuss and analyze the absorption properties of a weak probe field in a typical four-level atomic system in the presence of a spontaneously generated coherence (SGC) term. The influences of the SGC and a coherent pump field on the probe absorption-amplification are investigated. The results show that the absorption of such a weak probe field can be dramatically enhanced due to the SGC effect. At the same time, the probe-absorption profile exhibits a two-peak structure and the probe-absorption peak gradually decreases as the pump intensity increases. On the contrary, the amplification of such a weak probe field near the line center of the probe transition can be achieved by adjusting the coherent pump field intensity in the absence of the SGC effect.

  3. Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Hua; YANG Wen-Xing; PENG Ju-Cun

    2004-01-01

    We discuss and analyze the absorption-amplification properties of a weak probe field in a typical four-level atomic system in the presence of an additional coherence term, the spontaneously generated coherence term. Theinfluences of the spontaneously generated coherence and a coherent pump field on the probe absorption (amplification)are investigated in detail. We show that the absorption of such a weak probe field can be dramatically enhanced dueto the presence of the spontaneously generated coherence. At the same time, the probe-absorption profile exhibitsthe double-peak structure and the probe-absorption peak gradually decreases as the pump intensity increases. On thecontrary, the amplification of such a weak probe field near the line center of the probe transition can be achieved byadjusting the coherent pump field intensity in the absence of the spontaneously generated coherence.

  4. Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

    Institute of Scientific and Technical Information of China (English)

    LIJia-Hua; YANGWen-Xing; PENGJu-Cun

    2004-01-01

    We discuss and analyze the absorption-amplification properties of a weak probe field in a typical fourlevel atomic system in the presence of an additional coherence term, the spontaneously generated coherence term. The influences of the spontaneously generated coherence and a coherent pump field on the probe absorption (amplification) are investigated in detail. We show that the absorption of such a weak probe field can be dramatically enhanced due to the presence of the spontaneously generated coherence. At the same time, the probe-absorption profile exhibits the double-peak structure and the probe-absorption peak gradually decreases as the pump intensity increases. On the contrary, the amplification of such a weak probe field near the line center of the probe transition can be achieved by adiusting the coherent Dump field intensity in the absence of the spontaneously generated coherence.

  5. A photo-oxidation procedure using UV radiation/H{sub 2}O{sub 2} for decomposition of wine samples - Determination of iron and manganese content by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Walter N.L. dos [Departamento de Ciencias Exatas e da Terra, Universidade do Estado da Bahia, Salvador, Bahia (Brazil); Universidade Federal da Bahia, Instituto de Quimica, Campus Ondina, Salvador, Bahia, 40170-290 Brazil (Brazil)], E-mail: wlopes@uneb.br; Brandao, Geovani C.; Portugal, Lindomar A.; David, Jorge M.; Ferreira, Sergio L.C. [Universidade Federal da Bahia, Instituto de Quimica, Campus Ondina, Salvador, Bahia, 40170-290 Brazil (Brazil)

    2009-06-15

    This paper proposes the use of photo-oxidation with UV radiation/H{sub 2}O{sub 2} as sample pretreatment for the determination of iron and manganese in wines by flame atomic absorption spectrometry (FAAS). The optimization involved the study of the following variables: pH and concentration of buffer solution, concentrated hydrogen peroxide volume and irradiation time. The evaluation of sample degradation was monitored by measuring the absorbance at the maximum wavelength of red wine (530 nm). Using the experimental conditions established during the optimization (irradiation time of 30 min, oxidant volume of 2.5 mL, pH 10, and a buffer concentration of 0.15 mol L{sup - 1}), this procedure allows the determination of iron and manganese with limits of detection of 30 and 22 {mu}g L{sup - 1}, respectively, for a 5 mL volume of digested sample. The precision levels, expressed as relative standard deviation (RSD), were 2.8% and 0.65% for iron and 2.7% and 0.54% for manganese for concentrations of 0.5 and 2.0 mg L{sup - 1}, respectively. Addition/recovery tests for evaluation of the accuracy were in the ranges of 90%-111% and 95%-107% for iron and manganese, respectively. This digestion procedure has been applied for the determination of iron and manganese in six wine samples. The concentrations varied from 1.58 to 2.77 mg L{sup - 1} for iron and from 1.30 to 1.91 mg L{sup - 1} for manganese. The results were compared with those obtained by an acid digestion procedure and determination of the elements by FAAS. There was no significant difference between the results obtained by the two methods based on a paired t-test (at 95% confidence level)

  6. A photo-oxidation procedure using UV radiation/H2O2 for decomposition of wine samples - Determination of iron and manganese content by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    This paper proposes the use of photo-oxidation with UV radiation/H2O2 as sample pretreatment for the determination of iron and manganese in wines by flame atomic absorption spectrometry (FAAS). The optimization involved the study of the following variables: pH and concentration of buffer solution, concentrated hydrogen peroxide volume and irradiation time. The evaluation of sample degradation was monitored by measuring the absorbance at the maximum wavelength of red wine (530 nm). Using the experimental conditions established during the optimization (irradiation time of 30 min, oxidant volume of 2.5 mL, pH 10, and a buffer concentration of 0.15 mol L- 1), this procedure allows the determination of iron and manganese with limits of detection of 30 and 22 μg L- 1, respectively, for a 5 mL volume of digested sample. The precision levels, expressed as relative standard deviation (RSD), were 2.8% and 0.65% for iron and 2.7% and 0.54% for manganese for concentrations of 0.5 and 2.0 mg L- 1, respectively. Addition/recovery tests for evaluation of the accuracy were in the ranges of 90%-111% and 95%-107% for iron and manganese, respectively. This digestion procedure has been applied for the determination of iron and manganese in six wine samples. The concentrations varied from 1.58 to 2.77 mg L- 1 for iron and from 1.30 to 1.91 mg L- 1 for manganese. The results were compared with those obtained by an acid digestion procedure and determination of the elements by FAAS. There was no significant difference between the results obtained by the two methods based on a paired t-test (at 95% confidence level).

  7. Simultaneous determination of cadmium and lead in wine by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Freschi, Gian P. G.; Dakuzaku, Carolina S.; de Moraes, Mercedes; Nóbrega, Joaquim A.; Gomes Neto, José A.

    2001-10-01

    A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l -1 HNO 3 and in 1+1 v/v diluted wine using mixtures of Pd(NO 3) 2+Mg(NO 3) 2 and NH 4H 2PO 4+Mg(NO 3) 2 as chemical modifiers. With 5 μg Pd+3 μg Mg as the modifiers and a two-step pyrolysis (10 s at 400°C and 10 s at 600°C), the formation of carbonaceous residues inside the atomizer was avoided. For 20 μl of sample (wine+0.056 mol l -1 HNO 3, 1+1, v/v) dispensed into the graphite tube, analytical curves in the 0.10-1.0 μg l -1 Cd and 5.0-50 μg l -1 Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 μg l -1 for Cd, 0.8 μg l -1 for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 μg l -1 and for Pb at 500 μg l -1. The relative standard deviations ( n=12) were typically <8% for Cd and <6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Pb was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level.

  8. Autler-Townes doublet in the absorption spectra for the transition between excited states of cold cesium atoms

    Institute of Scientific and Technical Information of China (English)

    Liang Qiang-Bing; Yang Bao-Dong; Yang Jian-Feng; Zhang Tian-Cai; Wang Jun-Min

    2010-01-01

    Autler-Townes splitting in absorption spectra of the excited states 6 2P3/2 - 82S1/2 of cold cesium atoms confined in a magneto-optical trap has been observed.Experimental data of the Autler-Townes splitting fit well to the dressedatom theory,by which the fact of the cold atoms dressed by cooling/trapping laser beams is revealed.The results of the theoretical fitting with experiment not only told us the effective Rabi frequency cold atoms experienced,but also could be used for measuring the probability amplitudes of the dressed states.

  9. SPECIATION OF SELENIUM(IV) AND SELENIUM(VI) USING COUPLED ION CHROMATOGRAPHY: HYDRIDE GENERATION ATOMIC ABSORPTION SPECTROMETRY

    Science.gov (United States)

    A simple method was developed to speciate inorganic selenium in the microgram per liter range using coupled ion chromatography-hydride generation atomic absorption spectrometry. Because of the differences in toxicity and adsorption behavior, determination of the redox states selenite, Se(IV), and s...

  10. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  11. Overcoming Matrix Effects in a Complex Sample: Analysis of Multiple Elements in Multivitamins by Atomic Absorption Spectroscopy

    Science.gov (United States)

    Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad

    2011-01-01

    A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…

  12. VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

    Energy Technology Data Exchange (ETDEWEB)

    FILUK,A.B.; BAILEY,JAMES E.; CUNEO,MICHAEL E.; LAKE,PATRICK WAYNE; NASH,THOMAS J.; NOACK,DONALD D.; MARON,Y.

    2000-03-20

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  13. Assessing the Engagement, Learning, and Overall Experience of Students Operating an Atomic Absorption Spectrophotometer with Remote Access Technology

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of…

  14. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    Science.gov (United States)

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  15. Manganese dioxide causes spurious gold values in flame atomic-absorption readings from HBr-Br2 digestions

    Science.gov (United States)

    Campbell, W.L.

    1981-01-01

    False readings, apparently caused by the presence of high concentrations of manganese dioxide, have been observed in our current flame atomic-absorption procedure for the determination of gold. After a hydrobromic acid (HBr)-bromine (Br2) leach, simply heating the sample to boiling to remove excess Br2 prior to extraction with methyl-isobutyl-ketone (MIBK) eliminates these false readings. ?? 1981.

  16. Continuous Determination of 12 Elements in Geochemical Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry and Flame Atomic Absorption Spectrometry%电感耦合等离子体发射光谱法和火焰原子吸收光谱法连续测定化探样品中12个元素

    Institute of Scientific and Technical Information of China (English)

    于阗; 张连起; 陈小迪

    2011-01-01

    The continuous determination of 12 elements in geochemical samples by inductive coupled plasma-atomic emission spectrometry (ICP-AES) and flame atomic absorption spectrometry ( FAAS) was reported in this paper. Samples were digested with mixed acid of HCI-HF-HNO3-HC1O4 and Cu, Pb, Zn, Co, Ni, Cr, Sr, Ba, V, Mn in the sample solution were determined directly by ICP-AES. Then, Ag and Cd in the same sample solution were enriched by extraction with potassium iodide-methyl isobutyl ketone ( KI-MIBK) and determined by FAAS. The precision of FAAS method for Ag and Cd was 6. 5% and 4. 7% RSD ( n = 12) , respectively. In comparison with the common analytical method, the proposed method provides the higher sensitivity, good accuracy and precision, high economy, high efficiency and is suitable for routine analysis of these elements in geochemical samples.%建立了地质化探样品中不同含量和检出限要求的12个元素的连续测定方法.样品经一次取样,用盐酸-氢氟酸-硝酸-高氯酸溶样,电感耦合等离子体发射光谱法测定铜、铅、锌、钴、镍、镉、锶、钡、钒、锰后,加碘化钾-甲基异丁基甲酮萃取分离,火焰原子吸收光谱法测定银、镉.银、镉的相对标准偏差(RSD,n=12)分别为6.5%、4.7%.与现行分析方法相比,建立的方法灵敏度和精密度高、准确度好,降低了生产成本,缩短了检测时间,尤其适合大量化探样品的测定.

  17. Direct observation of transient fluorine atoms with 25-μm wavelength-stabilized diode laser absorption

    International Nuclear Information System (INIS)

    Through the use of continuous diode laser absorption, detection of transient fluorine atoms with an initial number density in the range of 1014 cm-3 has been demonstrated. A crucial part of the continuous-detection technique was laser frequency stabilization with a reference cell of atomic fluorine with Zeeman modulation of the absorption lines to generate a feedback signal. Long-term wavelength stability was demonstrated with second-harmonic phase-sensitive detection of the second-derivative signal for periods up to several hours. For determination of the short-term wavelength stability in the range of microseconds to seconds, a transient signal was generated by photolysis of F2 with an excimer laser at 308 nm. The initial diode laser absorption was compared to a calculated value obtained from the measured excimer laser fluence, the known dissociation cross section of F2, and the atomic fluorine absorption cross section, which included a statistical population distribution, the finite bandwidth of the laser diode, and the effects of pressure broadening. The observed absorption was approximately 33% less than the calculated value, possibly because of the diode laser's wavelength instability on the time scale of a few seconds, which is consistent with an observed amplitude instability from pulse to pulse when pulsed at 1--10 Hz

  18. Comparisons of selected methods for the determination of kinetic parameters from electrothermal atomic absorption data

    Science.gov (United States)

    Fonseca, Rodney W.; Pfefferkorn, Lisa L.; Holcombe, James A.

    1994-12-01

    Three of the methods available for the determination of kinetic parameters for atom formation in ETAAS were compared. In the approach of mcnally and holcombe [ Anal. Chem. 59, 1015 (1987)], Arrhenius-type plots are used to extract activation energy values while an approximation of the order of release is obtained by studying the alignment of the absorption maxima at increasing analyte concentrations. In the method of rojas and olivares [ Spectrochim. Acta47B, 387 (1992)], plots are prepared for different orders of release, with the correct order yielding a longer linear region from whose slope the activation energy is calculated. The method of yan et al. [ Spectrochim. Acta48B, 605 (1993)] uses a single absorption profile for the calculations. Activation energy and the order of release are obtained from the slope and intercept, respectively, on their graph. All three methods assume linear heating rate, constant activation energies, and furnace isothermality. The methods were tested with the same experimental data sets for Cu, Au and Ni using a spatially isothermal cuvette. Since intensive mathematical treatments commonly have deleterious effects on the uncertainty of the final result, the methods were compared using both the original data and a smoothed version of it. In general, the three methods yielded comparable results for the metals studied. However, choosing the most linear plot to determine the correct order of release when using Rojas and Olivares' method was sometimes subjective, and McNally and Holcombe's method provided only estimates for the orders of release that were neither zero nor unity.

  19. Sapphire: a better material for atomization and in situ collection of silver volatile species for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Musil, Stanislav, E-mail: stanomusil@biomed.cas.cz; Matoušek, Tomáš; Dědina, Jiří

    2015-06-01

    Sapphire is presented as a high temperature and corrosion resistant material of an optical tube of an atomizer for volatile species of Ag generated by the reaction with NaBH{sub 4}. The modular atomizer design was employed which allowed to carry out the measurements in two modes: (i) on-line atomization and (ii) in situ collection (directly in the optical tube) by means of excess of O{sub 2} over H{sub 2} in the carrier gas during the trapping step and vice versa in the volatilization step. In comparison with quartz atomizers, the sapphire tube atomizer provides a significantly increased atomizer lifetime as well as substantially improved repeatability of the Ag in situ collection signals shapes. In situ collection of Ag in the sapphire tube atomizer was highly efficient (> 90%). Limit of detection in the on-line atomization mode and in situ collection mode, respectively, was 1.2 ng ml{sup −1} and 0.15 ng ml{sup −1}. - Highlights: • Sapphire was tested as a new material of an atomizer tube for Ag volatile species. • Two measurement modes were investigated: on-line atomization and in situ collection. • In situ collection of Ag was highly efficient (> 90%) with LOD of 0.15 ng ml{sup −1}. • No devitrification of the sapphire tube observed in the course of several months.

  20. Optimized determination of iron in grape juice, wines, and other alcoholic beverages by atomic absorption spectrometry.

    Science.gov (United States)

    Olalla, M; Cruz González, M; Cabrera, C; López, M C

    2000-01-01

    This paper describes a study of the different methods of sample preparation for the determination of iron in grape juice, wines, and other alcoholic beverages by atomic absorption spectrometry with electrothermal atomization; results are also reported for the practical application of these methods to the analysis of commercial samples produced in Spain. The methods examined include dealcoholization and dry and wet mineralization treatment using different acids and/or mixtures of them, both with and without heating. The sensitivity, detection limit, accuracy, precision, and selectivity of each method were established. The best results were obtained for wet mineralization with heated acid (HNO3-H2SO4); the results for table wines had an accuracy of 97.5-101.6%, a relative standard deviation of 3.51%, a detection limit of 19.2 micrograms/L, and a determination limit of 32.0 micrograms/L. The method was also sufficiently sensitive and selective. It was applied to the determination of iron in grape juice, different types of wines, and beverages with high alcoholic content, all of which are produced and widely consumed in Spain. The values obtained ranged from 3.394 +/- 2.15 mg/L for the juice, 2.938 +/- 1.47 mg/L for the white wines, 19.470 +/- 5.43 mg/L for the sweet wines, 0.311 +/- 0.07 mg/L for the brandies, and 0.564 +/- 0.12 mg/L for the anisettes. Thus, the method is useful for routine analysis in the quality control of these beverages. PMID:10693020

  1. Gas chromatography coupled with atomic absorption spectrometry — a sensitive instrumentation for mercury speciation

    Science.gov (United States)

    Emteborg, Håkan; Sinemus, Hans-Werner; Radziuk, Bernard; Baxter, Douglas C.; Frech, Wolfgang

    1996-07-01

    New instrumentation for the speciation of mercury is described, and is applied to the analysis of natural water samples. The separation of mercury species is effected using gas chromatography of derivatized mercury species on a widebore capillary column. The solvent is vented using a bypass valve and the separated mercury species are pyrolysed on-line at 800°C for production of mercury atoms. These are then detected by atomic absorption spectrometry (AAS) at the 253.7 and 184.9 nm lines simultaneously in a quartz cuvette. The use of the 184.9 nm line provides a more than five-fold increase in sensitivity compared with the conventional 253.7 nm line and an absolute detection limit of 0.5 pg of mercury. The dynamic range of the combined analytical lines provides a linear response over more than three orders of magnitude. A number of organic compounds not containing mercury are also detected following pyrolysis, especially at the 184.9 nm line. These background species must not co-elute at the retention times for methyl- and inorganic mercury, as otherwise a positive interference would result. By maximizing the chromatographic resolution and minimizing the band broadening in the cuvette by use of a make-up gas, the retention times of interest are freed from co-eluting background peaks. The instrumentation has been applied to the determination of ng l -1 concentrations of methyl- and inorganic mercury in Lake Constance, Germany and within the Lake Constance drinking water supply organization, Bodenseewasserversorgung (BWV). The accuracy for the sum of methyl- and inorganic mercury has been assessed by comparison with an independent method for total mercury based on AAS detection implemented at BWV. Relative detection limits using 1 litre water samples and 15 ml injections of the final hexane extract were 0.03 ng l -1 for methylmercury and 0.4 ng l -1 for inorganic mercury based on the 3j criterion.

  2. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    International Nuclear Information System (INIS)

    The absolute number densities of helium atoms in the 2s 3S1 metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 1012 cm−3 and 0.011 × 1012 cm−3, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 1012 cm−3 and 0.97 × 1012 cm−3 were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges. - Highlights: • We determine He metastable number densities for four plasma types • The highest number densities were observed in a dielectric barrier discharge • No helium metastable atoms were observed downstream from the exits of glow discharges

  3. Mesoporous Silica Nanoparticles as an Adsorbent for Preconcentration and Determination of Trace Amount of Nickel in Environmental Samples by Atom Trap Flame Atomic Absorption Spectrometry

    Science.gov (United States)

    Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.

    2016-01-01

    A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.

  4. Determination of selenium and tellurium in the gas phase using specific columns and atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Muangnoicharoen, S.; Chiou, K.Y.; Manuel, O.K.

    1986-11-01

    Total selenium and tellurium in the gas phase were analyzed after adsorption on gold-coated beads and charcoal. The thermally eluting gas was trapped on columns filled with quartz beads that were cooled in an ice bath. The beads were boiled in dilute HCl, and the resulting solution was analyzed for Se and Te by graphite furnace atomic absorption spectrometry. Their results demonstrate that gold-coated beads efficiently trap gaseous Se and Te at a low gas flow rate, but at higher flow rates charcoal traps are more expedient. With charcoal traps, it was found that local air samples contain Se in the range of 0.92-3.05 ng m/sup -3/ and Te in the range of 0.10-0.34 ng m/sup -3/. Detection limits down to about 0.1 ng m/sup -3/ allow the ready detection of Se and Te in rural air with a precision of about +/- 6% at the nanogram level of Te and about +/- 4% at the nanogram level of Se.

  5. Atomic absorption spectrophotometry for the determination of metallic impurities in coal

    International Nuclear Information System (INIS)

    The Brazilian Energetic Alternative Program expects the reduction of our dependence on foreign energy sources, through replacing fuel oil by mineral coal. Its gasification by means of nuclear energy must be also considered. However, the intensive burning of coal leads to serious environmental problems. During its combustion the release, to atmosphere, of toxic elements such as As, Hg, Pb, Sb, Se, Cd, Zn and others is of great concern. Increase in atmospheric pollution will take place by burning increased amounts of coal. In addition, some of those elements are concentrated in fly ashes. The determination of impurities in coal is also important for the Figueiras Project in the Nuclebras Mineral Prospection Program. Hence, it is important to have reliable analytical methods which can monitor inorganic constituents at various stages of coal production and utilization. The atomic absorption spectrophotometry is a suitable analytical technique to determine pollutants in coal because it is sensitive, simple, economic and cover a large range of concentrations. The need of a previous treatment of the sample is overcome by using an acid attack (HNO3 + HClO4 + HF) which has proved to be rapid and efficient. (Author)

  6. Separation of trace antimony and arsenic prior to hydride generation atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    A separation method utilizing a synthetic zeolite (mordenite) was developed in order to eliminate the gas phase interference of Sb(III) on As(III) during quartz furnace hydride generation atomic absorption spectrometric (HGAAS) determination. The efficiency of the proposed separation method in the reduction of suppression effects of transition metal ions on As(III) signal was also investigated. Among the volatile hydride-forming elements and their different oxidation states tested (Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), and Te(VI)), only Sb(III) was found to have a signal depression effect even at low (μg l-1) concentrations under the experimental conditions employed. It has been shown that mordenite adsorbs Sb(III) quantitatively, even at a concentration of 1000 μg l-1, at pHs greater than two, and also, it reduces the initial concentrations of the transition metal ions to lower levels which can be tolerated in many studies. The adsorption of Sb(III) on mordenite follows the Freundlich isotherm and is endothermic in nature

  7. Determination of chromium and molybdenum in medical foods by graphite furnace atomic absorption spectrophotometry.

    Science.gov (United States)

    Phifer, E C

    1995-01-01

    Graphite furnace atomic absorption spectrophotometry was used to determine chromium and molybdenum in 7 medical foods from 5 manufacturers. Linear standard curves were obtained for both elements for concentrations between 5 and 25 ng/mL. Detection limits were 0.24 ng/mL for Cr and 0.67 ng/mL for Mo. Characteristic masses were 3.1 and 14.7 pg for Cr and Mo, respectively. No difference was detected between wet and dry ashing methods, and dry ashing was used to complete the study. The method was validated by assaying various National Institute of Standards and Technology standard reference materials. Analysis of these products for Cr and Mo were within certified values. One product was evaluated by this method for reproducibility (n = 5). Relative standard deviations were 6.8 and 4.8% for Cr and Mo, respectively. This product contained 0.31 +/= 0.02 micrograms Cr/g and 0.63 +/- 0.03 micrograms Mo/g. The remaining products contained 0.09-1.28 micrograms Cr/g and 0.07-2.3 micrograms Mo/g. Mean recovery values were 98 +/- 14% (n = 14) for Cr at spike levels of 0.20-1.89 micrograms/g and 102 +/- 24% (n = 10) for Mo at spike levels of 0.30-1.89 micrograms/g. PMID:8664588

  8. An indirect atomic absorption spectrometric determination of ciprofloxacin, amoxycillin and diclofenac sodium in pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    MAHMOUD MOHAMED ISSA

    2008-05-01

    Full Text Available A highly sensitive indirect atomic absorption spectrophotometric (AAS method has been developed for the determination of very low concentrations of ciprofloxacin, amoxycillin and diclofenac sodium. The method is based on the oxidation of these drugs with iron(III. The excess of iron(III was extracted into diethyl ether and then the iron(II in the aqueous layer was aspirated into an air–acetylene flame and determined by AAS. The linear concentration ranges were 25–400, 50–500 and 60–600 ng ml-1 for ciprofloxacin, amoxycillin and diclofenac sodium, respectively. The results were statistically compared with the official method using t- and f-test at p < 0.05. There were insignificant interferences from most of the excipients present. The intra- and inter-day assay coefficients of variation were less than 6.1 % and the recoveries ranged from 95 to 103 %. The method was applied for the analysis of these drug substances in their commercial pharmaceutical formulations.

  9. Speciation Analysis of Serum Copper by Ultrafiltration Com-bined with Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-Hua; MA Hui-Min; MA Quan-Li; LIANG Shu-Chuan

    2001-01-01

    UItrafiltration combined with graphite furnace atomic absorp-tion spectrometry(GFAAS)was used to study protein binding and speciation of copper in human serum..UItrafiltration was carried out using a cell unit ultrafiltration membraoes having a nominal cut-off of 10,000Dalton.The effects of var-ious experimental factors including the kind and concentration of electrolyte,sample storge,pH,pressure and the precon-ditioning of the membranes on the speciation analysis of serum copper by ultrafiltration were examined.It was observed that 4.5±2.3% of the total copper in serum was ultrafiltrable and this value did not seem to be influenced by the total serum ele-mental concentration,the PH (6.5——10) adn the pressure(≤1.5kg/cm2).the preconditioning of the ultrafiltration system with 0.1mol/L calcium nitrate can overcome the adsorption loss of copper effectively,and the addition of tris-HCI sohtion (pH 7.4)to serum accelerates the ultrafiltration.The present method was proved to be suitable for speciation analysis for its simplicity,rapidity,small sample reuqirement and easy con-trol.The results obtained with the method are accurate and reliable.

  10. Determination of lead in croatian wines by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A method has been developed for direct determination of lead in wine by graphite furnace atomic absorption spectrometry (GFAAS) with Zeeman-effect background correction. The thermal behaviour of Pb during pyrolysis and atomisation stages was investigated without matrix modifier and in the presence of Pd(NO3)2, Pd(NO3)2 + Mg(NO3)2 x 6H2O, and NH4H2PO4 + Mg(NO3)2 x 6H2O as matrix modifiers. A simple 1:1 dilution of wine samples with Pd(NO3)2 as a matrix modifier proved optimal for accurate determination of Pb in wine. Mean recoveries were 106 % for red and 114 % for white wine, and the detection limit was 3 μg L-1. Within-run precision of measurements for red and white wine was 2.1 % and 1.8 %, respectively. The proposed method was applied for analysis of 23 Croatian wines. Median Pb concentrations were 33 μg L-1, range (16 to 49) μg L-1 in commercially available wines and 46 μg L-1, range (14 to 559) μg L-1 in home-made wines. There were no statistically significant differences (P<0.05) in Pb concentration between commercial and home-made wines or between red and white wines. (authors)

  11. Iron in Alzheimer's and Control Hippocampi - Moessbauer, Atomic Absorption and ELISA Studies

    International Nuclear Information System (INIS)

    Alzheimer disease is a neurodegenerative process of unknown mechanism taking place in a part of the brain - hippocampus. Oxidative stress and the role of iron in it is one of the suggested mechanisms of cells death. In this study several methods were used to assess iron and iron binding compounds in human hippocampus tissues. Moessbauer spectroscopy was used for identification of the iron binding compound and determination of total iron concentration in 12 control and one Alzheimer disease sample of hippocampus. Moessbauer parameters obtained for all samples suggest that most of the iron is ferritin-like iron. The average concentration of iron determined by Moessbauer spectroscopy in control hippocampus was 45 ± 10 ng/mg wet tissue. The average concentration of iron in 10 Alzheimer disease samples determined by atomic absorption was 66 ± 13 ng/mg wet tissue. The concentration of H and L chains of ferritin in 20 control and 10 AD hippocampi was assessed with enzyme-linked immuno-absorbent assay. The concentration of H and L ferritin was higher in Alzheimer disease compared to control (19.36 ± 1.51 vs. 5.84 ± 0.55 ng/μg protein for H, and 1.39 ± 0.25 vs. 0.55 ± 0.10 for L). This 3-fold increase of the concentration of ferritin is accompanied by a small increase of the total iron concentration. (authors)

  12. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    ROLANDAS KAZLAUSKAS

    2004-05-01

    Full Text Available Simple methods for the determination of Fe in natural and mineral waters by flame atomic absorption spectrometry (AAS are suggested. The results of the investigation of selectivity of the proposed AAS method proved that this procedure is not affected by high concentrations of other metals. The calibration graph for iron was linear at levels near the detection limit up to at least 0.10 mg ml-1. For the determination of microamounts of iron in mineral waters, an extraction AAS technique was developed. Iron was retained as Fe-8-oxyquinoline complex and extracted into chloroform. The optimal conditions for the extraction of the iron complex were determined. The AAS method was applied to the determination of Fe in mineral waters and natural waters from different areas of Lithuania. The accuracy of the developed method was sufficient and evaluated in comparison with a photometric method. The obtained results demonstrated that the procedure could be successfully applied for the analysis of water samples with satisfactory accuracy.

  13. [The determination of chromium in feeds by flame atomic absorption spectrophotometry].

