WorldWideScience

Sample records for atom probe field

  1. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  2. Atom-probe field-ion-microscope mass spectrometer

    International Nuclear Information System (INIS)

    Nishikawa, Osamu

    1983-01-01

    The titled analyzer, called simply atom-probe, has been developed by combining a field ion microscope (FIM) and a mass spectrometer, and is divided into the time-of-flight type, magnetic sector type, and quadrupole type depending on the types of mass spectrometers. In this paper, the author first describes on the principle and construction of a high resolution, time-of-flight atom-probe developed and fabricated in his laboratory. The feature of the atom-probe lies in the analysis of atoms and molecules in hyper-fine structure region one by one utilizing the high resolution of FIM. It also has the advantages of directly determining the composition by a ratio of the numbers of respective ions because of a constant detection sensitivity regardless of mass numbers, of the resolution as high as single atom layer in depth direction, and of detecting the positional relationship among detected ions by the order of detection in a sample. To determine the composition in a hyperfine structure region, the limited small number of atoms and molecules in the region must be identified distinctly one by one. In the analyzed result of Ni-silicide formed by heating Si evaporated on a Ni tip at 1000 K for 5 minutes, each isotope was not only clearly separated, but also their abundance ratio was very close to the natural abundance ratio. The second half of the paper reports on the analysis of TiC promising for a cold cathode material, adsorption of CO and alcohol, and the composition and structure of silicides, as a few application examples. (Wakatsuki, Y.)

  3. Atom probe field ion microscopy and related topics: A bibliography 1991

    International Nuclear Information System (INIS)

    Russell, K.F.; Miller, M.K.

    1993-01-01

    This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory

  4. Efficient atom localization via probe absorption in an inverted-Y atomic system

    Science.gov (United States)

    Wu, Jianchun; Wu, Bo; Mao, Jiejian

    2018-06-01

    The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.

  5. Atom probe microanalysis: Principles and applications to materials problems

    International Nuclear Information System (INIS)

    Miller, M.K.; Smith, G.D.W.

    1987-01-01

    A historical background and general introduction to field emission and field-ionization, field-ion microscopy, and the atom probe is given. Physical principles of field ion microscopy are explained, followed by interpretation of images. Types of atom probes are discussed, as well as the instrumentation used in atomic probe microanalysis. Methods of atom probe analysis and data representation are covered, along with factors affecting performance and statistical analysis of atom probe data. Finally, some case studies and special types of analyses are presented

  6. Atom probe field ion microscopy and related topics: A bibliography 1992

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.F.; Godfrey, R.D.; Miller, M.K.

    1993-12-01

    This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

  7. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1979-06-01

    A brief review is presented of: the basic physical principles of the field-ion and atom-probe microscopes; the many applications of these instruments to the study of defects and radiation damage in solids; and the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He in tungsten

  8. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1982-01-01

    An attempt is made to introduce the reader to the basic physical ideas involved in the field-ion and atom-probe field-ion microscope techniques, and to the applications of these techniques to the study of defects and radiation damage in solids. The final section discusses, in precise form, the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interest in detail

  9. Atomic wavefunctions probed through strong-field light-matter interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mairesse, Y; Villeneuve, D M; Corkum, P B; Dudovich, N [Natl Res Council Canada, Ottawa, ON K1A 0R6 (Canada); Shafir, D; Dudovich, N [Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, (Israel); Mairesse, Y [Univ Bordeaux 1, CELIA, CNRS, UMR 5107, CEA, F-33405 Talence (France)

    2009-07-01

    Strong-field light-matter interactions can encode the spatial properties of the electronic wavefunctions that contribute to the process. In particular, the broadband harmonic spectra, measured for a series of molecular alignments, can be used to create a tomographic reconstruction of molecular orbitals. Here, we present an extension of the tomography approach to systems that cannot be naturally aligned. We demonstrate this ability by probing the two-dimensional properties of atomic wavefunctions. By manipulating an electron-ion re-collision process, we are able to resolve the symmetry of the atomic wavefunction with high contrast. (authors)

  10. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Probing Field Distributions on Waveguide Structures with an Atomic Force/Photon Scanning Tunneling Microscope

    NARCIS (Netherlands)

    Borgonjen, E.G.; Borgonjen, E.G.; Moers, M.H.P.; Moers, M.H.P.; Ruiter, A.G.T.; van Hulst, N.F.

    1995-01-01

    A 'stand-alone' Photon Scanning Tunneling Microscope combined with an Atomic force Microscope, using a micro-fabricated silicon-nitride probe, is applied to the imaging of field distribution in integrated optical ridge waveguides. The electric field on the waveguide is locally probed by coupling to

  12. Study of defects, radiation damage and implanted gases in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.; Amano, J.; Wagner, A.

    1980-10-01

    The ability of the field-ion microscope to image individual atoms has been applied, at Cornell University, to the study of fundamental properties of point defects in irradiated or quenched metals. The capability of the atom probe field-ion microscope to determine the chemistry - that is, the mass-to-charge ratio - of a single ion has been used to investigate the behavior of different implanted species in metals. A brief review is presented of: (1) the basic physical principles of the field-ion and atom-probe microscopes; (2) the many applications of these instruments to the study of defects and radiation damage in solids; and (3) the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interests in detail

  13. Atom probe field ion microscopy and related topics: A bibliography 1989

    International Nuclear Information System (INIS)

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications

  14. Modeling Atom Probe Tomography: A review

    Energy Technology Data Exchange (ETDEWEB)

    Vurpillot, F., E-mail: francois.vurpillot@univ-rouen.fr [Groupe de Physique des Matériaux, UMR CNRS 6634, Université de Rouen, Saint Etienne du Rouvray 76801 (France); Oberdorfer, C. [Institut für Materialwissenschaft, Lehrstuhl für Materialphysik, Universität Stuttgart, Heisenbergstr. 3, 70569 Stuttgart (Germany)

    2015-12-15

    Improving both the precision and the accuracy of Atom Probe Tomography reconstruction requires a correct understanding of the imaging process. In this aim, numerical modeling approaches have been developed for 15 years. The injected ingredients of these modeling tools are related to the basic physic of the field evaporation mechanism. The interplay between the sample nature and structure of the analyzed sample and the reconstructed image artefacts have pushed to gradually improve and make the model more and more sophisticated. This paper reviews the evolution of the modeling approach in Atom Probe Tomography and presents some future potential directions in order to improve the method. - Highlights: • The basics of field evaporation. • The main aspects of Atom Probe Tomography modeling. • The intrinsic limitations of the current method and future potential directions to improve the understanding of tip to image ion projection.

  15. Atom probe field ion microscopy and related topics: A bibliography 1993

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included.

  16. Atom probe field ion microscopy and related topics: A bibliography 1993

    International Nuclear Information System (INIS)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included

  17. Field ion microscopy and imaging atom-probe mass spectroscopy of superconducting YBa2Cu3O7/sub -//sub x/

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Brenner, S.S.

    1987-01-01

    The structure and composition of the superconducting oxide YBa 2 Cu 3 O/sub 7-//sub x/ have been examined in atomic detail by field ion microscopy and imaging atom-probe mass spectroscopy. The field ion samples were prepared from hot-pressed disks of the oxide powders. Atomic resolution images were obtained with either argon or hydrogen as the imaging gas. Individual layers of atoms were observed which could be field evaporated in a uniform, layer-by-layer manner. Imaging atom-probe analysis of the field ion tips indicated a metal composition which varied noticeably from sample to sample and an oxygen concentration which was consistently much too low

  18. Interpretation of atom probe tomography data for the intermetallic TiAl+Nb by means of field evaporation simulation

    KAUST Repository

    Boll, Torben; Al-Kassab, Talaat

    2013-01-01

    In this paper simulations of the field evaporation process during field ion microscopy (FIM) and atom probe tomography (APT) are presented and compared with experimental data. The Müller-Schottky-model [1] was extended to include the local atomic

  19. Imaging process in field ion microscopy from the FEM to the atom-probe

    International Nuclear Information System (INIS)

    Mueller, E.W.

    1976-01-01

    The development of the technique and the interpretations of the imaging mechanism, which involve a number of complex phenomena, are traced from the invention of the field emission microscope and the discovery of field desorption to the first field ion microscope. Subsequent introduction of cryogenic operation and utilization of field evaporation led, prior to 1960, to the attainment of high-quality images with full resolution of the atomic lattice and to fundamental applications in the study of lattice defects and other phenomena of physical metallurgy. Extension to the lower-melting metals by imaging with neon was aided by the availability of image intensification technology. The invention of the atom-probe FIM in 1967, permitting surface analysis with ultimate single-atom sensitivity, also brought the discovery of unexpected effects, such as field adsorption of the noble images gases and the abundant formation of metal-noble gas molecular ions. These phenomena, together with recent results of field desorption microcopy, must be included in a refined interpretation of the imaging process. 16 figs., 115 references

  20. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  1. In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.

    Science.gov (United States)

    Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten

    2017-04-01

    Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

  2. How can we probe the atom mass currents induced by synthetic gauge fields?

    Science.gov (United States)

    Paramekanti, Arun; Killi, Matthew; Trotzky, Stefan

    2013-05-01

    Ultracold atomic fermions and bosons in an optical lattice can have quantum ground states which support equilibrium currents in the presence of synthetic magnetic fields or spin orbit coupling. As a tool to uncover these mass currents, we propose using an anisotropic quantum quench of the optical lattice which dynamically converts the current patterns into measurable density patterns. Using analytical calculations and numerical simulations, we show that this scheme can probe diverse equilibrium bulk current patterns in Bose superfluids and Fermi fluids induced by synthetic magnetic fields, as well as detect the chiral edge currents in topological states of atomic matter such as quantum Hall and quantum spin Hall insulators. This work is supported by NSERC of Canada and the Canadian Institute for Advanced Research.

  3. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J., E-mail: takahashi.3ct.jun@jp.nssmc.com [Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Kawakami, K. [Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Raabe, D. [Max-Planck Institut für Eisenforschung GmbH, Department for Microstructure Physics and Alloy Design, Max-Planck-Str. 1, 40237 Düsseldorf (Germany)

    2017-04-15

    Highlights: • Quantitative analysis in Fe-Cu alloy was investigated in voltage and laser atom probe. • In voltage-mode, apparent Cu concentration exceeded actual concentration at 20–40 K. • In laser-mode, the concentration never exceeded the actual concentration even at 20 K. • Detection loss was prevented due to the rise in tip surface temperature in laser-mode. • Preferential evaporation of solute Cu was reduced in laser-mode. - Abstract: The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40 K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20 K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions.

  4. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Raabe, D

    2017-04-01

    The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Xiong Hao; Zhang Duo

    2011-01-01

    The behavior of two-dimensional (2D) atom localization is explored by monitoring the probe absorption in a microwave-driven four-level atomic medium under the action of two orthogonal standing-wave fields. Because of the position-dependent atom-field interaction, the information about the position of the atom can be obtained via the absorption measurement of the weak probe field. It is found that the localization behavior is significantly improved due to the joint quantum interference induced by the standing-wave and microwave-driven fields. Most importantly, the atom can be localized at a particular position and the maximal probability of finding the atom in one period of the standing-wave fields reaches unity by properly adjusting the system parameters. The proposed scheme may provide a promising way to achieve high-precision and high-resolution 2D atom localization.

  6. Investigations of reactions between pure refractory metals and light gases with the field ion microscope and atom probe

    International Nuclear Information System (INIS)

    Krautz, E.; Haiml, G.

    1989-01-01

    The initial stages of selected reactions of the refractory metals tungsten, niobium and tantalum with hydrogen, oxygen, nitrogen and methane have been studied with the field ion microscope in atomic resolution whereby the composition of single net planes converages and surface zones could absolutely be analyzed with the atom probe by using field desorption under defined conditions at low temperatures. 14 refs., 9 figs. (Author)

  7. Broadening the applications of the atom probe technique by ultraviolet femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Hono, K., E-mail: kazuhiro.hono@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Ohkubo, T. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Chen, Y.M.; Kodzuka, M. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Oh-ishi, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Sepehri-Amin, H. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Li, F. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Kinno, T. [Corporate R and D Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582 (Japan); CREST, Japan Science and Technology Agency (Japan); Tomiya, S.; Kanitani, Y. [Advanced Materials Laboratory, Sony Corporation, Atsugi, Kanagawa 243-0021 (Japan)

    2011-05-15

    Laser assisted field evaporation using ultraviolet (UV) wavelength gives rise to better mass resolution and signal-to-noise ratio in atom probe mass spectra of metals, semiconductors and insulators compared to infrared and green lasers. Combined with the site specific specimen preparation techniques using the lift-out and annular Ga ion milling in a focused ion beam machine, a wide variety of materials including insulating oxides can be quantitatively analyzed by the three-dimensional atom probe using UV laser assisted field evaporation. After discussing laser irradiation conditions for optimized atom probe analyses, recent atom probe tomography results on oxides, semiconductor devices and grain boundaries of sintered magnets are presented. -- Research highlights: {yields} Application of ultraviolet (UV) femtosecond pulsed laser in a three dimensional atom probe (3DAP). {yields} Improved mass resolution and signal-to-noise ratio in atom probe mass spectra using UV laser. {yields} UV laser facilitates 3DAP analysis of insulating oxides. {yields} Quantitative analysis of wide variety of materials including insulating oxides using UV femotosecond laser.

  8. Creating and probing coherent atomic states

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, C.O.; Burgdoerfer, J. [Oak Ridge National Lab., TN (United States). Physics Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Frey, M.T.; Dunning, F.B. [Rice Univ., Houston, TX (United States)

    1997-06-01

    The authors present a brief review of recent experimental and theoretical time resolved studies of the evolution of atomic wavepackets. In particular, wavepackets comprising a superposition of very-high-lying Rydberg states which are created either using a short half-cycle pulse (HCP) or by rapid application of a DC field. The properties of the wavepackets are probed using a second HCP that is applied following a variable time delay and ionizes a fraction of the atoms, much like a passing-by ion in atomic collisions.

