WorldWideScience

Sample records for atom transferring system

  1. H atom transfer of collinear OH…O system

    Institute of Scientific and Technical Information of China (English)

    WU, Tao(吴韬); CHEN, Xian-Yang(陈先阳); PENG, Jian-Bo(彭建波); JU, Guan-Zhi(居冠之); JU, Guan-Zhi(居冠之)

    2000-01-01

    A quantum mechanical calculation was performed to study the hydrogen atom transfer of collinear OH…O/OD…O system,for which Delves ' coordinates and R-matrix propagation method were applied in a Melius-Blint potential energy surface. The calculation result showed that the state-state H atom transfer probability comported strong oscillation phenomena and collision delay time of the title system was in the fs-ps time scale. The kinetic isotope effect was calculated in this work too.

  2. Efficiency limitation for realizing an atom-molecule adiabatic transfer based on a chainwise system

    CERN Document Server

    Zhai, Jingjing; Zhang, Keye; Qian, Jing; Zhang, Weiping

    2015-01-01

    In a recent work we have developed a robust chainwise atom-molecule adiabatic passage scheme to produce ultracold ground-state molecules via photo-associating free atoms [J. Qian {\\it et.al.} Phys. Rev. A 81 013632 (2010)]. With the help of intermediate auxiliary levels, the pump laser intensity requested in the atomic photo-association process can be greatly reduced. In the present work, we extend the scheme to a more generalized (2$n$+1)-level system and investigate the efficiency limitation for it. As the increase of intermediate levels and auxiliary lasers, the atom-molecule adiabatic passage would be gradually closed, leading to a poor transfer efficiency. For the purpose of enhancing the efficiency, we present various optimization approaches to the laser parameters, involving order number $n$, relative strength ratio and absolute strength. We show there can remain a limit on the population transfer efficiency given by a three-level $\\Lambda$ system. In addition, we illustrate the importance of selecting...

  3. CLASSICAL AREAS OF PHENOMENOLOGY: Population transfer by femtosecond laser pulses in a ladder-type atomic system

    Science.gov (United States)

    Fan, Xi-Jun; Li, Ai-Yun; Tong, Dian-Min; Liu, Cheng-Pu

    2008-07-01

    The population transfer in a ladder-type atomic system driven by linearly polarized sech-shape femtosecond laser pulses is investigated by numerically solving Schrödinger equation without including the rotating wave approximation (RWA). It is shown that population transfer is mainly determined by the Rabi frequency (strength) of the driving laser field and the chirp rate, and that the ratio of the dipole moments and the pulse width also have a prominent effect on the population transfer. By choosing appropriate values of the above parameters, complete population transfer can be realized.

  4. Dephasing effects on the atomic population transfer

    International Nuclear Information System (INIS)

    For the past ten years, there have been a lots researches on the coherent atomic population transfer for efficient photo-ionization spectroscopy. For efficient population transfer, the optimal detuning method and the adiabatic passage method were proposed. Coherent population trasfer was usually analyzed theoretically without considering the dephasing effects of atomic coherences, even though dephasing effects can change the optimal condition for maximal population trasfer. This paper demonstrates that atomic coherence dephasing affects the population trasfer condition such that the optimal condition for maximal atomic trasfer depend on the strength of dephasing of atomic coherence. We have studied ladder type system and lambda type system and found that optimal detuning decreases with the increse of dephasing rate.

  5. Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Wang, Liang; Xiao, Jian

    2016-04-01

    The cascade [1,n]-hydrogen transfer/cyclization, recognized as the tert-amino effect one century ago, has received considerable interest in recent decades, and great achievements have been made. With the aid of this strategy, the inert C(sp(3))-H bonds can be directly functionalized into C-C, C-N, C-O bonds under catalysis of Lewis acids, Brønsted acids, as well as organocatalysts, and even merely under thermal conditions. Hydrogen can be transferred intramolecularly from hydrogen donor to acceptor in the form of hydride, or proton, followed by cyclization to furnish the cyclic products in processes featuring high atom economy. Methylene/methine adjacent to heteroatoms, e.g., nitrogen, oxygen, sulfur, can be exploited as hydride donor as well as methylene/methine without heteroatom assistance. Miscellaneous electrophilic subunits or intermediates, e.g., alkylidene malonate, carbophilic metal activated alkyne or allene, α,β-unsaturated aldehydes/ketone, saturated aldehydes/iminium, ketenimine/carbodiimide, metal carbenoid, electron-withdrawing groups activated allene/alkyne, in situ generated carbocation, can serve as hydride acceptors. This methodology has shown preeminent power to construct 5-, 6-, or 7-membered heterocyclic as well as carbon rings. In this chapter, various hydrogen donors and acceptors are adequately discussed. PMID:27573142

  6. Electron transfer, ionization, and excitation in atomic collisions: Progress report

    International Nuclear Information System (INIS)

    The fundamental processes of electron transfer, ionization, and excitation in ion-atom collisions are being studied at Penn State by Winter. (The related work of Alston, who recently came to Penn State, is not described here since he is not at present funded by DOE.) These collision processes are treated in the context of simple one- or two-electron systems in order to provide unambiguous results and reveal more clearly the collisional mechanisms. Three coupled-state calculations are being carried out over the present three-year period and are discussed here: a Sturmian-pseudostate study of electron transfer in collisions between protons and the hydrogenic ions He+, Li2+, Be3+, ...; a triple-center, atomic-state study of ionization in collisions between α particles and H(ls) atoms and between protons and He+(ls) ions; and a coupled-state study of electron transfer and excitation in collisions between protons and neutral He atoms

  7. Entanglement transfer between bipartite systems

    CERN Document Server

    Bougouffa, Smail

    2011-01-01

    The problem of a controlled transfer of an entanglement initially encoded into two two-level atoms that are successively sent through two single-mode cavities is investigated. The atoms and the cavity modes form a four qubit system and we demonstrate under which conditions the initial entanglement encoded into the atoms can be completely transferred to other pairs of qubits. We find that in the case of a nonzero detuning between the atomic transition frequencies and the cavity mode frequencies, no complete transfer of the initial entanglement is possible to any of the other pairs of qubits. In the case of exact resonance and equal coupling strengths of the atoms to the cavity modes, an initial maximally entangled state of the atoms can be completely transferred to the cavity modes. The complete transfer of the entanglement is restricted to the cavity modes only with the transfer to the other pairs being limited to up to 50%. We have found that the complete transfer of an initial entanglement to other pairs of...

  8. [Electron transfer, ionization, and excitation in atomic collisions]: Progress report

    International Nuclear Information System (INIS)

    The fundamental processes of electron transfer, ionization, and excitation in ion-atom collisions are being studied. These collision processes are treated in the context of simple one- or two-electron systems in order to provide unambiguous results and reveal more clearly the collisional mechanisms. As outlined in the original proposal, three coupled-state calculations are being carried out over the present three-year period: a Sturmian-pseudostate study of ionization in collisions between protons and the hydrogenic ions He+, Li2+, Be3+, ...; a triple-center, atomic-state study of ionization in collisions between α particles and H(ls) atoms and between protons and He+(ls) ions; and an atomic-state study of electron transfer and excitation in collisions between protons and neutral He atoms. 12 refs

  9. Correlated energy transfer between two ultracold atomic species

    Science.gov (United States)

    Krönke, Sven; Knörzer, Johannes; Schmelcher, Peter

    2015-05-01

    We study a single atom as an open quantum system, which is initially prepared in a coherent state of low energy and oscillates in a one-dimensional harmonic trap through an interacting ensemble of NA bosons, held in a displaced trap [arXiv:1410.8676]. The non-equilibrium quantum dynamics of the total system is simulated by means of an ab-initio method, giving us access to all properties of the open system and its finite environment. In this talk, we focus on unraveling the interplay of energy exchange and correlations between the subsystems, which are coupled in such a spatio-temporally localized manner. We show that an inter-species interaction-induced level splitting accelerates the energy transfer between the atomic species for larger NA, which becomes less complete at the same time. System-environment correlations prove to be significant except for times when the excess energy distribution among the subsystems is highly imbalanced. These correlations result in incoherent energy transfer processes, which accelerate the early energy donation of the single atom. By analyzing correlations between intra-subsystem excitations, certain energy transfer channels are shown to be (dis-)favored depending on the instantaneous direction of transfer.

  10. Gas transfer system

    International Nuclear Information System (INIS)

    The state of work on the Vivitron gas transfer system and the system functions are summarized. The system has to: evacuate the Vivitron reservoir; transfer gas from storage tanks to the Vivitron; recirculate gas during operation; transfer gas from the Vivitron to storage tanks; and assure air input. The system is now being installed. Leak alarms are given by SF6 detectors, which set off a system of forced ventilation. Another system continuously monitors the amount of SF6 in the tanks

  11. Soliton Atom Laser with Quantum State Transfer Property

    Institute of Scientific and Technical Information of China (English)

    LIU Xiong-Jun; JING Hui; GE Mo-Lin

    2006-01-01

    @@ We study the nonlinear effects in the quantum states transfer technique from photons to matter waves in the three-level case, which may provide the formation of a soliton atom laser with nonclassical atoms. The validity of quantum transfer mechanism is confirmed in the presence of the intrinsic nonlinear atomic interactions. The accompanied frequency chirp effect is shown to have no influence on the grey solitons formed by the output atom laser and the possible quantum depletion effect is also briefly discussed.

  12. Large-momentum-transfer Bragg interferometer with strontium atoms

    CERN Document Server

    Mazzoni, T; Del Aguila, R; Salvi, L; Poli, N; Tino, G M

    2015-01-01

    We report on the first atom interferometer based on Bragg diffraction in a fountain of alkaline-earth atoms, namely $^{88}$Sr. We demonstrate large momentum transfer to the atoms up to eight photon recoils and the use of the interferometer as a gravimeter with a sensitivity $\\delta g/g=4\\times 10^{-8}$. Thanks to the special characteristics of strontium atoms for precision measurements, this result opens a new way for experiments in fundamental and applied physics.

  13. Living atom transfer radical polymerization of 4-acetoxystyrene

    DEFF Research Database (Denmark)

    Gao, Bo; Chen, Xianyi; Ivan, Bela;

    1997-01-01

    Living atom transfer radical polymerization (ATRP) of 4-acetoxystyrene (1), a protected 4-vinylphenol, leading to poly(4-acetoxystyrene) with well-defined molecular weight and narrow molecular weight distribution was carried out in bulk with a,a'-dibromoxylene(2)/CuBr/2,2-bipyridine(bpy) as...... initiating system. A linear (M) over bar(n), versus monomer conversion plot was found in good accordance with the theoretical line, indicating 100% initiating efficiency. The polymerization is first order in respect to monomer up to about 70% monomer conversion. Deviations from linearity at higher conversion...

  14. Transferences of Purkinje systems

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2011-12-01

    Full Text Available The transferences of heterocentric astigmatic Purkinje systems are special: submatrices B and C, that is, the disjugacy and the divergence of the system, are symmetric and submatrix D (the divarication is the transpose of submatrix A (the dilation.  It is the primary purpose of this paper to provide a proof.  The paper also derives other relationships among the fundamental properties and compact expressions for the transference and optical axis locator of a Purkinje system. (S Afr Optom 2011 70(2 57-60

  15. On charge transfer in ion-atom collisions at intermediate collision velocities

    International Nuclear Information System (INIS)

    The authors study charge transfer at intermediate energies for multielectron ion-atom collisions within the coupled-state impact-parameter method. They point out the importance of assumptions about electronic relaxation by comparing various calculations of cross sections for KK charge transfer in F9+ + Si as a test case. In these calculations, either the unrelaxed Hamiltonian of the atomic model or a relaxed molecular Hamiltonian has been employed, and two-state atomic or molecular basis sets have been used. To correct for the inadequacy of atomic orbitals for close collisions at intermediate energies, the authors propose to add orbitals of the united atom at the two collision centers. With such an atomic basis set, quasimolecular behavior of the system is represented sufficiently well. The authors report on results for the collision system H+ + He+ for which calculations with large molecular and atomic basis sets exist

  16. Orbital Fluid Transfer System

    Science.gov (United States)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS

  17. [Electron transfer, ionization, and excitation in atomic collisions

    International Nuclear Information System (INIS)

    Fundamental processes of electron transfer, ionization, and excitation in ion-atom and ion-ion collisions are studied. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-ion core can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. At intermediate collision energies (e.g., proton energies for p-He+ collisions on the order of 100 kilo-electron volts), many electronic states are strongly coupled during the collision, a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. At higher collision energies (million electron-volt energies) the coupling is weaker with, however, many more states being coupled together, so that high-order perturbation theory is essential

  18. Wireless power transfer system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  19. Electron transfer, ionization, and excitation in atomic collisions

    International Nuclear Information System (INIS)

    The research being carried out at Penn State by Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom (and ion-ion) collisions. The focus is on intermediate- and higher-energy collisions, corresponding to proton energies of about 25 kilo-electron-volts (keV) or larger. At intermediate energies, where the transition probabilities are not small, many states must be coupled in a large calculation, while at higher energies, perturbative approaches may be used. Several studies have been carried out in the current three-year period; most of these treat systems with only one or two electrons, so that fewer approximations need be made and the basic collisional mechanisms can be more clearly described

  20. Electron transfer, ionization, and excitation atomic collisions

    International Nuclear Information System (INIS)

    Basic atomic-collision processes at intermediate and high energies are being studied theoretically at Penn State by Alston and Winter. In the high velocity regime, single-electron capture is treated using a high order multiple-scattering approach; extensive comparison with experiment and analysis of mechanisms have been made. Fitting the calculated amplitude with a simple analytic form, the asymptotic velocity dependence of the cross section is obtained. The effect on the capture amplitude of altering the inner part of the internuclear potential has also been explored. In the intermediate velocity regime, earlier work on collisions between protons and hydrogenic-ion targets using a coupled-state approach is being extended to the two-electron helium target. 29 refs

  1. Tape Transfer Atomization Patterning of Liquid Alloys for Microfluidic Stretchable Wireless Power Transfer

    Science.gov (United States)

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-02-01

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.

  2. Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer.

    Science.gov (United States)

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times. PMID:25673261

  3. Atomic physics of strongly correlated systems

    International Nuclear Information System (INIS)

    This report presents the progress made in our continuing study of strongly correlated atomic systems within the last year. We have examined the shape of three-body systems in hyperspherical coordinates by studying the evolution of the density functions with the mass ratio of the particles in the system. We have calculated the ejected electron spectra from the autoionizing states formed in double capture processes in collisions of multiply charged ions with atoms. We have investigated the systematics and the propensity rules of radiative and Auger decay rates of high-lying doubly excited states. We have also studied ion-atom collisions for processes which pose great challenges to detailed theories, by looking into processes where the cross sections are small such as the excitation process in He++ + H collisions, or by looking into fine details such as the orientation parameters in excitation and charge transfer processes

  4. Muon transfer from hot muonic hydrogen atoms to neon

    International Nuclear Information System (INIS)

    A negative muon beam has been directed on adjacent solid layers of hydrogen and neon. Three targets differing by their deuterium concentration were investigated. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. The time structure of the muonic neon X-rays follows the exponential law with a disappearance rate corresponding to the one of μ-p atoms in each target. The rates λppμ and λpd can be extracted

  5. [Electron transfer, ionization and excitation in atomic collisions

    International Nuclear Information System (INIS)

    The research being carried out at Penn State by Winter and Alston addresses the fundamental atomic-collision processes of electron transfer, ionization, and excitation. Winter has focussed attention on intermediate and, more recently, higher collision energies -- proton energies of at least about 50 keV -- for which coupled-state approaches are appropriate. Alston has concentrated on perturbative approaches to symmetric ion-ion/atom collisions at high energies and to asymmetric collisions at intermediate to high energies

  6. Modulation transfer spectroscopy of ytterbium atoms in hollow cathode lamp

    International Nuclear Information System (INIS)

    We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp. The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition. (authors)

  7. Position and lifetime of atomic states close to a metal: application to resonant charge transfer

    International Nuclear Information System (INIS)

    The energy position and lifetime of atomic levels brought in front of a metal surface are the important quantities for the description of the resonant charge transfer process in atom-metal surface scattering. Recent results obtained in the non-perturbative CAM method on multielectron systems (H-, He-, C-) are discussed. They stress the importance of a proper description of the atomic system. In particular, the interaction with a metal surface is seen to reveal the differences between the different orbitals in a multielectronic system. (author)

  8. Coherent Transfer of Electronic Wavepacket Motion Between Atoms

    Science.gov (United States)

    Zhou, Tao; Richards, B. G.; Jones, R. R.

    2016-05-01

    We have shown that electron correlations, induced by controlled dipole-dipole (DD) interactions, can enable the coherent transfer of electronic wavepacket motion from atoms to their neighbors. In the experiment, a 5 ns tunable dye laser excites Rb atoms in a MOT to the 25s state in a weak static electric field for which the tunable 25s 33 s 24p34p DD interaction is resonant. A picosecond THz pulse then further excites each Rydberg atom into a coherent superposition, of 25s and 24p states. The evolution of this mixed-parity wavepacket is characterized by time-dependent oscillations in the electric dipole moment, with a period of 2.9 ps. Approximately 5 ns after the wavepacket creation, a second 5 ns dye-laser promotes a second set of atoms from the 5p level into the 33s state. Because of the DD interaction, the second dye laser actually creates atom pairs whose electronic states are correlated via the resonant DD coupling. A 33 s + 34p wavepacket, oscillating with the same 2.9 ps period as the 25 s + 24p wavepacket, develops on the second set of atoms as a result of the correlation. A second, time-delayed ps THz pulse enables the detection of the coherent wavepacket motion on the two sets of atoms. This research has been supported by the NSF.

  9. Transfer of electricity quotas under the Atomic Energy Act

    International Nuclear Information System (INIS)

    On April 27, 2002, the 'Act of the Planned Termination of the Use of Nuclear Power for Industrial Electricity Generation - Atomic Energy Act' entered into force. It was preceded, among other things, by the 'Agreement between the Federal Government and the Power Utilities of June 14, 2000' in which the Red-Gree federal government and the operators of nuclear power plants had agreed on a timetable of termination and on the conditions of nuclear power plant operation for the residual plant operating life. One major part of that Agreement, which later was incorporated also in the Atomic Energy Act, are provisions about flexibiling the residual periods of operation of existing nuclear power plants. The arguments underlying the act on opting out of the use of nuclear power cite, as a key reason for the possibility to transfer electricity quotas, the constitutional principle of protection of bona fide acts. The transfer possibility opened up in the law is to 'allow the best possible residual periods of operation in the light of both plant operation and the national economy' to be agreed upon for each individual nuclear power plant. In principle, the Atomic Energy Act provides for any transfer of electricity quotas from one German nuclear power plant to another. An approval procedure is required for transfer from younger to older plants. Transfers from older to younger plants can be arranged without any approval. The article covers the basic legal principles and consequences, the details of the approval procedure, and the transfer of the electricity quotas attributed to the Muelheim-Kaerlich nuclear power plant. (orig.)

  10. Do Spin State and Spin Density Affect Hydrogen Atom Transfer Reactivity?

    OpenAIRE

    Saouma, Caroline T.; Mayer, James M.

    2013-01-01

    The prevalence of hydrogen atom transfer (HAT) reactions in chemical and biological systems has prompted much interest in establishing and understanding the underlying factors that enable this reactivity. Arguments have been advanced that the electronic spin state of the abstractor and/or the spin-density at the abstracting atom are critical for HAT reactivity. This is consistent with the intuition derived from introductory organic chemistry courses. Herein we present an alternative view on t...

  11. The pentafluorostyrene endeavours with atom transfer radical polymerization - quo vadis?

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2014-01-01

    The versatility of the atom transfer radical polymerization (ATRP) of pentafluorostyrene (FS) is comprehensively evaluated. The ATRP of a wide range of monomers derived from FS is likewise discussed with emphasis on the potential polymer applications. A large number of block and star copolymers c...... exploited for Li+ ion electrolytes. The convenient grafting of PFS through ‘click’ chemistry to a polysulfone and subsequent phosphonation of the PFS grafts seem very beneficial for the fabrication of proton conducting materials with high conductivity...

  12. Dynamical Theory of Charge Transfer Between Complex Atoms and Surfaces

    Science.gov (United States)

    Chaudhuri, Basudev; Marston, Brad

    2000-03-01

    An existing dynamical quantum many-body theory of charge transfer(A. V. Onufriev and J. B. Marston, Phys. Rev. B 53), 13340 (1996); J. Merino and J. B. Marston, Phys. Rev. B 58, 6982 (1998). describes atoms with simple s-orbitals, such as alkalis and alkaline-earths, interacting with metal surfaces. The many-body equations of motion (EOM) are developed systematically as an expansion in the number of surface particle-hole excitations. Here we generalize this theory to describe atoms with richer orbital structures, such as atomic oxygen. In the simplest version of the model, only the single-particle p_z-orbitals of the atom, the ones oriented perpendicular to the surface, participate directly in resonant charge transfer as they have the largest overlap with the metallic wavefunctions. However, as the several-electron Russell-Saunders eigenstates, labeled by total angular momenta quantum numbers J, L, and S, are built out of products of single-particle orbitals, non-trivial matrix elements must be incorporated into the many-body EOM's. Comparison to recent experimental results(A. C. Lavery, C. E. Sosolik, and B. H. Cooper, Nucl. Instrum. Meth. B 157), 42 (1999); A. C. Lavery et al. to appear in Phys. Rev. B. on the scattering of low-energy oxygen ions off Cu(001) surfaces is made.

  13. Charge transfer in ionic systems

    International Nuclear Information System (INIS)

    Charge transfer involving multiply charged ions in collision with atomic or molecular targets are determinant processes in controlled thermonuclear fusion research and astrophysical plasma. In such processes, an electron is generally captured in a excited state of the ion, followed by line emission. The observation of line intensities provides important information on the electron temperature, density and spacial distributions in the emitting region of the plasma. From a theoretical point of view, different approaches may be used with regard to the collisional energy range of the process. A semi-classical method is currently used at keV energies, but the description of very low-velocity processes requires a complete quantum mechanical treatment of the dynamics of both electrons and nuclei. The first approach extensively used is the resolution of the stationary close-coupling equations, but we have analyzed recently the efficiency of a time-dependent wave packet method which provides a clear and physical insight into the dynamics of the processes and may be particularly interesting for polyatomic systems since it allows the possibility of developing a fully quantal mechanical treatment for some degrees of freedom, the other ones being treated classically. The keV energy range treatment is presented on two examples pointing out the case of complex ion-atom collision systems, as well as the differences between ion-atom and ion-molecule mechanisms. In connection with translation energy spectroscopy experiments of McLaughlin et al in the 4-28 keV impact energy range, we present a complete ab-initio theoretical approach of the N4+(2s)2S + He system taking into account both single and double electron capture channels. This is an extremely complex collisional system which involves numerous channels with short range interactions and a very intricate interaction region may be observed for interatomic distances around R = 3.5 a.u.. In agreement with experimental data, the

  14. Novel Polymers Based on Atom Transfer Radical Polymerization of 2-Methoxyethyl Acrylate

    DEFF Research Database (Denmark)

    Bednarek, Melania; Jankova Atanasova, Katja; Hvilsted, Søren

    2007-01-01

    Atom transfer radical polymerization (ATRP) has been employed in the polymerization of 2-methoxyethyl acrylate (MEA) initiated by ethyl 2-bromoisobutyrate in bulk or in toluene solution at 90– 95 C with the catalytic systems Cu(I)Br/PMDETA or HMTETA. Kinetics investigations revealed that ATRP of...

  15. The effect of atomic transfer on the decay of a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    We present a model describing the decay of a Bose-Einstein condensate, which assumes the system to remain in thermal equilibrium during the decay. We show that under this assumption transfer of atoms occurs from the condensate to the thermal cloud enhancing the condensate decay rate. (letter to the editor)

  16. Effect of atomic transfer on the decay of a Bose-Einstein condensate

    OpenAIRE

    Zin, Pawel; Dragan, Andrzej; Charzynski, Szymon; Herschbach, Norbert; Tol, Paul; Hogervorst, Wim; Vassen, Wim

    2003-01-01

    We present a model describing the decay of a Bose-Einstein condensate, which assumes the system to remain in thermal equilibrium during the decay. We show that under this assumption transfer of atoms occurs from the condensate to the thermal cloud enhancing the condensate decay rate.

  17. Photon exchange and correlation transfer in atom-atom entanglement dynamics

    OpenAIRE

    León García, Juan José; Sabín, Carlos

    2009-01-01

    We analyze the entanglement dynamics of a system composed by a pair of neutral two-level atoms that are initially entangled, and the electromagnetic field, initially in the vacuum state, within the formalism of perturbative quantum field theory up to the second order. We show that entanglement sudden death and revival can occur while the atoms remain spacelike-separated and therefore cannot be related with photon exchange between the atoms. We interpret these phenomena as the consequence of a...

  18. Atomizer for thermal management system

    Science.gov (United States)

    Tilton, Charles L. (Inventor); Weiler, Jeff (Inventor); Palmer, Randal T. (Inventor); Appel, Philip W. (Inventor); Knight, Paul A. (Inventor)

    2008-01-01

    An atomizer for thermal management system for efficiently thermally managing one or more heat producing devices. The atomizer for thermal management system includes a housing having a coolant passage and a dispensing end, an orifice within the dispensing end, and an actuator manipulating a plunger within the housing. The plunger includes a head that is sealable within a recessed portion of the orifice to open or close the orifice. The coolant passes through the coolant passage into the orifice for spraying upon a heat producing device. The actuator may reciprocate so that the coolant spray emitted through the orifice is pulsating. The pulsing frequency may be increased to increase cooling or decreased to decrease cooling of the heat producing device.

  19. Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage

    Science.gov (United States)

    Zhang, Chun-Ling; Chen, Mei-Feng

    2015-07-01

    We propose a new approach for quantum state transfer (QST) between atomic ensembles separately trapped in two distant cavities connected by an optical fiber via adiabatic passage. The three-level Λ-type atoms in each ensemble dispersively interact with the nonresonant classical field and cavity mode. By choosing appropriate parameters of the system, the effective Hamiltonian describes two atomic ensembles interacting with “the same cavity mode” and has a dark state. Consequently, the QST between atomic ensembles can be implemented via adiabatic passage. Numerical calculations show that the scheme is robust against moderate fluctuations of the experimental parameters. In addition, the effect of decoherence can be suppressed effectively. The idea provides a scalable way to an atomic-ensemble-based quantum network, which may be reachable with currently available technology. Project supported by the Funding (type B) from the Fujian Education Department, China (Grant No. JB13261).

  20. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral atoms: Theory, comparisons, and application to Ca

    CERN Document Server

    Barklem, Paul S

    2016-01-01

    A theoretical method for the estimation of cross sections and rates for excitation and charge transfer processes in low-energy hydrogen atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in the neutral atom-hydrogen atom system, is presented. The calculation of potentials and non-adiabatic radial couplings using the method is demonstrated. The potentials are used together with the multi-channel Landau-Zener model to calculate cross sections and rate coefficients. The main feature of the method is that it employs asymptotically exact atomic wavefunctions, which can be determined from known atomic parameters. The method is applied to Li+H, Na+H, and Mg+H collisions, and the results compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically important problem of Ca+H collisions, and rate coefficients are calculated for temperatures in the range 1000-20000 K.

  1. Heating-Assisted Atom Transfer in the Scanning Tunneling Microscope

    CERN Document Server

    Grigorescu, M

    1998-01-01

    The effects of a voltage pulse on the localization probability for a Xe atom prepared in a pure state localized on the STM surface at 0 temperature is investigated by numerically integrating the time-dependent Schroedinger equation. In these calculations the environmental interactions are neglected, and voltage pulses of 20 and 7 ns with symmetric triangular and trapezoidal shapes are considered. The atom dynamics at an environmental temperature of 4 K is studied in the frame of a stochastic, non-linear Liouville equation for the density operator. It is shown that the irreversible transfer from surface to tip may be explained by thermal decoherence rather than by the driving force acting during the application of the voltage pulse.

  2. Organocatalyzed atom transfer radical polymerization driven by visible light.

    Science.gov (United States)

    Theriot, Jordan C; Lim, Chern-Hooi; Yang, Haishen; Ryan, Matthew D; Musgrave, Charles B; Miyake, Garret M

    2016-05-27

    Atom transfer radical polymerization (ATRP) has become one of the most implemented methods for polymer synthesis, owing to impressive control over polymer composition and associated properties. However, contamination of the polymer by the metal catalyst remains a major limitation. Organic ATRP photoredox catalysts have been sought to address this difficult challenge but have not achieved the precision performance of metal catalysts. Here, we introduce diaryl dihydrophenazines, identified through computationally directed discovery, as a class of strongly reducing photoredox catalysts. These catalysts achieve high initiator efficiencies through activation by visible light to synthesize polymers with tunable molecular weights and low dispersities. PMID:27033549

  3. Muon transfer from muonic hydrogen to heavier atoms; Transfert de charge muonique

    Energy Technology Data Exchange (ETDEWEB)

    Dupays, A

    2004-06-01

    This work concerns muon transfer from muonic hydrogen to heavier atoms. Recently, a method of measurement of the hyperfine structure of ground-state muonic hydrogen based on the collision energy dependence of the muon transfer rate to oxygen has been proposed. This proposal is based on measurements which where performed at the Paul Scherrer Institute in the early nineties which indicate that the muon transfer from muonic hydrogen to oxygen increases by a factor of 4 going from thermal to 0.12 eV energies. The motivation of our calculations was to confirm this behaviour. To study the collision energy dependence of the muon transfer rate, we have used a time-independent close-coupling method. We have set up an hyperspherical elliptic formalism valid for nonzero total angular momentum which allows accurate computations of state-to-state reactive and charge exchange processes. We have applied this formalism to muon-transfer process to oxygen and neon. The comparison with experimental results is in both cases excellent. Finally, the neon transfer rate dependence with energy suggests to use neon instead of oxygen to perform a measurement of the hyperfine structure of muonic hydrogen. The results of accurate calculations of the muon transfer rates from muonic protium and deuterium atoms to nitrogen, oxygen and neon are also reported. Very good agreement with measured rates is obtained and for the three systems, the isotopic effect is perfectly reproduced. (author)

  4. Solidification study of aluminum alloys using impulse atomization. Part I: heat transfer analysis of an atomized droplet

    International Nuclear Information System (INIS)

    Heat transfer models of molten metal droplets moving in a gas stream are used extensively to understand and improve gas atomization systems. In particular, the solidification microstructure of the metal droplets produced during atomization is closely linked with heat flow conditions. The cornerstone of these models is the calculation of the heat exchange between the droplet and gas in an environment with a high temperature gradient. To achieve this, the value of the effective heat transfer coefficient (between the gas and droplet) used in these models is obtained from semi-empirical correlations such as the Ranz-Marshall or Whitaker equations. Unfortunately, most metal atomizing conditions lie outside the experimental envelope in which these correlations were derived. Hence, the object of this paper is two fold: firstly, to develop a reliable and controlled experimental technique by which the transfer of heat from a high temperature droplet to a significantly cooler gas can be assessed and secondly, to determine the validity of both the Ranz-Marshall and Whitaker correlations under these conditions. An experimental technique was developed to conduct a series of quench tests using AA6061 aluminum and AZ91D magnesium droplets falling in a cool nitrogen and argon atmosphere, respectively. A heat transfer model was formulated to account for large droplet gas temperature gradients typically found in metallurgical processing operations. It was determined that a modified Whitaker correlation provided the best agreement with the experimental data given that the Reynolds and Prandtl numbers were evaluated at the free stream gas temperature and the gas conductivity in the Nusselt number at the droplet surface temperature. (author)

  5. Atomic transfers between implanted bioceramics and tissues in orthopaedics surgery

    CERN Document Server

    Irigaray, J L; Guibert, G; Jallot, E; democrite-00023281, ccsd

    2004-01-01

    We study transfers of ions and debris from bioceramics implanted in bone sites. A contamination of surrounding tissues may play a major role in aseptic loosening of the implant. For these reasons, bioceramics require studies of biocompatibility and biofunctionality . So, in addition to in vitro studies of bioceramics, it is essential to implant them in vivo to know body reactions. We measured the concentration of mineral elements at different time intervals after implantation over a whole cross-section. We found a discontinuity of the mineral elements (Ca, P, Sr, Zn, Fe) at the interface between the implant and the receiver. The osseous attack is not global but, on the contrary, centripetal. Moreover, the fit of the concentration time course indicates that the kinetics of ossification is different for each atomic element and characterizes a distinct biological phenomenon

  6. A crystalline singlet phosphinonitrene: a nitrogen atom-transfer agent.

    Science.gov (United States)

    Dielmann, Fabian; Back, Olivier; Henry-Ellinger, Martin; Jerabek, Paul; Frenking, Gernot; Bertrand, Guy

    2012-09-21

    A variety of transition metal-nitrido complexes (metallonitrenes) have been isolated and studied in the context of modeling intermediates in biological nitrogen fixation by the nitrogenase enzymes and the industrial Haber-Bosch hydrogenation of nitrogen gas into ammonia. In contrast, nonmetallic nitrenes have so far only been spectroscopically observed at low temperatures, despite their intermediacy in a range of organic reactions. Here, we report the synthesis of a bis(imidazolidin-2-iminato)phosphinonitrene, which is stable at room temperature in solution and can even be isolated in the solid state. The bonding between phosphorus and nitrogen is analogous to that observed for metallonitrenes. We also show that this nitrido phosphorus derivative can be used to transfer a nitrogen atom to organic fragments, a difficult task for transition metal-nitrido complexes. PMID:22997335

  7. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed

  8. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed

  9. Adiabatic principles in atom-diatom collisional energy transfer

    International Nuclear Information System (INIS)

    This work describes the application of numerical methods to the solution of the time dependent Schroedinger equation for non-reactive atom-diatom collisions in which only one of the degrees of freedom has been removed. The basic method involves expanding the wave function in a basis set in two of the diatomic coordinates in a body-fixed frame (with respect to the triatomic complex) and defining the coefficients in that expansion as functions on a grid in the collision coordinate. The wave function is then propagated in time using a split operator method. The bulk of this work is devoted to the application of this formalism to the study of internal rotational predissociation in NeHF, in which quasibound states of the triatom predissociate through the transfer of energy from rotation of the diatom into translational energy in the atom-diatom separation coordinate. The author analyzes the computed time dependent wave functions to calculate the lifetimes for several quasibound states; these are in agreement with time independent quantum calculations using the same potential. Moreover, the time dependent behavior of the wave functions themselves sheds light on the dynamics of the predissociation processes. Finally, the partial cross sections of the products in those processes is determined with multiple exit channels. These show strong selectivity in the orbital angular momentum of the outgoing fragments, which the author explains with an adiabatic channel interpretation of the wave function's dynamics. The author also suggests that the same formalism might profitably be used to investigate the quantum dynamics of open-quotes quasiresonant vibration-rotation transferclose quotes, in which remarkably strong propensity rules in certain inelastic atom-diatom collision arise from classical adiabatic invariance theory

  10. Construction of the isocopalane skeleton: application of a desulfinylative 1,7-hydrogen atom transfer strategy.

    Science.gov (United States)

    Xiao, Xiong; Xu, ZhongYu; Zeng, Qian-Ding; Chen, Xi-Bo; Ji, Wen-Hao; Han, Ying; Wu, PeiYing; Ren, Jiangmeng; Zeng, Bu-Bing

    2015-06-01

    Two attractive chirons, aldehyde 6 and chloride 7, exhibiting functionalized ent-spongiane-type tricyclic skeletons (ABC ring system), have been constructed and their absolute configurations have been studied by NMR spectroscopy and confirmed by single-crystal X-ray diffraction. Both of these chirons are derived from commercially available andrographolide in good yield. Aldehyde 6 is obtained through a novel K2 S2 O8 -catalyzed aquatic ring-closing reaction of allylic sodium sulfonate and intramolecular 1,7-hydrogen atom transfer process. Further mechanistic investigations demonstrate that the 1,7-hydrogen atom transfer is a free-radical process, whereby hydrogen migrates from C18 to C17, as evidenced by double-18- deuterium-labeled isotope experiments. Prospective applications of these two chiral sources are also discussed. PMID:25907201

  11. Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer

    Science.gov (United States)

    Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.; Zinner, N. T.

    2016-04-01

    We have developed an efficient computational method to treat long, one-dimensional systems of strongly interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly perfect state transfer.

  12. Energy transfer between eigenmodes in multimodal atomic force microscopy

    International Nuclear Information System (INIS)

    We present experimental and computational investigations of tetramodal and pentamodal atomic force microscopy (AFM), respectively, whereby the first four or five flexural eigenmodes of the cantilever are simultaneously excited externally. This leads to six to eight additional observables in the form of amplitude and phase signals, with respect to the monomodal amplitude modulation method. We convert these additional observables into three or four dissipation and virial expressions, and show that these quantities can provide enhanced contrast that would otherwise remain hidden in the original observables. We also show that the complexity of the multimodal impact leads to significant energy transfer between the active eigenmodes, such that the dissipated power for individual eigenmodes may be positive or negative, while the total dissipated power remains positive. These results suggest that the contrast of individual eigenmodes in multifrequency AFM should be not be considered in isolation and that it may be possible to use different eigenfrequencies to probe sample properties that respond to different relaxation times. (paper)

  13. Theoretical investigation of the hydrogen atom transfer in the hydrated A–T base pair

    International Nuclear Information System (INIS)

    Highlights: ► We study the hydrated A–T base pair with 2 and 4 water molecules. ► We consider the dynamics of hydrogen transfer in the hydrogen bridges. ► We compare this study with experimental data and simple schemes. - Abstract: The hydrated A–T base pair has been studied in order to understand the structural modifications and their electronic rearrangements induced by the movement of the hydrogen atoms in the H-bonds. The comparison of these results with that of the nonhydrated system can explain the role of the H-bonds of the water molecules in this system. Two naïve schemes have been considered, one where the hydrogen bonds of the water molecules are only indirectly involved in the hydrogen atoms transfer between the bases and another where the water molecules are directly involved in this transfer. The results support the idea that the real mechanisms are more complexes than these schemes. Some new stable structures of the A–T(H2O)2 and the A–T(H2O)4 systems have been found and the mechanisms of their generations have been analysed.

  14. Transference of cold 85Rb atoms from a mirror MOT to U-MOT on an external atom chip

    International Nuclear Information System (INIS)

    We have designed an atom chip for manipulating cold atoms with magnetic fields generated by electric currents. Electric wires with a U shape for a quadrupole trap and a Z shape for the Ioffe-Pritchard trap were printed on the 26 mm x 26 mm chip. This chip was bonded on a 16 x 16 x 70 mm3 glass cell. The glass cell was for a mirror MOT. 85Rb atoms are magneto optically trapped near the chip's surface (mirror-MOT); then, the trapped atoms are transferred from the mirror-MOT to the U-MOT by gradually decreasing the magnetic field for the mirror-MOT while increasing the current for the U-MOT. A transfer efficiency of 27.1% was measured by comparing the fluorescence from the atoms of U-MOT and the mirror-MOT.

  15. Embedded system file transfer USB

    International Nuclear Information System (INIS)

    The development of the communication series A emphasized new aspects of data exchange. The transfer of data, subject of my project of end of studies, consists in transferring from the files of a support of mass towards another via port USB. In first phase, I had like stain the realization of an embarked system allowing the communication between a key USB and final of communication such as a Pc. For this fact, I had to include/understand the operation of protocol USB and thus I could programmed a Peak to manage this communication. The second phase, will consist in extending this project towards a transmission de< donnees between two keys USB without intervention of a powerful machine equipped with an operating system pour rant to manage this transaction. (Author)

  16. Laser-assisted electron-impact ionization of atoms at high impact energy and large momentum transfer

    International Nuclear Information System (INIS)

    We consider theoretically ionization of an atomic target by fast electron impact at large energy and momentum transfer and in the presence of laser radiation. For atomic hydrogen embedded in a linearly or circularly polarized laser field, we discuss how the polarization-vector orientation influences the momentum-dependent (e, 2e) differential cross sections assisted by exchange of few photons between the colliding system and the field.

  17. Tape Transfer Atomization Patterning of Liquid Alloys for Microfluidic Stretchable Wireless Power Transfer

    OpenAIRE

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape trans...

  18. KNOWLEDGE SYSTEMS APPLICATIONS BASED ON SW ATOM

    OpenAIRE

    Ladislav Burita; Pavel Gardavsky

    2014-01-01

    The article presents the knowledge systems developed by using the software AToM and the experience with their application for teaching and universities cooperation. The theoretical bases of the solution are Topic Maps; the software AToM is described and individual cases of the knowledge systems are introduced. The article reflects the years of experience in the cooperation of the knowledge systems development with the AION CS Company. Two examples are presented in detail: “Conferences” – know...

  19. Nonadiabatic effects on population transfer of two Bose-Einstein condensates induced by atomic interaction

    Institute of Scientific and Technical Information of China (English)

    胡正峰; 杜春光; 李师群

    2003-01-01

    We investigate the stimulated Raman adiabatic passage for Bose-Einstein condensate (BEG) states which are trapped in different potential wells or two ground states of BEG in the same trap. We consider that lasers are nearly resonant with the atomic transitions. The difference of population transfer processes between BEG atoms and usual atoms is that the atomic interaction of the BEG atoms can cause some nonadiabatic effects, which may degrade the process. But with suitable detunings of laser pulses, the effects can be remedied to some extent according to different atomic interactions.

  20. A scheme for transferring an unknown atomic entangled state via cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Wu Tao; Ye Liu; Ni Zhi-Xiang

    2006-01-01

    In this paper, we propose a scheme for transferring an unknown atomic entangled state via cavity quantum electrodynamics (QED). This scheme, which has a successful probability of 100 percent, does not require Bell-state measurement and performing any operations to reconstruct an initial state. Meanwhile, the scheme only involves atomfield interaction with a large detuning and does not require the transfer of quantum information between the atoms and cavity. Thus the scheme is insensitive to the cavity field states and cavity decay. This scheme can also be extended to transfer ring an entangled state of n-atom.

  1. Dimer-atom-atom recombination in the universal four-boson system

    OpenAIRE

    Deltuva, A.

    2012-01-01

    The dimer-atom-atom recombination process in the system of four identical bosons with resonant interactions is studied. The description uses the exact Alt, Grassberger and Sandhas equations for the four-particle transition operators that are solved in the momentum-space framework. The dimer-dimer and atom-trimer channel contributions to the ultracold dimer-atom-atom recombination rate are calculated. The dimer-atom-atom recombination rate greatly exceeds the three-atom recombination rate.

  2. Synthesis of triblock and random copolymers of 4- acetoxystyrene and styrene by living atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Gao, Bo; Chen, Xianyi; Ivan, Bela;

    1997-01-01

    Triblock copolymers containing polystyrene (PSt) and poly(4-acetoxystyrene) (PAcOSt) segments have been prepared by atom transfer radical polymerization (ATRP). In the first step one of the two monomers was polymerized in bulk using the initiating system alpha,alpha'-dibromo-p-xylene/CuBr/2...

  3. A comparison of pulsed and continuous atom transfer between two magneto-optical traps

    International Nuclear Information System (INIS)

    We present the experimental results for a comparison between pulsed and continuous transfer of cold 87Rb atoms between a vapor chamber magneto-optical trap (VC-MOT) and an ultra-high vacuum magneto-optical trap (UHV-MOT) when using a resonant push beam. We find that employing repetitive cycles of a pulsed and unfocused push beam on an unsaturated VC-MOT cloud results in a significantly higher number of atoms transferred to the UHV-MOT than the number obtained with a continuous push beam focused on a continuous VC-MOT. In pulsed transfer, we find that both the VC-MOT loading duration and the push beam duration play important roles in the transfer process and govern the number of atoms transferred to the UHV-MOT. The parameters and processes affecting the transfer have been investigated and are discussed.

  4. Hybrid quantum systems of atoms and ions

    International Nuclear Information System (INIS)

    In recent years, ultracold atoms have emerged as an exceptionally controllable experimental system to investigate fundamental physics, ranging from quantum information science to simulations of condensed matter models. Here we go one step further and explore how cold atoms can be combined with other quantum systems to create new quantum hybrids with tailored properties. Coupling atomic quantum many-body states to an independently controllable single-particle gives access to a wealth of novel physics and to completely new detection and manipulation techniques. We report on recent experiments in which we have for the first time deterministically placed a single ion into an atomic Bose Einstein condensate. A trapped ion, which currently constitutes the most pristine single particle quantum system, can be observed and manipulated at the single particle level. In this single-particle/many-body composite quantum system we show sympathetic cooling of the ion and observe chemical reactions of single particles in situ.

  5. Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and radical polymerization

    Indian Academy of Sciences (India)

    Dhruba Jyoti Haloi; Bishnu Prasad Koiry; Prithwiraj Mandal; Nikhil Kumar Singha

    2013-07-01

    This investigation reports a comparative study of poly(2-ethylhexyl acrylate) (PEHA) prepared via atom transfer radical polymerization (ATRP), reverse atom transfer radical polymerization (RATRP) and conventional free radical polymerization (FRP). The molecular weights and the molecular weight distributions of the polymers were measured by gel permeation chromatography (GPC) analysis. Structural characterization of the polymers was carried out by 1H NMR and MALDI-TOF-MS analyses. Thermal properties of the polymers were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The polymerization results and the thermal properties of PEHAs prepared via ATRP, RATRP and FRP were compared.

  6. Large momentum transfer atom interferometry with Coriolis force compensation

    Science.gov (United States)

    Kuan, Pei-Chen; Lan, Shau-Yu; Estey, Brian; Haslinger, Philipp; Mueller, Holger

    2012-06-01

    Light-pulse atom interferometers use atom-photon interactions to coherently split, guide, and recombine freely falling matter-waves. Because of Earth's rotation, however, the matter-waves do not recombine precisely, which causes severe loss of contrast in large space-time atom interferometers. I will present our recent progress in using a tip-tilt mirror to remove the influence of the Coriolis force from Earth's rotation. Therefore, we improve the contrast and suppress systematic effects, also reach what is to our knowledge the largest spacetime area.

  7. KNOWLEDGE SYSTEMS APPLICATIONS BASED ON SW ATOM

    Directory of Open Access Journals (Sweden)

    Ladislav Burita

    2014-03-01

    Full Text Available The article presents the knowledge systems developed by using the software AToM and the experience with their application for teaching and universities cooperation. The theoretical bases of the solution are Topic Maps; the software AToM is described and individual cases of the knowledge systems are introduced. The article reflects the years of experience in the cooperation of the knowledge systems development with the AION CS Company. Two examples are presented in detail: “Conferences” – knowledge system used for education and “MilUNI” –system for military universities cooperation.

  8. Implementing quantum electrodynamics with ultracold atomic systems

    CERN Document Server

    Kasper, V; Jendrzejewski, F; Oberthaler, M K; Berges, J

    2016-01-01

    We discuss the experimental engineering of model systems for the description of QED in one spatial dimension via a mixture of bosonic $^{23}$Na and fermionic $^6$Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson-fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose-Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system's parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using function...