    Science.gov (United States)

    Wang, Jian; Jia, Bin; Guo, Li-ping; Lin, Qiu-ping

    2005-07-01

    Chromium in feeds is regulated by China Standard GB 13078-2001. A method of flame atomic absorption spectrophotometry for the determination of Cr in feeds has been developed in allusion to shortage of China standard method. Several acetylene flow-rate, burner-high and the additive of interference suppressor NH4Cl were studied respectively on the effect of sensitivities of Cr(III) and Cr(VI). The two sets analytical average results of Cr in feed sample determined by calibration curves of Cr(III) and Cr(VI) were tested by t test, no marked discrepancy was found. Optimum instrumental conditions of Cr(III) and Cr(VI) with same sensitivity were confirmed. Sensitivity was 0.014 microg x mL(-1) with detection limit 0.70 mg x kg(-1). The recoveries were 94.4%-104.9%. Relative standard deviation of sample determination (5-6 times) was 1.90%-4.08%. This method is simply, fast and exact, the detection limit was answered for Cr limit in feeds regulated by GB 13078-2001, it can be applied to the analysis of Cr in feeds.

  14. Stabilizing Agents for Calibration in the Determination of Mercury Using Solid Sampling Electrothermal Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Hana Zelinková

    2012-01-01

    Full Text Available Tetramethylene dithiocarbamate (TMDTC, diethyldithiocarbamate (DEDTC, and thiourea were investigated as stabilizing agents for calibration purposes in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry (SS-ETAAS. These agents were used for complexation of mercury in calibration solutions and its thermal stabilization in a solid sampling platform. The calibration solutions had the form of methyl isobutyl ketone (MIBK extracts or MIBK-methanol solutions with the TMDTC and DEDTC chelates and aqueous solutions with thiourea complexes. The best results were obtained for MIBK-methanol solutions in the presence of 2.5 g L-1 TMDTC. The surface of graphite platforms for solid sampling was modified with palladium or rhenium by using electrodeposition from a drop of solutions. The Re modifier is preferable due to a higher lifetime of platform coating. A new SS-ETAAS procedure using the direct sampling of solid samples into a platform with an Re modified graphite surface and the calibration against MIBK-methanol solutions in the presence of TMDTC is proposed for the determination of mercury content in solid environmental samples, such as soil and plants.

  15. Use of Atomic Absorption Spectrometry in Assessment of Biomonitor Plants for Lead, Cadmium and Copper Pollution

    Institute of Scientific and Technical Information of China (English)

    Gokce Kaya; Mehmet Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep,Turkey.Lead,cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry.Lead,Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304~602,0.4~0.44 and 31~37 mg · kg-1,respectively.Significantly increased lead concentration up to 2 750 mg · kg-1 was found in the leaves of Eleagnus angustifolia L.plant.The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima >Morus sp.> Juglans regia L.> Ficus carica L.>Cydonia oblonga Miller> Prunus x domestica L.The plants,Populus nigra L.,Eleagnus angustifolia L.and Salix sp.were found useful for Cd,and the plant,Eleagnus angustifolia L.for Pb,to be considered as potential biomonitor.Especially,leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations.Therefore,people who and animals which live in this area and benefit from these soil and plants have vital risks.

  16. Speciation of iron (II) and (III) by using solvent extraction and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Mehmet [Department of Chemistry, Science and Arts Faculty, Firat University, Elazig (Turkey)]. E-mail: myaman@firat.edu.tr; Kaya, Gokce [Department of Chemistry, Science and Arts Faculty, Firat University, Elazig (Turkey)

    2005-05-17

    A method for speciation, preconcentration and separation of Fe{sup 2+} and Fe{sup 3+} in different matrices was developed using solvent extraction and flame atomic absorption spectrometry. PAN as complexing reagent for Fe{sup 2+} and chloroform as organic solvent were used. The complex of Fe{sup 2+}-PAN was extracted into chloroform phase in the pH range of 0.75-4.0 and Fe{sup 3+} remains in water phase in the pH range 0.75-1.25. The optimum conditions for maximum recovery of Fe{sup 2+} and minimum recovery of Fe{sup 3+} were determined as pH = 1, the stirring time of 20 min, the PAN amount of 0.5 mg and chloroform volume of 8 mL. The developed method was applied to the determination of Fe{sup 2+} and Fe{sup 3+} in tea infusion, fruit juice, cola and pekmez. It is seen that there is high bioavailable iron (Fe{sup 2+}) in pekmez. The developed method is sensitive, simple and need the shorter time in comparison with other similar studies.

  17. Analysis of long-range bullet entrance holes by atomic absorption spectrophotometry and scanning electron microscopy.

    Science.gov (United States)

    Ravreby, M

    1982-01-01

    Bullet residue and primer particles were analyzed by scanning electron microscopy with energy dispersive analysis (SEM-EDA) and by flame and flameless atomic absorption spectrophotometry (AAS). The residue and particles were on cloth targets around entrance holes produced by bullets fired at distances of 10 to 200 m. Primer particles and their chemical constituents were almost always detected by SEM-EDA around the holes produced by rifles and pistols fired at long ranges, and in many cases the barium and antimony associated with primer particles were detected by flameless AAS. Particles were also detected by SEM-EDA on the rear of bullets fired into and recovered from wooden blocks. Usually a hole caused by a bullet jacketed with gilding metal could be distinguished from one caused by a bullet jacketed with yellow brass alloy. Paint from bullet tips of military tracers was also detected. Analysis of the various residues around entrance holes provides a means for identifying the type of ammunition used. PMID:7097199

  18. Fitness analysis method for magnesium in drinking water with atomic absorption using quadratic curve calibration

    Directory of Open Access Journals (Sweden)

    Esteban Pérez-López

    2014-11-01

    Full Text Available Because of the importance of quantitative chemical analysis in research, quality control, sales of services and other areas of interest , and the limiting of some instrumental analysis methods for quantification with linear calibration curve, sometimes because the short linear dynamic ranges of the analyte, and sometimes by limiting the technique itself, is that there is a need to investigate a little more about the convenience of using quadratic curves for analytical quantification, which seeks demonstrate that it is a valid calculation model for chemical analysis instruments. To this was taken as an analysis method based on the technique and atomic absorption spectroscopy in particular a determination of magnesium in a sample of drinking water Tacares sector Northern Grecia, employing a nonlinear calibration curve and a curve specific quadratic behavior, which was compared with the test results obtained for the same analysis with a linear calibration curve. The results show that the methodology is valid for the determination referred to, with all confidence, since the concentrations are very similar, and as used hypothesis testing can be considered equal.

  19. Evaluation for the method for the determination of impurities in uranium products by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Objective: To establish a reliable method for the determination of Al, Ca, Cd, Co, Cr, Cu, Fe, Mn, Mo, Mg, Ni, Pb, V and Zn as impurities in a uranium oxide (U3 O8). Methodology: The sample, generally a solid or a powder, is solubilized by acid digestion with concentrated nitric acid, carrying to dryness for the recover with 6 N Nitric Acid to extract the uranium matrix, try butyl phosphate to 30 % in carbon tetrachloride (C Cl4), the aqueous phase containing the impurities is heat up with perchloric acid (HClO4) in order to eliminate the remainder organic solvent. A Perking Elmer Atomic Absorption spectrophotometer is used for the analysis of the samples which were read for 5 times and the average is reported as final result. The method is considered as valid since it comply with linearity in the concentration for each one of the elements. The accuracy of the method is check with the repeatability of the results. For the evaluation of the accuracy, reference certified standards are used. (Author)

  20. Atomic absorption determination, in metal sulphide concentrates, of the elements that form gaseous hydrides

    International Nuclear Information System (INIS)

    An account is given of the investigational work on the determination of trace amounts of arsenic, antimony, bismuth, germanium, selenium, and tellurium by the technique using hydride generation and atomic-absorption spectrophotometry. The gaseous hydride is generated by reduction with sodium borohydride, and is subsequently swept by a flow of nitrogen into an air-entrained hydrogen-nitrogen flame. The generation equipment used is simple and inexpensive, and can be readily assembled in most laboratories. The optimum parameters were determined for each element. The effects of 31 probable interfering elements were investigated, and it was found that, although the majority did not interfere, severe interference was encountered when copper, nickel, and the noble metals were present. Methods for the elimination of copper and nickel were developed to allow the determination of arsenic, antimony, bismuth, selenium, and tellurium at the lower parts-per-million level in metal sulphide concentrates with an acceptable accuracy and precision. The determination of microgram amounts of germanium was found to be unsatisfactory

  1. Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, T.G. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: tgkazi@yahoo.com; Jalbani, N. [PCSIR Laboratories Karachi (Pakistan)], E-mail: nusratjalbani_21@yahoo.com; Arain, M.B. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: bilal_KU2004@yahoo.com; Jamali, M.K. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: mkhanjamali@yahoo.com; Afridi, H.I. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: hassanimranafridi@yahoo.com; Sarfraz, R.A. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: rajaadilsarfraz@gmail.com; Shah, A.Q. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: aqshah07@yahoo.com

    2009-04-15

    It was extensively investigated that a significant flux of toxic metals, along with other toxins, reaches the lungs through smoking. In present study toxic metals (TMs) (Al, Cd, Ni and Pb) were determined in different components of Pakistani local branded and imported cigarettes, including filler tobacco (FT), filter (before and after normal smoking by a single volunteer) and ash by electrothermal atomic absorption spectrometer (ETAAS). Microwave-assisted digestion method was employed. The validity and accuracy of methodology were checked by using certified sample of Virginia tobacco leaves (ICHTJ-cta-VTL-2). The percentages (%) of TMs in different components of cigarette were calculated with respect to their total contents in FT of all branded cigarettes before smoking, while smoke concentration has been calculated by subtracting the filter and ash contents from the filler tobacco content of each branded cigarette. The highest percentage (%) of Al was observed in ash of all cigarettes, with range 97.3-99.0%, while in the case of Cd, a reverse behaviour was observed, as a range of 15.0-31.3% of total contents were left in the ash of all branded cigarettes understudy.

  2. Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.

    Science.gov (United States)

    Gokce, Kaya; Mehmet, Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks.

  3. Bismuth determination in environmental samples by hydride generation-electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso-Perez, Carmen; Moreda-Pineiro, Jorge; Lopez-Mahia, Purificacion; Muniategui-Lorenzo, Soledad; Fernandez-Fernandez, Esther; Prada-Rodriguez, Dario [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071, A Coruna (Spain)

    2003-12-04

    A hydride generation procedure, via flow injection, coupled to electrothermal atomic absorption spectrometry was optimised for Bi determination in sea water and hot-spring water and acid extracts from coal, coal fly ash and slag samples. The effects of several variables such as hydrochloric acid and sodium tetrahydroborate concentrations, hydrochloric acid and sodium tetrahydroborate flow rates, reaction coil length, trapping and atomisation temperatures, trapping time and the Ar flow rate have been investigated by using a 2{sup 9}*3/128 Plackett-Burman design. From these studies, certain variables (sodium tetrahydroborate concentration and trapping time) showed up as significant, and they were optimised by a 2{sup 2}+star central composite design. In addition, a study of the bismuthine trapping and atomisation efficiency from graphite tubes (GTs) permanently treated with uranium, tantalum, lanthanum oxide, niobium, beryllium oxide, chromium oxide and tantalum carbide were investigated. The results obtained were compared with those achieved by iridium and zirconium-treated GTs. The best analytical performances, with characteristic mass of 35 pg and detection limit of 70 ng l{sup -1}, were achieved by using U-treated GTs. Accuracy were checked using several reference materials: 1643d (Trace Elements in Water), TM-24 (Reference Water), GBW-07401 (Soil) and 1632c (Trace Elements in Coal)

  4. Determination of trace copper in food samples by flame atomic absorption spectrometry after solid phase extraction on modified soybean hull

    International Nuclear Information System (INIS)

    Soybean hull was chemically modified with citric acid and used as a solid phase extraction adsorbent for the determination of trace amounts of Cu2+ in food samples by flame absorption spectrometry (FAAS). The effect of pH, sample flow rate and volume, elution flow rate and volume and co-existing ions on the recovery of the analyte were investigated. The results showed that Cu2+ could be adsorbed on the modified soybean hull at pH 8.0 and eluted by 2.0 mL of 1.0 mol L-1 HCl. Under the optimized conditions, the adsorption capacity of modified soybean hull was found to be 18.0 mg g-1 for Cu2+. The detection limit of the proposed method was 0.8 ng mL-1 for Cu2+ with an enrichment factor of 18. The analytical result for the certified reference tea sample (GBW07605) was in a good agreement with the certified value. The proposed method has also been successfully applied to the determination of trace Cu2+ in dried sweet potato, lake water and milk powder, the recovery of Cu2+ for spiked samples was between 91% and 109.6%.

  5. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    Science.gov (United States)

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  6. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  7. X-ray absorption spectroscopy: EXAFS and XANES - A versatile tool to study the atomic and electronic structure of materials

    International Nuclear Information System (INIS)

    X-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-ray Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, they will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and sample limitations

  8. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an atmospheric pressure air plasma jet

    Science.gov (United States)

    Conway, J.; Gogna, G. S.; Gaman, C.; Turner, M. M.; Daniels, S.

    2016-08-01

    Atomic oxygen number density [O] is measured in an air atmospheric pressure plasma jet (APPJ) using two-photon absorption laser induced fluorescence (TALIF). Gas flow is fixed at 8 slpm, the RF power coupled into the plasma jet varied between 5 W and 20 W, and the resulting changes in atomic oxygen density measured. Photolysis of molecular oxygen is employed to allow in situ calibration of the TALIF system. During calibration, O2 photo-dissociation and two-photon excitation of the resulting oxygen atoms are achieved within the same laser pulse. The atomic oxygen density produced by photolysis is time varying and spatially non-uniform which needs to be corrected for to calibrate the TALIF system for measurement of atomic oxygen density in plasma. Knowledge of the laser pulse intensity I 0(t), wavelength, and focal spot size allows correction factors to be determined using a rate equation model. Atomic oxygen is used for calibration and measurement, so the laser intensity can be increased outside the TALIF quadratic laser power dependence region without affecting the calibration reliability as the laser power dependence will still be the same for both. The atomic O density results obtained are not directly benchmarked against other known density measurement techniques. The results show that the plasma jet atomic oxygen content increases as the RF power coupled into the plasma increases.

  9. Temperature-controlled electrothermal atomization-atomic absorption spectrometry using a pyrometric feedback system in conjunction with a background monitoring device

    Science.gov (United States)

    Van Deijck, W.; Roelofsen, A. M.; Pieters, H. J.; Herber, R. F. M.

    The construction of a temperature-controlled feedback system for electrothermal atomization-atomic absorption spectrometry (ETA-AAS) using an optical pyrometer applied to the atomization stage is described. The system was used in conjunction with a fast-response background monitoring device. The heating rate of the furnace amounted to 1400° s -1 with a reproducibility better than 1%. The precision of the temperature control at a steady state temperature of 2000°C was 0.1%. The analytical improvements offered by the present system have been demonstrated by the determination of cadmium and lead in blood and finally by the determination of lead in serum. Both the sensitivity and the precision of the method have been improved. The accuracy of the method was checked by determining the lead content for a number of scrum samples both by ETA-AAS and differential pulse anodic stripping voltametry (DPASV) and proved to be satisfactory.

  10. Determination of arsenic and cadmium in crude oil by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Alexandre de; Zmozinski, Ariane Vanessa [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Damin, Isabel Cristina Ferreira [Faculdade Dom Bosco de Porto Alegre, 90520-280, Porto Alegre, RS (Brazil); Silva, Marcia Messias, E-mail: mmsilva@iq.ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti Rodrigues [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2012-05-15

    In this work, a direct sampling graphite furnace atomic absorption spectrometry method has been developed for the determination of arsenic and cadmium in crude oil samples. The samples were weighed directly on the solid sampling platforms and introduced into the graphite tube for analysis. The chemical modifier used for both analytes was a mixture of 0.1% Pd + 0.06% Mg + 0.06% Triton X-100. Pyrolysis and atomization curves were obtained for both analytes using standards and samples. Calibration curves with aqueous standards could be used for both analytes. The limits of detection obtained were 5.1 {mu}g kg{sup -1} for arsenic and 0.2 {mu}g kg{sup -1} for cadmium, calculated for the maximum amount of sample that can be analyzed (8 mg and 10 mg) for arsenic and cadmium, respectively. Relative standard deviations lower than 20% were obtained. For validation purposes, a calibration curve was constructed with the SRM 1634c and aqueous standards for arsenic and the results obtained for several crude oil samples were in agreement according to paired t-test. The result obtained for the determination of arsenic in the SRM against aqueous standards was also in agreement with the certificate value. As there is no crude oil or similar reference material available with a certified value for cadmium, a digestion in an open vessel under reflux using a 'cold finger' was adopted for validation purposes. The use of paired t-test showed that the results obtained by direct sampling and digestion were in agreement at a 95% confidence level. Recovery tests were carried out with inorganic and organic standards and the results were between 88% and 109%. The proposed method is simple, fast and reliable, being appropriated for routine analysis. - Highlights: Black-Right-Pointing-Pointer A direct sampling GF AAS method to determine As and Cd in crude oil was proposed. Black-Right-Pointing-Pointer The conventional chemical modifier Pd/Mg has been used to stabilize As and Cd. Black

  11. Narrow Na and K Absorption Lines Toward T Tauri Stars - Tracing the Atomic Envelope of Molecular Clouds

    CERN Document Server

    Pascucci, I; Heyer, M; Rigliaco, E; Hillenbrand, L; Gorti, U; Hollenbach, D; Simon, M N

    2015-01-01

    We present a detailed analysis of narrow of NaI and KI absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The NaI 5889.95 angstrom line is detected toward all but one source, while the weaker KI 7698.96 angstrom line in about two thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present towards both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of NaI and CO detections and peak centroids demonstrates that the atomic and molecular gas are not co-located, the atomic gas is more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of NaI radial velocities shows a c...

  12. Comparison of coal digestion methods for atomic absorption determination of cadmium in coal

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Ryozo; Kamata, Eijiro; Goto, Kazuo; Shibata, Shozo (Government Industrial Research Inst., Nagoya (Japan))

    1983-08-01

    To determine cadmium in coals, the decomposition method of coal matrix by using nitric-perchloric acid digestion in the sealed PTFE vessel modified in the authors laboratory was compared, in referring the recovery of cadmium, with nitric-hydrofluoric acid digestion followed by perchloric-periodic acid digestion, low temperature ashing method, and ASTM ashing method. The analytical values of NBS 1632a coal using these decomposition methods were all agreed with that of NBS certified. The cadmium quantity over than 1.0 ppm found to be determine by the calibration method with a representative synthesized coal solution containing the same quantities of acids as used in the procedure, without matching the major elements in coal digests. One half a gram of coal samples were treated in the sealed PTFE vessel with 7 ml of 1:1 perchloric-nitric acid mixture, heating at 150/sup 0/C for 7 h followed by hydrofluoric acid digestion, addition of boric acid, aquatic dilution and filtration. The solutions were then nebulized for the atomic absorption measurement. In the cadmium quantity less than 1.0 ppm, both the acid digests and the ashed samples were treated with hydrofluoric acid to expel silicic materials and then with dithizone-CCL/sub 4/ reagent to extract cadmium in the presence of ammonium citrate at pH 9.5--10. The organic layer was back-extracted with 2:100 hydrochloric acid. Eight coals mined in Australia, Canada, China, and Japan were analyzed. The correlation coefficient of concentrations of cadmium upon those of zinc was calculated to be 0.75, which showed cadmium occurred closely with zinc in coal.

  13. Determination of Inorganic Arsenic Species by Electrochemical Hydride Generation Atomic Absorption Spectrometry with Selective Electrochemical Reduction

    Institute of Scientific and Technical Information of China (English)

    LI Xun; WANG Zheng-Hao

    2007-01-01

    A new direct procedure for the determination of inorganic arsenic species was developed by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS) with selective electrochemical reduction. The determination of inorganic arsenic species is based on the fact that As(Ⅲ) shows significantly higher absorbance at low electrolytic currents than As(Ⅴ) in 0.3 mol·L-1 H2SO4.The electrolytic current used for the determination of As(Ⅲ) without considerable interferences of As(V) was 0.4 A, whereas the current for the determination of As(Ⅲ)and As(V) was 1.2 A. For equal concentrations of As(Ⅲ) and As(V) in a sample, the interferences of As(V) during the As(Ⅲ) determination were smaller than 5%. The absorbance for As(V) could be calculated by subtracting that for As(Ⅲ) measured at 0.4 A from the total absorbance for As(Ⅲ) and As(V) measured at 1.2 A, and then the concentration of As(V) can be obtained by its calibration curve at 1.2 A. The methodology developed provided the detection limits of 0.3 and 0.6 ng·ml-1 for As(Ⅲ) and As(V) respectively.The relative standrad deviations were of 3.5% for 20 ng·ml-1 As(Ⅲ) and 302% for 20 ng·ml-1 As(V).The method was successfully applied to determination of soluble inorganic arsenic species in Chinese medicine.

  14. Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry.

    Science.gov (United States)

    Yoshimoto, Keisuke; Anh, Hoang Thi Van; Yamamoto, Atsushi; Koriyama, Chihaya; Ishibashi, Yasuhiro; Tabata, Masaaki; Nakano, Atsuhiro; Yamamoto, Megumi

    2016-01-01

    This study aimed to develop a simpler method for determining total mercury (T-Hg) and methylmercury (MeHg) in biological samples by using methyl isobutyl ketone (MIBK) in the degreasing step. The fat in the samples was extracted by MIBK to the upper phase. T-Hg transferred into the water phase. This was followed by the extraction of MeHg from the water phase using HBr, CuCl2 and toluene. The MeHg fraction was reverse-extracted into L-cysteine-sodium acetate solution from toluene. The concentrations of T-Hg and MeHg were determined by heating vaporization atomic absorption spectrometry. Certified reference materials for T-Hg and MeHg in hair and fish were accurately measured using this method. This method was then applied to determine T-Hg and MeHg concentrations in the muscle, liver and gonads of seafood for the risk assessment of MeHg exposure. The mean T-Hg and MeHg concentrations in squid eggs were 0.023 and 0.022 µg/g, and in squid nidamental glands 0.052 and 0.049 µg/g, respectively. The MeHg/T-Hg ratios in the eggs and nidamental glands of squid were 94.4% and 96.5%, respectively. The mean T-Hg and MeHg concentrations in the gonads of sea urchins were 0.043 and 0.001 µg/g, respectively, with a MeHg/T-Hg ratio of 3.5%. We developed an efficient analytical method for T-Hg and MeHg using MIBK in the degreasing step. The new information on MeHg concentration and MeHg/T-Hg ratios in the egg or nidamental glands of squid and gonads of sea urchin will also be useful for risk assessment of mercury in seafood. PMID:27432235

  15. Analysis of Cu and Zn elements in human hair using atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Quality and concentration of elements in human hair can reflect health status of the person or the environment where that person resides or work. High concentration of Zn can cause toxic to the human body or deficiency for Cu. Low concentration of Cu can cause cell lack of oxygen and lead to anemia. In this study determination of Cu and Zn were carried out using flame atomic absorption spectrofotometry. The analysis results on 27 hair samples of young people at 16 to 19 years-old from Bandung city indicated that geomean concentrations of Cu = 15.7 ± 45 µg/g and Zn = 20.4 ± 205 µg/g. The geomean data of copper of young Bandung (Indonesian) was lower than that of young Nigerian (11.4 µg/g), whereas two data of copper which caused high standard deviation (45 µg/g) were sample number 13 (110 µg/g) and sample number 18 (218 µg/g) maybe it come from pollutant source around the young Indonesian live. Similar to copper data, standard deviation of Zn is also high (205 µg/g). It is due to sample number 6 (657 µg/g), sample number 7 (356 µg/g), sample number 9 (1058 µg/g), sample number 21 (460 µg/g), and sample number 27 (436 µg/g), If the geomean of Zn (201.4 µg/g) was compared with the geomean of young Nigerian (125.9 µg/g), then concentration of Zn from young Indonesian was higher. The high concentration of Zn maybe become characteristic of young Bandung people or Indonesian, but it still need further study. (author)

  16. Lead and cadmium determinations by atomic absorption technique in biological samples: blood, placenta and umbilical cord

    International Nuclear Information System (INIS)

    In order to determine the possibility contamination of lead and cadmium in pregnant women living in the mining-smelting city of La Oroya in Peru, lead and cadmium concentrations were assessed in maternal blood (pre-birth), umbilical cord blood and placental tissue. Forty deliveries with normal evolution were evaluated between October 2002 and January 2003. Samples were analyzed by atomic absorption on a graphite furnace at the Peruvian Institute of Nuclear Energy (IPEN) laboratories. Results are summarized as follows: a) Mean lead concentrations in maternal blood (MB), umbilical cord blood (UCB) and placental tissue (PT) were 27.23 μg/dL, 18.48 μg/dL and 363.97 μg/100g, respectively; b) Mean cadmium concentrations in MB, UCB and PT were 8.82 μg/dL, 12,0 μg/dL and 104,44 μg/100g, respectively; c) The correlation coefficient between lead concentration in maternal blood and umbilical cord was 0.122; d). The correlation coefficient of cadmium concentration between MB and UCB was 0.223; e). The correlation coefficient of lead concentration between MB and PT was 0.189; f). The correlation coefficient of cadmium concentration between MB and PT was 0.633. Trans-placental transport of lead was 67.84% (27,23 μg/dL in MB vs. 18.48 μg/dL in UCB); whereas in the case of cadmium, the concentration in UC (12,00 μg/dL) was greater than in MB (8.82 μg/dL.). These results could indicate that the placenta acts as a barrier trapping lead and cadmium. This barrier is efficient for lead since the concentration in cord blood is inferior to maternal blood but it is less efficient for cadmium. (author)

  17. Determination of Lead in Human Teeth by Hydride Generation Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Hassan T. Abdulsahib

    2011-01-01

    Full Text Available Problem statement: The determination of lead in human teeth at concentration levels of ìg/ml is proposed using Hydride Generation Atomic Absorption Spectrometry (HG-AAS. To do this, 2% (wv lanthanum chloride solution is employed as matrix modifying reagent to increase sensitivity and remove matrix interferences. Approach: About 100 µL of sample and 100 µL of 3.0% (m/v NaBH4 are simultaneously injected into carrier streams. The detection of limit of 0.46 µg L-1 for Pb was achieved and the relative standard deviation of 3.0% for 10 µg L-1 lead was obtained. The recovery percentage of the method has been found to be (92.8-100.5% for known quantities of lead added to teeth sample which were completely recovered. A comparison of the proposed method with standard addition method showed nearly results in the same samples of teeth and the results compared with other studies in the world. Results: The method was shown to be satisfactory for determination of traces of lead in teeth samples with excellent accuracy. Teeth analysis reveals that intact teeth contained the highest amounts of lead which provide an evidence that lead may reduce the prevalence of dantal caries. Statistically significant differences (pConclusion: Statistically significant difference between age groups were seen in the mean value of lead concentrations in human teeth, the concentration of lead increased with age. The differences may be due to the exposure of lead and others factors such as differences in diet and drinking water.

  18. Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry.

    Science.gov (United States)

    Yoshimoto, Keisuke; Anh, Hoang Thi Van; Yamamoto, Atsushi; Koriyama, Chihaya; Ishibashi, Yasuhiro; Tabata, Masaaki; Nakano, Atsuhiro; Yamamoto, Megumi

    2016-01-01

    This study aimed to develop a simpler method for determining total mercury (T-Hg) and methylmercury (MeHg) in biological samples by using methyl isobutyl ketone (MIBK) in the degreasing step. The fat in the samples was extracted by MIBK to the upper phase. T-Hg transferred into the water phase. This was followed by the extraction of MeHg from the water phase using HBr, CuCl2 and toluene. The MeHg fraction was reverse-extracted into L-cysteine-sodium acetate solution from toluene. The concentrations of T-Hg and MeHg were determined by heating vaporization atomic absorption spectrometry. Certified reference materials for T-Hg and MeHg in hair and fish were accurately measured using this method. This method was then applied to determine T-Hg and MeHg concentrations in the muscle, liver and gonads of seafood for the risk assessment of MeHg exposure. The mean T-Hg and MeHg concentrations in squid eggs were 0.023 and 0.022 µg/g, and in squid nidamental glands 0.052 and 0.049 µg/g, respectively. The MeHg/T-Hg ratios in the eggs and nidamental glands of squid were 94.4% and 96.5%, respectively. The mean T-Hg and MeHg concentrations in the gonads of sea urchins were 0.043 and 0.001 µg/g, respectively, with a MeHg/T-Hg ratio of 3.5%. We developed an efficient analytical method for T-Hg and MeHg using MIBK in the degreasing step. The new information on MeHg concentration and MeHg/T-Hg ratios in the egg or nidamental glands of squid and gonads of sea urchin will also be useful for risk assessment of mercury in seafood.

  19. Chemical modifiers in arsenic determination in biological materials by tungsten coil electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, C.G.; Huerta, V.N.; Neira, J.Y. [Departamento de Analisis Instrumental, Facultad de Farmacia, Universidad de Concepcion, P.O. Box 237, Concepcion (Chile)

    2004-01-01

    Palladium, iridium, and rhodium are evaluated as possible chemical modifiers in the determination of As in digest solutions of biological materials (human hair and clam) by tungsten coil electrothermal atomic absorption spectrophotometry (TCA-AAS). The modifier in solution was applied onto the coil and thermally pre-reduced; the pre-reduction conditions, the amount of modifier, and the thermal program were optimized. Palladium was not satisfactory, whereas Ir and Rh were effective modifiers and rendered better relative sensitivity for As by a factor of 1.4 and 1.9, respectively compared to the case without modifier. Upon optimization of thermal conditions for As in pre-reduced Ir (2.0 {mu}g) and Rh (2.0 {mu}g) modifiers and in the digest solutions of the study matrices, Rh (2.0 {mu}g) was more effective modifier and was selected as such. The mean within-day repeatability was 2.8% in consecutive measurements (25-100 {mu}g L{sup -1}) (3 cycles, each of n=6) and confirmed good short-term stability of the absorbance measurements. The mean reproducibility was 4.4% (n=20 in a 3-day period) and the detection limit (3{sigma}{sub blank}/slope) was 29 pg (n=15). The useful coil lifetime in Rh modifier was extended to 300-400 firings. Validation was by determination of As in the certified reference material (CRM) of ''Oyster tissue'' solution with a percentage relative error (E{sub rel}%) of 2% and percentage relative standard deviation (RSD%) of 3% (n=4), and by analytical recovery of As spiked in CRM of human hair [94{+-}8% (n=4)]. The methodology is simple, fast (sample readout frequency 21 h{sup -1}), reliable, of low cost, and was applied to the determination of As in hair samples of exposed and unexposed workers. (orig.)