  9. Clustered field evaporation of metallic glasses in atom probe tomography

    International Nuclear Information System (INIS)

    Zemp, J.; Gerstl, S.S.A.; Löffler, J.F.; Schönfeld, B.

    2016-01-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3 nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different – as yet unknown – physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. - Highlights: • Field evaporation of metallic glasses is heterogeneous on a scale of up to 3 nm. • Amount of clustered evaporation depends on ion species and temperature. • Length scales of clustered evaporation and correlative evaporation are similar.

  10. Quantitative compositional analysis and field-evaporation behavior of ordered Ni4Mo on an atomic plane-by-plane basis: an atom-probe field-ion microscope study. MSC report No. 4802

    International Nuclear Information System (INIS)

    Yamamoto, M.; Seidman, D.N.

    1982-10-01

    The (211) fundamental and (101) superlattice planes, of the bct lattice, were analysed chemically on an atomic plane-by-plane basis. It was demonstrated that the composition of each individual plane can be determined as a function of depth without any ambiguity. The overall average Mo concentration was measured to be 17.1 at. % for the (211) fundamental plane. Details of the field evaporation behavior of the (211) fundamental and (101) superlattice planes were studied. The field-evaporation behavior is described in terms of the field-evaporation rate, the order of the field evaporated ions, etc. Each individual atomic plane field evaporated on an atomic plane-by-plane basis for the (211) fundamental plane. While for (101) superlattice plane a group of planes consisting of one plane of Mo atoms and four planes of Ni atoms field-evaporated as a unit. An abnormal increase in the number of Mo atoms was found in the central portion of the (211) fundamental plane. Possible mechanisms for the abnormal field evaporation rate are discussed. It is concluded that the atom probe technique can be used to follow the physics and chemistry of the field-evaporation process and the chemistry of the alloy as a function of position, on a subnanometer scale, throughout the specimen. 13 figures

  11. Two-dimensional atom localization via probe absorption in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li

    2013-01-01

    We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization

  12. Performance and applications of the ORNL local electrode atom probe

    International Nuclear Information System (INIS)

    Miller, M.K.; Russell, K.F.

    2004-01-01

    Full text: The commercial introduction in 2003 of the local electrode atom probe (LEAP) developed by Imago Scientific Instruments has made dramatic, orders of magnitude improvements in the data acquisition rate and the size of the analyzed volume compared to previous types of three-dimensional atom probes and other scanning atom probes. This state-of-the-art instrument may be used for the analysis of traditional needle-shaped specimens and specimens fabricated from 'flat' specimens with focused ion beam (FIB) techniques. The advantage of this local electrode configuration is that significantly lower (∼50 %) standing and pulse voltages are required to produce the field strength required to field evaporate ions from the specimen. New high speed (200 kHz) pulse generators coupled with crossed delay line detectors and faster timing systems also enable significantly faster (up to 300 times) data acquisition rates to be achieved. This new design also permits a significantly larger field of view to be analyzed and results in data sets containing up to 10 8 atoms. In the local electrode atom probe, a ∼10-50 μm diameter aperture is typically positioned approximately one aperture diameter in front of the specimen. In order to accurately align the specimen to the aperture in the funnel-shaped electrode, the specimen is mounted on a three axis nanopositioning stage. An approximate alignment is performed while viewing the relative positions of the specimen and the local electrode with a pair of low magnification video cameras and then a pair of higher magnification video cameras attached to long range microscopes. The final alignment is performed with the use of the field evaporated ions from the specimen. A discussion on the alignment of the specimen with the local electrode, the effects of the fields on the specimen, and the effects of aperture size on aperture lifetime will be presented. The performance of the ORNL local electrode atom probe will be described. The

  13. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  14. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Directory of Open Access Journals (Sweden)

    Zeng Wei

    2018-03-01

    Full Text Available For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  15. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Science.gov (United States)

    Zeng, Wei; Deng, Li; Chen, Aixi

    2018-03-01

    For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D) atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  16. Atom-probe field-ion-microscopy study of Fe-Ti alloys

    International Nuclear Information System (INIS)

    Pickering, H.W.; Kuk, Y.; Sakurai, T.

    1980-01-01

    A newly developed high-performance atom-probe (field ion microscope) was employed for the composition analysis of Fe-Ti alloys and their interactions with ambient gas, such as H 2 and O 2 . With a mass resolution (m/Δm) better than 2000 and a spatial resolution of a few A, all isotopes of Fe and Ti and their hydrides and other compounds are clearly resolved during the depth profile study. Some of our findings are: (1) Titanium segregated on the surface and grain boundaries upon heating (greater than or equal to 900 0 C), in the form of oxides, and (2) some Ti in the bulk forms clusters of various sizes with C, O, and/or N as nuclei

  17. Dynamics of trapped atoms around an optical nanofiber probed through polarimetry.

    Science.gov (United States)

    Solano, Pablo; Fatemi, Fredrik K; Orozco, Luis A; Rolston, S L

    2017-06-15

    The evanescent field outside an optical nanofiber (ONF) can create optical traps for neutral atoms. We present a non-destructive method to characterize such trapping potentials. An off-resonance linearly polarized probe beam that propagates through the ONF experiences a slow axis of polarization produced by trapped atoms on opposite sides along the ONF. The transverse atomic motion is imprinted onto the probe polarization through the changing atomic index of refraction. By applying a transient impulse, we measure a time-dependent polarization rotation of the probe beam that provides both a rapid and non-destructive measurement of the optical trapping frequencies.

  18. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe

    International Nuclear Information System (INIS)

    Kellogg, G.L.

    1981-01-01

    Three methods are discussed for determining the field emitter temperature during laser irradiation in the recently developed Pulsed Laser Atom Probe. A procedure based on the reduction of the lattice evaporation field with increasing emitter temperature is found to be the most convenient and reliable method between 60 and 500 K. Calibration curves (plots of the evaporation field versus temperature) are presented for dc and pulsed field evaporation of W, Mo, and Rh. These results show directly the important influence of the evaporation rate on the temperature dependence of the evaporation field. The possibility of a temperature calibration based on the ionic charge state distribution of field evaporated lattice atoms is also discussed. The shift in the charge state distributions which occurs when the emitter temperature is increased and the applied field strength is decreased at a constant rate of evaporation is shown to be due to the changing field and not the changing temperature. Nevertheless, the emitter temperature can be deduced from the charge state distribution for a specified evaporation rate. Charge state distributions as a function of field strength and temperature are presented for the same three materials. Finally, a preliminary experiment is reported which shows that the emitter temperature can be determined from field ion microscope observations of single atom surface diffusion over low index crystal planes. This last calibration procedure is shown to be very useful at higher temperatures (>600 K) where the other two methods become unreliable

  19. A computational geometry framework for the optimisation of atom probe reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, Peter [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Institute for General Materials Properties, Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen (Germany); Cairney, Julie [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2016-10-15

    In this paper, we present pathways for improving the reconstruction of atom probe data on a coarse (>10 nm) scale, based on computational geometry. We introduce a way to iteratively improve an atom probe reconstruction by adjusting it, so that certain known shape criteria are fulfilled. This is achieved by creating an implicit approximation of the reconstruction through a barycentric coordinate transform. We demonstrate the application of these techniques to the compensation of trajectory aberrations and the iterative improvement of the reconstruction of a dataset containing a grain boundary. We also present a method for obtaining a hull of the dataset in both detector and reconstruction space. This maximises data utilisation, and can be used to compensate for ion trajectory aberrations caused by residual fields in the ion flight path through a ‘master curve’ and correct for overall shape deviations in the data. - Highlights: • An atom probe reconstruction can be iteratively improved by using shape constraints. • An atom probe reconstruction can be inverted using barycentric coordinate transforms. • Hulls for atom probe datasets can be obtained from 2D detector outlines that are co-reconstructed with the data. • Ion trajectory compressions caused by instrument-specific residual fields in the drift tube can be corrected.

  20. Encapsulation method for atom probe tomography analysis of nanoparticles

    International Nuclear Information System (INIS)

    Larson, D.J.; Giddings, A.D.; Wu, Y.; Verheijen, M.A.; Prosa, T.J.; Roozeboom, F.; Rice, K.P.; Kessels, W.M.M.; Geiser, B.P.; Kelly, T.F.

    2015-01-01

    Open-space nanomaterials are a widespread class of technologically important materials that are generally incompatible with analysis by atom probe tomography (APT) due to issues with specimen preparation, field evaporation and data reconstruction. The feasibility of encapsulating such non-compact matter in a matrix to enable APT measurements is investigated using nanoparticles as an example. Simulations of field evaporation of a void, and the resulting artifacts in ion trajectory, underpin the requirement that no voids remain after encapsulation. The approach is demonstrated by encapsulating Pt nanoparticles in an ZnO:Al matrix created by atomic layer deposition, a growth technique which offers very high surface coverage and conformality. APT measurements of the Pt nanoparticles are correlated with transmission electron microscopy images and numerical simulations in order to evaluate the accuracy of the APT reconstruction. - Highlights: • Pt nanoparticles were analyzed using atom probe tomography and TEM. • The particles were prepared by encapsulation using atomic layer deposition. • Simulation of field evaporation near a void results in aberrations in ion trajectories. • Apparent differences between TEM and APT analyses are reconciled through simulation of field evaporation from a low-field matrix containing high-field NPs; ion trajectory aberrations are shown to lead to an apparent mixing of the matrix into the NPs.

  1. Control of Goos-Hänchen shift via input probe field intensity

    Science.gov (United States)

    Ziauddin; Lee, Ray-Kuang; Qamar, Sajid

    2016-11-01

    We suggest a scheme to control Goos-Hänchen (GH) shift in an ensemble of strongly interacting Rydberg atoms, which act as super-atoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configurations where two fields, i.e, a strong control and a weak field are employed [D. Petrosyan, J. Otterbach, and M. Fleischhauer, Phys. Rev. Lett. 107, 213601 (2011)]. The propagation of probe field is influenced by two-photon correlation within the blockade distance, which are damped due to the saturation of super-atoms. The amplitude of GH shift in the reflected light depends on the intensity of probe field. We observe large negative GH shift in the reflected light for small values of the probe field intensities.

  2. Interpretation of atom probe tomography data for the intermetallic TiAl+Nb by means of field evaporation simulation

    KAUST Repository

    Boll, Torben

    2013-01-01

    In this paper simulations of the field evaporation process during field ion microscopy (FIM) and atom probe tomography (APT) are presented and compared with experimental data. The Müller-Schottky-model [1] was extended to include the local atomic arrangement on the evaporation process of atoms. This arrangement was described by the sum of the next-neighbor-binding-energies, which differ for an atom of type A, depending on how many A-A, B-B or A-B bonds are present. Thus simulations of APT-data of intermetallic phases become feasible. In this study simulations of L10-TiAl with additions of Nb are compared with experimental data. Certain artifacts, which appear for experimental data are treated as well. © 2012 Elsevier B.V.

  3. Nanometer-scale isotope analysis of bulk diamond by atom probe tomography

    NARCIS (Netherlands)

    Schirhagl, R.; Raatz, N.; Meijer, J.; Markham, M.; Gerstl, S. S. A.; Degen, C. L.

    2015-01-01

    Atom-probe tomography (APT) combines field emission of atoms with mass spectrometry to reconstruct three-dimensional tomograms of materials with atomic resolution and isotope specificity. Despite significant recent progress in APT technology, application to wide-bandgap materials with strong

  4. A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT).

    Science.gov (United States)

    Kim, Se-Ho; Kang, Phil Woong; Park, O Ok; Seol, Jae-Bok; Ahn, Jae-Pyoung; Lee, Ji Yeong; Choi, Pyuck-Pa

    2018-07-01

    We present a new method of preparing needle-shaped specimens for atom probe tomography from freestanding Pd and C-supported Pt nanoparticles. The method consists of two steps, namely electrophoresis of nanoparticles on a flat Cu substrate followed by electrodeposition of a Ni film acting as an embedding matrix for the nanoparticles. Atom probe specimen preparation can be subsequently carried out by means of focused-ion-beam milling. Using this approach, we have been able to perform correlative atom probe tomography and transmission electron microscopy analyses on both nanoparticle systems. Reliable mass spectra and three-dimensional atom maps could be obtained for Pd nanoparticle specimens. In contrast, atom probe samples prepared from C-supported Pt nanoparticles showed uneven field evaporation and hence artifacts in the reconstructed atom maps. Our developed method is a viable means of mapping the three-dimensional atomic distribution within nanoparticles and is expected to contribute to an improved understanding of the structure-composition-property relationships of various nanoparticle systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Atom-probe field-ion microscope for the study of the interaction of impurity atoms or alloying elements with defects

    International Nuclear Information System (INIS)

    Wagner, A.; Hall, T.M.; Seidman, D.N.

    1976-10-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) designed for the study of defects is described. This atom probe features: (1) a variable magnification internal-image-intensification system; (2) a liquid-helium goniometer stage; (3) a low-energy (less than or equal 3 keV) gas-ion gun for in-situ irradiations; (4) an ultra-high vacuum (approximately 3.10 -10 torr) chamber; (5) a high vacuum (approximately 10 -6 torr) specimen-exchange device; (6) a Chevron ion detector; and (7) an eight-channel digital timer with a +-10 nsec resolution for measuring the TOFs. The entire process of applying the evaporation pulse to the specimen, measuring the voltages, and analyzing the TOF data is controlled by a computer. With this system we can record and analyze 600 TOFmin. Results on unirradiated specimens of molybdenum, tungsten, W/25 at. % Re, Mo/1.0 at. % Ti, Mo/1.0 at. % Ti/0.08 at. % Zr and a special low swelling stainless steel alloy (LS1A) demonstrate the instrument's ability to quantitatively determine concentrations at the 5.10 -4 at fr level and to determine their spatial distribution with a resolution of a few angstroms

  6. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    International Nuclear Information System (INIS)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min -1 can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected

  7. Three dimensional atom probe imaging of GaAsSb quantum rings

    International Nuclear Information System (INIS)

    Beltran, A.M.; Marquis, E.A.; Taboada, A.G.; Ripalda, J.M.; Garcia, J.M.; Molina, S.I.