  9. The ALADDIN atomic physics database system

    International Nuclear Information System (INIS)

    ALADDIN is an atomic physics database system which has been developed in order to provide a broadly-based standard medium for the exchange and management of atomic data. ALADDIN consists of a data format definition together with supporting software for both interactive searches as well as for access to the data by plasma modeling and other codes. The ALADDIN system is designed to offer maximum flexibility in the choice of data representations and labeling schemes, so as to support a wide range of atomic physics data types and allow natural evolution and modification of the database as needs change. Associated dictionary files are included in the ALADDIN system for data documentation. The importance of supporting the widest possible user community was also central to the ALADDIN design, leading to the use of straightforward text files with concatenated data entries for the file structure, and the adoption of strict FORTRAN 77 code for the supporting software. This will allow ready access to the ALADDIN system on the widest range of scientific computers, and easy interfacing with FORTRAN modeling codes, user developed atomic physics codes and databases, etc. This supporting software consists of the ALADDIN interactive searching and data display code, together with the ALPACK subroutine package which provides ALADDIN datafile searching and data retrieval capabilities to user's codes. ALADDIN has been adopted as the standard international atomic physics data exchange format for magnetic confinement fusion applications by the International Atomic Energy Agency (IAEA). Entry of critically evaluated atomic data sets into ALADDIN format is to be coordinated by the IAEA Atomic and Molecular Data Unit, which will also coordinate long-term development and distribution of updated software and documentation. The increasingly widespread adoption of the ALADDIN data format can be expected to greatly facilitate access to atomic data both within and outside of this original fusion

  10. Charge-transfer energy in closed-shell ion-atom interactions. [for H and Li ions in He

    Science.gov (United States)

    Alvarez-Rizzatti, M.; Mason, E. A.

    1975-01-01

    The importance of charge-transfer energy in the interactions between closed-shell ions and atoms is investigated. Ab initio calculations on H(plus)-He and Li(plus)-He are used as a guide for the construction of approximate methods for the estimation of the charge-transfer energy for more complicated systems. For many alkali ion-rate gas systems the charge-transfer energy is comparable to the induction energy in the region of the potential minimum, although for doubly charged alkaline-earth ions in rare gases the induction energy always dominates. Surprisingly, an empirical combination of repulsion energy plus asymptotic induction energy plus asymptotic dispersion energy seems to give a fair representation of the total interaction, especially if the repulsion energy is parameterized, despite the omission of any explicit charge-transfer contribution. More refined interaction models should consider the charge-transfer energy contribution.

  11. Schwinger variational calculation of ionization of hydrogen atoms for large momentum transfers

    Indian Academy of Sciences (India)

    K Chakrabarti

    2002-03-01

    Schwinger variational principle is used here to study large momentum transfer cases of electron and positron impact ionization of atomic hydrogen from the ground state at intermediate and moderately high energies. The results appear somewhat better compared to other theories.

  12. Waste Feed Delivery Transfer System Analysis

    International Nuclear Information System (INIS)

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms

  13. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  14. The population transfer of high excited states of Rydberg lithium atoms in a microwave field

    International Nuclear Information System (INIS)

    Using the time-dependent multilevel approach (TDMA), the properties of high excited Rydberg lithium atom have been obtained in the microwave field. The population transfer of lithium atom are studied on numerical calculation, quantum states are controlled and manipulated by microwave field. It shows that the population can be completely transferred to the target state by changing the chirped rate and field amplitude. (authors)

  15. Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp

    International Nuclear Information System (INIS)

    We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp. The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition. (atomic and molecular physics)

  16. The International Atomic Energy Agency's safeguards system

    International Nuclear Information System (INIS)

    A system of international safeguards has been established to provide assurance that nuclear materials in civilian use are not diverted from their peaceful purpose. The safeguards system is administered by the International Atomic Energy Agency/Department of Safeguards and devolves from treaties and other international agreements. Inspectors from the Agency verify reports from States about nuclear facilities by audits, observation, and measurements. (author)

  17. Dry Transfer Systems for Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  18. Optimal control of population transfer in Markovian open quantum systems

    CERN Document Server

    Cuia, Wei; Pan, Yu

    2010-01-01

    There has long been interest to control the transfer of population between specified quantum states. Recent work has optimized the control law for closed system population transfer by using a gradient ascent pulse engineer- ing algorithm [1]. Here, a spin-boson model consisting of two-level atoms which interact with the dissipative environment, is investigated. With opti- mal control, the quantum system can invert the populations of the quantum logic states. The temperature plays an important role in controlling popula- tion transfer. At low temperatures the control has active performance, while at high temperatures it has less erect. We also analyze the decoherence be- havior of open quantum systems with optimal population transfer control, and we find that these controls can prolong the coherence time. We hope that active optimal control can help quantum solid-state-based engineering.

  19. Coherent population transfer in Rydberg potassium atom by a single frequency-chirped laser pulse

    Institute of Scientific and Technical Information of China (English)

    Zhang Xian-Zhou; Ma Qiao-Zhi; Li Xiao-Hong

    2006-01-01

    By using the time-dependent multilevel approach, we have calculated the coherent population transfer among the quantum states of potassium atom by a single frequency-chirped laser pulse. The results show that the population can be efficiently transferred to a target state and be trapped there by using an ‘intuitive’ or a ‘counter-intuitive’ frequency sweep laser pulse in the case of ‘narrowband’ frequency-chirped laser pulse. It is also found that a pair of sequential ‘broadband’ frequency-chirped laser pulses can efficiently transfer population from one ground state of the A atom to the other one.

  20. Two-nucleon transfer reactions uphold supersymmetry in atomic nuclei

    OpenAIRE

    Barea, J.; Bijker, R.; Frank, A.

    2004-01-01

    The spectroscopic strengths of two-nucleon transfer reactions constitute a stringent test for two-nucleon correlations in the nuclear wave functions. A comparison between the recently measured 198Hg(d,alpha)196Au reaction and the predictions from the nuclear quartet supersymmetry lends further support to the validity of supersymmetry in nuclear physics.

  1. Time Dependent Radiative Transfer for Multi-Level Atoms using Accelerated Lambda Iteration

    CERN Document Server

    van Adelsberg, Matthew

    2012-01-01

    We present a general formalism for computing self-consistent, numerical solutions to the time-dependent radiative transfer equation in low velocity, multi-level ions undergoing radiative interactions. Recent studies of time-dependent radiative transfer have focused on radiation hydrodynamic and magnetohydrodynamic effects without lines, or have solved time-independent equations for the radiation field simultaneously with time-dependent equations for the state of the medium. In this paper, we provide a fully time-dependent numerical solution to the radiative transfer and atomic rate equations for a medium irradiated by an external source of photons. We use Accelerated Lambda Iteration to achieve convergence of the radiation field and atomic states. We perform calculations for a three-level atomic model that illustrates important time-dependent effects. We demonstrate that our method provides an efficient, accurate solution to the time-dependent radiative transfer problem. Finally, we characterize astrophysical...

  2. Nitrogen Atom Transfer From High Valent Iron Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D. [New Mexico State Univ., Las Cruces, NM (United States); Smith, Jeremy M. [Indiana Univ., Bloomington, IN (United States)

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  3. Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities

    Science.gov (United States)

    Zheng, Bin; Shen, Li-Tuo; Chen, Ming-Feng

    2016-05-01

    We propose a one-step scheme for implementing entanglement generation and the quantum state transfer between two atomic qubits trapped in two different cavities that are not directly coupled to each other. The process is realized through engineering an effective asymmetric X-Y interaction for the two atoms involved in the gate operation and an auxiliary atom trapped in an intermediate cavity, induced by virtually manipulating the atomic excited states and photons. We study the validity of the scheme as well as the influences of the dissipation by numerical simulation and demonstrate that it is robust against decoherence.

  4. Mechanism of Photoinduced Metal-Free Atom Transfer Radical Polymerization: Experimental and Computational Studies.

    Science.gov (United States)

    Pan, Xiangcheng; Fang, Cheng; Fantin, Marco; Malhotra, Nikhil; So, Woong Young; Peteanu, Linda A; Isse, Abdirisak A; Gennaro, Armando; Liu, Peng; Matyjaszewski, Krzysztof

    2016-02-24

    Photoinduced metal-free atom transfer radical polymerization (ATRP) of methyl methacrylate was investigated using several phenothiazine derivatives and other related compounds as photoredox catalysts. The experiments show that all selected catalysts can be involved in the activation step, but not all of them participated efficiently in the deactivation step. The redox properties and the stability of radical cations derived from the catalysts were evaluated by cyclic voltammetry. Laser flash photolysis (LFP) was used to determine the lifetime and activity of photoexcited catalysts. Kinetic analysis of the activation reaction according to dissociative electron-transfer (DET) theory suggests that the activation occurs only with an excited state of catalyst. Density functional theory (DFT) calculations revealed the structures and stabilities of the radical cation intermediates as well as the reaction energy profiles of deactivation pathways with different photoredox catalysts. Both experiments and calculations suggest that the activation process undergoes a DET mechanism, while an associative electron transfer involving a termolecular encounter (the exact reverse of DET pathway) is favored in the deactivation process. This detailed study provides a deeper understanding of the chemical processes of metal-free ATRP that can aid the design of better catalytic systems. Additionally, this work elucidates several important common pathways involved in synthetically useful organic reactions catalyzed by photoredox catalysts. PMID:26820243

  5. Transfer Potentials shape and equilibrate Monetary Systems

    OpenAIRE

    Dieter Braun; Robert Fischer

    2002-01-01

    We analyze a monetary system of random money transfer on the basis of double entry bookkeeping. Without boundary conditions, we do not reach a price equilibrium and violate text-book formulas of economists quantity theory (MV=PQ). To match the resulting quantity of money with the model assumption of a constant price, we have to impose boundary conditions. They either restrict specific transfers globally or impose transfers locally. Both connect through a general framework of transfer potentia...

  6. Excitation and charge transfer in low-energy hydrogen-atom collisions with neutral atoms: Theory, comparisons, and application to Ca

    Science.gov (United States)

    Barklem, Paul S.

    2016-04-01

    A theoretical method is presented for the estimation of cross sections and rates for excitation and charge-transfer processes in low-energy hydrogen-atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in the neutral atom-hydrogen-atom system. The calculation of potentials and nonadiabatic radial couplings using the method is demonstrated. The potentials are used together with the multichannel Landau-Zener model to calculate cross sections and rate coefficients. The main feature of the method is that it employs asymptotically exact atomic wave functions, which can be determined from known atomic parameters. The method is applied to Li+H , Na+H , and Mg+H collisions, and the results compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically important problem of Ca+H collisions, and rate coefficients are calculated for temperatures in the range 1000-20 000 K.

  7. The CANDU 9 fuel transfer system

    International Nuclear Information System (INIS)

    The CANDU 9 fuel transfer system is based on the CANDU 6 and the Ontario Hydro Darlington NGD designs, modified to suit the CANDU 9 requirements. The CANDU 9 new fuel transfer system is very similar to the CANDU 6, with modifications to allow new fuel loading from outside containment, similar to Darlington. The CANDU 9 irradiated fuel transfer system is based on the Darlington irradiated fuel transfer system, with modifications to meet the more stringent containment requirements, improve performance, and match station layout. (author). 2 refs., 6 figs

  8. Functionalization of Rhenium Aryl Bonds by O-Atom Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bischof, Steven M. [Scripps Research Inst., Jupiter, FL (United States); Cheng, Mu-Jeng [California Inst. of Technology (CalTech), Pasadena, CA (United States); Nielsen, Robert J. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Gunnoe, T. Brent [Univ. of Virginia, Charlottesville, VA (United States); Goddard, William A. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Periana, Roy A. [Scripps Research Inst., Jupiter, FL (United States)

    2011-03-29

    Aryltrioxorhenium (ArReO3) has been demonstrated to show rapid oxy-functionalization upon reaction with O-atom donors, YO, to selectively generate the corresponding phenols in near quantitative yields. 18O-Labeling experiments show that the oxygen in the products is exclusively from YO. DFT studies reveal a 10.7 kcal/mol barrier (Ar = Ph) for oxy-functionalization with H2O2 via a Baeyer-Villiger type mechanism involving nucleophilic attack of the aryl group on an electrophilic oxygen of YO coordinated to rhenium.

  9. The ALADDIN atomic physics database system

    International Nuclear Information System (INIS)

    ALADDIN is an atomic physics database system which has been developed in order to provide a broadly-based standard medium for the exchange and management of atomic data. ALADDIN consists of a data format definition together with supporting software for both interactive searches as well as for access to the data by plasma modeling and other codes. 8AB The ALADDIN system is designed to offer maximum flexibility in the choice of data representations and labeling schemes, so as to support a wide range of atomic physics data types and allow natural evolution and modification of the database as needs change. Associated dictionary files are included in the ALADDIN system for data documentation. The importance of supporting the widest possible user community was also central to be ALADDIN design, leading to the use of straightforward text files with concatentated data entries for the file structure, and the adoption of strict FORTRAN 77 code for the supporting software. This will allow ready access to the ALADDIN system on the widest range of scientific computers, and easy interfacing with FORTRAN modeling codes, user developed atomic physics codes and database, etc. This supporting software consists of the ALADDIN interactive searching and data display code, together with the ALPACK subroutine package which provides ALADDIN datafile searching and data retrieval capabilities to user's codes

  10. Table of hyperfine anomaly in atomic systems

    OpenAIRE

    Persson, Jonas R.

    2011-01-01

    This table is a compilation of experimental values of magnetic hyperfine anomaly in atomic and ionic systems. The last extensive compilation was published in 1984 by Buttgenbach (Hyperfine Interactions 20, (1984) p 1) and the aim here is to make an up to date compilation. The literature search covers the period to January 2011.

  11. Ionisation of atomic hydrogen at intermediate momentum transfer

    International Nuclear Information System (INIS)

    Relative differential cross sections for the asymmetric coplanar (e,2e) reaction have been measured in three energy-sharing regions, for two of which the ionisation peak is about 1 a.u. off the Bethe ridge. Momentum transfer is intermediate between large (binary) and small (dipole) values, where the distorted-wave impulse and second Born approximations respectively give a good account of the experimental data. In addition to these approximations the distorted-wave Born approximation is calculated. It is somewhat superior to the distorted-wave impulse approximation and very much better than the second Born approximation

  12. Novel ionic liquids as reaction medium for atom transfer radical polymerization of methyl methacrylate

    Institute of Scientific and Technical Information of China (English)

    Guo Qiao Lai; Fu Min Ma; Zi Qiang Hu; Hua Yu Qiu; Jian Xiong Jiang; Ji Rong Wu; Li Min Chen; Lian Bin Wu

    2007-01-01

    Atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) employing ethyl 2-bromoisobutyrate (EBiB)/CuBr as the initiating system was investigated at 50 ℃ in the absence of any additional ligand in the three room temperature ionic liquids (RTILs), 1-methyl-imidazolium acetate ([mim][CH3COO]), 1-methylimidazolium propionate ([mim][CH3CH2COO]) and 1-methylimidazolium butyrate ([mim] [CH3CH2CH2COO]), respectively. All the polymerization in the three RTILs proceeded in a well-controlled manner. The sequence of the apparent polymerization rate constants was kapp([mim][CH3COO]) > kapp([mim][CH3CH2COO]) > kapp ([mim][CH3CH2CH2COO]).

  13. Remote atom entanglement in a fibre-connected three-atom system

    Institute of Scientific and Technical Information of China (English)

    Guo Yan-Qing; Chen Jing; Song He-Shan

    2008-01-01

    An Ising-type atom-atom interaction is obtained in a fibre-connected three-atom system. The interaction is effective when △≈γO>>g.The preparations of remote two-atom and three-atom entanglements governed by this interaction are discussed in a specific parameter region.The overall two-atom entanglement is very small because of the existence of the third atom.However,the three-atom entanglement can reach a maximum very close to 1.

  14. Remote atom entanglement in a fiber-connected three-atom system

    OpenAIRE

    Yan-Qing, Guo; Jing, Chen; He-Shan, Song

    2008-01-01

    An Ising-type atom-atom interaction is obtained in a fiber-connected three-atom system. The interaction is effective when $\\Delta\\approx \\gamma _{0}\\gg g$. The preparations of remote two-atom and three-atom entanglement governed by this interaction are discussed in specific parameters region. The overall two-atom entanglement is very small because of the existence of the third atom. However, the three-atom entanglement can reach a maximum very close to 1.

  15. Correlation Between Energy Transfer Rate and Atomization Energy of Some Trinitro Aromatic Explosive Molecules

    Institute of Scientific and Technical Information of China (English)

    Su-hong Ge; Xin-lu Cheng; Zheng-lai Liu; Xiang-dong Yang; Fang-fang Dong

    2008-01-01

    An assumptive theoretical relationship is suggested to describe the property of molecular atomization energy and energy transfer rate in the initiation of explosions. To investigate the relationship between atomization energy and energy transfer rate, the number of doorway modes of explosives is estimated by the theory of Dlott and Fayer in which the rate is proportional to the number of normal mode vibrations. It was evaluated frequencies of normal mode vibrations of eight molecules by means of density functional theory (DFT) at the b3p86/6-31G(d,p) level. It is found that the number of doorway modes shows a linear correlation to the atomization energies of the molecules, which were also calculated by means of the same method. A mechanism of this correlation is discussed. It is also noted that in those explosives with similar molecular structure and molecular weight, the correlation between the atomization energy and the number of doorway modes is higher.

  16. Orbital Express fluid transfer demonstration system

    Science.gov (United States)

    Rotenberger, Scott; SooHoo, David; Abraham, Gabriel

    2008-04-01

    Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging

  17. Excited atomic bromine energy transfer and quenching mechanisms

    Science.gov (United States)

    Johnson, Ray O.

    1993-08-01

    Pulsed and steady-state photolysis experiments have been conducted to determine the rate coefficients for collisional deactivation of the spin-orbit excited state of atomic bromine, Br((sup 2)P(sub 1/2)). Pulsed lifetime studies for quenching by Br2 and CO2 established absolute rate coefficients at room temperature of k(sub Br2) = 1.2 +/- 0.1 x 10(exp-12) and k(sub CO2) = 1.5 +/0.2 x 10(exp-11) cu cm/molecule-s. Steady-state photolysis methods were used to determine the quenching rates for the rare gases, N2, 02, H2, D2, NO, NO2, N2O, SF6, CF4, CH4, CO, CO2, COS, SO2, H2S, HBr, HC1, and HI relative to that for Br2. Quenching rate temperature dependence was examined for Br2, CO2, N2O, HCl, COS, NO, and NO2 for temperatures from 300 to 420 K. Diffusion and three body effects were examined in order to determine the slowest relative quenching rate measurable by this experimental technique.

  18. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    Cvitas, Marko T.; Soldan, Pavel; Hutson, Jeremy M.

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  19. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    CERN Document Server

    Chanu, Sapam Ranjita; Natarajan, Vasant

    2016-01-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  20. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    Science.gov (United States)

    Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant

    2016-08-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  1. Saturn facility oil transfer automation system

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Nathan R.; Thomas, Rayburn Dean; Lewis, Barbara Ann; Malagon, Hector Ricardo.

    2014-02-01

    The Saturn accelerator, owned by Sandia National Laboratories, has been in operation since the early 1980s and still has many of the original systems. A critical legacy system is the oil transfer system which transfers 250,000 gallons of transformer oil from outside storage tanks to the Saturn facility. The oil transfer system was iden- ti ed for upgrade to current technology standards. Using the existing valves, pumps, and relay controls, the system was automated using the National Instruments cRIO FGPA platform. Engineered safety practices, including a failure mode e ects analysis, were used to develop error handling requirements. The uniqueness of the Saturn Oil Automated Transfer System (SOATS) is in the graphical user interface. The SOATS uses an HTML interface to communicate to the cRIO, creating a platform independent control system. The SOATS was commissioned in April 2013.

  2. Dynamics of heat transfer between nano systems

    OpenAIRE

    Biehs, Svend-Age; Agarwal, Girish S.

    2012-01-01

    We develop a dynamical theory of heat transfer between two nano systems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localize...

  3. Transfer factor of 137Cs from soil to wheat grains and dosimetry around Narora Atomic Power Station, Narora, India

    International Nuclear Information System (INIS)

    This field study was undertaken to quantify the transfer factor of 137Cs from agricultural soil to wheat grains and ingestion dose evaluation around Narora Atomic Power Station, Narora, India from 2010 to 2012. 137Cs activity was measured using NaI (Tl) well type gamma-spectrometry system. Transfer factor of 137Cs from soil to wheat grain samples was in the range of 0.12-0.46. Annual ingestion dose to man from 137Cs activity was significantly lower than permissible limit (1.0 mSv year-1). The risk measured due to 137Cs is also insignificant to members of public residing around Narora Atomic Power Station, Narora, India. (author)

  4. System for Multicast File Transfer

    Directory of Open Access Journals (Sweden)

    Dorin Custura

    2012-03-01

    Full Text Available The distribution of big files over the network from a single source to a large number of recipients is not efficient by using standard client-server or even peer-to peer file transfer protocols.  Thus, the transfer of a hierarchy of big files to multiple destinations can be optimized in terms of bandwidth usage and data storage reads by using multicast networking. In order to achieve that, a simple application layer protocol can be imagined. It uses multicast UDP as transport and it provides a mechanism for data ordering and retransmission. Some security problems are also considered in this protocol, because at this time the Internet standards supporting multicast security are still in the development stage.

  5. The role of the International Atomic Energy Agency in technology transfer for the peaceful use of nuclear energy and the strengthening of the Safeguards system, Santiago, 9 December 1998

    International Nuclear Information System (INIS)

    The document reproduces the text of the conference given by the Director General of the IAEA at the IAEA national seminar on 'Nuclear Development and its Implications for Chilean International Policy' in Santiago, Chile, on 9 December 1998. After a short presentation of Chile's participation in all aspects of the work of the Agency, the conference focuses on the Agency's role in the following areas: technology transfer with emphasis on Agency's Technical Co-operation Programme, nuclear power and sustainable energy development, including nuclear safety aspects, and the strengthened safeguards system, including future prospects of verification

  6. The role of the International Atomic Energy Agency in technology transfer for the peaceful use of nuclear energy and the strengthening of the Safeguards system, Brasilia, 16 December 1998

    International Nuclear Information System (INIS)

    The document reproduces the text of the conference given by the Director General of the IAEA at the Diplomatic Academy of the Ministry of Foreign Affairs of Brazil in Brasilia on 16 December 1998. After a short presentation of Brazil's participation in all aspects of the work of the Agency, the conference focuses on the Agency's role in the following areas: verification and the strengthened safeguards system (including future prospects of verification), technology transfer (mainly through the Technical Co-operation Programme), and nuclear power and sustainable energy development, including nuclear safety aspects

  7. The role of the International Atomic Energy Agency in technology transfer for the peaceful use of nuclear energy and the strengthening of the Safeguards system, Buenos Aires, 15 December 1998

    International Nuclear Information System (INIS)

    The document reproduces the text of the conference given by the Director General of the IAEA at the meeting of the Council for International Relations in Buenos Aires, Argentina, on 15 December 1998. After a short presentation of Argentina's participation in all aspects of the work of the Agency, the conference focuses on the Agency's role in the following areas: nuclear power and sustainable energy development, including nuclear safety aspects, verification and the strengthened safeguards system (including future prospects of verification), and technology transfer with emphasis on Agency's Technical Co-operation Programme

  8. Electron transfer and multi-atom abstraction reactions between atomic metal anions and NO, NO2 and SO2

    Science.gov (United States)

    Butson, J. M.; Curtis, S.; Mayer, P. M.

    2016-05-01

    The atomic metal anions Fe-, Cs-, Cu- and Ag- were reacted with NO, NO2 and SO2 to form intact NO-, NO2- and SO2- with no fragmentation. Yields for the molecular anions ranged from 4 to 97% and were found to correlate to the exothermicity of the electron transfer process. Sequential oxygen atom extraction was found to take place between the metal anions and NO and NO2. Reactions between NO2 and Fe- resulted in FeO-, FeO2- and FeO3- while reactions of Cu- with NO2 resulted in CuO- and CuO2-. Reactions of Cu- and Ag- with NO resulted in CuO- and AgO- respectively.

  9. Surface Modification of Nanoporous 1,2-Polybutadiene by Atom Transfer Radical Polymerization or Click Chemistry

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars;

    2010-01-01

    Surface-initiated atom transfer radical polymerization (ATRP) and click chemistry were used to obtain functional nanoporous polymers based oil nanoporous 1,2-polybutadiene (PB) with gyroid morphology. The ATRP monolith initiator was prepared by immobilizing bromoester initiators onto the pore walls...

  10. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions (updated 1993)

    International Nuclear Information System (INIS)

    Following our previous compilations [IPPJ-AM-45 (1986), NIFS-DATA-7 (1990)], bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1980-1992 are included. For easy finding references for particular combination of collision partners, a simple list is also provided. (author) 1542 refs

  11. Protein repellent hydrophilic grafts prepared by surface-initiated atom transfer radical polymerization from polypropylene

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Eskimergen, Rüya;

    2012-01-01

    Grafting of poly(ethylene glycol)methacrylate (PEGMA) and N,N-dimethylacrylamide (DMAAm) from UV-initiator modified polypropylene (PP) was performed by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). The modification and hydrophilization of the PP substrates were confirmed with ...

  12. Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012184029A The present invention relates to preparation of a polymer coating comprising or consisting of polymer chains comprising or consisting of units of 2-methoxyethyl acrylate synthesized by Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP) such as ARGET SI ATRP or...

  13. Novel fluorinated block copolymer architectures fuelled by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Jankova, Katja; Hvilsted, Søren

    2005-01-01

    Block copolymers based on poly(pentafluorostyrene), PFS, in various numbers and of different lengths, and polystyrene are prepared by atom transfer radical polymerization (ATRP). Di- and triblock copolymers with varying amounts of PFS were synthesized employing either I phenylethylbromide or 1,4-...

  14. On Surface-Initiated Atom Transfer Radical Polymerization Using Diazonium Chemistry To Introduce the Initiator Layer

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Lillethorup, Mie; Ceccato, Marcel;

    2011-01-01

    This work features the controllability of surface-initiated atom transfer radical polymerization (SI-ATRP) of methyl methacrylate, initiated by a multilayered 2-bromoisobutyryl moiety formed via diazonium chemistry. The thickness as a function of polymerization time has been studied by varying di...

  15. Anticoagulant surface of 316 L stainless steel modified by surface-initiated atom transfer radical polymerization.

    Science.gov (United States)

    Guo, Weihua; Zhu, Jian; Cheng, Zhenping; Zhang, Zhengbiao; Zhu, Xiulin

    2011-05-01

    Polished 316 L stainless steel (SS) was first treated with air plasma to enhance surface hydrophilicity and was subsequently allowed to react with 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane to introduce an atom transfer radical polymerization (ATRP) initiator. Accordingly, the surface-initiated atom transfer radical polymerization of polyethylene glycol methacrylate (PEGMA) was carried out on the surface of the modified SS. The grafting progress was monitored by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy. The polymer thickness as a function different polymerization times was characterized using a step profiler. The anticoagulative properties of the PEGMA modified SS surface were investigated. The results showed enhanced anticoagulative to acid-citrate-dextrose (ACD) blood after grafting PEGMA on the SS surface. PMID:21528878

  16. Environmental management system at ABB Atom

    International Nuclear Information System (INIS)

    The implementation of an Environmental Management System (EMS) at ABB Atom as a structured way of dealing with the environmental impact of the company's operations is described. The international standard for EMS, ISO 14001, is being followed. This includes the requirement to establish and mantain environmental objectives and targets, commitment to their continuous improvement, and regular review of the EMS by the company's senior management. Implementation is a step-wise process beginning with an audit of the environmental impacts of all operations from which the most significant are identified. An environmental policy and objectives and targets are then established. ABB Atom aim to have third-party certification of the EMS before the end of 1997. (UK)

  17. Engineering Floquet Hamiltonians in Cold Atom Systems

    Science.gov (United States)

    Polkovnikov, Anatoli

    2016-05-01

    In this talk I will first give a brief overview of the Floquet theory, describing periodically driven systems. Then I will introduce the concept of the high-frequency expansion and will show how it generalizes the celebrated Schrieffer-Wolff transformation to driven systems. Using these tools I will illustrate how one can engineer non-trivial interacting Hamiltonians mostly in the context of cold atom systems and discuss some experimental examples. In the end I will talk about issues of heating and adiabaticity and show that there are very strong parallels between Floquet systems and disordered systems. In particular, I will argue that the heating transition is closely analogous to the many-body localization transition. AFOSR, ARO, NSF.

  18. Accident on the gas transfer system

    International Nuclear Information System (INIS)

    An accident has happened on the Vivitron gas transfer system on the 7 th August 1991. This report presents the context, facts and inquiries, analyses the reasons and explains also how the repairing has been effected

  19. Linear System Identification via Atomic Norm Regularization

    CERN Document Server

    Shah, Parikshit; Tang, Gongguo; Recht, Benjamin

    2012-01-01

    This paper proposes a new algorithm for linear system identification from noisy measurements. The proposed algorithm balances a data fidelity term with a norm induced by the set of single pole filters. We pose a convex optimization problem that approximately solves the atomic norm minimization problem and identifies the unknown system from noisy linear measurements. This problem can be solved efficiently with standard, freely available software. We provide rigorous statistical guarantees that explicitly bound the estimation error (in the H_2-norm) in terms of the stability radius, the Hankel singular values of the true system and the number of measurements. These results in turn yield complexity bounds and asymptotic consistency. We provide numerical experiments demonstrating the efficacy of our method for estimating linear systems from a variety of linear measurements.

  20. Time-dependent radiative transfer for multi-level atoms using accelerated Lambda iteration

    Science.gov (United States)

    van Adelsberg, Matthew; Perna, Rosalba

    2013-02-01

    We present a general formalism for computing self-consistent, numerical solutions to the time-dependent radiative transfer equation in low-velocity, multi-level ions undergoing radiative interactions. Recent studies of time-dependent radiative transfer have focused on radiation hydrodynamic and magnetohydrodynamic effects without lines, or have solved time-independent equations for the radiation field simultaneously with time-dependent equations for the state of the medium. In this paper, we provide a fully time-dependent numerical solution to the radiative transfer and atomic rate equations for a medium irradiated by an external source of photons. We use accelerated Lambda iteration to achieve convergence of the radiation field and atomic states. We perform calculations for a three-level atomic model that illustrates important time-dependent effects. We demonstrate that our method provides an efficient, accurate solution to the time-dependent radiative transfer problem. Finally, we characterize astrophysical scenarios in which we expect our solutions to be important.

  1. Large cross section for super energy transfer from hyperthermal atoms to ambient molecules

    Science.gov (United States)

    Ma, Jianqiang; Wilhelm, Michael J.; Smith, Jonathan M.; Dai, Hai-Lung

    2016-04-01

    The experimentally measured cross section for super energy transfer collisions between a hyperthermal H atom and an ambient molecule is presented here. This measurement substantiates an emerging energy transfer mechanism with significant cross section, whereby a major fraction of atomic translational energy is converted into molecular vibrational energy through a transient collision-induced reactive complex. Specifically, using nanosecond time-resolved infrared emission spectroscopy, it is revealed that collisions between hyperthermal hydrogen atoms (with 59 kcal/mol of kinetic energy) and ambient SO2 result in the production of vibrationally highly excited SO2 with >14 000 cm-1 of internal energy. The lower limit of the cross section for this super energy transfer process is determined to be 0.53 ±0.05 Å2, i.e., 2% of all hard-sphere collisions. This cross section is orders of magnitude greater than that predicted by the exponential energy gap law, which is commonly used for describing collisional energy transfer through repulsive interactions.

  2. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    Science.gov (United States)

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization. PMID:27140374

  3. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    International Nuclear Information System (INIS)

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing Tg values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol−1. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric analysis shows that

  4. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khezri, Khezrollah, E-mail: kh.khezri@ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran (Iran, Islamic Republic of); Roghani-Mamaqani, Hossein [Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of)

    2014-11-15

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric

  5. The diffusion transfer of sputtered atoms in plasma spraying on the internal cylindrical surface

    International Nuclear Information System (INIS)

    The sputtering of the surface of the solid by the glow discharge plasma is used widely in the electronics for the deposition of thin films. The sputtered atoms (SA), leaving the surface, clash with the gas atoms and the granules the energy. It is interesting to examine the effect of the condensation coefficient of the SA on the concentration of the SA in the cylindrical discharge volume and the fluxes of the SA to different areas of the wall. The solution of this problem for the case of the diffusion transfer of the SA is the subject of this work

  6. File Transfer Algorithm for Autonomous Decentralized System

    Institute of Scientific and Technical Information of China (English)

    GUI Xun; TAN Yong-dong; Qian Qing-quan

    2008-01-01

    A file transfer algorithm based on ADP (autonomous decentralized protocol) was proposed to solve the problem that the ADS (autonomous decentralized system) middleware (NeXUS/Dlink) lacks of file transfer functions for Windows. The algorithm realizes the peer-to-peer file transfer, one-to-N inquiry/multi-response file transfer and one-to-N file distribution in the same data field based on communication patterns provided by the ADP. The peer-to-peer file transfer is implemented through a peer-to-peer communication path, one-to-N inquiry/multi-response file transfer and one-to-N file distribution are implemented through multicast commtmieation. In this algorithm, a file to be transferred is named with a GUID ( global unique identification), every data packet is marked with a sequence number, and file-receiving in parallel is implemented by caching DPOs (data processing objects) and multithread technologies. The algorithm is applied in a simulation system of the decentralized control platform, and the test results and long time stable mrming prove the feasibility of the algorithm.

  7. Design Criteria for Bagless Transfer System (BTS) Packaging System

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    2000-04-26

    This document provides the criteria for the design and installation of a Bagless Transfer System (BTS); Blend, Sieve and Balance Equipment; and Supercritical Fluid Extraction System (SFE). The project consists of 3 major modules: (1) Bagless Transfer System (BTS) Module; (2) Blend, Sieve and Balance Equipment; and (3) Supercritical Fluid Extraction (SFE) Module.

  8. Design Criteria for Bagless Transfer System (BTS) Packaging System

    International Nuclear Information System (INIS)

    This document provides the criteria for the design and installation of a Bagless Transfer System (BTS); Blend, Sieve and Balance Equipment; and Supercritical Fluid Extraction System (SFE). The project consists of 3 major modules: (1) Bagless Transfer System (BTS) Module; (2) Blend, Sieve and Balance Equipment; and (3) Supercritical Fluid Extraction (SFE) Module

  9. Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms

    Science.gov (United States)

    Wu, Q.; Li, Y. H.; Gao, N.; Yang, F.; Chen, Y. Q.; Fang, K.; Zhang, Y. W.; Chen, H.

    2015-03-01

    In this letter, a potential way to transfer power wirelessly based on magnetic metamaterials (MMs) assembled by ultra-subwavelength meta-atoms is proposed. Frequency-domain simulation and experiments are performed for accurately obtaining effective permeability of magnetic metamaterials. The results demonstrate that MMs possess great power for enhancing the wireless power transfer efficiency between two non-resonant coils. Further investigations on the magnetic-field distribution demonstrate that a large-area flattened magnetic field in near range can be effectively realized, exhibiting great flexibility in assembling.

  10. Transfer Function Control for Biometric Monitoring System

    Science.gov (United States)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodinsky, Carlos M. (Inventor)

    2015-01-01

    A modular apparatus for acquiring biometric data may include circuitry operative to receive an input signal indicative of a biometric condition, the circuitry being configured to process the input signal according to a transfer function thereof and to provide a corresponding processed input signal. A controller is configured to provide at least one control signal to the circuitry to programmatically modify the transfer function of the modular system to facilitate acquisition of the biometric data.

  11. Trends in Ground-State Entropies for Transition Metal Based Hydrogen Atom Transfer Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Elizabeth A.; Manner, Virginia W.; Markle, Todd F.; Wu, Adam; Franz, James A.; Mayer, James M.

    2009-03-10

    Reported herein are thermochemical studies of hydrogen atom transfer (HAT) reactions involving transition metal H-atom donors MIILH and oxyl radicals. [FeII(H2bip)3]2+, [FeII(H2bim)3]2+, [CoII(H2bim)3]2+ and RuII(acac)2(py-imH) [H2bip = 2,2’-bi-1,4,5,6-tetrahydro¬pyrimidine, H2bim = 2,2’-bi-imidazoline, acac = 2,4-pentandionato, py-imH = 2-(2’-pyridyl)¬imidazole)] each react with TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) or tBu3PhO• (2,4,6-tri-tert-butylphenoxyl) to give the deprotonated, oxidized metal complex MIIIL, and TEMPOH or tBu3PhOH. Solution equilibrium measurements for the reactions of Co and Fe complexes with TEMPO show a large, negative ground-state entropy for hydrogen atom transfer: ΔSºHAT = -30 ± 2 cal mol-1 K-1 for the two iron complexes and -41 ± 2 cal mol-1 K-1 for [CoII(H2bim)3]2+. The ΔSºHAT for TEMPO + RuII(acac)2(py-imH) is much closer to zero, 4.9 ± 1.1 cal mol-1 K-1. Calorimetric measurements quantitatively confirm the enthalpy of reaction for [FeII(H2bip)3]2+ + TEMPO, thus also confirming ΔSºHAT. Calorimetry on TEMPOH + tBu3PhO• gives ΔHºHAT = 11.2 ± 0.5 kcal mol-1 which matches the enthalpy predicted from the difference in literature solution BDEs. An evaluation of the literature BDEs of both TEMPOH and tBu3PhOH is briefly presented and new estimates are included on the relative enthalpy of solvation for tBu3PhO• vs. tBu3PhOH. The primary contributor to the large magnitude of the ground-state entropy |ΔSºHAT| for the metal complexes is vibrational entropy, ΔSºvib. The common assumption that ΔSºHAT ≈ 0 for HAT reactions, developed for organic and small gas phase molecules, does not hold for transition metal based HAT reactions. The trend in magnitude of |ΔSºHAT| for reactions with TEMPO, RuII(acac)2(py-imH) << [FeII(H2bip)3]2+ = [FeII(H2bim)3]2+ < [CoII(H2bim)3]2+, is surprisingly well predicted by the trends for electron transfer half-reaction entropies, ΔSºET, in aprotic solvents. ΔSºET and

  12. Atom Transfer Radical Polymerization of Functionalized Vinyl Monomers Using Perylene as a Visible Light Photocatalyst.

    Science.gov (United States)

    Theriot, Jordan C; Ryan, Matthew D; French, Tracy A; Pearson, Ryan M; Miyake, Garret M

    2016-01-01

    A standardized technique for atom transfer radical polymerization of vinyl monomers using perylene as a visible-light photocatalyst is presented. The procedure is performed under an inert atmosphere using air- and water-exclusion techniques. The outcome of the polymerization is affected by the ratios of monomer, initiator, and catalyst used as well as the reaction concentration, solvent, and nature of the light source. Temporal control over the polymerization can be exercised by turning the visible light source off and on. Low dispersities of the resultant polymers as well as the ability to chain-extend to form block copolymers suggest control over the polymerization, while chain end-group analysis provides evidence supporting an atom-transfer radical polymerization mechanism. PMID:27166728

  13. First principles investigation of interaction between impurity atom (Si, Ge, Sn) and carbon atom in diamond-like carbon system

    International Nuclear Information System (INIS)

    The interaction between impurity atom (Si, Ge, and Sn) and carbon atom in diamond-like carbon (DLC) system was investigated by the first principles simulation method based on the density functional theory. The tetrahedral configuration was selected as the calculation model for simplicity. When the bond angle varied in a range of 90°–130° from the equivalent state of 109.471°, the distortion energy and the electronic structures including charge density of the highest occupied molecular orbital (HOMO) and partial density of state (PDOS) in the different systems were calculated. The results showed that the addition of Si, Ge and Sn atom into amorphous carbon matrix significantly decreased the distortion energy of the system as the bond angles deviated from the equilibrium one. Further studies of the HOMO and PDOS indicated that the weak covalent bond between Si(Ge, Sn) and C atoms was formed with the decreased strength and directionality, which were influenced by the electronegative difference. These results implied that the electron transfer behavior at the junction of carbon nano-devices could be tailored by the impurity element, and the compressive stress in DLC films could be reduced by the incorporation of Si, Ge and Sn because of the formation of weaker covalent bonds. - Highlights: ►Distortion energy after bond angle distortion was decreased comparing with C-C unit. ►The weak covalent bond was formed between impurity atoms and corner carbon atoms. ►Observed electron transfer behavior affected the strength and directionality of bond. ►Reduction of strength and directionality of bond contributed to small energy change.

  14. Hydrophilization of poly(ether ether ketone) films by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) has been exploited to hydrophilize PEEK. The ketone groups on the PEEK surface were reduced to hydroxyl groups which were converted to bromoisobutyrate initiating sites for SI-ATRP. The modification steps were followed by contact an...... in the surface topography. Two possible applications arose from the hydrophilization of PEEK, metal deposition and protein repellency. The performed modification allowed for successful electroless deposition and good adhesion of nickel as well as copper....

  15. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions. Updated 1997

    Energy Technology Data Exchange (ETDEWEB)

    Tawara, H.

    1997-04-01

    Following our previous compilations (IPPJ-AM-45 (1986), NIFS-DATA-7 (1990), NIFS-DATA-20 (1993)), bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1954-1996 are listed in the order of the publication year. For easy finding of the references for a combination of collision partners, a simple list is provided. (author)

  16. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions. Updated 1997

    International Nuclear Information System (INIS)

    Following our previous compilations (IPPJ-AM-45 (1986), NIFS-DATA-7 (1990), NIFS-DATA-20 (1993)), bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1954-1996 are listed in the order of the publication year. For easy finding of the references for a combination of collision partners, a simple list is provided. (author)

  17. Charge transfer activation energy for alkali atoms on Re and Ta

    Science.gov (United States)

    Gładyszewski, Longin

    1993-09-01

    Ion and atom desorption energies for five alkali metals on Re and Ta were determined using the ion thermal emission noise method. The activation energies for the charge transfer process in the adsorbed state were calculated using a special energetic balance equation, which describes the surface ionization and thermal desorption effect. Energies for desorption of Li, Na, K, Rb and Cs from Re and Ta surfaces were determined by measuring the time autocorrelation function of the ion thermoemission current fluctuations.

  18. Functional Virus-Based Polymer-Protein Nanoparticles by Atom Transfer Radical Polymerization

    OpenAIRE

    Pokorski, Jonathan K.; Breitenkamp, Kurt; Finn, M. G.

    2011-01-01

    Viruses and virus-like particles (VLPs) are useful tools in biomedical research. Their defined structural attributes make them attractive platforms for engineered interactions over large molecular surface areas. In this report, we describe the use of VLPs as multivalent macroinitiators for atom transfer radical polymerization (ATRP). The introduction of chemically reactive monomers during polymerization provides a robust platform for post-synthetic modification via the copper-catalyzed azide-...

  19. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions, updated 1990

    International Nuclear Information System (INIS)

    Following a previous compilation, new bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1989 are surveyed. For easy finding references for particular combination of collision partners, a simple list is also provided. Furthermore, for convenience, a copy of the previous compilation (IPPJ-AM-45 (1986)) is included. (author) 1363 refs

  20. Radical zinc-atom-transfer-based carbozincation of haloalkynes with dialkylzincs

    Directory of Open Access Journals (Sweden)

    Fabrice Chemla

    2013-02-01

    Full Text Available The formation of alkylidenezinc carbenoids by 1,4-addition/carbozincation of dialkylzincs or alkyl iodides based on zinc atom radical transfer, in the presence of dimethylzinc with β-(propargyloxyenoates having pendant iodo- and bromoalkynes, is disclosed. Formation of the carbenoid intermediate is fully stereoselective at −30 °C and arises from a formal anti-selective carbozincation reaction. Upon warming, the zinc carbenoid is stereochemically labile and isomerizes to its more stable form.

  1. Coherence preservation of a single neutral atom qubit transferred between magic-intensity optical traps

    CERN Document Server

    Yang, Jiaheng; Guo, Ruijun; Xu, Peng; Wang, Kunpeng; Sheng, Cheng; Liu, Min; Wang, Jin; Derevianko, Andrei; Zhan, Mingsheng

    2016-01-01

    We demonstrate that the coherence of a single mobile atomic qubit can be well preserved during a transfer process among different optical dipole traps (ODTs). This is a prerequisite step in realizing a large-scale neutral atom quantum information processing platform. A qubit encoded in the hyperfine manifold of $^{87}$Rb atom is dynamically extracted from the static quantum register by an auxiliary moving ODT and reinserted into the static ODT. Previous experiments were limited by decoherences induced by the differential light shifts of qubit states. Here we apply a magic-intensity trapping technique which mitigates the detrimental effects of light shifts and substantially enhances the coherence time to $225 \\pm 21\\,\\mathrm{ms}$. The experimentally demonstrated magic trapping technique relies on the previously neglected hyperpolarizability contribution to the light shifts, which makes the light shift dependence on the trapping laser intensity to be parabolic. Because of the parabolic dependence, at a certain ...

  2. Single-collision studies of hot atom energy transfer and chemical reaction

    International Nuclear Information System (INIS)

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project ''Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,'' Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH → H2 R reactions where RH is CH4, C2H6, or C3H8, (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants

  3. Faithful entanglement transference from qubits to continuous variable systems

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, P; Mundarain, D [Departamento de Fisica, Seccion de Fenomenos Opticos, Universidad Simon BolIvar, Apartado Postal 89000, Caracas 1080A (Venezuela, Bolivarian Republic of)

    2011-05-28

    In this work, we study the transference of entanglement between atomic qubits and the fields of two separate optical cavities. We show that it is possible to transfer all the entanglement of two maximal entangled qubits to the fields of the cavities without post-selection. Initially, the qubit system is in a maximal entangled state and the cavities are in a pure separable state with each cavity in a coherent state. For high excitation levels in the coherent fields, at some characteristic time T, the state of the qubit system becomes separable and at this time all the entanglement is deposited on the mono-modal fields of the cavities. We also consider retrieval of entanglement and an alternative protocol using post-selection.

  4. Direct visualization of triplex DNA molecular dynamics by fluorescence resonance energy transfer and atomic force microscopy measurements

    Science.gov (United States)

    Chang, Chia-Ching; Lin, Po-Yen; Chen, Yen-Fu; Chang, Chia-Seng; Kan, Lou-Sing

    2007-11-01

    We have detected the dynamics of 17-mer DNA triplex dissociation mechanism at the molecular level. Fluorescence resonance energy transfer (FRET) was used as an indicator of intermolecular interaction in nanometer range, whereas atomic force microscopy (AFM) was employed to address single molecule with sub-angstrom precision. The maximum rupture force of DNA triplex was found at pH 4.65, consistent with macroscopic observations. These results indicated that the FRET together with an AFM detection system could be used to reveal the DNA triplex interaction in nanometer scale unambiguously.