  20. Effects of spontaneously induced coherence on absorption of a ladder-type atom

    Institute of Scientific and Technical Information of China (English)

    Ma Hong-Mei; Gong Shang-Qing; Sun Zhen-Rong; Li Ru-Xin; Xu Zhi-Zhan

    2006-01-01

    This paper investigates the effects of spontaneously induced coherence on absorption properties in a nearly equispaced three-level ladder-type system driven by two coherent fields. It find that the absorption properties of this system with the probe field applied on the lower transition can be significantly modified if this coherence is optimized. In the case of small spontaneous decay rate in the upper excited state, it finds that such coherence does not destroy the electromagnetically induced transparency (EIT). Nevertheless, the absorption peak on both sides of zero detuning and the linewidth of absorption line become larger and narrower than those in the case corresponding to the effects of spontaneously induced coherence; while in the case of large decay rate, it finds that, instead of EIT with low resonant absorption, a sharp absorption peak at resonance appears. That is, electromagnetically induced absorption in the nearly equispaced ladder-type system can occur due to such coherent effects.

  1. Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-06-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

  2. Determination of metallic elements in water by the combined preconcentration techniques of ion exchange and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Having as an aim the utilization of atomic absorption method with flame's excitement, the limits of detection in water of six metals (Ag, Co, Cr, Cu, Ni, Zn) were determined in synthetical samples through atomic absorption spectroscopy. Techniques to optimize the data have been pointed out and presented their statistical treatment. By means of the routine and the addition methods three 'real' samples have also been analysed in order to determine the contents of Cu and Zn. Aiming a pre-concentration and by utilizing the 60Co obtained activating a sample of cobalt in the CDTN/NUCLEBRAS TRIGA MARK-I reactor, the retainement of this cobalt in ion exchange resin and the variation of the factor of elution within different concentration of HCl in water have been determined. The limits of detection are presented and so are the quantitative ones, with and without pre-concentration in an ion exchanger resin and latter elution. (Author)

  3. Arsenic in marine tissues — The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Science.gov (United States)

    Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.

    2007-03-01

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has

  4. Arsenic in marine tissues - The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Karadjova, Irina B.; Petrov, Panayot K. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria); Serafimovski, Ivan [Food Institute, Faculty of Veterinary Medicine, Sts. Cyril and Methodius University, P.O. Box 95, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Stafilov, Trajce [Institute of Chemistry, Faculty of Science, Sts. Cyril and Methodius University, P.O. Box 162, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Tsalev, Dimiter L. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria)], E-mail: tsalev@chem.uni-sofia.bg

    2007-03-15

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant (Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel (Mytilus galloprovincialis) and Brown algae (Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 deg. C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 deg. C and atomization temperature 2100 deg. C) with 1.5 {mu}g Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 {mu}mol of zirconium and then with 0.10 {mu}mol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely

  5. [Preparation of Pb2+ imprinted acrylic acid-co-styrene and analysis of its adsorption properties by FAAS].

    Science.gov (United States)

    Shawket, Abliz; Abdiryim, Supahun; Wang, Ji-De; Ismayil, Nurulla

    2011-06-01

    With lead ion template, acrylic acid as functional monomer, potassium persulfate as initiator, strytrene as framework monomer, lead ion imprinted polymers (Pb(II)-IIPs) were prepared using free emulsion polymerization method. The structure and morphology of the polymers were analyzed by UV-spectra, FTIR and scanning electron microscopy. The adsorption/ desorption and selectivity for Pb2+ were investigated by flame atomic absorption spectrometry (FAAS) as the detection means. The results show that compared with non-imprinted polymers(NIPs), the Pb(II)-IIPs had higher specific adsorption properties and selective recognition ability for Pb(II). The relative selectivity coefficient of Pb(II)-IIPs for Pb(II) was 6.25, 6.18, 6.25 and 6.38 in the presence of Cd(II), Cu(II), Mn(II) and Zn(II) interferences, respectively. The absorption rate was the best at the pH of adsorbent solution of 6, Adsorption rate reached 96% during the 2.5 h static adsorption time. Using 3.0 mol x L(-1) HCI as the best desorption solvent to desorb the adsorbents, the desorbtion rate reached 98%. Under the best adsorption conditions, the adsorption capacity of Pb(II)-IIPs for Pb(II) was found to be 40. mg x g(-1). PMID:21847962

  6. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sardans, Jordi, E-mail: j.sardans@creaf.uab.ca [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain); Montes, Fernando [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/ Senda del Rey 9. 28040 Madrid (Spain); Penuelas, Josep [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain)

    2010-02-15

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at mug L{sup -1} levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages

  7. Towards broadening thermospray flame furnace atomic absorption spectrometry: Influence of organic solvents on the analytical signal of magnesium

    OpenAIRE

    Ezequiel Morzan; Jorge Stripeikis; Mabel Tudino

    2015-01-01

    This study demonstrates the influence of the solvent when thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) is employed for the determination of elements of low volatility, taking magnesium (Mg) as leading case. Several organic solvents/water solutions of different characteristics (density, surface tension, viscosity, etc.) and proportions were employed for the TS-FF-AAS analytical determination. To this end, solutions containing methanol, ethanol and isopropanol in water w...

  8. Determination of Copper-Based Fungicides by Flame Atomic Absorption Spectrometry Using Digestion Procedure with Sulfuric and Nitric Acid

    OpenAIRE

    Jelena Milinović; Rada Đurović

    2007-01-01

    Copper-based fungicides can be effectively digested by treatment with a mixture of concentrated sulfuric and nitric acid in exactly 15 minutes for the rapid determination via copper using flame atomic absorption spectrometry (AAS). Under optimum conditions, the results of copper fungicide analysis were consistent to those obtained by the AOAC’s recommended method. Recovery values ranged from 98.63 to 103.40%. Relative standard deviation values are lower than 2%. The proposed digestion procedu...

  9. Determination of Trace Silver in Water Samples by Online Column Preconcentration Flame Atomic Absorption Spectrometry Using Termite Digestion Product

    OpenAIRE

    Joyce Nunes Bianchin; Eduardo Carasek; Edmar Martendal

    2011-01-01

    A new method for Ag determination in water samples using solid phase extraction (SPE) coupled to a flow injection system and flame atomic absorption spectrometry was developed. The sorbent used for Ag preconcentration and extraction was the termite digestion product. Flow and chemical variables of the system were optimized through a multivariate procedure. The factors selected were adsorbent mass, buffer type and concentration, sample pH, and sample flow rate. The detection limit and precisio...

  10. Determination of Arsenic in Palm Kernel Expeller using Microwave Digestion and Graphite Furnace Atomic Absorption Spectrometry Method

    OpenAIRE

    Abdul Niefaizal Abdul Hammid; Ainie Kuntom; RazaIi Ismail; Norazilah Pardi

    2013-01-01

    A study on the method to determine arsenic in palm kernel expeller wascarried out. Microwave digestion technique is widely applied in the analytical chemistry field. In comparison to conventional sample digestion method, the microwave technique is simple, reduced contamination, usage of safe reagent and matrix completely digested. A graphite furnace atomic absorption spectrometry method was used for the total determination of arsenic in palm kernel expeller. Arsenic was extracted from palm ke...

  11. On-line preconcentration and determination of copper, lead and chromium(VI) using unloaded polyurethane foam packed column by flame atomic absorption spectrometry in natural waters and biological samples.

    Science.gov (United States)

    Anthemidis, Aristidis N; Zachariadis, George A; Stratis, John A

    2002-11-12

    A simple, sensitive and low cost, flow injection time-based method was developed for on-line preconcentration and determination of copper, lead and chromium(VI) at sub mug l(-1) levels in natural waters and biological samples. At the optimum pH, the on-line formed metal-ammonium pyrrolidine dithiocarbamate (APDC) complexes were sorbed on the unloaded commercial polyurethane foam (PUF), and subsequent eluted quantitatively by isobutylmethylketone and determined by flame atomic absorption spectrometry (FAAS). All chemical, and flow injection variables were optimized for the quantitative preconcentration of each metal and a study of interference level of various ions was also carried out. The system offered improved flexibility, low backpressure and applicability to all the studied metals. At a sample frequency of 36 h(-1) and a 60 s preconcentration time, the enhancement factor was 170, 131 and 28, the detection limit was 0.2, 1.8 and 2.0 mug l(-1), and the precision, expressed as relative standard deviation (s(r)), was 2.8 (at 10 mug l(-1)), 3.4 (at 50 mug l(-1)) and 3.6% (at 50 mug l(-1)) for Cu(II), Pb(II) and Cr(VI), respectively. The accuracy of the developed method was sufficient and evaluated by the analysis of certified reference materials and spiked water samples. Finally, the method was applied to the analysis of environmental samples. PMID:18968813

  12. Enrichment of trace amounts of copper(II) ions in water samples using octadecyl silica disks modified by a Schiff base ionophore prior to flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, S.A.M. [Department of Chemistry, Faculty of Science, Zanjan University, PO Box 45195-313 Zanjan (Iran, Islamic Republic of); Yaftian, M.R. [Department of Chemistry, Faculty of Science, Zanjan University, PO Box 45195-313 Zanjan (Iran, Islamic Republic of)], E-mail: yaftian@znu.ac.ir

    2009-05-15

    Bis(5-bromo-2-hydroxybenzaldehyde)-1,2-propanediimine is synthesized by the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-diaminopropane in ethanol. This ligand is used as a modifier of octadecyl silica disks for preconcentration of trace amounts of copper(II) ions, followed by nitric acid elution and flame atomic absorption spectrometric (FAAS) determination. The effect of parameters influencing the extraction efficiency, i.e. pH of the sample solutions, amount of the Schiff base, type and volume of stripping reagent, sample and eluent flow rates were evaluated. Under optimum experimental conditions, the capacity of the membrane disks modified by 4 mg of the ligand was found to be 247.7 ({+-}2.1) {mu}g of copper. The detection limit and the concentration factor of the presented method are 2.4 ng/l and greater than 400, respectively. The method was applied to the extraction, recovery and detection of copper in different synthetic and water samples.

  13. Vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet combined with flame atomic absorption spectrometry for the fast determination of cadmium in water samples.

    Science.gov (United States)

    Peng, Guilong; Lu, Ying; He, Qiang; Mmereki, Daniel; Tang, Xiaohui; Zhong, Zhihui; Zhao, Xiaolong

    2016-01-01

    A novel vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet (VSLLME-SFO) was developed for the fast, simple and efficient determination of cadmium (Cd) in water samples followed by flame atomic absorption spectrometry (FAAS). In the VSLLME-SFO process, the addition of surfactant (as an emulsifier), could enhance the mass transfer from the aqueous solution into the extraction solvent. The extraction solvent could be dispersed into the aqueous phase under vigorous shaking with the vortex. In this paper, we investigated the influences of analytical parameters, including pH, extraction solvent type and its volume, surfactant type and its volume, concentration of chelating agent, salt effect and vortex time, on the extraction efficiency of Cd. Under the optimized conditions, the limit of detection was 0.16 μg/L. The analyte enrichment factor was 37.68. The relative standard deviation was 3.2% (10 μg/L, n = 10) and the calibration graph was linear, ranging from 0.5 to 30 μg/L. The proposed method was successfully applied for the analysis of ultra-trace Cd in river water and wastewater samples. PMID:27232416

  14. Application of modified nano-alumina as a solid phase extraction sorbent for the preconcentration of Cd and Pb in water and herbal samples prior to flame atomic absorption spectrometry determination

    International Nuclear Information System (INIS)

    The first study on the high efficiency of nanometer-sized γ-alumina coated with sodium dodecyl sulfate-1-(2-pyridylazo)-2-naphthol (SDS-PAN) as a new sorbent solid phase extraction (SPE) has been reported. A microcolumn packed with modified nanometer-sized alumina was used to preconcentrate and separate Cd and Pb in water and herbal samples. The metals were eluted with 2 mL HNO3 directly and detected with the detection system flame atomic absorption spectrometry (FAAS). Various influencing parameters on the separation and preconcentration of trace metals, such as pH, flow rate, sample volume, amount of sorbent, and concentration of eluent, were studied. Under the optimized operating conditions, the sorption capacities of the modified nano-γ-alumina for Cd and Pb were 11.1 and 16.4 mg g-1 respectively. With 500.0 mL sample an enrichment factor of 250 was obtained. The detection limits of this method for Cd and Pb were 0.15 and 0.17 μg L-1 and the R.S.D.s were 2.8 and 3.2% (n = 10), respectively. The proposed method has been applied to the determination of these metal ions at trace levels in certified reference materials and real samples with satisfactory results.

  15. A new ultrasonic-assisted cloud-point-extraction procedure for pre-concentration and determination of ultra-trace levels of copper in selected beverages and foods by flame atomic absorption spectrometry.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan; Orhan, Ulaş

    2015-01-01

    A new ultrasonic-assisted cloud-point-extraction (UA-CPE) method was developed for the pre-concentration of Cu(II) in selected beverage and food samples prior to flame atomic absorption spectrometric (FAAS) analysis. For this purpose, Safranin T was used as an ion-pairing reagent based on charge transfer in the presence of oxalate as the primary chelating agent at pH 10. Non-ionic surfactant, poly(ethyleneglycol-mono-p-nonylphenylether) (PONPE 7.5) was used as an extracting agent in the presence of NH4Cl as the salting out agent. The variables affecting UA-CPE efficiency were optimised in detail. The linear range for Cu(II) at pH 10 was 0.02-70 µg l(-)(1) with a very low detection limit of 6.10 ng l(-)(1), while the linear range for Cu(I) at pH 8.5 was 0.08-125 µg l(-)(1) with a detection limit of 24.4 ng l(-)(1). The relative standard deviation (RSD %) was in the range of 2.15-4.80% (n = 5). The method was successfully applied to the quantification of Cu(II), Cu(I) and total Cu in selected beverage and food samples. The accuracy of the developed method was demonstrated by the analysis of two standard reference materials (SRMs) as well as recoveries of spiked samples.

  16. Nonlinear Absorption-Gain Response and Population Dynamics in a Laser-Driven Four-Level Dense Atomic System

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Hua; LIU Ji-Bing; LUO Jin-Ming; XIE Xiao-Tao

    2006-01-01

    We theoretically investigate the response of nonlinear absorption and population dynamics in optically dense media of four-level atoms driven by a single-mode probe laser, via taking the density-dependent near dipoledipole (NDD) interactions into consideration. The influence of the NDD effects on the absorption of the probe field and population dynamics is predicted via numerical calculations. It is shown that the NDD effects can reduce gradually to transient absorption with the increase of the strengths of the NDD interactions, and transient amplification can be achieved. In the steady-state limit, the probe field exhibits transparency for strong NDD interactions. Alternatively, the population entirely remains at the ground state due to the NDD effects.

  17. Distinguishing plasmonic absorption modes by virtue of inversed architectures with tunable atomic-layer-deposited spacer layer

    International Nuclear Information System (INIS)

    We demonstrated the distinguishing between plasmonic absorption modes by exploiting an inversed architecture with tunable atomic-layer-deposited dielectric spacer layer. The dielectric spacer layer was manipulated between the bottom metal–nanoparticle monolayer and the upper metal film to inspect the contributions of metal nanoparticles and dielectric film in a step-by-step manner. The experimental and simulated differences between the two peak absorption positions (Δf) and between the corresponding half width at half maxima (Δw) confirmed the evolutions of gap plasmon and interference-enhanced local surface plasmon resonance absorption modes in the plasmonic metamaterial absorbers (PMAs), which were useful for understanding the underlying mechanism of amorphous PMAs. (paper)

  18. Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra

    CERN Document Server

    Berengut, J C; Flambaum, V V; King, J A; Kozlov, M G; Murphy, M T; Webb, J K

    2010-01-01

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, alpha, could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that alpha varies spatially. That is, in one direction on the sky alpha seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger. To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 A, and require an accuracy of better than 10^{-4} A. We discuss isotope shift measurements that are...

  19. Absorption and Recurrence Spectra of Nonhydrogenic Rydberg Atom Near a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jun; WANG De-Hua; XUE Chun-Hua; QI Yi-Hong; LOU Sen-Yue

    2008-01-01

    Multielectron atoms near a metal surface are essentially more complicated than hydrogen atom with regard to theoretical treatments. By using the semicalssical closed orbit theory generalized to the multielecton atoms, we study the dynamical properties of the Rydberg lithium atom near a metal surface. The photoabsorption spectra and recurrence spectra of this system have also been calculated. Considering the effect of the ionic core potential of the Rydberg lithium atom, the number of the closed orbits increases, which leads to more peaks in the recurrence spectra than the case of hydrogen atom near a metal surface. This result shows that the core-scattered effects play an important role in nonhydrogenic atoms. This study is a new application of the dosed-orbit theory and is of potential experimental interest.

  20. Determination of yttrium and rare-earth elements in rocks by graphite-furnace atomic-absorption spectrometry.

    Science.gov (United States)

    Gupta, J G

    1981-01-01

    With use of synthetic solutions and several international standard reference materials a method has been developed for determining traces of Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in rocks by electrothermal atomization in a pyrolytically-coated graphite furnace. Depending on the element, the sensitivity is of the order of 10(-9)-10(-12) g at 2500 degrees . To avoid matrix interferences the lanthanides are separated from the common elements by co-precipitation with calcium and iron as carriers. The data for Canadian reference rock SY-2 (syenite), U.S.G.S. reference rocks W-2 (diabase), DNC-1 (diabase) and BIR-1 (basalt), and South African reference rock NIM-18/69 (carbonatite) obtained by graphite-furnace atomization are compared with the values obtained by flame atomic-absorption. The results are in good agreement with literature values. PMID:18962852

  1. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zeini Jahromi, Elham [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Bidari, Araz [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Assadi, Yaghoub [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of) and Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)]. E-mail: y_assadi@iust.ac.ir; Milani Hosseini, Mohammad Reza [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jamali, Mohammad Reza [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2007-03-07

    Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 {mu}L methanol (disperser solvent) containing 34 {mu}L carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 {+-} 1 {mu}L). Then a 20 {mu}L of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L{sup -1} with detection limit of 0.6 ng L{sup -1}. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L{sup -1} of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L{sup -1} are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data

  2. Optimized determination of calcium in grape juice, wines, and other alcoholic beverages by atomic absorption spectrometry.

    Science.gov (United States)

    Olalla, Manuel; González, Maria Cruz; Cabrera, Carmen; Gimenez, Rafael; López, Maria Carmen

    2002-01-01

    This paper describes a study of the different methods of sample preparation for the determination of calcium in grape juice, wines, and other alcoholic beverages by flame atomic absorption spectrometry; results are also reported for the practical application of these methods to the analysis of commercial samples produced in Spain. The methods tested included dealcoholization, dry mineralization, and wet mineralization with heating by using different acids and/or mixtures of acids. The sensitivity, detection limit, accuracy, precision, and selectiviy of each method were established. Such research is necessary because of the better analytical indexes obtained after acid digestion of the sample, as recommended by the European Union, which advocates the direct method. In addition, although high-temperature mineralization with an HNO3-HCIO4 mixture gave the best analytical results, mineralization with nitric acid at 80 degrees C for 15 min gave the most satisfactory results in all cases, including those for wines with high levels of sugar and beverages with high alcoholic content. The results for table wines subjected to the latter treatment had an accuracy of 98.70-99.90%, a relative standard deviation of 2.46%, a detection limit of 19.0 microg/L, and a determination limit of 31.7 microg/L. The method was found to be sufficiently sensitive and selective. It was applied to the determination of Ca in grape juice, different types of wines, and beverages with high alcoholic content, all of which are produced and widely consumed in Spain. The values obtained for Ca were 90.00 +/- 20.40 mg/L in the grape juices, 82.30 +/- 23.80 mg/L in the white wines, 85.00 +/- 30.25 mg/L in the sweet wines, 84.92 +/- 23.11 mg/L in the red wines, 85.75 +/- 27.65 mg/L in the rosé wines, 9.51 +/- 6.65 mg/L in the brandies, 11.53 +/- 6.55 mg/L in the gin, 7.3 +/- 6.32 mg/L in the pacharán, and 8.41 +/- 4.85 mg/L in the anisettes. The method is therefore useful for routine analysis in the

  3. Speciation analysis of thallium using solid phase extraction and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. Thallium is a heavy, very toxic metallic element, which occurs in earth's crust in an estimated abundance from 0.1 to 0.8 mg.kg-1. In the environment, it is mainly combined with other elements (primarily oxygen, sulfur, halogens, potassium and rubidium) in inorganic compounds. During the weathering processes it can be mobilized by aqueous media and accumulated in sediments and soils. The main sources of pollution nowadays come from anthropogenic emissions from refineries, coal-fired power stations, mining activities, metal smelters and the cement industry. Thallium exists in natural waters as either Tl(I) (thallous) or Tl(III) (thallic) species. The oxidation state of Tl affects its complexation and subsequent bioavailability and toxicity in the environment. Thallium content in surface waters is within the range 1-82 ng l-1. Due to this low contents of Tl in water samples, it is necessary to combine the laboratory separation, preconcentration and determination techniques for the purpose of Tl speciation analysis. The scope of the presented work was to use an solid phase extraction (SPE) for the separation and preconcentration of Tl species in water samples followed by the determination using electrothermal atomic absorption spectrometry (ET AAS). In this method, Tl(III) was stabilized by formation of a Tl(III)-DTPA complex. Tl(I) species remained in its original form. These two species were then separated by using a cation exchange resin Amberlite IR120 and nitric acid as the eluent in a batch SPE protocol. The potential interferences of Fe (III), Al, Ca, Mg and other metals were investigated. The optimized experimental conditions for separation/preconcentration step (pH 2-3, time 15 min, temperature 60 deg C) and Zeeman ET AAS determination (chemical modifier Pd + ascorbic acid, atomization temperature 2100 deg C) were used for the speciation analysis of thallium in filtered acid water samples from open quartzite mine in the

  4. Determination of trace elements in Egyptian cane sugar (Deshna Factories) by neutron activation, atomic absorption spectrophotometric and inductively coupled plasma-atomic emission spectrometric analysis

    International Nuclear Information System (INIS)

    Multielement instrumental neutron activation (INAA), inductively coupled plasma-atomic emission spectrometric (ICP-AES) and atomic absorption spectrophotometric (AAS) analyses were utilized for the determination of Ag, Al, As, Au, Ba, Be, Br, Ca, Cd, Ce, Cl, Co, Cr, Cu, Eu, Fe, Ga, Hf, K, La, Li, Lu, Mg, Mn, Na, Nb, Ni, P, Pb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Th, Ti, U, V, W and Zn in sugar cane plant, raw juice, juice in different stages, syrup, deposits, molasses, A, B and C sugar, refinery 1 and 2 sugar, and in soil samples picked up from the immediate vicinity of the cane plant roots at surface, 30 and 60 cm depth, respectively. (author)

  5. Flame atomic absorption spectrometric determinations of some trace metals after coprecipitation with gold-APDC

    International Nuclear Information System (INIS)

    Complete text of publication follows. For the determination of trace metals in various samples, preconcentration is an inevitable step to overcome interferences. Among various techniques for the separation of trace metals proposed until now, coprecipitation is one of the most useful ones. Many different coprecipitation procedures including use of organic and inorganic collectors have been developed. So far, in the literature, it is reported that APDC, NaDDTC, PAN, TAR, Oxine, etc. as chelating agent for metal-chelate collector have been extensively used for coprecipitation of trace metals. However, metal chelates, especially dithocarbamates, as collectors are ideal for their sensitivities, simplicities and tolerances to interferences.Therefore, in the present work, fundamental studies on the coprecipitation with gold/APDC chelate have been carried out for determination of trace metals in environmental samples by FAAS with microinjection. According to our literature survey, gold/APDC is not used for the coprecipitation of heavy metal ions, until now. In this work, the coprecipitation was carried out in a centrifuge tube. Firstly, the main factors, such as amount of coprecipitant reagent and carrier element, pH of the solution, standing time, sample volume and diverse ions, affecting the coprecipitation of some trace metals were evaluated. Under optimized conditions, the recoveries of Cu, Ni, Pb and Cd were ≥ 95 %. R.S.D. values for ten replicates were lower than 5.0 %. Preconcentration factors were found to be 20. The coprecipitation was applied to various water samples and non-alcoholic beverage.

  6. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization

    International Nuclear Information System (INIS)

    The measurement conditions for determining boron using graphite furnace–atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L−1 when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS. (author)

  7. Handbook of theoretical atomic physics. Data for photon absorption, electron scattering, and vacancies decay

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, Miron [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Chernysheva, Larissa [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Yarzhemsky, Victor [Kurnakov Institute of General and Inorganic Chemistry, Moscow (Russian Federation)

    2012-07-01

    The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomic data are presented. The atomic data are useful for investigating the electronic structure and physical processes in solids and liquids, molecules and clusters, astronomical objects, solar and planet atmospheres and atomic nucleus. Deep understanding of chemical reactions and processes is reached by deep and accurate knowledge of atomic structure and processes with participation of atoms. This book is useful for theorists performing research in different domains of contemporary physics, chemistry and biology, technologists working on production of new materials and for experimentalists performing research in the field of photon and electron interaction with atoms, molecules, solid bodies and liquids.

  8. Determination of the elemental composition of cyanobacteria cells and cell fractions by atomic emission and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    An approach to studying the elemental composition of cyanobacteria Spirulina platensis and Nostoc commune using a set of complementary analytical methods (ICP-AES, PAAS, and ETAAS) was proposed . The procedures were adapted for the determination of macro- and microelements (Na, K, Mg, Ca, Fe, Mn, Cu, Mo, Zn, B, and Se) in the biomass of cyanobacteria and separated cell fractions (chloroform and water-methanol extracts and precipitates). The conditions for the mineralization of biological materials were optimized for autoclave and microwave sample preparation procedures. The evaporation and atomization of Se and Mo in a graphite furnace in the presence of chloroform and methanol were studied

  9. Self-consistent dynamical linear response of atoms in quantum plasmas: photo-absorption and collective effects in dense plasmas

    International Nuclear Information System (INIS)

    In modeling dense and partially ionized matter, the treatment of the free electrons remains an important issue. Compared to bound electrons, the delocalized and non-discrete nature of these electrons is responsible to treat them differently, which is usually adopted in the modeling of radiative properties of plasmas. However, in order to avoid inconsistencies in the calculation of absorption spectra, all the electrons should be described in the same formalism. We use two variational average-atom models: a semi-classical and a quantum model, which allow this common treatment for all the electrons. We calculate the photo-extinction cross-section, by applying the framework of the linear dynamical response theory to each of these models of an atom in a plasma. For this study, we develop and use a self-consistent approach, of random-phase-approximation (RPA) type, which, while going beyond the independent electron response, permits to evaluate the collective effects by the introduction of the dynamical polarization. This approach uses the formalism of the time dependent density functional theory (TDDFT), applied in the case of an atomic system immersed in a plasma. For both models, semi-classical and quantum, we derive and verify in our calculations, a new sum rule, which allows the evaluation of the atomic dipole from a finite volume in the plasma. This sum rule turns out to be a crucial device in the calculation of radiative properties of atoms in dense plasmas. (author)

  10. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Erikat, I. A., E-mail: ihsanas@yahoo.com [Department of Physics, Jerash University, Jerash-26150 (Jordan); Hamad, B. A. [Department of Physics, The University of Jordan, Amman-11942 (Jordan)

    2013-11-07

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir–C and Ir–Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  11. Determination of Tetracycline in Pharmaceutical Preparation by Molecular and Atomic Absorption Spectrophotometry and High Performance Liquid Chromatography via Complex Formation with Au(III and Hg(II Ions in Solutions

    Directory of Open Access Journals (Sweden)

    Ahlam Jameel Abdulghani

    2013-01-01

    Full Text Available UV-visible and atomic spectrophotometry and HPLC techniques were applied for the determination of tetracycline (TC in pharmaceutical preparations via complexation of the drug with Au(III and Hg(II ions in solutions. The mole ratio of TC to metal ions was 1 : 1. Maximum peak absorption at λ 425 and 320 nm for the two ions, respectively, was optimized at heating temperature 75°C for 15 minutes at pH = 4 followed by the extraction with ethyl acetate. The percentage of extraction and stability constants for the two complexes was 95.247, 95.335% and ,  M−1, respectively. HPLC method was applied without extraction process. The analytical data obtained from direct calibration curves of UV-visible absorption, FAAS, and HPLC for Au(III complexes were recovery (100.78, 104.85, and 101.777%, resp.; detection limits (0.7403, 0.0997, and 2.647 μg/ml, resp.; linearity (5–70, 5–30, and 10–150 μg/ml, resp., and correlation coefficient (0.9991, 0.9967, and 0.9986, resp.. The analytical data obtained from direct calibration curves for Hg(II complexes by UV-visible spectrophotometry and HPLC were recovery (100.95 and 102.000%, resp.; detection limits (0.5867 and 2.532 μg/ml, resp.; linearity (5–70 and 10–150 μg/ml, resp.; and correlation coefficients (0.9989 and 0.9997, resp..