    2011-01-01

    Unambiguous evidence of ring-shaped self-assembled GaSb nanostructures grown by molecular beam epitaxy is presented on the basis of atom-probe tomography reconstructions and dark field transmission electron microscopy imaging. The GaAs capping process causes a strong segregation of Sb out of the center of GaSb quantum dots, leading to the self-assembled GaAs x Sb 1-x quantum rings of 20-30 nm in diameter with x∼0.33. -- Highlights: → Atom-probe tomography resolves QR morphology of GaSb self-assembled GaSb buried nanostructures. → From atom-probe tomography compositional distribution has been obtained. → Strong segregation and morphological changes are observed with respect to uncapped QR.

  8. Specimen preparation of irradiated materials for examination in the atom probe field ion microscope

    International Nuclear Information System (INIS)

    Russell, K.F.; Miller, M.K.

    1994-01-01

    The atom probe field ion microscope (APFIM) requires specimens in the form of ultrasharp needles. Basic protective measures used to reduce exposure druing specimen preparation are discussed. The low-level radioactive specimen blanks may be made using a two-stage electropolishing process using a thin layer of electrolyte floating on a denser inert liquid; this produces a necked region and eventually two specimens from each single blank. The amount of material handled may also be reduced using a micropolishing technique to repolish blunt or fractured specimens. Control of contamination and possible spills is discussed

  9. Microstructural characterization of irradiated PWR steels using the atom probe field-ion microscope

    International Nuclear Information System (INIS)

    Miller, M.K.; Burke, M.G.

    1987-08-01

    Atom probe field-ion microscopy has been used to characterize the microstructure of a neutron-irradiated A533B pressure vessel steel weld. The atomic spatial resolution of this technique permits a complete structural and chemical description of the ultra-fine features that control the mechanical properties to be made. A variety of fine scale features including roughly spherical copper precipitates and clusters, spherical and rod-shaped molybdenum carbide and disc-shaped molybdenum nitride precipitates were observed to be inhomogeneously distributed in the ferrite. The copper content of the ferrite was substantially reduced from the nominal level. A thin film of molybdenum carbides and nitrides was observed on grain boundaries in addition to a coarse copper-manganese precipitate. Substantial enrichment of manganese and nickel were detected at the copper-manganese precipitate-ferrite interface and this enrichment extended into the ferrite. Enrichment of nickel, manganese and phosphorus were also measured at grain boundaries

  10. Atomic-scale observation of hydrogen-induced crack growth by atom-probe FIM

    International Nuclear Information System (INIS)

    Kuk, Y.; Pickering, H.W.; Sakurai, T.

    1980-01-01

    Formation and propagation of a microcrack due to hydrogen in a Fe-0.29 wt.% Ti alloy was observed at the atomic scale by field ion microscopy. A microcrack (-20 nm in length) formed and became noticeably large when the tip was heated at 950 0 C in the presence of about 1 torr of Hg. Propagation was reported several times by reheating, until a portion of the tip ruptured and became detached from the tip. Compositional analysis, performed in situ using a high performance atom-probe, identified atomic hydrogen in quantity and some hydrogen molecules and FEH in the crack, but not elsewhere on the surface

  11. Detecting device of atomic probe

    International Nuclear Information System (INIS)

    Nikonenkov, N.V.

    1979-01-01

    Operation of an atomic-probe recording device is discussed in detail and its flowsheet is given. The basic elements of the atomic-probe recording device intented for microanalysis of metals and alloys in an atomic level are the storage oscillograph with a raster-sweep unit, a two-channel timer using frequency meters, a digital printer, and a control unit. The digital printer records information supplied by four digital devices (two frequency meters and two digital voltmeters) in a four-digit binary-decimal code. The described device provides simultaneous recording of two ions produced per one vaporation event

  12. Measurements of H-atom density by a catalytic probe

    International Nuclear Information System (INIS)

    Vesel, A.; Drenik, A.; Mozetic, M.

    2006-01-01

    One of the important plasma parameters in tokamaks is the density of neutral hydrogen atoms which can be measured by catalytic probes. The method is based on the catalytic recombination of H atoms on the metal surface. In order to prevent a substantial drain of atoms by the probe, it should be made as small as possible. But still this effect can not be neglected. Therefore a study of the influence of a catalytic probe on the H-atom density was performed. The source of neutral H-atoms was inductively coupled RF hydrogen plasma. The gas from the discharge vessel was leaked to an experimental chamber through a narrow tube with the diameter of 5 mm and the length of 6 cm. Charged particles created in the discharge vessel were recombined on the walls of the narrow tube, so that the gas entering the experimental chamber was a mixture of hydrogen atoms and molecules only. The density of H-atoms in the experimental chamber was measured with two nickel catalytic probes. One probe was at fixed position and the other one was made movable. A change in the probe signal of the fixed probe was measured versus the position of the movable probe. The measurements were performed at the pressures between 10 Pa and 200 Pa and at two different RF powers 200 W and 300 W. It was found that the density of neutral hydrogen atoms was reduced for about 20% due to the presence of the probe. This result was independent from the pressure in the experimental chamber. (author)

  13. Design of a femtosecond laser assisted tomographic atom probe

    International Nuclear Information System (INIS)

    Gault, B.; Vurpillot, F.; Vella, A.; Gilbert, M.; Menand, A.; Blavette, D.; Deconihout, B.

    2006-01-01

    A tomographic atom probe (TAP) in which the atoms are field evaporated by means of femtosecond laser pulses has been designed. It is shown that the field evaporation is assisted by the laser field enhanced by the subwavelength dimensions of the specimen without any significant heating of the specimen. In addition, as compared with the conventional TAP, due to the very short duration of laser pulses, no spread in the energy of emitted ions is observed, leading to a very high mass resolution in a straight TAP in a wide angle configuration. At last, laser pulses can be used to bring the intense electric field required for the field evaporation on poor conductive materials such as intrinsic Si at low temperature. In this article, the performance of the laser TAP is described and illustrated through the investigation of metals, oxides, and silicon materials

  14. Manipulating collective quantum states of ultracold atoms by probing

    DEFF Research Database (Denmark)

    Wade, Andrew Christopher James

    2015-01-01

    The field of cold gases has grown dramatically over the past few decades. The exquisite experimental control of their environment and properties has lead to landmark achievements, and has motivated the pursuit of quantum technologies with ultracold atoms. At the same time, the theory of measureme......The field of cold gases has grown dramatically over the past few decades. The exquisite experimental control of their environment and properties has lead to landmark achievements, and has motivated the pursuit of quantum technologies with ultracold atoms. At the same time, the theory...... of measurements on quantum systems has grown into a well established field. Experimental demonstrations of nondestructive continuous measurements on individual quantum systems now occur in many laboratories. Such experiments with ultracold atoms have shown great progress, but the exploitation of the quantum...... nature of the measurement interaction and backaction is yet to be realised. This dissertation is concerned with ultracold atoms and their control via fully quantum mechanical probes. Nonclassical, squeezed and entangled states of matter and single photon sources are important for fundamental studies...

  15. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  16. Theoretical study of the effect of probe shape on adhesion force between probe and substrate in atomic force microscope experiment

    OpenAIRE

    Yang, Li; Hu, Junhui; Kong, Lingjiang

    2017-01-01

    The quantitative description of adhesion force dependence on the probe shapes are of importance in many scientific and industrial fields. In order to elucidate how the adhesion force varied with the probe shape in atomic force microscope manipulation experiment, we performed a theoretical study of the influences of the probe shape (the sphere and parabolic probe) on the adhesion force at different humidity. We found that the combined action of the triple point and the Kelvin radius guiding th...

  17. Dopant distributions in n-MOSFET structure observed by atom probe tomography

    International Nuclear Information System (INIS)

    Inoue, K.; Yano, F.; Nishida, A.; Takamizawa, H.; Tsunomura, T.; Nagai, Y.; Hasegawa, M.

    2009-01-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  18. Dopant distributions in n-MOSFET structure observed by atom probe tomography.

    Science.gov (United States)

    Inoue, K; Yano, F; Nishida, A; Takamizawa, H; Tsunomura, T; Nagai, Y; Hasegawa, M

    2009-11-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  19. First local electrode atom probe analysis of magnetite (Fe3O4)

    International Nuclear Information System (INIS)

    Kuhlman, K.R.; Kelly, T.F.; Miller, M.K.

    2004-01-01

    Full text: We have successfully fabricated atom probe samples of a metamorphic magnetite and performed an analysis of one of these samples using a local electrode atom probe (LEAP). This particular magnetite, previously designated LP204-1, was extracted from a polymetamorphosed, granulite-facies marble and contains grain scale heterogeneity in its oxygen isotope ratios. Crystals of LP204-1 contain a high number density of nanometer-scale, disk-shaped Al-Mn-Fe-spinel precipitates making this magnetite particularly attractive for demonstrating the capabilities of the LEAP with regard to geological materials. Field ion microscope images of these magnetite crystals show precipitate size and morphology that agrees with previous results. A sample of LP-204-1 was analyzed in the LEAP, resulting in a cylindrical analyzed volume approx. 26 nm in diameter and 21 nm high. The mass spectrum contained nearly 106,000 atoms, 97.1 % of which were identified. Peaks for singly, doubly and triply ionized species were fully resolved. The analysis volume appeared to be purely magnetite, i.e. no precipitates were observed. If it is assumed that 77 % of the ions in the peak at 16 are O 2 ++ rather than O+, the stoichiometry measured for this sample using electron probe microanalysis is achieved. The high fraction of O 2 ++ can be explained by lack of a peak for O ++ and significant peaks for FeO x indicating a relatively low field strength, which in turn favors molecular ions. This work is an encouraging beginning for analysis of geological materials in atom probes. Refs. 4 (author)

  20. Atom-probe field-ion microscopy investigation of CMSX-4 Ni-base superalloy laser beam welds

    International Nuclear Information System (INIS)

    Babu, S.S.; David, S.A.; Vitek, J.M.; Miller, M.K.

    1996-01-01

    CMSX-4 superalloy laser beam welds were investigated by transmission electron microscopy and atom probe field-ion microscopy (APFIM). The weld microstructure consisted of fine (10- to 50-nm) irregularly shaped γ' precipitates (0.65 to 0.75 volume fraction) within the γ matrix. APFIM compositions of the γ and γ' phases were found to be different from those in the base metal. Concentration profiles across the γ and γ' phases showed extensive variations of Cr, Co and Al concentrations as a function of distance within the γ phase. Calculated lattice misfits near the γ/γ' interface in the welds are positive values compared to the negative values for base metal. (orig.)

  1. Max Auwaerter Price lecture: building and probing atomic structures

    International Nuclear Information System (INIS)

    Ternes, M.

    2008-01-01

    Full text: The control of the geometric, electronic, and magnetic properties of atomic-scale nanostructures is a prerequisite for the understanding and fabrication of new materials and devices. Two routes lead towards this goal: Atomic manipulation of single atoms and molecules by scanning probe microscopy, or patterning using self-assembly. Atomic manipulation has been performed since almost 20 years, but it has been difficult to answer the simple question: how much force does it take to manipulate atoms and molecules on surfaces? To address this question, we used a combined atomic force and scanning tunneling microscope to simultaneously measure the force and the current between an adsorbate and a tip during atomic manipulation. We found that the force it takes to move an atom depends crucially on the binding between adsorbate and surface. Our results indicate that for moving metal atoms on metal surfaces, the lateral force component plays the dominant role. Measuring the forces during manipulation yielded the full potential energy landscape of the tip-sample interaction. Surprisingly, the potential energy barriers are comparable to diffusion barriers, which are obtained in the absence of a probe tip. Furthermore, we used the scanning tunneling microscope to assemble magnetic structures on a thin insulator. We found, that the spin of the atom is influenced by the magnetocrystalline anisotropy of the supporting surface which lifts the spin degeneracy of the ground state and enables the identification of individual atoms. The ground state of atoms with half-integer spin remains always degenerated at zero field due to Kramers theorem. We found that if these states differ by an orbital momentum of m = ±1 the localized spin is screened by the surrounding conducting electrons of the non-magnetic host and form a many-electron spin-singlet at sufficiently low temperature. (author)

  2. Spectrum of absorption of a weak signal by an atom in a strong field

    International Nuclear Information System (INIS)

    Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.

    1985-01-01

    An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit

  3. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation.

    Science.gov (United States)

    Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai

    2014-04-17

    Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.

  4. Probing the quantum analog of chaos with atoms in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Gay, J C; Delande, D

    1987-01-01

    For a few years, considerable interest arose in the problem of the quantum analog of classical chaos for hamiltonian system. Among several other simple atomic physics systems, the atom in a magnetic field turns out to be the most promising prototype for tackling such questions. The classical and quantum motions are now well understood. The experimental study is possible in high Rydberg states of atoms. Throughout the study of some aspects of this problem, the authors demonstrate that the quantum analog of chaos presents a two-fold aspect. While the spectral properties at short range are conveniently described by Random matrix theories, a long-range order still exist in the quantum dynamics which indicates the existence of scars of symmetries. This in turn is quite clearly exhibited in the experimental data on Rydberg atoms. Finally the authors indicate how to generalize the notions to any situation involving the Coulomb field and perturbing potentials. 21 refs.; 8 figs.