  5. Quantification of ion or atom transfer phenomena in materials implanted by nuclear methods

    International Nuclear Information System (INIS)

    Knowledge of transfer of the constituents of a system from regions of higher to lower concentration is of interest for implanted bio-materials. It allows determining the rate at which this material is integrated in a living material. To evaluate the ossification kinetics and to study the bio-functionality in corals of Ca and Sr, irradiations with a 1013 n.cm-2.s-1 was performed, followed by the examination of changes in the localization of these elements. By using PIXE analysis method the distribution of Ca, P, Sr, Zn and Fe in the implant, bone and bone-implant interfaces were determined. Thus, it was shown that resorption of coral in sheep is achieved in 5 months after implantation and is identical to the cortical tissues 4 months after implantation in animals as for instance in hares. We have analyzed the tissues from around the prostheses extracted from patients. The samples were calcined and reduced to powder weighting some milligrams. We have adopted for this study the PIXE analysis method. The samples were irradiated by a proton beam of 3 MeV and about 400 μm diameter. The results show the presence of the elements Ti, Fe, Cr, Ni or Zn according to the type of the implanted prosthesis. This dispersal of the metallic ions and atoms contaminate the tissues. The transfer factors translate the exchanges between bone and the implanted material. The solvatation phenomenon and the electric charge equilibrium explain the transfer order of cations Mg2+, Ca2+ and Sr2+ and of the anion PO43-. We have also determined these factors for the elements Ti, Cr and Ni. An original technique to study the bone bio-functionality was used. Use of phosphate derivatives labelled by 99mTc allows obtaining information about the fixation of radioactive tracer. It was found that only after the eighth month at the implantation the neo-formed bone fixes the MDP (methyl diphosphate) labelled by 99mTc in a similar way as in the control sample. Starting from this moment the implanted coral

  6. The use of iteration factors in the solution of the NLTE line transfer problem-II. Multilevel atom

    International Nuclear Information System (INIS)

    The iteration factors method (IFM) developed in Paper I (Atanackovic-Vukmanovic and Simonneau, 1994) to solve the NLTE line transfer problem for a two-level atom model, is extended here to deal with a multilevel atom case. At the beginning of each iteration step, for each line transition, angle and frequency averaged depth-dependent iteration factors are computed from the formal solution of radiative transfer (RT) equation and used to close the system of the RT equation moments, non-linearly coupled with the statistical equilibrium (SE) equations. Non-linear coupling of the atomic level populations and the corresponding line radiation field intensities is tackled in two ways. One is based on the linearization of the equations with respect to the relevant variables, and the other on the use of the old (known from the previous iteration) level populations in the line-opacity-like terms of the SE equations. In both cases the use of quasi-invariant iteration factors provided very fast and accurate solution. The properties of the proposed procedures are investigated in detail by applying them to the solution of the prototype multilevel RT problem of Avrett and Loeser , and compared with the properties of some other methods.

  7. NADS - Nuclear And Atomic Data System

    International Nuclear Information System (INIS)

    We have developed NADS (Nuclear and Atomic Data System), a web-based graphical interface for viewing pointwise and grouped cross-sections and distributions. Our implementation is a client / server model. The client is a Java applet that displays the graphical interface, which has interactive 2-D, 3-D, and 4-D plots and tables. The server, which can serve and perform computations the data, has been implemented in Python using the FUDGE package developed by Bret Beck at LLNL. Computational capabilities include algebraic manipulation of nuclear evaluated data in databases such as LLNL's ENDL-99, ENDF/B-V and ENDF/B-VI as well as user data. Processed data used in LLNL's transport codes are accessible as well. NADS is available from http://nuclear.llnl.gov/

  8. NADS - Nuclear And Atomic Data System

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, M S; Beck, B; McNabb, D

    2004-09-17

    We have developed NADS (Nuclear and Atomic Data System), a web-based graphical interface for viewing pointwise and grouped cross-sections and distributions. Our implementation is a client / server model. The client is a Java applet that displays the graphical interface, which has interactive 2-D, 3-D, and 4-D plots and tables. The server, which can serve and perform computations the data, has been implemented in Python using the FUDGE package developed by Bret Beck at LLNL. Computational capabilities include algebraic manipulation of nuclear evaluated data in databases such as LLNL's ENDL-99, ENDF/B-V and ENDF/B-VI as well as user data. Processed data used in LLNL's transport codes are accessible as well. NADS is available from http://nuclear.llnl.gov/

  9. NADS — Nuclear and Atomic Data System

    Science.gov (United States)

    McKinley, Michael S.; Beck, Bret; McNabb, Dennis

    2005-05-01

    We have developed NADS (Nuclear and Atomic Data System), a web-based graphical interface for viewing pointwise and grouped cross sections and distributions. Our implementation is a client / server model. The client is a Java applet that displays the graphical interface, which has interactive 2-D, 3-D, and 4-D plots and tables. The server, which can serve and perform computations of the data, has been implemented in Python using the FUDGE package developed by Bret Beck at LLNL. Computational capabilities include algebraic manipulation of nuclear evaluated data in databases such as LLNL's ENDL-99, ENDF/B-V, and ENDF/B-VI, as well as user data. Processed data used in LLNL's transport codes are accessible as well. NADS is available from http://nuclear.llnl.gov/.

  10. Atomic dynamics in the mode-mode competition system

    Institute of Scientific and Technical Information of China (English)

    Wu Qin; Fang Mao-Fa

    2004-01-01

    The atomic dynamical properties in the system with competing k-photon and l-photon transitions are studied fully by means of quantum theory. We discuss the influences of the mode-mode competition, the relative competing strengths of the atom and the two-mode field, and the initial state of the system on the atomic dynamics. We show that the presence of the mode-mode competition can result in quite a periodical collapses-revivals of the atomic inversion and the increase of the initial photons of the system can lead to the collapse-revival phenomenon and prolong the revival time of the atomic inversion.

  11. Universal four-boson system: dimer-atom-atom Efimov effect and recombination reactions

    OpenAIRE

    Deltuva, A.

    2013-01-01

    Recent theoretical developments in the four-boson system with resonant interactions are described. Momentum-space scattering equations for the four-particle transition operators are used. The properties of unstable tetramers with approximate dimer-atom-atom structure are determined. In addition, the three- and four-cluster recombination processes in the four-boson system are studied.

  12. On the transferability of atomic contributions to the optical rotatory power of hydrogen peroxide, methyl hydroperoxide and dimethyl peroxide

    DEFF Research Database (Denmark)

    Sánchez, Marina; Alkorta, Ibon; Elguero, José;

    2014-01-01

    partitioned into atomic and group contributions. In the present work, we investigate the transferability of such individual contributions in a series of small, chiral molecules: hydrogen peroxide, methyl hydroperoxide and dimethyl peroxide. The isotropic atomic or group contributions have been evaluated for...... the hydrogen, oxygen and carbon atoms as well as for the methyl group at the level of time-dependent density functional theory with the B3LYP exchange-correlation functional employing a large Gaussian basis set. We find that the atomic or group contributions are not transferable among these three...

  13. Design of atomic energy information network system

    International Nuclear Information System (INIS)

    As the 21st century is expected to induce a Knowledge based society, responding to this kind of change on our own initiative could be achieved by establishing networks among atomic energy agencies with the Atomic Energy Portal Site in a pivotal role. Thus, enabling the knowledge information from each agency to be easily shared and utilized. Furthermore, it can contribute to further researches by providing accumulated knowledge in the atomic energy, such as research output and past achievements, and by avoiding the repetition of researches on the same subjects. It could also provide remote educational data to researchers and industrial experts in atomic energy, as well as atomic energy information for general public consistently, so that we can promote our confidence in atomic energy

  14. Quantum noise property in coherent atomic system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-xiang; WANG Hai-hong; CAI Jin; GAO Jiang-rui

    2006-01-01

    The coherent superposition of atomic states leads to the characteristic change of interacting lights because of the coupling between the lights and atoms.In this paper,the noise spectrum of the quantified light interacting with the atoms is studied under the condition of electromagnetically induced transparency (EIT).It is shown that the noise spectrum displays a double M-shape noise profile resulted from the conversion of phase noise of probe beam.A squeezing of 0.3 dB can be observed at the detuning of probe light at the proper parameters of atoms and coupling beam.

  15. Railcar waste transfer system hydrostatic test

    International Nuclear Information System (INIS)

    Recent modifications have been performed on the T-Plant Railcar Waste Transfer System, This Acceptance Test Procedure (ATP) has been prepared to demonstrate that identified piping welds and mechanical connections incorporated during the modification are of high integrity and are acceptable for service. This will be achieved by implementation of a hydrostatic leak test

  16. Railcar waste transfer system hydrostatic test report

    International Nuclear Information System (INIS)

    This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per HNF-SD-W417-ATP-001, ''Rail car Waste Transfer System Hydrostatic Test''. The test was completed and approved without any problems or exceptions

  17. Atomic energy indemnification system in Japan

    International Nuclear Information System (INIS)

    The Japanese legislation on the indemnification by atomic energy enterprisers for atomic energy damages, published in 1961 and enforced in 1962, includes the law concerning indemnification for atomic energy damages and the law concerning atomic energy damage indemnification contracts (hereafter referred to as ''the law concerning indemnification contracts''). While the Japanese laws are same as the foreign legislation in the provisions of the responsibility of atomic energy damages without the error of atomic energy enterprisers, exemption reasons are more important in this respect. When damages are due to exceptionally grave natural disasters or social disturbances, atomic energy enterprisers are exempted from the responsibility. Indemnification amounts are determined, but the Japanese laws do not limit then, different from the foreign regulations. The periods for demanding indemnification are not defined particularly in the law concerning indemnification contracts, and the general basic rules of the civil law are applied. As a result, the demand right terminates in 3 years after the injured persons find damage and offenders, and in 20 years since the unlawful act (Article 724, Civil law). The indemnification liability for atomic energy damages is focused on atomic energy enterprisers concerned in the same way as the foreign laws. The measures for assuring the execution of indemnification responsibility consist in principle of the firm conbination of the liability insurance contracts with private insurance companies and the indemnification contracts for atomic energy damages with the state. The damages of employes suffered in works are excluded from indemnification, which has been the main issue of discussion since the enactment of atomic energy laws. (Okada, K.)

  18. Handshake electron transfer from hydrogen Rydberg atoms incident at a series of metallic thin films

    CERN Document Server

    Gibbard, Jemma A

    2016-01-01

    Thin metallic films have a 1D quantum well along the surface normal direction, which yields particle-in-a-box style electronic quantum states. However the quantum well is not infinitely deep and the wavefunctions of these states penetrate outside the surface where the electron is bound by its own image-charge attraction. Therefore a series of discrete, vacant states reach out from the thin film into the vacuum increasing the probability of electron transfer from an external atom or molecule to the thin film, especially for the resonant case where the quantum well energy matches that of the Rydberg atom. We show that `handshake' electron transfer from a highly excited Rydberg atom to these thin-film states is experimentally measurable. Thicker films, have a wider 1D box, changing the energetic distribution and image-state contribution to the thin film wavefunctions, resulting in more resonances. Calculations successfully predict the number of resonances and the nature of the thin-film wavefunctions for a given...

  19. Facilitating electron transfer in bioelectrocatalytic systems

    OpenAIRE

    Sekretaryova, Alina

    2016-01-01

    Bioelectrocatalytic systems are based on biological entities, such as enzymes, whole cells, parts of cells or tissues, which catalyse electrochemical processes that involve the interaction between chemical change and electrical energy. In all cases, biocatalysis is implemented by enzymes, isolated or residing inside cells or part of cells. Electron transfer (ET) phenomena, within the protein molecules and between biological redox systems and electronics, enable the development of various bioe...

  20. Forest Resource Information System. Phase 3: System transfer report

    Science.gov (United States)

    Mroczynski, R. P. (Principal Investigator)

    1981-01-01

    Transfer of the forest reserve information system (FRIS) from the Laboratory for Applications of Remote Sensing to St. Regis Paper Company is described. Modifications required for the transfer of the LARYS image processing software are discussed. The reformatting, geometric correction, image registration, and documentation performed for preprocessing transfer are described. Data turnaround was improved and geometrically corrected and ground-registered CCT LANDSAT 3 data provided to the user. The technology transfer activities are summarized. An application test performed in order to assess a Florida land acquisition is described. A benefit/cost analysis of FRIS is presented.

  1. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization.

    Science.gov (United States)

    Barbey, Raphael; Kauffmann, Ekkehard; Ehrat, Markus; Klok, Harm-Anton

    2010-12-13

    Polymer brushes represent an interesting platform for the development of high-capacity protein binding surfaces. Whereas the protein binding properties of polymer brushes have been investigated before, this manuscript evaluates the feasibility of poly(glycidyl methacrylate) (PGMA) and PGMA-co-poly(2-(diethylamino)ethyl methacrylate) (PGMA-co-PDEAEMA) (co)polymer brushes grown via surface-initiated atom transfer radical polymerization (SI-ATRP) as protein reactive substrates in a commercially available microarray system using tantalum-pentoxide-coated optical waveguide-based chips. The performance of the polymer-brush-based protein microarray chips is assessed using commercially available dodecylphosphate (DDP)-modified chips as the benchmark. In contrast to the 2D planar, DDP-coated chips, the polymer-brush-covered chips represent a 3D sampling volume. This was reflected in the results of protein immobilization studies, which indicated that the polymer-brush-based coatings had a higher protein binding capacity as compared to the reference substrates. The protein binding capacity of the polymer-brush-based coatings was found to increase with increasing brush thickness and could also be enhanced by copolymerization of 2-(diethylamino)ethyl methacrylate (DEAEMA), which catalyzes epoxide ring-opening of the glycidyl methacrylate (GMA) units. The performance of the polymer-brush-based microarray chips was evaluated in two proof-of-concept microarray experiments, which involved the detection of biotin-streptavidin binding as well as a model TNFα reverse assay. These experiments revealed that the use of polymer-brush-modified microarray chips resulted not only in the highest absolute fluorescence readouts, reflecting the 3D nature and enhanced sampling volume provided by the brush coating, but also in significantly enhanced signal-to-noise ratios. These characteristics make the proposed polymer brushes an attractive alternative to commercially available, 2D microarray

  2. Clusters: systems between atoms and solids

    International Nuclear Information System (INIS)

    Atomic and molecular clusters will be discussed here. These are aggregates of atoms and molecules so large that one cannot describe them properly as large molecules. But they are small enough, that the condensed phase properties, if present at all, are not fully developed. This field forms the bridge between the traditional disciplines of atomic or molecular physics on one side and the physics and chemistry of condensed matter on the other side. The number of groups working in this field has increased tremendously in recent years. (Author)

  3. Efficiency of ablative plasma energy transfer into a massive aluminum target using different atomic number ablators

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Stepniewski, W.; Jach, K.; Swierczynski, R.; Renner, Oldřich; Šmíd, Michal; Ullschmied, Jiří; Cikhart, J.; Klír, D.; Kubeš, P.; Řezáč, K.; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří

    2015-01-01

    Roč. 33, č. 3 (2015), s. 379-386. ISSN 0263-0346 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk(CZ) LD14089 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant ostatní: ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; AVČR(CZ) M100101208 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : ablator atomic number * crater volume * laser energy transfer * plasma ablative pressure Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UFP-V) Impact factor: 1.295, year: 2014

  4. Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic

    Indian Academy of Sciences (India)

    S P Ram; S K Tiwari; S R Mishra; H S Rawat

    2014-02-01

    We present here our experimental results on transfer of laser-cooled atom cloud to a quadrupole magnetic trap. We show that by choosing appropriately the ratio of potential energy in magnetic trap to kinetic energy of cloud in molasses, we can obtain the maximum phase-space density in the magnetic trap. These results guide us to choose the value of current to be switched in the quadrupole coils used for magnetic trapping for a given temperature of the cloud after molasses. This study is also useful to set the initial phase-space density of the cloud before evaporative cooling.

  5. Control and Transfer of Entanglement between Two Atoms Driven by Classical Fields under Dressed-State Representation

    Science.gov (United States)

    Liao, Qing-Hong; Zhang, Qi; Xu, Juan; Yan, Qiu-Rong; Liu, Ye; Chen, An

    2016-06-01

    We have studied the dynamics and transfer of the entanglement of the two identical atoms simultaneously interacting with vacuum field by employing the dressed-state representation. The two atoms are driven by classical fields. The influence of the initial entanglement degree of two atoms, the coupling strength between the atom and the classical field and the detuning between the atomic transition frequency and the frequency of classical field on the entanglement and atomic linear entropy is discussed. The initial entanglement of the two atoms can be transferred into the entanglement between the atom and cavity field when the dissipation is neglected. The maximally entangled state between the atoms and cavity field can be obtained under some certain conditions. The time of disentanglement of two atoms can be controlled and manipulated by adjusting the detuning and classical driving fields. Moreover, the larger the cavity decay rate is, the more quickly the entanglement of the two atoms decays. Supported by National Natural Science Foundation of China under Grant Nos. 11247213, 61368002, 11304010, 11264030, 61168001, China Postdoctoral Science Foundation under Grant No. 2013M531558, Jiangxi Postdoctoral Research Project under Grant No. 2013KY33, the Natural Science Foundation of Jiangxi Province under Grant No. 20142BAB217001, the Foundation for Young Scientists of Jiangxi Province (Jinggang Star) under Grant No. 20122BCB23002, the Research Foundation of the Education Department of Jiangxi Province under Grant Nos. GJJ13051, GJJ13057, and the Graduate Innovation Special Fund of Nanchang University under Grant No. cx2015137

  6. FFLO Vortex Lattice States in Cold Fermionic-Atom Systems

    OpenAIRE

    Shim, Y. -P.; Duine, R.A.; MacDonald, A. H.

    2006-01-01

    Condensation of atom pairs with finite total momentum is expected in a portion of the phase diagram of a two-component fermionic cold-atom system. This unusual condensate can be identified by detecting the exotic higher Landau level (HLL) vortex lattice states it can form when rotated. With this motivation, we have solved the linearized gap equations of a polarized cold atom system in a Landau level basis to predict experimental circumstances under which HLL vortex lattice states occur.

  7. NLS cargo transfer vehicle propulsion system

    Science.gov (United States)

    Hearn, Hank C.; Langford, G. K.

    1992-02-01

    The propulsion system of the Cargo Transfer Vehicle is designed to meet a wide range of requirements associated with the National Launch System (NLS) resupply function for Space Station Freedom. It provides both orbit adjustment and precise vehicle control capability, and is compatible with close proximity operation at the space station as well as return on the shuttle for ground refurbishment and reuse. Preliminary trade studies have resulted in designing and sizing an integrated bipropellant system using monomethyl hydrazine and nitrogen tetroxide. Design and analysis activities are continuing, and the design will evolve and mature as part of the NLS program.

  8. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Local Control of Two-Photon Absorption in a Six-Level Atomic System by Using a Coherent Perturbation Field

    Science.gov (United States)

    Jia, Wen-Zhi; Wang, Shun-Jin

    2009-11-01

    If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast spectral feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.

  9. Stokes identification in an atomic ensemble using a filtering system

    Institute of Scientific and Technical Information of China (English)

    Luo Xiao-Ming; Ning Bo; Chen Li-Qing; Zhou Yue; Zhong Zhi-Ping; Jiang Shuo

    2009-01-01

    Polarization filtering and atomic cell filtering are applied in the identification of Stokes signals in an atomic ensemble, and reduce the noise to a level of 10~(-5) and 10~(-4) respectively. Good Stokes signals are then obtained. In this article the two filtering systems and the final Stokes output are presented, and the optimization of the polarization filtering system is highlighted.

  10. Functionalized polymer film surfaces via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    The ability to manipulate and control the surface properties of polymer films, without altering the substrate properties, is crucial to their wide-spread applications. In this work, a simple one-step method for the direct immobilization of benzyl chloride groups (as the effective atom transfer radical polymerization (ATRP) initiators) on the polymer films was developed via benzophenone-induced coupling of 4-vinylbenzyl chloride (VBC). Polyethylene (PE) and nylon films were selected as examples of polymer films to illustrate the functionalization of film surfaces via surface-initiated ATRP. Functional polymer brushes of (2-dimethylamino)ethyl methacrylate, sodium 4-styrenesulfonate, 2-hydroxyethyl methacrylate and glycidyl methacrylate, as well as their block copolymer brushes, have been prepared via surface-initiated ATRP from the VBC-coupled PE or nylon film surfaces. With the development of a simple approach to the covalent immobilization of ATRP initiators on polymer film surfaces and the inherent versatility of surface-initiated ATRP, the surface functionality of polymer films can be precisely tailored. - Highlights: ► Atom transfer radical polymerization initiators were simply immobilized. ► Different functional polymer brushes were readily prepared. ► Their block copolymer brushes were also readily prepared

  11. A test of two approximate two-state treatments for the dynamics of H-atom transfers between two heavy particles

    OpenAIRE

    Klippenstein, Stephen J.; Babamov, Vasil K.; Marcus, R. A.

    1986-01-01

    Reactive transition probabilities and Boltzmann-averaged reactive transition probabilities for a slightly off-resonant model H-atom transfer system with an appreciable energy barrier are calculated using the approximate methods of Babamov et al. and of Crothers–Stückelberg. Both are compared with the corresponding quantities obtained from a numerical two-state treatment of the same model system. The method of Babamov et al. is seen to give more accurate results for the transition probabilitie...

  12. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  13. O atom transfer from nitric oxide catalyzed by Fe(TPP).

    Science.gov (United States)

    Lin, R; Farmer, P J

    2001-02-14

    The reaction of NO-Fe(TPP) with low pressures of NO gas proceeds through three distinct transformations, the first of which we suggest is the formation of an N--N-coupled, (NO)(2) adduct intermediate. The subsequent formation of NO(NO(2))Fe(TPP), which under these conditions readily loses NO, suggests that it is formed by addition of free NO(2) to the starting nitrosyl. A mechanism is proposed which implies that the addition of a competitive O atom acceptor would lead to catalytic production of N(2)O. In agreement with the proposed mechanism, the formation of N(2)O is decoupled from the formation of the nitrite by using PPh(3) as the competitive acceptor. The mechanism of O atom transfer was examined by cross-labeling experiments, which show that both O atoms in the intermediate are equivalent, even under catalytic conditions. The formation of an intermediate was confirmed by IR spectroscopy of the heterogeneous reaction of an NO-Fe(TPP) film with gaseous NO, in which transient, isotope-sensitive nu(NO) bands are seen prior to NO(NO(2))Fe(TPP) formation. Mixed (14)N/(15)N label experiments demonstrate coupling between the two bound nitrosyls in the transient species. PMID:11456667

  14. Resonance line radiative transfer for hot atom coronae using Kappa distributions

    International Nuclear Information System (INIS)

    Hot atomic populations are an important component of the planetary exospheres. Usually, radiative transfer models describing the scattering of light by moving atoms assume that these populations have a Maxwellian velocity distribution. However, the velocity distributions of the hot populations could actually have some more extended wings. Popular velocity distributions often used in plasma physics and recently proposed to describe neutral planetary environments are Kappa velocity function distributions. In this paper, following the work of Hummer [Non-coherent scattering: I The redistribution functions with Doppler broadening. R Astron. Soc Month Not 1962;125:21] and Cranmer [Non-Maxwellian redistribution in solar coronal Lyα emission. Astrophys J 1998;508:925-39], we calculate the frequency redistribution functions of radiation scattered by moving atoms with Kappa velocity distribution. We also present a detailed study of a radiative transfer model taking into account Kappa velocity distribution functions, for integer and semi-integer values of κ. We apply this theory to a model of Jupiter hydrogen corona containing 0.1% column density of hot hydrogen to quantify the spectroscopic and imaging differences between Kappa velocity distributions and bi-Maxwellian velocity distributions. When assuming a Kappa velocity distribution with κ=2 for the hot population, intensity increases of ∼40% occur at the bright limb and ∼15% on the disk compared with the same calculations done using a Maxwellian velocity distribution. The line profile differs slightly from a Maxwellian distribution on the disk and at the bright limb, but the difference is larger above the limb. Kappa distributions used to study the Jovian atmosphere are speculative and further studies are needed to link the formation of the hot exospheric populations to the Kappa velocity distributions.

  15. A Hydraulic Transfer System for Producing Radioisotopes

    International Nuclear Information System (INIS)

    Research reactors are constructed mainly for producing radioisotopes, neutron beams and neutron irradiation research and so on. The research reactors generally have two separate area; one is the reactor area and the other is the radioisotopes (RI) production area. After various irradiation objects are irradiated in the reactor located in the reactor area, they are transferred to the RI production building for post-processing. The Hydraulic Transfer System (HTS) is one of RI production and utilization facilities of a research reactor. The HTS is for irradiating targets in the reactor core, and targets are transferred through pipes by hydraulic force. A similar system can be seen in other research reactor such as FRM II, JMTR, HFIR, etc. There are two parallel open-loops used to irradiate targets, and the HTS will circulate pool water to load/unload targets into/from the irradiation tubes and cool targets during irradiation. This paper contains the introduction and operation of the HTS. The HTS permits instantaneous irradiation activity during the reactor operation. It contributes to the RI production and utilization for public welfare, industrial applications and research areas

  16. A Hydraulic Transfer System for Producing Radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Joonho; Lee, Sangjin; Lee, Chungyoung; Lee, Jongmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Research reactors are constructed mainly for producing radioisotopes, neutron beams and neutron irradiation research and so on. The research reactors generally have two separate area; one is the reactor area and the other is the radioisotopes (RI) production area. After various irradiation objects are irradiated in the reactor located in the reactor area, they are transferred to the RI production building for post-processing. The Hydraulic Transfer System (HTS) is one of RI production and utilization facilities of a research reactor. The HTS is for irradiating targets in the reactor core, and targets are transferred through pipes by hydraulic force. A similar system can be seen in other research reactor such as FRM II, JMTR, HFIR, etc. There are two parallel open-loops used to irradiate targets, and the HTS will circulate pool water to load/unload targets into/from the irradiation tubes and cool targets during irradiation. This paper contains the introduction and operation of the HTS. The HTS permits instantaneous irradiation activity during the reactor operation. It contributes to the RI production and utilization for public welfare, industrial applications and research areas.

  17. Long range inductive power transfer system

    International Nuclear Information System (INIS)

    We report upon a recently developed long range inductive power transfer system (IPT) designed to power remote sensors with mW level power consumption at distances up to 7 m. In this paper an inductive link is established between a large planar (1 × 1 m) transmit coil (Tx) and a small planer (170 × 170 mm) receiver coil (Rx), demonstrating the viability of highly asymmetrical coil configurations that real-world applications such as sensor networks impose. High Q factor Tx and Rx coils required for viable power transfer efficiencies over such distances are measured using a resonant method. The applicability of the Class-E amplifier in very low magnetic coupling scenarios and at the high frequencies of operation required for high Q operation is demonstrated by its usage as the Tx coil driver

  18. How large are nonadiabatic effects in atomic and diatomic systems?

    Science.gov (United States)

    Yang, Yubo; Kylänpää, Ilkka; Tubman, Norm M; Krogel, Jaron T; Hammes-Schiffer, Sharon; Ceperley, David M

    2015-09-28

    With recent developments in simulating nonadiabatic systems to high accuracy, it has become possible to determine how much energy is attributed to nuclear quantum effects beyond zero-point energy. In this work, we calculate the non-relativistic ground-state energies of atomic and molecular systems without the Born-Oppenheimer approximation. For this purpose, we utilize the fixed-node diffusion Monte Carlo method, in which the nodes depend on both the electronic and ionic positions. We report ground-state energies for all systems studied, ionization energies for the first-row atoms and atomization energies for the first-row hydrides. We find the ionization energies of the atoms to be nearly independent of the Born-Oppenheimer approximation, within the accuracy of our results. The atomization energies of molecular systems, however, show small effects of the nonadiabatic coupling between electrons and nuclei. PMID:26429012

  19. How large are nonadiabatic effects in atomic and diatomic systems?

    International Nuclear Information System (INIS)

    With recent developments in simulating nonadiabatic systems to high accuracy, it has become possible to determine how much energy is attributed to nuclear quantum effects beyond zero-point energy. In this work, we calculate the non-relativistic ground-state energies of atomic and molecular systems without the Born-Oppenheimer approximation. For this purpose, we utilize the fixed-node diffusion Monte Carlo method, in which the nodes depend on both the electronic and ionic positions. We report ground-state energies for all systems studied, ionization energies for the first-row atoms and atomization energies for the first-row hydrides. We find the ionization energies of the atoms to be nearly independent of the Born-Oppenheimer approximation, within the accuracy of our results. The atomization energies of molecular systems, however, show small effects of the nonadiabatic coupling between electrons and nuclei

  20. How large are nonadiabatic effects in atomic and diatomic systems?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yubo, E-mail: yyang173@illinois.edu, E-mail: normantubman2015@u.northwestern.edu; Tubman, Norm M., E-mail: yyang173@illinois.edu, E-mail: normantubman2015@u.northwestern.edu; Ceperley, David M. [Department of Physics, University of Illinois, Urbana, Illinois 61801 (United States); Kylänpää, Ilkka [Department of Physics, University of Illinois, Urbana, Illinois 61801 (United States); Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Krogel, Jaron T. [Oak Ridge National Laboratory, Materials Sciences & Technology Division, Oak Ridge, Tennessee 37831 (United States); Hammes-Schiffer, Sharon [Department of Chemistry, University of Illinois, Urbana, Illinois 61801 (United States)

    2015-09-28

    With recent developments in simulating nonadiabatic systems to high accuracy, it has become possible to determine how much energy is attributed to nuclear quantum effects beyond zero-point energy. In this work, we calculate the non-relativistic ground-state energies of atomic and molecular systems without the Born-Oppenheimer approximation. For this purpose, we utilize the fixed-node diffusion Monte Carlo method, in which the nodes depend on both the electronic and ionic positions. We report ground-state energies for all systems studied, ionization energies for the first-row atoms and atomization energies for the first-row hydrides. We find the ionization energies of the atoms to be nearly independent of the Born-Oppenheimer approximation, within the accuracy of our results. The atomization energies of molecular systems, however, show small effects of the nonadiabatic coupling between electrons and nuclei.

  1. How Large are Nonadiabatic Effects in Atomic and Diatomic Systems?

    CERN Document Server

    Yang, Yubo; Tubman, Norm; Krogel, Jaron; Hammes-Schiffer, Sharon; Ceperley, David

    2015-01-01

    With recent developments in simulating nonadiabatic systems to high accuracy, it has become possible to determine how much energy is attributed to nuclear quantum effects beyond zero-point energy. In this work we calculate the non-relativistic ground-state energies of atomic and molecular systems without the Born-Oppenheimer approximation. For this purpose we utilize the fixed-node diffusion Monte Carlo method, in which the nodes depend on both the electronic and ionic positions. We report ground-state energies for all systems studied, ionization energies for the first-row atoms and atomization energies for the first-row hydrides. We find the ionization energies of the atoms to be nearly independent of the Born-Oppenheimer approximation, within the accuracy of our results. The atomization energies of molecular systems, however, show small effects of the nonadiabatic coupling between electrons and nuclei.

  2. How large are nonadiabatic effects in atomic and diatomic systems?

    Science.gov (United States)

    Yang, Yubo; Kylänpää, Ilkka; Tubman, Norm M.; Krogel, Jaron T.; Hammes-Schiffer, Sharon; Ceperley, David M.

    2015-09-01

    With recent developments in simulating nonadiabatic systems to high accuracy, it has become possible to determine how much energy is attributed to nuclear quantum effects beyond zero-point energy. In this work, we calculate the non-relativistic ground-state energies of atomic and molecular systems without the Born-Oppenheimer approximation. For this purpose, we utilize the fixed-node diffusion Monte Carlo method, in which the nodes depend on both the electronic and ionic positions. We report ground-state energies for all systems studied, ionization energies for the first-row atoms and atomization energies for the first-row hydrides. We find the ionization energies of the atoms to be nearly independent of the Born-Oppenheimer approximation, within the accuracy of our results. The atomization energies of molecular systems, however, show small effects of the nonadiabatic coupling between electrons and nuclei.

  3. Submersible pumping system with heat transfer mechanism

    Science.gov (United States)

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  4. System Transfer, Education, and Development in Mozambique

    Directory of Open Access Journals (Sweden)

    Jose Cossa

    2011-03-01

    Full Text Available In this study the author used conceptual historical method to assess the phenomenon of system transfer and the association between education and development in Mozambique. The assessment was administered through critical analysis of documents pertaining to the Salazar (1924-1966, Machel (1975-1986, and Chissano (1986-2005 administrations. The findings were that (a the colonial government created economic and educational systems for colonizing Mozambique, whereas the Machel and Chissano administrations adapted foreign systems of government and education (i.e., Socialism, Soviet, Democracy, Portuguese, etc., to their particular context without altering the inherent theoretical basis of the systems transferred; (b the Machel and Chissano administrations, implicitly or explicitly, perceived the relationship between education and development as circular causality rather than a unidirectional linear causality, while the Salazar administration perceived it as unidirectional linear causality; and (c while the Machel and Chissano administrations focused on primary education, literacy campaigns, and education of women and girls, they differed in the reasons for such focus.

  5. Atoms

    International Nuclear Information System (INIS)

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  6. Ultracold atoms coupled to micro- and nanomechanical oscillators: towards hybrid quantum systems

    Science.gov (United States)

    Treutlein, Philipp

    2009-05-01

    Micro- and nanomechanical oscillators are presently approaching the quantum regime, driven by the continuous improvement of techniques to read out and cool mechanical motion. For trapped ultracold atoms, a rich toolbox of quantum control techniques already exists. By coupling mechanical oscillators to ultracold atoms, hybrid quantum systems could be formed, in which the atoms are used to cool, read out, and coherently manipulate the oscillators' state. In our work, we investigate different coupling mechanisms between ultracold atoms and mechanical oscillators. In a first experiment, we use atom-surface forces to couple the vibrations of a mechanical cantilever to the motion of a Bose-Einstein condensate in a magnetic microtrap on a chip. The atoms are trapped at sub-micrometer distance from the cantilever surface. We make use of the coupling to read out the cantilever vibrations with the atoms. Coupling via surface forces could be employed to couple atoms to molecular-scale oscillators such as carbon nanotubes. In a second experiment, we investigate coupling via a 1D optical lattice that is formed by a laser beam retroreflected from the cantilever tip. The optical lattice serves as a transfer rod which couples vibrations of the cantilever to the atoms and vice versa. Finally, we investigate magnetic coupling between the spin of ultracold atoms and the vibrations of a nanoscale cantilever with a magnetic tip. Theoretical investigations show that at low temperatures, the backaction of the atoms onto the cantilever is significant and the system represents a mechanical analog of cavity quantum electrodynamics in the strong coupling regime.

  7. Confinement-induced resonances in ultracold atom-ion systems

    Science.gov (United States)

    Melezhik, V. S.; Negretti, A.

    2016-08-01

    We investigate confinement-induced resonances in a system composed of a tightly trapped ion and a moving atom in a waveguide. We determine the conditions for the appearance of such resonances in a broad region—from the "long-wavelength" limit to the opposite case when the typical length scale of the atom-ion polarization potential essentially exceeds the transverse waveguide width. We find considerable dependence of the resonance position on the atomic mass which, however, disappears in the "long-wavelength and zero-energy" limit, where the known result for the confined atom-atom scattering is reproduced. We also derive an analytic and a semianalytic formula for the resonance position in the long-wavelength and zero-energy limit and we investigate numerically the dependence of the resonance condition on the finite atomic colliding energy. Our results, which can be investigated experimentally in the near future, could be used to determine the atom-ion scattering length, to determine the temperature of the atomic ensemble in the presence of an ion impurity, and to control the atom-phonon coupling in a linear ion crystal in interaction with a quasi-one-dimensional atomic quantum gas.

  8. Raman Scattering in Coherently Prepared Atomic System

    Institute of Scientific and Technical Information of China (English)

    LIN Fu-Cheng(林福成); Yongjoo Rhee; Jonghoon Yi; Hyunmin Park

    2001-01-01

    Atoms in the coherent superposition state prepared by a pulse pair are used as a novel optical memory material where a single interrogation pulse will produce a new pulse pair preserving the relative amplitudes and phases of the preparing pulse pair. Such a coherent superposition state can also be specially tailored along the propagation path to generate Raman scattering in a relatively short distance with very high efficiency.

  9. Atomic quantum systems in optical micro-structures

    International Nuclear Information System (INIS)

    Full text: We combine state-of-the-art technology in micro-optics with the quantum optical techniques of laser cooling, laser trapping, and quantum control to open a new gateway for quantum information processing and matter wave optics with atomic systems. We use micro-fabricated optical systems to create light fields that allow us to trap and guide neutral atoms as a result of the optical dipole force experienced by the atoms. The realization of arrays of laser traps that can serve as registers for atomic quantum bits and as integrated waveguide structures for atom optics and atom interferometry has been achieved. This approach opens the possibility to scale, parallelize, and miniaturize systems for quantum information processing and atom optics. Currently we investigate the production of quantum-degenerate systems in pure optical trapping geometries and the coherent manipulation (1-qubit rotations, Ramsey-oscillations, spin-echo experiments) of internal qubit states for atoms trapped in arrays of dipole traps (author)

  10. Quasi static approximation of wireless power transfer systems through coupled resonance and improving power transfer efficiency

    OpenAIRE

    Shilandari, Arash; Niazmandian, S. Mostafa; Ebrahimi, Asqar; Malahzadeh, Alireza

    2011-01-01

    The aim of the study is to transfer power wirelessly through the resonance of the source and the device antennas. Since transferring system frequency from the frequency of the antenna resonance strongly decreases power transfer efficiency, in this paper, a wireless power transfer system consisting of two helix resonance antennas is analyzed through quasi-static approximation in a circuit model and among the scientific papers; few works have been done in this regard. The presented circuit m...

  11. Gene transfer system for Rhodopseudomonas viridis.

    OpenAIRE

    Lang, F S; Oesterhelt, D

    1989-01-01

    A gene transfer system for Rhodopseudomonas viridis was established which uses conjugation with Escherichia coli S17-I as the donor and mobilizable plasmids as vectors. Initially, plasmids of the incompatibility group P1 (pRK290 and pRK404) were used. The more effective shuttle vectors between E. coli and R. viridis, pKV1 and pKVS1, were derived from plasmid pBR322 and showed the highest conjugation frequency (10(-2] thus far demonstrated in purple bacteria. It was also demonstrated that Rhiz...

  12. Wireless Power Transfer system : Development and Implementation

    OpenAIRE

    Khayrudinov, Vladislav

    2015-01-01

    The goal of the project was to develop a Wireless Power Transfer (WPT) System and implement it in innovative flooring. The project was done at NextFloor Oy, a company based in Helsinki, Finland. At the moment, Wireless Power Transmission is in the forefront of electronics research, which is why this study started as an initial attempt to investigate WPT in order to keep up with the fast growing industry. The main steps of the project were to study the physics behind wireless electricity t...

  13. Dry spent fuel transfer system design

    International Nuclear Information System (INIS)

    The design of a system for the transfer of spent fuel outside the spent fuel pool is being developed by the Electric Power Research Instiute and the U.S. Department of Energy. The design approach uses proven equipment design concepts for simplicity and flexibility. The design appears to be technically, operationally, and economically feasible. In addition, U.S. Nuclear Regulatory Commission (NRC) approval under 10CFR72 appears feasible. The final design will be considered for submittal to the NRC for review. A demonstration at an existing DOE facility is being considered

  14. A silver bullet: elemental silver as an efficient reducing agent for atom transfer radical polymerization of acrylates.

    Science.gov (United States)

    Williams, Valerie A; Ribelli, Thomas G; Chmielarz, Pawel; Park, Sangwoo; Matyjaszewski, Krzysztof

    2015-02-01

    Elemental silver was used as a reducing agent in the atom transfer radical polymerization (ATRP) of acrylates. Silver wire, in conjunction with a CuBr(2)/TPMA catalyst, enabled the controlled, rapid preparation of polyacrylates with dispersity values down to Đ = 1.03. The silver wire in these reactions was reused several times in sequential reactions without a decline in performance, and the amount of copper catalyst used was reduced to 10 ppm without a large decrease in control. A poly(n-butyl acrylate)-block-poly(tert-butyl acrylate) diblock copolymer was synthesized with a molecular weight of 91 400 and Đ = 1.04, demonstrating good retention of chain-end functionality and a high degree of livingness in this ATRP system. PMID:25599253

  15. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.

    Science.gov (United States)

    Lv, Zhanao; Zheng, Wenrui; Chen, Zhuqi; Tang, Zhiming; Mo, Wanling; Yin, Guochuan

    2016-07-28

    Non-redox metal ions can affect the reactivity of active redox metal ions in versatile biological and heterogeneous oxidation processes; however, the intrinsic roles of these non-redox ions still remain elusive. This work demonstrates the first example of the use of non-redox metal ions as Lewis acids to sharply improve the catalytic oxygen atom transfer efficiency of a ruthenium complex bearing the classic 2,2'-bipyridine ligand. In the absence of Lewis acid, the oxidation of ruthenium(ii) complex by PhI(OAc)2 generates the Ru(iv)[double bond, length as m-dash]O species, which is very sluggish for olefin epoxidation. When Ru(bpy)2Cl2 was tested as a catalyst alone, only 21.2% of cyclooctene was converted, and the yield of 1,2-epoxycyclooctane was only 6.7%. As evidenced by electronic absorption spectra and EPR studies, both the oxidation of Ru(ii) by PhI(OAc)2 and the reduction of Ru(iv)[double bond, length as m-dash]O by olefin are kinetically slow. However, adding non-redox metal ions such as Al(iii) can sharply improve the oxygen transfer efficiency of the catalyst to 100% conversion with 89.9% yield of epoxide under identical conditions. Through various spectroscopic characterizations, an adduct of Ru(iv)[double bond, length as m-dash]O with Al(iii), Ru(iv)[double bond, length as m-dash]O/Al(iii), was proposed to serve as the active species for epoxidation, which in turn generated a Ru(iii)-O-Ru(iii) dimer as the reduced form. In particular, both the oxygen transfer from Ru(iv)[double bond, length as m-dash]O/Al(iii) to olefin and the oxidation of Ru(iii)-O-Ru(iii) back to the active Ru(iv)[double bond, length as m-dash]O/Al(iii) species in the catalytic cycle can be remarkably accelerated by adding a non-redox metal, such as Al(iii). These results have important implications for the role played by non-redox metal ions in catalytic oxidation at redox metal centers as well as for the understanding of the redox mechanism of ruthenium catalysts in the oxygen atom

  16. Transfer zones in listric normal fault systems

    Science.gov (United States)

    Bose, Shamik

    Listric normal faults are common in passive margin settings where sedimentary units are detached above weaker lithological units, such as evaporites or are driven by basal structural and stratigraphic discontinuities. The geometries and styles of faulting vary with the types of detachment and form landward and basinward dipping fault systems. Complex transfer zones therefore develop along the terminations of adjacent faults where deformation is accommodated by secondary faults, often below seismic resolution. The rollover geometry and secondary faults within the hanging wall of the major faults also vary with the styles of faulting and contribute to the complexity of the transfer zones. This study tries to understand the controlling factors for the formation of the different styles of listric normal faults and the different transfer zones formed within them, by using analog clay experimental models. Detailed analyses with respect to fault orientation, density and connectivity have been performed on the experiments in order to gather insights on the structural controls and the resulting geometries. A new high resolution 3D laser scanning technology has been introduced to scan the surfaces of the clay experiments for accurate measurements and 3D visualizations. Numerous examples from the Gulf of Mexico have been included to demonstrate and geometrically compare the observations in experiments and real structures. A salt cored convergent transfer zone from the South Timbalier Block 54, offshore Louisiana has been analyzed in detail to understand the evolutionary history of the region, which helps in deciphering the kinematic growth of similar structures in the Gulf of Mexico. The dissertation is divided into three chapters, written in a journal article format, that deal with three different aspects in understanding the listric normal fault systems and the transfer zones so formed. The first chapter involves clay experimental models to understand the fault patterns in

  17. Distinguishing nonlinear processes in atomic media via orbital angular momentum transfer

    CERN Document Server

    Akulshin, Alexander M; Mikhailov, Eugeniy E; Novikova, Irina

    2014-01-01

    We suggest a technique based on the transfer of topological charge from applied laser radiation to directional and coherent optical fields generated in ladder-type excited atomic media to identify the major processes responsible for their appearance. As an illustration, in Rb vapours we analyse transverse intensity and phase profiles of the forward-directed collimated blue and near-IR light using self-interference and astigmatic transformation techniques when either or both of two resonant laser beams carry orbital angular momentum. Our observations unambiguously demonstrate that emission at 1.37 {\\mu}m is the result of a parametric four-wave mixing process involving only one of the two applied laser fields.

  18. Synthesis of Dumbbell-shaped Hyperbranched Amphiphilic Block Copolymer by Controlled Atom Transfer Radical Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Kyoung; An, Sung Guk; Cho, Chang Gi [Center for Advanced Functional Polymers, Department of Fiber and Polymer Science, Hanyang University, Seoul (Korea); Noh, Si Tae [Department of Chemical Engineering, Hanyang University, Ansan (Korea)

    2001-04-01

    Amphiphilic block copolymers containing hydrophilic ethylene glycol core and hyperbranched polystyrene (PS) arm were synthesized by atom transfer radical polymerization using hydrophilic macroinitiator and p-chloromethyl styrene (CMS) as AB type monomer. Hydrophilic poly(ethylene glycol)(PEG) macroinitiators with difuntional groups were synthesized by reacting PEG and 2-bromopropionyl bromide. The chemical structure, molecular weight, and polydispersity index of the amphiphilic block copolymer were characterized by {sup 1}H-NMR spectroscopy and GPC analysis. The molecular weight increased as the reaction time increased. Polydispersity index of the obtained polymer was relatively narrow (below 1.39). To control chain density of the hyperbranched PS, styrene and CMS were copolymerized. It was found that amphiphilic block copolymer molecule underwent conformational change in different solvents based on the result for {sup 1}H-NMR spectroscopic analysis. 29 refs., 8 figs., 2 tabs.

  19. Hydrolysis of 4-Acetoxystyrene Polymers Prepared by Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Chen, Xianyi; Jankova, Katja; Kops, Jørgen;

    1999-01-01

    Hydrolysis of 4-acetoxystyrene polymers prepared by atom transfer radical polymerization was carried out under various reaction conditions. It was found that hydrazinolysis of 4-acetoxystyrene homopolymers, random and block copolymers with styrene in 1,4-dioxane, afforded the corresponding narrow...... dispersed materials with phenolic groups which were substantially free from crosslinkages. Gel permeation chromatographic (GPC) analysis of these polymers revealed different extents of molecular weight distribution (MWD) broadening for the hydrolysis products for the different structures. On the other hand......, by NaOH catalyzed deprotection, the 4-acetoxystyrene polymers including triblock copolymer poly(4-acetoxystyrene-b-isobutylene-b-4-toxystyrene) suffered from some degrees of coupling or even gelation, except for poly(styrene-b-4-acetoxystyrene-b-styrene) which also by this method could be...

  20. Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species.

    Science.gov (United States)

    Serrano-Plana, Joan; Aguinaco, Almudena; Belda, Raquel; García-España, Enrique; Basallote, Manuel G; Company, Anna; Costas, Miquel

    2016-05-17

    The reaction of [Fe(CF3 SO3 )2 (PyNMe3 )] with excess peracetic acid at -40 °C leads to the accumulation of a metastable compound that exists as a pair of electromeric species, [Fe(III) (OOAc)(PyNMe3 )](2+) and [Fe(V) (O)(OAc)(PyNMe3 )](2+) , in fast equilibrium. Stopped-flow UV/Vis analysis confirmed that oxygen atom transfer (OAT) from these electromeric species to olefinic substrates is exceedingly fast, forming epoxides with stereoretention. The impact of the electronic and steric properties of the substrate on the reaction rate could be elucidated, and the relative reactivities determined for the catalytic oxidations could be reproduced by kinetic studies. The observed fast reaction rates and high selectivities demonstrate that this metastable compound is a truly competent OAT intermediate of relevance for nonheme iron catalyzed epoxidations. PMID:27071372

  1. Distinguishing nonlinear processes in atomic media via orbital angular momentum transfer.

    Science.gov (United States)

    Akulshin, Alexander M; McLean, Russell J; Mikhailov, Eugeniy E; Novikova, Irina

    2015-03-15

    We suggest a technique based on the transfer of topological charge from applied laser radiation to directional and coherent optical fields generated in ladder-type excited atomic media to identify the major processes responsible for their appearance. As an illustration, in Rb vapors, we analyze transverse intensity and phase profiles of the forward-directed collimated blue and near-IR light using self-interference and astigmatic transformation techniques when either or both of two resonant laser beams carry orbital angular momentum. Our observations unambiguously demonstrate that emission at 1.37 μm is the result of a parametric four-wave mixing process involving only one of the two applied laser fields. PMID:25768194

  2. Modification of Jute Fibers with Polystyrene via Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Plackett, David; Jankova, Katja Atanassova; Egsgaard, Helge;

    2005-01-01

    Atom transfer radical polymerization (ATRP) was investigated as a method of covalently bonding polystyrene to jute (Corchorus capsularis) and as a possible approach to fiber composites with enhanced properties. Jute fibers were modified with a brominated initiator and subsequently ATRP modified to...... attach polystyrene and then examined using SEM, DSC, TGA, FTIR, XPS, elemental analysis, and Py-GC-MS. These techniques confirmed that polystyrene had been covalently bound to the fibers and consequently ATRP-modified jute fiber mats were used to prepare hot-pressed polystyrene composites. Composite...... applications, we conclude that further optimization of the ATRP method is required, possibly targeting higher and more uniform loading of polystyrene on the fibers....