  12. Estimation of lead, cadmium and nickel content by means of Atomic Absorption Spectroscopy in dry fruit bodies of some macromycetes growing in Poland. II.

    Directory of Open Access Journals (Sweden)

    Jan Grzybek

    2014-08-01

    Full Text Available The content of lead, cadmium, and nickel in dry fruit bodies of 34 species of macromyoetes collected in Poland from 72 natural babitats by means of Atomic Absorption Spectroscopy (AAS was estimated.

  13. DETERMINATION OF TRACE AMOUNTS OF SELENIUM IN CORN, LETTUCE, POTATOES, SOYBEANS, AND WHEAT BY HYDRIDE GENERATION/CONDENSATION AND FLAME ATOMIC ABSORPTION SPECTROMETRY

    Science.gov (United States)

    Because of the nutritional and toxicological significance of low selenium concentrations in agricultural crops, a procedure utilizing wet digestion followed by hydride generation/condensation-flame atomic absorption was developed for the routine analysis of selenium in different ...

  14. Spontaneous absorption of an accelerated hydrogen atom near a conducting plane in vacuum

    CERN Document Server

    Yu, H; Yu, Hongwei; Zhu, Zhiying

    2006-01-01

    We study, in the multipolar coupling scheme, a uniformly accelerated multilevel hydrogen atom in interaction with the quantum electromagnetic field near a conducting boundary and separately calculate the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy. It is found that the perfect balance between the contributions of vacuum fluctuations and radiation reaction that ensures the stability of ground-state atoms is disturbed, making spontaneous transition of ground-state atoms to excited states possible in vacuum with a conducting boundary. The boundary-induced contribution is effectively a nonthermal correction, which enhances or weakens the nonthermal effect already present in the unbounded case, thus possibly making the effect easier to observe. An interesting feature worth being noted is that the nonthermal corrections may vanish for atoms on some particular trajectories.

  15. Determination of Trace Lead and Zinc in Beers by Atomic Absorption Spectrometry after Wet Digestion%湿法消解-原子吸收光谱法测定啤酒中痕量铅和锌

    Institute of Scientific and Technical Information of China (English)

    王毛兰; 赖劲虎; 周文斌

    2013-01-01

    研究了用湿法消解啤酒样品、石墨炉原子吸收光谱(GFAAS)及火焰原子吸收光谱(FAAS)法分别测定啤酒中的痕量pb2+和Zn2+.对仪器的工作参数进行了优化,探讨了混合酸消解体系、消解液用量,消解温度等因素的影响.结果表明,在200 C温度下,HNO3+HC1O4(16+4)混酸能完全消解样品.pb2+、Zn2+分别在0~80 μg/L、0~1.50 μg/mL范围内线性关系良好(线性相关系数r分别为0.9995和0.9997),其检出限分别为0.2 μg/L、8.0μg/L.测定pb2+、Zn2+的相对标准偏差(RSD)分别为1.8%和0.92%,加标回收率分别为96.5%和99.8%.该方法检出限低,精密度和准确度高,适用于啤酒样品中痕量铅、锌含量的测定.检测的9种啤酒样品中铅、锌含量范围分别为11.34~47.15 μg/L、277~422 μg/L,低于食品中的限量值.%In this paper, flame atomic absorption spectrometry and graphite furnace atomic absorption spectrometry were employed for Zn and Pb determination in beers after wet digestion. Instrument conditions of atomic absorption spectrometry were optimized and the optimal experimental conditions were selected. The effects of the type of mixed acid, the volume of digesting solution and digestion temperature were investigated. The complete digestion was performed using 16 mL of HNO3 and 4 mL of HC1O4 at 200 °C. The relative standard deviations(RSDs) of the flame atomic absorption spectrometry and graphite furnace atomic absorption spectrometry were 0. 92% and 1. 8%, respectively, and the recovery obtained for Pb and Zn were 99. 8% and 96. 5%, respectively . The methods showed linear relationship at 0-80 μg/L and 0-l. 50μg/mL for Pb and Zn, respectively. And the detection limit of Pb and Zn were 0. 2μg/L and 8. 0μg/L, respectively. The proposed method has the advantages of low detection limit,good precision and accuracy. It is suited for the determination of Pb and Zn concentrations in beers. The contents of Pb and Zn were 11. 34-47. 15

  16. Nonstationary structure of atomic and molecular layers in electrothermal. Atomic absorption spectrometry: formation of atomic and molecular absorbing layers of gallium and indium

    International Nuclear Information System (INIS)

    The dynamics of the formation of absorbing layers of gallium and indium atoms and their compounds in a graphite tubular atomizer was investigated by the shadow spectral filming method. These compounds are localozed in the central part of the furnace over the platform and dissapear ay the hotter walls. It the case of gallium and indium atomization, the effects of chemical reactions between the vapor and the walls of the furnace on the formation of absorbing layers are stronger than that of diffusion and convective mass-transfer processes, which are common to all of the elements. Atom propagation from the center to the stomizer ends proceeds through the cascade mechanism because of its relatively low rate of warming up and strong longitudinal anisothermicity

  17. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J. (UCB)

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  18. The use of atomic absorption spectroscopy to measure arsenic, selenium, molybdenum, and vanadium in water and soil samples from uranium mill tailings sites

    Energy Technology Data Exchange (ETDEWEB)

    Hollenbach, M.H.

    1988-01-01

    The Technical Measurements Center (TMC) was established to support the environmental measurement needs of the various DOE remedial action programs. A laboratory intercomparison study conducted by the TMC, using soil and water samples from sites contaminated by uranium mill tailings, indicated large discrepancies in analytical results reported by participating laboratories for arsenic, selenium, molybdenum, and vanadium. The present study was undertaken to investigate the most commonly used analytical techniques for measuring these four elements, ascertain routine and reliable quantification, and assess problems and successes of analysts. Based on a survey of the technical literature, the analytical technique of atomic absorption spectroscopy was selected for detailed study. The application of flame atomic absorption, graphite furnace atomic absorption, and hydride generation atomic absorption to the analysis of tailings-contaminated samples is discussed. Additionally, laboratory sample preparation methods for atomic absorption spectroscopy are presented. The conclusion of this report is that atomic absorption can be used effectively for the determination of arsenic, selenium, molybdenum, and vanadium in water and soil samples if the analyst understands the measurement process and is aware of potential problems. The problem of accurate quantification of arsenic, selenium, molybdenum, and vanadium in water and soil contaminated by waste products from uranium milling operations affects all DOE remedial action programs (Surplus Facilities Management Program (SFMP), Formerly Utilized Site Remedial Action Program (FUSRAP), and Uranium Mill Tailings Remedial Action Program (UMTRAP)), since all include sites where uranium was processed. 96 refs., 9 figs.

  19. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1). PMID:27345208

  20. FAA Pilot Knowledge Tests: Learning or Rote Memorization?

    Science.gov (United States)

    Casner, Stephen M.; Jones, Karen M.; Puentes, Antonio; Irani, Homi

    2004-01-01

    The FAA pilot knowledge test is a multiple-choice assessment tool designed to measure the extent to which applicants for FAA pilot certificates and ratings have mastered a corpus of required aeronautical knowledge. All questions that appear on the test are drawn from a database of questions that is made available to the public. The FAA and others are concerned that releasing test questions may encourage students to focus their study on memorizing test questions. To investigate this concern, we created our own database of questions that differed from FAA questions in four different ways. Our first three question types were derived by modifying existing FAA questions: (1) rewording questions and answers; (2) shuffling answers; and (3) substituting different figures for problems that used figures. Our last question type posed a question about required knowledge for which no FAA question currently exists. Forty-eight student pilots completed one of two paper-and-pencil knowledge tests that contained a mix of these experimental questions. The results indicate significantly lower scores for some question types when compared to unaltered FAA questions to which participants had prior access.

  1. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    Science.gov (United States)

    Ball, J.W.; Nordstrom, D.K.

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  2. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; LIN Sheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic field below ionization threshold. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  3. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANGDe-Hua; LINSheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic fied below ionization threshoM. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  4. The rapid and precise determination of noble metals in matte-leach residues by atomic-absorption spectrophotometry

    International Nuclear Information System (INIS)

    A method is proposed for the rapid analysis of platinum-group metals and gold in matte-leach residues. So that the precision of the atomic-absorption measurement is ensured, many measurements are taken (a chart recorder being used) and the calculation is done on a computer. The dissolution of samples was investigated and optimized. Iridium, which is usually present as a minor constituent, is treated on a separate aliquot portion that is concentrated before measurement. The precision of the method ranges from 0,5 per cent for platinum to 2,3 per cent for iridium

  5. Evaluation of emery dust on the manufacture of abrasives by neutron activation analysis and atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    In this work it is presented an evaluation on the degree of contamination by emery dust in a working area where abrasives are manufactured, in a factory located in the industrial area of Toluca City by neutron activation analysis and atomic absorption spectroscopy. The samples were collected on Whatman filters and attacked with hot concentrated HCl. The elements founded were: Al, Si, V, Mg, Br, Mn, Ni, Zn, Fe, Cr, Ca and Pb. They are a risk for the health of the workers. (Author)

  6. Determination of Heavy Metals in Meat, Intestine, Liver, Eggs, and Chicken Using Neutron Activation Analysis and Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    The elements As, Cd, Co, Cr, Fe, Hg, Ni, Pb, Sb, se and Zn in meat, intestine, and liver of cow and goat, as well as in broiler, local breed chicken and eggs have been determined using Neutron Activation Analysis and Atomic Absorption Spectrometry. Mercury was determined after being separated radiochemically. The results showed that concentration of the essential elements studied i.e. Cr, Cu, Fe, Zn, Co, and Ni were higher in liver and intestine than in the meat, but still in the normal range, while toxic elements As, Cd, and Pb were undetectable in all samples. (author). 8 refs., 6 tabs

  7. X-ray absorption spectroscopy and atomic force microscopy study of bias-enhanced nucleation of diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.M.; Jimenez, I.; Vazquez, L.; Gomez-Aleixandre, C.; Albella, J.M.; Sanchez, O. [Instituto de Ciencia de Materiales, C.S.I.C., Cantoblanco28049, Madrid (Spain); Terminello, L.J. [Lawrence Livermore National Laboratory, Livermore, California94551 (United States); Himpsel, F.J. [Department of Physics, University of Wisconsin--Madison, Madison, Wisconsin53706 (United States)

    1998-04-01

    The bias-enhanced nucleation of diamond on Si(100) has been studied by x-ray absorption near-edge spectroscopy (XANES) and atomic force microscopy, two techniques well suited to characterize nanometric crystallites. Diamond nuclei of {approximately}15nm are formed after 5 min of bias-enhanced treatment. The number of nuclei and its size increases with the time of application of the bias voltage. A nanocrystalline diamond film is attained after 20 min of bias-enhanced nucleation. At the initial nucleation stages, the Si substrate appears covered with diamond crystallites and graphite, without SiC being detected by XANES. {copyright} {ital 1998 American Institute of Physics.}

  8. Arsenic speciation by hydride generation-quartz furnace atomic absorption spectrometry. Optimization of analytical parameters and application to environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Molenat, N.; Astruc, A.; Holeman, M.; Pinel, R. [Laboratoire de Chimie Analytique Bioinorganique et Environnement, Dept. de Chimie, Faculte des Sciences et Techniques, 64 - Pau (France); Maury, G. [Montpellier-2 Univ., 34 (France). Dept. de Chimie Organique Fine

    1999-11-01

    Analytical parameters of hydride generation, trapping, gas chromatography and atomic absorption spectrometry detection in a quartz cell furnace (HG/GC/QFAAS) device have been optimized in order to develop an efficient and sensitive method for arsenic compounds speciation. Good performances were obtained with absolute detection limits in the range of 0.1 - 0.5 ng for arsenite, arsenate, mono-methyl-arsonic acid (MMAA), dimethyl-arsinic acid (DMAA) and trimethyl-arsine oxide (TMAO). A pH selective reduction for inorganic arsenic speciation was successfully reported. Application to the accurate determination of arsenic compounds in different environmental samples was performed. (authors)

  9. Determination of Gd, Sm, Eu and Dy in uranium compounds by atomic absorption spectrophotometry using a graphite furnace

    International Nuclear Information System (INIS)

    The separation of Gd, Sm, Eu and Dy from uranium and its determination by graphite furnace atomic absorption spectrophotometry is outlined. The lanthanides were separated by means of the percolation of the uranyl nitrate solution 0,3 M in HF (50-250g of U3O8 perliter) through an Al2O3 column. The lanthanides retained in the column were eluted with 1M HCl. As thorium is also retained into the column under these conditions, its interference was studied. The determination limits of the method range from 0,01 to 0,1 μg of lanthanide per gram of uranium. (Author)

  10. Hydride generation and condensation flame atomic absorption spectroscopic determination of antimony in raw coffee beans and processed coffee.

    Science.gov (United States)

    Kuennen, R W; Hahn, M H; Fricke, F L; Wolnik, K A

    1982-09-01

    A method was developed for determining Sb at nanogram per gram levels in raw coffee beans and processed coffee. The procedure uses either total acid digestion or extraction with 6M HCl followed by hydride generation/condensation with subsequent revolatilization of stibine (SbH3) and detection by flame atomic absorption spectroscopy. The lowest quantifiable level, based on a 2 g (dry weight) sample, is 2 ng Sb/g. The results of recoveries on spiked samples, precision studies on composited coffee samples, and the analysis of National Bureau of Standards Standard Reference Materials demonstrate the reliability and accuracy of the procedure. Sb concentrations in coffee samples were verified by neutron activation analysis and inductively coupled plasma atomic emission spectroscopy. Advantages of the method compared with the AOAC colorimetric procedure and hydride generation without condensation are discussed. PMID:7130087

  11. Antimony in drinking water, red blood cells, and serum: development of analytical methodology using transversely heated graphite furnace atomization-atomic absorption spectrometry.

    Science.gov (United States)

    Subramanian, K S; Poon, R; Chu, I; Connor, J W

    1997-05-01

    An atomic absorption spectrometric (AAS) method has been developed for determining microg/L levels of Sb in samples of water and blood. The AAS method is based on the concept of stabilized temperature platform furnace atomization (STPF) realized through the use of a transversely heated graphite atomizer (THGA) furnace, longitudinal Zeeman-effect background correction, and matrix modification with palladium nitrate-magnesium nitrate-nitric acid. The method of standard additions is not mandatory. The detection limit (3 standard deviations of the blank) is 2.6 microg Sb/L for the water, red blood cells (RBCs), and serum samples. Data are presented on the degree of accuracy and precision. The THGA-AAS method is simple, fast, and contamination-free because the entire operation from sampling to AAS measurement is carried out in the same tube. The method has been applied to the determination of Sb in some leachate tap water samples derived from a static copper plumbing system containing Sn/Sb solders, and in small samples (0.5 ml) of RBCs and serum derived from rats given Sb-supplemented drinking water. PMID:9175512

  12. Application of methane as a gaseous modifier for the determination of silicon using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Hans-Joachim, E-mail: hans-joachim.heinrich@bam.de; Kipphardt, Heinrich

    2012-04-15

    For determination of silicon in aqueous solutions by electrothermal atomic absorption spectrometry methane/argon mixtures as a gaseous modifier were applied during the pyrolysis step to improve the analytical performance. The beneficial effects observed on thermal stabilization, signal enhancement and shape of absorbance signals were attributed to the thermal decomposition products of methane, which were hydrogen and carbon black (soot). Using a 5% CH{sub 4} mixture with argon, the optimized pyrolysis and atomization temperatures were 1350 Degree-Sign C and 2450 Degree-Sign C, respectively. A flushing step following the pyrolysis was mandatory to avoid background absorption and accelerated deposition of pyrolytic graphite. Characteristic masses of 50 and 30 pg were obtained for standard transversely heated graphite atomizer (THGA) tubes and end-capped THGA tubes, respectively, which were lower than with other previously applied modifiers. A limit of detection of 0.2 {mu}g L{sup -1} (3 s, n = 10) has been obtained. In addition, this gaseous modifier did not contribute to contamination which often was significant when a liquid modifier solution was co-injected. The proposed method has been applied to the determination of silicon in ultrapure water, nitric and hydrochloric acids. - Highlights: Black-Right-Pointing-Pointer CH{sub 4}/Ar gas mixtures act as new modifier in the determination of Si using ET AAS. Black-Right-Pointing-Pointer CH{sub 4} improved thermal stabilization, atomization efficiency and signal shape of Si. Black-Right-Pointing-Pointer Optimum performance by addition of 5% CH{sub 4} during pyrolysis at 1350 Degree-Sign C. Black-Right-Pointing-Pointer Gaseous modifier does not contribute to blank values. Black-Right-Pointing-Pointer Optimized method suitable for determination of Si in ultrapure reagents.

  13. Nonlinear absorption in ionic liquids with transition metallic atoms in the anion

    Science.gov (United States)

    Nóvoa-López, José A.; López Lago, Elena; Seijas, Julio A.; Pilar Vázquez-Tato, M.; Troncoso, Jacobo; de la Fuente, Raúl; Salgueiro, José R.; Michinel, Humberto

    2016-02-01

    Nonlinear absorption has been investigated by open aperture Z-scan in ionic liquids obtained by combination of 1-butyl-3-methyl-imidazolium cations with anions containing a transition metal (Co, Zn, Cu or Ni) and thiocyanate groups. The laser source was a Ti:Sapphire oscillator (80-fs pulses, λ = 810 nm, repetition rate of 80.75 MHz). All liquids present quite low heat capacities that favor the development of strong thermal effects. Thermal effects and nonlinear absorption make them potential materials for optical limiting purposes.

  14. Determination of arsenic in liver and kidney of mice exposed in realgar by HG-FAAS%HG-FAAS 法测定雄黄染毒小鼠肝及肾脏中的砷含量

    Institute of Scientific and Technical Information of China (English)

    苑洁; 霍韬光; 王艳蕾; 郭婧潭; 焦雪鑫; 张颖花; 袁媛; 高岚岳; 姜泓

    2015-01-01

    A novel hydride generation‐flame atomic absorption spectrometry (HG‐FAAS ) method was established for the determination of arsenic in liver and kidney of mice after realgar exposure .The results showed that the method was accurate ,sensitive ,reliable and low detec‐tion limit .The distribution levels of arsenic in liver ,kidney of realgar infected mice were fairly with the liver and kidney content .Meanwhile hydride generation conditions were optimized .%建立了氢化物发生‐火焰原子吸收法(HG‐FAAS)测定雄黄染毒小鼠肝及肾脏中砷含量的方法。结果表明,该方法准确、灵敏、可靠、检出限低。雄黄染毒小鼠肝、肾脏中砷的分布水平相当。同时对氢化物发生条件进行了优化。

  15. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    Science.gov (United States)

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  16. [Determination of six mineral elements in roots, stems, leaves, flowers and seeds of Scutellaria baicalensis by FAAS].

    Science.gov (United States)

    Sheng, Ji-Ping; Chen, Hai-Rong; Shen, Lin

    2009-02-01

    A study was carried out on the contents of six trace elements, Ca, Cu, Fe, Mn, Zn and K, in roots, stems, leaves, flowers and seeds of planted Scutellaria baicalensis, by flame atomic absorption spectrophotometry (FAAS). The results indicated that Scutellaria baicalensis was rich in trace elements, meaning that it has a relatively high nutritive value. In stems of Scutellaria baicalensis, the content sequence of the six trace elements was found to be Fe > Mn > Zn = Cu > K > Ca. In leaves, the content sequence of the six trace elements was Fe> Mn > Zn > Cu > K > Ca. In flowers and seeds it was Ca > Fe > Mn > Zn > Cu > K, and Ca > Fe > Zn > Mn > Cu >K, separately, and in roots it was Ca > Fe > Cu > Mn > Zn > K. The stems, leaves, flowers and seeds are rich in Fe, whose content is higher than that in pork liver, Mn and Zn, but lower in Ca. The flowers, seeds and roots are especially rich in Ca, whose content is higher than that in bone, indicating that different parts of Scutellaria baicalensis may accumulate different mineral element. This study, for the first time, researched into Ca, Cu, Fe, Mn, Zn and K contents in different parts of Scutellaria baicalensis, which helps explain the multifunction of Scutellaria baicalensis and provides theoretical basis for further developing its medical and edible value. PMID:19445242

  17. A new synthesis, characterization and application chelating resin for determination of some trace metals in honey samples by FAAS.

    Science.gov (United States)

    Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz

    2016-07-15

    In this study, we developed a simple and rapid solid phase extraction (SPE) method for the separation/preconcentration and determination of some trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly [2-(4-methoxyphenylamino)-2-oxoethyl methacrylate-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid] (MPAEMA-co-DVB-co-AMPS), was synthesized and characterized. This chelating resin was used as a new adsorbent material for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) ions. The parameters influential on the determination of this trace metals were examined. Under the optimum conditions, the detection limits (DL) of the method for trace metals were found to be (3s) in the range of 0.9-2.2 μg L(-1) (n=21), the preconcentration factor was calculated as 200 and the relative standard deviation was obtained achieved as ⩽2% for n=11. The method was performed for the determination of trace metals in some honey samples and standard reference materials. PMID:26948616

  18. Green method for ultrasensitive determination of Hg in natural waters by electrothermal-atomic absorption spectrometry following sono-induced cold vapor generation and 'in-atomizer trapping'

    International Nuclear Information System (INIS)

    Sono-induced cold vapor generation (SI-CVG) has been used for the first time in combination with a graphite furnace atomizer for determination of Hg in natural waters by electrothermal-atomic absorption spectrometry after in situ trapping onto a noble metal-pretreated platform (Pd, Pt or Rh) inserted into a graphite tube. The system allows 'in-atomizer trapping' of Hg without the use of conventional reduction reactions based on sodium borohydride or tin chloride in acid medium for cold vapor generation. The sono-induced reaction is accomplished by applying ultrasound irradiation to the sample solution containing Hg(II) in the presence of an organic compound such as formic acid. As this organic acid is partly degraded upon ultrasound irradiation to yield CO, CO2, H2 and H2O, the amount of lab wastes is minimized and a green methodology is achieved. For this purpose, experimental variables influencing the generation/trapping process are fully investigated. The limit of detection for a 10 min trapping time and 10 mL sample volume was 0.03 μg L-1 (Integrated absorbance) and the repeatability expressed as relative standard deviation was about 3%. Carbonates and chlorides at 100 mg L-1 level caused a signal depression by 20-30%. The enhanced trapping efficiency observed with the sono-induced cold vapor generation as compared with 'in-atomizer trapping' methods employing chemical vapor generation is discussed. A reaction pathway for SI-CVG is proposed on the basis of the current knowledge for synthesis of noble metal nanoparticles by ultrasound

  19. Colorimetric and atomic absorption spectrometric determination of mucolytic drug ambroxol through ion-pair formation with iron and thiocyanate.

    Science.gov (United States)

    Levent, Abdulkadir; Sentürk, Zühre

    2010-09-01

    Colorimetric and atomic absorption spectrometric methods have been developed for the determination of mucolytic drug Ambroxol. These procedures depend upon the reaction of iron(III) metal ion with the drug in the presence of thiocyanate ion to form stable ion-pair complex which extractable chloroform. The red-coloured complex was determined either colorimetrically at 510 nm or by indirect atomic absorption spectrometry (AAS) via the determination of the iron content in the formed complex. The optimum experimental conditions for pH, concentrations of Fe(3+) and SCN(-), shaking time, phase ratio, and the number of extractions were determined. Under the proposed conditions, linearity was obeyed in the concentration ranges 4.1x10(-6) - 5.7x10(-5) M (1.7-23.6 µg mL(-1)) using both methods, with detection limits of 4.6x10(-7) M (0.19 µg mL(-1)) for colorimetry and 1.1x10(-6) M (0.46 µg mL(-1)) for AAS. The proposed methods were applied for the determination of Ambroxol in tablet dosage forms. The results obtained were statistically analyzed and compared with those obtained by applying the high-performance liquid chromatographic method with diode-array detection.

  20. Contents of cadmium, mercury and lead in fish from the Atlantic sea (Morocco) determined by atomic absorption spectrometry.

    Science.gov (United States)

    Chahid, Adil; Hilali, Mustapha; Benlhachimi, Abdeljalil; Bouzid, Taoufiq

    2014-03-15

    As a part of a specific monitoring program, lead (Pb) cadmium (Cd) and mercury (Hg) concentrations in important species of fish from various fishing ports of the southern Kingdom of Morocco (Sardina pilchardus, Scomber scombrus, Plectorhinchus mediterraneus, Trachurus trachurus, Octopus vulgaris, Boops boops, Sarda sarda, Trisopterus capelanus, and Conger conger) were investigated by the Moroccan Reference Laboratory (NRL) for trace elements in foodstuffs of animal origin. The samples were analysed for lead and cadmium by a graphite furnace atomic absorption spectrometry (GFAAS); and for mercury by cold vapour atomic absorption spectrometry (CVAAS). The results were expressed as μg/g of wet weight (w/w). The levels of Cd, Pb and Hg in muscles of fish were 0.009-0.036, 0.013-0.114 and 0.049-0.194 μg/g, respectively. The present study showed that different metals were present in the sample at different levels but within the maximum residual levels prescribed by the EU for the fish and shellfish from these areas, in general, should cause no health problems for consumers.

  1. Column system using diaion HP-2MG for determination of some metal ions by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa; Soylak, Mustafa

    2004-02-23

    A column solid-phase extraction method for the preconcentration and determination of cadmium(II), copper(II), cobalt(II), iron(III), lead(II), nickel(II) and zinc(II) dithizone chelates by atomic absorption spectrometry has been described. Diaion HP-2MG was used as adsorbent for column studies. The influences of the various analytical parameters including pH of the aqueous solutions, amounts of ligand and resin were investigated for the retentions of the analyte ions. The recovery values are ranged from 95 to 102%. The influences of alkaline and earth alkaline ions were also discussed. The preconcentration factor was 375, when the sample volume and final volume are 750 and 2 ml, respectively. The detection limits of the analyte ions (k=3, N=21) were varying 0.08 {mu}g/l for cadmium to 0.25 {mu}g/l for lead. The relative standard deviations of the determinations at the concentration range of 1.8x10{sup -4} to 4.5x10{sup -5} mmol for the investigated elements were found to be lower than 9%. The proposed solid-phase extraction procedure were applied to the flame atomic absorption spectrometric determinations of analyte ions in natural waters (sea, tap, river), microwave digested samples (milk, red wine and rice) and two different reference standard materials (SRM1515 apple leaves and NRCC-SLRS-4 riverine water)

  2. MERCURY QUANTIFICATION IN SOILS USING THERMAL DESORPTION AND ATOMIC ABSORPTION SPECTROMETRY: PROPOSAL FOR AN ALTERNATIVE METHOD OF ANALYSIS

    Directory of Open Access Journals (Sweden)

    Liliane Catone Soares

    2015-08-01

    Full Text Available Despite the considerable environmental importance of mercury (Hg, given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique, were used in validation of the method, which proved to be accurate and precise.

  3. Determination of total selenium in pharmaceutical and herbal supplements by hydride generation and graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Kazi, Tasneem G; Kolachi, Nida F; Afridi, Hassan I; Brahman, Kapil Dev; Shah, Faheem

    2014-01-01

    The total selenium (Se) was determined in herbal and pharmaceutical supplements used for liver diseases. The total Se contents were determined in different pharmaceutical and herbal supplements by hydride generation atomic absorption spectrometry (HGAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after microwave-assisted acid digestion. The accuracy of the techniques was evaluated by using certified reference material and the standard addition method. The recoveries of total Se were 99.4 and 99.0% for HGAAS and GFAAS, respectively. The precision of the techniques expressed as RSD were 2.34 and 4.54% for HGAAS and GFAAS measurements, respectively. The LOD values for HGAAS and GFAAS were 0.025 and 0.052 pglg, respectively. The concentrations of Se in pharmaceutical and herbal supplements were found in the range of 19.2-53.8 and 25.0-42.5 pg/g, respectively, corresponding to 35-76% and 45-76% of the total recommended dose of Se for adults. PMID:25632445

  4. Flow Injection and Atomic Absorption Spectrometry - An Effective and Attractive Analytical Chemical Combination

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Nielsen, Steffen

    1998-01-01

    One of the advantages of the flow injection (FI) concept is that it is compatible with virtually all detection techniques. Being a versatile vehicle for enhancing the performance of the individual detection devices, the most spectacular results have possibly been obtained in conjunction with atomic...

  5. DETERMINATION OF COPPER AND ZINC IN MINERAL WATERS BY ATOMIC ABSORPTION SPECTROPHOTOMETRY

    Directory of Open Access Journals (Sweden)

    Tatiana Mitina

    2011-12-01

    Full Text Available The content of copper and zinc in mineral waters were determined by atomic spectroscopy with preliminary extraction of metals. Validation of the technique was carried out by the method of standard additions and proved the reliability of analytical data.