  5. Design and construction of a broad-band electric field probe

    International Nuclear Information System (INIS)

    Bahrami, A.; Sohrabi, M.; Farvadin, D.

    1996-01-01

    The design of a broad-band electric field probe based on a resistive film diode antenna on RT/Duroid substrate to measure the electric RF/MW fields as constructed at the National Radiation Protection Department (NRPD) of the Atomic Energy Organization of Iran (AEOI) are described in this paper. A square law diode detector with a matching circuit and also low pass filter have been used to produce a dc current proportional to the square RF voltage across the resistive antenna gap. A double-strip coplanar waveguide has also been designed to transfer this dc current to an amplifier with an output signal showing the electric field intensity in one direction. By using three mutually orthogonal resistive antennas, an isotropic electric field probe was made. All parts of this probe have been completely modeled and solved by the MATLAB computer program to determine the optimum values of the elements of the probe. The frequency response of the probe has also been theoretically found to be flat in the range 0.8 to 3 GHz. It was found to be quite satisfactory compared with those of similar probes commercially available. The probe is being used routinely in practice. (author)

  6. Probing the nanostructural evolution of age-hardenable Al alloys with atom-probe tomography

    International Nuclear Information System (INIS)

    Biswas, Aniruddha

    2010-01-01

    Atom Probe Tomographic (APT) Microscope is a lens-less point-projection 3-D analytical microscope that has the unique capability of (i) three-dimensional imaging at the atomic scale and (ii) compositional analysis with sub-nanometre spatial resolution and single-atom sensitivity. Modern 3-D APT microscope offers the highest the spatial resolution among all the available analytical techniques. It can simultaneously achieve a spatial resolution better than 0.3 nm in all three directions of a three-dimensional analysis-volume. As a result, 3-D APT microscopy, especially as practiced by the high speed, large field of view instruments is the most appropriate tool for studying nano-scale precipitates and their heterophase interfaces. This talk will introduce the technique, discuss its brief historical background and use examples from age-hardenable Al-alloys. The results include a detailed APT study of the compositional evolution of the nano-scale precipitates: θ and Q present in commercial age hardenable aluminium alloy, W319

  7. Momentum distributions of selected rare-gas atoms probed by intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses. The cal......We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses....... The calculations are performed by solving the time-dependent Schrödinger equation within the single-active-electron approximation, and focal-volume effects are taken into account by appropriately averaging the results. The resulting momentum distributions are in quantitative agreement with the experimental...

  8. Multiphoton processes for atoms in intense electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Collins, L.A.; Abdallah, J.; Csanak, G.

    1995-12-31

    Lasers from table-top to giant ICF facilities that produce intense electromagnetic fields (10{sup 14}-10{sup 21} W/cm{sup 2}) have become important tools in probing the intricate nature of matter-radiation interactions. At such intensities, the laser field equals or exceeds that which binds electrons to an atom or molecule, and a new realm of physics opens in which perturbation theory may no longer suffice. We are developing several sophisticated techniques for treating atoms in such a regime, concentrating on two-photon X-ray absorption in intermediate-weight atoms and on laser-assisted electron-atom collisions. We perform most calculations in a time-independent frame in which field-free scattering formalisms can be invoked. We also investigate time-dependent methods in order to study transient effects. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  9. Probing a quantum field in a photon box

    International Nuclear Information System (INIS)

    Raimond, J M; Meunier, T; Bertet, P; Gleyzes, S; Maioli, P; Auffeves, A; Nogues, G; Brune, M; Haroche, S

    2005-01-01

    Einstein often performed thought experiments with 'photon boxes', storing fields for unlimited times. This is yet but a dream. We can nevertheless store quantum microwave fields in superconducting cavities for billions of periods. Using circular Rydberg atoms, it is possible to probe in a very detailed way the quantum state of these trapped fields. Cavity quantum electrodynamics tools can be used for a direct determination of the Husimi Q and Wigner quasi-probability distributions. They provide a very direct insight into the classical or non-classical nature of the field

  10. 2D atom localization in a four-level tripod system in laser fields

    OpenAIRE

    Ivanov, Vladimir; Rozhdestvensky, Yuri

    2012-01-01

    We propose a scheme for two-dimensional (2D) atom localization in a four-level tripod system under an influence of two orthogonal standing-wave fields. Position information of the atom is retained in the atomic internal states by an additional probe field either of a standing or of a running wave. It is shown that the localization factors depend crucially on the atom-field coupling that results in such spatial structures of populations as spikes, craters and waves. We demonstrate a high-preci...

  11. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    Science.gov (United States)

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-04-01

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  12. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1986-01-01

    The article is contained in a booklet on the Revised Nuffield Advanced Physics Course, and concentrates on two techniques to illustrate how lasers probe the atomic nucleus. Both techniques employ resonance fluorescence spectroscopy for obtaining atomic transition energies. The first uses lasers to determine the change in the nuclear charge radius with isotope, the second concerns the use of lasers for ultrasensitive detection of isotopes and elements. The application of lasers in resonance ionization spectroscopy and proton decay is also described. (UK)

  13. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    Science.gov (United States)

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  14. Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells

    International Nuclear Information System (INIS)

    Felfer, P.; Ceguerra, A.V.; Ringer, S.P.; Cairney, J.M.

    2015-01-01

    The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces. - Highlights: • Cluster analysis of atom probe data can be significantly simplified by using the Voronoi cell volumes of the atomic distribution. • Concentration fields are defined on a single atomic basis using Voronoi cells. • All parameters for the analysis are determined by optimizing the separation probability of bulk atoms vs clustered atoms

  15. Analysis conditions of an industrial Al-Mg-Si alloy by conventional and 3D atom probes.

    Science.gov (United States)

    Danoix, F; Miller, M K; Bigot, A

    2001-10-01

    Industrial 6016 Al-Mg-Si(Cu) alloys are presently regarded as attractive candidates for heat treatable sheet materials. Their mechanical properties can be adjusted for a given application by age hardening of the alloys. The resulting microstructural evolution takes place at the nanometer scale, making the atom probe a well suited instrument to study it. Accuracy of atom probe analysis of these aluminium alloys is a key point for the understanding of the fine scale microstructural evolution. It is known to be strongly dependent on the analysis conditions (such as specimen temperature and pulse fraction) which have been widely studied for ID atom probes. The development of the 3D instruments, as well as the increase of the evaporation pulse repetition rate have led to different analysis conditions, in particular evaporation and detection rates. The influence of various experimental parameters on the accuracy of atom probe data, in particular with regard to hydride formation sensitivity, has been reinvestigated. It is shown that hydrogen contamination is strongly dependent on the electric field at the specimen surface, and that high evaporation rates are beneficial. Conversely, detection rate must be limited to smaller than 0.02 atoms/pulse in order to prevent drastic pile-up effect.

  16. Effect of laser power and specimen temperature on atom probe analyses of magnesium alloys

    International Nuclear Information System (INIS)

    Oh-ishi, K.; Mendis, C.L.; Ohkubo, T.; Hono, K.

    2011-01-01

    The influence of laser power, wave length, and specimen temperature on laser assisted atom probe analyses for Mg alloys was investigated. Higher laser power and lower specimen temperature led to improved mass and spatial resolutions. Background noise and mass resolutions were degraded with lower laser power and higher specimen temperature. By adjusting the conditions for laser assisted atom probe analyses, atom probe results with atomic layer resolutions were obtained from all the Mg alloys so far investigated. Laser assisted atom probe investigations revealed detailed chemical information on Guinier-Preston zones in Mg alloys. -- Research highlights: → We study performance of UV laser assisted atom probe analysis for Mg alloys. → There is an optimized range of laser power and specimen temperature. → Optimized UV laser enables atom probe data of Mg alloys with high special resolution.

  17. Data mining for isotope discrimination in atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Scott R. [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011-2230 (United States); Bryden, Aaron [Ames National Laboratory, Ames, IA 50011-2230 (United States); Suram, Santosh K. [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011-2230 (United States); Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011-2230 (United States)

    2013-09-15

    Ions with similar time-of-flights (TOF) can be discriminated by mapping their kinetic energy. While current generation position-sensitive detectors have been considered insufficient for capturing the isotope kinetic energy, we demonstrate in this paper that statistical learning methodologies can be used to capture the kinetic energy from all of the parameters currently measured by mathematically transforming the signal. This approach works because the kinetic energy is sufficiently described by the descriptors on the potential, the material, and the evaporation process within atom probe tomography (APT). We discriminate the isotopes for Mg and Al by capturing the kinetic energy, and then decompose the TOF spectrum into its isotope components and identify the isotope for each individual atom measured. This work demonstrates the value of advanced data mining methods to help enhance the information resolution of the atom probe. - Highlights: ► Atom probe tomography and statistical learning were combined for data enhancement. ► Multiple eigenvalue decompositions decomposed a spectrum with overlapping peaks. ► The isotope of each atom was determined by kinetic energy discrimination. ► Eigenspectra were identified and new chemical information was identified.

  18. Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.

    Science.gov (United States)

    La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M

    2017-04-01

    The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.

  19. Time-of-flight atom-probe field-ion microscope for the study of defects in metals. Report No. 2357

    International Nuclear Information System (INIS)

    Hall, T.M.; Wagner, A.; Berger, A.S.; Seidman, D.N.

    1975-06-01

    An ultra-high vacuum time-of-flight (TOF) atom-probe field ion microscope (FIM) specifically designed for the study of defects in metals is described. The variable magnification FIM image is viewed with the aid of an internal image intensification system based on a channel electron-multiplier array. The specimen is held in a liquid-helium-cooled goniometer stage, and the specimen is exchanged by means of a high-vacuum (less than 10 -6 torr) specimen exchange device. This stage allows the specimen to be maintained at a tip temperature anywhere in the range from 13 to 450 0 K. Specimens can also be irradiated in-situ with any low-energy (less than 1 keV) gas ion employing a specially constructed ion gun. The pulse-field evaporated ions are detected by a Chevron ion-detector located 2.22 m from the FIM specimen. The TOF of the ions are measured by a specially constructed eight-channel digital timer with a resolution of +-10 ns. The entire process of applying the evaporation pulse to the specimen, measuring the dc and pulse voltages, and analyzing the TOF data is controlled by a NOVA 1220 computer. The computer is also interfaced to a Tektronix graphics terminal which displays the data in the form of a histogram of the number of events versus the mass-to-charge ratio. An extensive set of computer programs to test and operate the atom-probe FIM have been developed. With this automated system we can presently record and analyze 10 TOF s -1 . In the performance tests reported here the instrument has resolved the seven stable isotopes of molybdenum, the five stable isotopes of tungsten, and the two stable isotopes of rhenium in a tungsten--25 at. percent rhenium alloy

  20. Sub-half-wavelength atom localization via phase control of a pair of bichromatic fields

    International Nuclear Information System (INIS)

    Xu Jun; Hu Xiangming

    2007-01-01

    We propose a scheme of atom localization based on the interaction of the atom in the Λ configuration with a strong bichromatic coupling field and a weak bichromatic probe field with equal frequency difference. One of the bichromatic coupling components is a standing-wave field, which imposes position information on the Rabi frequency. By varying the difference between the relative phases of the two bichromatic fields, the atom is localized in either of the two half-wavelength regions with 50% probability provided the population in the upper state is detected

  1. Cavity electromagnetically induced transparency with Rydberg atoms

    Science.gov (United States)

    Bakar Ali, Abu; Ziauddin

    2018-02-01

    Cavity electromagnetically induced transparency (EIT) is revisited via the input probe field intensity. A strongly interacting Rydberg atomic medium ensemble is considered in a cavity, where atoms behave as superatoms (SAs) under the dipole blockade mechanism. Each atom in the strongly interacting Rydberg atomic medium (87 Rb) follows a three-level cascade atomic configuration. A strong control and weak probe field are employed in the cavity with the ensemble of Rydberg atoms. The features of the reflected and transmitted probe light are studied under the influence of the input probe field intensity. A transparency peak (cavity EIT) is revealed at a resonance condition for small values of input probe field intensity. The manipulation of the cavity EIT is reported by tuning the strength of the input probe field intensity. Further, the phase and group delay of the transmitted and reflected probe light are studied. It is found that group delay and phase in the reflected light are negative, while for the transmitted light they are positive. The magnitude control of group delay in the transmitted and reflected light is investigated via the input probe field intensity.

  2. Mapping energetics of atom probe evaporation events through first principles calculations.

    Science.gov (United States)

    Peralta, Joaquín; Broderick, Scott R; Rajan, Krishna

    2013-09-01

    The purpose of this work is to use atomistic modeling to determine accurate inputs into the atom probe tomography (APT) reconstruction process. One of these inputs is evaporation field; however, a challenge occurs because single ions and dimers have different evaporation fields. We have calculated the evaporation field of Al and Sc ions and Al-Al and Al-Sc dimers from an L1₂-Al₃Sc surface using ab initio calculations and with a high electric field applied to the surface. The evaporation field is defined as the electric field at which the energy barrier size is calculated as zero, corresponding to the minimum field that atoms from the surface can break their bonds and evaporate from the surface. The evaporation field of the surface atoms are ranked from least to greatest as: Al-Al dimer, Al ion, Sc ion, and Al-Sc dimer. The first principles results were compared with experimental data in the form of an ion evaporation map, which maps multi-ion evaporations. From the ion evaporation map of L1₂-Al₃Sc, we extract relative evaporation fields and identify that an Al-Al dimer has a lower evaporation field than an Al-Sc dimer. Additionally, comparatively an Al-Al surface dimer is more likely to evaporate as a dimer, while an Al-Sc surface dimer is more likely to evaporate as single ions. These conclusions from the experiment agree with the ab initio calculations, validating the use of this approach for modeling APT energetics. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Self-probing spectroscopy of XUV photo-ionization dynamics in atoms subjected to a strong-field environment.