  3. Preparation of polystyrene-grafted titanate nanotubes by in situ atom transfer radical polymerization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This work successfully prepared nanohybrids by in situ atom transfer radical polymerization (ATRP) of styrene from titanate nanotubes (TNTs). Fourier-transform infrared (FT-IR), pronton nuclear magnetic resonance spectroscopy (1H NMR), and thermal gravimetric analysis (TGA) were used to verify the successful graft of polystyrene (PS) chains from TNTs. Transmission electron microscopy (TEM) dis-played that the obtained PS-g-TNTs nanohybrids had a core-shell structure of TNT core and PS shell. The grafted PS content was well controlled and increased with increasing of the monomer/initiator ratio. Further copolymerization of tert-butyl acrylate (tBA) from the surface of PS-g-TNTs was studied, illus-trating the "living" characteristics of the surface-induced ATRP method used in this work.

  4. Surface modification of nanoporous 1,2-polybutadiene by atom transfer radical polymerization or click chemistry.

    Science.gov (United States)

    Guo, Fengxiao; Jankova, Katja; Schulte, Lars; Vigild, Martin E; Ndoni, Sokol

    2010-02-01

    Surface-initiated atom transfer radical polymerization (ATRP) and click chemistry were used to obtain functional nanoporous polymers based on nanoporous 1,2-polybutadiene (PB) with gyroid morphology. The ATRP monolith initiator was prepared by immobilizing bromoester initiators onto the pore walls through two different methodologies: (1) three-step chemical conversion of double bonds of PB into bromoisobutyrate, and (2) photochemical functionalization of PB with bromoisobutyrate groups. Azide functional groups were attached onto the pore walls before click reaction with alkynated MPEG. Following ATRP-grafting of hydrophilic polyacrylates and click of MPEG, the originally hydrophobic samples transformed into hydrophilic nanoporous materials. The successful modification was confirmed by infrared spectroscopy, contact angle measurements and measurements of spontaneous water uptake, while the morphology was investigated by small-angle X-ray scattering and transmission electron microscopy. PMID:20099923

  5. Charge transfer in the interactions of partially stripped ions with atoms at intermediate and high energies

    International Nuclear Information System (INIS)

    The Coulomb-Born (CB) approximation has been employed to study charge transfer cross sections in collisions of Cq+, Nq+ and Oq+ (q = 1-5) with atomic hydrogen in ground state in the energy range of 30-200 keV/amu. The interaction of the active electron with the incoming projectile ion has been approximated by a model potential containing both a long-range part and a short-range part. Variations of total capture cross sections with impact energy compare favourable well with the available experimental observations and with other theoretical findings. In addition, sub-shell distributions of total capture cross sections are given in graphical form. However, we are unable to find any oscillation in the charge-state dependence of total capture cross sections. (author)

  6. Recent developments in atom transfer radical polymerization initiators for development of polymer-protein bioconjugates

    Directory of Open Access Journals (Sweden)

    AKHILESH KUMAR SHAKYA

    2013-01-01

    Full Text Available One of the major challenges in modern synthetic polymer chemistry is to synthesize end defined polymers of different end functionality with predetermined uniform molecular weight. End functionalized polymers/copolymers basically in block and grafting form are having several potential applications in biomedical areas in the form of surface modifications, coatings, adhesives, and in order to increase the biocompatibility of polymeric blends. Among the existing controlled radical polymerization (CRP methods for synthesis of these functional polymers, the atom transfer radical polymerization (ATRP is one of the powerful techniques. The functional groups in these polymers can be easily introduced at the chain ends through functionalized ATRP initiators. A number of ATRP initiators have been developed in polymer science to develop defined polymer-protein bioconjugates. This critical review basically focuses on different types of ATRP initiators and their mechanisms used in the synthesis of polymer-protein bioconjugates.

  7. Based on atom transfer radical polymerization method preparation of fluoropolymer superhydrophobic films

    International Nuclear Information System (INIS)

    A facile process for the one-step preparation of a fluoropolymer superhydrophobic polymer-coated surface under an ambient atmosphere was reported in this study. The block copolymer of polystyrene-block-poly (2,2,3,4,4,4-hexafluorobutyl-methacrylate), synthesized by atom transfer radical polymerization, was dissolved in a selective solvent. With the evaporation of the solvent, the block copolymer self-assembled into core/shell micelles, forming a grain-structured superhydrophobic film. The contact angle and sliding angle of the film were measured as 152.3o and 9.2o, respectively, demonstrating excellent superhydrophobic property and stability. The superior performance should ascribe to the introducing fluorine into the copolymer and the grain-like rough morphology of the film.

  8. Hydrophilization of Poly(ether ether ketone) Films by Surface-initiated Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Eskimergen, Rüya; Burkrinsky, J.T.;

    2008-01-01

    Poly(ether ether ketone) (PEEK) replaces aluminum and other metals in aerospace, electronics, medical, and automotive applications. Therefore, the demand for metallization of PEEK is continuously increasing. Metals seldom bond to a polymer without undergoing some chemical interaction - this is the......-modified PEEK using Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP). Surface reduction of PEEK to form hydroxyl groups [1, 2, 3] was .performed prior to the attachment of 2-bromoisobutyrate initiating groups. Each modification step of PEEK as well as the polymer grafting was followed and...... mechanism leading to good adhesion. From the different types of bonding, the covalent bond at the polymer - metal interface is the strongest. In this work the surface ofPEEK is functionalized by covalently bounding of hydrophilic polymer brushes ofpoly(ethyleneglycol) methacrylate (PEGMA) from initiator...

  9. Radiative charge transfer in cold and ultracold Sulfur atoms colliding with Protons

    CERN Document Server

    Shen, G; Wang, J G; McCann, J F; McLaughlin, B M

    2015-01-01

    Radiative decay processes at cold and ultra cold temperatures for Sulfur atoms colliding with protons are investigated. The MOLPRO quantum chemistry suite of codes was used to obtain accurate potential energies and transition dipole moments, as a function of internuclear distance, between low-lying states of the SH$^{+}$ molecular cation. A multi-reference configuration-interaction (MRCI) approximation together with the Davidson correction is used to determine the potential energy curves and transition dipole moments, between the states of interest, where the molecular orbitals (MO's) are obtained from state-averaged multi configuration-self-consistent field (MCSCF) calculations. The collision problem is solved approximately using an optical potential method to obtain radiative loss, and a fully two-channel quantum approach for radiative charge transfer. Cross sections and rate coefficients are determined for the first time for temperatures ranging from 10 $\\mu$ K up to 10,000 K. Results are obtained for all ...

  10. Preparation and characterization of optical-functional diblock copolymer brushes on hollow sphere surface via atom transfer radical polymerization

    International Nuclear Information System (INIS)

    The optical-functional poly(methyl methacrylate)-block-Tb complex diblock copolymer brushes grafted from hollow sphere surface via atom transfer radical polymerization were investigated in this work. A sufficient amount of azo initiator was introduced onto hollow sphere surface firstly. Then the monomer methyl methacrylate was polymerized via surface-initiated reverse atom transfer radical polymerization using azo group modified hollow sphere as initiator. Following, the poly(methyl methacrylate) modified hollow sphere was used as maroinitiator for surface-initiated atom transfer radical polymerization of Tb complex. The samples were characterized by Fourier transform infrared spectroscopy, hydrogen nuclear magnetic resonance, gel permeation chromatographer and transmission electron microscopy, respectively. The results indicated that the poly(methyl methacrylate) had grafted from hollow sphere surface and the average diameter of hollow core was about 1 μm. The optical properties of the poly(methyl methacrylate)-block-Tb copolymer modified hollow sphere were also reported.

  11. Dynamic Characteristics of Excited Atomic Systems

    International Nuclear Information System (INIS)

    The dynamics of excited atom interactions with other atoms, which often lead to associative ionization, is largely governed by stochastic diffusion of the valence electron through Rydberg states prior to the ionization. Such processes are associated with random changes of the energy state of the highly excited electron, and they are likely to influence the nuclear dynamics, especially at subthermal collision energies. Possibilities of manipulation of the chaotic dynamics of Rydberg states require a detailed exploration. For an electron in a given Rydberg state moving in a microwave field, which can be generated via interaction with another atom or molecule, there exists critical field strength, above which motion of the electron in the energy space is chaotic. Recently a way to block the dynamic chaos regime was shown, if a given Rydberg state is located somewhat above the middle between the two other states with the orbital quantum number differing by one, whereby level shifts can be controlled by employing Stark/Zeeman shifts in external DC electric/magnetic fields. The stochastic effects in collisions involving Rydberg particles, in which the initial and final reaction channels are connected via intermediate highly excited collision complexes with multiple crossings of energy levels, can be treated using the dynamic chaos approach (Chirikov criterion, Standard and Keppler mapping of time evolution of the Rydberg electron, solution of the Fokker-Plank- and Langevin-type of equations, etc.). Such approach to obtaining dynamics characteristics is a natural choice, since the treatment of Rydberg electron dynamics as a kind of diffusion process allowing one to bypass the multi-level-crossing problem, which can hardly be solved by conventional quantum chemistry methods

  12. Electron transfer modifies chemical properties of C70 fullerene surface: an ab initio molecular dynamics study of C70O3 molozonides doped with light atoms

    OpenAIRE

    Morrison, Carole; Bil, Andrzej; Hutter, Jurg

    2014-01-01

    Light metal atoms such as Li, K (electronic state 2S 1/2) or Ca (1S0) encapsulated in a C 70 cage considerably modifies the chemical properties of the fullerene surface due to metal-to-cage electron transfer. H-doped and anion ozonide systems were also considered to validate the electron transfer hypothesis. The relative stabilities of the eight isomers of the C 70O3 molozonide series at room temperature depend on the identity of the endohedral guest, as was the preferred channel for thermal ...

  13. Effect of current and atomized grain size distribution on the solidification of Plasma Transferred Arc coatings

    Directory of Open Access Journals (Sweden)

    Danielle Bond

    2012-10-01

    Full Text Available Plasma Transferred Arc (PTA is the only thermal spray process that results in a metallurgical bond, being frequently described as a hardfacing process. The superior properties of coatings have been related to the fine microstructures obtained, which are finer than those processed under similar heat input with welding techniques using wire feedstock. This observation suggests that the atomized feedstock plays a role on the solidification of coatings. In this study a model for the role of the powders grains in the solidification of PTA coatings is put forward and discussed. An experiment was setup to discuss the model which involved the deposition of an atomized Co-based alloy with different grain size distributions and deposition currents. X ray diffraction showed that there were no phase changes due to the processing parameters. Microstructure analysis by Laser Confocal Microscopy, dilution with the substrate steel and Vickers microhardness were used the characterized coatings and enriched the discussion confirming the role of the powdered feedstock on the solidification of coatings.

  14. Hydrophilic modification of microporous polysulfone membrane via surface-initiated atom transfer radical polymerization of acrylamide

    International Nuclear Information System (INIS)

    Polyacrylamide (PAM) brushes were grafted from chloromethylated polysulfone (CMPSF) membrane surface by surface-initiated atom transfer radical polymerization (SI-ATRP) to improve the membrane's hydrophilic property. In order to anchor the initiator onto polysulfone (PSF) membrane surface, CMPSF was used to prepare the microporous membrane by phase-inversion process. Attachment of the PAM chains on membrane surface was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The grafted density of PAM was calculated to be 0.08 chains nm-2. Field emission scanning electron microscopy (FESEM) and atomic force microscope (AFM) were used to characterize the surface morphology of the CMPSF membrane and modified membrane. The number-average molecular weight (Mn) of PAM linearly increased with the polymerization time, while the static water contact angle (θ) of the membrane grafted with PAM linearly decreased. This indicated the hydrophilic property of the membrane was linearly correlated with the chain length of graft polymer. Therefore linear control of PSF membrane's hydrophilic property was realized through adjusting polymerization time.

  15. General model of depolarization and transfer of polarization of singly ionized atoms by collisions with hydrogen atoms

    CERN Document Server

    Derouich, Moncef

    2016-01-01

    Simulations of the generation of the atomic polarization is necessary for interpreting the second solar spectrum. For this purpose, it is important to rigorously determine the effects of the isotropic collisions with neutral hydrogen on the atomic polarization of the neutral atoms, ionized atoms and molecules. Our aim is to treat in generality the problem of depolarizing isotropic collisions between singly ionized atoms and neutral hydrogen in its ground state. Using our numerical code, we computed the collisional depolarization rates of the $p$-levels of ions for large number of values of the effective principal quantum number $n^{*}$ and the Uns\\"old energy $E_p$. Then, genetic programming has been utilized to fit the available depolarization rates. As a result, strongly non-linear relationships between the collisional depolarization rates, $n^{*}$ and $E_p$ are obtained, and are shown to reproduce the original data with accuracy clearly better than 10\\%. These relationships allow quick calculations of the ...

  16. 46 CFR 153.430 - Heat transfer systems; general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's...

  17. Waste Feed Delivery Transfer System Analysis [SEC 1 and 2

    International Nuclear Information System (INIS)

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the immobilization plant for processing. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for all Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and AZ Tank Farms

  18. Confinement-Induced Resonances in Ultracold Atom-Ion Systems

    CERN Document Server

    Melezhik, Vladimir S

    2016-01-01

    We investigate confinement-induced resonances in a system composed by a tightly trapped ion and a moving atom in a waveguide. We determine the conditions for the appearance of such resonances in a broad region -- from the "long-wavelength" limit to the opposite case when the typical length scale of the atom-ion interaction essentially exceeds the transverse waveguide width. We find considerable dependence of the resonance position on the atomic mass which, however, disappears in the "long-wavelength" limit, where the result for the confined atom-atom scattering is reproduced. We also derive an analytic formula for the resonance position in the "long-wavelength zero-energy" limit. Our results, which can be investigated in current experiments, indicate a strategy to determine the atom-ion scattering length, the temperature of the atomic ensemble in the presence of an ion impurity, and a pathway to control the atom-phonon coupling in a one dimensional ion crystal in interaction with an atomic quantum gas.

  19. PEGylated Fluorescent Nanoparticles from One-Pot Atom Transfer Radical Polymerization and “Click Chemistry”

    Directory of Open Access Journals (Sweden)

    Li Qun Xu

    2015-10-01

    Full Text Available The preparation of PEGylated fluorescent nanoparticles (NPs based on atom transfer radical polymerization (ATRP and “click chemistry” in one-pot synthesis is presented. First, poly(p-chloromethyl styrene-alt-N-propargylmaleimide (P(CMS-alt-NPM copolymer was prepared via reversible addition-fragmentation chain transfer (RAFT polymerization. Subsequently, the azido-containing fluorene-based polymer, poly[(9,9-dihexylfluorene-alt-(9,9-bis-(6-azidohexylfluorene] (PFC6N3, was synthesized via Suzuki coupling polymerization, followed by azidation. Finally, the PEGylated fluorescent NPs were prepared via simultaneous intermolecular “click” cross-linking between P(CMS-alt-NPM and PFC6N3 and the ATRP of poly(ethylene glycol methyl ether methacrylate (PEGMMA using P(CMS-alt-NPM as the macroinitiator. The low cytotoxicity of the PEGylated fluorescent NPs was revealed by incubation with KB cells, a cell line derived from carcinoma of the nasopharynx, in an in vitro experiment. The biocompatible PEGylated fluorescent NPs were further used as a labeling agent for KB cells.

  20. Combined atomic force and fluorescence microscopy to study lipid transfer from lipoproteins to biomembranes

    International Nuclear Information System (INIS)

    Biological cells notice there environment via highly sensitive receptor-ligand interactions. The involved receptors reside at the cellular plasma membrane and react along complex molecular processes to the external stimulus. The spatial arrangement of the receptors affect their function strongly. By stimulating specific receptors -molecule by molecule- we can characterize their function. Atomic Force Microscopy (AFM) enables controlled stimulation of single receptor molecules. For this purpose the corresponding ligand is attached via a flexible linker to the cantilever tip. In contrast, fluorescence microscopy allows for measuring the time response of the signal processing, even at the single molecule level. It is the combination of both approaches, however, which paves the way for reaching new levels of understanding of cellular processes, as molecular trigger set by the functionalized AFM tip can be directly correlated to the cellular response measured by fluorescence microscopy. In this thesis, I firstly developed the instrumentation for combined and fully synchronized force and fluorescence microscopy, down to the level of single molecules. Secondly, I applied the new instrumentation to study the transfer of individual lipid molecules out of an HDL-particle into supported lipid bilayers, which serve as well defined model membranes. In particular, the transfer of fluorescently labeled lipids as a function of the receptor for selective cholesterol uptake was of major interest. It is generally assumed that this process is a receptor-mediated transfer of lipid from the particle directly into the cellular plasma membrane. By analyzing the interaction of HDL-particles and a supported lipid bilayer, I could demonstrate that cholesterol can indeed be transferred from an HDL particle to the bilayer without the need for a receptor; for cholesteryl ester, no transfer was observable. The ability to monitor released lipids and to adjust contact times or contact forces let

  1. Narrow linewidth single laser source system for onboard atom interferometry

    OpenAIRE

    Theron, Fabien; Carraz, Olivier; Renon, Geoffrey; Bidel, Yannick; Zahzam, Nassim; Cadoret, Malo; Bresson, Alexandre

    2014-01-01

    A compact and robust laser system for atom interferometry based on a frequency-doubled telecom laser is presented. Thanks to an original stabilization architecture on a saturated absorption setup, we obtain a frequency-agile laser system allowing fast tuning of the laser frequency over 1 GHz in few ms using a single laser source. The different laser frequencies used for atom interferometry are generated by changing dynamically the frequency of the laser and by creating sidebands using a phase...

  2. Automatic power control system for 235 MWe atomic power reactor

    International Nuclear Information System (INIS)

    The paper highlights the essential features of the design, fabrication and testing of microprocessor based reactor power regulating system of Narora Atomic Power Plant (NAPP) and Kakrapar Atomic Power Plant (KAPP). The improved system design at KAPP employs the reactor power control based on neutron flux signal after correction. The control system responses have been presented and compared with the responses using a reactor functional simulator. A new fault tolerant reactor regulating system has been designed using a dual active and hot stand-by microprocessor system to improve operational reliability. (author). 1 ref., 8 figs

  3. Visual prosthesis wireless energy transfer system optimal modeling

    OpenAIRE

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-01

    Background Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. Methods On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and ...

  4. A theoretical model for electron transfer in ion-atom collisions: Calculations for the collision of a proton with an argon atom

    International Nuclear Information System (INIS)

    We have developed a theoretical model of ion-atom collisions based on the time-dependent density-functional theory. We solve the time-dependent Kohn-Sham equation for electrons employing the real-space and real-time method, while the ion dynamics are described in classical mechanics by the Ehrenfest method. Taking advantage of the real-space grid method, we introduce the 'coordinate space translation' technique to allow one to focus on a certain space of interest. Benchmark calculations are given for collisions between proton and argon over a wide range of impact energy. Electron transfer total cross sections showed a fairly good agreement with available experimental data. -- Highlights: → We have developed a theoretical model of ion-atom collisions based on TDDFT. → The coordinate space translation technique was introduced into present calculation. → Charge transfer cross sections showed a good agreement with available experimental data.

  5. Entanglement transfer from two-mode anti-correlated continuous-variable systems to a pair of localized discrete systems

    Science.gov (United States)

    Ran, Du; Yang, Zhen-Biao

    2016-04-01

    We address the entanglement transfer from a bipartite continuous-variable(CV) system to a pair of localized discrete systems. The dynamics behavior can be implemented by two two-level atoms flying through spatially separated identical cavities where two quantized modes are injected. We assume each CV mode couples to one atom via the resonant Jaynes-Cummings interaction. The CV systems are initially prepared in a two-mode anti-correlated SU(2) coherent state, while with the initial atomic states of the cases: |g⟩1|g⟩2, |e⟩1|e⟩2 and |g⟩1|e⟩2, respectively. We find that the entanglement transfer for single-photon excitation case is more efficient than that for multi-photon excitation case. Under same conditions, we also note that the entanglement transfer is more efficient for SU(2) coherent state than for twin-bean (TWB) and pair-coherent (TMC) state. Besides, we show that, for a given total photon number of the initial SU(2) coherent state, the efficiency of entanglement transfer depends upon the distribution of photons in the two CV modes. We also consider the influences of the dissipation and the white noise on the entanglement transfer.

  6. Narrow linewidth single laser source system for onboard atom interferometry

    CERN Document Server

    Theron, Fabien; Renon, Geoffrey; Bidel, Yannick; Zahzam, Nassim; Cadoret, Malo; Bresson, Alexandre

    2014-01-01

    We present an original compact and robust laser system for atom interferometry based on a frequency-doubled telecom laser. Thanks to an original stabilization architecture on a saturated absorption, we obtain a frequency agile laser system allowing fast tuning of the laser frequency over 1 GHz in few ms using only a single laser source. The different laser frequencies used for atom interferometry are created by changing dynamically the frequency of the laser and by creating sidebands using a phase modulator. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components, which are intrinsically less stable, and to make the setup compact, much less sensitive to vibrations and thermal fluctuations. This source provides spectral linewidth below 2.5 kHz required for precision atom interferometry, and particularly for an high performance atomic inertial sensor.

  7. Sequential synthesis of methyl methacrylate, styrene and isobutylene pentablock copolymers by atom transfer radical and cationic polymerization

    Czech Academy of Sciences Publication Activity Database

    Janata, Miroslav; Toman, Luděk; Vlček, Petr; Spěváček, Jiří; Látalová, Petra; Masař, Bohumil; Sikora, Antonín

    Goa : International Union of Pure and Applied Chemistry, 2005. s. 101. [International Symposium on Ionic Polymerization. 23.10.2005-28.10.2005, Goa ] R&D Projects: GA ČR GA203/04/1050 Keywords : block copolymers * atom transfer radical polymerization * cationic polymerization Subject RIV: CD - Macromolecular Chemistry

  8. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    1995-01-01

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what exten

  9. Interaction of Interpolating Number-Coherent States with Atomic Systems

    CERN Document Server

    Feng, Y; Solomon, A I; Feng, Yinqi; Fu, Hongchen

    1999-01-01

    Interpolating number-coherent states are new states of the radiation field which interpolate between number and coherent states, to which they reduce in appropriate limits. We study some fundamental features of the interaction of these new states with a atomic system in the framework of the Jaynes-Cummings model(JCM). The dynamical evolution of atomic population inversion, field entropy, the Q-function and photon number distribution properties are investigated in detail.

  10. Transfer of technology. Foreign contributions and systems

    International Nuclear Information System (INIS)

    The transfer of technology involved when exporting nuclear plants to countries with less-developed industry requires the provision of specific object-related processing methods, and the transfer of basic technical know-how. Such transfer should be organized so that it is both effective and economical. This paper discusses such transfer requirements in the light of the Federal Republic of Germany's agreement to supply nuclear plant to Brazil. The three main phases of such technology transfer comprise, first, a determination of the framework for joint scientific work between the two contracting countries; second, co-operation based on detailed agreements between universities, scientific institutes, licensing authorities etc., and, third, the transfer of know-how, chiefly characterized by high-level co-operation at the industrial level, as well as special training programmes for key personnel etc. At this stage special attention must be paid to the co-ordination of the different activities. (author)

  11. A compact system for single site atom loading of a neutral atom qubit array

    Science.gov (United States)

    Dinardo, Brad; Hughes, Steven; McBride, Sterling; Michalchuk, Joey; Anderson, Dana Z.

    2015-05-01

    We present progress towards single atom loading from a magneto optical trap reservoir to a bottle beam (BoB) array trap site for use in quantum computation. Our procedure involves vertically transporting cesium atoms via a moving molasses MOT from a 3D MOT chamber into a six sided, AR-coated, high optical access UHV science chamber. The cesium atoms are to be horizontally displaced 100 μm to a 7 × 7 array of blue-detuned BoB traps. Displacement of the atoms will be accomplished by means of a moving standing wave dipole trap. The single-site loading experiment will take place in the Atomic Qubit Array Cell (AQuA Cell) which is a compact, high performance UHV system that utilizes new miniature silicon and glass ion pump technology. The entire AQuA Cell is 0.6 liters. The cell, cooling, and transport optomechanics is incorporated in a package occupying about 0.028 cubic meters. Funding provided by IARPA MQCO.

  12. Space Biosensor Systems: Implications for Technology Transfer

    Science.gov (United States)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  13. Transferable aspherical atom model refinement of protein and DNA structures against ultrahigh-resolution X-ray data.

    Science.gov (United States)

    Malinska, Maura; Dauter, Zbigniew

    2016-06-01

    In contrast to the independent-atom model (IAM), in which all atoms are assumed to be spherical and neutral, the transferable aspherical atom model (TAAM) takes into account the deformed valence charge density resulting from chemical bond formation and the presence of lone electron pairs. Both models can be used to refine small and large molecules, e.g. proteins and nucleic acids, against ultrahigh-resolution X-ray diffraction data. The University at Buffalo theoretical databank of aspherical pseudo-atoms has been used in the refinement of an oligopeptide, of Z-DNA hexamer and dodecamer duplexes, and of bovine trypsin. The application of the TAAM to these data improves the quality of the electron-density maps and the visibility of H atoms. It also lowers the conventional R factors and improves the atomic displacement parameters and the results of the Hirshfeld rigid-bond test. An additional advantage is that the transferred charge density allows the estimation of Coulombic interaction energy and electrostatic potential. PMID:27303797

  14. Scaling CMS data transfer system for LHC start-up

    CERN Document Server

    Tuura, L; Bonacorsi, D; Egeland, R; Feichtinger, D; Metson, S; Rehn, J

    2008-01-01

    The CMS experiment will need to sustain uninterrupted high reliability, high throughput and very diverse data transfer activities as the LHC operations start. PhEDEx, the CMS data transfer system, will be responsible for the full range of the transfer needs of the experiment. Covering the entire spectrum is a demanding task: from the critical high-throughput transfers between CERN and the Tier-1 centres, to high-scale production transfers among the Tier-1 and Tier-2 centres, to managing the 24/7 transfers among all the 170 institutions in CMS and to providing straightforward access to handful of files to individual physicists.

  15. Effective Field Theory for Atom-Molecule Systems II: Stationary Solutions and Bogoliubov Excitations in Atom-Molecule Systems

    CERN Document Server

    Sahlberg, Catarina E

    2011-01-01

    We formulate the basic theoretical methods for Bose-Einstein Condensation of atoms close to a Feshbach resonance, in which the tunable scattering length of the atoms is described using a system of coupled atom and molecule fields. These include the Thomas-Fermi description of the condensate profile, the c-field equations, and the Bogoliubov-de Gennes equations, and the Bogoliubov excitation spectrum for a homogenous condensed system. We apply this formalism to the special case of Bragg scattering from a uniform condensate, and find that for moderate and large scattering lengths, there is a dramatic difference in the shift of the peak of the Bragg spectra, compared to that based on a structureless atom model. The result is compatible with the experimental results of Papp et al. [S. B. Papp et al., Phys. Rev. Lett., 101(13):135301, Sep 2008].

  16. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu [Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, California 94305 (United States)

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  17. Modification of polysulfone membranes via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Hydrophilic poly((poly(ethylene glycol) methyl ether methacrylate) (P(PEGMA)) and poly(glycidylmethacrylate) (PGMA) brushes were grafted from chloromethylated polysulfone (CMPSF) membrane surfaces via surface-initiated atom transfer radical polymerization (ATRP). Prior to ATRP, chloromethylation of PSF was performed beforehand and the obtained CMPSF was prepared into porous membranes by phase inversion process. It was demonstrated that the benzyl chloride groups on the CMPSF membrane surface afforded effective macroinitiators to graft the well-defined polymer brushes. 1H NMR was employed to confirm the structure of CMPSF. The grafting yield of P(PEGMA) and PGMA was determined by weight gain measurement. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the grafting of P(PEGMA) and PGMA chains. Water contact angle measurements indicated that the introduction of P(PEGMA) and PGMA graft chains promoted remarkably the surface hydrophilicity of PSF membranes. The effects of P(PEGMA) and PGMA immobilization on membrane morphology, permeability and fouling resistance were investigated. It was found that P(PEGMA) and PGMA grafts brought higher pure water flux, improved hydrophilic surface and better anti-protein absorption ability to PSF membranes after modification. And evidently, macromonomer P(PEGMA) brought much better properties to the PSF membranes than PGMA macromonomer.

  18. Cost-Effective Systems for Atomic Layer Deposition

    Science.gov (United States)

    Lubitz, Michael; Medina, Phillip A., IV; Antic, Aleks; Rosin, Joseph T.; Fahlman, Bradley D.

    2014-01-01

    Herein, we describe the design and testing of two different home-built atomic layer deposition (ALD) systems for the growth of thin films with sub-monolayer control over film thickness. The first reactor is a horizontally aligned hot-walled reactor with a vacuum purging system. The second reactor is a vertically aligned cold-walled reactor with a…

  19. Electron transfer modifies chemical properties of C70 fullerene surface: An ab initio molecular dynamics study of C70O3 molozonides doped with light atoms

    Science.gov (United States)

    Bil, Andrzej; Hutter, Jürg; Morrison, Carole A.

    2014-06-01

    Light metal atoms such as Li, K (electronic state 2S1/2) or Ca (1S0) encapsulated in a C70 cage considerably modifies the chemical properties of the fullerene surface due to metal-to-cage electron transfer. H-doped and anion ozonide systems were also considered to validate the electron transfer hypothesis. The relative stabilities of the eight isomers of the C70O3 molozonide series at room temperature depend on the identity of the endohedral guest, as was the preferred channel for thermal decomposition. No electron transfer was observed for the complex N@C70 where the fullerene acts as an inert container for the 4S3/2 radical.

  20. The dissipation of the system and the atom in two-photon Jaynes-Cummings model with degenerate atomic levels

    CERN Document Server

    Guo, Y Q; Song, H S

    2005-01-01

    The method of perturbative expansion of master equation is employed to study the dissipative properties of system and of atom in the two-photon Jaynes-Cummings model (JCM) with degenerate atomic levels. The numerical results show that the degeneracy of atomic levels prolongs the period of entanglement between the atom and the field. The asymptotic value of atomic linear entropy is apparently increased by the degeneration. The amplitude of local entanglement and disentanglement is suppressed. The better the initial coherence property of the degenerate atom, the larger the coherence loss.

  1. Characterization of spray atomization and heat transfer of pressure swirl nozzles

    International Nuclear Information System (INIS)

    The spray characteristics and heat transfer performance of pressure swirl nozzles were experimentally investigated in an open loop system. The spray flow structure, droplet Sauter mean diameter, and droplet impingement energy were characterized at predefined axial distances and pressure drops. It was found that the spray cone produced by the pressure swirl nozzles changes from hollow cone to full cone as the axial distance increases. The droplets size initially decreases with the increasing of axial distance but subsequently increases in the investigated range of axial distance, while the droplet impinging Weber number decreases monotonously. The surface temperature distribution was found to be solely dependent on the impinging droplet flux distribution in the non-boiling regime. High surface temperature expands the impinging spray cone and finally changes the impinging droplet flux distribution when the droplets impinge on the heated surface. The effect of nozzle-to-surface distance on heat transfer performance was found to be complex and surface temperature dependent. The heat transfer coefficient was investigated to be rather insensitive to the nozzle-to-surface distance at the full cone spray regime than that in the hollow cone spray regime. An empirical model that correlates the Nusselt number to the impinging Reynolds number, non-dimensional surface temperature and nozzle-to-surface distance was developed to fit the present experimental data with an average error of 14%. (authors)

  2. Proceedings of the workshop on 'spin-charge transfer reaction in atomic collision process' for planning of next period of cascade project

    International Nuclear Information System (INIS)

    This workshop was held on February 29, 1992, and was planned to investigate from the theoretical side the spin-charge transfer reaction which is used for a polarized heavy ion source, the development of which has been advanced in the Research Center for Nuclear Physics. In fiscal year 1992, the plan of installing an ECR ion source, Neomafios-10 GHz, as the AVF cyclotron external incident ion source is in progress. This external incidence system can be used also for the research on various atomic physics, in addition to the research on atomic nucleus physics. In this workshop, heated discussion was carried out on what research on atomic physics can be advanced in the Research Center for Nuclear Physics hereafter, through the investigation of the various problems that the atomic physics from low to high energy holds and new technical development. Particularly, the atomic physics using polarized ions seems to become a very unique study in the world. It seems proper to name this polarized heavy ion incidence system Spin factory. This report was edited based on the copies of the transparencies. (K.I.)

  3. Some topological states in one-dimensional cold atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Feng; Zhang, Dan-Wei; Zhu, Shi-Liang, E-mail: slzhu@nju.edu.cn

    2015-07-15

    Ultracold atoms trapped in optical lattices nowadays have been widely used to mimic various models from condensed-matter physics. Recently, many great experimental progresses have been achieved for producing artificial magnetic field and spin–orbit coupling in cold atomic systems, which turn these systems into a new platform for simulating topological states. In this paper, we give a review focusing on quantum simulation of topologically protected soliton modes and topological insulators in one-dimensional cold atomic system. Firstly, the recent achievements towards quantum simulation of one-dimensional models with topological non-trivial states are reviewed, including the celebrated Jackiw–Rebbi model and Su–Schrieffer–Heeger model. Then, we will introduce a dimensional reduction method for systematically constructing high dimensional topological states in lower dimensional models and review its applications on simulating two-dimensional topological insulators in one-dimensional optical superlattices.

  4. Replacement of Cross-Site Transfer System Startup Plan

    International Nuclear Information System (INIS)

    This Startup Plan provides a discussion of organizational responsibilities, work planning, quality assurance (QA), personnel qualifications, and testing requirements for the Cross-Site Transfer System

  5. Replacement of Cross-Site Transfer System Startup Plan

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, M.D.

    1996-01-01

    This Startup Plan provides a discussion of organizational responsibilities, work planning, quality assurance (QA), personnel qualifications, and testing requirements for the Cross-Site Transfer System.

  6. Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips

    OpenAIRE

    Gross, Leo; Schuler, Bruno; Mohn, Fabian; Moll, Nikolaj; Pavliček, Niko; Steurer, Wolfram; Scivetti, Ivan; Kotsis, Konstantinos; Persson, Mats; Meyer, Gerhard

    2014-01-01

    Noncontact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM) have become important tools for nanotechnology; however, their contrast mechanisms on the atomic scale are not entirely understood. Here we used chlorine vacancies in NaCl bilayers on Cu(111) as a model system to investigate atomic contrast as a function of applied voltage, tip height, and tip functionalization. We demonstrate that the AFM contrast on the atomic scale decisively depends on both the tip termin...

  7. Quantum beats in fluorescence for multi-level atomic system

    International Nuclear Information System (INIS)

    For Λ-type three-level atomic systems we have clarified using diagram that (1) it is impossible to observe quantum beats due to the ground state sublevels by measuring the time dependence of the fluorescence intensity, and (2) why it is physically possible to observe and how we can observe quantum beats in the ground state sublevels by using fluorescence. Generalization of the results shows that we can determine from which state (the ground state or the excited state) the quantum beats are originated. Analytical result is shown for four-level atomic systems.

  8. Comparison of Power Transfer Characteristics between CPT and IPT System and Mutual Inductance Optimization for IPT System

    OpenAIRE

    Chenyang Xia; Yuejin Zhou; Juan Zhang; Chaowei Li

    2012-01-01

    The capacitive power transfer (CPT) system and inductively power transfer (IPT) system are the two typical wireless power transfer systems. Based on the power transfer characteristics, the power transfer capacity of the two wireless power transfer systems were analyzed. Firstly, the maximum power transfer capacity and its existing condition of the two wireless power transfer systems were analyzed, and the choose gist of wireless power transfer system was presented according to the analysis re...

  9. Environment assisted energy transfer in dimer system

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Salman, E-mail: sksafi@comsats.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad (Pakistan); Ibrahim, M.; Khan, M.K. [Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan)

    2014-02-15

    The influence of collective and multilocal environments on the energy transfer between the levels of a dimer is studied. The dynamics of energy transfer are investigated by considering coupling of collective environment with the levels of the dimer in the presence of both two individuals and mutually correlated multilocal environments. It is shown that every way of coupling we consider assists, though differently, the probability of transition between the levels of dimer. The probability of transition is strongly enhanced when the two local environments are mutually correlated. -- Highlights: • The dynamics of energy transfer between the levels of a dimer are studied. • Coupling of collective as well as individual environments are considered. • The environments are in spin star configurations. • The environment assists the energy transfer between the levels. • For correlated multilocal environments, the transition probability is almost 100%.

  10. Quantifying electron transfer reactions in biological systems

    DEFF Research Database (Denmark)

    Sjulstok, Emil Sjulstok; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-01-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling...... quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to...

  11. W-314, waste transfer alternative piping system description

    International Nuclear Information System (INIS)

    It is proposed that the reliability, operability, and flexibility of the Retrieval Transfer System be substantially upgraded by replacing the planned single in-farm pipeline from the AN-AY-AZ-(SY) Tank Farm Complex to the AP Farm with three parallel pipelines outside the tank farms. The proposed system provides simplified and redundant routes for the various transfer missions, and prevents the risk of transfer gridlock when the privatization effort swings into full operation

  12. W-314, waste transfer alternative piping system description

    Energy Technology Data Exchange (ETDEWEB)

    Papp, I.G.

    1998-04-30

    It is proposed that the reliability, operability, and flexibility of the Retrieval Transfer System be substantially upgraded by replacing the planned single in-farm pipeline from the AN-AY-AZ-(SY) Tank Farm Complex to the AP Farm with three parallel pipelines outside the tank farms. The proposed system provides simplified and redundant routes for the various transfer missions, and prevents the risk of transfer gridlock when the privatization effort swings into full operation.

  13. Study of elementary transfer mechanisms during a collision between a swift multi-charged heavy ion and a neutral atom

    International Nuclear Information System (INIS)

    This work is dedicated to the study of the energy transfer mechanisms which occur during a collision between a swift multicharged heavy ion and a neutral atom. The elementary energy energy transfer mechanisms (scattering, excitation, ionization, capture) and their consequences on the target velocity after the collision (recoil velocity) are recalled in the first chapter. In the case of small projectile diffusion angles, we show that the recoil velocity component, transverse to the incident projectile direction, results principally from the diffusion mechanism, while the longitudinal component is due essentially to the mass transfer and the inelastic energy transfer mechanisms. Since the target recoil velocities are very small, we have built an experimental set-up which reduces the impreciseness on their measurement due to the target thermal spread using, as targets, cooled atoms of a supersonic jet (temperature 44+(6.7 MeV/A) + Ar => Xe44 + Arq++qe- (q ranging from 1 to 7); Xe44+ (6.7 MeV/A) + He => Xe44+ He1+,2++1e-,2e-. We show that it is possible to interpret the recoil velocity in terms of kinetic energy transferred to the target and to the electrons ejected from the target. (author)

  14. Quantum information transfer between topological and spin qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Leijnse, Martin; Flensberg, Karsten [Nano-Science Center and Niels Bohr Institute, University of Copenhagen (Denmark)

    2012-07-01

    In this talk I introduce a method to coherently transfer quantum information, and to create entanglement, between topological qubits and conventional spin qubits. The transfer method uses gated control to transfer an electron (spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors. Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition states into superposition states of the Majorana system, and vice versa. Furthermore, I discuss how a topological superconductor can be used to facilitate long-distance quantum information transfer and entanglement between spatially separated spin qubits.

  15. Electronic excitation energy transfer between quasi-zero-dimensional systems

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav; Mao, H.

    Tokyo : The Surface Science Society of Japan, 2014, s. 11-17. ISSN 1348-0391. [International Conference on Atomically Controlled Surfaces, Interfaces and Nanostructures /12/ - International Colloquium on Scanning Probe Microscopy /21./. Tsukuba (JP), 04.11.2013-08.11.2013] R&D Projects: GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : quantum dots * energy transfer * electron -phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism https://www.jstage.jst.go.jp/result?item1=4&word1=Atomically+Controlled+Surfaces+ AND +kral

  16. 40 CFR 63.689 - Standards: Transfer systems.

    Science.gov (United States)

    2010-07-01

    ...-permanently sealed (e.g., a welded joint between two sections of metal pipe or a bolted and gasketed flange....689 Standards: Transfer systems. (a) The provisions of this section apply to the control of air... section for such air emission control. (b) For each transfer system that is subject to this section and...

  17. Quantum-Classical Connection for Hydrogen Atom-Like Systems

    Science.gov (United States)

    Syam, Debapriyo; Roy, Arup

    2011-01-01

    The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…

  18. Semiclassical quantisation for a bosonic atom-molecule conversion system

    OpenAIRE

    Graefe, Eva-Maria; Graney, Maria; Rush, Alexander

    2015-01-01

    We consider a simple quantum model of atom-molecule conversion where bosonic atoms can combine into diatomic molecules and vice versa. The many-particle system can be expressed in terms of the generators a deformed $SU(2)$ algebra, and the mean-field dynamics takes place on a deformed version of the Bloch sphere, a teardrop shaped surface with a cusp singularity. We analyse the mean-field and many-particle correspondence, which shows typical features of quantum-classical correspondence. We de...

  19. Cold atoms as a coolant for levitated optomechanical systems

    CERN Document Server

    Ranjit, Gambhir; Geraci, Andrew A

    2014-01-01

    Optically trapped dielectric objects are well suited for reaching the quantum regime of their center of mass motion in an ultra-high vacuum environment. We show that ground state cooling of an optically trapped nanosphere is achievable when starting at room temperature, by sympathetic cooling of a cold atomic gas optically coupled to the nanoparticle. Unlike cavity cooling in the resolved sideband limit, this system requires only a modest cavity finesse and it allows the cooling to be turned off, permitting subsequent observation of strongly-coupled dynamics between the atoms and sphere. Nanospheres cooled to their quantum ground state could have applications in quantum information science or in precision sensing.

  20. Conventional and atom transfer radical copolymerization of phenoxycarbonylmethyl methacrylate-styrene and thermal behavior of their copolymers

    Directory of Open Access Journals (Sweden)

    2007-08-01

    Full Text Available The atom transfer radical polymerization (ATRP of phenoxycarbonylmethyl methacrylate (PCMMA with styrene (St were performed in bulk at 110°C in the presence of ethyl 2-bromoacetate, cuprous(Ibromide (CuBr, and N,N,N’,N”,N”-pentamethyldiethyltriamine. Also, a series conventional free-radical polymerization (CFRP of PCMMA and styrene were carried out in the presence of 2,2’-azobisisobutyronitrile in 1,4-dioxane solvent at 60°C. The structure of homo and copolymers was characterized by IR, 1H and 13C-NMR techniques. The composition of the copolymers was calculated by 1H-NMR spectra. The average-molecular weight of the copolymers were investigated by Gel Permeation Chromatography (GPC. For copolymerization system, their monomer reactivity ratios were obtained by using both Kelen-Tüdõs and Fineman-Ross equations. Thermal analysis measurements of homo- and copolymers prepared CFRP and ATRP methods were measured by TGA-50 and DSC-50. Blends of poly(PCMMA and poly(St obtained via ATRP method have been prepared by casting films from dichlorormethane solution. The blends were characterized by differential scanning calorimetry. The initial decomposition temperatures of the resulting copolymers increased with increasing mole fraction of St.

  1. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Science.gov (United States)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-02-01

    An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU-PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU-PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU-PVP (6.0 h) film reduced greatly to 0.08 μg/cm2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  2. Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenming [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Liu, Lukuan [School of the Environment, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhiping, E-mail: zhouzp@ujs.edu.cn [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Liu, Hong [Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023 (China); Xie, Binze; Xu, Wanzhen [School of the Environment, Jiangsu University, Zhenjiang 212013 (China)

    2013-10-01

    A computational simulation method is introduced to simulate the dibenzothiophene-monomer pre-assembly system of molecular imprinted polymers. The interaction type and intensity between dibenzothiophene and monomer are discussed from the binding energy and spatial position distribution. The simulation and analysis results indicate that the amount of the function monomer is not the more the better in preparing molecular imprinted polymers. Based on the above results, a novel dibenzothiophene-imprinted polymers with the favorable specific adsorption effect was prepared by surface imprinting technique combined with atom transfer radical polymerization. This combined technologies are used for preparing a desulfurization adsorbent for the first time. Various measures were selected to characterize the structure and morphology of the prepared adsorbent. The characterization results show that the adsorbent has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance. The adsorption process follows Elovich model by the kinetic analysis and Sips equation by the isothermal analysis. The approach we described will provide another opportunity in the deep desulfurization field.

  3. Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization

    International Nuclear Information System (INIS)

    A computational simulation method is introduced to simulate the dibenzothiophene-monomer pre-assembly system of molecular imprinted polymers. The interaction type and intensity between dibenzothiophene and monomer are discussed from the binding energy and spatial position distribution. The simulation and analysis results indicate that the amount of the function monomer is not the more the better in preparing molecular imprinted polymers. Based on the above results, a novel dibenzothiophene-imprinted polymers with the favorable specific adsorption effect was prepared by surface imprinting technique combined with atom transfer radical polymerization. This combined technologies are used for preparing a desulfurization adsorbent for the first time. Various measures were selected to characterize the structure and morphology of the prepared adsorbent. The characterization results show that the adsorbent has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance. The adsorption process follows Elovich model by the kinetic analysis and Sips equation by the isothermal analysis. The approach we described will provide another opportunity in the deep desulfurization field.

  4. Entanglement between two atoms in the system of Schr(o)dinger cat state interacting with two entangled atoms

    Institute of Scientific and Technical Information of China (English)

    Liu Tang-Kun

    2007-01-01

    By the negative eigenvalues of partial transposition of density matrix, this paper investigates the time evolution of entanglement of the two entangled atoms in the system of two atoms interacting with Schr(o)dinger cat state. The result shows that the two atoms are always in the entanglement state, and the degree of entanglement between the two atoms exhibits ordinary collapses and revivals at 0.2 degree of entanglement, when the light field is large enough. On the other hand, the reinforcement of three different light fields on the degree of entanglement between two atoms is not evident.

  5. Synthesis of Highly Branched Poly(ε-caprolactone) by Self-condensing Atom Transfer Radical Polymerization of Macroinimers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Branched poly(ε-caprolactone) was synthesized by self-condensing atom transfer radical polymerization of macroinimer, α-acryloyoxy-ω-2-bromopropionyloxy poly(ε-caprolactone),which was prepared by enzyme-catalyzed ring-opening polymerization of ε-caprolactone with 2-hydroxylethyl acrylate as initiator and esterification of the ω-hydroxyl group of the obtained poly(ε-caprolactone) by 2-bromopropionyl bromide.

  6. Controlled atom transfer radical polymerization of MMA onto the surface of high-density functionalized graphene oxide

    OpenAIRE

    Kumar, Mukesh; Chung, Jin Suk; Hur, Seung Hyun

    2014-01-01

    We report on the grafting of poly(methyl methacrylate) (PMMA) onto the surface of high-density functionalized graphene oxides (GO) through controlled radical polymerization (CRP). To increase the density of surface grafting, GO was first diazotized (DGO), followed by esterification with 2-bromoisobutyryl bromide, which resulted in an atom transfer radical polymerization (ATRP) initiator-functionalized DGO-Br. The functionalized DGO-Br was characterized by X-ray photoelectron spectroscopy (XPS...