  6. Influence of soil composition in the determination of chromium by atomic absorption spectrometry with flame air / acetylene

    International Nuclear Information System (INIS)

    The Air-acetylene Flame Atomic Absorption determination of chromium is a complex task, being strongly influenced by sample composition and instrumental conditions. The objective of this work was to study the influence of Al, Ca, Fe, K, Mg, and Na on the absorption of chromium in the air-acetylene flame, both separately and combined in solution, when acetylene flow and burner height vary. Dissolutions of the mixtures simulated the composition of four soils from the Quibu River Basin in Havana, Cuba. Chromium absorption first increased and then decreased with increment of acetylene flow for shorter burner heights (∼ 2-4 mm); while a continuous increase was observed for larger heights (> 4 mm). This behavior was the same in the presence and absence of interfering chemical element, mentioned above. On the other hand, the dependence of the magnitude of the interference with acetylene flow and burner height was complex and dependent on the interfering element, particularly at larger heights where the behavior of Al was remarkably different. The interference of the four mixtures of Al, Ca, K, Fe, Mg and Na decreased in comparison to individual interfering effects and was less dependent on acetylene flow and burner height. Finally, a significant reduction of interference on chromium determination in soil samples was achieved by an adequate selection of acetylene flow and burner height

  7. Chemical vapor generation of silver for atomic absorption spectrometry with the multiatomizer: Radiotracer efficiency study and characterization of silver species

    International Nuclear Information System (INIS)

    Volatile Ag species were generated in flow injection arrangement from nitric acid environment in the presence of surfactants (Triton X-100 and Antifoam B) and permanent Pd deposits as the reaction modifiers. Atomic absorption spectrometry (AAS) with multiple microflame quartz tube atomizer heated to 900 deg. C was used for atomization; evidence was found for thermal mechanism of atomization. Relative and absolute limits of detection (3σ, 250 μl sample loop) measured under optimized conditions were: 1.4 μg l-1 and 0.35 ng, respectively. The efficiency of chemical vapor generation (CVG) as well as spatial distribution of residual analyte in the apparatus was studied by 111Ag radioactive indicator (half-life 7.45 days) of high specific activity. It was found out that 23% of analyte was released into the gaseous phase. However, only 8% was found on filters placed at the entrance to the atomizer due to transport losses. About 40% of analyte remained in waste liquid, whereas the rest was found deposited over the CVG system. Presented study follows the hypothesis that the 'volatile' Ag species are actually metallic nanoparticles formed upon reduction in liquid phase and then released with good efficiency to the gaseous phase. Number/charge size distributions of dry aerosol were determined by Scanning Mobility Particle Sizer. Ag was detected in 40-45 nm particles holding 10 times more charge if compared to Boltzmann equilibrium. At the same time, Ag was also present on 150 nm particles, the main size mode of the CVG generator. The increase of Ag in standards was reflected by proportional increase in particle number/charge for 40-45 nm size particles only. Transmission electron microscopy revealed particles of 8 ± 2 nm sampled from the gaseous phase, which were associated in isolated clusters of few to few tens of nanometres. Ag presence in those particles was confirmed by Energy Dispersive X-ray Spectroscopy (EDS) analysis.

  8. Determination of trace metallic elements in Huidouba by flame atomic absorption spectrometry%火焰原子吸收法测定灰兜巴中微量金属元素

    Institute of Scientific and Technical Information of China (English)

    杨孝容; 王延云; 向清祥; 熊俊如

    2013-01-01

    The correlation of trace metallic elements in Huidouba and cure diabetes mellitus was established according to results of determination of metal elements in Huidouba by flame atomic absorption spectrometry (FAAS).Huidouba,old tea and dirt of con-necting Huidouba were collected as samples .The samples were extracted with water through boiling and was filtered with gauze ,then the supernatant liquid was digested by nitric acid and perchloric acid and was dissolved in dilute nitric acid and was centrifugated , the centrifugate was used as analytical solution for FAAS .Zinc(Zn),chromium(Cr),selenium(Se),magnesium(Mg),manganese (Mn),cobalt(Co),copper(Cu),nickel(Ni),cadmium(Cd)were determined by FAAS.The results showed that the contents of Cu,Ni,Cd were low in the Huidouba ,however,their values in blood and hair of diabetic patients were higher as compared to nondia -betic patients.In contrast,Zn,Cr,Se,Mg,Mn,Co were high in Huidouba ,their contents in blood and hair of diabetic patients were lower than nondiabetic patients ’s.The levels of essential trace metallic elements ,Zn,Cr,Se,Mg,Mn,Co,Cu,Ni,Cd in Huidouba samples are very beneficial to diabetes mellitus .Huidouba may play a major role in allaying or curing diabetes mellitus .%用火焰原子吸收法测定灰兜巴中微量金属元素的含量,探讨灰兜巴中微量金属元素与治疗糖尿病的相关性。采集灰兜巴以及灰兜巴连接的老茶叶和土壤试样,水煮提取、纱布过滤、静止后取其上层液,用HNO3-HClO4消解,再用稀HNO3溶解,定容,离心,取其上清液,用火焰原子吸收光谱法测定Zn、Cr、Se、Mg、Mn、Co、Cu、Ni和Cd 9种元素的含量。结果表明糖尿病人常偏高的Cu、Ni和Cd元素在灰兜巴中含量相对较低,而糖尿病人常偏低的Zn、Cr、Se、Mg、Mn和Co元素在灰兜巴中的含量相对较高。灰兜巴中Zn、Cr、Se、Mg、Mn、Co、Cu、Ni和Cd等重要微量金属元素的含量很适合糖尿病人,

  9. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Vilar Farinas, M. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Barciela Garcia, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Garcia Martin, S. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Pena Crecente, R. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Herrero Latorre, C. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain)]. E-mail: cherrero@lugo.usc.es

    2007-05-22

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO{sub 3}){sub 2} and (NH{sub 4})H{sub 2}PO{sub 4}-Mg(NO{sub 3}){sub 2}] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 {mu}g L{sup -1}), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged

  10. Determination of Ultratrace Amounts of Copper(Ⅱ) in Water Samples by Electrothermal Atomic Absorption Spectrometry After Cloud Point Extraction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction (CPE). 1-( 2-Pyridylazo)-2-naphthol was used as the chelating reagent and Triton X-114 as the micellar-forming surfactant. CPE was conducted in a pH 8.0 medium at 40 ℃ for 10 min. After the separation of the phases by centrifugation, the surfactant-rich phase was diluted with 1 mL of a methanol solution of 0. 1 mol/L HNO3. Then 20 μL of the diluted surfactant-rich phase was injected into the graphite furnace for atomization in the absence of any matrix modifier. Various experimental conditions that affect the extraction and atomization processes were optimized. A detection limit of 5 ng/L was obtained after preconcentration. The linear dynamic range of the copper mass concentration was found to be 0-2.0ng/mL, and the relative standard deviation was found to be less than 3.1% for a sample containing 1.0 ng/mL Cu(Ⅱ). This developed method was successfully applied to the determination of ultratrace amounts of Cu in drinking water, tap water, and seawater samples.

  11. Emission, optical--optical double resonance, and excited state absorption spectroscopy of matrix isolated chromium and molybdenum atoms

    International Nuclear Information System (INIS)

    Making use of a combination of time-resolved emission, optical--optical double resonance, and excited state absorption spectroscopy, it has been possible to assign virtually all spectral features with energies below the z7P0 state of matrix isolated Cr atoms. The a5S state located at 7593 cm-1 in the free gaseous Cr atom has lifetimes of 6.32 and 5.1 s in Ar and Kr matrices, respectively. Matrix perturbations on Cr emission lines are small (-1). The dependence of nonradiative decay rates on the local density of states is elucidated. The magnitude of matrix shifts for a particular transition is correlated with the electronic configurations of ground and excited states and it is pointed out that states having only ''s'' electrons in addition to ''d'' electrons maintain their gas phase energy relationships in the matrix environment. Direct fluorescence is observed from the z7P0 level of Mo to the 7s ground state. The spin-orbit splitting of the ''relaxed'' z7P0 state is 690 cm-1, slightly lower than the 707 cm-1 splitting of the free gaseous Mo atom

  12. Microwave Digestion of Hair Samples in Closed Vessels for the Determinations of Copper and Iron by Derivative Flame Atomic Absorption Spectrometry using Flow-injection Technique%微波溶样-流动注射-导数火焰原子吸收光谱测定人发中的铜和铁

    Institute of Scientific and Technical Information of China (English)

    陈兰菊; 郑连义; 孙汉文

    2002-01-01

      本文以微波消解人发样,利用流动注射-导数火焰原子吸收法测定其中微量铜、铁的含量。微波溶样技术具有快捷、污染小、损失少、消化完全等优点;流动注射进样技术可以克服常规火焰原子吸收法耗样量大和基体干扰严重的缺点;导数技术应用于火焰原子吸收可提高方法的灵敏度和信号的选择性。微波溶样、流动注射与导数技术相结合应用于火焰原子吸收成功地测定了人发中的微量铜和铁。%  A new method was presented for the determinations of copper and iron in hair samples,which was based on the technique of microwave digestion in closed vessels,flow-injection and derivative flame atomic absorption spectrometry. The technique of microwave digestion is convenient, little of pollution, less in loss, and complete digestion. The flaws that sampling is large and matrix interference is serious in conventional flame atomic absorption spectrometry(FAAS) were overcome by flow-injection sampling technique. The sensitivity and signal selectivity were enhanced when derivative technique was used. This new method that derivative flame atomic absorption spectrometry combined with microwave digestion and flow-injection technique is simple and rapid with satisfactory results for determination of copper and iron in hair.

  13. Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Wen Xiaodong [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Wu Peng [Analytical and Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Chen Li [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Hou Xiandeng, E-mail: houxd@scu.edu.cn [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Analytical and Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China)

    2009-09-14

    In this work, the microsampling nature of tungsten coil electrothermal vaporization Ar/H{sub 2} flame atomic fluorescence spectrometry (W-coil ETV-AFS) as well as tungsten coil electrothermal atomic absorption spectrometry (W-coil ET-AAS) was used with cloud point extraction (CPE) for the ultrasensitive determination of cadmium in rice and water samples. When the temperature of the extraction system is higher than the cloud point temperature of the selected surfactant Triton X-114, the complex of cadmium with dithizone can be quantitatively extracted into the surfactant-rich phase and subsequently separated from the bulk aqueous phase by centrifugation. The main factors affecting the CPE, such as concentration of Triton X-114 and dithizone, pH, equilibration temperature and incubation time, were optimized for the best extract efficiency. Under the optimal conditions, the limits of detection for cadmium by W-coil ETV-AFS and W-coil ET-AAS were 0.01 and 0.03 {mu}g L{sup -1}, with sensitivity enhancement factors of 152 and 93, respectively. The proposed methods were applied to the determination of cadmium in certified reference rice and water samples with analytical results in good agreement with certified values.

  14. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  15. DETERMINATION OF HEAVY METAL SPECIES IN THE MUNICIPAL SEWAGE SLUDGE OF GUANGZHOU BY MICROWAVE DIGESTION- FLAM ATOMIC ADSORPTION SPECTROMETRY (FAAS)%微波消解-火焰原子吸收法测定广州市污水污泥中重金属的活性形态

    Institute of Scientific and Technical Information of China (English)

    刘敬勇; 孙水裕

    2011-01-01

    Flame atomic adsorption spectrometry was used to determine the total content and fractions of Gu, Zn,Ph, Ct, Ni, Mn in the sewage sludge from four different Wastewater Treatment Plants, Guangzhou. The airdried samples were dissolved in HNO3-HF before the total content determination, or, sequentially extracted with Community Bureau of Reference (BCR) three-step method before species determination for the heavy metals.The results showed that the contents of heavy metals in the sewage sludge were lower than that of the average values in China. The contents of Cu, Zn, Mn, Ni were relatively with large variation, but Pb, Cr was much lower. Although the contents of heavy metals were higher than the background values of Pearl River Delta crop soil, except for Cu content in one sludge sample, the others met the Standards of Pollutants Control in sludge for agricultural uses (GB18918-2002). Heavy metal contents in selected sludges had different forms. In the industrial sewage sludge, Cu, Cr existed mainly in oxidisable forms, but Pb was in the state of reducible and residual fractions. In the domestic sewage sludge, the heavy metals exist mainly in oxidisable and residual fractions, but the percentage of Mn in the exchangeable fraction and Zn in the oxidizable fraction was high. In all, the portion of mobile Cu, Zn and Mn species was high in the four sewage sludges examined, suggesting potential risk for transformation.%以广州4个大型污水处理厂的压滤出厂污泥为实验材料,采用BCR三步浸提法对污泥中Cu、Zn、Pb、Cr、Ni、Mn的4种形态进行测定,以HNO3-HF进行微波全量消解,利用火焰原子吸收(FAAS)检测Cu、Zn、Pb、Cr、Ni、Mn的全量和各形态的含量.结果表明,广州4种不同城市污泥中重金属含量低于全国污泥均值,其中Cu、Zn、Mn、Ni含量较高,变化幅度较大,而Pb、Cr含量较低.除1种污泥中Cu超标外,其它重金属基本符合国家农用控制标准(GB18918-2002),但所有污泥中

  16. Theory of x-ray absorption by laser-dressed atoms

    CERN Document Server

    Buth, C; Buth, Christian; Santra, Robin

    2006-01-01

    An ab initio theory is devised for the x-ray photoabsorption cross section of atoms in the field of a moderately intense optical laser (10^13 W/cm^2). The laser dresses the core-excited atomic states, which introduces a dependence of the cross section on the angle between the polarization vectors of the two linearly polarized radiation sources. We use the Hartree-Fock-Slater approximation to describe the atomic many-body problem in conjunction with a non-relativistic quantum-electrodynamic approach to treat the photon-electron interaction. The continuum wave functions of ejected electrons are treated with a complex absorbing potential that is derived from smooth exterior complex scaling. The solution to the two-color (x-ray plus laser) problem is discussed in terms of a direct diagonalization of the complex symmetric matrix representation of the Hamiltonian. Alternative treatments with time-independent and time-dependent non-Hermitian perturbation theories are presented that exploit the weak interaction stren...

  17. Atomic structure of Mn-rich nanocolumns probed by x-ray absorption spectroscopy

    Science.gov (United States)

    Rovezzi, M.; Devillers, T.; Arras, E.; d'Acapito, F.; Barski, A.; Jamet, M.; Pochet, P.

    2008-06-01

    In this letter, we have used the extended x-ray-absorption fine-structure (EXAFS) technique to investigate the structure of Mn-rich self-organized nanocolumns grown by low temperature molecular beam epitaxy. The EXAFS analysis has shown that Mn-rich nanocolumns exhibit a complex local structure that cannot be described by a simple substitutional model. Additional interatomic distances had to be considered in the EXAFS model which are in excellent agreement with the structure of a Ge-3Mn building block tetrahedron of Ge3Mn5.

  18. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    Science.gov (United States)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  19. 厚朴植物叶中金属元素的含量测定%Determination of Metal Elements in the Leaves of Magnolia officinalis by Flame Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    李国章; 李光锋

    2011-01-01

    [Objective] To determine the content of six metal elements like Ca, Mg, Fe, Zn, Cu and Mn in M. Officinalis leaves. [Method] Digested with HNO3-HClO4 mixed acid ( 5:1 ,V/V) , the content of Ca, Mg, Fe, Zn, Cu and Mn in M. Officinalis leaves was determined by flame atomic absorption speetrometry ( FA AS). [ Result] The content of Ca, Mg, Fe, Zn, Cu and Mn in M. Officinalis leaves was 580. 57, 278.63, 177.21, 16.70, 1.02 and 8.25 mg/kg, respectively. [Conclusion] The FAAS method is simple, rapid and accurate to determine the content of six metal elements in M. Officinalis leaves. The study can provide useful data for exploring the relationship between the content of metal elements and pharmacological actions in M. Officinalis leaves.%[目的]测定厚朴叶中Ca、Mg、Fe、Zn、Cu和Mn 6种金属元素含量.[方法]采用浓硝酸-高氯酸(5∶1,V/V)溶解消化处理样品,火焰原子吸收光谱法测定厚朴叶中Ca、Mg、Fe、Zn、Cu和Mn6种金属元素含量.[结果]厚朴花中Ca、Mg、Fe、Zn、Cu和Mn6种微量元素含量分别为580.57、278.63、177.21、16.7、1.02和8.25 mg/kg.[结论]采用原子吸收光谱法测定厚朴花中金属元素含量,操作简便、快速,结果准确,为探讨厚朴叶中金属元素含量与药理关系提供了有用的数据.

  20. 火焰原子吸收光谱法测定氢甲酰化反应液中铁%Determination of Iron in Hydroformylation Reaction Liquid by Flame Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    杜进祥; 王金春; 陈毅芳; 冯辉煌; 郑欣; 陈昌惠

    2001-01-01

    利用冰醋酸作溶剂,采用火焰原子吸收光谱法直接测定氢甲酰化反应液中的总铁含量。以1mol/L盐酸萃取样品,有机相与无机相分别用冰醋酸稀释后用火焰原子吸收法测定,可分别得到样品中有机铁与无机铁的含量。方法简便、快速、可靠,具有较好的精密度和准确度。回收率为93.5%—109%,相对标准偏差为1.0%—2.7%,方法的特征浓度为0.585μg/mL/1%。%Using acetic acid as the solvent, the total iron concentration in hydroformylation reaction liquid was directly determined by flame atomic absorption spectrometry. By 1mol/L HCl as extraction agent and acetic acid as solvent, organic and inorganic iron were quantitatively separated from hydroformylation reaction liquid and determined by FAAS. The method was proved to be simple, rapid, precise and convenient . The recovery is from 93.5% to 109%.The relative standard deviation (RSD)is in the range of 1.0%—2.7%. The characteristic concentration of the method is 0.585μg/mL/ 1%.

  1. Application of Box-Behnken design in the optimisation of an on-line pre-concentration system using knotted reactor for cadmium determination by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Anderson S. [Universidade Federal da Bahia, Instituto de Quimica, Nucleo de Excelencia em Quimica Analitica da Bahia, Campus Universitario de Ondina, Salvador, Bahia 40170-290 (Brazil); Universidade Estadual do Sudoeste da Bahia, Departamento de Quimica e Exatas, Campus de Jequie, Jequie, Bahia 45206-190 (Brazil); Santos, Walter N.L. dos [Universidade Federal da Bahia, Instituto de Quimica, Nucleo de Excelencia em Quimica Analitica da Bahia, Campus Universitario de Ondina, Salvador, Bahia 40170-290 (Brazil); Ferreira, Sergio L.C. [Universidade Federal da Bahia, Instituto de Quimica, Nucleo de Excelencia em Quimica Analitica da Bahia, Campus Universitario de Ondina, Salvador, Bahia 40170-290 (Brazil)]. E-mail: slcf@ufba.br

    2005-06-30

    The present paper proposes an on-line pre-concentration system for cadmium determination in drinking water using flame atomic absorption spectrometry (FAAS). Cadmium(II) ions are retained as 1-(2-pyridylazo)-2-naphthol (PAN) complex at the walls of a knotted reactor, followed of elution using hydrochloric acid solution. The optimization was performed in two steps using factorial design for preliminary evaluation and a Box-Behnken design for determination of the critical experimental conditions. The variables involved were: sampling flow-rate, reagent concentration, pH and buffer concentration, and as response the analytical signal (absorbance). The validation process was performed considering the parameters: linearity and other characteristics of the calibration curve, analytical features of on-line pre-concentration system, precision, effect of other ions in the pre-concentration system and accuracy. Using the optimized experimental conditions, the procedure allows cadmium determination with a detection limit (3 {sigma} / S) of 0.10 {mu}g L{sup -1}, a quantification limit (10 {sigma} / S) of 0.33 {mu}g L{sup -1}, and a precision, calculated as relative standard deviation (RSD) of 2.7% (n = 7) and 2.4% (n = 7) for cadmium concentrations of 5 and 25 {mu}g L{sup -1}, respectively. A pre-concentration factor of 18 and a sampling frequency of 48 h{sup -1} were obtained. The recovery for cadmium in the presence of several ions demonstrated that this procedure could be applied for the analysis of water samples. The method was applied for cadmium determination in drinking water samples collected in Salvador City, Brazil. The cadmium concentrations found in five samples were lower than the maximum permissible levels established by the World Health Organization.

  2. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    Energy Technology Data Exchange (ETDEWEB)

    Milne, Chris J; Pham, Van-Thai; Veen, Renske M van der; El Nahhas, Amal; Lima, Frederico; Vithanage, Dimali A; Chergui, Majed [Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Federale de Lausanne (Switzerland); Gawelda, Wojciech [Laser Processing Group, Instituto de Optica, CSIC (Spain); Johnson, Steven L; Beaud, Paul; Ingold, Gerhard; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Abela, Rafael [Swiss Light Source, Paul Scherrer Institut (Switzerland); Benfatto, Maurizio [Laboratori Nazionali di Frascati, INFN (Italy); Hauser, Andreas [Departement de Chimie Physique, Universite de Geneve (Switzerland); Bressler, Christian, E-mail: majed.chergui@epfl.c, E-mail: chris.milne@psi.c [European XFEL Project Team, Deutsches Elektronen Synchrotron (Germany)

    2009-11-15

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [Fe{sup II}(bpy){sub 3}]{sup 2+}, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 A. In addition an analysis technique using the reduced {chi}{sup 2} goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  3. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    International Nuclear Information System (INIS)

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 A. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  4. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Bencs, László; Laczai, Nikoletta; Ajtony, Zsolt

    2015-07-01

    A combination of former convective-diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass - m0) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m0 values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm3 min- 1) of the internal sheath gas during atomization. The theoretical and experimental ratios of m0(mini-flow)-to-m0(stop-flow) were closely similar for each study analyte. Likewise, the calculated m0 data gave a fairly good agreement with the corresponding experimental m0 values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology.

  5. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively.

  6. Pre-concentration of trace metals from sea-water for determination by graphite-furnace atomic-absorption spectrometry.

    Science.gov (United States)

    Sturgeon, R E; Berman, S S; Desaulniers, A; Russell, D S

    1980-02-01

    Determination of Cd, Zn, Pb, Cu, Fe, Mn, Co, Cr and Ni in coastal sea-water by graphite-furnace atomic-absorption spectrometry after preconcentration by solvent extraction and use of a chelating ion-exchange resin is described. Following the extraction of the pyrrolidine-N-carbodithioate and oxinate complexes into methyl isobutyl ketone, the trace metals are further preconcentrated by back-extraction into 1.5M nitric acid. Preconcentration on the chelating resin is effected by a combined column and batch technique, allowing greater preconcentration factors to be obtained. Provided samples are appropriately treated to release non-labile metal species prior to preconcentration, both methods yield comparable analytical results with respect to the mean concentrations determined as well as to mean relative standard deviations. Control and treatment of the analytical blank is also described. PMID:18962623

  7. Study of new technique of solid combustible materials to determination of volatile elements by flame atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    A new technique for direct trace element analysis of solid combustible materials is described. The samples (up to 10 mg) are weighed on a graphite platform wich is then placed in a quartz tube, at the focal point of three infrared lamps. When the lamps are turned on, the sample burns in a stream of air, and the resulting dry aerosol containing volatile elements such as Hg, Cd, Bi, Tl, Zn, Pb and Cu is carried into the mixing chamber and thence into the flame, where the atomic absorption measurement is carried out. This technique overcomes chemical sample preparation steps, avoiding contaminations of losses associated with these steps. A ''furnace in flame'' system where the aerosol is transported to a flame heated T-tube is also described. The influence of flame stoichiometry, observation height, platform material and air flux intensity was studied inorder to determine optimal analytical conditions. (author)

  8. An analysis of lead (Pb) from human hair samples (20-40 years of age) by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    This analysis of lead from human hair samples in five different groups namely scavengers from Payatas Quezon City, tricycle drivers, car shop workers, paint factory workers, and students from Polytechnic University of the Philippines. The people from Nagcarlan, Laguna represented as a ''base-line value'' or as a control group. The method applied was acid digestion using HNO3 and HClO4 then the samples were subjected to atomic absorption spectrophotometer. In terms of lead found from hair, the scavengers from Payatas Q.C. obtained high exposure of lead among the samples that were tested. The result of the analysis of concentration of lead was expressed in mg/L. (Authors)

  9. Cloud point extraction thermospray flame quartz furnace atomic absorption spectrometry for determination of ultratrace cadmium in water and urine

    Science.gov (United States)

    Wu, Peng; Zhang, Yunchang; Lv, Yi; Hou, Xiandeng

    2006-12-01

    A simple, low cost and highly sensitive method based on cloud point extraction (CPE) for separation/preconcentration and thermospray flame quartz furnace atomic absorption spectrometry was proposed for the determination of ultratrace cadmium in water and urine samples. The analytical procedure involved the formation of analyte-entrapped surfactant micelles by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution and a Triton X-114 solution. When the temperature of the system was higher than the cloud point of Triton X-114, the complex of cadmium-PDC entered the surfactant-rich phase and thus separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, the limit of detection was 0.04 μg/L for cadmium with a sample volume of 10 mL. The analytical results of cadmium in water and urine samples agreed well with those by ICP-MS.

  10. Cloud point extraction-thermospray flame quartz furnace atomic absorption spectrometry for determination of ultratrace cadmium in water and urine

    Energy Technology Data Exchange (ETDEWEB)

    Wu Peng [Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064 (China); Zhang Yunchang [College of Chemistry, Sichuan University, Chengdu, Sichuan 610064 (China); Lv Yi [College of Chemistry, Sichuan University, Chengdu, Sichuan 610064 (China); Hou Xiandeng [Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064 (China) and College of Chemistry, Sichuan University, Chengdu, Sichuan 610064 (China)]. E-mail: houxd@scu.edu.cn

    2006-12-15

    A simple, low cost and highly sensitive method based on cloud point extraction (CPE) for separation/preconcentration and thermospray flame quartz furnace atomic absorption spectrometry was proposed for the determination of ultratrace cadmium in water and urine samples. The analytical procedure involved the formation of analyte-entrapped surfactant micelles by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution and a Triton X-114 solution. When the temperature of the system was higher than the cloud point of Triton X-114, the complex of cadmium-PDC entered the surfactant-rich phase and thus separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, the limit of detection was 0.04 {mu}g/L for cadmium with a sample volume of 10 mL. The analytical results of cadmium in water and urine samples agreed well with those by ICP-MS.

  11. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium and nickel in drinking and wastewater samples.

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem G; Shah, Faheem; Afridi, Hassan I; Baig, Jameel Ahmed; Soomro, Abdul Sattar

    2013-01-01

    A simple method for the preconcentration of cadmium (Cd) and nickel (Ni) in drinking and wastewater samples was developed. Cloud point extraction has been used for the preconcentration of both metals, after formation of complexes with 8-hydroxyquinoline (8-HQ) and extraction with the surfactant octylphenoxypolyethoxyethanol (Triton X-114). Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation, and the Cd and Ni contents were measured by flame atomic absorption spectrometry. The experimental variables, such as pH, amounts of reagents (8-HQ and Triton X-114), temperature, incubation time, and sample volume, were optimized. After optimization of the complexation and extraction conditions, enhancement factors of 80 and 61, with LOD values of 0.22 and 0.52 microg/L, were obtained for Cd and Ni, respectively. The proposed method was applied satisfactorily for the determination of both elements in drinking and wastewater samples.

  12. Development of a cloud point extraction and preconcentration method for Cd and Ni prior to flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Manzoori, Jamshid L. [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: manzoori@tabrizu.ac.ir; Karim-Nezhad, Ghasem [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2004-09-13

    In this work a new cloud point extraction (CPE) methodology was developed for the separation and preconcentration of cadmium and nickel. The analyte in the initial aqueous solution was complexed with dithizone and Triton X-114 was added as surfactant. After phase separation, based on the cloud point of the mixture, and dilution of the surfactant-rich phase with tetrahydrofuran (THF), the enriched analytes were determined by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions and preconcentration of only 10 ml of sample in the presence of 0.05% Triton X-114, the enhancement factors of 52 and 39 and the detection limits of 0.31 {mu}g l{sup -1} and 1.2 {mu}g l{sup -1} were obtained for cadmium and nickel respectively. The proposed method was applied satisfactorily to the determination of cadmium and nickel in water samples.

  13. Atmospheric deposition of heavy metals studied by analysis of moss samples using neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    In a study of the atmospheric deposition of trace elements in different parts of Norway samples of the moss Hylocomium splendens were analyzed with respect to 26 elements. The determination of Cu, Zn, Pb, Cd and Ni was carried out by flame atomic absorption spectrometry, while an additional 21 elements were determined by instrumental neutron activation analysis. Several elements showed a substantially higher deposition in the southernmost parts of Norway than in places located farther north. As regards Pb, As and Sb, the difference amounted to a factor of ten or more. A similar but less pronounced trend was evident for elements such as V, Zn, Cd, Se and Ag. In some cases local pollution sources or marine aerosols had a significant effect on the results. For several heavy metals however long-distance transport from areas to the south and the south west of Norway was responsible for a major part of the air pollution

  14. Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media.

    Science.gov (United States)

    Zhang, Yiqi; Wu, Zhenkun; Yao, Xin; Zhang, Zhaoyang; Chen, Haixia; Zhang, Huaibin; Zhang, Yanpeng

    2013-12-01

    We experimentally demonstrate dressed multi-wave mixing (MWM) and the reflection of the probe beam due to electromagnetically induced absorption (EIA) grating can coexist in a five-level atomic ensemble. The reflection is derived from the photonic band gap (PBG) of EIA grating, which is much broader than the PBG of EIT grating. Therefore, EIA-type PBG can reflect more energy from probe than EIT-type PBG does, which can effectively affect the MWM signal. The EIA-type as well as EIT-type PBG can be controlled by multiple parameters including the frequency detunings, propagation angles and powers of the involved light fields. Also, the EIA-type PBG by considering both the linear and third-order nonlinear refractive indices is also investigated. The theoretical analysis agrees well with the experimental results. This investigation has potential applications in all-optical communication and information processing.