    Science.gov (United States)

    Azoury, Doron; Krüger, Michael; Orenstein, Gal; Larsson, Henrik R; Bauch, Sebastian; Bruner, Barry D; Dudovich, Nirit

    2017-11-13

    Single-photon ionization is one of the most fundamental light matter interactions in nature, serving as a universal probe of the quantum state of matter. By probing the emitted electron, one can decode the full dynamics of the interaction. When photo-ionization is evolving in the presence of a strong laser field, the fundamental properties of the mechanism can be signicantly altered. Here we demonstrate how the liberated electron can perform a self-probing measurement of such interaction with attosecond precision. Extreme ultraviolet attosecond pulses initiate an electron wavepacket by photo-ionization, a strong infrared field controls its motion, and finally electron-ion collision maps it into re-emission of attosecond radiation bursts. Our measurements resolve the internal clock provided by the self-probing mechanism, obtaining a direct insight into the build-up of photo-ionization in the presence of the strong laser field.

  4. Two-probe atomic-force microscope manipulator and its applications

    Science.gov (United States)

    Zhukov, A. A.; Stolyarov, V. S.; Kononenko, O. V.

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  5. Two-probe atomic-force microscope manipulator and its applications.

    Science.gov (United States)

    Zhukov, A A; Stolyarov, V S; Kononenko, O V

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  6. Industrial application of atom probe tomography to semiconductor devices

    NARCIS (Netherlands)

    Giddings, A.D.; Koelling, S.; Shimizu, Y.; Estivill, R.; Inoue, K.; Vandervorst, W.; Yeoh, W.K.

    2018-01-01

    Advanced semiconductor devices offer a metrology challenge due to their small feature size, diverse composition and intricate structure. Atom probe tomography (APT) is an emerging technique that provides 3D compositional analysis at the atomic-scale; as such, it seems uniquely suited to meet these

  7. A Filtering Method to Reveal Crystalline Patterns from Atom Probe Microscopy Desorption Maps

    Science.gov (United States)

    2016-03-26

    reveal crystalline patterns from atom probe microscopy desorption maps Lan Yao Department of Materials Science and Engineering, University of Michigan, Ann...reveal the crystallographic information present in Atom Probe Microscopy (APM) data is presented. Themethod filters atoms based on the time difference...between their evaporation and the evaporation of the previous atom . Since this time difference correlates with the location and the local structure of

  8. Characterization of near-field optical probes

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    Radiation and collection characteristics of four different near-field optical-fiber probes, namely, three uncoated probes and an aluminium-coated small-aperture probe, are investigated and compared. Their radiation properties are characterized by observation of light-induced topography changes...... in a photo-sensitive film illuminated with the probes, and it is confirmed that the radiated optical field is unambigiously confined only for the coated probe. Near-field optical imaging of a standing evanescent-wave pattern is used to compare the detection characteristics of the probes, and it is concluded...... that, for the imaging of optical-field intensity distributions containing predominantly evanescent-wave components, a sharp uncoated tip is the probe of choice. Complementary results obtained with optical phase-conjugation experiments with he uncoated probes are discussed in relation to the probe...

  9. Tetragonal fcc-Fe induced by κ -carbide precipitates: Atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory

    Science.gov (United States)

    Liebscher, Christian H.; Yao, Mengji; Dey, Poulumi; Lipińska-Chwalek, Marta; Berkels, Benjamin; Gault, Baptiste; Hickel, Tilmann; Herbig, Michael; Mayer, Joachim; Neugebauer, Jörg; Raabe, Dierk; Dehm, Gerhard; Scheu, Christina

    2018-02-01

    Correlative scanning transmission electron microscopy, atom probe tomography, and density functional theory calculations resolve the correlation between elastic strain fields and local impurity concentrations on the atomic scale. The correlative approach is applied to coherent interfaces in a κ -carbide strengthened low-density steel and establishes a tetragonal distortion of fcc-Fe. An interfacial roughness of ˜1 nm and a localized carbon concentration gradient extending over ˜2 -3 nm is revealed, which originates from the mechano-chemical coupling between local strain and composition.

  10. Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: from individual atoms to nanowires.

    Science.gov (United States)

    Qin, Shengyong; Kim, Tae-Hwan; Wang, Zhouhang; Li, An-Ping

    2012-06-01

    The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.

  11. Parametric resonances in the amplitude-modulated probe-field absorption spectrum of a two-level atom driven by a resonance amplitude- and phase-modulated pumping field

    International Nuclear Information System (INIS)

    Sushilov, N.V.; Kholodkevich, E.D.

    1995-01-01

    An analytical expression is derived for the polarization induced by a weak probe field with periodically modulated amplitude in a two-level medium saturated by a strong amplitude-and phase-modulated resonance field. It is shown that the absorption spectrum of the probe field includes parametric resonances, the maxima corresponding to the condition δ= 2nΓ-Ω w and the minima to that of δ= (2n + 1)Γ- w , where δ is the probe-field detuning front the resonance frequency, Ω w is the modulation frequency of the probe-field amplitude, and Γ is the transition line width, n = 1, 2, 3, hor-ellipsis. At the specific modulation parameters, a substantial region of negative values (i.e., the region of amplification without the population inversion) exists in the absorption spectrum of the probe field

  12. Probing stem cell differentiation using atomic force microscopy

    International Nuclear Information System (INIS)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-01-01

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  13. Probing stem cell differentiation using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaobin [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan); Shi, Xuetao, E-mail: mrshixuetao@gmail.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ostrovidov, Serge [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Wu, Hongkai, E-mail: chhkwu@ust.hk [Department of Chemistry & Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Nakajima, Ken [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  14. Characterization of duplex stainless steels by TEM [transmission electron microscopy], SANS [small-angle neutron scattering], and APFIM [atom-probe field ion microscopy] techniques

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1987-06-01

    Results are presented of complementary characterization of aged duplex stainless steels by advanced metallographic techniques, including transmission and high-voltage electron microscopies; small-angle neutron scattering; and atom-probe field ion microscopy. On the basis of the characterization, the mechanisms of aging embrittlement have been shown to be associated with the precipitation of Ni- and Si-rich G phase and Cr-rich α' in the ferrite, and M 23 C 6 carbides on the austenite-ferrite phase boundaries. 19 refs., 19 figs., 1 tab

  15. Three dimensional atom probe imaging of GaAsSb quantum rings.

    Science.gov (United States)

    Beltrán, A M; Marquis, E A; Taboada, A G; Ripalda, J M; García, J M; Molina, S I

    2011-07-01

    Unambiguous evidence of ring-shaped self-assembled GaSb nanostructures grown by molecular beam epitaxy is presented on the basis of atom-probe tomography reconstructions and dark field transmission electron microscopy imaging. The GaAs capping process causes a strong segregation of Sb out of the center of GaSb quantum dots, leading to the self-assembled GaAs(x)Sb(1-x) quantum rings of 20-30 nm in diameter with x ∼ 0.33. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Atom probe tomography of a commercial light emitting diode

    International Nuclear Information System (INIS)

    Larson, D J; Prosa, T J; Olson, D; Lawrence, D; Clifton, P H; Kelly, T F; Lefebvre, W

    2013-01-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device

  17. Spectral properties of a V-type three-level atom driven by two bichromatic fields

    International Nuclear Information System (INIS)

    Li Peng; Nakajima, Takashi; Ning Xijing

    2006-01-01

    We theoretically investigate the spectral properties of a V-type three-level atom driven by two bichromatic fields with a common frequency difference. By decomposing the master equation using harmonic expansions and invoking quantum regression theorem, fluorescence and probe absorption spectra of the strong atomic transition are numerically calculated under the steady state condition. We find that both fluorescence and absorption spectra exhibit two interesting features, which are equidistant comblike structures and phase-dependent line splittings. In the comblike structures, each fluorescence peak can be made subnatural by manipulating the relative intensities of the coupling fields, while for the absorption lines only the central peak can be narrowed. Line splittings are induced by the relative phase delay between the envelopes of the amplitudes of the two bichromatic fields. Interestingly, we find that the manipulation of the relative phase delay results in the emergence of sharp subnatural dips in the absorption spectra. As a natural consequence of the subnatural absorption dips, absorption spectra in atomic vapors exhibit striking subnatural burning holes for the counterpropagating probe beam geometry

  18. High-efficiency one-dimensional atom localization via two parallel standing-wave fields

    International Nuclear Information System (INIS)

    Wang, Zhiping; Wu, Xuqiang; Lu, Liang; Yu, Benli

    2014-01-01

    We present a new scheme of high-efficiency one-dimensional (1D) atom localization via measurement of upper state population or the probe absorption in a four-level N-type atomic system. By applying two classical standing-wave fields, the localization peak position and number, as well as the conditional position probability, can be easily controlled by the system parameters, and the sub-half-wavelength atom localization is also observed. More importantly, there is 100% detecting probability of the atom in the subwavelength domain when the corresponding conditions are satisfied. The proposed scheme may open up a promising way to achieve high-precision and high-efficiency 1D atom localization. (paper)

  19. A FIM-atom probe investigation of the bainite transformation in CrMo steel

    International Nuclear Information System (INIS)

    Bach, P.W.

    1981-01-01

    To obtain a better understanding of the role played by Cr and Mo in the bainite transformation a Field-Ion Microscope - Atom Probe was constructed in order to study the distribution of the alloying elements near various types of boundaries on atomic scale. The distribution of alloying elements measured with this instrument is not so smooth on atomic scale as suggested by microprobe analysis. In a coherent twin boundary, formed during the bainite transformation, a depletion of the substitutionals Cr and Mo and an enhancement of the C content is observed, which is in accordance with the atomic model of a B.C.C. twin. In the twin plane the interstitial sites are even larger than the F.C.C. octahedral sites and this plane can act as an effective sink for the carbon atoms from bainitic ferrite. The depletion of Cr and Mo from the twin plane is due to interface coherency. (Auth.)

  20. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect.

    Science.gov (United States)

    Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian

    2015-02-04

    With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.

  1. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  2. Optical Measurements of Strong Radio-Frequency Fields Using Rydberg Atoms

    Science.gov (United States)

    Miller, Stephanie Anne

    There has recently been an initiative toward establishing atomic measurement standards for field quantities, including radio-frequency, millimeter-wave, and micro-wave electric fields. Current measurement standards are obtained using dipole antennas, which are fundamentally limited in frequency bandwidth (set by the physical size of the antenna) and accuracy (due to the metal perturbing the field during the measurement). Establishing an atomic standard rectifies these problems. My thesis work contributes to an ongoing effort towards establishing the viability of using Rydberg electromagnetically induced transparency (EIT) to perform atom-based measurements of radio-frequency (RF) fields over a wide range of frequencies and field strengths, focusing on strong-field measurements. Rydberg atoms are atoms with an electron excited to a high principal quantum number, resulting in a high sensitivity to an applied field. A model based on Floquet theory is implemented to accurately describe the observed atomic energy level shifts from which information about the field is extracted. Additionally, the effects due to the different electric field domains within the measurement volume are accurately modeled. Absolute atomic measurements of fields up to 296 V/m within a +/-0.35% relative uncertainty are demonstrated. This is the strongest field measured at the time of data publication. Moreover, the uncertainty is over an order of magnitude better than that of current standards. A vacuum chamber setup that I implemented during my graduate studies is presented and its unique components are detailed. In this chamber, cold-atom samples are generated and Rydberg atoms are optically excited within the ground-state sample. The Rydberg ion detection and imaging procedure are discussed, particularly the high magnification that the system provides. By analyzing the position of the ions, the spatial correlation g(2) (r) of Rydberg-atom distributions can be extracted. Aside from ion

  3. Atom probe, AFM and STM study on vacuum fired stainless steel

    International Nuclear Information System (INIS)

    Stupnik, A.; Frank, P.; Leisch, M.

    2008-01-01

    Full text: Stainless steel is one of the most commonly used structural materials for vacuum equipment. An efficient method to reduce the outgassing rate from stainless steel is a high temperature bakeout in vacuum (vacuum firing). This procedure reduces significantly the amount of dissolved hydrogen in the bulk. For the outgassing process the recombination rate of hydrogen atoms to the molecules plays the determining role and recombination is strongly related to the surface structure and composition. To get more detailed information about the surface morphology and composition AFM, STM and atom probe studies were carried out. Experiments on AISI 304L stainless steel samples show that the surface reconstructs completely during vacuum firing and large atomically flat terraces bounded by bunched steps and facets are formed. The large flat terraces can be assigned to (111) planes. The bunched steps and facets are corresponding in orientation almost to (110) planes and (100) planes. Surface inspection after vacuum firing by Auger electron spectroscopy (AES) gives reason for a composition change indicated by a reduction of the chromium signal in relation to the iron and nickel signal. Since the information depth of AES covers several atomic layers not only the top atomic layer of the sample surface is probed. For this reason 3D atom probe was used as well suited tool to investigate the segregation behavior of this alloy with the goal to examine the change in local chemical composition due to the high temperature treatment. As a result of vacuum firing the atom probe experiments show a significant enrichment of nickel at the top surface layer. In the second atomic layer chromium enrichment is detected. After vacuum firing the average composition below the second atomic layer shows certain chromium depletion up to 2 nm in depth. The observed changes in surface chemistry influence recombination and desorption probability from the surface and may contribute to the present

  4. The effect orientation of features in reconstructed atom probe data on the resolution and measured composition of T1 plates in an A2198 aluminium alloy.