  7. CMOS compatible strategy based on selective atomic layer deposition of a hard mask for transferring block copolymer lithography patterns

    International Nuclear Information System (INIS)

    A generic, CMOS compatible strategy for transferring a block copolymer template to a semiconductor substrate is demonstrated. An aluminum oxide (Al2O3) hard mask is selectively deposited by atomic layer deposition in an organized array of holes obtained in a PS matrix via PS-b-PMMA self-assembly. The Al2O3 nanodots act as a highly resistant mask to plasma etching, and are used to pattern high aspect ratio (>10) silicon nanowires and nanopillars.

  8. Bohm-Aharonov type effects in dissipative atomic systems

    CERN Document Server

    Solomon, A I; Solomon, Allan I.; Schirmer, Sonia G.

    2005-01-01

    A state in quantum mechanics is defined as a positive operator of norm 1. For finite systems, this may be thought of as a positive matrix of trace 1. This constraint of positivity imposes severe restrictions on the allowed evolution of such a state. From the mathematical viewpoint, we describe the two forms of standard dynamical equations - global (Kraus) and local (Lindblad) - and show how each of these gives rise to a semi-group description of the evolution. We then look at specific examples from atomic systems, involving 3-level systems for simplicity, and show how these mathematical constraints give rise to non-intuitive physical phenomena, reminiscent of Bohm-Aharonov effects. In particular, we show that for a multi-level atomic system it is generally impossible to isolate the levels, and this leads to observable effects on the population relaxation and decoherence.

  9. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays.

    Science.gov (United States)

    Apak, Reşat; Özyürek, Mustafa; Güçlü, Kubilay; Çapanoğlu, Esra

    2016-02-10

    Measuring the antioxidant activity/capacity levels of food extracts and biological fluids is useful for determining the nutritional value of foodstuffs and for the diagnosis, treatment, and follow-up of numerous oxidative stress-related diseases. Biologically, antioxidants play their health-beneficial roles via transferring a hydrogen (H) atom or an electron (e(-)) to reactive species, thereby deactivating them. Antioxidant activity assays imitate this action; that is, antioxidants are measured by their H atom transfer (HAT) or e(-) transfer (ET) to probe molecules. Antioxidant activity/capacity can be monitored by a wide variety of assays with different mechanisms, including HAT, ET, and mixed-mode (ET/HAT) assays, generally without distinct boundaries between them. Understanding the principal mechanisms, advantages, and disadvantages of the measurement assays is important for proper selection of method for valid evaluation of antioxidant properties in desired applications. This work provides a general and up-to-date overview of HAT-based, mixed-mode (ET/HAT), and lipid peroxidation assays available for measuring antioxidant activity/capacity and the chemistry behind them, including a critical evaluation of their advantages and drawbacks. PMID:26805392

  10. Quantum phase transition and entanglement in Li atom system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By use of the exact diagonalization method, the quantum phase transition and en- tanglement in a 6-Li atom system are studied. It is found that entanglement appears before the quantum phase transition and disappears after it in this exactly solvable quantum system. The present results show that the von Neumann entropy, as a measure of entanglement, may reveal the quantum phase transition in this model.

  11. Negative Refractive Index in a Four-Level Atomic System

    Institute of Scientific and Technical Information of China (English)

    ZhANG Hong-Jun; GONG Shang-Qing; NIU Yue-Ping; LI Ru Xin; XU Zhi-Zhan

    2006-01-01

    @@ We propose a scheme for realizing negative refractive index in a four-level atomic system. It is shown that such a system can simultaneously exhibit negative permittivity and negative permeability in an optical frequency range.Furthermore, by analysing the dispersion property of the left-handed material, we find that the probe beam can be controlled from superluminal to subluminal or vice versa via choosing appropriate parameters.

  12. General Relativistic Radiative Transfer: Applications to Black-Hole Systems

    Science.gov (United States)

    Wu, Kinwah; Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Branduardi-Raymont, Graziella; Lee, Khee-Gan

    2007-01-01

    We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are considered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is discussed qualitatively.

  13. Quantum information transfer between topological and spin qubit systems

    OpenAIRE

    Leijnse, Martin; Flensberg, Karsten

    2011-01-01

    We propose a method to coherently transfer quantum information, and to create entanglement, between topological qubits and conventional spin qubits. Our suggestion uses gated control to transfer an electron (spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors. Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition states into superposition states of the Majorana system, and vice versa. Furthermo...

  14. Asymptotic inference in system identification for the atom maser

    CERN Document Server

    Catana, Catalin; Guta, Madalin

    2011-01-01

    System identification is an integrant part of control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However for quantum dynamical systems like quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input which may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators and the connection to large deviations is briefly discussed.

  15. Transfer alignment of shipborne inertial-guided weapon systems

    Institute of Scientific and Technical Information of China (English)

    Sun Changyue; Deng Zhenglong

    2009-01-01

    The transfer alignment problem of the shipborne weapon inertial navigation system (INS) is addressed. Specifically, two transfer alignment algorithms subjected to the ship motions induced by the waves are discussed. To consider the limited maneuver level performed by the ship, a new filter algorithm for transfer alignment methods using velocity and angular rate matching is first derived. And then an improved method using integrated velocity and integrated angular rate matching is introduced to reduce the effect of the ship body flexure. The simulation results show the feasibility and validity of the proposed transfer alignment algorithms.

  16. An rf communications system for the West Valley transfer cart

    International Nuclear Information System (INIS)

    A prototype radio frequency communications system for digital data was designed and built by Oak Ridge National Laboratory for use in controlling the vitrification facility transfer cart at the West Valley Nuclear Services facility in New York. The communications system provides bidirectional wireless data transfer between the operator control station and the material transfer cart. The system was designed to operate in radiation fields of 104 R/h while withstanding a total integrated dose of 107 R of gamma radiation. Implementation of antenna spatial diversity, automatic gain control, and spectral processing improves operation in the reflective environment of the metal-lined reprocessing cells

  17. A pneumatic transfer system for special form 252Cf

    International Nuclear Information System (INIS)

    A pneumatic transfer system has been developed for use with series 100 Special Form 252Cf. It was developed to reduce the exposure to personnel handling sources of 252Cf with masses up to 150 microg by permitting remotely activated two-way transfer between the storage container and the irradiation position. The pneumatic transfer system also permits transfers for reproducible repetitive irradiation periods. In addition to the storage container equipped with quick-release fittings, the transfer system consists of an irradiation station, a control box with momentary contact switches to activate the air-pressure control valves and indicators to identify the location of the source, and connecting air hose and electrical wire. A source of 20 psig air and 110 volt electrical power are required for operation of the transfer system which can be easily moved and set up by one individual in 5 to 10 minutes. Tests have shown that rarely does a source become lodged in the transfer tubing, but two methods have been developed to handle incomplete transfers of the 252Cf source. The first method consists of closing one air vent to allow a pressure impulse to propel the source to the opposite side. The second method applies to those 252Cf capsules with a threaded or tapped end to which a small ferromagnetic piece can be attached; an incompletely transferred source in the transfer tube can then be guided to a position of safety by surrounding the transfer tubing containing the capsule with a horseshoe magnet attached to the end of a long pole

  18. Nonlinear control techniques for an atomic force microscope system

    Institute of Scientific and Technical Information of China (English)

    Yongchun FANG; Matthew FEEMSTER; Darren DAWSON; Nader M.JALILI

    2005-01-01

    Two nonlinear control techniques are proposed for an atomic force microscope system.Initially,a learning-based control algorithm is developed for the microcantilever-sample system that achieves asymptotic cantilever tip tracking for periodic trajectories.Specifically,the control approach utilizes a learning-based feedforward term to compensate for periodic dynamics and high-gain terms to account for non-periodic dynamics.An adaptive control algorithm is then developed to achieve asymptotic cantilever tip tracking for bounded tip trajectories despite uncertainty throughout the system parameters.Simulation results are provided to illustrate the efficacy and performance of the control strategies.

  19. Heavy particle scattering by atomic and nuclear systems

    International Nuclear Information System (INIS)

    In this thesis quantum mechanical non-relativistic few-body problem is discussed. Basing on fundamentals ideas from Faddeev and Yakubovski three and four body equations are formulated and solved for fermionic atomic and nuclear systems. Former equations are modified to include long range interactions. Original results for nuclear and molecular physics were obtained: -) positively charged particle scattering on hydrogen atoms was considered; predictions for π+ → H, μ+ → H and p+ → H scattering lengths were given. Existence of an unknown, very weakly bound H+2 bound state was predicted. -) Motivated by the possible observation of bound four neutron structure at GANIL we have studied compatibility of such an existence within the current nuclear interaction models. -) 4 nucleon scattering at low energies was investigated. Results for n → 3H, p → 3H and p → 3He systems were compared with the experimental data. Validity of realistic nucleon-nucleon interaction models is questioned. (author)

  20. Series of broad resonances in atomic three-body systems

    CERN Document Server

    Diaz, D; Hu, C -Y

    2016-01-01

    We re-examine the series of resonances found earlier in atomic three-body systems by solving the Faddeev-Merkuriev integral equations. These resonances are rather broad and line-up at each threshold with gradually increasing gaps, the same way for all thresholds and irrespective of the spatial symmetry. We relate these resonances to the Gailitis mechanism, which is a consequence of the polarization potential.

  1. PREFACE: Heavy-Ion Spectroscopy and QED Effects in Atomic Systems

    Science.gov (United States)

    Lindgren, Ingvar; Martinson, Indrek; Schuch, Reinhold

    1993-01-01

    now essentially solved. The experimental accuracy is already so high that also higher-order QED effects become observable, and several groups are now active in trying to evaluate such effects from first principles. Another related field where substantial progress has recently been made involves precision measurements of X-ray transitions. This has created an interest in the study of deep inner holes in heavy atoms, where large relativistic and QED effects appear. These effects are as large as in corresponding highly charged ions, but the interpretation requires that the many-body effects from the surrounding electrons are accurately extracted. This is a big challenge at present. Atomic collision physics with highly charged ions has been dominated in recent years by the search for a possibility to describe electron-electron interaction within the dynamics of collisions. The experiments on multielectron transfer reactions with highly charged ions posed in this respect quite a challenge to the theory. The models developed to meet this were often based on methods and terminologies developed for describing the inter-electronic interactions in atomic structure. This caused many controversial discussions, also during this symposium. A new and fast rising field is the interaction of highly charged ions with solid surfaces. This may become an important link between atomic physics and condensed-matter physics, stimulated by the opportunity to study effects in coupled many-body systems present in the case when a large amount of electrons is transferred from the solid to each single ion. Furtheron, collision experiments with cooled ion beams in ion storage rings open new dimensions also for atomic spectroscopy. It appears possible that transition and binding energies can be measured in recombination of very heavy ions with a better quality than by conventional Auger electron or X-ray spectroscopy. Obviously, it is not possible to cover all the fields mentioned here in a single

  2. Optical pumping and population transfer of nuclear-spin states of caesium atoms in high magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Luo Jun; Sun Xian-Ping; Zeng Xi-Zhi; Zhan Ming-Sheng

    2007-01-01

    Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.

  3. High-precision three-dimensional atom localization via spontaneous emission in a four-level atomic system

    Science.gov (United States)

    Wang, Zhiping; Yu, Benli

    2016-06-01

    We investigate the three-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detecting probability and precision of atom localization can be significantly improved due to the interference effects induced by the vacuum radiation field and the two laser fields. More importantly, the almost 100% probability of finding an atom within a certain range can be reached when corresponding conditions are satisfied. As a result, our scheme may be helpful in a spatially selective single-qubit phase gate, entangling gates, and quantum error correction for quantum information processing.

  4. EON: software for long time simulations of atomic scale systems

    International Nuclear Information System (INIS)

    The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles

  5. EON: software for long time simulations of atomic scale systems

    Science.gov (United States)

    Chill, Samuel T.; Welborn, Matthew; Terrell, Rye; Zhang, Liang; Berthet, Jean-Claude; Pedersen, Andreas; Jónsson, Hannes; Henkelman, Graeme

    2014-07-01

    The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles.

  6. Heat Transfer Distribution for Reactor Cavity Cooling System Riser Considering Thermal Conduction

    International Nuclear Information System (INIS)

    The reactor cavity cooling system (RCCS) is the safety grade system for a very high temperature reactor (VHTR). The main role of the RCCS is the heat removal from the reactor vessel. The verification of the performance of the passive RCCS is a key objective for the construction of demonstration plant. Korea Atomic Energy Research Institute (KAERI) is considering the air-cooled RCCS under natural convection operation for a PMR200. Bae et al. studied scaling of PMR200 RCCS prior to the experimental verification of the RCCS. The cavity radiation number and temperature ratio number were selected as controlling non-dimensional group. The heat transfer in the riser is one of the key phenomena to predict the performance of the prototype RCCS. The riser absorbs heat from the reactor vessel, through radiative heat transfer, and from the reactor cavity, through convective heat transfer. The absorbed heat is removed by convective heat transfer in the riser. CFD results showed that thermal conduction through the RCCS riser was not negligible. Because the material of the riser duct was carbon steel, the thermal conduction effect was comparable even with a small duct thickness to the convective heat transfer by air flow. It is strongly recommended that the heat transfer in RCCS should go with consideration on the thermal conduction of the RCCS riser duct

  7. Detail Design And Construction Of ''Rabbit Transfer System''

    International Nuclear Information System (INIS)

    The rabbit transfer system facility is a facility that a function to decrease the transfer times of the irradiated samples from isotop cell to counting room. Base on the planning to increase the research activity and the service quality to the rabbit system user's is necessary to realized manufacturing and installation of the mention facility. The detail design purpose needs 35 m length of polypinil hose by 36 mm inner diameter and 42 mm outer diameter. By doing analysis the transfer time needs to move the sample is 3 seconds. As a reference use ASME, ASTM and AISC standard

  8. Transfer Function Model of Multirate Feedback Control Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the suitably defined multivariable version of Krancoperators and the extended input and output vectors, the multirate sampling plant is transformed to a equivalent time invariant single rate one, then the transfer function model of the multivariable multirate sampling plant is obtained. By combining this plant model with the time invariant description of the multirate controller in terms of extended vectors, the closed-loop transfer function model of the multirate feedback control system can be determinated. This transfer function model has a very simple structure, and can be used as a basis for the analysis and synthesis of the multirate sampling feedback control systems in the frequency domain.

  9. Control of pneumatic transfer system for neutron activation analysis

    International Nuclear Information System (INIS)

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading

  10. Control of pneumatic transfer system for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

  11. Corrosion control for the Hanford site waste transfer system

    International Nuclear Information System (INIS)

    Processing large volumes of spent reactor fuel and other related waste management activities produced radioactive wastes which have been stored in underground high-level waste storage tanks since the 1940s. The effluent waste streams from the processing facilities were stored underground in high-level waste storage tanks. The waste was transferred between storage tanks and from the tanks to waste processing facilities in a complex network of underground piping. The underground waste transfer system consists of process piping, catch tanks, lift tanks, diversion boxes, pump pits, valves, and jumpers. Corrosion of the process piping from contact with the soil is a primary concern. The other transfer system components are made of corrosion-resistant alloys or they are isolated from the underground environment and experience little degradation. Corrosion control of the underground transfer system is necessary to ensure that transfer routes will be available for future waste retrieval, processing,a nd disposal. Today, most waste transfer lines are protected by an active impressed-current cathodic protection (CP) system. The original system has been updated. Energization surveys and a recent base-line survey demonstrate that system operational goals are met

  12. Observation of EIA in closed and open caesium atomic system

    Institute of Scientific and Technical Information of China (English)

    Zhao Jian-Ming; Zhao Yan-Ting; Huang Tao; Xiao Lian-Tuan; Jia Suo-Tang

    2005-01-01

    We present an experimental study on electromagnetically induced absorption (EIA) in the closed transition of a degenerate two-level Cs atomic system. The coupling and probe lasers coupled with the transition 6S1/2F=4 →6P3/2F'=5 of caesium atom. The signal of EIA was obtained and the frequency detuning and intensity effect of the pumping laser were experimentally investigated. The EIA signal in 6S1/2 F=4 → 6P3/2 F'=4 and 6S1/2 F=4 → 6P3/2F'=3 open transitions was also obtained. As the repumping laser couples with the transition of 6S1/2 F=3 → 6P3/2F'=4, the EIA signal is increased due to the hyperfine optical pumping.

  13. Autonomous quantum thermal machines in atom-cavity systems

    CERN Document Server

    Mitchison, Mark T; Prior, Javier; Woods, Mischa P; Plenio, Martin B

    2016-01-01

    An autonomous quantum thermal machine comprising a trapped atom or ion placed inside an optical cavity is proposed and analysed. Such a machine can operate as a heat engine whose working medium is the quantised atomic motion, or as an absorption refrigerator which cools without any work input. Focusing on the refrigerator mode, we predict that it is possible with state-of-the-art technology to cool a trapped ion almost to its motional ground state using a thermal light source such as sunlight. We nonetheless find that a laser or similar reference system is necessary to stabilise the cavity frequencies. Furthermore, we establish a direct and heretofore unacknowledged connection between the abstract theory of quantum absorption refrigerators and practical sideband cooling techniques. We also highlight and clarify some assumptions underlying several recent theoretical studies on self-contained quantum engines and refrigerators. Our work indicates that cavity quantum electrodynamics is a promising and versatile e...

  14. Elastic, charge transfer, and related transport cross sections for proton impact of atomic hydrogen for astrophysical and laboratory plasma modeling

    Science.gov (United States)

    Schultz, D. R.; Ovchinnikov, S. Yu; Stancil, P. C.; Zaman, T.

    2016-04-01

    Updating and extending previous work (Krstić and Schultz 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3458 and other references) comprehensive calculations were performed for elastic scattering and charge transfer in proton—atomic hydrogen collisions. The results, obtained for 1301 collision energies in the center-of-mass energy range of 10‑4–104 eV, are provided for integral and differential cross sections relevant to transport modeling in astrophysical and other plasma environments, and are made available through a website. Use of the data is demonstrated through a Monte Carlo transport simulation of solar wind proton propagation through atomic hydrogen gas representing a simple model of the solar wind interaction with heliospheric neutrals.

  15. Surface-initiated reverse atom transfer radical polymerization (SI-RATRP) for blood-compatible polyurethane substrates

    International Nuclear Information System (INIS)

    A well-defined polymer brushes (2-(methacryloyloxy) ethyl phosphorylcholine, MPC) grafted from the polyurethane (PU) substrate by surface-initiated reverse atom transfer radical polymerization (SI-RATRP) was studied. In this work, a kind of silane coupling agent (3-chloropropyltrimethoxysilane, CPTM) was adopted to serve as a coupling agent as well as a ligand for the first time. Surface structure, wettability, morphology of the PU substrates before and after modification were characterized by Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy measurement (XPS), Atomic force microscope (AFM), Water contact angle measurement, respectively. The results showed that zwitterionic brushes were successfully fabricated on the PU surfaces, and the content of the grafted layer increased gradually with the polymerization time. The blood compatibility of the PU substrates was evaluated by protein adsorption tests and platelet adhesion tests in vitro. It was found that all the PU functionalized with zwitterionic brush showed improved resistance to nonspecific protein adsorption and platelet adhesion.

  16. Excited state intramolecular charge transfer reaction of 4-(morpholenyl) benzonitrile in solution: Effects of hetero atom in the donor moiety

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Harun Al Rasid Gazi; Ranjit Biswas

    2010-07-01

    An intramolecular charge transfer (ICT) molecule with an extra hetero atom in its donor moiety has been synthesized in order to investigate how ICT reaction is affected by hetero atom replacement. Photo-physical and photo-dynamical properties of this molecule, 4-(morpholenyl)benzonitrile (M6C), have been studied in 20 different solvents. The correlation between the reaction driving force (- ) and activation barrier ( #) has been explored in order to understand the solvent effects (static and dynamic) on the photo-excited ICT reaction in this molecule. A Kramer’s model analysis of the experimentally observed reaction rate constants indicates a solvent-averaged activation barrier of ∼ 4 in the absence of solvent dynamical control. The reaction in M6C is therefore not a barrier-less reaction but close to the limit where conventional kinetics might break down.

  17. Potential role of atomic force microscopy in systems biology.

    Science.gov (United States)

    Ramachandran, Srinivasan; Teran Arce, Fernando; Lal, Ratnesh

    2011-01-01

    Systems biology is a quantitative approach for understanding a biological system at its global level through systematic perturbation and integrated analysis of all its components. Simultaneous acquisition of information data sets pertaining to the system components (e.g., genome, proteome) is essential to implement this approach. There are limitations to such an approach in measuring gene expression levels and accounting for all proteins in the system. The success of genomic studies is critically dependent on polymerase chain reaction (PCR) for its amplification, but PCR is very uneven in amplifying the samples, ineffective in scarce samples and unreliable in low copy number transcripts. On the other hand, lack of amplifying techniques for proteins critically limits their identification to only a small fraction of high concentration proteins. Atomic force microscopy (AFM), AFM cantilever sensors, and AFM force spectroscopy in particular, could address these issues directly. In this article, we reviewed and assessed their potential role in systems biology. PMID:21766465

  18. Teleportation of a ququart system using hyperentangled photons assisted by atomic-ensemble memories

    Science.gov (United States)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2016-01-01

    A single photon encoded in both the spin and the orbital angular momentum has recently been experimentally demonstrated [X.-L. Wang et al., Nature 518, 516 (2015)], 10.1038/nature14246 with linear optics using the hyperentangled state, which can be viewed as a bipartite four-dimensional (ququart) entanglement. Here, we investigate this process from a general point of view. By exploring a controlled phase flip induced by atomic ensembles in one-side optical microcavities, we propose teleportations of general ququart systems including a two-atomic-ensemble system, a two-polarized-photon system, one photon with the polarization and spatial degrees of freedom (DOFs), and a hybrid photon-ensemble system using two hyperentangled photons. The output information may also be encoded by different physical systems up to the special requirements of a receiver. These schemes are also adapted to teleportation of a ququart system with only phases or real probability amplitudes, which is beyond previous superdense teleportation [Nature Commun. 6, 7185 (2015)], 10.1038/ncomms8185. With these restrictions, half of the classical communication cost may be saved and experimental complexities are also reduced. Our theoretical schemes are feasible in modern physics and show the possibilities of transferring complex quantum systems for scalable quantum applications.

  19. Exchange of notes constituting an implementing arrangement, concerning international obligation exchanges, to the agreement between the Government of Australia and the European Atomic Energy Community (EURATOM) concerning transfers of nuclear material of 21 September 1981

    International Nuclear Information System (INIS)

    The implementing arrangement which entered into force on 8 September 1993, concerns the safeguard obligations attaching to nuclear material transferred or re transferred pursuant to the Agreement on Nuclear Transfers between Australia and the European Atomic Energy Community

  20. Heat transfer enhancement using air-atomized spray cooling with water-Al2O3 nano-fluid

    International Nuclear Information System (INIS)

    The study deals with the air-atomized spray cooling using nano-fluid as the cooling media for high heat flux applications. The nano-fluid has been prepared by commercial Al2O3 particles of diameter less than 13 nm and water. Heat transfer study has been carried out on a pre-heated steel specimen of dimensions 100 mm x 100 mm x 6 mm. The initial temperature of the plate which was subjected to air-atomized spray cooling was over 900 deg. C. Various coolants consisting of 0.1% volumetric concentration of water -Al2O3 mixture, with or without a dispersing agent (surfactant) were used for the study. The dispersing agents used are sodium dodecyl sulphate (SDS) and polyoxyethylene (20) sorbitan monolaurate (Tween 20). Inverse heat conduction software INTEMP has been used for estimating the surface heat flux and temperatures taking into account the measured internal temperature histories by the thermocouples during the cooling process. The results obtained using nano-fluid coolants are compared with that of the results where pure water (filtered potable water) is used as a coolant. The analyses reveal that the cooling rate, critical heat flux and heat transfer coefficients are significantly enhanced when nano-fluids are used as coolants in air-atomized spray process. Also, the nano-fluid coolants with dispersing agent shows a better enhancement of heat transfer over that of the nano-fluid without the dispersing media. The nano-fluid with dispersing agent Tween 20 is found more effective than that of its counterpart. Overall, the percentage enhancement in cooling rate of all these nano-fluids compared with pure water (filtered potable water) is 10.2% for water-Al2O3, 18.6% for water-Al2O3-SDS, and up to 32.3% for water-Al2O3 -Tween 20. (authors)

  1. Water-Soluble Iron(IV)-Oxo Complexes Supported by Pentapyridine Ligands: Axial Ligand Effects on Hydrogen Atom and Oxygen Atom Transfer Reactivity.

    Science.gov (United States)

    Chantarojsiri, Teera; Sun, Yujie; Long, Jeffrey R; Chang, Christopher J

    2015-06-15

    We report the photochemical generation and study of a family of water-soluble iron(IV)-oxo complexes supported by pentapyridine PY5Me2-X ligands (PY5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine; X = CF3, H, Me, or NMe2), in which the oxidative reactivity of these ferryl species correlates with the electronic properties of the axial pyridine ligand. Synthesis of a systematic series of [Fe(II)(L)(PY5Me2-X)](2+) complexes, where L = CH3CN or H2O, and characterizations by several methods, including X-ray crystallography, cyclic voltammetry, and Mössbauer spectroscopy, show that increasing the electron-donating ability of the axial pyridine ligand tracks with less positive Fe(III)/Fe(II) reduction potentials and quadrupole splitting parameters. The Fe(II) precursors are readily oxidized to their Fe(IV)-oxo counterparts using either chemical outer-sphere oxidants such as CAN (ceric ammonium nitrate) or flash-quench photochemical oxidation with [Ru(bpy)3](2+) as a photosensitizer and K2S2O8 as a quencher. The Fe(IV)-oxo complexes are capable of oxidizing the C-H bonds of alkane (4-ethylbenzenesulfonate) and alcohol (benzyl alcohol) substrates via hydrogen atom transfer (HAT) and an olefin (4-styrenesulfonate) substrate by oxygen atom transfer (OAT). The [Fe(IV)(O)(PY5Me2-X)](2+) derivatives with electron-poor axial ligands show faster rates of HAT and OAT compared to their counterparts supported by electron-rich axial donors, but the magnitudes of these differences are relatively modest. PMID:26039655

  2. Topological energy transfer in an optomechanical system with exceptional points

    CERN Document Server

    Xu, H; Jiang, L; Harris, J G E

    2016-01-01

    Topological operations have the merit of achieving certain goals without requiring accurate control over local operational details. To date, topological operations have been used to control geometric phases, and have been proposed as a means for controlling the state of certain systems within their degenerate subspaces. More recently, it was predicted that topological operations can be extended to transfer energy between normal modes, provided that the system possesses a specific type of degeneracy known as an exceptional point (EP). Here we realize the transfer of energy between two modes of a cryogenic optomechanical device by topological operations. We show that this transfer arises from the presence of an EP in the device's spectrum. We also show that this transfer is non-reciprocal. These results open new directions in system control; they also open the possibility of exploring other dynamical effects related to EPs, as well as the behavior of thermal and quantum fluctuations in the vicinity of EPs.

  3. Time-delay models of heat transfer systems

    International Nuclear Information System (INIS)

    The paper deals with a new approach to modeling the heat transfer phenomena by means of differential equations with delays. The infinite order dynamics of thermal processes by suitable combinations of capacitance and delay elements is presented. An identification of transfer function of heat exchangers is presented. In the mathematical treatment of heat transfer systems, it is usually quite advantageous to deal in the frequency domain rather than the time. In such cases, the response of the system to sinusoidal inputs over a band of frequencies must be known. Identification is based on the least square method, which is based on minimization of the weighted sum of the squares of the errors between the absolute magnitudes of the frequency characteristic real object and the frequency characteristic of time-delay model of heat transfer system, which is proposed in this paper. (author)

  4. Unified framework for understanding pair transfer between collective states in atomic nuclei

    International Nuclear Information System (INIS)

    A new interpretation of two-nucleon pair transfer in collective nuclei is presented. It differs from traditional models and unifies, within a consistent framework, the entire range of monopole pair-transfer phenomenology in collective nuclei. This includes the well-known examples of large cross sections to excited 0+ states in phase transitional nuclei, and small ones in many other nuclei, but also predicts large cross sections elsewhere under particular circumstances. These predictions can be tested experimentally.

  5. Time Dependent Radiative Transfer for Multi-Level Atoms using Accelerated Lambda Iteration

    OpenAIRE

    van Adelsberg, Matthew; Perna, Rosalba

    2012-01-01

    We present a general formalism for computing self-consistent, numerical solutions to the time-dependent radiative transfer equation in low velocity, multi-level ions undergoing radiative interactions. Recent studies of time-dependent radiative transfer have focused on radiation hydrodynamic and magnetohydrodynamic effects without lines, or have solved time-independent equations for the radiation field simultaneously with time-dependent equations for the state of the medium. In this paper, we ...

  6. Atomic physics of strongly correlated systems. Progress report, 1 August 1980-31 July 1981

    International Nuclear Information System (INIS)

    Studies of electron correlations of doubly-excited electrons in hyperspherical coordinates, and differential and total cross sections for charge transfer and ionization in fast ion-atom collisions are reported

  7. Inductive energy transfer system based on drone

    OpenAIRE

    Izquierdo Perez, Ignacio; Hontecillas Guinart, Lluis

    2016-01-01

    The aim of this project is to model and validate an inductive system in order to be able to power wirelessly a sensor. The design of the inductive system must be small and light enough to fulfil the requirements of a nano-quadcopter, in which the system is going to be outfitted. Recent investigations about inductive systems added to the Energy Harvesting trend, predict a future based on wireless power. Thereby, the possibility to change the current "wire-dependence" of any device. At the begi...

  8. Role of axial base coordination in isonitrile binding and chalcogen atom transfer to vanadium(III) complexes.

    Science.gov (United States)

    Majumdar, Subhojit; Stauber, Julia M; Palluccio, Taryn D; Cai, Xiaochen; Velian, Alexandra; Rybak-Akimova, Elena V; Temprado, Manuel; Captain, Burjor; Cummins, Christopher C; Hoff, Carl D

    2014-10-20

    The enthalpy of oxygen atom transfer (OAT) to V[(Me3SiNCH2CH2)3N], 1, forming OV[(Me3SiNCH2CH2)3N], 1-O, and the enthalpies of sulfur atom transfer (SAT) to 1 and V(N[t-Bu]Ar)3, 2 (Ar = 3,5-C6H3Me2), forming the corresponding sulfides SV[(Me3SiNCH2CH2)3N], 1-S, and SV(N[t-Bu]Ar)3, 2-S, have been measured by solution calorimetry in toluene solution using dbabhNO (dbabhNO = 7-nitroso-2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene) and Ph3SbS as chalcogen atom transfer reagents. The V-O BDE in 1-O is 6.3 ± 3.2 kcal·mol(-1) lower than the previously reported value for 2-O and the V-S BDE in 1-S is 3.3 ± 3.1 kcal·mol(-1) lower than that in 2-S. These differences are attributed primarily to a weakening of the V-Naxial bond present in complexes of 1 upon oxidation. The rate of reaction of 1 with dbabhNO has been studied by low temperature stopped-flow kinetics. Rate constants for OAT are over 20 times greater than those reported for 2. Adamantyl isonitrile (AdNC) binds rapidly and quantitatively to both 1 and 2 forming high spin adducts of V(III). The enthalpies of ligand addition to 1 and 2 in toluene solution are -19.9 ± 0.6 and -17.1 ± 0.7 kcal·mol(-1), respectively. The more exothermic ligand addition to 1 as compared to 2 is opposite to what was observed for OAT and SAT. This is attributed to less weakening of the V-Naxial bond in ligand binding as opposed to chalcogen atom transfer and is in keeping with structural data and computations. The structures of 1, 1-O, 1-S, 1-CNAd, and 2-CNAd have been determined by X-ray crystallography and are reported. PMID:25280113

  9. CMOS compatible strategy based on selective atomic layer deposition of a hard mask for transferring block copolymer lithography patterns

    Energy Technology Data Exchange (ETDEWEB)

    Gay, G; Grampeix, H; Martin, F; Jalaguier, E; De Salvo, B [CEA LETI MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Baron, T; Agraffeil, C; Salhi, B; Chevolleau, T; Cunge, G; Tortai, J-H, E-mail: guillaume.gay@cea.fr, E-mail: thierry.baron@cea.fr [CNRS-LTM, 17 rue des Martyrs, 38054 Grenoble (France)

    2010-10-29

    A generic, CMOS compatible strategy for transferring a block copolymer template to a semiconductor substrate is demonstrated. An aluminum oxide (Al{sub 2}O{sub 3}) hard mask is selectively deposited by atomic layer deposition in an organized array of holes obtained in a PS matrix via PS-b-PMMA self-assembly. The Al{sub 2}O{sub 3} nanodots act as a highly resistant mask to plasma etching, and are used to pattern high aspect ratio (>10) silicon nanowires and nanopillars.

  10. Suppression of angular momentum transfer in cold collisions of transition metal atoms in ground States with nonzero orbital angular momentum.

    Science.gov (United States)

    Hancox, Cindy I; Doret, S Charles; Hummon, Matthew T; Krems, Roman V; Doyle, John M

    2005-01-14

    The Zeeman relaxation rate in cold collisions of Ti(3d(2)4s(2) 3F2) with He is measured. We find that collisional transfer of angular momentum is dramatically suppressed due to the presence of the filled 4s(2) shell. The degree of electronic interaction anisotropy, which is responsible for Zeeman relaxation, is estimated to be about 200 times smaller in the Ti-He complex than in He complexes with typical non-S-state atoms. PMID:15698077

  11. Dramatic Influence of an Anionic Donor on the Oxygen-Atom Transfer Reactivity of a MnV–Oxo Complex

    OpenAIRE

    Neu, Heather M.; Quesne, Matthew G; Yang, Tzuhsiung; Prokop-Prigge, Katharine A; Lancaster, Kyle M.; Donohoe, James; DeBeer, Serena; de Visser, Sam P; Goldberg, David P.

    2014-01-01

    Addition of an anionic donor to an MnV(O) porphyrinoid complex causes a dramatic increase in 2-electron oxygen-atom-transfer (OAT) chemistry. The 6-coordinate [MnV(O)(TBP8Cz)(CN)]− was generated from addition of Bu4N+CN− to the 5-coordinate MnV(O) precursor. The cyanide-ligated complex was characterized for the first time by Mn K-edge X-ray absorption spectroscopy (XAS) and gives Mn–O=1.53 Å, Mn–CN=2.21 Å. In combination with computational studies these distances were shown to correlate with ...

  12. Direct characterization of spin-transfer switching of nano-scale magnetic tunnel junctions using a conductive atomic force microscope

    International Nuclear Information System (INIS)

    We present an alternative method of spin-transfer-induced magnetization switching for magnetic tunnel junctions (MTJs) using a conductive atomic force microscope (CAFM) with pulsed current. The nominal MTJ cells' dimensions were 200 × 400 nm2. The AFM probes were coated with a Pt layer via sputtering to withstand up to several milliamperes. The pulsed current measurements, with pulse duration varying from 5 to 300 ms, revealed a magnetoresistance ratio of up to 120%, and an estimated intrinsic switching current density, based on the thermal activation model, of 3.94 MA cm−2. This method demonstrates the potential skill to characterize nanometre-scale magnetic devices. (paper)

  13. Characteristics simulation of wireless power transfer system considering shielding distance

    International Nuclear Information System (INIS)

    Wireless power transfer technology is using the magnetic resonance recently drawing increased attention. It uses the resonance between transmitter and receiver coils to transfer power. Thus, it can improve the transfer distance and efficiency compared with the existing magnetic induction technique. The authors found from the previous study that the application of the superconductor coil to the magnetic resonance wireless power transfer system improved its efficiency. Its application to real life, however, requires the additional study on the effects of adjacent materials. In this study, the two resonance coils made by superconductor coils were used to aluminum and plastic shielding materials was placed between the coils. S-parameters were analyzed according to the position of the shielding material between the transmitter and receiver coils. As a result, the plastic of shielding material had no effect, but the aluminum of shielding material affected the wireless power transfer due to the shielding effectiveness

  14. Safety and Mission Assurance (SMA) Automated Task Order Management System (ATOMS) Operation Manual

    Science.gov (United States)

    Wallace, Shawn; Fikes, Lou A.

    2016-01-01

    This document describes operational aspects of the ATOMS system. The information provided is limited to the functionality provided by ATOMS and does not include information provided in the contractor's proprietary financial and task management system.

  15. Laser spectroscopy of multi-level doppler broadened atomic system

    International Nuclear Information System (INIS)

    Doppler broadened atomic vapor system can be easily prepared for spectroscopy study than an atomic beam system can be. Vapor cell and hollow cathode discharge lamps are widely used in the experiment. The possibility for observing the trapped state in a Doppler broadened Λ system was examined and confirmed by our early experiment where counter-propagating laser beams are used. For the measurement of the hyperfine structure constants of high-lying levels of heavy elements, we compared the co-propagating and counter-propagating beams in a Doppler broadened ladder systems. It was shown that the counter-propagating beams give a stronger and narrower signal than that from the co-propagating beams. Our treatment also considers the power broadening of the transition. For some photo-ionization experiments, it is necessary to pump two thermally populated levels simultaneously to the higher level and then to the auto-ionizing levels. A technique is proposed to avoid the trapped state and to increase the ionization efficiency.

  16. Incompressibility of finite fermionic systems: stable and exotic atomic nuclei

    CERN Document Server

    Khan, E; Vretenar, D; Cao, Li-Gang; Sagawa, H; Colo, G

    2013-01-01

    The incompressibility of finite fermionic systems is investigated using analytical approaches and microscopic models. The incompressibility of a system is directly linked to the zero-point kinetic energy of constituent fermions, and this is a universal feature of fermionic systems. In the case of atomic nuclei, this implies a constant value of the incompressibility in medium-heavy and heavy nuclei. The evolution of nuclear incompressibility along Sn and Pb isotopic chains is analyzed using global microscopic models, based on both non-relativistic and relativistic energy functionals. The result is an almost constant incompressibility in stable nuclei and systems not far from stability, and a steep decrease in nuclei with pronounced neutron excess, caused by the emergence of a soft monopole mode in neutron-rich nuclei.

  17. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    International Nuclear Information System (INIS)

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON

  18. Nonlocality and purity in atom-field coupling system

    Institute of Scientific and Technical Information of China (English)

    Cai Xin; Huang Guang-Ming; Li Gao-Xiang

    2005-01-01

    The effects of initial field state and thermal environment on quantum nonlocality and linear entropy in an atomfield coupling system are investigated. We found that if the cavity is lossless and the reservoir is in vacuum, the atom-field state can exhibit quantum nonlocality periodically and the linear entropies of the atom and the field also oscillate periodically with a period the same as that of quantum nonlocality. And if the cavity dissipation is very weak and the average photon number of the reservoir is very small, the quantum nonlocality will be lost and the linear entropies of the atom and the field oscillate with a decreasing amplitude. The rapidity of the loss of the quantum nonlocality depends on the amplitude of the initial squeezed coherent state, the cavity damping constant κ and the average photon number N of the thermal reservoir. The stronger the field and the larger the constant κ and the average photon number N could be, the more rapidly the nonlocality decreases.

  19. Utilization of atomic energy in Asia and nuclear nonproliferation system

    International Nuclear Information System (INIS)

    The economical growth in East Asia is conspicuous as it was called East Asian Miracle, and also the demand of energy increased rapidly. The end of Cold War created the condition for the further development in this district. Many countries advanced positively the plan of atomic energy utilization, and it can be said that the smooth progress of atomic energy utilization is the key for the continuous growth in this district in view of the restriction of petroleum resources and its price rise in future and the deterioration of global environment. The nuclear nonproliferation treaty (NPT) has accomplished large role, but also its limitation became clear. At present, there is not the local security system in Asia, but in order that the various countries in Asia make the utilization of atomic energy and the security compatible, it is useful to jointly develop safety technology, execute security measures and form the nuclear fuel cycle as Asia. Energy and environmental problems in Asia are reported. Threat is essentially intention and capability, and the regulation only by capability regardless of intention brings about unrealistic result. The limitation of the NPT is discussed. The international relation of interdependence deepends after Cold War, and the security in Asia after Cold War is considered. As the mechanism of forming the nuclear fuel cycle for whole Asia, it is desirable to realize ASIATOM by accumulating the results of possible cooperation. (K.I.)

  20. Transferring Strong Boundedness among Laguerre Orthogonal Systems

    Indian Academy of Sciences (India)

    I Abu-Falahah; R A Macías; C Segovia; J L Torrea

    2009-04-01

    Given the family of Laguerre polynomials, it is known that several orthonormal systems of Laguerre functions can be considered. In this paper we prove that an exhaustive knowledge of the boundedness in weighted $L^p$ of the heat and Poisson semigroups, Riesz transforms and -functions associated to a particular Laguerre orthonormal system of functions, implies a complete knowledge of the boundedness of the corresponding operators on the other Laguerre orthonormal system of functions. As a byproduct, new weighted $L^p$ boundedness are obtained. The method also allows us to get new weighted estimates for operators related with Laguerre polynomials.

  1. Pump design for High Temperature Sulfuric acid transfer system

    International Nuclear Information System (INIS)

    In the sulfuric acid concentration / decomposition section, consequent issues handling material corrosion and the coupling with high temperature energy source were generated, as well as the study of catalyst activity and stability. And Onuki et al., mentioned that material resistance issues are also important for the development of the hydriodic acid concentration/decomposition section. Moreover, the transfer of high temperature H2SO4 is a very important factor considering safety in successive reaction process and efficiency. As mentioned above, the pump to carry sulfuric acid is very important in SI process, but this study is insufficient. After forced cooling of high temperature H2SO4, reduction of safety and process efficiency which is caused by transfer, re-heating, and pressurization is one of the weaknesses in H2SO4 transfer system. Therefore, in this study, we proposed the newly designed H2SO4 transfer system for SI thermo-chemical cycle and the proposed H2SO4 transfer system was analyzed using computational fluid dynamics (CFD) analysis in order to investigate thermodynamic /hydrodynamic characteristics. As the results, we identify as follows as: By the thermal analysis result of bellows in developed transfer system, it is verified that continuous operation is possible within the deformation temperature limit of Teflon 430 K. Physical/chemical environment of inside the bellows box and performance of bellows in continuous operation condition were evaluated. It is verified that not only the bellows, but also the end-plate made of STS can provide reliability and durability during continuous operation. The CFD results on thermohydrodynamic characteristics show good performance for the proposed H2SO4 transfer system. It is evaluated that it will be efficient in actual manufacturing process because it can provide quantitative transfer and prevent heat loss

  2. Collisional transfer of electrons to the continuum of atomic and molecular ions

    International Nuclear Information System (INIS)

    The aim of this study was the systematic investigation of the differences that appear in the peaks of distribution of doubly differential (in angle an energy) 'convoy' electrons, when comparing spectra obtained by bombarding thin carbon foils with atomic (H+) and molecular (H2+) projectiles of equal velocity. The measurements show that the production yield of such electrons is inversely propotional to the ion dwell time in the solid. For long times, the yield ratio fluctuates around the unity value, and the amplitude of this dispersion decreases for longer times. A higher yield is measured for (H2+), but only near the peak cusp. The double differential cross section (DDCS) for electron capture is calculated in second order Born approximation. A transition from a 1s state to the continuum of two correlated protons as a function of their internuclear distance R is considered. As R decreases from approx. 0.5 atomic units towards zero, the DDCS value increases from that corresponding to the atomic projectil (Z=1) limit to the united atom value (Z=2). It is found that, the higher the projectil velocity, the better is the DDCS value agreement with both limits. The equipment used by the author is described. (M.E.L.)

  3. Double lid ports - a high integrity transfer system

    International Nuclear Information System (INIS)

    The traditional method of transferring radioactive material from one containment to another is by plastic bagging which produces considerable secondary wastes and is both tedious and hazardous to the operator. Double lid ports, which were originally designed for the outward transfer of radioactive objects from a hot cell into waste drums at Kernforschungsentrum Karlsruhe, provide a superior method of achieving the transfer, with high integrity, no additional waste production and optimum activity control. Having been developed and proven on circular openings the double lid system is now being adopted for a variety of containment door shapes. (author)

  4. Approaches to modelling radionuclide transfer in agricultural systems

    International Nuclear Information System (INIS)

    Radiological dose assessment requires information describing the concentration and distribution of radionuclides in the environment. This information can be obtained from monitoring but is also evaluated with the aid of mathematical models. In such models the pathways of radionuclides from the release point to man are described in terms of transfer between compartments. The main pathways to be considered include: deposition to vegetation and soils; transfer from soil-to-plant; uptake and turnover in domestic animals; and, intake by man. The development of mathematical models for simulating transfer via these pathways depends on: an understanding of the system under study, in particular for those processes that are most important in the overall transfer to man; the availability of data to determine the structure and parameters for the model; the computing systems available; the knowledge of the user of the model; and, the application of the model. (author)

  5. Successful synchronization of the LHC's clockwise beam transfer system

    CERN Multimedia

    2008-01-01

    LHC synchronization test successful The synchronization of the LHC's clockwise beam transfer system and the rest of CERN's accelerator chain was successfully achieved last weekend. Tests began on Friday 8 August when a single bunch of a few particles was taken down the transfer line from the SPS accelerator to the LHC. After a period of optimization, one bunch was kicked up from the transfer line into the LHC beam pipe and steered about 3 kilometres around the LHC itself on the first attempt. On Saturday, the test was repeated several times to optimize the transfer before the operations group handed the machine back for hardware commissioning to resume on Sunday. The anti-clockwise synchronization systems will be tested over the weekend of 22 August.

  6. Wireless embedded control system for atomically precise manufacturing

    KAUST Repository

    Khan, Yasser

    2011-04-01

    This paper will explore the possibilities of implementing a wireless embedded control system for atomically precise manufacturing. The manufacturing process, similar to Scanning Tunneling Microscopy, takes place within an Ultra High Vacuum (UHV) chamber at a pressure of 10-10 torr. In order to create vibration isolation, and to keep internal noise to a minimum, a wireless link inside the UHV chamber becomes essential. We present a MATLAB simulation of the problem, and then demonstrate a hardware scheme between a Gumstix computer and a Linux based laptop for controlling nano-manipulators with three degrees of freedom. © 2011 IEEE.

  7. APIPIS: the Atomic Physics Ion-Photon Interaction System

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.M.; Jones, K.W.; Meron, M.; Kostroun, V.O.

    1985-01-01

    A proposed new facility for the study of highly charged heavy ions is described. The basic elements of APIPIS, the Atomic Physics Ion-Photon Interaction System, are: (1) a source of multiply-charged ions; (2) a linear accelerator; (3) a synchrotron storage ring; and (4) a source of high brightness x rays. The placement of a heavy ion storage ring at the x-ray ring of the National Synchrotron Light Source will provide unique opportunities for the study of photo-excitation of heavy ions.

  8. Application of Density Functional Theory to Systems Containing Metal Atoms

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.

    2006-01-01

    The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.

  9. Automatic graphene transfer system for improved material quality and efficiency

    OpenAIRE

    Alberto Boscá; Jorge Pedrós; Javier Martínez; Tomás Palacios; Fernando Calle

    2015-01-01

    In most applications based on chemical vapor deposition (CVD) graphene, the transfer from the growth to the target substrate is a critical step for the final device performance. Manual procedures are time consuming and depend on handling skills, whereas existing automatic roll-to-roll methods work well for flexible substrates but tend to induce mechanical damage in rigid ones. A new system that automatically transfers CVD graphene to an arbitrary target substrate has been developed. The proce...