  15. Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media

    CERN Document Server

    Zhang, Yiqi; Yao, Xin; Zhang, Zhaoyang; Chen, Haixia; Zhang, Huaibin; Zhang, Yanpeng

    2013-01-01

    We experimentally demonstrate dressed multi-wave mixing (MWM) and the reflection of the probe beam due to electromagnetically induced absorption (EIA) grating can coexist in a five-level atomic ensemble. The reflection is derived from the photonic band gap (PBG) of EIA grating, which is much broader than the PBG of EIT grating. Therefore, EIA-type PBG can reflect more energy from probe than EIT-type PBG does, which can effectively affect the MWM signal. The EIA-type as well as EIT-type PBG can be controlled by multiple parameters including the frequency detunings, propagation angles and powers of the involved light fields. Also, the EIA-type PBG by considering both the linear and third-order nonlinear refractive indices is also investigated. The theoretical analysis agrees well with the experimental results. This investigation has potential applications in all-optical communication and information processing.

  16. Evaluation of trace elements in chewing tobacco and snuff using instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Waheed, S.; Siddique, N.; Rahman, S. [Chemistry Div., Directorate of Science, Pakistan Inst. of Nuclear Science and Tech., Islamabad (Pakistan)

    2009-07-01

    Nine samples of chewing tobacco, snuff, tobacco leaf and ash were analyzed using Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS). Almost all samples of chewing tobacco and snuff studied in this work contain substantial amounts of Mg, Mn, Na, K. V. Sc, Rb and Fe. Furthermore, varying amounts of Al, Ba, Ca, Ce, Co and Zn were also detected in all tobacco samples. Of the toxic elements which were determined using INAA. As, Sb and Hg were quantified in only few tobacco samples. However, other toxic elements, which were determined using AAS, such as Cu, Pb and Cd were detected in almost all samples of chewing tobacco and snuff. The concentration of majority of the detected elements is high in ash samples which imply that most elements in chewing tobacco and snuff may originate from the addition of ash. (orig.)

  17. Application of multiwalled carbon nanotubes treated by potassium permanganate for determination of trace cadmium prior to flame atomic absorption spectrometry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this study we investigated the enrichment ability of oxidized multiwalled carbon nanotubes (MWCNTs) and established a new method for the determination of trace cadmium in environment with flame atomic absorption spectrometry. The MWCNTs were oxidized by potassium permanganate under appropriate conditions before use as preconcentration packing. Parameters influencing the recoveries of target analytes were optimized. Under optimal conditions, the target analyte exhibited a good linearity (R2=0.9992)over the concentration range 0.5-50 ng/ml. The detection limit and precision of the proposed method were 0.15 ng/ml and 2.06%,respectively. The proposed method was applied to the determination of cadmium in real-world environmental samples and the recoveries were in the range of 91.3%-108.0%. All these experimental results indicated that this new procedure could be applied to the determination of trace cadmium in environmental waters.

  18. DIRECT DETERMINATION OF GOLD IN SUSPENSIONS OF ROCK AND ORE REFERENCE MATERIALS USING ELECTROTHERMAL HIGH RESOLUTION ATOMIC ABSORPTION SPECTROMETRY

    OpenAIRE

    Zakharov, Y. А.; Irisov, D. S.; Okunev, R. V.; Musin, R. Kh.; Haibullin, R. R.

    2014-01-01

    High resolution continuum source atomic absorption spectrometer ContrAA-700 with graphite furnace is used for direct gold determination in rocks and ores on the level 10-6-10-3 % mas. Russian standard reference materials of gold containing ore СЗР-4 (2.13 ± 0.05 g/ton), black slates of Sykhoy Log СЛг-1 (2.50 ± 0.03 g/ton) and СЧС-1 (0.10 ± 0.02 g/ton) in mass 1 mg was inserted into the furnace in the suspension form prepared on the mix of concentrated HNO3 and HCl (1:3) with following sevenfo...

  19. Quantitative analysis of trace impurities in iron metal powder using flame-atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Nuclear Fuel Complex (NFC) is responsible for fabrication of fuel and reactor core components required for operating the nuclear power reactors in India. Structural materials used in water cooled reactors must possess a combination of high corrosion resistance and low neutron absorption cross section. Alloys of zirconium meet all these requirements and hence preferred a choice for making structural materials. In order to ensure adequate mechanical strength to components in the reactor core and also for dependable corrosion resistance at elevated temperatures and pressurized water environment, zirconium has to be alloyed with certain alloying constituents like chromium, nickel, iron and tin to get desirable properties. That is how alloys of zirconium have become indispensable to present day CANDU type of reactors as structural components and as fuel cladding material. The present paper deals with the chemical characterization of iron metal powder to be used as alloying element in formation of zircaloy

  20. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin

    2007-05-01

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  1. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Peng Jinfeng; Liu Rui [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085 (China); Liu Jingfu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085 (China)], E-mail: jfliu@rcees.ac.cn; He Bin; Hu Xialin; Jiang Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085 (China)

    2007-05-15

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO{sub 3} that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L{sup -1}) and a relative standard deviation (2.5% at 50 ng L{sup -1} level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L{sup -1} and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  2. Determination of mercury in gasoline by cold vapor atomic absorption spectrometry with direct reduction in microemulsion media

    International Nuclear Information System (INIS)

    The determination of Hg in gasoline by cold vapor atomic absorption spectrometry, after direct aqueous NaBH4 reduction in a three-component (microemulsion) medium, was investigated. Microemulsions were prepared by mixing gasoline with propan-1-ol and 50% v / v HNO3 at a 20 : 15 : 1 volume ratio. A long-term homogeneous system was immediately formed this way. After reduction, the Hg vapor generated in a reaction flask was transported to an intermediate K2Cr2O7/H2SO4 trap solution in order to avoid poisoning of the Au-Pt trap by the gasoline vapors. A second reduction step was then conducted and the generated Hg vapor transported to the Au-Pt trap, followed by thermal release of Hg0 and atomic absorption measurement. Purified N2 was used as purge and transport gas. After multivariate optimization by central composite design calibration graphs showed coefficients of correlation of 0.9999 and a characteristic mass of 2 ng was obtained. Typical coefficients of variation of 5% and 6% were found for ten consecutive measurements at concentration levels of 1 and 8 μg L-1 of Hg2+, respectively. The limit of detection was 0.10 μg L-1 (0.14 μg kg-1) in the original sample. A total measurement cycle took 11 min, permitting duplicate analysis of 3 samples per hour. The results obtained with the proposed procedure in the analysis of commercial gasoline samples were in agreement with those obtained by a comparative procedure. Gasoline samples of the Rio de Janeiro city have shown Hg concentrations below 0.27 μg L-1

  3. Determination of mercury in gasoline by cold vapor atomic absorption spectrometry with direct reduction in microemulsion media

    Science.gov (United States)

    Brandão, Geisamanda Pedrini; de Campos, Reinaldo Calixto; Luna, Aderval Severino

    2005-06-01

    The determination of Hg in gasoline by cold vapor atomic absorption spectrometry, after direct aqueous NaBH 4 reduction in a three-component (microemulsion) medium, was investigated. Microemulsions were prepared by mixing gasoline with propan-1-ol and 50% v / v HNO 3 at a 20 : 15 : 1 volume ratio. A long-term homogeneous system was immediately formed this way. After reduction, the Hg vapor generated in a reaction flask was transported to an intermediate K 2Cr 2O 7/H 2SO 4 trap solution in order to avoid poisoning of the Au-Pt trap by the gasoline vapors. A second reduction step was then conducted and the generated Hg vapor transported to the Au-Pt trap, followed by thermal release of Hg 0 and atomic absorption measurement. Purified N 2 was used as purge and transport gas. After multivariate optimization by central composite design calibration graphs showed coefficients of correlation of 0.9999 and a characteristic mass of 2 ng was obtained. Typical coefficients of variation of 5% and 6% were found for ten consecutive measurements at concentration levels of 1 and 8 μg L -1 of Hg 2+, respectively. The limit of detection was 0.10 μg L -1 (0.14 μg kg -1) in the original sample. A total measurement cycle took 11 min, permitting duplicate analysis of 3 samples per hour. The results obtained with the proposed procedure in the analysis of commercial gasoline samples were in agreement with those obtained by a comparative procedure. Gasoline samples of the Rio de Janeiro city have shown Hg concentrations below 0.27 μg L -1.

  4. Phi Faa Ritual Music of the Northeastern Part of Thailand

    Directory of Open Access Journals (Sweden)

    Warawut Roengbuthra

    2006-03-01

    Full Text Available This article describes the indigenous peoples belief underlying the Phi Faa or the Shaman's ritual. The research focused on the components of the Phi Faa ritual as well as its music and how they interact. This study was comprised of site visits to each of the fourteen provinces in the Northern Isarn region of Thailand where data was collected from each regional cultural center. It was found that Phi Faa rituals were mainly in the following seven provinces: Skon Nakorn, Mukdahan, Nakorn Phanom, Udonthani, Kalasin, Khon Khaen and Chaiyaphum. It was also determined that the musical instrument used the most often in this ritual was the khean (a mouth organ and the rhythm of the lyrics were sung in the Isarn style named "Moh Lum". In the Phi Faa rituals, this style is specifically referred to as "Lamlong". In all the observed ailment rituals, Lamlong was sung by the medium and accompanied by the Khean to praise the ghosts as well as plead with them to come aid the people suffering from sickness. In addition, the Medium consulted oracles to discover the cause(s of the sickness. Even though the melodies of each song among the seven provinces are more similar than different, the lyrics were completely different due to the medium's spontaneous or improvised delivery. One notable departure from the general pattern of the Phi Faa ritual was found in the Kalasin province which was made up of mostly instrumental music with hardly any singing of lyrics.

  5. Dosage du mercure dans le gaz naturel par absorption atomique sans flammes Mercury Titration in Natural Gas by Flameless Atomic Absorption

    Directory of Open Access Journals (Sweden)

    La Villa F.

    2006-11-01

    Full Text Available Cet article présente la méthode mise au point par l'Institut Français du Pétrole pour déterminer par absorption atomique sans flamme, les traces de mercure métallique contenu dans un gaz naturel. La méthode d'analyse nécessite une extraction du mercure soit sous forme d'ion mercurique en faisant passer le gaz dans une solution oxydante, soit sous forme d'amalgame avec de l'or ou de l'argent. Le premier mode opératoire s'applique aux échantillons dont la concentration en mercure est supérieure à I ttg/Nm3, le second pour des concentrations inférieures à 5 pg/Nm3. Les seuils de détection sont respectivement 10 ng (en solution et 0,3 ng (en amalgame. La répétabilité pour 100 ng de mercure (en amalgame est de ± 7% pour une probabilité de.95 %. En conclusion, dans un échantillon de gaz naturel, compte tenu du volume des prélèvements effectués, il est possible de détecter des concentrations de l'ordre du nanogramme de mercure par mètre cube de gaz. This article describes the method developed by IFP using flameless atomic absorption to determine metallic mercury traces in a natural gas. The analyst method requires a mercury extraction either in the form of mercuric ions by making the gas pass through an oxidizing solution or in the form of an amalgam with gold or silver. The former operating method applies ta samples having a mercury concentration greater than I !ag/Nm3, and the latter for concentrations smaller than 5 (-Lg/Nm3. Detection thresholds are respectively 10 ng (in solution and 0.3 ng (in amalgam. The repeatability for 100 ng of mercury (in amalgam is ± 7 % with a probability of 95%. To conclude, in a sample of natural gas, considering the volume of the samples taken, it is possible ta detect concentrations in the vicinity of one nanogrom of mercury per cubic meter of gas.

  6. Unusual calibration curves observed for iron using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Welz, Bernhard, E-mail: w.bernardo@terra.com.b [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis-SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CMPq-INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador-BA (Brazil); Santos, Lisia M.G. dos [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis-SC (Brazil); Instituto Nacional de Controle de Qualidade em Saude-INCQS-Fiocruz, 21040-900 Rio de Janeiro-RJ (Brazil); Araujo, Rennan G.O. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis-SC (Brazil); Departamento de Quimica, Universidade Federal de Sergipe, 49100-000 Sao Cristovao-SE (Brazil); Jacob, Silvana do C. [Instituto Nacional de Controle de Qualidade em Saude-INCQS-Fiocruz, 21040-900 Rio de Janeiro-RJ (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CMPq-INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador-BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre-RS (Brazil); Okruss, Michael; Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-Department Berlin, 12489 Berlin (Germany)

    2010-03-15

    The simultaneous determination of cadmium and iron in plant and soil samples has been investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry. The primary cadmium resonance line at 228.802 nm and an adjacent secondary iron line at 228.726 nm, which is within the spectral interval covered by the charge-coupled device (CCD) array detector, have been used for the investigations. Due to the very high iron content in most of the soil samples the possibility has been investigated to reduce the sensitivity and extend the working range by using side pixels for measurement at the line wings instead of the line core. It has been found that the calibration curves measured at all the analytically useful pixels of this line consisted of two linear parts with distinctly different slopes. This effect has been independent of the positioning of the wavelength, i.e., if the Cd line or the Fe line was in the center of the CCD array. The most likely explanation for this unusual behavior is a significant difference between the instrument width DELTAlambda{sub Instr} and the absorption line width DELTAlambda{sub Abs}, which is quite pronounced in the case of Fe. Using both parts of the calibration curves and simultaneous measurement at the line center and at the wings made it possible to extend the working range for the iron determination to more than three orders of magnitude.

  7. The response of a neutral atom to a strong laser field probed by transient absorption near the ionisation threshold

    CERN Document Server

    Simpson, E R; Austin, D R; Diveki, Z; Hutchinson, S E E; Siegel, T; Ruberti, M; Averbukh, V; Miseikis, L; Strüber, C; Chipperfield, L; Marangos, J P

    2015-01-01

    We present transient absorption spectra of an extreme ultraviolet attosecond pulse train in helium dressed by an 800 nm laser field with intensity ranging from $2\\times10^{12}$ W/cm$^2$ to $2\\times10^{14}$ W/cm$^2$. The energy range probed spans 16-42 eV, straddling the first ionisation energy of helium (24.59 eV). By changing the relative polarisation of the dressing field with respect to the attosecond pulse train polarisation we observe a large change in the modulation of the absorption reflecting the vectorial response to the dressing field. With parallel polarized dressing and probing fields, we observe significant modulations with periods of one half and one quarter of the dressing field period. With perpendicularly polarized dressing and probing fields, the modulations of the harmonics above the ionisation threshold are significantly suppressed. A full-dimensionality solution of the single-atom time-dependent Schr\\"odinger equation obtained using the recently developed ab-initio time-dependent B-spline...

  8. Automated continuous monitoring of inorganic and total mercury in wastewater and other waters by flow-injection analysis and cold-vapour atomic absorption spectrometry

    OpenAIRE

    Birnie, S. E.

    1988-01-01

    An automated continuous monitoring system for the determination of inorganic and total mercury by flow-injection analysis followed by cold-vapour atomic absorption spectrometry is described. The method uses a typical flow-injection manifold where digestion and reduction of the injected sample takes place. Mercury is removed by aeration from the flowing stream in a specially designed air-liquid separator and swept into a silica cell for absorption measurement at a wavelength of 253.7 nm. A cal...

  9. Liquid-liquid extraction of zinc and cadmium with 1,2-naphthoquinone thiosemicarbazone into methyl isobutyl ketone, and their simultaneous determination by atomic-absorption spectrophotometry

    International Nuclear Information System (INIS)

    Zinc and cadmium are extracted from aqueous solution with 1,2-naphtoquinone thiosemicarbazone for simultaneous determination by atomic-absorption spectrophotometry. This compound reacts with zinc and cadmium in weakly acid medium to produce chelates which are extractable into methyl isobutyl ketone. The atomic absorption is measured at 213.9 and 228.8 nm for zinc and cadmium, respectively. The sensitivity is 0.3 ng per ml of original aqueous solution and several foreign ions are tolerated in 100-fold ratio to Zn or Cd. (Author)

  10. Determination of Pb(Ⅱ) and Cu(Ⅱ) by Electrothermal Atomic Absorption Spectrometry after Preconcentration by a Schiff Base Adsorbed on Surfactant Coated Alumina

    Institute of Scientific and Technical Information of China (English)

    SABER TEHRANI Mohammad; RASTEGAR Faramarz; PARCHEHBAF Ayob; KHATAMIAN Masoomeh

    2006-01-01

    1,2-Bis(salicylidenamino)ethane loaded onto sodium dodecyl sulfate-coated alumina was used as a new chelating sorbent for the preconcentration of traces of Pb(Ⅱ) and Cu(Ⅱ) prior to atomic absorption spectrometric determination. The influence of pH, flow rates of sample and eluent solutions, and foreign ions on the recovery of Pb(Ⅱ)by electrothermal atomic absorption spectrometry (ETAAS). The data of limit of detection (3σ) for Pb(Ⅱ) and Cu(Ⅱ)posed method was successfully applied to determination of lead and copper in different water samples.

  11. Treatment of the emission and absorption spectra of a general formalism Λ-type three-level atom driven by a two-mode field with nonlinearities

    International Nuclear Information System (INIS)

    An analytical expression of the emission and absorption spectra, for a Λ-type three-level cavity-bound atom interacting with a two-mode cavity field, is given using the dressed states of the system. We take explicitly into account the existence of forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. The characteristics of the emission and absorption spectra for binomial and squeezed coherent states of the modes are exhibited. The effects of the mean number of photons, detuning and the nonlinearity forms on the spectra are analysed

  12. Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell.

    Science.gov (United States)

    Lee, Yoon-Seok; Moon, Han Seb

    2014-06-30

    We report the spatial transport of spontaneously transferred atomic coherence (STAC) in electromagnetically induced absorption (EIA), which resulted from moving atoms with the STAC of the 5S(1/2) (F = 2)-5P(3/2) (F' = 3) transition of (87)Rb in a paraffin-coated vapor cell. In our experiment, two channels were spatially separate; the writing channel (WC) generated STAC in the EIA configuration, and the reading channel (RC) retrieved the optical field from the spatially transported STAC. Transported between the spatially separated positions, the fast light pulse of EIA in the WC and the delayed light pulse in the RC were observed. When the laser direction of the RC was counter-propagated in the direction of the WC, we observed direction reversal of the transported light pulse in the EIA medium. Furthermore, the delay time, the magnitude, and the width of the spatially transported light pulse were investigated with respect to the distance between the two channels.

  13. Determination of cadmium, aluminium, and copper in beer and products used in its manufacture by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Viñas, Pilar; Aguinaga, Nerea; López-García, Ignacio; Hernandez-Córdoba, Manuel

    2002-01-01

    Procedures were developed for determining cadmium, aluminium, and copper in beer and the products used in its manufacture by electrothermal atomic absorption spectrometry. Beer samples were injected into the furnace and solid samples were introduced as suspensions after preparation in a medium containing hydrogen peroxide, nitric acid, and ammonium dihydrogen phosphate for cadmium atomization. Calibration was performed with aqueous standards, and characteristic masses and detection limits were, respectively, 1 and 0.3 pg for cadmium, 18 and 5.4 pg for aluminium, and 5.6 and 6.8 pg for copper. Different samples of beer, wort, brewer's yeast, malt, raw grain, and hops were analyzed by the proposed procedures. Cadmium was found in low concentrations (0.001-0.08 microg/g and 0-1.3 ng/mL); copper (3-13 microg/g and 25-137 ng/mL) and aluminium (0.6-9 microg/g and 0.1-2 microg/mL) were found at higher levels. The reliability of the procedure was confirmed by comparing the results obtained with others based on microwave oven sample digestion, and by analyzing several certified reference materials. PMID:12083268

  14. Compartmentalization of trace elements in guinea pig tissues by INAA [instrumental neutron activation analysis] and AAS [atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Human scalp hair analysis has received considerable attention from a variety of disciplines over the last 20 yr or so. Trace element levels of hair have been used in environmental, epidemiological, forensic, nutritional, predictive, and preventive medicine studies. There still exist confusion, skepticism, and controversy, however, among the experts as well as lay persons in the interpretation of hair trace element data. Much of the criticism stems from the lack of quantitative and reliable data on the ability of hair to accurately reflect dose-response relationships. To better define the significance or hair trace element levels (under the auspices of the International Atomic Energy Agency), the authors have undertaken a controlled set of animal experiments in which trace element levels in hair and other tissues have been measured after a mild state of systemic intoxication by chronic, low-does exposure to cadmium and selenium. Instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS) methods have been developed for the determination of several elements with a high degree of precision and accuracy

  15. Investigation of lead contents in lipsticks by solid sampling high resolution continuum source electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Gunduz, Sema; Akman, Suleyman

    2013-02-01

    In this study, the lead contents of different kinds of lipsticks were determined by solid sampling high resolution continuum source electrothermal atomic absorption spectrometry (SS-HR-CS ET AAS) and the results were compared with those obtained after microwave-assisted acid digestion of the samples. The experimental parameters for solid sampling such as the maximum amount of sample on the platforms of solid autosampler, graphite furnace program were optimized. Samples were directly loaded on the platforms of solid autosampler between 0.25 and 2.0mg and lead was determined applying 800 °C for pyrolysis and 2100 °C for atomization. Under optimized conditions, interference-free determination could be performed using aqueous standards. The LOD and the characteristic mass were 21.3 and 12.6 pg, respectively. The lead in the same lipstick samples was determined after microwave-assisted acid digestion and compared with those found by solid sampling. Mostly, there was no significant difference between the lead concentrations found by the two techniques. The lead in 25 lipstick samples with different properties were 0.11-4.48 ng mg(-1) which were not significantly different from those (<0.026-7.19 ng mg(-1)) reported by FDA for around 400 samples. PMID:23099440

  16. An X-ray absorption spectroscopy investigation of the local atomic structure in Cu-Ni-Si alloy after severe plastic deformation and ageing

    Science.gov (United States)

    Azzeddine, H.; Harfouche, M.; Hennet, L.; Thiaudiere, D.; Kawasaki, M.; Bradai, D.; Langdon, T. G.

    2015-08-01

    The local atomic structure of Cu-Ni-Si alloy after severe plastic deformation (SPD) processing and the decomposition of supersaturated solid solution upon annealing were investigated by means of X-ray absorption spectroscopy. The coordination number and interatomic distances were obtained by analyzing experimental extend X-ray absorption fine structure data collected at the Ni K-edge. Results indicate that the environment of Ni atoms in Cu-Ni-Si alloy is strongly influenced by the deformation process. Moreover, ageing at 973 K affects strongly the atomic structure around the Ni atoms in Cu-Ni-Si deformed by equal channel angular pressing and high pressure torsion. This influence is discussed in terms of changes and decomposition features of the Cu-Ni-Si solid solution.

  17. Effect of two kinds of iron drops on the discoloration, atomic absorption and structural changes of primary teeth enamel

    Directory of Open Access Journals (Sweden)

    Mehran M.

    2009-03-01

    Full Text Available "nBackground and Aim: Black staining after taking iron drops on the primary teeth is always concern of parents. There is not an exact explanation for the mechanism of iron black staining. The purpose of this study was to compare tooth discolorations, atomic absorption and structural changes of primary teeth enamel caused by two kinds of iron drops[ Kharazmi(Iran and Fer-in-sol(USA]. "nMaterials and Methods: In this ex-vivo study, 93 sound primary teeth in normal color range were divided into five groups. Two groups of samples were immersed into the Artificial Caries Challenge(ACC for two weeks before getting exposured to iron drops: Group 1 Control(NS: sound enamel teeth which were kept in Normal Saline environment(NS(13teeth. Group 2 (NS-KH: NS, kharazmi iron drop (20 teeth. Group 3 (ACC-KH: ACC, Kharazmi iron drop (20teeth. Group 4 (NS-F-in-S: NS, Fer-in-Sol iron drop (20teeth. Group 5 (ACC-F-in-S: ACC, Fer-in-Sol iron drop. Visual tooth discolorations were determined by a specialist in operative dentistry who was not aware of experimental groups. The iron concentration was measured by ICP system (Vista-pro, Australia and the structural changes were studied by SEM (Philips, Netherland. The data of discoloration were studied with Kruskal-Wallis test and multiple comparison using Bonferroni type test, and with the data of atomic absorption were studied with oneway ANOVA test and Tukey HSD test. "nResults: The discoloration in the teeth immersed into the ACC (ACC-KH, ACC-F-in-S was more severe than the sound enamel surface (NS-KH, NS-F-IN-S (p<0.001 and Kharazmi iron drop caused more discoloration in the teeth immersed into the ACC (p=0.018. The teeth immersed into the ACC, absorbed more iron than the sound enamel surface (p<0.001 and also the teeth immersed into the ACC absorbed more Kharazmi iron drop (p<0.001. In the Scanning Electron Microscopy study, at low magnification in the sound teeth the perikymata was arranged regular. At low

  18. Cloud point extraction for the determination of cadmium and lead in biological samples by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Maranhão, Tatiane De A.; Borges, Daniel L. G.; da Veiga, Márcia A. M. S.; Curtius, Adilson J.

    2005-06-01

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of Cd and Pb from digested biological samples. After complexation with O,O-diethyldithiophosphate (DDTP) in hydrochloric acid medium, the analytes are quantitatively extracted to the phase rich in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 0.1 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by electrothermal atomic absorption spectrometry (ET AAS). The adopted concentrations for DDTP, Triton X-114 and hydrochloric acid were all optimized. Pyrolysis and atomization temperatures were optimized using the extracts and pyrolysis temperatures of 700 °C for both elements and atomization temperatures of 1400 and 1600 °C for cadmium and lead, respectively, were used without adding any modifier, which shows that considerable analyte stabilization is provided by the medium itself. A more detailed investigation was carried out to determine which components of the extract were responsible for the high thermal stability achieved and it revealed that the amount of DDTP added and the phosphorus content of the digested samples contributed significantly to this phenomenon. Detection limits (3σB) of 6 and 40 ng g-1, along with enrichment factors of 129 and 18 for Cd and Pb, respectively, were achieved. The proposed procedure was applied to the analysis of five certified biological reference materials after microwave-assisted acid digestion in a mixture of H2O2 and HNO3. Comparison with certified values was performed for accuracy evaluation, resulting in good agreement according to the t-test for a 95% confidence level. The high efficiency of cloud point extraction to carry out the determination of the studied analytes in complex matrices was, therefore, demonstrated.

  19. Cloud point extraction for the determination of cadmium and lead in biological samples by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Maranhao, Tatiane de A. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil)]. E-mail: daniel@qmc.ufsc.br; Veiga, Marcia A.M.S. da [Instituto de Quimica, Universidade de Sao Paulo, 05513-970, CP 26077, Sao Paulo, SP (Brazil); Curtius, Adilson J. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil)

    2005-06-30

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of Cd and Pb from digested biological samples. After complexation with O,O-diethyldithiophosphate (DDTP) in hydrochloric acid medium, the analytes are quantitatively extracted to the phase rich in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 0.1 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by electrothermal atomic absorption spectrometry (ET AAS). The adopted concentrations for DDTP, Triton X-114 and hydrochloric acid were all optimized. Pyrolysis and atomization temperatures were optimized using the extracts and pyrolysis temperatures of 700 deg. C for both elements and atomization temperatures of 1400 and 1600 deg. C for cadmium and lead, respectively, were used without adding any modifier, which shows that considerable analyte stabilization is provided by the medium itself. A more detailed investigation was carried out to determine which components of the extract were responsible for the high thermal stability achieved and it revealed that the amount of DDTP added and the phosphorus content of the digested samples contributed significantly to this phenomenon. Detection limits (3{sigma} {sub B}) of 6 and 40 ng g{sup -1}, along with enrichment factors of 129 and 18 for Cd and Pb, respectively, were achieved. The proposed procedure was applied to the analysis of five certified biological reference materials after microwave-assisted acid digestion in a mixture of H{sub 2}O{sub 2} and HNO{sub 3}. Comparison with certified values was performed for accuracy evaluation, resulting in good agreement according to the t-test for a 95% confidence level. The high efficiency of cloud point extraction to carry out the determination of the studied analytes in complex matrices was, therefore, demonstrated.

  20. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Teramoto, Yoshiyuki; Ono, Ryo [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2012-06-01

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.

  1. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    International Nuclear Information System (INIS)

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N2 discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N2 discharge pulse is estimated to be 2.9 - 9.8 × 1013 atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 × 1016 atoms/J. The energy efficiency of atomic nitrogen production in N2 discharge is constant against the discharge energy, while that in N2/O2 discharge increases with discharge energy. In the N2/O2 discharge, two-step process of N2 dissociation plays significant role for atomic nitrogen production.

  2. Determination of Arsenic, Mercury and Barium in herbarium mount paper using dynamic ultrasound-assisted extraction prior to atomic fluorescence and absorption spectrometry

    OpenAIRE

    Lummas, S.; Ruiz-Jimenez, J.; Luque de Castro, M.D.; Colston, Belinda; Gonzalez-Rodriguez, Jose; B. Chen; W. Corns

    2011-01-01

    A dynamic ultrasound-assisted extraction method using Atomic Absorption and Atomic Flourescence spectrometers as detectors was developed to analyse mercury, arsenic and barium from herbarium mount paper originating from the herbarium collection of the National Museum of Wales. The variables influencing extraction were optimised by a multivariate approach. The optimal conditions were found to be 1% HNO3 extractant solution used at a flow rate of 1 mL min-1. The duty cycle and amplitude of the ...

  3. Local surrounding of vanadium atoms in CuCr1 - x V x S2: X-ray absorption spectroscopy analysis

    Science.gov (United States)

    Smirnova, Yu. O.; Smolentsev, N. Yu.; Guda, A. A.; Soldatov, M. A.; Kvashnina, K. O.; Glatzel, P.; Korotaev, E. V.; Soldatov, A. V.; Mazalov, L. N.