    Science.gov (United States)

    Mullin, Maria A; Araullo-Peters, Vicente J; Gault, Baptiste; Cairney, Julie M

    2015-12-01

    Artefacts in atom probe tomography can impact the compositional analysis of microstructure in atom probe studies. To determine the integrity of information obtained, it is essential to understand how the positioning of features influences compositional analysis. By investigating the influence of feature orientation within atom probe data on measured composition in microstructural features within an AA2198 Al alloy, this study shows differences in the composition of T1 (Al2CuLi) plates that indicates imperfections in atom probe reconstructions. The data fits a model of an exponentially-modified Gaussian that scales with the difference in evaporation field between solutes and matrix. This information provides a guide for obtaining the most accurate information possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    Science.gov (United States)

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.

  6. Probing dark energy with atom interferometry

    International Nuclear Information System (INIS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A.

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry

  7. Probing dark energy with atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare; Copeland, Edmund J. [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Hinds, E.A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: Edmund.Copeland@nottingham.ac.uk, E-mail: Ed.Hinds@imperial.ac.uk [Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  8. Phase collapse and revival of a 1-mode Bose-Einstein condensate induced by an off-resonant optical probe field and superselection rules

    Science.gov (United States)

    Arruda, L. G. E.; Prataviera, G. A.; de Oliveira, M. C.

    2018-02-01

    Phase collapse and revival for Bose-Einstein condensates are nonlinear phenomena appearing due to atomic collisions. While it has been observed in a general setting involving many modes, for one-mode condensates its occurrence is forbidden by the particle number superselection rule (SSR), which arises because there is no phase reference available. We consider a single mode atomic Bose-Einstein condensate interacting with an off-resonant optical probe field. We show that the condensate phase revival time is dependent on the atom-light interaction, allowing optical control on the atomic collapse and revival dynamics. Incoherent effects over the condensate phase are included by considering a continuous photo-detection over the probe field. We consider conditioned and unconditioned photo-counting events and verify that no extra control upon the condensate is achieved by the probe photo-detection, while further inference of the atomic system statistics is allowed leading to a useful test of the SSR on particle number and its imposition on the kind of physical condensate state.

  9. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  10. Probing thermal evanescent waves with a scattering-type near-field microscope

    International Nuclear Information System (INIS)

    Kajihara, Y; Kosaka, K; Komiyama, S

    2011-01-01

    Long wavelength infrared (LWIR) waves contain many important spectra of matters like molecular motions. Thus, probing spontaneous LWIR radiation without external illumination would reveal detailed mesoscopic phenomena that cannot be probed by any other measurement methods. Here we developed a scattering-type scanning near-field optical microscope (s-SNOM) and demonstrated passive near-field microscopy at 14.5 µm wavelength. Our s-SNOM consists of an atomic force microscope and a confocal microscope equipped with a highly sensitive LWIR detector, called a charge-sensitive infrared phototransistor (CSIP). In our s-SNOM, photons scattered by a tungsten probe are collected by an objective of the confocal LWIR microscope and are finally detected by the CSIP. To suppress the far-field background, we vertically modulated the probe and demodulated the signal with a lock-in amplifier. With the s-SNOM, a clear passive image of 3 µm pitch Au/SiC gratings was successfully obtained and the spatial resolution was estimated to be 60 nm (λ/240). The radiation from Au and GaAs was suggested to be due to thermally excited charge/current fluctuations and surface phonons, respectively. This s-SNOM has the potential to observe mesoscopic phenomena such as molecular motions, biomolecular protein interactions and semiconductor conditions in the future

  11. Pump-probe experiments in atoms involving laser and synchrotron radiation: an overview

    International Nuclear Information System (INIS)

    Wuilleumier, F J; Meyer, M

    2006-01-01

    The combined use of laser and synchrotron radiations for atomic photoionization studies started in the early 1980s. The strong potential of these pump-probe experiments to gain information on excited atomic states is illustrated through some exemplary studies. The first series of experiments carried out with the early synchrotron sources, from 1960 to about 1995, are reviewed, including photoionization of unpolarized and polarized excited atoms, and time-resolved laser-synchrotron studies. With the most advanced generation of synchrotron sources, a whole new class of pump-probe experiments benefiting from the high brightness of the new synchrotron beams has been developed since 1996. A detailed review of these studies as well as possible future applications of pump-probe experiments using third generation synchrotron sources and free electron lasers is presented. (topical review)

  12. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    Science.gov (United States)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  13. New approaches to nanoparticle sample fabrication for atom probe tomography

    International Nuclear Information System (INIS)

    Felfer, P.; Li, T.; Eder, K.; Galinski, H.; Magyar, A.P.; Bell, D.C.; Smith, G.D.W.; Kruse, N.; Ringer, S.P.; Cairney, J.M.

    2015-01-01

    Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10–20 nm core–shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ±1 nm. - Highlights: • Samples for APT of nanoparticles were fabricated from particle powders and dispersions. • Electrophoresis was suitable for producing samples from dispersions. • Powder lift-out was successfully producing samples from particle agglomerates. • Dispersion application/coating delivered the highest quality results.

  14. New approaches to nanoparticle sample fabrication for atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, P., E-mail: peter.felfer@sydney.edu.au [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Li, T. [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Materials Department, The University of Oxford, Oxford (United Kingdom); Eder, K. [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Galinski, H. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Magyar, A.P.; Bell, D.C. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138 (United States); Smith, G.D.W. [Materials Department, The University of Oxford, Oxford (United Kingdom); Kruse, N. [Chemical Physics of Materials (Catalysis-Tribology), Université Libre de Bruxelles, Campus Plaine, CP 243, 1050 Brussels (Belgium); Ringer, S.P.; Cairney, J.M. [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2015-12-15

    Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10–20 nm core–shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ±1 nm. - Highlights: • Samples for APT of nanoparticles were fabricated from particle powders and dispersions. • Electrophoresis was suitable for producing samples from dispersions. • Powder lift-out was successfully producing samples from particle agglomerates. • Dispersion application/coating delivered the highest quality results.

  15. Atomic quantum superposition state generation via optical probing

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Poulsen, Uffe Vestergaard; Negretti, Antonio

    2009-01-01

    investigate cavity enhanced probing with continuous beams of both coherent and squeezed light. The stochastic master equations used in the analysis are expressed in terms of the Hamiltonian of the probed system and the interaction between the probed system and the probe field and are thus quite generally...

  16. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang Leman; Zhou Lan

    2003-01-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states

  17. A versatile atomic number correction for electron-probe microanalysis

    International Nuclear Information System (INIS)

    Love, G.; Cox, M.G.; Scott, V.D.

    1978-01-01

    A new atomic number correction is proposed for quantitative electron-probe microanalysis. Analytical expressions for the stopping power S and back-scatter R factors are derived which take into account atomic number of the target, incident electron energy and overvoltage; the latter expression is established using Monte Carlo calculations. The correct procedures for evaluating S and R for multi-element specimens are described. The new method, which overcomes some limitations inherent in earlier atomic number corrections, may readily be used where specimens are inclined to the electron beam. (author)

  18. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben

    2012-10-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.

  19. The mystery of missing species in atom probe tomography of composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Karahka, M.; Xia, Y.; Kreuzer, H. J. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2015-08-10

    There is a serious problem in atom probe tomography of composite materials such as oxides that even from stoichiometric samples one observes non-stoichiometric ion yields. We present a quantitative model that explains the non-stoichiometry allowing a fit to experimental data of ion yields as a function of applied field to extract activation barriers and prefactors. The numbers are confirmed by density functional theory. We also show that for oxides the missing oxygen is thermally desorbed as neutral O{sub 2}, either directly or associatively. Finally, we suggest methods to improve the experimental setup.

  20. Dependence of EIA spectra on mutual coherence between coupling and probe fields in Cs atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Mi Rang; Kim, Kyoung Dae; Park, Hyun Deok; Kim, Jung Bog [Korea National University of Education, Chungwon (Korea, Republic of); Moon, Han Seb [Korea Research Institute of the Standards and Science, Taejon (Korea, Republic of)

    2002-03-01

    We observed the dependence of EIA spectra on the mutual coherence between the coupling and the probe fields in the D{sub 2}F{sub 9} = 4 {r_reversible} F{sub e} = 5 transition of Cs vapors at room temperature where the coupling and the probe fields were made from one laser source or two independent laser sources. By using one source having a high mutual coherence, we found EIA spectra linewidths much narrower than 0.1 {gamma} on the weak coupling field and the transparent spectra with linewidths narrower than 1 MHz within subnatural absorption on the strong coupling field. On the other hand, where the two sources which were nearly incoherent with each other were used, the absorption profiles showed the same dependence on the coupling power as the spectra for the one source, but their linewidths were broad, on the order of the natural linewidth.

  1. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    KAUST Repository

    Al-Kassab, Talaat; Kompatscher, Michael; Kirchheim, Reiner; Kostorz, Gernot; Schö nfeld, Bernd

    2014-01-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from

  2. Localization of a two-level atom via the absorption spectrum

    International Nuclear Information System (INIS)

    Xu, Jun; Hu, Xiang-Ming

    2007-01-01

    We show that it is possible to localize a two-level atom as it passes through a standing-wave field by measuring the probe-field absorption. There is 50% detecting probability of the atom at the nodes of the standing-wave field in the subwavelength domain when the probe field is tuned resonant with the atomic transition

  3. Field measuring probe for SSC magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-01-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage

  4. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  5. Four-probe measurements with a three-probe scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-01-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe

  6. Four-probe measurements with a three-probe scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Salomons, Mark [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A., E-mail: rwolkow@ualberta.ca [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  7. Four-probe measurements with a three-probe scanning tunneling microscope.

    Science.gov (United States)

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  8. Depletion interaction measured by colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Wijting, W.K.; Knoben, W.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2004-01-01

    We investigated the depletion interaction between stearylated silica surfaces in cyclohexane in the presence of dissolved polydimethylsiloxane by means of colloidal probe atomic force microscopy. We found that the range of the depletion interaction decreases with increasing concentration.

  9. Atom-probe for FinFET dopant characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kambham, A.K., E-mail: kambham@imec.be [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W. [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2011-05-15

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10{sup o} and 45{sup o}) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: {yields} This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). {yields} Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. {yields} The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions

  10. Atom-probe for FinFET dopant characterization

    International Nuclear Information System (INIS)

    Kambham, A.K.; Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W.

    2011-01-01

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10 o and 45 o ) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: → This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). → Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. → The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions. → In this publication we

  11. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V. [Laboratoire de Photonique Quantique et Moleculaire, Ecole Normale Superieure de Cachan and CNRS UMR 8537, 94235 Cachan Cedex (France); Dal Savio, C.; Karrai, K. [Attocube systems AG, Koeniginstrasse 11A RGB, Munich 80539 (Germany); Dantelle, G. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique and CNRS UMR 7643, 91128 Palaiseau (France); Thiaville, A.; Rohart, S. [Laboratoire de Physique des Solides, Universite Paris-Sud and CNRS UMR 8502, 91405 Orsay (France)

    2012-04-09

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  12. Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer

    Science.gov (United States)

    Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore

    2017-11-01

    The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.

  13. Subwavelength atom localization via amplitude and phase control of the absorption spectrum

    International Nuclear Information System (INIS)

    Sahrai, Mostafa; Tajalli, Habib; Kapale, Kishore T.; Zubairy, M. Suhail

    2005-01-01

    We propose a scheme for subwavelength localization of an atom conditioned upon the absorption of a weak probe field at a particular frequency. Manipulating atom-field interaction on a certain transition by applying drive fields on nearby coupled transitions leads to interesting effects in the absorption spectrum of the weak probe field. We exploit this fact and employ a four-level system with three driving fields and a weak probe field, where one of the drive fields is a standing-wave field of a cavity. We show that the position of an atom along this standing wave is determined when probe-field absorption is measured. We find that absorption of the weak probe field at a certain frequency leads to subwavelength localization of the atom in either of the two half-wavelength regions of the cavity field by appropriate choice of the system parameters. We term this result as sub-half-wavelength localization to contrast it with the usual atom localization result of four peaks spread over one wavelength of the standing wave. We observe two localization peaks in either of the two half-wavelength regions along the cavity axis

  14. Developing detection efficiency standards for atom probe tomography

    Science.gov (United States)

    Prosa, Ty J.; Geiser, Brian P.; Lawrence, Dan; Olson, David; Larson, David J.

    2014-08-01

    Atom Probe Tomography (APT) is a near-atomic-scale analytical technique which, due to recent advances in instrumentation and sample preparation techniques, is being used on a variety of 3D applications. Total system detection efficiency is a key parameter for obtaining accurate spatial reconstruction of atomic coordinates from detected ions, but experimental determination of efficiency can be difficult. This work explores new ways to measure total system detection efficiency as well as the specimen characteristics necessary for such measurements. Composite specimens composed of a nickel/chromium multilayer core, National Institute of Standards and Technology Standard Reference Material 2135c, encapsulated with silver, silicon, or nickel were used to demonstrate the suitability of this approach for providing a direct measurement of APT efficiency. Efficiency measurements based on this multilayer encapsulated in nickel are reported.

  15. Isotropic Broadband E-Field Probe

    Directory of Open Access Journals (Sweden)

    Béla Szentpáli

    2008-01-01

    Full Text Available An E-field probe has been developed for EMC immunity tests performed in closed space. The leads are flexible resistive transmission lines. Their influence on the field distribution is negligible. The probe has an isotropic reception from 100 MHz to 18 GHz; the sensitivity is in the 3 V/m–10 V/m range. The device is an accessory of the EMC test chamber. The readout of the field magnitude is carried out by personal computer, which fulfils also the required corrections of the raw data.

  16. Atomic force and scanning near-field optical microscopy study of carbocyanine dye J-aggregates

    Czech Academy of Sciences Publication Activity Database

    Prokhorov, V.V.; Petrova, M.G.; Kovaleva, Natalia; Demikhov, E.I.