  10. Simultaneous Information and Power Transfer for Broadband Wireless Systems

    OpenAIRE

    Huang, Kaibin; Larsson, Erik G.

    2013-01-01

    Far-field microwave power transfer (MPT) will free wireless sensors and other mobile devices from the constraints imposed by finite battery capacities. Integrating MPT with wireless communications to support simultaneous wireless information and power transfer (SWIPT) allows the same spectrum to be used for dual purposes without compromising the quality of service. A novel approach is presented in this paper for realizing SWIPT in a broadband system where orthogonal frequency division multipl...

  11. Ejecta Transfer in the Pluto System

    OpenAIRE

    Porter, Simon; Grundy, William

    2014-01-01

    The small satellites of the Pluto system (Styx, Nix, Kerberos, and Hydra) have very low surface escape velocities, and impacts should therefore eject a large amount of material from their surfaces. We show that most of this material then escapes from the Pluto system, though a significant fraction collects on the surfaces of Pluto and Charon. The velocity at which the dust is ejected from the surfaces of the small satellites strongly determines which object it is likely to hit, and where on t...

  12. Synthesis of Environmentally Responsive Polymers by Atom Transfer Radical Polymerization: Generation of Reversible Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Vikas Mittal

    2010-05-01

    Full Text Available Environmentally responsive poly(N-isopropylacrylamide brushes were grafted from the surface of polymer particles or flat surfaces in order to generate reversible hydrophilic and hydrophobic surfaces. The use of atom transfer radical polymerization was demonstrated for the grafting of polymer brushes as it allows efficient control on the amount of grafted polymer. The polymer particles were generated with or without surfactant in the emulsion polymerization and their surface could be modified with the atom transfer radical polymerization (ATRP initiator. The uniform functionalization of the surface with ATRP initiator was responsible for the uniform grafting of polymer brushes. The grafted brushes responded reversibly with changes in temperature indicating that the reversible responsive behavior could be translated to the particle surfaces. The particles were observed to adsorb and desorb protein and virus molecules by changing the temperatures below or higher than 32 °C. The initiator functionalized particles could also be adsorbed on the flat surfaces. The adsorption process also required optimization of the heat treatment conditions to form a uniform layer of the particles on the substrate. The grafted polymer brushes also responded to the changes in temperatures similar to the spherical particles studied through water droplets placed on the flat substrates.

  13. Plasmon excitations in two-dimensional atomic cluster systems

    Science.gov (United States)

    Yu, Yan-Qin; Yu, Ya-Bin; Xue, Hong-Jie; Wang, Ya-Xin; Chen, Jie

    2016-09-01

    Properties of plasmon excitations in two-dimensional (2D) atomic cluster systems are theoretically studied within an extended Hubbard model. The collective oscillation equations of charge, plasmon eigen-equations and the energy-absorption spectrum formula are presented. The calculated results show that different symmetries of plasmons exist in the cluster systems, and the symmetry of charge distribution in the plasmon resonance originate from the intrinsic symmetry of the corresponding eigen-plasmon modes, but not from the symmetry of applied external fields; however, the plasmon excitation with a certain polarization direction should be excited by the field in this direction, the dipole mode of plasmons can be excited by both uniform and non-uniform fields, but multipole ones cannot be excited by an uniform field. In addition, we show that for a given electron density, plasmon spectra are red-shifted with increasing size of the systems.

  14. Ultrafast and efficient coherence creation in {\\Lambda}-like atomic systems driven by nonlinearly chirped few-cycle pulses

    OpenAIRE

    Sarma, Amarendra K.; Kumar, Parvendra

    2011-01-01

    We report an ultrafast and efficient way to create the maximum coherence between the two lower states in a -like atomic systems, driven by two nonlinearly chirped few-cycle pulses. The phenomenon of coherent population trapping and electromagnetically induced population transfer are investigated by solving the appropriate density matrix equations without invoking the rotating wave approximation. The robustness of the scheme for maximum coherence against the variation of the laser parameters a...

  15. The Role of Mass Transfer in Membrane Systems

    Directory of Open Access Journals (Sweden)

    Levent Gürel

    2015-12-01

    Full Text Available Membranes are situated in the foreground among the considerably popular treatment systems in the last years. The use of membranes was become widespread in many fields such as drinking water treatment, wastewater treatment and obtaining drinking water from sea water. The predominance of membranes against the classical systems regarding the wastewater treatment, and the decreasing cost of membrane materials each day provided these systems to enter among the preferable options. There are considerably different types of membranes. Microfiltration (MF, ultrafiltration (UF, nanofiltration (NF and reverse osmosis (RO are the processes drawing most attention. One of the most important considerations in membrane processes is the amount of constituents passing from the membrane and rejecting by the membrane. Mass transfer concept arises in this place. Mass transfer is a critically important case used in the design of treatment systems and the estimation of efficiency. In addition to the points mentioned above, investigation of mass transfer occurring in membranes is important in comparing of different membrane types. In this review article, general information about the membranes, membrane types, uses of membranes and module designs are given, concept of mass transfer is viewed and the mass transfer processes realizing in these treatment systems are assessed.

  16. Operational test report for 2706-T complex liquid transfer system

    International Nuclear Information System (INIS)

    This document is the Operational Test Report (OTR). It enters the Record Copy of the W-259 Operational Test Procedure (HNF-3610) into the document retrieval system. Additionally, the OTR summarizes significant issues associated with testing the 2706-T waste liquid transfer and storage system

  17. Photoinduced electron transfer in model systems of photosynthesis.

    NARCIS (Netherlands)

    Hofstra, U.

    1988-01-01

    This Thesis describes Investigations on photoinduced electron transfer (ET) for several compounds, serving as model systems of the natural photosynthesis. In addition, the properties of the systems, e.g. the conformation in solution and the electronic properties of the photoexcited states are treate

  18. Some reflections on a knowledge transfer strategy: a systemic inquiry

    OpenAIRE

    Ison, R. L.

    2002-01-01

    This paper presents a case study of a systemic inquiry into a knowledge transfer strategy (KTS) by a division of a UK Ministry. Two main points are made. Firstly that it is possible to 'build' a generalisable form of practice as a response to experiences of complexity by initiating a systemic inquiry that fosters the emergence of a learning system. Secondly, that exploring how metaphors reveal and conceal offers scope for shifting the 'mental furniture' of participants as part of a systemic i...

  19. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    Science.gov (United States)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  20. Radiative transfer in atmosphere-sea ice-ocean system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  1. Dimensional dependence of phonon transport in freestanding atomic layer systems

    Science.gov (United States)

    Kim, Duckjong; Hwangbo, Yun; Zhu, Lijing; Mag-Isa, Alexander E.; Kim, Kwang-Seop; Kim, Jae-Hyun

    2013-11-01

    Due to the fast development of nanotechnology, we have the capability of manipulating atomic layer systems such as graphene, hexagonal boron nitride and dichalcogenides. The major concern in the 2-dimensional nanostructures is how to preserve their exceptional single-layer properties in 3-dimensional bulk structures. In this study, we report that the extreme phonon transport in graphene is highly affected by the graphitic layer stacking based on experimental investigation of the thermal conduction in few-layer graphene, 1-7 layers thick, suspended over holes of various diameters. We fabricate freestanding axisymmetric graphene structures without any perturbing substrate, and measure the in-plane transport property in terms of thermal conduction by using Raman spectroscopy. From the difference in susceptibility to substrate effect, size effect on hot-spot temperature variation and layer number dependence of thermal conductivity, we show that the graphitic membranes with 2 or more layers have characteristics similar to 3-dimensional graphite, which are very different from those of 2-dimensional graphene membranes. This implies that the scattering of out-of-plane phonons by interlayer atomic coupling could be a key mechanism governing the intrinsic thermal property.Due to the fast development of nanotechnology, we have the capability of manipulating atomic layer systems such as graphene, hexagonal boron nitride and dichalcogenides. The major concern in the 2-dimensional nanostructures is how to preserve their exceptional single-layer properties in 3-dimensional bulk structures. In this study, we report that the extreme phonon transport in graphene is highly affected by the graphitic layer stacking based on experimental investigation of the thermal conduction in few-layer graphene, 1-7 layers thick, suspended over holes of various diameters. We fabricate freestanding axisymmetric graphene structures without any perturbing substrate, and measure the in-plane transport

  2. Optimized transfer trajectories in the earth-moon system

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Xian; Xu Wei; Cai Li

    2008-01-01

    Investigations of low energy transfer trajectories are important for both celestial mechanics and astronautics.Methodologies using the theories from dynamical systems are developed in recent years.This paper investigates the dynamics of the earth-moon system.Low energy transfer trajectories are solved numerically by employing a hybrid strategy:first,a genetic hide and seek method performs a search in large domain to confine the global minimum f(η)(objective function) region;then,a deterministic Nelder-Mead method is utilized to refine the minimum quickly.Some transfer trajectories of the spacecraft in the earth-moon system are successfully simulated which verify the desired efficiency and robustness of the method of this paper.

  3. Low-Energy Charge Transfer in Multiply-Charged Ion-Atom Collisions Studied with the Combined SCVB-MOCC Approach

    Directory of Open Access Journals (Sweden)

    B. Zygelman

    2002-03-01

    Full Text Available A survey of theoretical studies of charge transfer involving collisions of multiply-charged ions with atomic neutrals (H and He is presented. The calculations utilized the quantum-mechanical molecular-orbital close-coupling (MOCC approach where the requisite potential curves and coupling matrix elements have been obtained with the spin-coupled valence bond (SCVB method. Comparison is made among various collision partners, for equicharged systems, where it is illustrated that even for total charge transfer cross sections, scaling-laws do not exist for low-energy collisions (i.e. < 1 keV/amu. While various empirical scaling-laws are well known in the intermediateand high-energy regimes, the multi-electron configurations of the projectile ions results in a rich and varied low-energy dependence, requiring an explicit calculation for each collision-partner pair. Future charge transfer problems to be addressed with the combined SCVB-MOCC approach are briefly discussed.

  4. Theory of open Fermi systems for atomic nuclei

    International Nuclear Information System (INIS)

    Formulae for amplitudes of direct elastic and inelastic nuclear reactions with participation of nucleons and compound particles are constructed on the basis of the quantum theory of open Fermi systems by means of the projection operators method and the delay time technique. It is shown that real parts of nucleon-nuclear and nucleus-nuclear optical potentials and transfer operators for inelastic channels are determined by vacuum nucleon-nucleon potentials for the case of the global averaging scheme. It is found that real parts of global optical potentials are deep and attracting

  5. Security on Fingerprint Data Transfer System

    Directory of Open Access Journals (Sweden)

    Hinal Modi

    2014-05-01

    Full Text Available Nowadays, the data can undergo grave modifications (access to the credit cards, the transactions in e-commerce, espionage of the secret information in military doma in, theft bio metrics information especially through transmissions on the insecure network or internet. Where, it is necessary to look a robust method to secure the data. In this work we a re focusing on matching data pattern along with all security assurance, so that we can provide discrete wavelet transform watermarking and en-decryption using confusion and diffusion method. The encryption method is based on XORing the message bytes and, it is the key used for encryption and decryption that makes the process of cryptography secure because key was automatically taken by system.Its performance with bio met ric information (finger print using MATLA B 7.10(R20109.

  6. Security on Fingerprint Data Transfer System

    Directory of Open Access Journals (Sweden)

    Hinal Modi

    2015-11-01

    Full Text Available Nowadays, the data can undergo grave modifications (access to the credit cards, the transactions in e-commerce, espionage of the secret information in military domain, theft biometrics information especially through transmissions on the insecure network or internet. Where, it is necess ary to look a robust method to secure the data. In this work we are focusing on matching data pattern along with all security assurance, so that we can provide discrete wavelet transform watermarking and en-decryption using confusion and diffusion method. The encryption method is based on XORing the message bytes and, it is the key used for encryption and decryption that makes the process of cryptography secure because key was automatically taken by system. Its performance with biomet ric information (fingerprint using MATLAB 7.10(R20109.

  7. Transferability and data access issues. [decision information display system

    Science.gov (United States)

    Ferreros, A. V.

    1981-01-01

    The evolution and current operational mode of the domestic information display system (DIDS) now known as the decision information display system are described. This minicomputer based system, developed from a NASA-generated image processing system, was designed to display federal statistical data for a variety of geographic areas in the form of choropleth maps. The application of DIDS in South Carolina is discussed as well as the progress made and issues that emerged in using the data base on a state and county level. The hardware base for the system, how this user friendly system works, and the possibility of transferring data to remote systems are examined.

  8. Energy Transfer and its Regulation in Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hania, P.R.

    2005-12-09

    Two relatively simple synthetic energy collecting systems are investigated using steady-state and time-resolved electronic spectroscopy. The first tool yields insight into the nature of the excited states on the systems, the latter into the nature of the energy transfer processes and interactions among excitations. The same methods are used to study the dynamics of a molecular photochromic switch, with the goal in mind of incorporating them into energy collecting systems to regulate energy transfer. Chapter 2 covers the main experimental methods: time-resolved pump-probe and fluorescence spectroscopy, which are used to probe the ultrafast dynamics of the investigated systems, and steady-state linear dichroism. Technical details of the experimental setups are given, as well as an overview of the experimental concepts. A description of energy transfer processes, needed to interpret our experimental results, is then provided in chapter 3. Here we focus on the assumptions that lead to expressions for the Forster energy transfer rate and Frenkel exciton states. This provides the background for the three main chapters covering the experimental results obtained by us. First, a study of cylindrical J-aggregates is presented in chapter 4. As indicated, these huge (104-105 monomers) structures resemble the light harvesting antennas found in green photosynthetic bacteria. The strong coupling between the molecules that make up these aggregates results in excitonic states that are delocalized over a few to tens of molecules. The cylindrical geometry of the system then produces a multiple-band excitonic spectrum, which is analyzed using a Frenkel exciton model developed by Didraga et al. Subpicosecond energy transfer is found to occur from the outer to the inner wall, which explains the observed fluorescence spectrum. In addition, annihilation-assisted backtransfer is observed at high irradiation doses. Then an example of a dendritic light harvesting system is studied in chapter

  9. Interatomic Coulombic electron capture in atomic, molecular, and quantum dot systems

    Directory of Open Access Journals (Sweden)

    Bande Annika

    2015-01-01

    Full Text Available The interatomic Coulombic electron capture (ICEC process has recently been predicted theoretically for clusters of atoms and molecules. For an atom A capturing an electron e(ε it competes with the well known photorecombination, because in an environment of neutral or anionic neighboring atoms B, A can transfer its excess energy in the ultrafast ICEC process to B which is then ionized. The cross section for e(ε + A + B → A− + B+ + e(ε′ has been obtained in an asymptotic approximation based on scattering theory for several clusters [1,2]. It was found that ICEC starts dominating the PR for distances among participating species of nanometers and lower. Therefore, we believe that the ICEC process might be of importance in the atmosphere, in biological systems, plasmas, or in nanostructured materials. As an example for the latter, ICEC has been investigated by means of electron dynamics in a model potential for semiconductor double quantum dots (QDs [3]. In the simplest case one QD captures an electron while the outgoing electron is emitted from the other. The reaction probability for this process was found to be relatively large.

  10. 2D momentum distribution of electron in transfer ionization of helium atom by fast proton

    International Nuclear Information System (INIS)

    2D distribution of momentum components of the ejected electron in the reaction H+ +He → H+He2++e at 630 keV proton is studied both theoretically and experimentally. This allows to unambiguously identify contributions from the shake-off and binary encounter mechanisms of transfer ionization. It is shown that the results are highly sensitive to the quality of the initial-state wave function.

  11. Electron transfer processes of atomic and molecular doubly charged ions: information from beam experiments

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk

    2013-01-01

    Roč. 111, 12-13 (2013), s. 1697-1710. ISSN 0026-8976 R&D Projects: GA ČR GA203/00/0632; GA AV ČR IAA400400702 Grant ostatní: GA AV ČR(CZ) IAA440410 Institutional support: RVO:61388955 Keywords : doubly charged ions * electron transfer processes * beam experiments Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.642, year: 2013

  12. Quantum dot systems: artificial atoms with tunable properties

    International Nuclear Information System (INIS)

    Full text: Quantum dots - also called zero-dimensional electron systems or artificial atoms - are physical objects where the constituent electrons are confined in a small spatial region, leading to discrete eigenvalues for the energies of the confined electrons. Large quantum dots offer a dense energy spectrum comparable to that of metallic grains, whereas small quantum dots more closely resemble atoms in their electronic properties. Quantum dots can be linked to leads by tunnel barriers, hence permitting electrical transport measurements: Coulomb blockade and single-electron charging effects are observed due to the repulsive electron electron interaction on the quantum dot site. Usually fabricated by conventional semiconductor growth and processing technology, the advantage is that both simple and also more complex quantum dot systems can be designed to purpose, acting as model systems with in-situ tunable parameters such as the number of confined electrons in the quantum dot and the strength of the tunnel coupling to the leads, electrostatically controlled by the applied voltages to gate electrodes. With increasing the tunnel coupling to the leads, the virtual occupation of the quantum dot from the leads becomes more and more important -- the simple description of electrical transport by single-electron tunneling events breaks down. The basic physics is described by the Kondo physics based on the Anderson impurity model. A system consisting of strongly electrostatically coupled quantum dots with separate leads to each quantum dot represent another realization of the Anderson impurity model. Experiments to verify the analogy are presented. The experimental data embedded within this tutorial have been obtained with Alexander Huebel, Matthias Keller, Joerg Schmid, David Quirion, Armin Welker, Ulf Wilhelm, and Klaus von Klitzing. (author)

  13. Back-Influence of Molecular Motion on Energy Transfer in the Landau-Teller Model of Atom Molecule Scattering.

    Science.gov (United States)

    Pollak, Eli

    2016-07-21

    This year we celebrate the 80th anniversary of the Landau-Teller model for energy exchange in a collinear collision of an atom with a harmonic diatomic molecule. Even after 80 years though, the analytic theory to date has not included in it the back-influence of the oscillator's motion on the energy transfer between the approaching particle and the molecule. This is the topic of the present paper. The back-influence can be obtained by employing classical second-order perturbation theory. The second-order theory is used in both a classical and semiclassical context. Classically, analytic expressions are derived for the final phase and action of the diatom, after the collision. The energy loss of the atom is shown to decrease linearly with the increasing energy of the oscillator. The magnitude of this decrease is a direct consequence of the back-reaction of the oscillator on the translational motion. The qualitative result is universal, in the sense that it is not dependent on the details of the interaction of the atom with the oscillator. A numerical application to a model collision of an Ar atom with a Br2 diatom demonstrates the importance and accuracy of the second-order perturbation theory. The same results are then used to derive a second-order perturbation theory semiclassical expression for the quantum transition probability from initial vibrational state ni to final vibrational state nf of the oscillator. A comparison of the theory with exact quantum data is presented for a model collision of Br2 with a hydrogen molecule, where the hydrogen molecule is considered as a single approaching particle. PMID:27309793

  14. Photoinduced energy transfer in ZnO–tetraphenylporphyrin systems

    OpenAIRE

    廣光, 一郎; 池上, 崇久; Karino, Kazuhiro; Ohno, Takatsugu; Tanaka, Senku; 白鳥, 英雄; 森戸, 茂一; 藤田, 恭久; 半田, 真

    2009-01-01

    The optical absorption and photoluminescence measurements were carried out for ZnO nanoparticle–tetraphenylporphyrin (TPP) systems made of four kinds of TPP’s with and without p-aminophenyl groups. The ZnO particles were treated with l-cysteine in order to make a ZnO–(l-cysteine)–TPP binding. However, this binding was not formed because of an absence of the ZnO–(l-cysteine) binding. In the case of metal-free TPP’s, the central hydrogen atoms of the TPP ring were replaced by a Zn atom during a...

  15. Shielding pebble transfer system for thermonuclear device

    International Nuclear Information System (INIS)

    In a system for supplying shielding pebbles to a vacuum vessel filled with the shielding pebbles in a gap of a double-walled structure, a supply port for the shielding pebbles is formed in a diverging shape, and a corny object is disposed at the center of the flow channel, or protrusions are formed in the vicinity of the supply port. Alternatively, a small object is disposed at the center of the flow channel of the supply port, and the small object is supported swingably and tiltably by elastic members. In addition, the upper plate of the vacuum vessel is slanted having the supply port of the shielding pebbles as a top, and a slanting angle relative to a horizontal axis is made greater than the resting angle of the shielding pebble accumulation layer. The shielding pebbles are jetted out from the supply port and spread to the peripheries, abut against the inner surface of the vacuum vessel, jump up and then accumulate. Accordingly, they can be accumulated dispersingly without being localized. An uniform accumulation layer is obtained to form a vacuum vessel having uniform and high shielding performance. (N.H.)

  16. Heat transfer study on dry vault storage system

    International Nuclear Information System (INIS)

    IHI has been studying the dry vault storage system based on the experience of the vitrified products storage facility. Maximum allowable temperature of fuel cladding was decided by creep strain criteria for long term dry storage environment to avoid cladding degradation. It was necessary to establish the evaluation method of heat transfer inside and outside the fuel loaded canisters for the design of storage facility. Therefore, the experimental and analytical studies of heat transfer of dry vault storage system were carried out using the experimental apparatus and the analysis program based on finite element method. (author)

  17. Ionization and charge transfer in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Electron capture and loss by fast highly charged ions in a gas target, and ionization of the target by passage of the fast projectile beam, are fundamental processes in atomic physics. These processes, along with excitation, can be experimentally studied separately (''singles'') or together (''coincidence''). This paper is a review of recent results on singles measurements for electron capture and loss and for target ionization, for velocities which are generally high relative to the active electron, including recent ionization measurements for a nearly relativistic projectile. 11 refs., 6 figs

  18. Qubit transfer between photons at telecom and visible wavelengths in a slow-light atomic medium

    International Nuclear Information System (INIS)

    We propose a method that enables efficient conversion of the quantum information frequency between different regions of a spectrum of light based on recently demonstrated strong parametric coupling between two narrow-band single-photon pulses propagating in a slow-light atomic medium [N. Sisakyan and Yu. Malakyan, Phys. Rev. A, 75, 063831 (2007)]. We show that an input qubit at telecom wavelength is transformed into another at a visible domain in a lossless and shape-conserving manner while keeping the initial quantum coherence and entanglement. These transformations can be realized with a quantum efficiency close to its maximum value.

  19. Atomic force microscopy study of the adsorption of protein molecules on transferred Langmuir monolayer

    International Nuclear Information System (INIS)

    Ordered protein films have been obtained by the adsorption of protein molecules on a Langmuir monolayer, which had previously formed on a silicon substrate, using the Langmuir-Blodgett and molecular self-organization methods. A mixture of cholesterol with dipalmitoylphosphatidylcholine (DPPC) and a polymer-cellulose acetopivalinate-were used as immobilization materials. Protein molecules (catalase and alkaline phosphatase) immobilized on solid substrates have been investigated by atomic force micros-copy. It was shown that the developed combined technique provides a deposition of homogeneous ultrathin protein films with a high degree of filling.

  20. Charge transfer in keV proton collision with atomic oxygen: Differential and total cross sections

    International Nuclear Information System (INIS)

    Classical Trajectory Monte Carlo method (CTMC) with the modal interaction potential has been used to simulate the differential, total and partial capture cross sections in proton-oxygen atom collisions in the energy range of 0.5 - 200 keV. An interesting feature of the calculated differential cross sections (DCS) curve below the scattering angle 0.1 degree is the presence of oscillations showing asymmetry in angular positions. The oscillations in the partial cross sections are explained in terms of swapping effect. The DCS and total cross sections are found to be in good agreement with the experimental as well as other theoretical results. (authors)

  1. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    International Nuclear Information System (INIS)

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report

  2. Excited, bound and resonant positron-atom systems

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, M W J [Department of Physics and Computational Science Research Center, San Diego State University, San Diego CA 92182 (United States); Mitroy, J, E-mail: mbromley@physics.sdsu.ed [ARC Centre for Antimatter-Matter Studies and Faculty of Education, Health and Science, Charles Darwin University, Darwin NT 0909 (Australia)

    2010-01-01

    Calculations have demonstrated that eleven neutral atoms can bind positrons, while many more can bind positronium. This is a short review of recent progress made in understanding some of the underlying mechanisms. The emphasis here being on configuration interaction calculations with excited state configurations. These have demonstrated the existence of a {sup 2}P{sup o} excited state of e{sup +}Ca, which consists predominantly of a positronium cluster orbiting the Ca{sup +} ion in the L = 1 partial wave. Preliminary results are presented of excited state positron binding to a model alkali atom, where the excited {sup 1}P{sup o} states are stable over a limited region. Implications for the unnatural parity, {sup 2,4}S{sup o}, states of PsH, LiPs, NaPs and KPs are also discussed. The e{sup +}Mg, e{sup +}Cu, e{sup +}Zn and e{sup +}Cd systems show a lack of a {sup 2}P{sup o} excited state, each instead possessing a low-energy p-wave shape resonance of varying strength.

  3. Excited, bound and resonant positron-atom systems

    International Nuclear Information System (INIS)

    Calculations have demonstrated that eleven neutral atoms can bind positrons, while many more can bind positronium. This is a short review of recent progress made in understanding some of the underlying mechanisms. The emphasis here being on configuration interaction calculations with excited state configurations. These have demonstrated the existence of a 2Po excited state of e+Ca, which consists predominantly of a positronium cluster orbiting the Ca+ ion in the L = 1 partial wave. Preliminary results are presented of excited state positron binding to a model alkali atom, where the excited 1Po states are stable over a limited region. Implications for the unnatural parity, 2,4So, states of PsH, LiPs, NaPs and KPs are also discussed. The e+Mg, e+Cu, e+Zn and e+Cd systems show a lack of a 2Po excited state, each instead possessing a low-energy p-wave shape resonance of varying strength.

  4. The atomic hydrogen cloud in the saturnian system

    Science.gov (United States)

    Tseng, W.-L.; Johnson, R. E.; Ip, W.-H.

    2013-09-01

    The importance of Titan's H torus shaped by solar radiation pressure and of hydrogen atoms flowing out of Saturn's atmosphere in forming the broad hydrogen cloud in Saturn's magnetosphere is still debated. Since the Saturnian system also contains a water product torus which originates from the Enceladus plumes, the icy ring particles, and the inner icy satellites, as well as Titan's H2 torus, we have carried out a global investigation of the atomic hydrogen cloud taking into account all sources. We show that the velocity and angle distributions of the hot H ejected from Saturn's atmosphere following electron-impact dissociation of H2 are modified by collisions with the ambient atmospheric H2 and H. This in turn affects the morphology of the escaping hydrogen from Saturn, as does the morphology of the ionospheric electron distribution. Although an exact agreement with the Cassini observations is not obtained, our simulations show that H directly escaping from Titan is the dominant contributor in the outer magnetosphere. Of the total number of H observed by Cassini from 1 to 5RS, ∼5.7×1034, our simulations suggest ∼20% is from dissociation in the Enceladus torus, ∼5-10% is from dissociation of H2 in the atmosphere of the main rings, and ∼50% is from Titan's H torus, implying that ∼20% comes from Saturn atmosphere.

  5. Nature of two-dimensional melting in simple atomic systems

    International Nuclear Information System (INIS)

    We investigate the characteristics of two-dimensional melting in simple atomic systems via isobaric-isothermal (NPT) and isochoric-isothermal (NVT) molecular dynamics simulations with a special focus on the effect of the range of the potential on the melting. We find that the system with an interatomic potential of longer range clearly exhibits a region (in the PT plane) with a (thermodynamically) stable hexatic phase. On the other hand, the system with a shorter-range potential exhibits a first-order melting transition both in the NPT and the NVT ensembles. Melting of the system with an intermediate range potential shows a hexatic-like feature near the melting transition in the NVT ensemble, but it undergoes an unstable hexatic-like phase during melting process in the NPT ensemble, which implies the existence of a weakly first-order transition. The overall features represent a crossover from a continuous melting transition in the cases of longer-ranged potentials to a discontinuous (first-order) one in the systems with shorter and intermediate ranged potentials. We also calculate the Binder cumulants, as well as the susceptibility, of the bond-orientational order parameter.

  6. Integration of micro-fabricated atomic magnetometers on military systems

    Science.gov (United States)

    Schultz, Gregory; Mhaskar, Rahul; Prouty, Mark; Miller, Jonathan

    2016-05-01

    A new generation of ultra-high sensitivity magnetic sensors based on innovative micro-electromechanical systems (MEMS) are being developed and incorporated into military systems. Specifically, we are currently working to fully integrate the latest generation of MicroFabricated Atomic Magnetometers (MFAMs) developed by Geometrics on defense mobility systems such as unmanned systems, military vehicles and handheld units. Recent reductions in size, weight, and power of these sensors has enabled new deployment opportunities for improved sensitivity to targets of interest, but has also introduced new challenges associated with noise mitigation, mission configuration planning, and data processing. Our work is focused on overcoming the practical aspects of integrating these sensors with various military platforms. Implications associated with utilizing these combined sensor systems in working environments are addressed in order to optimize signal-to-noise ratios, detection probabilities, and false alarm mitigation. Specifically, we present collaborative work that bridges the gap between commercial specialists and operation platform integration organizations including magnetic signature characterization and mitigation as well as the development of simulation tools that consider a wide array of sensor, environmental, platform, and mission-level parameters. We discuss unique deployment concepts for explosive hazard target geolocation, and data processing. Applications include configurations for undersea and underground threat detection - particularly those associated with stationary or mobile explosives and compact metallic targets such as munitions, subsea threats, and other hazardous objects. We show the potential of current and future features of miniaturized magnetic sensors including very high magnetic field sensitivities, bandwidth selectivity, and array processing.

  7. Transfer Efficiency Analysis of Wireless Power Transfer System under Frequency Drift

    DEFF Research Database (Denmark)

    Huang, Shoudao; Li, Zhongqi; Lu, Kaiyuan

    2015-01-01

    Magnetic resonant wireless power transfer (WPT) is an emerging technology that may create new applications for wireless power charging. However, low efficiency resulting from resonant frequency drift is a main obstructing factor for promoting this technology. In this paper, the system efficiency...... and input impedance are obtained by solving the system equivalent equations and based on that a method of adjusting the operating frequency and load resistor is proposed. When resonant frequency drift occurs, the WPT system can now operate at quasi-resonant state and the efficiency can be improved by...

  8. Quantum electrodynamics of resonance energy transfer in nanowire systems

    Science.gov (United States)

    Weeraddana, Dilusha; Premaratne, Malin; Andrews, David L.

    2016-02-01

    Nonradiative resonance energy transfer (RET) provides the ability to transfer excitation energy between contiguous nanowires (NWs) with high efficiency under certain conditions. Nevertheless, the well-established Förster formalism commonly used to represent RET was developed for energy transfer primarily between molecular blocks (i.e., from one molecule, or part of a molecule, to another). Although deviations from Förster theory for functional blocks such as NWs have been studied previously, the role of the relative distance, the orientation of transition dipole moment pairs, and the passively interacting matter on electronic energy transfer are to a large extent unknown. Thus, a comprehensive theory that models RET in NWs is required. In this context, analytical insights to give a deeper and more intuitive understanding of the distance and orientation dependence of RET in NWs is presented within the framework of quantum electrodynamics. Additionally, the influence of an included intermediary on the rate of excitation energy transfer is illustrated, embracing indirect energy transfer rate and quantum interference. The results deliver equations that afford new intuitions into the behavior of virtual photons. In particular, results indicate that RET efficiency in a NW system can be explicitly expedited or inhibited by a neighboring mediator, depending on the relative spacing and orientation of NWs.

  9. Fernald vacuum transfer system for uranium materials repackaging

    International Nuclear Information System (INIS)

    The Fernald Environmental Management Project (FEMP) is the site of a former Department of Energy (DOE) uranium processing plant. When production was halted, many materials were left in an intermediate state. Some of this product material included enriched uranium compounds that had to be repackaged for shipment of off-site storage. This paper provides an overview, technical description, and status of a new application of existing technology, a vacuum transfer system, to repackage the uranium bearing compounds for shipment. The vacuum transfer system provides a method of transferring compounds FR-om their current storage configuration into packages that meet the Department of Transportation (DOT) shipping requirements for fissile materials. This is a necessary activity, supporting removal of nuclear materials prior to site decontamination and decommissioning, key to the Fernald site's closure process

  10. Automatic graphene transfer system for improved material quality and efficiency

    Science.gov (United States)

    Boscá, Alberto; Pedrós, Jorge; Martínez, Javier; Palacios, Tomás; Calle, Fernando

    2016-02-01

    In most applications based on chemical vapor deposition (CVD) graphene, the transfer from the growth to the target substrate is a critical step for the final device performance. Manual procedures are time consuming and depend on handling skills, whereas existing automatic roll-to-roll methods work well for flexible substrates but tend to induce mechanical damage in rigid ones. A new system that automatically transfers CVD graphene to an arbitrary target substrate has been developed. The process is based on the all-fluidic manipulation of the graphene to avoid mechanical damage, strain and contamination, and on the combination of capillary action and electrostatic repulsion between the graphene and its container to ensure a centered sample on top of the target substrate. The improved carrier mobility and yield of the automatically transferred graphene, as compared to that manually transferred, is demonstrated by the optical and electrical characterization of field-effect transistors fabricated on both materials. In particular, 70% higher mobility values, with a 30% decrease in the unintentional doping and a 10% strain reduction are achieved. The system has been developed for lab-scale transfer and proved to be scalable for industrial applications.

  11. Heat transfer effect of entrained gas in liquid sodium systems

    International Nuclear Information System (INIS)

    An analysis was made and a correlation developed to determine the reduction in heat transfer caused by entrained inert gas in sodium-cooled liquid metal systems. A 1% void fraction (1.62% volumetric flow rate of inert gas) is calculated to reduce the heat transfer coefficient by approximately 4% in a typical LMFBR. This reduction will not occur over the entire reactor, but only near the inlet of the radial blanket. It was concluded that a reduction in heat transfer in a system having a low oxygen concentration (0C (10000F), if the Reynolds number is greater than approximately 105, and if the operating time is longer than that required for complete wetting at the reference temperature, no reduction in heat transfer is expected. The cause of the reduction in heat transfer is postulated to be a reduction in the thermal conductivity of a two-phase sodium-gas lay er near the heated surface. It is proposed to calculate the thermal conductivity reduction using the average inert gas void fraction and a sintered-metal model. (Auth.)

  12. Pfaffian states in coupled atom-cavity systems

    Science.gov (United States)

    Hayward, Andrew L. C.; Martin, Andrew M.

    2016-05-01

    Coupled atom-cavity arrays, such as those described by the Jaynes-Cummings-Hubbard model, have the potential to emulate a wide range of condensed-matter phenomena. In particular, the strongly correlated states of the fractional quantum Hall effect can be realized. At some filling fractions, the fraction quantum Hall effect has been shown to possess ground states with non-Abelian excitations. The most well studied of these states is the Pfaffian state of Moore and Read G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991), 10.1016/0550-3213(91)90407-O, which is the ground state of a Hall liquid with a three-body interaction. We show how an effective three-body interaction can be generated within the cavity QED framework, and that a Pfaffian-like ground state of these systems exists.

  13. Negative refractive index in a four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhen-Qing; Liu Zheng-Dong; Zhao Shun-Cai; Zheng Jun; Ji Yan-Fang; Liu Nian

    2011-01-01

    A closed four-level system in atomic vapour is proposed,which is made to possess left handedness by using the technique of quantum coherence.The density matrix method is utilized in view of the rotating-wave approximation and the effect of a local field in dense gas.The numerical simulation result shows that the negative permittivity and the negative permeability of the medium can be achieved simultaneously (i.e.the left handedness) in a wider frequency band under appropriate parameter conditions.Furthermore,when analysing the dispersion property of the left-handed material,we can find that the probe beam propagation can be controlled from superluminal to subluminal,or vice versa via changing the detuning of the probe field.

  14. SYNTHESIS OF POLY(METHYL METHACRYLATE)-graft-POLYSTYRENE BY ATOM TRANSFER RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Sheng-min Gong; Qun-sheng Li; Yan Shi; Zhi-feng Fu; Shu-ke Jiao; Wan-tai Yang

    2003-01-01

    The radical copolymerization of methyl methacrylate and 2-hydroxyethyl methacrylate was carried out via atom complex. This polymerization proceeds in a living fashion with controlled molecular weight and low polydispersity. The obtained copolymer was esterified with 2-bromoisobutylryl bromide yielding a macroinitiator, poly(methyl methacrylate-co-2-hydroxyethyl methacrylate-co-2-(2-bromoisobutyryloxy)ethyl methacrylate), and its structure was characterized by 1HNMR. This macroinitiator was used for ATRP of styrene to synthesize poly(methyl methacrylate)-grafi-polystyrene. The molecular weight of graft copolymer increased with the monomer conversion, and the polydispersity remained relatively low.The individual grafted polystyrene chains were cleaved from the macroinitiator backbone by hydrolysis and the hydrolyzed product was characterized by 1H-NMR and GPC.

  15. Atomic ion clock with two ion traps, and method to transfer ions

    Science.gov (United States)

    Prestage, John D. (Inventor); Chung, Sang K. (Inventor)

    2011-01-01

    An atomic ion clock with a first ion trap and a second ion trap, where the second ion trap is of higher order than the first ion trap. In one embodiment, ions may be shuttled back and forth from one ion trap to the other by application of voltage ramps to the electrodes in the ion traps, where microwave interrogation takes place when the ions are in the second ion trap, and fluorescence is induced and measured when the ions are in the first ion trap. In one embodiment, the RF voltages applied to the second ion trap to contain the ions are at a higher frequency than that applied to the first ion trap. Other embodiments are described and claimed.

  16. Charge transfer on porous silicon membranes studied by current-sensing atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    Bing Xia; Qiang Miao; Jie Chao; Shou Jun Xiao; Hai Tao Wang; Zhong Dang Xiao

    2008-01-01

    A visible rectification effect on the current-voltage curves of metal/porous silicon/p-silicon has been observed by currentsensing atomic force microscopy.The current-voltage curves of porous silicon membranes with different porosities,prepared through variation of etching current density for a constant time,indicate that a higher porosity results in a higher resistance and thus a lower rectification,until the current reaches a threshold at a porosity>55%.We propose that the conductance mode in the porous silicon membrane with porosities>55% is mainly a hopping mechanism between nano-crystallites and an inverse static electric field between the porous silicon and p-Si interface blocks the electron injection from porous silicon to p-Si,but with porosities <55%,electron flows through a direct continuous channel between nano-crystallites.

  17. Atomic layer deposition to prevent metal transfer from implants: An X-ray fluorescence study

    Science.gov (United States)

    Bilo, Fabjola; Borgese, Laura; Prost, Josef; Rauwolf, Mirjam; Turyanskaya, Anna; Wobrauschek, Peter; Kregsamer, Peter; Streli, Christina; Pazzaglia, Ugo; Depero, Laura E.

    2015-12-01

    We show that Atomic Layer Deposition is a suitable coating technique to prevent metal diffusion from medical implants. The metal distribution in animal bone tissue with inserted bare and coated Co-Cr alloys was evaluated by means of micro X-ray fluorescence mapping. In the uncoated implant, the migration of Co and Cr particles from the bare alloy in the biological tissues is observed just after one month and the number of particles significantly increases after two months. In contrast, no metal diffusion was detected in the implant coated with TiO2. Instead, a gradient distribution of the metals was found, from the alloy surface going into the tissue. No significant change was detected after two months of aging. As expected, the thicker is the TiO2 layer, the lower is the metal migration.

  18. Charge transfer and ionization in proton-alkali atoms collisions with and without electric field

    International Nuclear Information System (INIS)

    The classical trajectory Monte Carlo simulation has been used to investigate the collisions of protons with alkali metal atoms in their ground state. Model interaction potential has been used to describe the electron-ionic core interaction. The cross sections for the capture and ionization in the energy range 1-100 keV/amu have been calculated and compared with the available experimental and theoretical results. The effects of the presence of a strong static electric field in different geometrical features on the capture and ionization cross sections have also been investigated. It has been found that the electric field causes the cross section for the capture to decrease while for the ionization enhance dramatically. Many of the null field features are retained. The analyses of the final state n, l-distribution in the electron capture process reveals H(2p) to be the most populated level in both the cases, with and without electric field. (author)

  19. Surface-Initiated Atom Transfer Radical Polymerization and Electrografting Technique as a Means For Attaining Tailor-Made Polymer Coatings

    DEFF Research Database (Denmark)

    Chernyy, Sergey

    2012-01-01

    Atom transfer radical polymerization initiated from a surface of various substrates (SI-ATRP) has become a progressively popular technique for obtaining thin polymer films with predetermined properties. The present work addresses the main features of SI-ATRP with respect to the controllability...... and temperature on the kinetics of methyl methacrylate polymerization are elucidated. The strategy was based on the observation of dry polymer thickness versus time evolution by means of ellipsometry, profilometry and IR spectroscopy. An alternative approach, constituting Chapter 3, was based on...... in order to confirm the presence of the polymer. The last Chapter, 5, describes shortly the polymer-like films composed of 1-antrhaquinonyl repetitive units. The parent redox active diazonium salt was used to electrochemically graft up to 1 μm thick conductive organic layer. By combination of QCM...

  20. Preparation of Core-Shell Hybrid Compounds by Atomic Transfer Radical Polymerization and Its Application to Plastic Lens of Headlamp.

    Science.gov (United States)

    Noh, Seung-Man; Ahn, Jae-Beum; Choi, Ki-Hyun; Park, Seung-Kyu

    2015-09-01

    Nano silica ball (NSB) core polymethylmethacrylate (PMMA) shell hybrid nanocomposites were synthesized by atomic transfer radical polymerization (ATRP) method for the application to the clearcoat to enhance scratch resistance. The characteristics of the synthesized inorganic/organic hybrid material were examined by scanning electron microscope (SEM), particle size analysis, Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis-differential scanning calorimetry (TGA-DSC). The scratch resistance and light transmittance of the clearcoat were measured by a nano-scratch tester and UV-visible spectroscopy, respectively. The average particle size of the NSB-PMMA hybrid compounds was 30 nm with narrow size distribution. Even 0.1 wt% loading of NSB-PMMA in the clearcoat dramatically enhanced the scratch resistance, about 40% increase in the force of the first fracture, while slightly reduced the light transmittance, about 5% only. PMID:26716303

  1. Effect of Surface Charge on Surface-Initiated Atom Transfer Radical Polymerization from Cellulose Nanocrystals in Aqueous Media.

    Science.gov (United States)

    Zoppe, Justin O; Xu, Xingyu; Känel, Cindy; Orsolini, Paola; Siqueira, Gilberto; Tingaut, Philippe; Zimmermann, Tanja; Klok, Harm-Anton

    2016-04-11

    Cellulose nanocrystals (CNCs) with different charge densities were utilized to examine the role of electrostatic interactions on surface-initiated atom transfer radical polymerization (SI-ATRP) in aqueous media. To this end, growth of hydrophilic uncharged poly(N,N-dimethylacrylamide) (PDMAM) brushes was monitored by electrophoresis, (1)H NMR spectroscopy, and dynamic light scattering (DLS). Molecular weight and polydispersity of PDMAM brushes was determined by GPC analysis of hydrolytically cleaved polymers. Initiator and polymer brush grafting densities, and thus, initiator efficiencies were derived from elemental analysis. Higher initiator efficiency of polymer brush growth was observed for CNCs with higher anionic surface sulfate half-ester group density, but at the expense of high polydispersity caused by inefficient deactivation. PDMAM grafts with number-average molecular weights up to 530 kDa and polydispersity indices Cu-mediated SI-CRP are analogous to those conducted in solution. PMID:26901869

  2. Synthesis of tri-block copolymers through reverse atom transfer radical polymerization of methyl methacrylate using polyurethane macroiniferter

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Reverse atom transfer radical polymerization was successfully used for the first time to synthesis tri-block copolymers. Poly (methyl methacrylate-block-polyurethane-block-poly (methyl methacrylate tri-block copolymers were synthesized using tetraphenylethane-based polyurethane as a macroiniferter, copper(II halide as a catalyst and N, N, N′, N″, N″-pentamethyldiethylenetriamine as a ligand. Controlled nature of the polymerization was confirmed by the linear increase of number average molecular weight with increasing conversion. Mole contents of poly (methyl methacrylate present in the tri-block copolymers were calculated using proton nuclear magnetic resonance spectroscopy and the results were comparable with the gel permeation chromatography results. Differential scanning calorimetric results confirmed the presence of two different types of blocks in the tri-block copolymers.

  3. Bottom-Up Fabrication of Nanopatterned Polymers on DNA Origami by In Situ Atom-Transfer Radical Polymerization.

    Science.gov (United States)

    Tokura, Yu; Jiang, Yanyan; Welle, Alexander; Stenzel, Martina H; Krzemien, Katarzyna M; Michaelis, Jens; Berger, Rüdiger; Barner-Kowollik, Christopher; Wu, Yuzhou; Weil, Tanja

    2016-05-01

    Bottom-up strategies to fabricate patterned polymers at the nanoscale represent an emerging field in the development of advanced nanodevices, such as biosensors, nanofluidics, and nanophotonics. DNA origami techniques provide access to distinct architectures of various sizes and shapes and present manifold opportunities for functionalization at the nanoscale with the highest precision. Herein, we conduct in situ atom-transfer radical polymerization (ATRP) on DNA origami, yielding differently nanopatterned polymers of various heights. After cross-linking, the grafted polymeric nanostructures can even stably exist in solution without the DNA origami template. This straightforward approach allows for the fabrication of patterned polymers with low nanometer resolution, which provides access to unique DNA-based functional hybrid materials. PMID:27058968

  4. West Valley transfer cart control system design description

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E.C.; Crutcher, R.I.; Halliwell, J.W.; Hileman, M.S.; Moore, M.R.; Nodine, R.N.; Ruppel, F.R.; Vandermolen, R.I.

    1993-01-01

    Detail design of the control system for the West Valley Nuclear Services Vitrification Facility transfer cart has been completed by Oak Ridge National Laboratory. This report documents the requirements and describes the detail design of that equipment and control software. Copies of significant design documents including analysis and testing reports and design drawings are included in the Appendixes.

  5. Homogeneous Catalytic Transfer Hydrogenation in Microfluidic Flow System

    Czech Academy of Sciences Publication Activity Database

    Pavlorková, Jana; Křišťál, Jiří; Klusoň, Petr

    Budapest: Budapest University of Technology and Economics, 2014, s. 207-208. ISBN 978-963-05-9518-6. [International Conference on Microreactor Technology IMRET /13./. Budapest (HU), 23.06.2014-25.06.2014] Institutional support: RVO:67985858 Keywords : homogeneous catalysis * transfer hydrogenation * micro structured reactor systems Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  6. Transferability of Japanese Management Systems Overseas: A theoretical jungle

    NARCIS (Netherlands)

    Yokozawa, Kodo; Bruijn, de Erik J.; Boer, de Sirp; Steenhuis, Harm-Jan; Trimble, Robert

    2007-01-01

    Since the 1980s, transferability of Japanese management systems (JMSs) abroad has become an increasing focus of research. However, the conclusions emerging from studies in this field have been conflicting. The main reasons for discordance have been the use of vague definitions of terms and varying m

  7. Putting Dreyfus into Action: The European Credit Transfer System

    Science.gov (United States)

    Markowitsch, Jorg; Luomi-Messerer, Karin; Becker, Matthias; Spottl, Georg

    2008-01-01

    Purpose: The purpose of this article is to look closely at the development of a European Credit Transfer System for Vocational Education and Training (ECVET). The European Commission, together with the member States, are working on it and several pilot projects have been initiated within the Leonardo da Vinci Programme of the European Commission.…

  8. The Thompson-Lyons transfer lemma for fusion systems

    OpenAIRE

    Lynd, Justin

    2013-01-01

    In this note, a generalization of the Thompson transfer lemma and its various extensions, most recently due to Lyons, is proven in the context of saturated fusion systems. A strengthening of Alperin's fusion theorem is also given in this setting, following Alperin's own "up and down" fusion.