    2013-03-01

    In the present work local surrounding of vanadium atoms in layered copper-chromium disulfides CuCr1 - x V x S2 is investigated using high-resolution X-ray absorption spectroscopy above vanadium K-edge. Based on experimental and theoretically simulated spectra comparison it is shown that vanadium atoms replace chromium ones even at high concentrations of vanadium and that they are in 3+ oxidation state.

  4. Mapping atomic and diffuse interstellar band absorption across the Magellanic Clouds and the Milky Way

    CERN Document Server

    Bailey, Mandy; Sarre, Peter J; Beckman, John E

    2015-01-01

    Diffuse interstellar bands (DIBs) trace warm neutral and weakly-ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic study of two of the strongest DIBs, at 5780 and 5797 \\AA, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na\\,{\\sc i}\\,D and Ca\\,{\\sc ii}\\,K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 \\AA\\ DIB with neutral gas, and the 5780 \\AA\\ DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na\\,{\\sc i}\\,D line traces the denser ISM whereas the Ca\\,{\\sc ii}\\,K line traces the more diffuse, warmer gas. The Ca\\,{\\sc ii}\\,K line has an additional component at $\\sim200$--220 km s$^{-1}$ seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic ...

  5. Speciative Determination of Dissolved Inorganic Fe(II, Fe(III and Total Fe in Natural Waters by Coupling Cloud Point Extraction with FAAS

    Directory of Open Access Journals (Sweden)

    Ramazan GÜRKAN

    2013-12-01

    Full Text Available A new cloud point extraction (CPE method for the preconcentration of trace iron speciation in natural waters prior to determination by flame atomic absorption spectrometry (FAAS was developed in the present study. In this method, Fe(II sensitively and selectively reacts with Calcon carboxylic acid (CCA in presence of cetylpyridinium chloride (CPC yielding a hydrophobic complex at pH 10.5, which is then entrapped in surfactant-rich phase. Total Fe was accurately and reliably determined after the reduction of Fe(III to Fe(II with sulfite. The amount of Fe(III in samples was determined from the difference between total Fe and Fe(II. CPC was used not only as an auxiliary ligand in CPE, but also as sensitivity enhancement agent in FAAS. The nonionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114 was used as an extracting agent. The analytical variables affecting CPE efficiency were investigated in detail. The preconcentration/enhancement factors of 50 and 82 respectively, were obtained for the preconcentration of Fe(II with 50 mL solution. Under the optimized conditions, the detection limit of Fe(II in linear range of 0.2-60 μg L-1 was 0.06 μg L-1. The relative standard deviation was 2.7 % (20 μg L-1, N: 5, recoveries for Fe(II were in range of 99.0-102.0% for all water samples including certified reference materials (CRMs. In order to verify its accuracy, two CRMs were analyzed and the results obtained were statistically in good agreement with the certified values.

  6. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    Science.gov (United States)

    Kruger, Pamela C.; Parsons, Patrick J.

    2007-03-01

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass ( m0), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 ± 0.6 pg, compared to 16.1 ± 0.7 pg for the Z5100, and 23.3 ± 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection limits (3

  7. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Pamela C. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Parsons, Patrick J. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Lead Poisoning/Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 (United States)], E-mail: patrick.parsons@wadsworth.org

    2007-03-15

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass (m{sub 0}), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 {+-} 0.6 pg, compared to 16.1 {+-} 0.7 pg for the Z5100, and 23.3 {+-} 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection

  8. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m0) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m0 values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm3 min−1) of the internal sheath gas during atomization. The theoretical and experimental ratios of m0(mini-flow)-to-m0(stop-flow) were closely similar for each study analyte. Likewise, the calculated m0 data gave a fairly good agreement with the corresponding experimental m0 values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m0) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m0 of 18 analytes were calculated for stopped & mini furnace gas flows. • Experimental

  9. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  10. International comparison of Cd content in a quality control material of Navajuelas (Tagelus dombeii) determined by anodic stripping voltammetry, atomic absorption spectrometry and neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Queirolo, F. (Universidad Catolica del Norte, Antofagasta (Chile). Dept. of Chemistry Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry); Ostapczuk, P. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie); Valenta, P.; Stegen, S. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry); Marin, C.; Vinagre, F.; Sanchez, A. (Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry)

    1991-05-01

    The determination of Cd was performed by neutron activation analysis (NAA), atomic absorption spectrometry (AAS) with flame or in the electrothermal mode and anodic stripping voltammetry in the differential pulse mode (DPASV) and the square wave mode (SWASV). (orig./EF).

  11. Investigations into the Role of Modifiers for Entrapment of Hydrides in Flow Injection Hydride Generation Electrothermal Atomic Absorption Spectrometry as Exemplified for the Determination of Germanium

    DEFF Research Database (Denmark)

    Hilligsøe, Bo; Andersen, Jens Enevold Thaulov; Hansen, Elo Harald

    1997-01-01

    Pd-conditioned graphite tubes, placed in the furnace of an atomic absorption spectrometry instrument, are used for entrapment of germane as generated in an associated flow injection system. Two different approaches are tested with the ultimate aim to allow multiple determinations, that is...

  12. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    Science.gov (United States)

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  13. Determination of Pb in Biological Samples by Graphite Furnace Atomic Absorption Spectrophotometry: An Exercise in Common Interferences and Fundamental Practices in Trace Element Determination

    Science.gov (United States)

    Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.

    2004-01-01

    An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…

  14. USEPA METHOD STUDY 38 - SW-846 METHOD 3010, ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TRACE METALS BY FLAME ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    An interlaboratory collaborative study was conducted on SW-846 Method 3010, "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by Flame Atomic Absorption Spectroscopy", to determine the mean recovery and precision for analyses of 21 trace metals in surf...

  15. Speciation of arsenic(III)/arsenic(V) and selenium(IV)/ selenium(VI) using coupled ion chromatography - hydride generation atomic absorption spectrometry

    Science.gov (United States)

    Simple analytical methods have been developed to speciate inorganic arsenic and selenium in the ppb range using coupled ion chromatography-hydride generation atomic absorption spectrometry. Because of the differences in toxicity and adsorption behavior, determinations of the redox states arsenite A...

  16. 离子液体[Bmim]PF6萃取-火焰原子吸收法测定水中痕量镉%Determination of Trace Cadmium in Water by Flame Atomic Absorption Spectrometry/with Ionic Liquid Extraction

    Institute of Scientific and Technical Information of China (English)

    王良; 李清; 闫永胜; 崔运成

    2011-01-01

    A novel method for the separation and determination of trace cadmium in environmental water sample by flame atomic absorption spectrometry (FAAS) with ionic liquid extraction was proposed. When the acidity of the solvent was pH 8, ionic liquid 1-butyl-3-methylimi dazolium hexafluorophosphate ([Bmim]PF6) was used as extractant, dithizone as the chelant, the sample was extracted for 3 min and determined by FAAS. The research result indicated that under optimum conditions, there was favorable linearity relation between 0. 15 and 58. 2 μg/L, detection limit (3δ) was 0. 095 ng/L (n=11). The recovery of this method was in the range of 90. 0% -108. 0% . The relative standard deviation is less than 5. 8% for the analysis of practical sample.%1 引言化学工业排放的废水含有大量金属镉,对环境产生严重危害,因而环境水样中痕量镉的准确测定具有重要意义.目前,常用原子吸收光谱法[1]测定痕量的镉,但由于环境水样中镉的含量低且样品复杂,为了提高分析方法的灵敏度和选择性,样品的预分离与富集至关重要.液-液萃取是一种常用的预分离与富集方法,但常用有机溶剂作萃取剂,易带来二次污染.离子液体是一种无毒、无污染、不挥发的"绿色溶剂"[2],具有安全、高效、环保等优点[3],已萃取分离了多种金属离子[4-5].本实验以双硫腙(H2Dz)为螯合剂,以离子液体1-丁基-3-甲基咪唑六氟磷酸盐( [Bmim]PF6)为萃取剂.用火焰原子吸收光谱法(FAAS)测定了离子液体相中的Cd,建立了痕量Cd的分离与分析方法,并应用于环境水样的分析.

  17. Determination of platinum traces contamination by graphite furnace atomic absorption spectrometry after preconcentration by cloud point extraction

    International Nuclear Information System (INIS)

    A simple and sensitive method is described for the determination of platinum surface contamination originating from cisplatin, carboplatin and oxaliplatin. Following extraction from swabs and preconcentration with the cloud point extraction (CPE) method, detection was by graphite furnace atomic absorption spectrometry (GFAAS). After desorption of platinum compounds from the swab, CPE involved on preconcentration of platinum in aqueous solution with diethyldithiocarbamate (DDTC) as chelating agent and Triton X-114 as extraction medium. DDTC is not only a chelating agent, but may also be a good candidate for the inactivation of platinum compounds. DDTC is recommended by the Word Health Organization (WHO) for the destruction of platinum-based anticancer drugs. The main factors affecting CPE efficiency, pH of the sample solution, concentrations of DDTC and Triton X-114, equilibration temperature and incubation time, were evaluated in order to enhance sensitivity of the method. The desorption of platinum compounds from the swab was investigated in parallel. Since platinum is bound to DDTC, it must exchange with copper in order to enhance platinum atomizing by GFAAS. A preconcentration factor of 29 was obtained for 10 mL of a platinum solution at 10 μg mL-1. In optimal conditions, the limit of detection was 0.2 ng mL-1, corresponding to 2.0 ng of platinum metal on the swab. Absorbance was linear between 0.7 and 15 ng mL-1. The proposed method was applied for the determination of surface contamination by platinum compounds with correct results.

  18. Determination of platinum traces contamination by graphite furnace atomic absorption spectrometry after preconcentration by cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chappuy, M. [Analytical Development Laboratory, Pharmaceutical Establishment of Paris Hospitals, 7 rue du Fer a Moulin, 75005 Paris (France); Caudron, E., E-mail: eric.caudron@eps.aphp.fr [Analytical Development Laboratory, Pharmaceutical Establishment of Paris Hospitals, 7 rue du Fer a Moulin, 75005 Paris (France); Groupe de Chimie Analytique de Paris-Sud, EA 4041, IFR 141, School of Pharmacy, Univ Paris-Sud, 92296 Chatenay-Malabry (France); Bellanger, A. [Department of Pharmacy, Pitie-Salpetriere Hospital (Paris Public Hospital Authority), 47 boulevard de l' hopital, 75013 Paris (France); Pradeau, D. [Analytical Development Laboratory, Pharmaceutical Establishment of Paris Hospitals, 7 rue du Fer a Moulin, 75005 Paris (France)

    2010-04-15

    A simple and sensitive method is described for the determination of platinum surface contamination originating from cisplatin, carboplatin and oxaliplatin. Following extraction from swabs and preconcentration with the cloud point extraction (CPE) method, detection was by graphite furnace atomic absorption spectrometry (GFAAS). After desorption of platinum compounds from the swab, CPE involved on preconcentration of platinum in aqueous solution with diethyldithiocarbamate (DDTC) as chelating agent and Triton X-114 as extraction medium. DDTC is not only a chelating agent, but may also be a good candidate for the inactivation of platinum compounds. DDTC is recommended by the Word Health Organization (WHO) for the destruction of platinum-based anticancer drugs. The main factors affecting CPE efficiency, pH of the sample solution, concentrations of DDTC and Triton X-114, equilibration temperature and incubation time, were evaluated in order to enhance sensitivity of the method. The desorption of platinum compounds from the swab was investigated in parallel. Since platinum is bound to DDTC, it must exchange with copper in order to enhance platinum atomizing by GFAAS. A preconcentration factor of 29 was obtained for 10 mL of a platinum solution at 10 {mu}g mL{sup -1}. In optimal conditions, the limit of detection was 0.2 ng mL{sup -1}, corresponding to 2.0 ng of platinum metal on the swab. Absorbance was linear between 0.7 and 15 ng mL{sup -1}. The proposed method was applied for the determination of surface contamination by platinum compounds with correct results.

  19. Behaviour of the thermospray nebulizer as a system for the introduction of organic solutions in flame atomic absorption spectrometry

    Science.gov (United States)

    Mora, Juan; Canals, Antonio; Hernandis, Vicente

    1996-10-01

    The results obtained in the evaluation of the thermospray nebulizer for the introduction of organic solutions in atomic spectrometry are described. To this end, the influence of the nebulization variables (i.e., liquid flow, control temperature and inner diameter of the capillary) and of the nature of the solvent on the fraction of solvent vaporized, on the drop size distribution of the primary aerosol, on the rates of analyte and solvent transport to the atomization cell and on the analytical signal has been studied. Experimental fraction of solvent vaporized values obtained under different nebulization conditions are reported for the first time. The results show that the characteristics of the aerosol generated strongly depend on the nebulization variables since they determine the amount of energy available for surface generation. The median of the volume drop size distribution of the primary aerosol decreases when the control temperature or the liquid flow is increased or when the inner diameter of the capillary is decreased. As regards the physical properties of the solvent, the so-called expansion factor (i.e., the volume of vapour produced per unit volume of liquid solvent) is the most influential. Surface tension and viscosity are much less significant here than in ordinary pneumatic nebulization. The volatility of the solvent and the characteristics of the primary aerosol determine the solvent transport efficiency which reaches values close to 100% in many cases. The analytical signal is mainly determined by the analyte transport rate, although a severe negative effect appears which is related to the high solvent load to the flame. Due to this fact, the use of organic solvents instead of water in thermospray nebulization for Flame Atomic Absorption Spectrometry does not provide clear advantages, at least without desolvation. A new modified Nukiyama-Tanasawa equation has been presented and evaluated in order to predict the Sauter mean diameter of the thermal

  20. [Determination of trace elements in Lophatherum gracile brongn from different habitat by microwave digestion-atomic absorption spectroscopy].

    Science.gov (United States)

    Yuan, Ke; Xue, Yue-Qin; Gui, Ren-Yi; Sun, Su-Qin; Yin, Ming-Wen

    2010-03-01

    A method of microwave digestion technique was proposed to determine the content of Zn, Fe, Cu, Mn, K, Ca, Mg, Ni, Cd, Pb, Cr, Co, Al, Se and As in Lophatherum gracile brongn of different habitat by atomic absorption spectroscopy. The RSD of the method was between 1.23% and 3.32%, and the recovery rates obtained by standard addition method were between 95.8% and 104.20%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of metal elements in Lophatherum gracile brongn. The experimental results also indicated that different areas' Lophantherum gracile brongn had different trace elements content. The content of trace elements K, Mg, Ca, Fe and Mn beneficial to the human body was rich. The content of the heavy metal trace element Pb in Lophantherum gracile brongn of Hunan province was slightly high. The content of the heavy metal trace element Cu in Lophantherum gracile brongn of Guangdong province and Anhui province is also slightly higher. Beside, the contents of harmful trace heavy metal elements Cd, Cu, Cr, Pb and As in Lophatherum gracile brongn of different habitat are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation and National Food Sanitation Standard. These determination results provided the scientific data for further discussing the relationship between the content of trace elements in Lophantherum gracile brongn and the medicine efficacy.

  1. Standard test method for graphite furnace atomic absorption spectrometric determination of lead and cadmium extracted from ceramic foodware

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers procedures for using graphite furnace atomic absorption spectroscopy (GFAAS) to quantitatively determine lead and cadmium extracted by acetic acid at room temperature from the food-contact surface of foodware. The method is applicable to food-contact surfaces composed of silicate-based materials (earthenware, glazed ceramicware, decorated ceramicware, decorated glass, and lead crystal glass) and is capable of determining lead concentrations greater than 0.005 to 0.020 g/mL and cadmium concentrations greater than 0.0005 to 0.002 g/mL, depending on instrument design. 1.2 This test method also describes quality control procedures to check for contamination and matrix interference during GFAAS analyses and a specific sequence of analytical measurements that demonstrates proper instrument operation during the time period in which sample solutions are analyzed. 1.3 Cleaning and other contamination control procedures are described in this test method. Users may modify contamination cont...

  2. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    International Nuclear Information System (INIS)

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-μl volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium

  3. Evaluation of four sample treatments for determination of platinum in automotive catalytic converters by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Conventional and microwave assisted digestion, both using aqua regia, alkaline fusion with lithium metaborate and aqueous slurries were evaluated as sample treatments for determination of Pt in automotive catalytic converters by Graphite Furnace Atomic Absorption Spectrometry (GF-AAS). Determination of platinum by GF-AAS in samples of the catalytic converter's substrates, prepared by the four methods described, indicates that the highest platinum concentration i.e. maximum Pt extraction in the range of 748 ± 15-998 ± 10 μg mL-1, is obtained for samples dissolved by alkaline fusion, closely followed by analysis of aqueous plus Triton X-100 slurries 708 ± 14-958 ± 10 μg mL-1, while neither one of the acid digestion procedures achieved total dissolution of the samples. Slurry analysis is thus shown to be a viable alternative and is recommended, based on its speed and ease of implementation. Aqueous standards calibration curves and the standard addition methods were also compared. The results showed that no appreciable matrix effects are present, regardless of the sample preparation procedure used. Precision of the measurements, expressed as percentage relative standard deviation, ranged between 2.5 to 4.9%. Accuracy of the results was assessed by recovery tests which rendered values between 98.9 and 100.9%

  4. Quantification of minerals and trace elements in raw caprine milk using flame atomic absorption spectrophotometry and flame photometry.

    Science.gov (United States)

    Singh, Mahavir; Yadav, Poonam; Garg, V K; Sharma, Anshu; Singh, Balvinder; Sharma, Himanshu

    2015-08-01

    This study reports minerals and trace elements quantification in raw caprine milk of Beetal breed, reared in Northern India and their feed, fodder & water using flame atomic absorption spectrophotometry and flame photometry. The mineral and trace elements' concentration in the milk was in the order: K > Ca > Na > Fe > Zn > Cu. The results showed that minerals concentration in caprine milk was lesser than reference values. But trace elements concentration (Fe and Zn) was higher than reference values. Multivariate statistical techniques, viz., Pearsons' correlation, Cluster analysis (CA) and Principal component analysis (PCA) were applied to analyze the interdependences within studied variables in caprine milk. Significantly positive correlations were observed between Fe - Zn, Zn - K, Ca - Na and Ca - pH. The results of correlation matrix were further supported by Cluster analysis and Principal component analysis as primary cluster pairs were found for Ca - pH, Ca - Na and Fe - Zn in the raw milk. No correlation was found between mineral & trace elements content of the milk and feed. PMID:26243956

  5. Determination of platinum and palladium in road dust after their separation on immobilized fungus by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Woinska, Sylwia; Godlewska-Zylkiewicz, Beata, E-mail: bgodlew@uwb.edu.pl

    2011-07-15

    A flow solid phase extraction procedure based on biosorption of Pt(IV) and Pd(II) on Aspergillus sp. immobilized on cellulose resin Cellex-T was proposed for the separation and preconcentration of Pt and Pd before their determination by electrothermal atomic absorption spectrometry (ETAAS). The analytical conditions including sample pH, eluent type, flow rates of sample and eluent solutions were examined. The analytes were selectively retained on the biosorbent in acidic medium (pH 1) and subsequently eluted from the column with 1 mL of thiourea solution (0.25 mol L{sup -1} thiourea in 0.3 mol L{sup -1} HCl). The reproducibility of the procedure was below 5%. The limit of detection of the method was 0.020 ng mL{sup -1} for Pt and 0.012 ng mL{sup -1} for Pd. The method validation was performed by analysis of certified reference materials BCR-723 (tunnel dust) and SARM-76 (platinum ore). The developed separation procedure was applied to the determination of Pt and Pd in road dust samples by ETAAS. The applied biosorbent is characterized by high sorption capacity: 0.47 mg g{sup -1} for Pt and 1.24 mg g{sup -1} for Pd.

  6. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL-1. The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  7. Determination of total arsenic in coal and wood using oxygen flask combustion method followed by hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A simple and sensitive procedure for the determination of total arsenic in coal and wood was conducted by use of oxygen flask combustion (OFC) followed by hydride generation atomic absorption spectrometry (HGAAS). The effect of various items (composition of absorbent, standing time between the combustion and filtration, particle size and mass of sample) was investigated. Under the optimized conditions of the OFC method, nine certified reference materials were analyzed, and the values of arsenic concentration obtained by this method were in good accordance with the certified values. The limit of detection (LOD) and relative standard deviation (RSD) of the method were 0.29 μg g-1 and less than 8%, respectively. In addition, eight kinds of coals and four chromated copper arsenate (CCA)-treated wood wastes were analyzed by the present method, and the data were compared to those from the microwave-acid digestion (MW-AD) method. The determination of arsenic in solid samples was discussed in terms of applicable scope and concentration range of arsenic.

  8. Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of); Naderi, Mehrnoush [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of)

    2009-06-15

    A new method based on single-drop microextraction (SDME) combined with electrothermal vaporization atomic absorption spectroscopy (ETV-AAS) was developed for the trace determination of mercury in water samples. A microdrop of m-xylene was applied as the extraction solvent. After extraction, the microdrop was introduced, directly, into a graphite furnace of AAS. Some important extraction parameters such as type of solvent, volume of solvent, sample stirring, ionic strength, sample pH, chelating agent concentration, sample temperature, and extraction time were investigated and optimized. The highest possible microdrop volume of 10 {mu}L, a sampling temperature of 27 {sup o}C, and use of m-xylene containing dithizone, as complexing agent, are major parameters led to achieve a high enrichment factor of 970. Under the optimized conditions, the detection limit of the method was 0.01 {mu}g L{sup -1} and the relative standard deviation was 6.1% (n = 7). The proposed method has been successfully applied to the determination of Hg in two river water samples. The effects of interfering species such as Pt, Pd, Cu, Au, and Bi, having the tendency to form complexes with dithizone, at two concentration levels of 100 and 1000 {mu}g L{sup -1} were also studied.

  9. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations

    International Nuclear Information System (INIS)

    A preconcentration-separation technique for lead(II), cadmium(II), chromium(III), nickel(II) and manganese(II) ions has been established. The procedure is based on coprecipitation of these ions by the aid of Cu(II)-dibenzyldithiocarbamate precipitate. The precipitate was dissolved in 0.5 mL of concentrated HNO3, and made up to 5 mL with distilled water. The heavy metals were determined by flame atomic absorption spectrometer. The effects of analytical parameters like pH, amounts of reagents, sample volume, etc. on the recoveries of heavy metals were investigated. The influences of matrix ions were also examined. The detection limits for the heavy metals based on 3 sigma (N = 21) were found in the range of 0.34-0.87 μg L-1. In order to validate the proposed method, two certified reference materials of NIST SRM 2711 Montana soil and NIST SRM 1515 Apple leaves were analyzed with satisfactory results. The proposed method was applied for the determination of lead, cadmium, chromium, nickel and manganese in environmental samples

  10. Solid sample graphite furnace atomic absorption spectroscopy for supporting arsenic determination in sediments following a sequential extraction procedure

    International Nuclear Information System (INIS)

    Solid sample graphite furnace atomic absorption spectroscopy (SS-GFAAS) has been proposed since its appearance as a good alternative to wet methods of analysis in many matrices. Here, we examine the use of SS-GFAAS for total and leachable arsenic determination in sediments from distinct origins. Our direct analysis of seven selected sediments was not always free of spectral matrix interference, but the spectroscopic technique gave very good results for (a) direct arsenic measurement in solid residues from a range of leaching processes, (b) total arsenic determination (HNO3 leaching test) and (c) the evaluation of its potential remobilisation (modified BCR three-step sequential extraction scheme). For the optimised instrumental conditions, the analysis limit was 0.44 mg kg-1 and long-term reproducibility was between 10-15%. The sum of leachable arsenic in HNO3 65% and the residual fraction, gave recoveries from 72 to 118% of total arsenic content. These results are a good alternative to other cumbersome wet methods involving HF

  11. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun Mei, E-mail: sunmei@ustc.edu.cn [Hefei National Laboratory for Physical Sciences on Microscale, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026 (China); Wu Qianghua [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL{sup -1}. The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  12. Cloud point extraction-flame atomic absorption spectrometry method for preconcentration and determination of trace cadmium in water samples.

    Science.gov (United States)

    Ning, Jinyan; Jiao, Yang; Zhao, Jiao; Meng, Lifen; Yang, Yaling

    2014-01-01

    A method based on cloud point extraction (CPE) separation/preconcentration of trace cadmium (Cd) as a prior step to its determination by flame atomic absorption spectrometry has been developed. Cadmium reacted with 8-hydroxyquinoline to form hydrophobic chelates, which were extracted into the micelles of nonionic surfactant oligoethylene glycol monoalkyl ether (Genapol X-080) in an alkaline medium. Octanol was used to depress the cloud point of Genapol X-080 in the extraction process. The chemical variables that affect the CPE, such as pH of complexation reaction, amount of chelating agent, Genapol X-080 and octanol were evaluated and optimized. Under optimized conditions, linearity was obeyed in the range of 10-500 μg/L, with the correlation coefficient of 0.9993. For 5 mL of sample solution, the enhancement factor was about 20. The limit of detection and limit of quantification of the method were 0.21 and 0.63 μg/L, respectively. The relative standard deviations (n = 6) was 3.2% for a solution containing 100 μg/L of Cd. The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. Recoveries of spiked samples varied in the range of 94.1-103.8%.

  13. Determination of Trace Amounts of Nickel (Ⅱ) by Graphite Furnace Atomic Absorption Spectrometry Coupled with Cloud Point Extraction

    Institute of Scientific and Technical Information of China (English)

    SHAH Syed Mazhar; WANG Hao-nan; SU Xing-guang

    2011-01-01

    A new method based on the cloud point extraction(CPE) for separation and preconcentration of nickel(Ⅱ)and its subsequent determination by graphite furnace atomic absorption spectrometry(GFAAS) was proposed,8-hydroxyquinoline and Triton X-100 were usedl as the ligand and surfactant respectively. Nickel(Ⅱ) can form a hydrophobic complex with 8-hydroxyquinoline, the complex can be extracted into the small volume surfactant rich phase at the cloud point temperature(CPT) for GFAAS determination. The factors affecting the cloud point extraction,such as pH, ligand concentration, surfactant concentration, and the incubation time were optimized. Under the optimal conditions, a detection limit of 12 ng/L and a relative standard deviation(RSD) of 2.9% were obtained for Ni(Ⅱ) determination. The enrichment factor was found to be 25. The proposed method was successfully applied to the determination of nickel(Ⅱ) in certified reference material and different types of water samples and the recovery was in a range of 95% 103%.

  14. Determination of trace nickel in water samples by cloud point extraction preconcentration coupled with graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun Zhimei [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Department of Chemistry and Biology, Huainan Normal University, Huainan 232001 (China); Liang Pei [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)]. E-mail: liangpei@mail.ccnu.edu.cn; Ding Qiong [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Cao Jing [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)

    2006-09-21

    A new method based on the cloud point extraction (CPE) preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the determination of trace nickel in water samples. When the micelle solution temperature is higher than the cloud point of surfactant p-octylpolyethyleneglycolphenyether (Triton X-100), the complex of Ni{sup 2+} with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) could enter surfactant-rich phase and be concentrated, then determined by GFAAS. The main factors affecting the cloud point extraction were investigated in detail. An enrichment factor of 27 was obtained for the preconcentration of Ni{sup 2+} with 10 mL solution. Under the optimal conditions, the detection limit of Ni{sup 2+} is 0.12 ng mL{sup -1} with R.S.D. of 4.3% (n = 10, c = 100 ng mL{sup -1}). The proposed method was applied to determination of trace nickel in water samples with satisfactory results.

  15. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of fluoroquinolone antibiotics using ammonium reineckate ion-pair complex formation

    Science.gov (United States)

    Ragab, Gamal H.; Amin, Alaa S.

    2004-03-01

    Three accurate, rapid and simple atomic absorption spectrometric, conductometric and colorimetric methods were developed for the determination of norfloxacin (NRF), ciprofloxacin (CIP), ofloxacin (OFL) and enrofloxacin (ENF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone in the range 5.0-65, 4.0-48, 5.0-56 and 6.0-72 μg ml -1 of NRF, CPF, OFL and ENF, respectively. The optimizations of various experimental conditions were described. The results obtained showed good recoveries of 99.15±1.15, 99.30±1.40, 99.60±1.50, and 99.00±1.25% with relative standard deviations of 0.81, 1.06, 0.97, and 0.69% for NRF, CPF, OFL, and ENF, respectively. Applications of the proposed methods to representative pharmaceutical formulations are successfully presented.

  16. Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, B.R.

    1979-05-25

    Recent studies have shown geothermal power plants to have a significant environmental impact on the ground water of the area. The heavy metals arsenic and mercury are special problems, as both are concentrated by flora and fauna exposed to the effluent waters. Because the toxicity of these and other metallic pollutants present in geothermal effluent depends on the chemical form, or speciation, of the particular metal, any serious study of the environmental impact of a geothermal development should include studies of trace metal speciation, in addition to trace metal concentration. This proposal details a method for determining metal speciation in dilute waters. The method is based on ion-exchange and backed by atomic absorption spectrometry and multiple scanning anodic stripping voltammetry. Special laboratory studies will be performed on mercury, arsenic and selenium speciation in synthetic geothermal water. The method will be applied to three known geothermal areas in Washington and Oregon, with emphasis on the speciation of mercury, arsenic and selenium in these waters. The computer controlled electrochemical instrumentation was built and tested. Using this instrumentation, a new experimental procedure was developed to determine the chemical form (speciation) of metal ions in very dilute solutions (ng/ml). This method was tested on model systems including Pb, Cd, and As with C1/sup -/, CO/sub 3//sup 2 -/ and glycine ligands. Finally, the speciation of lead in a geothermal water was examined and the PbC1/sup +/ complex was observed and quantified.