    2014-01-01

    Roč. 10, č. 5 (2014), s. 700-704 ISSN 1573-4137 Institutional support: RVO:68378271 Keywords : carbocyanine dye * elementary fibri * high-resolution atomic force microscopy * J-aggregate * probe microscopy * scanning near-field optical microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.096, year: 2014

  17. New atom probe approaches to studying segregation in nanocrystalline materials.

    Science.gov (United States)

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system

    International Nuclear Information System (INIS)

    Park, Sung Jong; Park, Chang Yong; Yoon, Tai Hyun

    2005-01-01

    A scheme of optical polarization modulation of a linearly polarized infrared probe field is studied in a degenerate four-level Yb atomic system. We have observed an anomalous transmission spectra of two circular polarization components of the probe field exhibiting an enhanced two-photon absorption and a three-photon gain with comparable magnitude, leading to the lossless transmission and enhanced circular dichroism. We carried out a proof-of-principle experiment of fast optical polarization modulation in such a system by modulating the polarization state of the coupling field. The observed enhanced two-photon absorption and three-photon gain of the probe field are due to the result of competing atomic coherence effects

  19. Atomic-scale investigations of grain boundary segregation in astrology with a three dimensional atom-probe

    Energy Technology Data Exchange (ETDEWEB)

    Blavette, D. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut Universitaire de France (France); Letellier, L. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Duval, P. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Guttmann, M. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut de Recherches de la Siderurgie Francaise (IRSID), 57 - Maizieres-les-Metz (France)

    1996-08-01

    Both conventional and 3D atom-probes were applied to the investigation of grain-boundary (GB) segregation phenomena in two-phase nickel base superalloys Astroloy. 3D images as provided by the tomographic atom-probe reveal the presence of a strong segregation of both boron and molybdenum at grain-boundaries. Slight carbon enrichment is also detected. Considerable chromium segregation is exhibited at {gamma}`-{gamma}` grain-boundaries. All these segregants are distributed in a continuous manner along the boundary over a width close to 0.5 nm. Experiments show that segregation occurs during cooling and more probably between 1000 C and 800 C. Boron and molybdenum GB enrichments are interpreted as due to an equilibrium type-segregation while chromium segregation is thought to be induced by {gamma}` precipitation at GB`s and stabilised by the presence of boron. No segregation of zirconium is detected. (orig.)

  20. Subwavelength atom localization via coherent population trapping

    International Nuclear Information System (INIS)

    Agarwal, G S; Kapale, K T

    2006-01-01

    We present an atom localization scheme based on coherent population trapping. We consider atomic transitions in a Lambda configuration where the control field is a standing-wave field. The probe field and the control field produce coherence between the two ground states and prepare the atom in a pure state. We show that the population in one of the ground states has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of this population would localize the atom. Interestingly enough the role of the cavity finesse is played by the ratio of the intensities of the pump and probe. This is in fact the reason for obtaining extreme subwavelength localization

  1. Atom probe microscopy of zinc isotopic enrichment in ZnO nanorods

    Directory of Open Access Journals (Sweden)

    C. N. Ironside

    2017-02-01

    Full Text Available We report on atomic probe microscopy (APM of isotopically enriched ZnO nanorods that measures the spatial distribution of zinc isotopes in sections of ZnO nanorods for natural abundance natZnO and 64Zn and 66Zn enriched ZnO nanorods. The results demonstrate that APM can accurately quantify isotopic abundances within these nanoscale structures. Therefore the atom probe microscope is a useful tool for characterizing Zn isotopic heterostructures in ZnO. Isotopic heterostructures have been proposed for controlling thermal conductivity and also, combined with neutron transmutation doping, they could be key to a novel technology for producing p-n junctions in ZnO thin films and nanorods.

  2. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    Science.gov (United States)

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Pulsed-voltage atom probe tomography of low conductivity and insulator materials by application of ultrathin metallic coating on nanoscale specimen geometry.

    Science.gov (United States)

    Adineh, Vahid R; Marceau, Ross K W; Chen, Yu; Si, Kae J; Velkov, Tony; Cheng, Wenlong; Li, Jian; Fu, Jing

    2017-10-01

    We present a novel approach for analysis of low-conductivity and insulating materials with conventional pulsed-voltage atom probe tomography (APT), by incorporating an ultrathin metallic coating on focused ion beam prepared needle-shaped specimens. Finite element electrostatic simulations of coated atom probe specimens were performed, which suggest remarkable improvement in uniform voltage distribution and subsequent field evaporation of the insulated samples with a metallic coating of approximately 10nm thickness. Using design of experiment technique, an experimental investigation was performed to study physical vapor deposition coating of needle specimens with end tip radii less than 100nm. The final geometries of the coated APT specimens were characterized with high-resolution scanning electron microscopy and transmission electron microscopy, and an empirical model was proposed to determine the optimal coating thickness for a given specimen size. The optimal coating strategy was applied to APT specimens of resin embedded Au nanospheres. Results demonstrate that the optimal coating strategy allows unique pulsed-voltage atom probe analysis and 3D imaging of biological and insulated samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Field-ion microscopy, MSC report No. 4691

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1982-03-01

    This short article discusses the elements of a basic field ion microscope (FIM), the physics of the processes of field ionization and field evaporation, the factors limiting atomic resolution, the principle features of an atom probe FIM and imaging atom-probe mass spectroscopy

  5. IMPURITY SEGREGATION OF STAINLESS STEEL STUDIED BY ATOM-PROBE AND AUGER ELECTRON SPECTROSCOPY

    OpenAIRE

    Koguchi , Y.; Takahashi , K.; Ishikawa , Y.

    1987-01-01

    The surface compositions of type 304 stainless steel heated in vacuum at 600-900°C were determined by an atom-probe and Auger electron spectroscopic analysis. In addition to enrichment and depletion of alloying elements in the surface of the stainless steel, segregation of impurity elements such as carbon, nitrogen, phosphorus and sulfur is known to occur. In this paper the atom-probe was used to measure the impurity segregation in the grains as well as in the grain boundary while the AES was...

  6. Analysis of deuterium in V-Fe5at.% film by atom probe tomography (APT)

    International Nuclear Information System (INIS)

    Gemma, R.; Al-Kassab, T.; Kirchheim, R.; Pundt, A.

    2011-01-01

    Research highlights: → Deuterium distribution in V-Fe thin film was investigated by atom probe tomography. → Correct analysis was possible at analysis temperatures below 30 K. → Inhomogeneous distribution of D atoms was nevertheless observed. → This was interpreted by trapping effect at misfit dislocation. → Atom probe analysis provides detailed information on local chemistry of M-D system. - Abstract: V-Fe5at.% 2 and 10-nm thick single layered films were prepared by ion beam sputtering on W substrate. They were loaded with D from gas phase at 0.2 Pa and at 1 Pa, respectively. Both lateral and depth D distribution of these films was investigated in detail by atom probe tomography. The results of analysis are in good agreement between the average deuterium concentration and the value, expected from electromotive force measurement on a similar flat film. An enrichment of deuterium at the V/W interface was observed for both films. The origin of this D-accumulation was discussed in respect to electron transfer, mechanical stress and misfit dislocations.

  7. Subwavelength atom localization via amplitude and phase control of the absorption spectrum

    OpenAIRE

    Sahrai, Mostafa; Tajalli, Habib; Kapale, Kishore T.; Zubairy, M. Suhail

    2005-01-01

    We propose a scheme for subwavelength localization of an atom conditioned upon the absorption of a weak probe field at a particular frequency. Manipulating atom-field interaction on a certain transition by applying drive fields on nearby coupled transitions leads to interesting effects in the absorption spectrum of the weak probe field. We exploit this fact and employ a four-level system with three driving fields and a weak probe field, where one of the drive fields is a standing-wave field o...

  8. A theoretical study of dopant atom detection and probe behavior in STEM

    Science.gov (United States)

    Mittal, Anudha

    Very detailed information about the atomic and electronic structure of materials can be obtained via atomic-scale resolution scanning transmission electron microscopy (STEM). These experiments reach the limits of current microscopes, which means that optimal experimental design is a key ingredient in success. The step following experiment, extraction of information from experimental data is also complex. Comprehension of experimental data depends on comparison with simulated data and on fundamental understanding of aspects of scattering behavior. The research projects discussed in this thesis are formulated within three large concepts. 1. Usage of simulation to suggest experimental technique for observation of a particular structural feature.. Two specific structural features are explored. One is the characterization of a substitutional dopant atom in a crystal. Annular dark field scanning transmission electron microscope (ADF-STEM) images allow detection of individual dopant atoms in a crystal based on contrast between intensities of doped and non-doped column in the image. The magnitude of the said contrast is heavily influenced by specimen and microscope parameters. Analysis of multislice-based simulations of ADF-STEM images of crystals doped with one substitutional dopant atom for a wide range of crystal thicknesses, types and locations of dopant atom inside the crystal, and crystals with different atoms revealed trends and non-intuitive behaviors in visibility of the dopant atom. The results provide practical guidelines for the optimal experimental setup regarding both the microscope and specimen conditions in order to characterize the presence and location of a dopant atom. Furthermore, the simulations help in recognizing the cases where detecting a single dopant atom via ADF-STEM imaging is not possible. The second is a more specific case of detecting intrinsic twist in MoS2 nanotubes. Objective molecular dynamics simulations coupled with a density

  9. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi

    2011-05-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  10. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi; Vella, Angela; Dé conihout, Bernard; Al-Kassab, Talaat

    2011-01-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  11. 3D atom microscopy in the presence of Doppler shift

    Science.gov (United States)

    Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2018-03-01

    The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.

  12. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    Science.gov (United States)

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-01-01

    Energy technologies of the 21st century require understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. This short review provides a summary of recent works dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. Discussion presents advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961

  13. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  14. Visualization of deuterium dead layer by atom probe tomography

    KAUST Repository

    Gemma, Ryota

    2012-12-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Visualization of deuterium dead layer by atom probe tomography

    KAUST Repository

    Gemma, Ryota; Al-Kassab, Talaat; Kirchheim, Reiner; Pundt, Astrid A.

    2012-01-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Errors of first-order probe correction for higher-order probes in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Nielsen, Jeppe Majlund; Pivnenko, Sergiy

    2004-01-01

    An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe.......An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe....

  17. Investigation of the self tempering effect of martensite by means of atom probe tomography

    International Nuclear Information System (INIS)

    Sackl, Stephanie; Clemens, Helmut; Primig, Sophie

    2015-01-01

    Self-tempering effects can be observed in steels with relatively high martensite start temperatures. After the formation of the first martensitic laths, carbon is able to diffuse in these laths during cooling, which can be attributed to sufficiently high temperatures. This effect cannot be observed in laths formed at lower temperatures. In steels containing up to 0.2 m.-% carbon, up to 90 % of the carbon atoms in the martensite segregate to dislocations during quenching. Due to its atomic resolution and sensitivity with respect to light elements, atom probe tomography is very well suited for the investigation of this phenomenon. In this study, the self-tempering effect in a quenched and tempered steel 42CrMo4 with a martensite start temperature of 310 C is investigated by means of atom probe tomography.

  18. Hydrogen atom moving across a magnetic field

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Volkov, S.Yu.

    2004-01-01

    A hydrogen atom moving across a magnetic field is considered in a wide region of magnitudes of magnetic field and atom momentum. We solve the Schroedinger equation of the system numerically using an imaginary time method and find wave functions of the lowest states of atom. We calculate the energy and the mean electron-nucleus separation as a function of atom momentum and magnetic field. All the results obtained could be summarized as a phase diagram on the 'atom-momentum - magnetic-field' plane. There are transformations of wave-function structure at critical values of atom momentum and magnetic field that result in a specific behavior of dependencies of energy and mean interparticle separation on the atom momentum P. We discuss a transition from the Zeeman regime to the high magnetic field regime. A qualitative analysis of the complicated behavior of wave functions vs P based on the effective potential examination is given. We analyze a sharp transition at the critical momentum from a Coulomb-type state polarized due to atom motion to a strongly decentered (Landau-type) state at low magnetic fields. A crossover occurring at intermediate magnetic fields is also studied

  19. Blind deconvolution of time-of-flight mass spectra from atom probe tomography

    International Nuclear Information System (INIS)

    Johnson, L.J.S.; Thuvander, M.; Stiller, K.; Odén, M.; Hultman, L.

    2013-01-01

    A major source of uncertainty in compositional measurements in atom probe tomography stems from the uncertainties of assigning peaks or parts of peaks in the mass spectrum to their correct identities. In particular, peak overlap is a limiting factor, whereas an ideal mass spectrum would have peaks at their correct positions with zero broadening. Here, we report a method to deconvolute the experimental mass spectrum into such an ideal spectrum and a system function describing the peak broadening introduced by the field evaporation and detection of each ion. By making the assumption of a linear and time-invariant behavior, a system of equations is derived that describes the peak shape and peak intensities. The model is fitted to the observed spectrum by minimizing the squared residuals, regularized by the maximum entropy method. For synthetic data perfectly obeying the assumptions, the method recovered peak intensities to within ±0.33at%. The application of this model to experimental APT data is exemplified with Fe–Cr data. Knowledge of the peak shape opens up several new possibilities, not just for better overall compositional determination, but, e.g., for the estimation of errors of ranging due to peak overlap or peak separation constrained by isotope abundances. - Highlights: • A method for the deconvolution of atom probe mass spectra is proposed. • Applied to synthetic randomly generated spectra the accuracy was ±0.33 at. • Application of the method to an experimental Fe–Cr spectrum is demonstrated

  20. Mg dopant distribution in an AlGaN/GaN p-type superlattice assessed using atom probe tomography, TEM and SIMS

    International Nuclear Information System (INIS)

    Bennett, S E; Kappers, M J; Barnard, J S; Humphreys, C J; Oliver, R A; Clifton, P H; Ulfig, R M

    2010-01-01

    P-type conducting layers are critical in GaN-based devices such as LEDs and laser diodes. Such layers are often produced by doping GaN with Mg, but the hole concentration can be enhanced using AlGaN/GaN p-type superlattices by exploiting the built-in polarisation fields. A Mg-doped AlGaN/GaN superlattice was studied using SIMS. Although the AlGaN and GaN were nominally doped to the same level, the SIMS data suggested a difference in doping density between the two materials. Atom probe tomography was then used to investigate the Mg distribution. The superlattice repeats were clearly visible, as expected and, in addition, significant Mg clustering was observed in both the GaN and AlGaN layers. There were many more Mg clusters in the AlGaN layers than the GaN layers, accounting for the difference in doping density suggested by SIMS. To evaluate the structural accuracy of the atom probe reconstruction, layer thicknesses from the atom probe were compared with STEM images. Finally, future work is proposed to investigate the Mg clusters in the TEM.