  9. Influence on Atomic Inversion Evolution in Medium System from Compton Scattering

    Institute of Scientific and Technical Information of China (English)

    HAO Xiao-fei; HAO Dong-shan

    2008-01-01

    In Jaynes-Cummings model, by using the modulation of the coupling coefficient formed by the atom, medium and scattering optical, atomic inversion evolution of arbitrary forms has been worked out. Its feasibility has been proved, and the curvature of the atomic inversion evolution of the arbitrary forms is obtained. It announces that the atom and coupling medium system are to express the operators of the atom and optical field quantum in Jaynes-Cummings model. These operators can express arbitrary medium system. In these systems, the coupling coefficient can be changed and exactly controlled in the longer coherent times.

  10. Middle range wireless power transfer systems with multiple resonators

    Institute of Scientific and Technical Information of China (English)

    陈新; 张桂香

    2015-01-01

    The equivalent two-port network model of a middle range wireless power transfer (WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.

  11. Omnidirectional wireless power transfer system supporting mobile devices

    Science.gov (United States)

    Che, Bang-Jun; Meng, Fan-Yi; Lyu, Yue-Long; Zhu, Wen-Liang; Zhang, Kuang; Yang, Guo-Hui; Fu, Jia-Hui; Zhu, Lei; Wu, Qun; Sun, Li

    2016-02-01

    An efficient method for the challenge design of an omnidirectional wireless power transfer system (OWPT) is proposed. The OWPT is realized utilizing the rotating magnetic field, which is generated by the proposed 2-D transmitter. The transmitter is composed by two mutually perpendicular loops fed by two excitation sources with the same magnitude and 90° phase difference. An OWPT system prototype is fabricated and measured. Experimental results demonstrate that the system can deliver power to receivers moving around the transmitter with a steady transfer efficiency. Furthermore, the magnitude distribution of the rotating magnetic field can be controlled by the feeding phase difference between the two loops. This capability enables the OWPT system to focus energy for device moving in a limited receiving angle range.

  12. Cyclic Hypervalent Iodine Reagents for Atom-Transfer Reactions: Beyond Trifluoromethylation.

    Science.gov (United States)

    Li, Yifan; Hari, Durga Prasad; Vita, Maria Victoria; Waser, Jerome

    2016-03-24

    Hypervalent iodine compounds are privileged reagents in organic synthesis because of their exceptional reactivity. Among these compounds, cyclic derivatives stand apart because of their enhanced stability. They have been widely used as oxidants, but their potential for functional-group transfer has only begun to be investigated recently. The use of benziodoxol(on)es for trifluoromethylation (Togni's reagents) is already widely recognized, but other transformations have also attracted strong interest recently. In this Review, the development in the area since 2011 will be presented. After a short summary of synthetic methods to prepare benziodoxol(on)e reagents, their use to construct carbon-heteroatom and carbon-carbon bonds will be presented. In particular, the introduction of alkynes by using ethynylbenziodoxol(on)e (EBX) reagents has been highly successful. Breakthroughs in the introduction of alkoxy, azido, difluoromethyl, and cyano groups will also be described. PMID:26880486

  13. Degrees of controllability for quantum systems and application to atomic systems

    International Nuclear Information System (INIS)

    Precise definitions for different degrees of controllability for quantum systems are given, and necessary and sufficient conditions for each type of controllability are discussed. The results are applied to determine the degree of controllability for various atomic systems with degenerate energy levels and transition frequencies. (author)

  14. Particle-bed heat transfer studies at the Atomic Energy Establishment Winfrith (UKAEA)

    International Nuclear Information System (INIS)

    Experimental studies of boiling heat transfer and dryout in electrically heated beds of liquid-saturated particulate have been in progress at AEE Winfrith for the past four years. Results of experimental work published to date relate to water-saturated beds at a pressure of 1 bar. In recent years PWR interests have widened studies of cooling self-heated particle beds because there are both in-vessel and ex-vessel situations where particulate debris may occur during accidents which cause severe core damage. Dryout during boiling heat transfer is a relevant phenomenon in assessments of whether the debris can be adequately cooled and the damage sequence stopped, although much work is yet required to characterise the particulate core debris which may form during these low-probability accidents. This paper outlines work which has been done, or is in progress at AEE Winfrith. Topics include studies of dryout, pressure drop and vapour fraction for beds of spherical particles. Most of the data relate to water-cooled beds, but some data relate to beds cooled with a low latent-heat organic fluid. Direct electrical resistance heating has been used for most of the work, and this has been shown to be suitable for beds of uniform spheres. Work at AEE Winfrith also includes the development of dielectric heating as a means of heating beds of particles. This appears to be an excellent way of heating beds of irregular particles in a way which closely simulates decay-heating, and our progress in this area is described

  15. Electroless plating of copper on polyimide films modified by surface-initiated atom-transfer radical polymerization of 4-vinylpyridine

    International Nuclear Information System (INIS)

    Surface modification of polyimide (PI) films were first carried out by chloromethylation under mild conditions, followed by surface-initiated atom-transfer radical polymerization (ATRP) of 4-vinylpyridine (4VP) from the chloromethylated PI surfaces. The composition and topography of the PI surfaces modified by poly(4-vinylpyridine) (P4VP) were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. The P4VP brushes with well-preserved pyridine groups on the PI surface was used not only as the chemisorption sites for the palladium complexes without prior sensitization by SnCl2 solution during the electroless plating of copper, but also as an adhesion promotion layer to enhance the adhesion of the electrolessly deposited copper to the PI surfaces. The T-peel adhesion strength of the electrolessly deposited copper on the modified PI surface could reach about 6.6 N/cm. Effects of the polymerization time and the activation time in the PdCl2 solution on the T-peel adhesion strength of the electrolessly deposited copper in the Sn-free process to the modified PI surface were also studied

  16. Evidence for alkali metal induced intermolecular acetylenic hydrogen atom transfer between hydrogen-bonded alkyne complexes in solid argon

    International Nuclear Information System (INIS)

    Condensation of acetylene, propyne, and 2-butyne/acetylene mixtures with heavy alkali metal atoms (Na, K, Cs) in an argon matrix at 15 K has led to the appearance of infrared absorptions due to ethylene, propylene, and trans-2-butene, respectively. These results stand in sharp contrast with the products obtained with lithium. Isotopic studies have shown that ethylene formation involved three different acetylene molecules and evidenced a difference in the product yield with hydrogen vs. deuterium as well as a preference for trans- vs. cis-C2H2D2 formation, which is discussed and rationalized by differences in the zero point energies for the different mixed deuterium isotopes of the intermediate vinyl radical. This trend is amplified by methyl substitution. Spectroscopic evidence was found in these experiments for cesium acetylide (Cs+C2H-) and a cesium-acetylene π complex, which are involved in the intermolecular acetylenic hydrogen atom transfer process. 26 references, 3 figures, 2 tables

  17. Interferometry with atoms

    International Nuclear Information System (INIS)

    Optics and interferometry with matter waves is the art of coherently manipulating the translational motion of particles like neutrons, atoms and molecules. Coherent atom optics is an extension of techniques that were developed for manipulating internal quantum states. Applying these ideas to translational motion required the development of techniques to localize atoms and transfer population coherently between distant localities. In this view position and momentum are (continuous) quantum mechanical degrees of freedom analogous to discrete internal quantum states. In our contribution we start with an introduction into matter wave optics in sect. 1, discuss coherent atom optics and atom interferometry techniques for molecular beams in sect. 2 and for trapped atoms in sect. 3. In sect. 4 we then describe tools and experiments that allow to probe the evolution of quantum states of many-body systems by atom interference.

  18. Effect of pairwise dipole–dipole interaction among three-atom systems

    Indian Academy of Sciences (India)

    P Anantha Lakshmi; Ashoka Vudayagiri; Shaik Ahmed

    2014-08-01

    We present an analysis of a system of three two-level atoms interacting with one another through dipole–dipole interaction. The interaction manifests between the excited state of one of the atoms and the ground state of its nearest neighbour. Steady-state populations of the density matrix elements are presented and are compared with a situation when only two atoms are present. It can be noticed that the third atom modifies the behaviour of the three atoms. Two configurations are analysed, one in which the three atoms are in a line, with no interaction between atoms at the end points and the other in which the atoms form a closed loop with one atom interacting with both its neighbours.

  19. Interaction transfer of silicon atoms forming Co silicide for Co/√(3)×√(3)R30°-Ag/Si(111) and related magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Hsun-Tony; Fu, Tsu-Yi; Tsay, Jyh-Shen, E-mail: jstsay@phy.ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China)

    2015-05-07

    Combined scanning tunneling microscopy, Auger electron spectroscopy, and surface magneto-optic Kerr effect studies were employed to study the microscopic structures and magnetic properties for ultrathin Co/√(3)×√(3)R30°-Ag/Si(111). As the annealing temperature increases, the upward diffusion of Si atoms and formation of Co silicides occurs at temperature above 400 K. Below 600 K, the √(3)×√(3)R30°-Ag/Si(111) surface structure persists. We propose an interaction transferring mechanism of Si atoms across the √(3)×√(3)R30°-Ag layer. The upward transferred Si atoms react with Co atoms to form Co silicide. The step height across the edge of the island, a separation of 0.75 nm from the analysis of the 2 × 2 structure, and the calculations of the normalized Auger signal serve as strong evidences for the formation of CoSi{sub 2} at the interface. The interaction transferring mechanism for Si atoms enhances the possibility of interactions between Co and Si atoms. The smoothness of the surface is advantage for that the easy axis of magnetization for Co/√(3)×√(3)R30°-Ag/Si(111) is in the surface plane. This provides a possible way of growing flat magnetic layers on silicon substrate with controllable silicide formation and shows potential applications in spintronics devices.

  20. Quantum dot-dye hybrid systems for energy transfer applications

    OpenAIRE

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems.rn rnIn the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2 - 24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the ...

  1. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  2. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  3. Convective heat and mass transfer in rotating disk systems

    Energy Technology Data Exchange (ETDEWEB)

    Shevchuk, Igor V. [MBtech Powertrain GmbH, Fellbach-Schmiden (Germany)

    2009-07-01

    The book describes results of investigations of a series of convective heat-and-mass transfer problems in rotating-disk systems, namely, over free rotating disks, under conditions of transient heat transfer, solid-body rotation of fluid, orthogonal flow impingement onto a disk, swirl radial flow between parallel co-rotating disks, in cone-disk systems and for Prandtl and Schmidt numbers larger than one. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD. The book is aimed at the professional audience of academic researchers, industrial R and D engineers, university lecturers and graduate/postgraduate students working in the area of rotating-disk systems. (orig.)

  4. Test report for the Sample Transfer Canister system

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, B.D.

    1998-03-04

    The Sample Transfer Canister will be used by the Waste Receiving and Processing Facility (WRAP) for the transport of small quantity liquid samples that meet the definition of a limited quantity radioactive material, and may also be corrosive and/or flammable. Transport of the system will typically be north of the Wye Barricade between WRAP and the 222-S Laboratory. The samples are intended to conform to the US Department of Transportation (DOT) regulation 49 CFR 1 73.4, ``Exceptions for small quantities.`` The regulations require prototype testing of the package to demonstrate the effectiveness of the packaging system. The test procedure consisted of one 24-hour compression test and five drop tests of various orientations onto an unyielding drop pad. The testing of the Sample Transfer Canister System was performed between February 16, 1998 and February 25, 1998. The results of the testing concluded that the Sample Transfer Canister System successfully met the testing requirements with certain modifications to the original system. The modifications included replacing the original eight flange screws which were cold rolled 316 stainless steel with greater strength grade 8 high carbon-carbon steel screws, replacing the initial two glass receptacles with a better performing single glass receptacle which proved not to leak during testing, and adding more bubble wrap as extra padding.

  5. Four-body charge transfer processes in collisions of bare projectile ions with helium atoms

    Science.gov (United States)

    Jana, S.; Mandal, C. R.; Purkait, M.

    2015-02-01

    Single-electron capture by a bare ion from a helium atom at intermediate and high energies in the framework of four-body distorted wave (DW-4B) approximation in both prior and post form has been considered. In the entrance channel, the initial bound state wave function is distorted by the incoming projectile ion, and the corresponding distortion is related to the Coulomb continuum states of the active electron and the residual target ion in the field of the projectile ion respectively. Continuum states of the active electron and the projectile ion in the field of the residual target ion are also included in the exit channel. It may be mentioned that the effect of dynamic electron correlation is explicitly taken into account through the complete perturbation potential. The total single-electron capture cross sections are obtained by summing over all contributions up to n = 3 shells and sub-shells respectively. In addition, the differential cross sections for alpha particle-helium collision are calculated at impact energies of 60, 150, 300, 450, and 630 keV amu-1, respectively. The cross sections exhibit a monotonically decreasing angular dependence, with clear peak structures around 0.1 to 0.2 mrad being found at low impact energies. The current theoretical results, both in prior and post forms of the transition amplitude for symmetric and asymmetric collision, are compared with the available theoretical and experimental results. Current computed results have been found to be satisfactory in comparison with other theoretical and experimental findings.

  6. Four-body charge transfer processes in collisions of bare projectile ions with helium atoms

    International Nuclear Information System (INIS)

    Single-electron capture by a bare ion from a helium atom at intermediate and high energies in the framework of four-body distorted wave (DW-4B) approximation in both prior and post form has been considered. In the entrance channel, the initial bound state wave function is distorted by the incoming projectile ion, and the corresponding distortion is related to the Coulomb continuum states of the active electron and the residual target ion in the field of the projectile ion respectively. Continuum states of the active electron and the projectile ion in the field of the residual target ion are also included in the exit channel. It may be mentioned that the effect of dynamic electron correlation is explicitly taken into account through the complete perturbation potential. The total single-electron capture cross sections are obtained by summing over all contributions up to n = 3 shells and sub-shells respectively. In addition, the differential cross sections for alpha particle–helium collision are calculated at impact energies of 60, 150, 300, 450, and 630 keV amu−1, respectively. The cross sections exhibit a monotonically decreasing angular dependence, with clear peak structures around 0.1 to 0.2 mrad being found at low impact energies. The current theoretical results, both in prior and post forms of the transition amplitude for symmetric and asymmetric collision, are compared with the available theoretical and experimental results. Current computed results have been found to be satisfactory in comparison with other theoretical and experimental findings. (paper)

  7. Physics of polarized scattering at multi-level atomic systems

    CERN Document Server

    Stenflo, Jan

    2015-01-01

    The symmetric peak observed in linear polarization in the core of the solar sodium D$_1$ line at 5896 \\AA\\ has remained enigmatic since its discovery nearly two decades ago. One reason is that the theory of polarized scattering has not been experimentally tested for multi-level atomic systems in the relevant parameter domains, although the theory is continually being used for the interpretation of astrophysical observations. A laboratory experiment that was set up a decade ago to find out whether the D$_1$ enigma is a problem of solar physics or quantum physics revealed that the D$_1$ system has a rich polarization structure in situations where standard scattering theory predicts zero polarization, even when optical pumping of the $m$ state populations of the hyperfine-split ground state is accounted for. Here we show that the laboratory results can be modeled in great quantitative detail if the theory is extended to include the coherences in both the initial and final states of the scattering process. Radiat...

  8. Transfer efficiency analysis of wireless power transfer system under frequency drift

    Science.gov (United States)

    Huang, S. D.; Li, Z. Q.; Lu, K. Y.

    2015-05-01

    Magnetic resonant wireless power transfer (WPT) is an emerging technology that may create new applications for wireless power charging. However, low efficiency resulting from resonant frequency drift is a main obstructing factor for promoting this technology. In this paper, the system efficiency and input impedance are obtained by solving the system equivalent equations and based on that a method of adjusting the operating frequency and load resistor is proposed. When resonant frequency drift occurs, the WPT system can now operate at quasi-resonant state and the efficiency can be improved by using the proposed method. The WPT system via magnetic resonance coupling is designed. Simulation and experimental results validating the proposed method are given.

  9. Hindi to English Transfer Based Machine Translation System

    Directory of Open Access Journals (Sweden)

    Shashi Pal Singh

    2015-06-01

    Full Text Available In large societies like India there is a huge demand to convert one human language into another. Lots of work has been done in this area. Many transfer based MTS have developed for English to other languages, as MANTRA CDAC Pune, MATRA CDAC Pune, SHAKTI IISc Bangalore and IIIT Hyderabad. Still there is a little work done for Hindi to other languages. Currently we are working on it. In this paper we focus on designing a system, that translate the document from Hindi to English by using transfer based approach. This system takes an input text check its structure through parsing. Reordering rules are used to generate the text in target language. It is better than Corpus Based MTS because Corpus Based MTS require large amount of word aligned data for translation that is not available for many languages while Transfer Based MTS requires only knowledge of both the languages (source language and target language to make transfer rules. We get correct translation for simple assertive sentences and almost correct for complex and compound sentences.

  10. An 80 Mbytes/s data transfer and processing system

    International Nuclear Information System (INIS)

    We describe hardware and software aspects of a very fast and versatile, yet conceptually simple, data transfer and processing system for use with future accelerators. It consists of a transputer-based crate controller (CC), which includes an Intel i860 microcomputer, and of a set of readout cards (RC), each containing a digital signal processor (DSP) for fast data parametrisation and compaction. The reduced data is written into a dual port memory (DPM), where it can be accessed concurrently by the transputer and transferred to a common DPM on the CC card. A crateful of data thus assembled at one place can further be processed by the powerful i860 microcomputer. Address generators (simple binary counters) are included on the crate controller and each readout card to enable direct memory access (DMA) operations, resulting in a considerable increase in data transfer speed (maximum 80 Mbytes/s). The use of a transputer as the sole controlling processor, in conjunction with DPMs, renders bus arbitration unnecessary, leading to very simple interfacing logic and operating software. The four high-speed serial links of the transputer greatly facilitate downloading of programs and intercrate communications. An Intel i960CA processor, situated on the CC card, is used for fast data transfer between crates by means of its 32-bit wide DMA channel. The operating software is written in the Occam language, which was specially developed for programming concurrent systems based on transputers. (orig.)

  11. An 80 Mbytes/s data transfer and processing system

    Science.gov (United States)

    Belusevic, R.; Nixon, G.; Shaw, D.

    1990-11-01

    We describe hardware and software aspects of a very fast and versatile, yet conceptually simple, data transfer and processing system for use with future accelerators. It consists of a transputer-based crate controller (CC), which includes an Intel i860 microcomputer, and of a set of readout cards (RC), each containing a digital signal processor (DSP) for fast data parametrisation and compaction. The reduced data is written into a dual port memory (DPM), where it can be accessed concurrently by the transputer and transferred to a common DPM on the CC card. A crateful of data thus assembled at one place can further be processed by the powerful i860 microcomputer. Address generators (simple binary counters) are included on the crate controller and each readout card to enable direct memory access (DMA) operations, resulting in a considerable increase in data transfer speed (maximum 80 Mbytes/s). The use of a transputer as the sole controlling processor, in conjunction with DPMs, renders bus arbitration unnecessary, leading to very simple interfacing logic and operating software. The four high-speed serial links of the transputer greatly facilitate downloading of programs and intercrate communications. An Intel i960CA processor, situated on the CC card, is used for fast data transfer between crates by means of its 32-bit wide DMA channel. The operating software is written in the Occam language, which was specially developed for programming concurrent systems based on transputers.

  12. An 80 Mbytes/s data transfer and processing system

    Energy Technology Data Exchange (ETDEWEB)

    Belusevic, R.; Nixon, G.; Shaw, D. (University Coll., London (UK). Dept. of Physics and Astronomy)

    1990-11-01

    We describe hardware and software aspects of a very fast and versatile, yet conceptually simple, data transfer and processing system for use with future accelerators. It consists of a transputer-based crate controller (CC), which includes an Intel i860 microcomputer, and of a set of readout cards (RC), each containing a digital signal processor (DSP) for fast data parametrisation and compaction. The reduced data is written into a dual port memory (DPM), where it can be accessed concurrently by the transputer and transferred to a common DPM on the CC card. A crateful of data thus assembled at one place can further be processed by the powerful i860 microcomputer. Address generators (simple binary counters) are included on the crate controller and each readout card to enable direct memory access (DMA) operations, resulting in a considerable increase in data transfer speed (maximum 80 Mbytes/s). The use of a transputer as the sole controlling processor, in conjunction with DPMs, renders bus arbitration unnecessary, leading to very simple interfacing logic and operating software. The four high-speed serial links of the transputer greatly facilitate downloading of programs and intercrate communications. An Intel i960CA processor, situated on the CC card, is used for fast data transfer between crates by means of its 32-bit wide DMA channel. The operating software is written in the Occam language, which was specially developed for programming concurrent systems based on transputers. (orig.).

  13. An 80 Mbytes/s data transfer and processing system

    International Nuclear Information System (INIS)

    We describe hardware and software aspects of a very fast and versatile, yet conceptually simple, data transfer and processing system for use with future accelerators. It consists of a transputer-based crate controller (CC), which includes an Intel i860 microcomputer, and of a set of readout cards (RC), each containing a digital signal processor (DSP) for fast data parametrisation and compaction. The reduced data is written into a dual port memory (DPM), where it can be accessed concurrently by the transputer and transferred to a common DPM on the CC card. A crateful of data thus assembled at one place can further be processed by the powerful i860 microcomputer. Address generators (simple binary counters) are included on the crate controller and each readout card to enable direct memory access (DMA) operations, resulting in a considerable increase in data transfer speed (maximum 80 Mbytes/s). The use of a transputer as the sole controller processor, in conjunction with DPMs, renders bus arbitration unnecessary leading to very simple interfacing logic and operating software. The four high speed serial links of the transputer greatly facilitate downloading of programs and intercrate communications. An Intel i960CA processor, situated on the CC card, is used for fast data transfer between crates by means of its 32-bit wide DMA channel. The operating software is written in the Occam language, which was specially developed for programming concurrent systems based on transputers. (author)

  14. Heat transfer and fluid flow in nuclear systems

    CERN Document Server

    Fenech, Henri

    1982-01-01

    Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto

  15. On identifying transfer functions and state equations for linear systems.

    Science.gov (United States)

    Shieh, L. S.; Chen, C. F.; Huang, C. J.

    1972-01-01

    Two methods are established for identifying constant-coefficient, C to the 2n power type of noise-free linear systems if the time response data of the input-output or of all states are known. 2n response data are required to identify an nth-order transfer function or state equation for an unknown linear system. The order of the unknown system can be identified by checking a sequence of determinants. The Z transform and its inversion are mainly used.

  16. Multiparameter Monitoring and Fault Indication Using Inductive Power Transfer System

    OpenAIRE

    Shaji, K. P.; Alsheba, I.; Khadar, Y. A. Syed; Kannan, S.

    2013-01-01

    The paper aims at demonstrating communication capabilities of IPT. For this data communication is performed between two modules using the concept of IPT. IPT was deemed to be the best solution to the system houses a multi parameter acquisition module such as temperature, speed, voltage, current and data transfer from the motor. The receiver side is another microcontroller coupled to an inductive coil that gets the data and displays in the LCD. A brief background to IPT Inductive Power Transfe...

  17. Transfers

    OpenAIRE

    Xavier Sala-i-Martin

    1992-01-01

    In this paper I develop a positive theory of intergenerational transfers. I argue that transfers are a means to induce retirement. that is, to buy the elderly out of the labor force. The reason why societies choose to do such a thing is that aggregate output is higher if the elderly do not work. I model this idea through positive externalities in the average stock of human capital: because skills depreciate with age. one implication of these externalities is that the elderly have a negative e...

  18. On coarse projective integration for atomic deposition in amorphous systems

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Claire Y., E-mail: yungc@seas.upenn.edu, E-mail: meister@unm.edu, E-mail: zepedaruiz1@llnl.gov; Sinno, Talid, E-mail: talid@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, 311A Towne Building, Philadelphia, Pennsylvania 19104 (United States); Han, Sang M., E-mail: yungc@seas.upenn.edu, E-mail: meister@unm.edu, E-mail: zepedaruiz1@llnl.gov [Department of Chemical and Biological Engineering, University of New Mexico, 1 University of New Mexico, MSC01 1120, Albuquerque, New Mexico 87131 (United States); Zepeda-Ruiz, Luis A., E-mail: yungc@seas.upenn.edu, E-mail: meister@unm.edu, E-mail: zepedaruiz1@llnl.gov [Lawrence Livermore National Laboratory, P.O. Box 808, L-367, Livermore, California 94550 (United States)

    2015-10-07

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the “equation-free” framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of this technique in realistic settings is the “lifting” operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO{sub 2} substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO{sub 2} using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system.

  19. On coarse projective integration for atomic deposition in amorphous systems

    International Nuclear Information System (INIS)

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the “equation-free” framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of this technique in realistic settings is the “lifting” operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO2 substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO2 using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system

  20. New magnet transport system for the LHC beam transfer lines

    CERN Document Server

    Patrice Loïez

    2003-01-01

    The first of 700 magnets has been installed in one of the two transfer tunnels built to transfer the SPS beam into the LHC. The start of this first installation phase of the LHC transfer lines provides the opportunity to launch a new and highly original modular system for transporting and installing all kinds of magnets in very narrow tunnels. The system (pictured here in one of the tunnels) is based on very compact bogies, up to four of which can be coupled together to form a convoy. The wheels are fitted with individual motors enabling them to swivel through an angle of 90° and the convoy to move laterally. The lead vehicle is powered by an electric rail set into the roof of the tunnel. The system is backed up by electrical batteries that enable it to operate in the absence of an outside power source or in the event of power failure. Last but not least, for the long-distance transport of magnets, it can be optically guided by a line traced on the tunnel floor. The convoy moves through the particularly narr...

  1. Comprehensive online Atomic Database Management System (DBMS) with Highly Qualified Computing Capabilities

    CERN Document Server

    Tahat, Amani

    2011-01-01

    The intensive need of atomic data is expanding continuously in a wide variety of applications (e.g. fusion energy and astrophysics, laser-produced, plasma researches, and plasma processing).This paper will introduce our ongoing research work to build a comprehensive, complete, up-to-date, user friendly and online atomic Database Management System (DBMS) namely called AIMS by using SQLite (http://www.sqlite.org/about.html)(8). Programming language tools and techniques will not be covered here. The system allows the generation of various atomic data based on professional online atomic calculators. The ongoing work is a step forward to bring detailed atomic model accessible to a wide community of laboratory and astrophysical plasma diagnostics. AIMS is a professional worldwide tool for supporting several educational purposes and can be considered as a complementary database of IAEA atomic databases. Moreover, it will be an exceptional strategy of incorporating the output data of several atomic codes to external ...

  2. Fuel transfer system ALARA design review - Project A.15

    International Nuclear Information System (INIS)

    One mission of the Spent Nuclear Fuel (SNF) Project is to move the SNF from the K Basins in the Hanford 100K Area to an interim dry storage at the Canister Storage Building (CSB) in the Hanford 200 East Area. The Fuel Transfer System (FTS) is a subproject that will move the SNF from the 105K East (KE) Facility to the 105K West (KW) Facility. The SNF will be treated for shipment to the Cold Vacuum Drying (CVD) facility at the KW Basin. The SNF canisters will be loaded underwater into a Shielded Transfer Cask (STC) in the KE Basin. The fully loaded STC will be brought out of the water and placed into a Cask Transfer Overpack (CTO) by the STC Straddle Carrier. As the STC is removed from the water, it will be washed down with demineralized water by an manual rinse system. The CTO with the STC inside will be placed on a transport trailer and transferred to the KW Basin as an intra-facility transfer. The CTO will be unloaded from the shipping trailer at the KW Basin and the STC will be removed from the CTO. The STC will then be lowered into the KW Basin water and the fuel will be removed. The SNF will then be processed for shipment to the CVD. As soon as all of the fuel has been removed from the STC, the cask will be removed from the KW Basin water and placed into the CTO. The CTO will again be placed on the trailer for transport back to the KE Basin where the entire cycle will be repeated approximately 400 times. This document records the As Low As Reasonably Achievable (ALARA) findings and design recommendations/requirements by the SNF Project noted during the Final Design Review of the STC, CTO, STC Transfer System, Annexes and Roadways for support of FTS. This document is structured so that all statements that include the word ''shall'' represent design features that have been or will be implemented within the project scope. Statements that include the words ''should'' or ''recommend'' represent ALARA design features to be evaluated for future implementation

  3. Umbrella sampling of proton transfer in a creatine-water system

    Science.gov (United States)

    Ivchenko, Olga; Bachert, Peter; Imhof, Petra

    2014-04-01

    Proton transfer reactions are among the most common processes in chemistry and biology. Proton transfer between creatine and surrounding solvent water is underlying the chemical exchange saturation transfer used as a contrast in magnetic resonance imaging. The free energy barrier, determined by first-principles umbrella sampling simulations (EaDFT 3 kcal/mol) is in the same order of magnitude as the experimentally obtained activation energy. The underlying mechanism is a first proton transfer from the guanidinium group to the water pool, followed by a second transition where a proton is "transferred back" from the nearest water molecule to the deprotonated nitrogen atom of creatine.

  4. Entropy evolution properties in a system of two entangled atoms interacting with light field

    Institute of Scientific and Technical Information of China (English)

    Liu Tang-Kun; Wang Ji-Suo; Feng Jian; Zhan Ming-Sheng

    2005-01-01

    In the paper, we use the field entropy as a measurement of the degree of entanglement between the light field and the atoms of the system which is composed of two dipole-dipole interacting two-level atoms initially in an entangled state interacting with the single mode coherent field in a Kerr medium. The influence of the coupling constant of dipole-dipole interaction between atoms and the coupling strength of the kerr medium with the light field and the intensity of the atoms with the light field becomes weaker. The degree of entanglement only changes slightly with the change of the coupling constant of dipole-dipole interaction between atoms.

  5. Proton-Conducting Sulfonated Ionomers by Chemical Modification and Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller

    of the influence of ion exchange capacity (IEC) on water sorption and proton conductivity. There appears to be a narrow IEC-window where the water percolation increases tremendously from being very low to where severe swelling occurs, and the proton conductivity proportionally with it. In another...... is dedicated to a partially fluorinated system that is based on a poly(vinylidene fluoride) (PVDF)-containing backbone with fully sulfonated PS grafts. To counteract the dimensional change upon water contact that is a result of the increased IEC, the ionomer is blended with a high molecular weight...... PVDF, which contributes to the conservation of mechanical stability. The morphology of these blends is affected by the PVDF content. At 25 vol% ionomer macro-phase-separation occurs, while a 40 vol% ionomer content on top of the macro-phase-separation develops a repetitive patten of ion-rich domains in...

  6. A study on the improvement of the legal system concerning Korean Atomic Energy Act

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Il Un; Jung, Jong Hak; Kim, Jae Ho; Moon, Jong Wook; Kim, In Sub [Chungnam National Univ., Taejon (Korea, Republic of)

    1998-03-15

    Cause-effect analysis, adjustment, and generalization of the current atomic energy act are contents of this research. These are to be based on the legal theory. Analysis of the current atomic energy act from the viewpoint of constitutional law and administrative law. Review of the other domestic legal systems which have similar problems as the atomic energy act has. Inquiry about the operation of nuclear legal systems of foreign nations.

  7. A study on the improvement of the legal system concerning Korean Atomic Energy Act

    International Nuclear Information System (INIS)

    Cause-effect analysis, adjustment, and generalization of the current atomic energy act are contents of this research. These are to be based on the legal theory. Analysis of the current atomic energy act from the viewpoint of constitutional law and administrative law. Review of the other domestic legal systems which have similar problems as the atomic energy act has. Inquiry about the operation of nuclear legal systems of foreign nations

  8. Phase-controlled atom-photon entanglement in a three-level ∧-type closed-loop atomic system

    Institute of Scientific and Technical Information of China (English)

    Ali Mortezapour; Zeinab Kordi; Mohammad Mahmoudi

    2013-01-01

    We study the entanglement of dressed atom and its spontaneous emission in a three-level A-type closed-loop atomic system in a multi-photon resonance condition and beyond it.It is shown that the von Neumann entropy in such a system is phase-dependent,and it can be controlled by either the intensity or relative phase of applied fields.It is demonstrated that for the special case of the Rabi frequency of applied fields,the system is disentangled.In addition,we take into account the effect of Doppler broadening on the entanglement and it is found that a suitable choice of laser propagation direction allows us to obtain the steady state degree of entanglement (DEM) even in the presence of the Doppler effect.

  9. MEMS-Based Optical Beam Steering System for Quantum Information Processing in 2D Atomic Systems

    OpenAIRE

    Knoernschild, Caleb; Kim, Changsoon; Liu, Bin; Lu, Felix P.; Kim, Jungsang

    2007-01-01

    In order to provide scalability to quantum information processors utilizing trapped atoms or ions as quantum bits (qubits), the capability to address multiple individual qubits in a large array is needed. Micro-electromechanical systems (MEMS) technology can be used to create a flexible and scalable optical system to direct the necessary laser beams to multiple qubit locations. We developed beam steering optics using controllable MEMS mirrors that enable one laser beam to address multiple qub...

  10. Simplified Simulation of Mass Transfer in Double White Dwarf Systems

    Science.gov (United States)

    Vannah, Sara; Frank, Juhan

    2016-01-01

    The behavior both stable and unstable mass transfer in semi-detached double white dwarfs triggers a cornucopia of astrophysical phenomena including Type Ia supernovae and AM CVn stars. Current 3D hydrodynamic simulations of the evolution these systems following the mass transfer, binary orbital parameters, and the self-consistent gravitational field over several tens of orbital periods have produced a wealth of data. However, these simulations can take weeks to months in high-performance computing platforms to execute. To help with the interpretation of results of such large scale simulations, and to enable a quick exploration of binary parameter space, we have developed a Mathematica code that integrates forward in time a system of 5 ODEs describing the orbit-averaged evolution of the binary separation as well as the radius, mass, and spin angular momentum of both components of the binary. By adjusting a few parameters describing the mass transfer as a function of the Roche-lobe overflow and the strength of the tidal coupling between the orbit and component spins we are able to obtain approximate fits to previously run hydrodynamic simulations. This simplified simulation is able to run simulations similar to the hydrodynamic versions in a matter of seconds on a dual-core PC or Mac computer.

  11. Improved power transfer to wearable systems through stretchable magnetic composites

    Science.gov (United States)

    Lazarus, N.; Bedair, S. S.

    2016-05-01

    The use of wireless power transfer is common in stretchable electronics since physical wiring can be easily destroyed as the system is stretched. This work presents the first demonstration of improved inductive power coupling to a stretchable system through the addition of a thin layer of ferroelastomeric material. A ferroelastomer, an elastomeric polymer loaded with magnetic particulates, has a permeability greater than one while retaining the ability to survive significant mechanical strains. A recently developed ferroelastomer composite based on sendust platelets within a soft silicone elastomer was incorporated into liquid metal stretchable inductors based on the liquid metal galinstan in fluidic channels. For a single-turn inductor, the maximum power transfer efficiency rises from 71 % with no backplane, to 81 % for a rigid ferrite backplane on the transmitter side alone, to 86 % with a ferroelastomer backplane on the receiver side as well. The coupling between a commercial wireless power transmitter coil with ferrite backplane to a five-turn liquid metal inductor was also investigated, finding an improvement in power transfer efficiency from 81 % with only a rigid backplane to 90 % with the addition of the ferroelastomer backplane. Both the single and multi-turn inductors were demonstrated surviving up to 50 % uniaxial applied strain.

  12. Stress analysis on SSC cryogenic shaft transfer line suspension system

    International Nuclear Information System (INIS)

    The Superconducting Super Collider has a total of twelve refrigeration plants. Each plant requires a cryogenic transfer line to connect the above-ground refrigerator to the below-ground collider main ring. The transfer line consists of seven cryogenic circuits enclosed in a cryostat. It is to be built in a number of pieces (modules) and assembled on-site. Within each transfer line module, the internal elements including the circuit tubes, thermal shield, and multilayer insulation (MLI) blankets are supported by an internal suspension system. The suspension system for a module consists of a longitudinal support and four radial supports. The radial supports restrict any radial movement of the internal elements while allowing longitudinal thermal movement. The longitudinal support anchors all the internal elements to the vacuum jacket. Each type of support consists of three plates for supporting the circuit tubes at three designated temperature levels (4, 20, and 80 K), and two sets of stand-off rods which make joints between the 4 and 20 K plates, and between the 20 and 80 K plates

  13. Nitroxide mediated and atom transfer radical graft polymerization of atactic polymers onto syndiotactic polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, M. [Department of Basic Science, Payame Noor University, Tehran (Iran, Islamic Republic of); Shoja, S. Esmaeily [Lab. of Materials, Faculty of Engineering, Islamic Azad University, Bonab (Iran, Islamic Republic of)

    2012-04-15

    'Living' radical graft polymerization was employed to prepare graft copolymers with nitroxide mediated arylated syndiotactic polystyrene as the backbone and polystyrene (PS), poly(p-methylstyrene) (PMS) and poly(methylmethacrylate) (PMMA) as branches. A two-stage process has been developed to synthesize the macroinitiator. First, syndiotactic polystyrene (sPS) was modified by the Friedel-Crafts reaction to introduce chlorine; second, the chlorine groups were converted to nitroxide mediated groups by coupling with 1-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO-OH). The resulting macroinitiator (sPSTEMPO) for 'living' free radical polymerization was then heated in the presence of styrene and pmethylstyrene to form graft and block copolymers. We used the obtained copolymer and N-bromosuccinimide as brominating agent to achieve polymers with bromine groups. This brominated copolymer was used as a macroinitiator for polymerizing methyl methacrylate in the presence of the CuBr/bpy catalyst system. The formation of the graft and block copolymers was confirmed by DSC, {sup 1}H NMR and FTIR spectroscopy. This approach using macroinitiators is an effective method for the preparation of new materials. (author)

  14. Positron-Lithium Atom and Electron-Lithium Atom Scattering Systems at Intermediate and High Energies

    Institute of Scientific and Technical Information of China (English)

    K. Ratnavelu; S. Y. Ng

    2006-01-01

    @@ The coupled-channel optical method is used to study positron scattering by atomic lithium at energies ranging from the ionization threshold to 60 eV. The present method simultaneously treats the target channels and the positronium (Ps) channels in the coupled-channel method together with the continuum effects via an ab-initio optical potential. Ionization, elastic and inelastic cross sections in target channels, and the total cross section are also reported and compared with other theoretical and experimental data. A comparative study with the corresponding electron-lithium data is also reported.

  15. Cosmic Background Explorer (COBE) transfer orbit attitude control system

    Science.gov (United States)

    Placanica, Samuel J.; Flatley, Thomas W.

    1986-01-01

    The Cosmic Background Explorer (COBE) spacecraft will be launched by the Shuttle from Vandenberg AFB into a 300 km altitude, 99 deg inclination, 6 a.m. or 6 p.m. ascending node orbit. After release from the Remote Manipulator System (RMS) arm, an on-board monopropellant hydrazine propulsion system will raise the orbit altitude to 900 km. The spacecraft continuously spins during transfer orbit operations with the spin axis nominally horizontal and in or near the orbit plane. The blowdown propulsion system consists of twelve 5 lb thrusters (3 'spin', 3 'despin', and 6 'axial') with the latter providing initially 30 lb of force parallel to the spin axis for orbit raising. The spin/despin jets provide a constant roll rate during the transfer orbit phase of the mission and the axials control pitch and yaw. The axial thrusters are pulsed on for attitude control during coast periods and are normally on- and off-modulated for control during orbit raising. Attitude sensors employed in the control loops include an array of two-axis digital sun sensors and three planar earth scanners for position measurements, as well as six gyroscopes for rate information. System redundancy is achieved by means of unique three-axes-in-a-plane geometry. This triaxial concept results in a fail-safe operational system with no performance degradation for many different component failure modes.

  16. Modeling coherent excitation energy transfer in photosynthetic light harvesting systems

    Science.gov (United States)

    Huo, Pengfei

    2011-12-01

    Recent non-linear spectroscopy experiments suggest the excitation energy transfer in some biological light harvesting systems initially occurs coherently. Treating such processes brings significant challenge for conventional theoretical tools that usually involve different approximations. In this dissertation, the recently developed Iterative Linearized Density Matrix (ILDM) propagation scheme, which is non-perturbative and non-Markovian is extended to study coherent excitation energy transfer in various light harvesting complexes. It is demonstrated that the ILDM approach can successfully describe the coherent beating of the site populations on model systems and gives quantitative agreement with both experimental results and the results of other theoretical methods have been developed recently to going beyond the usual approximations, thus providing a new reliable theoretical tool to study this phenomenon. This approach is used to investigate the excited energy transfer dynamics in various experimentally studied bacteria light harvesting complexes, such as Fenna-Matthews-Olsen (FMO) complex, Phycocyanin 645 (PC645). In these model calculations, quantitative agreement is found between computed de-coherence times and quantum beating pattens observed in the non-linear spectroscopy. As a result of these studies, it is concluded that the stochastic resonance behavior is important in determining the optimal throughput. To begin addressing possible mechanics for observed long de-coherence time, various models which include correlation between site energy fluctuations as well as correlation between site energy and inter-site coupling are developed. The influence of both types of correlation on the coherence and transfer rate is explored using with a two state system-bath hamiltonian parametrized to model the reaction center of Rhodobacter sphaeroides bacteria. To overcome the disadvantages of a fully reduced approach or a full propagation method, a brownian dynamics

  17. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermonuclear reactor is described. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals

  18. Transfer-matrix scaling for diluted Ising systems

    Science.gov (United States)

    de Queiroz, S. L. A.; Stinchcombe, R. B.

    1992-09-01

    A transfer-matrix scaling technique is developed for randomly diluted systems and applied to the site-diluted Ising model on a square lattice. For each connected configuration between adjacent columns, the contribution of the respective transfer matrix to the decay of correlations is considered only as far as the ratio of the two largest eigenvalues, allowing an economical incorporation of configurational averages. Predictions for the phase boundary at and near the percolation and pure Ising limits, and for the correlation exponent η at those limits, agree with exactly known results to within 1% error with largest strip widths of only L=5. The exponent η remains near the pure value (1/4) for all intermediate concentrations until it turns over to the percolation value at the threshold.

  19. Effects of dipole-dipole interaction on entanglement transfer

    Institute of Scientific and Technical Information of China (English)

    Guo Hong; Xiong Heng-Na

    2008-01-01

    A system consisting of two different atoms interacting with a two-mode vacuum, where each atom is resonant only with one cavity mode, is considered.The effects of dipole-dipole (dd) interaction between two atoms on the atom-atom entanglement and mode-mode entanglement are investigated. For a weak dd interaction, when the atoms are initially separable, the entanglement between them can be induced by the dd interaction, and the entanglement transfer between the atoms and the modes occurs efficiently; when the atoms are initially entangled, the entanglement transfer is almost not influenced by the dd interaction. However, for a strong dd interaction, it is difficult to transfer the entanglement from the atoms to the modes, but the atom-atom entanglement can be maintained when the atoms are initially entangled.

  20. Ph(i-PrO)SiH2: An Exceptional Reductant for Metal-Catalyzed Hydrogen Atom Transfers.

    Science.gov (United States)

    Obradors, Carla; Martinez, Ruben M; Shenvi, Ryan A

    2016-04-13

    We report the discovery of an outstanding reductant for metal-catalyzed radical hydrofunctionalization reactions. Observations of unexpected silane solvolysis distributions in the HAT-initiated hydrogenation of alkenes reveal that phenylsilane is not the kinetically preferred reductant in many of these transformations. Instead, isopropoxy(phenyl)silane forms under the reaction conditions, suggesting that alcohols function as important silane ligands to promote the formation of metal hydrides. Study of its reactivity showed that isopropoxy(phenyl)silane is an exceptionally efficient stoichiometric reductant, and it is now possible to significantly decrease catalyst loadings, lower reaction temperatures, broaden functional group tolerance, and use diverse, aprotic solvents in iron- and manganese-catalyzed hydrofunctionalizations. As representative examples, we have improved the yields and rates of alkene reduction, hydration, hydroamination, and conjugate addition. Discovery of this broadly applicable, chemoselective, and solvent-versatile reagent should allow an easier interface with existing radical reactions. Finally, isotope-labeling experiments rule out the alternative hypothesis of hydrogen atom transfer from a redox-active β-diketonate ligand in the HAT step. Instead, initial HAT from a metal hydride to directly generate a carbon-centered radical appears to be the most reasonable hypothesis. PMID:26984323

  1. 3D scaffolds from vertically aligned carbon nanotubes/poly(methyl methacrylate) composites via atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Vertically aligned carbon nanotubes (VACNTs) synthesized by Thermal Chemical Vapour Deposition (TCVD) were modified using an Ar:O2 (97:3) plasma to generate oxygen-containing functional groups on the surface for subsequent modification. X-ray photo-emission spectroscopy (XPS) and micro-Raman analyses confirmed the grafting of those functional groups onto the surface of the nanotubes as well as the removal of amorphous carbon produced and deposited on the VACNT forests during the CVD process. The plasma treated VACNT forests were further modified with 2-bromo-2-methylpropionyl bromide, an atom transfer radical polymerization (ATRP) initiator, to grow poly(methyl methacrylate) (PMMA) chains from the forests via ATRP. Scanning transmission electron microscopy (STEM) of the ensuing VACNT/PMMA composites confirmed the coating of the nanotube forests with the PMMA polymer. 3D scaffolds of polymeric composites with honeycomb like structure were then obtained. Compressive tests have shown that the VACNT/PMMA composite has higher compressive strength than the pristine forest. - Highlights: • Vertically aligned carbon nanotubes (VACNTs) were synthesized and plasma modified. • X-ray photo-emission and Raman spectroscopies confirmed the VACNTs modification. • Poly(methyl methacrylate) chains were grown via ATRP from the VACNTs. • STEM of the VACNT/PMMA composites confirmed that PMMA surrounds the nanotubes. • VACNT/PMMA composite has higher compressive strength compared to the pristine forest

  2. 3D scaffolds from vertically aligned carbon nanotubes/poly(methyl methacrylate) composites via atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Tebikachew, Behabtu; Magina, Sandra [CICECO, Department of Chemistry, University of Aveiro (Portugal); Mata, Diogo; Oliveira, Filipe J.; Silva, Rui F. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro (Portugal); Barros-Timmons, Ana, E-mail: anabarros@ua.pt [CICECO, Department of Chemistry, University of Aveiro (Portugal)

    2015-01-15

    Vertically aligned carbon nanotubes (VACNTs) synthesized by Thermal Chemical Vapour Deposition (TCVD) were modified using an Ar:O{sub 2} (97:3) plasma to generate oxygen-containing functional groups on the surface for subsequent modification. X-ray photo-emission spectroscopy (XPS) and micro-Raman analyses confirmed the grafting of those functional groups onto the surface of the nanotubes as well as the removal of amorphous carbon produced and deposited on the VACNT forests during the CVD process. The plasma treated VACNT forests were further modified with 2-bromo-2-methylpropionyl bromide, an atom transfer radical polymerization (ATRP) initiator, to grow poly(methyl methacrylate) (PMMA) chains from the forests via ATRP. Scanning transmission electron microscopy (STEM) of the ensuing VACNT/PMMA composites confirmed the coating of the nanotube forests with the PMMA polymer. 3D scaffolds of polymeric composites with honeycomb like structure were then obtained. Compressive tests have shown that the VACNT/PMMA composite has higher compressive strength than the pristine forest. - Highlights: • Vertically aligned carbon nanotubes (VACNTs) were synthesized and plasma modified. • X-ray photo-emission and Raman spectroscopies confirmed the VACNTs modification. • Poly(methyl methacrylate) chains were grown via ATRP from the VACNTs. • STEM of the VACNT/PMMA composites confirmed that PMMA surrounds the nanotubes. • VACNT/PMMA composite has higher compressive strength compared to the pristine forest.