  17. Evaluation of four sample treatments for determination of platinum in automotive catalytic converters by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Puig, Ana I.; Alvarado, José I.

    2006-09-01

    Conventional and microwave assisted digestion, both using aqua regia, alkaline fusion with lithium metaborate and aqueous slurries were evaluated as sample treatments for determination of Pt in automotive catalytic converters by Graphite Furnace Atomic Absorption Spectrometry (GF-AAS). Determination of platinum by GF-AAS in samples of the catalytic converter's substrates, prepared by the four methods described, indicates that the highest platinum concentration i.e. maximum Pt extraction in the range of 748 ± 15-998 ± 10 μg mL - 1 , is obtained for samples dissolved by alkaline fusion, closely followed by analysis of aqueous plus Triton X-100 slurries 708 ± 14-958 ± 10 μg mL - 1 , while neither one of the acid digestion procedures achieved total dissolution of the samples. Slurry analysis is thus shown to be a viable alternative and is recommended, based on its speed and ease of implementation. Aqueous standards calibration curves and the standard addition methods were also compared. The results showed that no appreciable matrix effects are present, regardless of the sample preparation procedure used. Precision of the measurements, expressed as percentage relative standard deviation, ranged between 2.5 to 4.9%. Accuracy of the results was assessed by recovery tests which rendered values between 98.9 and 100.9%.

  18. Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation

    International Nuclear Information System (INIS)

    A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l-1) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g-1 Cd and 1.6 μg g-1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test

  19. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mendil, Durali, E-mail: dmendil@gop.edu.tr [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Uluoezlue, Ozguer Dogan; Tuezen, Mustafa [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Department of Chemistry, 38039 Kayseri (Turkey)

    2009-06-15

    The element contents (Fe, Mn, Zn, Cu, Pb, Co, Cd, Na, K, Ca and Mg) in edible oils (olive oil, hazelnut oil, sunflower oil, margarine, butter and corn oil) from Turkey were determined using atomic absorption spectrometry after microwave digestion. The concentrations of trace element in the samples were found to be 291.0-52.0, 1.64-0.04, 3.08-1.03, 0.71-0.05, 0.03-0.01, 1.30-0.50, 84.0-0.90, 50.1-1.30, 174.2-20.8 and 20.8-0.60 {mu}g/g for iron, manganese, zinc, copper, lead, cobalt, sodium, potassium, calcium, and magnesium, respectively. Cadmium was found to be 4.57-0.09 {mu}g/kg. The high heavy metal and minerals accumulation levels in the samples were found in olive oil for Cu, Pb, Co, margarine for Fe, K, corn oil for Zn, Mn, butter for Na, Mg, sunflower oil for Ca and hazelnut oil for Cd, respectively.

  20. Determination of essential and toxic elements in commercial baby foods by instrumental neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The World Health Organization recommends that infants should be breast fed exclusively for at least six months after birth. After this period, it is recommended to start introducing complementary foods, in order to meet the child's nutritional, mineral and energy needs. Commercial food products for infants form an important part of the diet for many babies. Thus, it is very important that such food contains sufficient amounts of minerals. Inadequate complementary feeding is a major cause of high rates of infant malnutrition in developing countries. In this study, essential elements: Ca, Cl, Co, Cr, Fe, K, Mg, Mn, Na, Se and Zn and toxic elements: As, Cd, Hg levels were determined in twenty seven different commercial infant food product samples by Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometry (AAS). In order to validate both methodologies the reference material: INCT MPH-2 Mixed Polish Herbs and NIST - SRM 1577b Bovine Liver by INAA and NIST - SRM 1548th Typical Diet and NIST - SRM 1547 Peach Leaves by AAS were analyzed. The twenty seven baby food samples were acquired from Sao Paulo city supermarkets and stores. Essential and toxic elements were determined. Most of the essential element concentrations obtained were lower than the World Health Organization requirements, while concentrations of toxic elements were below the tolerable upper limit. These low essential element concentrations in these samples indicate that infants should not be fed only with commercial complementary foods. (author)

  1. Dispersive Liquid-Liquid Microextraction of Bismuth in Various Samples and Determination by Flame Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Teslima Daşbaşı

    2016-01-01

    Full Text Available A dispersive liquid-liquid microextraction method for the determination of bismuth in various samples by flame atomic absorption spectrometry is described. In this method, crystal violet was used as counter positive ion for BiCl4- complex ion, chloroform as extraction solvent, and ethanol as disperser solvent. The analytical parameters that may affect the extraction efficiency like acidity of sample, type and amount of extraction and disperser solvents, amount of ligand, and extraction time were studied in detail. The effect of interfering ions on the analyte recovery was also investigated. The calibration graph was linear in the range of 0.040–1.00 mg L−1 with detection limit of 4.0 μg L−1 (n=13. The precision as relative standard deviation was 3% (n=11, 0.20 mg L−1 and the enrichment factor was 74. The developed method was applied successfully for the determination of bismuth in various water, pharmaceutical, and cosmetic samples and the certified reference material (TMDA-64 lake water.

  2. [Study on adsorption behavior of crosslinked polyarylonitrile for copper, lead, cadmium and zinc ions by atomic absorption spectrometry].

    Science.gov (United States)

    Shawket, Abliz; Peng, Yang; Wang, Ji-De; Ismayil, Nurulla

    2010-04-01

    The crosslinked polymer polyacrylonitrile was synthesized by suspension polymerization using acrylonitrile and divinylbenzene. It has been used as adsorbent of some toxic heavy metals in environmental waters. Its adsorption for metals and the factors which affect the adsorption capacity were studied by atomic absorption spectrometry (AAS). The experimental results showed that under the optimal adsorption conditions, the pH of adsorbate solution was 5-6, static adsorption time was 1.5-2 h, and adsorption procedure was carried out at room temperature, polyacrylonitrile as adsorbent has high adsorption capacity (mg x g(-1)) for Cu2+, Pb2+, Cd2+ and Zn2+, which can reach 26.6, 45.2, 39.7 and 32.5 separately. Adsorption rate (%) was 83.6, 87.1, 85.3 and 86.7 respectively during the 1.5-2 h static adsorption time. It will be more than five-hour static adsorption time before adsorption rate reaches more than 96%. Using 0.10 mol x L(-1) chloride acid as the best desorption solvent to desorb the adsorbates, the recovery of them reached 95%. At the same time the adsorption mechanism of polymer was studied. PMID:20545173

  3. The use of a sequential extraction procedure for heavy metal analysis of house dusts by atomic absorption spectrometry.

    Science.gov (United States)

    Altundag, Huseyin; Dundar, Mustafa Sahin; Doganci, Secil; Celik, Muhammed; Tuzen, Mustafa

    2013-01-01

    In general, dust is considered as house or street dust. Indoor dust, as a contamination source, has been studied for many years. In this work, the original Community Bureau of Reference of the European Commission (BCR) three-stage sequential extraction procedure was applied to the fractionation of Cr, Cu, Fe, Mn, Pb, and Zn in 20 house dust samples from five different areas of Sakarya, Turkey. Acetic acid, hydroxylammonium chloride, and hydrogen peroxide plus ammonium acetate were used for the first, second, and third steps of the BCR method, respectively. The extracts were analyzed for the studied heavy metals using flame atomic absorption spectrometry. Validation of the results was performed by using a standard reference material (BCR 701 Sediment) to certify the experimental results obtained and to evaluate the reliability of the method used. The elemental loadings typically increased in magnitude according to the area order: Izmit Caddesi>Ankara Caddesi >Erenler>Karaman>Korucuk. The results were in agreement with values reported in the literature.

  4. Determination of heavy metal contents by atomic absorption spectroscopy (AAS) in some medicinal plants from Pakistani and Malaysian origin.

    Science.gov (United States)

    Akram, Sobia; Najam, Rahila; Rizwani, Ghazala H; Abbas, Syed Atif

    2015-09-01

    This study depicts a profile of existence of heavy metals (Cu, Ni, Zn, Cd, Hg, Mn, Fe, Na, Ca, and Mg) in some important herbal plants like (H. Integrifolia, D. regia, R. communis, C. equisetifolia, N. oleander, T. populnea, M. elengi, H. schizopetalus, P. pterocarpum) from Pakistan and an antidiabetic Malaysian herbal drug product containing (Punica granatum L. (Mast) Hook, Momordica charantia L., Tamarindus indica L., Lawsonia inermis L.) using atomic absorption spectrophotometer. Heavy metals in these herbal plants and Malaysian product were in the range of 0.02-0.10 ppm of Cu, 0.00-0.02 ppm of Ni, 0.02-0.29 ppm of Zn, 0.00-0.04 ppm of Cd, 0.00-1.33 ppm of Hg, 0.00-0.54 ppm of Mn, 0.22-3.16 ppm of Fe, 0.00-9.17 ppm of Na, 3.27-15.63 ppm of Ca and 1.85-2.03 ppm of Mg. All the metals under study were within the prescribed limits except mercury. Out of 10 medicinal plants/product under study 07 were beyond the limit of mercury permissible limits. Purpose of this study is to determine heavy metals contents in selected herbal plants and Malaysian product, also to highlight the health concerns related to the presence of toxic levels of heavy metals. PMID:26408897

  5. Correlation between Soft X-ray Absorption and Emission Spectra of the Nitrogen Atoms within Imidazolium-Based Ionic Liquids.

    Science.gov (United States)

    Horikawa, Yuka; Tokushima, Takashi; Takahashi, Osamu; Hoke, Hiroshi; Takamuku, Toshiyuki

    2016-08-01

    Soft X-ray absorption spectroscopy (XAS) has been performed on the N K-edge of two imidazolium-based ionic liquids (ILs), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][TFSA]) and 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]), to clarify the electronic structures of the ILs. Soft X-ray emission spectroscopy (XES) has also been applied to the ILs by excitation at various X-ray energies according to the XAS spectra. It was possible to fully associate the XAS peaks with the XES peaks. Additionally, both XAS and XES spectra of the ILs were well reproduced by the theoretical spectra for a single-molecule model on [C2mim](+) and [TFSA](-) using density functional theory. The assignments for the XAS and XES peaks of the ILs were accomplished from both experimental and theoretical approaches. The theoretical XAS and XES spectra of [C2mim](+) and [TFSA](-) did not significantly depend on the conformations of the ions. The reproducibility of the theoretical spectra for the single-molecule model suggested that the interactions between the cations and anions are very weak in the ILs, thus scarcely influencing the electronic structures of the nitrogen atoms. PMID:27388151

  6. Analysis of trace element in intervertebral disc by Atomic Absorption Spectrometry techniques in degenerative disc disease in the Polish population

    Directory of Open Access Journals (Sweden)

    Andrzej Nowakowski

    2015-05-01

    Full Text Available Objective. Although trace elements are regarded crucial and their content has been determined in number of tissue there are only few papers addressing this problem in intervertebral disc in humans. Most of the trace elements are important substrates of enzymes influencing metabolism and senescence process. Others are markers of environmental pollution. Therefore the aim of the research was to analyzed of the trace element content in the intervertebral disc, which may be a vital argument recognizing the background of degenerative changes to be the effect of the environment or metabolic factors. Materials and methods. Material consist of 18 intervertebral disc from 15 patients, acquired in surgical procedure of due to the degenerative disease with Atomic Absorption Spectrometry content of Al, Cd, Co, Pb, Cu, Ni, Mo, Mg, Zn was evaluated. Results. Only 4 of the trace elements were detected in all samples. The correlation analysis showed significant positive age correlation with Al and negative in case of Co. Among elements significant positive correlation was observed between Al/Pb, Co/Mo, Al/Mg, Al/Zn Pb/Zn and Mg/Zn. Negative correlation was observed in Al/Co, Cd/Mg, Co/Mg, Mo/Mg, Co/Zn and Mo/Zn. Conclusions. This study is the first to our knowledge that profiles the elements in intervertebral disc in patients with degenerative changes. We have confirmed significant differences between the trace element contents in intervertebral disc and other tissue. It can be ground for further investigation.

  7. Evaluation of various techniques for the pretreatment of sewage sludges prior to trace metal analysis by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Six techniques were evaluated for their suitability for the pretreatment of dried sewage sludge prior to trace metal analysis by atomic absorption spectrophotometry. The evaluation comprised analysis of two prepared samples of dried sludge for aluminium, cadmium, chromium, copper, iron, lead, manganese, nickel and zinc, after the following pretreatment: dry ashing at 500 degrees Celsius followed by extraction with dilute hydrochloric acid; dry ashing at 500 degrees Celsius followed by extraction with aqua regia; nitric acid digestion followed by extraction with hydrochloric acid; extraction with aqua regia; ashing with magnesium nitrate solution at 550 degrees Celsius followed by digestion with hydrochloric acid and extraction with nitric acid; extraction with nitric acid. Procedures involving the use of perchloric acid, hydrofluoric acid and hydrogen peroxide were not considered for reasons of safety. Except in the case of aluminium the direct mineral acid digestion and/or extraction methods generally gave higher recoveries than the procedures incorporating an ashing step. Direct extraction of the sample with aqua regia was recommended as a rapid and simple general method of sample pretreatment prior to analysis for all the metals investigated except aluminium. For this metal, more drastic sample pretreatment will be required, for example fusion or hydrofluoric acid digestion

  8. On the opportunity of spectroscopic determination of absolute atomic densities in non-equilibrium plasmas from measured relative intensities within resonance multiplets distorted by self-absorption

    CERN Document Server

    Lavrov, B P

    2007-01-01

    The opportunities of the application of the recently proposed approach in optical emission spectroscopy of non-equilibrium plasmas have been studied. The approach consists of several methods of the determination of {\\em absolute} particle densities of atoms from measured {\\em relative} intensities within resonance multiplets distorted by self-absorption. All available spectroscopic data concerning resonance spectral lines of atoms having multiplet ground states from boron up to gallium were analyzed. It is found that in the case of C, O, F, S and Cl atoms an application of the methods needs VUV technique, while densities of B, Al, Si, Sc, Ti, V, Co, Ni, Ga atoms may be obtained by means of the intensity measurements in UV and visible parts of emission spectra suitable for ordinary spectrometers used for optical diagnostics and monitoring of non-equilibrium plasmas including industrial plasma technologies.

  9. Determination of Cd, Pb and As in sediments of the Sava River by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    SIMONA MURKO

    2010-01-01

    Full Text Available The applicability of nitric acid, palladium nitrate and a mixture of palladium and magnesium nitrate as matrix modifiers were estimated for the accurate and reproducible determination of cadmium (Cd, lead (Pb and arsenic (As in sediments of the Sava River by electrothermal atomic absorption spectrometry, ETAAS. Decomposition of the samples was done in a closed vessel microwave-assisted digestion system using nitric, hydrochloric and hydrofluoric acids, followed by the addition of boric acid to convert the fluorides into soluble complexes. The parameters for the determination of Cd, Pb and As in sediments were optimised for each individual element and for each matrix modifier. In addition, two sediment reference materials were also analysed. In determination of Cd and Pb, nitric acid was found to be the most appropriate matrix modifier. The accurate and reliable determination of Cd and Pb in sediments was possible also in the presence of boric acid. The use of a mixture of palladium and magnesium nitrate efficiently compensated for matrix effects and enabled the accurate and reliable determination of As in the sediments. Quantification of Cd and As was performed by calibration using acid matched standard solutions, while the standard addition method was applied for the quantification of Pb. The repeatability of the analytical procedure for the determination of Cd, Pb and As in sediments was ±5 % for Cd, ±4 % for Pb and ±2 % for As. The LOD values of the analytical procedure were found to be 0.05 mg/kg for Cd and 0.25 mg/kg for Pb and As, while the LOQ values were 0.16 mg/kg for Cd and 0.83 mg/kg for Pb and As. Finally, Cd, Pb and As were successfully determined in sediments of the Sava River in Slovenia.

  10. Atomic Absorption Spectrometry in Wilson’s Disease and Its Comparison with Other Laboratory Tests and Paraclinical Findings

    Directory of Open Access Journals (Sweden)

    Rana Fereiduni

    2012-03-01

    Full Text Available Objective: Wilson's disease (WD is an autosomal recessive disease with genetic abnormality on chromosome 13 causing defect in copper metabolism and increased copper concentration in liver, central nervous system and other organs, which causes different clinical manifestations. The aim of this study was to determine the sensitivity of different clinical and paraclinical tests for diagnosis of Wilson’s disease.Methods: Paraffin blocks of liver biopsy from 41 children suspicious of WD were collected. Hepatic copper concentrations were examined with atomic absorption spectrophotometry (Australian GBC, model: PAL 3000. Fifteen specimens had hepatic copper concentration (dry weight more than 250μg/g. Clinical and laboratory data and histologic slides of liver biopsies of these 15 children were reviewed retrospectively. Liver tissue was examined for staging and grading of hepatic involvement and also stained with rubeonic acid method for copper.Findings: Patients were 5-15 years old (mean age=9.3 years, standard deviation=2.6 with slight male predominance (9/15=60%. Five (33% patients were 10 years old. Three (20% of them were referred for icterus, 8 (54% because of positive family history, 2 (13% due to abdominal pain and 2 (13% because of hepatosplenomegaly and ascites. Serum AST and ALT levels were elevated at the time of presentation in all patients. In liver biopsy, histological grade and stage was 0-8 and 0-6 respectively, 2 (13% had cirrhosis, 1 (7% had normal biopsy and 12 (80% showed chronic hepatitis. Hepatic copper concentrations were between 250 and 1595 μg/g dry weight. The sensitivity of various tests were 85% for serum copper, 83% for serum ceruloplasmin, 53% for urinary copper excretion, 44% for presence of KF ring and 40% for rubeonic acid staining on liver biopsies.

  11. Coacervative extraction of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Hagarová, Ingrid; Bujdoš, Marek; Matúš, Peter; Kubová, Jana

    2013-10-01

    In this work, a relatively simple and sensitive method for separation/preconcentration of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry has been proposed. The method is based on the extraction of Pb-dithizone chelate with coacervates made up of lauric acid in the presence of potassium ions and methanol. Several important factors affecting extraction efficiency such as pH, concentration of lauric acid and dithizone, ionic strength, incubation and centrifugation time were investigated and optimized. After separation of aqueous bulk solution from surfactant-rich phase, the final extract was redissolved by using 500 μl of methanol acidified with 0.2 mol l- 1 HNO3. Under the optimized conditions (using initial sample volume of 10 ml), enrichment factor of 17.0, detection limit of 0.12 μg l- 1, quantification limit of 0.38 μg l- 1, relative standard deviation of 4.2% (for 2 μg l- 1 of Pb; n = 26), linearity of the calibration graph in the range of 0.5-4.0 μg l- 1 (with correlation coefficient better than 0.995) were achieved. The method was validated by the analysis of certified reference material (TMDA-61). Extraction recoveries for the CRM, spiked model solutions and spiked natural water samples were in the range of 91-96%. Finally, the method was applied to the separation/preconcentration and determination of trace lead in natural waters.

  12. Coacervative extraction of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hagarová, Ingrid, E-mail: hagarova@fns.uniba.sk; Bujdoš, Marek; Matúš, Peter; Kubová, Jana

    2013-10-01

    In this work, a relatively simple and sensitive method for separation/preconcentration of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry has been proposed. The method is based on the extraction of Pb–dithizone chelate with coacervates made up of lauric acid in the presence of potassium ions and methanol. Several important factors affecting extraction efficiency such as pH, concentration of lauric acid and dithizone, ionic strength, incubation and centrifugation time were investigated and optimized. After separation of aqueous bulk solution from surfactant-rich phase, the final extract was redissolved by using 500 μl of methanol acidified with 0.2 mol l{sup −1} HNO{sub 3}. Under the optimized conditions (using initial sample volume of 10 ml), enrichment factor of 17.0, detection limit of 0.12 μg l{sup −1}, quantification limit of 0.38 μg l{sup −1}, relative standard deviation of 4.2% (for 2 μg l{sup −1} of Pb; n = 26), linearity of the calibration graph in the range of 0.5–4.0 μg l{sup −1} (with correlation coefficient better than 0.995) were achieved. The method was validated by the analysis of certified reference material (TMDA-61). Extraction recoveries for the CRM, spiked model solutions and spiked natural water samples were in the range of 91–96%. Finally, the method was applied to the separation/preconcentration and determination of trace lead in natural waters. - Highlights: • The potential of coacervates for the extraction of metal ions is examined. • No difficulties in coupling of ETAAS with the proposed CAE are observed. • Achieved preconcentration factor results in enhanced sensitivity. • Analytical performance is confirmed by the reliable determination of trace Pb. • The proposed CAE is ecofriendly and efficient.

  13. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    Science.gov (United States)

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil.

  14. Preconcentration of gold ions from water samples by modified organo-nanoclay sorbent prior to flame atomic absorption spectrometry determination

    Energy Technology Data Exchange (ETDEWEB)

    Afzali, Daryoush, E-mail: daryoush_afzali@yahoo.com [Nanochemistry Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Mostafavi, Ali [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mirzaei, Mohammad [Nanochemistry Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2010-09-15

    In this work, the applicability of modified organo nanoclay as a new and easy prepared solid sorbent for the preconcentration of trace amounts of Au(III) ion from water samples is studied. The organo nanoclay was modified with 5-(4'-dimethylamino benzyliden)-rhodanine and used as a sorbent for separation of Au(III) ions. The sorption of gold ions was quantitative in the pH range of 2.0-6.0. Quantitative desorption occurred with 6.0 mL of 1.0 mol L{sup -1} Na{sub 2}S{sub 2}O{sub 3}. The amount of eluted Au(III) was measured using flame atomic absorption spectrometry. In the initial solution the linear dynamic range was in the range of 0.45 ng mL{sup -1} to 10.0 {mu}g mL{sup -1}, the detection limit was 0.1 ng mL{sup -1} and the preconcentration factor was 105. Also, the relative standard deviation was {+-}2.3% (n = 8 and C = 2.0 {mu}g mL{sup -1}) and the maximum capacity of the sorbent was 3.9 mg of Au(III) per gram of modified organo nanoclay. The influences of the experimental parameters including sample pH, eluent volume and eluent type, sample volume, and interference of some ions on the recoveries of the gold ion were investigated. The proposed method was applied for preconcentration and determination of gold in different samples.

  15. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Georg, E-mail: georg.hartmann@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany); Schuster, Michael, E-mail: michael.schuster@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. Black-Right-Pointing-Pointer A selective ligand (sodium thiosulphate) is introduced for species separation. Black-Right-Pointing-Pointer A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. Black-Right-Pointing-Pointer Measurement of samples with high natural organic mater content is possible. Black-Right-Pointing-Pointer Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 {+-} 0.06 (particle size 2 nm) to 0.52 {+-} 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L{sup -1} is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L{sup -1}. The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L{sup -1} is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  16. Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ulusoy, Halil Ibrahim, E-mail: hiulusoy@yahoo.com [University of Cumhuriyet, Faculty of Science, Department of Chemistry, TR-58140, Sivas (Turkey); Akcay, Mehmet; Ulusoy, Songuel; Guerkan, Ramazan [University of Cumhuriyet, Faculty of Science, Department of Chemistry, TR-58140, Sivas (Turkey)

    2011-10-10

    Graphical abstract: The possible complex formation mechanism for ultra-trace As determination. Highlights: {yields} CPE/HGAAS system for arsenic determination and speciation in real samples has been applied first time until now. {yields} The proposed method has the lowest detection limit when compared with those of similar CPE studies present in literature. {yields} The linear range of the method is highly wide and suitable for its application to real samples. - Abstract: Cloud point extraction (CPE) methodology has successfully been employed for the preconcentration of ultra-trace arsenic species in aqueous samples prior to hydride generation atomic absorption spectrometry (HGAAS). As(III) has formed an ion-pairing complex with Pyronine B in presence of sodium dodecyl sulfate (SDS) at pH 10.0 and extracted into the non-ionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114). After phase separation, the surfactant-rich phase was diluted with 2 mL of 1 M HCl and 0.5 mL of 3.0% (w/v) Antifoam A. Under the optimized conditions, a preconcentration factor of 60 and a detection limit of 0.008 {mu}g L{sup -1} with a correlation coefficient of 0.9918 was obtained with a calibration curve in the range of 0.03-4.00 {mu}g L{sup -1}. The proposed preconcentration procedure was successfully applied to the determination of As(III) ions in certified standard water samples (TMDA-53.3 and NIST 1643e, a low level fortified standard for trace elements) and some real samples including natural drinking water and tap water samples.

  17. Selective cloud point extraction and graphite furnace atomic absorption spectrometric determination of molybdenum (VI) ion in seawater samples

    Energy Technology Data Exchange (ETDEWEB)

    Filik, Hayati, E-mail: filik@istanbul.edu.tr [Istanbul University, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul (Turkey); Cengel, Tayfun; Apak, Resat [Istanbul University, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul (Turkey)

    2009-09-30

    A cloud point extraction process using the nonionic surfactant Triton X-114 to extract molybdenum from aqueous solutions was investigated. The method is based on the complexation reaction of Mo(VI) with 1,2,5,8-tetrahydroxyanthracene-9,10-dione (quinalizarine: QA) and micelle-mediated extraction of the complex. The enriched analyte in the surfactant-rich phase was determined by graphite furnace atomic absorption spectrometry (GFAAS). The optimal extraction and reaction conditions (e.g. pH, reagent and surfactant concentrations, temperature, incubation and centrifugation times) were evaluated and optimized. Under the optimized experimental conditions, the limit of detection (LOD) for Mo(VI) was 7.0 ng L{sup -1} with an preconcentration factor of {approx}25 when 10 mL of sample solution was preconcentrated to 0.4 mL. The proposed method (with extraction) showed linear calibration within the range 0.03-0.6 {mu}g L{sup -1}. The relative standard deviation (RSD) was found to be 3.7% (C{sub Mo(VI)} = 0.05 {mu}g L{sup -1}, n = 5) for pure standard solutions, whereas RSD for the recoveries from real samples ranged between 2 and 8% (mean RSD = 3.9%). The method was applied to the determination of Mo(VI) in seawater and tap water samples with a recovery for the spiked samples in the range of 98-103%. The interference effect of some cations and anions was also studied. In the presence of foreign ions, no significant interference was observed. In order to verify the accuracy of the method, a certified reference water sample was analysed and the results obtained were in good agreement with the certified values.

  18. Trace-element determination in lichens of Cordoba (Argentina) using neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ramalina ecklonii (Spreng.) Mey. and Flot. is a lichen widely distributed in Cordoba, a central province of Argentina. The ability of this lichen as an atmospheric pollution bioindicator has already been studied in relation to its physiological response to air pollutants. This work has to do with the study of R. ecklonii in terms of its capacity to accumulate heavy metals and other trace elements. The sampled area, located in the province of Cordoba, covered 50,000 km2 and was divided following a grid of 25 x 25 km. Lichens were collected at the intersecting points, no least than 500 m from main routes or highly populated centres and individuals were randomly gathered following the four cardinal directions and no more than 100 m from the geographically settled point. From each pool, three sub-samples were taken for independent analysis using atomic absorption spectrometry (AAS) and neutron activation analysis (NAA), for the determination of twenty nine elements (Cu, Ni, Mn, and Pb (AAS) and As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, and Zn (NAA). The quality of the determinations was checked using standard reference material and data sets were evaluated using descriptive statistics, correlation analysis, and factor analysis. The highest variation coefficients correspond to Ca, Cr, and Zn. The studied elements were identified as of physiological importance and as emitted by natural (soil and rocks) and anthropogenic sources (non-ferrous metallurgy, coal combustion, oil-fired plants, fossil fuel combustion and, other industries). (author)

  19. Liquid-liquid extraction of molybdenum and its ultra-trace determination by graphite furnace atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    A highly sensitive and reliable method for the determination of molybdenum at nanogram level in rocks, ores, minerals, soils and hydrogeochemical samples has been developed by liquid-liquid extraction of the metal into a suitable organic solvent, followed by its measurement by Graphite Furnace Atomic Absorption Spectrophotometer. Molybdenum in the sample (∼200 mesh) was opened by NH4HF2 and H2SO4 dissolution. At pH 4-6, major matrix elements like Fe, Ti, Nb, Cu, Th, REEs etc are removed by the solvent extraction of the complexes of these elements with the, O-O' type of ligand, 2,3 dihydroxynaphthalene (2,3 H2ND) leaving Mo (VI) in aqueous solution. Subsequently, Mo (VI) was reduced with hydroxylamine hydrochloride to Mo (V) which was allowed to form a 1:2 complex with the cited ligand, 2,3 H2ND at pH 2-4. At this very pH, the Mo (V)-2,3 H2ND neutral complex was readily extracted in ethyl or butyl acetate. Then Mo (V) was stripped off into aqueous solution (minimum volume). This solution was fed into the graphite furnace through an auto sampler. The concentration of the analyte in the sample was found out/read from the calibration curve prepared against known standards. The method was validated by applying it on a host of rock samples including Geological Reference Materials and water samples. Molybdenum can be estimated up to 1 μg per gram rock sample with a precision of 2.0% and 2 ppb in water samples with a precision of ±5%. (author)

  20. Quantifying uncertainty in the measurement of arsenic in suspended particulate matter by Atomic Absorption Spectrometry with hydride generator

    Directory of Open Access Journals (Sweden)

    Ahuja Tarushee

    2011-04-01

    Full Text Available Abstract Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG. In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2.