  3. Charge transfer, excitation and evaporation in low energy collisions of simple metal clusters and fullerenes with atomic targets

    International Nuclear Information System (INIS)

    We present charge transfer, excitation and evaporation cross sections in low energy collisions of small and medium-size metal clusters (Nanq+, Linq+) and C60 with atomic targets (H+, He2+ and Cs) using a molecular close-coupling formalism and a post-collision rate equation model. The theoretical model benefits from different time scales associated with the collision and the internal motion of the cluster nuclei. The collision description includes the many-electron aspect of the problem and makes use of a realistic cluster potential obtained with density functional theory and a spherical jellium model. The evaporation model takes into account the non-harmonic effects of the ionic motion and describes sequential evaporation to any order within the framework of the microcanonical statistical model of Weisskopf. We show that the relative abundance of different fragments depends critically on the cluster temperature and the spectrometer time of flight window. We have found good agreement with recent experimental results [Eur. Phys. J. D 12 (2000) 185

  4. Reverse atom transfer radical polymerization (RATRP) for anti-clotting PU-LaCl3-g-P(MPC) films

    Science.gov (United States)

    Lu, Chunyan; Zhou, Ninglin; Xiao, Yinghong; Tang, Yida; Jin, Suxing; Wu, Yue; Shen, Jian

    2013-01-01

    Low grafting density is a disadvantage both in reverse atom transfer radical polymerization (RATRP) and ATRP. In this work, the surfaces of polyurethane (PU) were treated by LaCl3·6H2O to obtain modified surfaces with hydrated layers. The reaction of surface-initiated RATRP was carried out easily, which may be attributed to the enriched hydroxyl groups on the hydrated layers. An innovation found in this work is that some free lanthanum ions (La3+) reacted with the silane coupling agent (CPTM) and the product served as mixed ligand complex. The mixed ligand complex instead of conventional 2,2‧-bipyridine was adopted to serve as a ligand in the process of RATRP. As a result, PU surfaces grafted with well-defined polymer brushes (MPC) were obtained. PU substrates before and after modification were characterized by FTIR, XPS, AFM, SEM, SCA, respectively. The results showed that zwitterionic brushes were successfully fabricated on the PU surfaces (P(MPC)), and the content of the grafted layer increased gradually with polymerization time with the grafting density as high as 97.9%. The blood compatibility of the PU substrates was evaluated by plasma recalcification profiles test and platelet adhesion tests in vitro. It was found that all PU functionalized with zwitterionic brush showed improved resistance to nonspecific protein adsorption and platelet adhesion.

  5. Quantum synapse for cold atoms

    CERN Document Server

    Kouzaev, G A

    2007-01-01

    In this paper, the quantum synaptic effect is studied that arisen in the system of two crossed wires excited by the static (DC) and radio-frequency (RF) currents. The potential barrier between the two orthogonal atom streams is controlled electronically and the atoms can be transferred from one wire to another under certain critical values of the RF and DC currents. The results are interesting in the study of quantum interferometry and quantum registering of cold atoms.

  6. 12 CFR 611.1130 - Inter-System transfer of funds and equities.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Inter-System transfer of funds and equities. 611.1130 Section 611.1130 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ORGANIZATION Rules for Inter-System Fund Transfers § 611.1130 Inter-System transfer of funds and equities....

  7. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    International Nuclear Information System (INIS)

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system (ii) mineralization in a closed microwave system (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g-1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g-1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g-1 in crude oil, -1 in gasoline, -1 in atmospheric oil, -1 in heavy vacuum oil and 140-300 ng g-1 in distillation residue

  8. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae

  9. Genome modifications and cloning using a conjugally transferable recombineering system

    Directory of Open Access Journals (Sweden)

    Mohammad J Hossain

    2015-12-01

    Full Text Available The genetic modification of primary bacterial disease isolates is challenging due to the lack of highly efficient genetic tools. Herein we describe the development of a modified PCR-based, λ Red-mediated recombineering system for efficient deletion of genes in Gram-negative bacteria. A series of conjugally transferrable plasmids were constructed by cloning an oriT sequence and different antibiotic resistance genes into recombinogenic plasmid pKD46. Using this system we deleted ten different genes from the genomes of Edwardsiella ictaluri and Aeromonas hydrophila. A temperature sensitive and conjugally transferable flp recombinase plasmid was developed to generate markerless gene deletion mutants. We also developed an efficient cloning system to capture larger bacterial genetic elements and clone them into a conjugally transferrable plasmid for facile transferring to Gram-negative bacteria. This system should be applicable in diverse Gram-negative bacteria to modify and complement genomic elements in bacteria that cannot be manipulated using available genetic tools.

  10. ASME proceedings of the 32nd national heat transfer conference (HTD-Vol. 350). Volume 12: Fundamental experiment techniques in heat transfer; Thermal hydraulics of advanced nuclear reactors; Heat and mass transfer in supercritical liquid systems; Heat transfer in energy conversion; Heat transfer equipment; Heat transfer in gas turbine systems

    International Nuclear Information System (INIS)

    This volume contains a portion of the over 240 ASME papers which were presented at the conference. For over 40 years, the National Heat Transfer Conference has been the premiere forum for the presentation and dissemination of the latest advances in heat transfer. The work contained in these volumes range from studies of fundamental phenomena to applications in the latest heat transfer equipment. Topics covered in this volume are: Fundamental experiment techniques in heat transfer; thermal hydraulics of advanced nuclear reactors; heat and mass transfer in supercritical fluid systems; heat transfer in energy conversion; heat transfer equipment; and heat transfer in gas turbine systems. Separate abstracts were prepared for most papers in this volume

  11. When absorptive capacity meets technology transfer : transferring of an e-learning system to Russia

    OpenAIRE

    2005-01-01

    This master thesis aims at using the theoretical framework of absorptive capacity as suggested by Cohen and Levinthal (1990) to account for the underlying dimensions critical in a technology transfer process. Technology transfer is a complicated and dynamic process in which technology moves between the transferring partners. The nature of the technology and the capacities of the involved organisations appear to be important in accounting for the transfer. The research applies the use of absor...

  12. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine

  13. The electron transfer system of syntrophically grown Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.B.; He, Z.; Yang, Z.K.; Ringbauer, Jr., J.A.; He, Q.; Zhou, J.; Voordouw, G.; Wall, J.D.; Arkin, A.P.; Hazen, T.C.; Stolyar, S.; Stahl, D.A.

    2009-05-01

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic couplings between hydrogen producers and consumers are a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent upon growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, D. vulgaris up-regulated numerous genes involved in electron transfer and energy generation when compared with sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn) and the well-characterized high-molecular weight cytochrome (Hmc) were among the most highly expressed and up-regulated. Additionally, a predicted operon coding for genes involved in lactate transport and oxidation exhibited up-regulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd and Hyn impaired or severely limited syntrophic growth but had little affect on growth via sulfate-respiration. These results demonstrate that syntrophic growth and sulfate-respiration use largely independent energy generation pathways and imply that understanding of microbial processes sustaining nutrient cycling must consider lifestyles not captured in pure culture.

  14. The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    PBD; ENIGMA; GTL; VIMSS; Walker, Christopher B.; He, Zhili; Yang, Zamin K.; Ringbauer Jr., Joseph A.; He, Qiang; Zhou, Jizhong; Voordouw, Gerrit; Wall, Judy D.; Arkin, Adam P.; Hazen, Terry C.; Stolyar, Sergey; Stahl, David A.

    2009-06-22

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic couplings between hydrogen producers and consumers are a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent upon growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, D. vulgaris up-regulated numerous genes involved in electron transfer and energy generation when compared with sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn) and the well-characterized high-molecular weight cytochrome (Hmc) were among the most highly expressed and up-regulated. Additionally, a predicted operon coding for genes involved in lactate transport and oxidation exhibited up-regulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd and Hyn impaired or severely limited syntrophic growth but had little affect on growth via sulfate-respiration. These results demonstrate that syntrophic growth and sulfate-respiration use largely independent energy generation pathways and imply that understanding of microbial processes sustaining nutrient cycling must consider lifestyles not captured in pure culture.

  15. Hg Vetical Transference in Soil—Water System

    Institute of Scientific and Technical Information of China (English)

    GUOYIJUN; MOUSUSEN; 等

    1998-01-01

    Hg vertial transference in soil-water system was studied by analyzing Hg vertical ditribution in soil column after adding Hg and one of the two leacheates,deionzied water or acid rain,into soil column.The results indicated that Hg was hardly transferable in puple soil.About 86%-88% of the total soil Hg was distributed in the top layer (0-2cm) and to Hg was detected in the leakage when the purple soil column was leached by deionized water and simulated acid rain.But Hg was more movalbe in yellow soil with only about 20%-22% of the total soil Hg distributed in the top layer (0-2cm),and about 17%-25% washed out from the soil column by deionized water and simulted acid rain,Incremant in soil bulk density colud reduce Hg leaching,thus the more the Hg kept in soil,the less the Hg leached into underground water,Deionized water and acid rain almost played the same role in leaching Hg.Bentioint was most effecient in preventing Hg from vertcal transferring in the soil coulumn.

  16. A general theoretical model for electron transfer reactions in complex systems.

    Science.gov (United States)

    Amadei, Andrea; Daidone, Isabella; Aschi, Massimiliano

    2012-01-28

    In this paper we present a general theoretical-computational model for treating electron transfer reactions in complex atomic-molecular systems. The underlying idea of the approach, based on unbiased first-principles calculations at the atomistic level, utilizes the definition and the construction of the Diabatic Perturbed states of the involved reactive partners (i.e. the quantum centres in our perturbation approach) as provided by the interaction with their environment, including their mutual interaction. In this way we reconstruct the true Adiabatic states of the reactive partners characterizing the electron transfer process as the fluctuation of the electronic density due to the fluctuating perturbation. Results obtained by using a combination of Molecular Dynamics simulation and the Perturbed Matrix Method on a prototypical intramolecular electron transfer (from 2-(9,9'-dimethyl)fluorene to the 2-naphthalene group separated by a steroidal 5-α-androstane skeleton) well illustrate the accuracy of the method in reproducing both the thermodynamics and the kinetics of the process. PMID:22158942

  17. Autonomous quantum thermal machines in atom-cavity systems

    OpenAIRE

    Mitchison, Mark T.; Huber, Marcus; Prior, Javier; Woods, Mischa P.; Plenio, Martin B.

    2016-01-01

    An autonomous quantum thermal machine comprising a trapped atom or ion placed inside an optical cavity is proposed and analysed. Such a machine can operate as a heat engine whose working medium is the quantised atomic motion, or as an absorption refrigerator which cools without any work input. Focusing on the refrigerator mode, we predict that it is possible with state-of-the-art technology to cool a trapped ion almost to its motional ground state using a thermal light source such as sunlight...

  18. Photoinduced electron transfer of chlorophyll in lipid bilayer system

    Indian Academy of Sciences (India)

    D K Lee; K W Seo; Y S Kang

    2002-12-01

    Photoinduced electron transfer from chlorophyll- through the interface of dipalmitoylphosphatidylcholine (DPPC) headgroup of the lipid bilayers was studied with electron magnetic resonance (EMR). The photoproduced radicals were identified with electron spin resonance (ESR) and radical yields of chlorophyll- were determined by double integration ESR spectra. The formation of vesicles was identified by changes in measured max values from diethyl ether solutions to vesicles solutions indirectly, and observed directly with SEM and TEM images. The efficiency of photosynthesis in model system was determined by measuring the amount of chlorophyll-a radical yields which were obtained from integration of ESR spectra.

  19. Heat and mass transfer in open-cycle OTEC systems

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.; Kreith, F.; Owens, W.L.; Schlepp, D.

    1984-01-01

    The temperature difference between surface and deep water in the oceans represents a vast resource of thermal energy. A promising method of harnessing this resource is the open-cycle ocean thermal energy conversion (OC-OTEC) system, which utilizes steam evaporated from the surface water to power the turbine. In this paper the state of the art of heat and mass transfer related to evaporation and condensation of steam at low pressures in OC-OTEC is summarized and relevant research issues are discussed.

  20. Experimental Study of RF Energy Transfer System in Indoor Environment

    International Nuclear Information System (INIS)

    This paper presents a multi-transmitter, 2.43 GHz Radio-Frequency (RF) wireless power transfer (WPT) system for powering on-body devices. It is shown that under typical indoor conditions, the received power range spans several orders of magnitude from microwatts to milliwatts. A body-worn dual-polarised rectenna (rectifying antenna) is presented, designed for situations where the dominant polarization is unpredictable, as is the case for the on-body sensors. Power management circuitry is demonstrated that optimally loads the rectenna even under highly intermittent conditions, and boosts the voltage to charge an on-board storage capacitor

  1. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  2. Modeling and design of reacting systems with phase transfer catalysis

    DEFF Research Database (Denmark)

    Piccolo, Chiara; Hodges, George; Piccione, Patrick M.;

    2011-01-01

    systems. A model-based strategy for the selection of the best organic solvent/catalyst that improves the reaction operation is highlighted for the reacting system: benzyl chloride (A) and sodium bromide (B) reacting through tetrabutylammonium bromide (PTC).......Issues related to the design of biphasic (liquid) catalytic reaction operations are discussed. A chemical system involving the reaction of an organic-phase soluble reactant (A) with an aqueous-phase soluble reactant (B) in the presence of phase transfer catalyst (PTC) is modeled and based on it......, some of the design issues related to improved reaction operation are analyzed. Since the solubility of the different forms of the PTC in the organic solvent affects ultimately the catalyst partition coefficients, therefore, the organic solvent plays an important role in the design of PTC-based reacting...

  3. Independent individual addressing of multiple neutral atom qubits with a MEMS beam steering system

    OpenAIRE

    Knoernschild, Caleb; Zhang, Xianli L.; Isenhower, Larry; Gill, Alex T.; Lu, Felix P.; Saffman, Mark; Kim, Jungsang

    2010-01-01

    We demonstrate a scalable approach to addressing multiple atomic qubits for use in quantum information processing. Individually trapped 87Rb atoms in a linear array are selectively manipulated with a single laser guided by a MEMS beam steering system. Single qubit oscillations are shown on multiple sites at frequencies of ~3.5 MHz with negligible crosstalk to neighboring sites. Switching times between the central atom and its closest neighbor were measured to be 6-7 us while moving between th...

  4. Universal quantum gates for photon-atom hybrid systems assisted by bad cavities

    OpenAIRE

    Wang, Guan-yu; Liu, Qian; Wei, Hai-Rui; Ai, Qing; Deng, Fu-Guo

    2015-01-01

    We present two deterministic schemes for constructing a CNOT gate and a Toffoli gate on photon-atom and photon-atom-atom hybrid quantum systems assisted by bad cavities, respectively. They are achieved by cavity-assisted photon scattering and work in the intermediate coupling region with bad cavities, which relaxes the difficulty of their implementation in experiment. Also, bad cavities are feasible for fast quantum operations and reading out information. Compared with previous works, our sch...

  5. Universal quantum gates for photon-atom hybrid systems assisted by bad cavities

    OpenAIRE

    Guan-Yu Wang; Qian Liu; Hai-Rui Wei; Tao Li; Qing Ai; Fu-Guo Deng

    2016-01-01

    We present two deterministic schemes for constructing a CNOT gate and a Toffoli gate on photon-atom and photon-atom-atom hybrid quantum systems assisted by bad cavities, respectively. They are achieved by cavity-assisted photon scattering and work in the intermediate coupling region with bad cavities, which relaxes the difficulty of their implementation in experiment. Also, bad cavities are feasible for fast quantum operations and reading out information. Compared with previous works, our sch...

  6. Kinetics and mechanism of oxygen atom transfer reaction in the formation of Ruv = O(EDTA)-1 complex: a reactivity scale for the oxidants

    International Nuclear Information System (INIS)

    The oxidation of RuIII (EDTA) (H2O) 1 with single oxygen atom donors (viz. H2O2, PhIO, KHSO5, NaOCl, Py-N-oxide) has been studied spectrophotometrically by following the development of characteristic peak of the Ruv = O(EDTA) oxo-complex 2. The activation parameters have been calculated in terms of a mechanism involving an intramolecular oxygen atom transfer from oxidant to complex 1. A reactivity scale has been set for the oxidants ClO-, PyO, H2O2, KHSO5 and C6H5IO on the basis of ΔG values. (author)

  7. Atom Localization in two and three dimensions via level populations in an M-type atomic system

    CERN Document Server

    Chaudhari, Nilesh

    2014-01-01

    Schemes for two-dimensional (2D) and three-dimensional (3D) atomic states localization in a five level M-type system using standing-wave laser fields are presented. In the upper two levels of the system we see a `coupled' localization for both 2D and 3D case. Here, the state in which majority of population will be found depends on the sign of the detunings between the upper levels and the intermediate level. The experimental implementation of the scheme using the D2 line of Rb is also proposed.

  8. Reverse atom transfer radical polymerization (RATRP) for anti-clotting PU-LaCl3-g-P(MPC) films

    International Nuclear Information System (INIS)

    Highlights: ► A facile and efficient approach for surface modification of PU was introduced. ► MPC was grafted onto the surface of PU film by RATRP. ► Some free La3+ ions reacted with CPTM and the product served as mixed ligand complex. ► The obtained PUs had good blood compatibility and a possible usage in biomedicine. - Abstract: Low grafting density is a disadvantage both in reverse atom transfer radical polymerization (RATRP) and ATRP. In this work, the surfaces of polyurethane (PU) were treated by LaCl3·6H2O to obtain modified surfaces with hydrated layers. The reaction of surface-initiated RATRP was carried out easily, which may be attributed to the enriched hydroxyl groups on the hydrated layers. An innovation found in this work is that some free lanthanum ions (La3+) reacted with the silane coupling agent (CPTM) and the product served as mixed ligand complex. The mixed ligand complex instead of conventional 2,2′-bipyridine was adopted to serve as a ligand in the process of RATRP. As a result, PU surfaces grafted with well-defined polymer brushes (MPC) were obtained. PU substrates before and after modification were characterized by FTIR, XPS, AFM, SEM, SCA, respectively. The results showed that zwitterionic brushes were successfully fabricated on the PU surfaces (P(MPC)), and the content of the grafted layer increased gradually with polymerization time with the grafting density as high as 97.9%. The blood compatibility of the PU substrates was evaluated by plasma recalcification profiles test and platelet adhesion tests in vitro. It was found that all PU functionalized with zwitterionic brush showed improved resistance to nonspecific protein adsorption and platelet adhesion.

  9. Relevant effects of localized atomic interactions and surface density of states on charge transfer in ion-surface collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bonetto, F.; Romero, M.A.; Garcia, E.A.; Vidal, R.; Ferron, J.; Goldberg, E.C. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Santa Fe (Argentina); Ferron, J.; Goldberg, E.C. [Universidad Nacional del Litoral, J., Dept. de Ingenieria de Materiales, Facultad de Ingenieria Quimica, Santa Fe (Argentina)

    2007-12-15

    Through a time-dependent quantum-mechanical calculation of the H{sup +} scattering by a highly oriented pyrolytic graphite (HOPG) surface, we are able to satisfactorily reproduce the interesting features we observed in ion scattering experiments in H{sup +}/HOPG system. We found that the combined effects of the semimetal character of HOPG together with the localized nature of the carbon atom states primarily determine the angular dependence and the magnitude of the ion fractions for large outgoing angles. The spin fluctuation effects (not considered in the present calculation) are discussed as one of the the main causes of the disagreement between the spinless theory results and the experiments for small exit angles. (authors)

  10. Electron transfer processes in collisions of highly charged energetic (0. 1 to 1. 0 MeV/nucleon) ions with helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Datz, S.; Hippler, R.; Andersen, L.H.; Dittner, P.F.; Knudsen, H.; Krause, H.F.; Miller, P.D.; Pepmiller, P.L.; Rosseel, T.; Stolterfoht, N.

    1987-01-01

    We have investigated charge transfer in collisions of energetic (0.1 - 1 MeV/nucleon) highly charged ions with helium atoms with the principal aim clarifying the nature of two-electron processes. The sensitivity of partial charge-changing cross sections (i.e., single- and double-charge transfer, transfer ionization (TI), and single and double ionization) to core configuration and scaling rules for one- and two-electron processes were investigated with iodine ions (q = 5+ ..-->.. 26+) and uranium ions (q = 17+ ..-->.. 44+) using an ion-charge state, recoil-ion coincidence method. Using zero-degree electron spectroscopy in coincidence with charge transfer, we found that at the higher energies, as in the case of 0.1 MeV/nucleon ions previously reported, TI involves the transfer of two electrons to a higher correlated state followed by loss of one electron to the continuum. In addition, we observe very high Rydberg electrons in coincidence with TI, implying a possible up-down correlation in the pair transfer. In addition, we made measurements of VUV photons emitted at the collision in coincidence with He/sup +/ and He/sup 2 +/ recoils. The results show that TI leads to capture into lower n states than single-charge transfer. 15 refs., 10 figs.

  11. Geometrical effects on energy transfer in disordered open quantum systems

    CERN Document Server

    Mohseni, M; Lloyd, S; Omar, Y; Rabitz, H

    2013-01-01

    We explore various design principles for efficient excitation energy transport in complex quantum systems. We investigate energy transfer efficiency in randomly disordered geometries consisting of up to 20 chromophores to explore spatial and spectral properties of small natural/artificial Light-Harvesting Complexes (LHC). We find significant statistical correlations among highly efficient random structures with respect to ground state properties, excitonic energy gaps, multichromophoric spatial connectivity, and path strengths. These correlations can even exist beyond the optimal regime of environment-assisted quantum transport. For random configurations embedded in spatial dimensions of 30 A and 50 A, we observe that the transport efficiency saturates to its maximum value if the systems contain 7 and 14 chromophores respectively. Remarkably, these optimum values coincide with the number of chlorophylls in (Fenna-Matthews-Olson) FMO protein complex and LHC II monomers, respectively, suggesting a potential nat...

  12. A technology transfer tracking system for NREL: Overview and results

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, R.L.; Chapman, M.J. [Chapman Research Group, Inc., Littleton, CO (United States)

    1996-07-01

    The purpose of this study has been to assess the National Renewable Energy Laboratory`s (NREL) technology, transfer--both the activities and the system, with the objective of developing a system to track the benefits of NREL-sponsored or conducted research. There were two factors which facilitated this study and which were important in the ability to make a detailed analysis and series of recommendations. First, was the nature of the lab, being one which, from its beginning, has worked closely with industry and, therefore has been directed toward research which would be of value to industry and hopefully commercialized. Second, the size of the laboratory made it relatively more easy to address issues and to become familiar with the organization and with the scientists themselves.

  13. Squeezing enhancement by damping in a driven atom-cavity system

    CERN Document Server

    Nha, H; Kim, S W; An, K; Nha, Hyunchul; Chough, Young-Tak; Kim, Sang Wook; An, Kyungwon

    2001-01-01

    In a driven atom-cavity coupled system in which the two-level atom is driven by a classical field, the cavity mode which should be in a coherent state in the absence of its reservoir, can be squeezed by coupling to its reservoir. The squeezing effect is enhanced as the damping rate of the cavity is increased to some extent.

  14. Transferred multipolar atom model for 10β,17β-dihydroxy-17α-methylestr-4-en-3-one dihydrate obtained from the biotransformation of methyloestrenolone.

    Science.gov (United States)

    Faroque, Muhammad Umer; Yousuf, Sammer; Zafar, Salman; Choudhary, M Iqbal; Ahmed, Maqsood

    2016-05-01

    Biotransformation is the structural modification of compounds using enzymes as the catalysts and it plays a key role in the synthesis of pharmaceutically important compounds. 10β,17β-Dihydroxy-17α-methylestr-4-en-3-one dihydrate, C19H28O3·2H2O, was obtained from the fungal biotransformation of methyloestrenolone. The structure was refined using the classical independent atom model (IAM) and a transferred multipolar atom model using the ELMAM2 database. The results from the two refinements have been compared. The ELMAM2 refinement has been found to be superior in terms of the refinement statistics. It has been shown that certain electron-density-derived properties can be calculated on the basis of the transferred parameters for crystals which diffract to ordinary resolution. PMID:27146568

  15. Interfacing ultracold atoms and mechanical oscillators on an atom chip

    Science.gov (United States)

    Treutlein, Philipp

    2010-03-01

    Ultracold atoms can be trapped and coherently manipulated close to a chip surface using atom chip technology. This opens the exciting possibility of studying interactions between atoms and on-chip solid-state systems such as micro- and nanostructured mechanical oscillators. One goal is to form hybrid quantum systems, in which atoms are used to read out, cool, and coherently manipulate the oscillators' state. In our work, we investigate different coupling mechanisms between ultracold atoms and mechanical oscillators. In a first experiment, we use atom-surface forces to couple the vibrations of a mechanical cantilever to the motion of a Bose-Einstein condensate in a magnetic microtrap on an atom chip. The atoms are trapped at about one micrometer distance from the cantilever surface. We make use of the coupling to read out the cantilever vibrations with the atoms and observe resonant coupling to several well-resolved mechanical modes of the condensate. In a second experiment, we investigate coupling via a 1D optical lattice that is formed by a laser beam retroreflected from a SiN membrane oscillator. The optical lattice serves as a `transfer rod' that couples vibrations of the membrane to the atoms and vice versa. We point out that the strong coupling regime can be reached in coupled atom-oscillator systems by placing both the atoms and the oscillator in a high-finesse optical cavity.

  16. A compact and robust diode laser system for atom interferometry on a sounding rocket

    OpenAIRE

    Schkolnik, V.; Hellmig, O.; Wenzlawski, A.; Grosse, J.; Kohfeldt, A.; Döringshoff, K.; Wicht, A.; Windpassinger, P.; Sengstock, K.; Braxmaier, C.; Krutzik, M.; Peters, A

    2016-01-01

    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone towards space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21...

  17. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    Science.gov (United States)

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  18. Electromagnetically induced transparency and controllable group velocity in a five-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Lihui Jin; Shangqing Gong; Yueping Niu; Shiqi Jin

    2006-01-01

    @@ The optical properties of a five-level atomic system composed of a A-type four-level atomic and a tripod four-level atomic systems are investigated. It is found that the behaviors of electromagnetically induced transparency (EIT) and group velocity can be controlled by choosing appropriate parameters with the interacting dark resonances. In particular, when all the fields are on resonance, the slow light at the symmetric transparency windows with a much broader EIT width is obtained by tuning the intensity of the coupling field in comparison with its sub-system, which provides potential applications in quantum storage and retrieval of light.

  19. Stress Transfer and Structural Failure of Bilayered Material Systems

    Science.gov (United States)

    Prieto-Munoz, Pablo Arthur

    Bilayered material systems are common in naturally formed or artificially engineered structures. Understanding how loads transfer within these structural systems is necessary to predict failure and develop effective designs. Existing methods for evaluating the stress transfer in bilayered materials are limited to overly simplified models or require experimental calibration. As a result, these methods have failed to accurately account for such structural failures as the creep induced roofing panel collapse of Boston's I-90 connector tunnel, which was supported by adhesive anchors. The one-dimensional stress analyses currently used for adhesive anchor design cannot account for viscoelastic creep failure, and consequently results in dangerously under-designed structural systems. In this dissertation, a method for determining the two-dimensional stress and displacement fields for a generalized bilayered material system is developed, and proposes a closed-form analytical solution. A general linear-elastic solution is first proposed by decoupling the elastic governing equations from one another through the so-called plane assumption. Based on this general solution, an axisymmetric problem and a plane strain problem are formulated. These are applied to common bilayered material systems such as: (1) concrete adhesive anchors, (2) material coatings, (3) asphalt pavements, and (4) layered sedimentary rocks. The stress and displacement fields determined by this analytical analysis are validated through the use of finite element models. Through the correspondence principle, the linear-elastic solution is extended to consider time-dependent viscoelastic material properties, thus facilitating the analysis of adhesive anchors and asphalt pavements while incorporating their viscoelastic material behavior. Furthermore, the elastic stress analysis can explain the fracturing phenomenon of material coatings, pavements, and layered rocks, successfully predicting their fracture

  20. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    OpenAIRE

    Syed Shahabuddin; Fatem Hamime Ismail; Sharifah Mohamad; Norazilawati Muhamad Sarih

    2015-01-01

    Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydro...

  1. Enhancement of heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous solution of non-ionic surfactant and ethanol

    International Nuclear Information System (INIS)

    Air-atomized spray cooling, where compressed air atomizes water into fine droplets, is an efficient alternative to conventional cooling techniques. The present work deals with the air-atomized spray cooling of a 6 mm thick stainless steel plate having an initial surface temperature of 900 °C, using surfactant Tween 20 and ethanol additives. The main difficulty in achieving a high cooling rate at elevated surface temperatures is the Leidenfrost phenomenon. The metallurgical properties of steel are highly affected by the run-out table cooling rate between the temperature range of 900–600 °C. Another important cooling region, particularly to achieve the high strength martensite microstructure in steel, is 900 °C–200 °C. Therefore, in this study, the heat transfer studies have been done over those temperature regions. The physical properties of the coolant mixture were measured to understand the heat transfer enhancement mechanism. The results show that increasing the ethanol fraction in pure water (with or without surfactant) enhances the critical heat flux, heat transfer coefficient and cooling rate of a hot surface in the nucleate and transition boiling regimes. A maximum cooling rate of 183 °C/s has been obtained with the ethanol–water mixture; whereas ethanol–water–surfactant mixture gives a cooling rate of 235 °C/s, both of which lie in ‘ultrafast cooling’ regime. - Highlights: •Air-atomized water spray cooling of a very high temperature surface was investigated. •Surfactant and ethanol additives promoted the transition and nucleate boiling heat transfer rates. •Critical heat flux value increased by using additives in pure water coolant. •Additives in coolant enhanced the cooling rate up to 235 °C/s for ROT application. •The obtained cooling rates were found to be in the higher range of an UFC

  2. Theoretical atomic collision physics

    Energy Technology Data Exchange (ETDEWEB)

    Lane, N.F. (Rice Univ., Houston, TX (USA) Rice Univ., Houston, TX (USA). Quantum Inst.)

    1990-01-01

    The theoretical atomic physics at Rice University focuses on obtaining a better understanding of the mechanisms that control inelastic collisions between excited atoms and atoms, molecules and ions. Particular attention is given to systems and processes that are of potential importance to advanced energy technologies. In the current year, significant progress has been made in quantitative studies of: quenching of low-Rydberg Na atoms in thermal energy collisions with He, Ne and Ar atoms; selective excitation resulting from charge transfer in collisions of highly stripped ions of He, Li, C, and with Li, Na and He atoms and H{sub 2} molecules at keV energies; differential elastic and single, and double electron transfer in He{sup ++} collisions with He at keV energies; inelastic electron-transfer in ultra-low-energy-energy (T=8 to 80K) collisions between {sup 3}He{sup +} and {sup 4}He and {sup 4}He{sup +} and {sup 3}He; a formalism for ionization by electron impact of ions in dense, high temperature plasmas.

  3. Atom Chips

    CERN Document Server

    Folman, R; Cassettari, D; Hessmo, B; Maier, T; Schmiedmayer, J; Folman, Ron; Krüger, Peter; Cassettari, Donatella; Hessmo, Björn; Maier, Thomas

    1999-01-01

    Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems.

  4. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  5. The international regulation of Informal Value Transfer Systems

    Directory of Open Access Journals (Sweden)

    Anand Ajay Shah

    2007-12-01

    Full Text Available After the 11th September 2001 attacks on the United States international attention quickly focused on the sources and methods of terrorist financing. Among the methods terrorists and other criminal actors use to transfer funds are Informal Value Transfer Systems (IVTS which operate either outside the formal financial sector, or through use of the formal financial sector, but without leaving a full record of the transaction. Though the vast majority of funds moved through IVTS are the earnings of migrant workers and immigrant communities, the lack of uniform worldwide regulation of IVTS provides ample opportunity for abuse and misuse. The international community primarily responded to IVTS concerns through the Financial Action Task Force on Money Laundering, which issued a series of recommendations and best practices for states in regulating IVTS operations. While these recommendations are a secure beginning to regulation of IVTS operating within ethnic communities, they fail to address the more modern forms of IVTS that have come about in the post-Cold War globalised world. Comprehensive recommendations governing all types of IVTS, as well as concerted international cooperation and coordination are necessary to address this global phenomenon.

  6. Free-free radiative transitions of electron-atom systems

    International Nuclear Information System (INIS)

    This thesis reports experimental investigations of Free-Free (FF) transitions, which are observable in electron-atom interaction in intense radiation fields of lasers. The theory of induced FF transitions is described for moderate and intense laser power densities. Experiments are discussed that show it is possible to do spectroscopy on resonances with the FF adsorption method. Resonant FF absorption processes are discussed between the (Ne+)3s2(1S) resonances and the resonances around 18.6 eV. The high energy resolution enabled the fine-structure of the upper resonances to be resolved. An electron backscattering spectrometer for multiphoton FF transitions is described. (Auth.)

  7. Atomically crafted spin lattices as model systems for quantum magnetism

    International Nuclear Information System (INIS)

    Low-dimensional quantum magnetism presents a seemingly unlimited source of rich, intriguing physics. Yet, because realistic experimental representations are difficult to come by, the field remains predominantly theoretical. In recent years, artificial spin structures built through manipulation of magnetic atoms in a scanning tunnelling microscope have developed into a promising testing ground for experimental verification of theoretical models. Here, we present an overview of available tools and discuss recent achievements as well as future avenues. Moreover, we show new observations on magnetic switching in a bistable bit that can be used to extrapolate information on the magnetisation of the microscope tip. (topical review)

  8. Cavity cooling and normal-mode spectroscopy of a bound atom-cavity system

    International Nuclear Information System (INIS)

    Full text: Single atoms strongly coupled to the field of an optical cavity form an attractive system for the realization of an atom-light interface useful for quantum information protocols. An experimental implementation of these schemes requires atoms which are trapped, cooled and localized in the cavity mode at a region of strong coupling. In the experiment presented here, single atoms are trapped and stored in a far-detuned intracavity dipole trap. We demonstrate cavity cooling by illuminating the system with a weak, slightly blue-detuned light beam. This extends the storage time of an atom, which is limited by parametric heating from fluctuations of the intracavity dipole trap, by more than a factor of two. The observed cooling force is of Sisyphus-type and was predicted. A special feature of this force is that it does not rely on the spontaneous emission of a photon by the atom, and therefore the cooling force is at least five times larger than the force achievable for free-space cooling methods with comparable excitation of a two-level atom. Preparing single atoms strongly-coupled to the mode of a high-finesse cavity in this way, we observe two well-resolved normal-mode peaks both in transmission of the cavity as well as in the trap lifetime. The experimental data agree well with a Monte Carlo simulation, demonstrating the localization of the atom to within a tenth of a wavelength at a cavity antinode. The ability to individually excite the normal modes of a bound atom-cavity system shows that we have reached good control over this fundamental quantum system. (author)

  9. Evaluation of Geometrical Modulation Transfer Function in Optical Lens System

    Directory of Open Access Journals (Sweden)

    Cheng-Mu Tsai

    2015-01-01

    Full Text Available This paper presents ray tracing algorithms to evaluate the geometrical modulation transfer function (GMTF of optical lens system. There are two kinds of ray tracings methods that can be applied to help simulate the point spread function (PSF in the image plane, for example, paraxial optics and real ray tracings. The paraxial optics ray tracing is used to calculate the first-order properties such as the effective focal length (EFL and the entrance pupil position through less cost of computation. However, the PSF could have a large tolerance by only using paraxial optics ray tracing for simulation. Some formulas for real ray tracing are applied in the sagittal and tangential line spread function (LSF. The algorithms are developed to demonstrate the simulation of LSF. Finally, the GMTF is evaluated after the fast Fourier transform (FFT of the LSF.

  10. Hot standby safety related control systems for inclined fuel transfer machine and cell transfer machine for refuelling of PFBR

    International Nuclear Information System (INIS)

    For 500 MWe Prototype Fast Breeder Reactor (PFBR), shutdown refuelling is envisaged in every eight months to replace approximately 92 various sub-assemblies viz., Fuel, Blanket, Absorber, Reflector and Shielding SA. Refuelling commences after 2 days of reactor shutdown when temperature of sodium pool comes down to 473 K and fuel handling startup authorisation signal is made available by FHStartup Computer. This paper deals with the development of three independent VME based Fault tolerant Dual redundant Hot standby Real Time Computer based Control systems for controlling Inclined Fuel Transfer Machine (IFTM) and two Cell Transfer Machines (CTM-FS and CTM-SS). IFTM carries spent subassembly from In-Vessel Transfer Position (IVTP) to Ex-Vessel Transfer Position (EVTP) and new subassembly from EVTP to IVTP. The spent fuel sub assembly which has significant decay heat (5 KW) is to be cooled during its transfer from IVTP to EVTP. The spent fuel sub assembly is carried in Transfer Pot (TP) filled with liquid sodium to provide sufficient cooling. Complete system has to be kept leak tight, since sodium is very reactive with both air and water. Cell transfer concept has been used for fuel handling of PFBR, in which the fuel gets transferred within leak tight cell under inert atmosphere. Both CTMs operate in Fuel Transfer Cell (FTC) filled with nitrogen. CTM-FS loads new fuel in EVTP from Fresh Sub Assembly Entry Port (FSEP) after pre heating in Fresh Subassembly Preheating Facility (FSPF). CTM-SS takes out spent subassemblies from EVTP and after washing in SSWF discharges in Spent Assembly Exit Port (SSEP). To meet high reliability and high availability several design features such as fault tolerance, hot standby, fail safe operation and online diagnostics for fault detection has been incorporated. Well defined software development methodology has been followed with independent verification and validation (IV and V) of deliverables at each stage of development. (author)

  11. I.I. Rabi Prize in Atomic, Molecular and Optical Physics Talk: Novel Quantum Physics in Few- and Many-body Atomic Systems

    Science.gov (United States)

    Chin, Cheng

    2011-05-01

    Recent cold atom researches are reaching out far beyond the realm that was conventionally viewed as atomic physics. Many long standing issues in other physics disciplines or in Gedanken-experiments are nowadays common targets of cold atom physicists. Two prominent examples will be discussed in this talk: BEC-BCS crossover and Efimov physics. Here, cold atoms are employed to emulate electrons in superconductors, and nucleons in nuclear reactions, respectively. The ability to emulate exotic or thought systems using cold atoms stems from the precisely determined, simple, and tunable interaction properties of cold atoms. New experimental tools have also been devised toward an ultimate goal: a complete control and a complete characterization of a few- or many-body quantum system. We are tantalizingly close to this major milestone, and will soon open new venues to explore new quantum phenomena that may (or may not!) exist in scientists' dreams.

  12. A Theoretical Investigation of the Charge Transfer System TCNQ-F4 and Alpha-Sexithiophene

    Science.gov (United States)

    Braun, Kai-Felix

    2005-03-01

    The electronic and geometrical structures of the charge-transfer system of alpha-sexihiophene and tetrafluorotetracyanoquinodimethane are calculated self-consistently from first principles. By means of density functional theory (DFT) methods several configurations of the free molecules are calculated within LDA and B3LYP employing a plane wave basis and different atomic orbital sets. The combined system exhibits preferential binding of the center of the TCNQ-F4 on top of a c-c bond of the sexithiophene, thereby the central configuration having the lowest energy. As opposed to the periodic arrangement in a crystal of the related system dimethylquaterthiophene and TCNQ-F4, the free system exhibits a strong interaction going along with a substantial polarization of both molecules. For comparison with scanning tunneling spectroscopy results, the molecules were adsorbed in a parallel geometry on a Au(111) slab. To take into account the voltage applied to the STM tip the system was finally calculated within an electric field. This work is financially supported by the US-DOE grant no. DE-FG02-02ER46012.

  13. Secure Data Transfer Guidance for Industrial Control and SCADA Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, Robert E.; Fluckiger, Jerry D.; Clements, Samuel L.; Tews, Cody W.; Burnette, John R.; Goranson, Craig A.; Kirkham, Harold

    2011-09-01

    This document was developed to provide guidance for the implementation of secure data transfer in a complex computational infrastructure representative of the electric power and oil and natural gas enterprises and the control systems they implement. For the past 20 years the cyber security community has focused on preventative measures intended to keep systems secure by providing a hard outer shell that is difficult to penetrate. Over time, the hard exterior, soft interior focus changed to focus on defense-in-depth adding multiple layers of protection, introducing intrusion detection systems, more effective incident response and cleanup, and many other security measures. Despite much larger expenditures and more layers of defense, successful attacks have only increased in number and severity. Consequently, it is time to re-focus the conventional approach to cyber security. While it is still important to implement measures to keep intruders out, a new protection paradigm is warranted that is aimed at discovering attempted or real compromises as early as possible. Put simply, organizations should take as fact that they have been, are now, or will be compromised. These compromises may be intended to steal information for financial gain as in the theft of intellectual property or credentials that lead to the theft of financial resources, or to lie silent until instructed to cause physical or electronic damage and/or denial of services. This change in outlook has been recently confirmed by the National Security Agency [19]. The discovery of attempted and actual compromises requires an increased focus on monitoring events by manual and/or automated log monitoring, detecting unauthorized changes to a system's hardware and/or software, detecting intrusions, and/or discovering the exfiltration of sensitive information and/or attempts to send inappropriate commands to ICS/SCADA (Industrial Control System/Supervisory Control And Data Acquisition) systems.

  14. Thermodynamic aspects of information transfer in complex dynamical systems

    Science.gov (United States)

    Cafaro, Carlo; Ali, Sean Alan; Giffin, Adom

    2016-02-01

    From the Horowitz-Esposito stochastic thermodynamical description of information flows in dynamical systems [J. M. Horowitz and M. Esposito, Phys. Rev. X 4, 031015 (2014), 10.1103/PhysRevX.4.031015], it is known that while the second law of thermodynamics is satisfied by a joint system, the entropic balance for the subsystems is adjusted by a term related to the mutual information exchange rate between the two subsystems. In this article, we present a quantitative discussion of the conceptual link between the Horowitz-Esposito analysis and the Liang-Kleeman work on information transfer between dynamical system components [X. S. Liang and R. Kleeman, Phys. Rev. Lett. 95, 244101 (2005), 10.1103/PhysRevLett.95.244101]. In particular, the entropic balance arguments employed in the two approaches are compared. Notwithstanding all differences between the two formalisms, our work strengthens the Liang-Kleeman heuristic balance reasoning by showing its formal analogy with the recent Horowitz-Esposito thermodynamic balance arguments.

  15. Transfer matrix method for multibody systems for piezoelectric stack actuators

    International Nuclear Information System (INIS)

    In order to achieve a large displacement output from a piezoelectric actuator, we realized the piezoelectric stack actuator (PSA) by mechanically layering/stacking multi-chip piezoelectric wafers in a series and electrically connecting the electrodes in parallel. In this paper, in order to accurately model the hysteresis and the dynamic characteristics of a PSA, the transfer matrix method for multibody systems (MSTMM) was adopted to describe the dynamic characteristics, and the Bouc-Wen hysteresis operator was used to represent the hysteresis. The vibration characteristics of a PSA and a piezo-actuated positioning mechanism (PPM) are derived and analyzed by the MSTMM; then, the dynamic responses of the PSA and the PPM are calculated. The experimental results show that the new method can accurately portray the hysteresis and the dynamic characteristics of a PSA and a PPM. On one hand, if we use this method to model the dynamic response of the PSA and the PPM, the PSA can be considered as a flexible body, as opposed to a mass-spring-damper system, which is in better agreement with the actual condition. On the other hand, the global dynamics equation is not needed for the study of system dynamics, and the dynamics equation has a small-sized matrix and a higher computational speed. Therefore, this method gives a broad range of possibilities for model-based controller design. (paper)

  16. Transfer matrix method for multibody systems for piezoelectric stack actuators

    Science.gov (United States)

    Zhu, Wei; Chen, Gangli; Bian, Leixiang; Rui, Xiaoting

    2014-09-01

    In order to achieve a large displacement output from a piezoelectric actuator, we realized the piezoelectric stack actuator (PSA) by mechanically layering/stacking multi-chip piezoelectric wafers in a series and electrically connecting the electrodes in parallel. In this paper, in order to accurately model the hysteresis and the dynamic characteristics of a PSA, the transfer matrix method for multibody systems (MSTMM) was adopted to describe the dynamic characteristics, and the Bouc-Wen hysteresis operator was used to represent the hysteresis. The vibration characteristics of a PSA and a piezo-actuated positioning mechanism (PPM) are derived and analyzed by the MSTMM; then, the dynamic responses of the PSA and the PPM are calculated. The experimental results show that the new method can accurately portray the hysteresis and the dynamic characteristics of a PSA and a PPM. On one hand, if we use this method to model the dynamic response of the PSA and the PPM, the PSA can be considered as a flexible body, as opposed to a mass-spring-damper system, which is in better agreement with the actual condition. On the other hand, the global dynamics equation is not needed for the study of system dynamics, and the dynamics equation has a small-sized matrix and a higher computational speed. Therefore, this method gives a broad range of possibilities for model-based controller design.

  17. Conceptual design for an on-site spent-fuel transfer system

    International Nuclear Information System (INIS)

    Transnuclear, Inc. has developed two conceptual designs for transferring spent fuel from a nuclear plant's fuel storage pool to large storage casks by means of a small transfer cask. The transfer of spent fuel would be performed external to the nuclear plant, rather than within the plant's fuel building or transport bay. The systems can also be used to transfer fuel between storage casks and transport casks. Both systems meet the design considerations for on-site spent-fuel transfer systems outlined in EPRI Report NP-6425, ''Design Considerations for On-Site Spent-Fuel Transfer Systems.'' One of the designs involves a dry transfer into the storage cask, while the other uses a wet transfer method. Both systems have been evaluated for economic and technical feasibility, licensability and practicality. This report describes each of the conceptual designs and outlines the operating procedures for each system. In addition, a risk and accident assessment, a logistical evaluation, and an economic analysis including target cost evaluations and system cost estimates are included. This report shows that it is technically feasible and that costs are economically justifiable to perform on-site spent-fuel transfers using small transfer casks. However, the final design selection for the transfer system could depend on the individual utility's operational preferences and the unique facility features that already exist at each nuclear plant. 9 tabs

  18. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    International Nuclear Information System (INIS)

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., “Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth,” Nano Lett. 14, 3661–3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange

  19. Inductively coupled plasma-atomic emission spectroscopy glovebox assembly system at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ''cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  20. Quantum entanglement in the system of two two-level atoms interacting with a single-mode vacuum field

    Institute of Scientific and Technical Information of China (English)

    Zeng Ke; Fang Mao-Fa

    2005-01-01

    The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investigated by using the quantum reduced entropy; the quantum entanglement between two two-level atoms, and that between a single two-level atom and a single-mode vacuum field are studied in terms of the quantum relative entropy. The influences of the atomic dipole-dipole interaction on the quantum entanglement of the system are also discussed. Our results show that three entangled states of two atoms-field, atom-atom, and atom-field can be prepared via two two-level atoms interacting with a single-mode vacuum field.