  1. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography

    International Nuclear Information System (INIS)

    Takahashi, Jun; Kawakami, Kazuto; Kobayashi, Yukiko; Tarui, Toshimi

    2010-01-01

    For the first time ever, atomic-scale direct observation of deuterium atoms trapping at nano-sized titanium carbide (TiC) precipitates in steel was successfully achieved using atom probe tomography (APT). Deuterium gas charging into the needle specimen and subsequently quenching were conducted in our designed chamber attached to three-dimensional atom probe (3DAP). The deuterium atoms were definitely observed on the broad surface of TiC platelets, which indicated that the broad interface between the matrix and TiC was the main trapping site.

  2. Atom Probe Tomography Characterization of the Solute Distributions in a Neutron-Irradiated and Annealed Pressure Vessel Steel Weld

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.

    2001-01-30

    A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (E > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.

  3. New atom probe approaches to studying segregation in nanocrystalline materials

    International Nuclear Information System (INIS)

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J.; Cao, Y.; Liao, X.Z.; Cairney, J.M.

    2013-01-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess

  4. New atom probe approaches to studying segregation in nanocrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Cao, Y.; Liao, X.Z. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2013-09-15

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess.

  5. Evolution Properties of Atomic Fidelity in the Combined Multi-Atom-Cavity Field System

    International Nuclear Information System (INIS)

    Wang Ju-Xia; Zhang Xiao-Juan; Zhang Xiu-Xing

    2015-01-01

    The atom fidelity is investigated in a system consisting of Mtwo-level atoms and M single-mode fields by use of complete quantum theory and numerical evaluation method. The influences of various system parameters on the evolution of atomic fidelity are studied. The results show that the atomic fidelity evolves in a Rabi oscillation manner. The oscillation frequency is mainly modulated by the coupling strength between atoms and light field, the atomic transition probabilities and the average photon numbers. Other factors hardly impact on the atomic fidelity. The present results may provide a useful approach to the maintenance of the atomic fidelity in the atom cavity field systems. (paper)

  6. Atomic excitation and recombination in external fields

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination

  7. RFID Antenna Near-field Characterization Using a New 3D Magnetic Field Probe

    Directory of Open Access Journals (Sweden)

    Kassem Jomaa

    2017-05-01

    Full Text Available In this paper the design of a new 3D magnetic field (H-field probe with a near-field scanning system is presented, then the near electromagnetic fields radiated by a Library RFID system is characterized. The proposed system is developed in order to determine the magnetic near-field emitted by electronic devices. The designed isotropic H-field probe consists of three orthogonal and identical loops each of diameter of 6 mm having 3 turns. The antenna factor of the designed probe is presented for a frequency range from 10 MHz to 1 GHz. The designed probe is tested and validated using a standard passive circuit as a device under test. An RFID reader antenna is also designed and simulated on HFSS (high frequency structural simulator and the radiated magnetic field, obtained by simulations, is then compared to the real measured one above the fabricated circuit. The obtained levels are checked if they satisfy the European and ICNIRP Electromagnetic Fields Guidelines.

  8. Development of transient internal probe (TIP) magnetic field diagnostic

    International Nuclear Information System (INIS)

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1994-01-01

    The Transient Internal Probe (TIP) is designed to permit measurement of internal magnetic fields, in hot, high density plasmas. The concept consists of accelerating a probe to high velocities (2.2 Km/s) in order to minimize probe exposure time to plasma. Faraday rotation within the probe is used to measure the local magnetic field. An Argon laser illuminates the probe consisting of a Faraday-rotator material with a retro-reflector that returns the incident light to the detection system. Performance results of the light gas gun and optical detection system will be shown. To date, the gas gun has been extensively tested consistently achieving velocities between 2 and 3 km/s. The probe and detection scheme have been tested by dropping the probe through a static magnetic field. Magnetic field resolution of 20 gauss and spatial resolution of 5 mm has been achieved. System frequency response is 10Mhz. Work is currently being conducted to integrate the diagnostic system with laboratory plasma experiments. Specifically a gas interfaced system has been developed to prevent helium muzzle gas from entering the plasma chamber with the probe. Additionally the probe must be separated from the sabot which protects the probe during acceleration in the gas gun. Data will be presented showing the results of various separation techniques

  9. Bichromatic electromagnetically induced transparency in cold rubidium atoms

    International Nuclear Information System (INIS)

    Wang, J.; Jiang, K.J.; Zhan, M.S.; Zhu Yifu

    2003-01-01

    In a three-level atomic system coupled by two equal-amplitude laser fields with a frequency separation 2δ, a weak probe field exhibits a multiple-peaked absorption spectrum with a constant peak separation δ. The corresponding probe dispersion exhibits steep normal dispersion near the minimum absorption between the multiple absorption peaks, which leads to simultaneous slow group velocities for probe photons at multiple frequencies separated by δ. We report an experimental study in such a bichromatically coupled three-level Λ system in cold 87 Rb atoms. The multiple-peaked probe absorption spectra under various experimental conditions have been observed and compared with the theoretical calculations

  10. Field measuring probe for SSC [Superconducting Super Collider] magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-03-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage. Digital voltmeters are used to digitize the voltages from the rotating coil and several custom circuits control motor speeds in the probe. The overall diameter of the probe is approximately 2 cm and its length is 2.4 m; the field sensitive windings are 0.6 m in length

  11. Atomic probe Wigner tomography of a nanomechanical system

    International Nuclear Information System (INIS)

    Singh, Swati; Meystre, Pierre

    2010-01-01

    We propose a scheme to measure the quantum state of a nanomechanical oscillator cooled near its ground state of vibrational motion. This is an extension of the nonlinear atomic homodyning technique scheme first developed to measure the intracavity field in a micromaser. It involves the use of a detector atom that is simultaneously coupled to the resonator via a magnetic interaction and to (classical) optical fields via a Raman transition. We show that the probability for the atom to be found in the ground state is a direct measure of the Wigner characteristic function of the nanomechanical oscillator. We also investigate the back-action effect of this destructive measurement on the state of the resonator.

  12. Mapping and correcting respiration-induced field changes in the brain using fluorine field probes

    DEFF Research Database (Denmark)

    Andersen, Mads; Madsen, Kristoffer; Hanson, Lars G.

    2014-01-01

    strength values from signal phase by linear fitting. Ahead of imaging, the field probe positions were determined for each subject, by applying known gradients in all three dimensions while measuring with the field probes. Experiments: Measurements were performed in 4 male subjects instructed to hold...... software was updated with f0 and first order shim values, before the acquisition of every volume. Evaluation: To assess whether the dynamic field changes were captured by the field probe data, the field probe fitted fields were subtracted from the scanner B0 maps to model shimming. We then assessed whether......Purpose. Breathing induced dynamic B0 field perturbations in the head can lead to artefacts in ultra-high field MR by causing line broadening in spectroscopy and signal dropout, ghosting, displacement artifacts and blurring in imaging. It has recently been proposed to continuously stabilize...

  13. Wet-chemical etching of atom probe tips for artefact free analyses of nanoscaled semiconductor structures.

    Science.gov (United States)

    Melkonyan, D; Fleischmann, C; Veloso, A; Franquet, A; Bogdanowicz, J; Morris, R J H; Vandervorst, W

    2018-03-01

    We introduce an innovative specimen preparation method employing the selectivity of a wet-chemical etching step to improve data quality and success rates in the atom probe analysis of contemporary semiconductor devices. Firstly, on the example of an SiGe fin embedded in SiO 2 we demonstrate how the selective removal of SiO 2 from the final APT specimen significantly improves accuracy and reliability of the reconstructed data. With the oxide removal, we eliminate the origin of shape artefacts, i.e. the formation of a non-hemispherical tip shape, that are typically observed in the reconstructed volume of complex systems. Secondly, using the same approach, we increase success rates to ∼90% for the damage-free, 3D site-specific localization of short (250 nm), vertical Si nanowires at the specimen apex. The impact of the abrupt emitter radius change that is introduced by this specimen preparation method is evaluated as being minor using field evaporation simulation and comparison of different reconstruction schemes. The Ge content within the SiGe fin as well as the 3D boron distribution in the Si NW as resolved by atom probe analysis are in good agreement with TEM/EDS and ToF-SIMS analysis, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. New probe of magnetic fields in the prereionization epoch. I. Formalism

    Science.gov (United States)

    Venumadhav, Tejaswi; Oklopčić, Antonija; Gluscevic, Vera; Mishra, Abhilash; Hirata, Christopher M.

    2017-04-01

    We propose a method of measuring extremely weak magnetic fields in the intergalactic medium prior to and during the epoch of cosmic reionization. The method utilizes the Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition. This precession leads to a systematic change in the brightness temperature fluctuations of the 21-cm line from the high-redshift universe, and thus the statistics of these fluctuations encode information about the magnetic field the atoms are immersed in. The method is most suited to probing fields that are coherent on large scales; in this paper, we consider a homogenous magnetic field over the scale of the 21-cm fluctuations. Due to the long lifetime of the triplet state of the 21-cm transition, this technique is naturally sensitive to extremely weak field strengths, of order 10-19 G at a reference redshift of ˜20 (or 10-21 G if scaled to the present day). Therefore, this might open up the possibility of probing primordial magnetic fields just prior to reionization. If the magnetic fields are much stronger, it is still possible to use this method to infer their direction, and place a lower limit on their strength. In this paper (Paper I in a series on this effect), we perform detailed calculations of the microphysics behind this effect, and take into account all the processes that affect the hyperfine transition, including radiative decays, collisions, and optical pumping by Lyman-α photons. We conclude with an analytic formula for the brightness temperature of linear-regime fluctuations in the presence of a magnetic field, and discuss its limiting behavior for weak and strong fields.

  15. Applying computational geometry techniques for advanced feature analysis in atom probe data

    International Nuclear Information System (INIS)

    Felfer, Peter; Ceguerra, Anna; Ringer, Simon; Cairney, Julie

    2013-01-01

    In this paper we present new methods for feature analysis in atom probe tomography data that have useful applications in materials characterisation. The analysis works on the principle of Voronoi subvolumes and piecewise linear approximations, and feature delineation based on the distance to the centre of mass of a subvolume (DCOM). Based on the coordinate systems defined by these approximations, two examples are shown of the new types of analyses that can be performed. The first is the analysis of line-like-objects (i.e. dislocations) using both proxigrams and line-excess plots. The second is interfacial excess mapping of an InGaAs quantum dot. - Highlights: • Computational geometry is used to detect and analyse features within atom probe data. • Limitations of conventional feature detection are overcome by using atomic density gradients. • 0D, 1D, 2D and 3D features can be analysed by using Voronoi tessellation for spatial binning. • New, robust analysis methods are demonstrated, including line and interfacial excess mapping

  16. Extreme sub-wavelength atom localization via coherent population trapping

    OpenAIRE

    Agarwal, Girish S.; Kapale, Kishore T.

    2005-01-01

    We demonstrate an atom localization scheme based on monitoring of the atomic coherences. We consider atomic transitions in a Lambda configuration where the control field is a standing wave field. The probe field and the control field produce coherence between the two ground states. We show that this coherence has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of the atomic coherence would localize the atom. Interestingly enough the role of the cavity ...

  17. Electromagnetically induced grating with Rydberg atoms

    Science.gov (United States)

    Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid

    2016-09-01

    We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.

  18. Observation of local fields in ZnO using the 111Cd probe

    International Nuclear Information System (INIS)

    Sato, W.; Komatsuda, S.; Imagawa, E.; Ohkubo, Y.; Yamada, Y.

    2011-01-01

    The authors prepared the ZnO sample ( 111m Cd-CZO) that contains totally 0.5 at.% of Cd including 111m Cd, and the ZnO sample ( 111m Cd-ICZO) made by doping with 0.5 at.% of In to 111m Cd-CZO, and measured γ-ray perturbed angular correlation (PAC) spectra. They compared these measurement results with the PAC spectra that were observed in the sample ( 111 In-IZO) made by doping with 0.5 at.% of stable In isotope in addition to ( 111 In→) 111 Cd probe, and examined the two characteristics of 111 In-IZO. As for 111 In-IZO, large electric field gradient and late effect due to remarkable EC decay was observed compared with the sample ( 111 In-UZO), where several ppt level of ( 111 In→) 111 Cd probe was solely doped into ZnO. This fact suggests that In atoms and 111 In atoms flocculate locally. When this flocculating condition is made of many In atom groups, several occupation positions of 111 In can be considered, and they cannot form the single frequency component as obtained in the PAC spectra. Therefore, the results of this experiment can be understood that In atoms themselves form the pairs in the nearest position while replacing the lattice positions of Zn. In is generally stable under the condition of three valence, but it can take one valence depending on compounds. Therefore, it can be considered that if In 3+ and In + mixture in this ratio replace Zn 2+ sites, this pairs can exist from the viewpoint of charge balance. (A.O.)

  19. An Evanescent Field Optical Microscope. Scanning probe Microscopy

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.; Wickramasinghe, H. Kumar

    1991-01-01

    An Evanescent Field Optical Microscope (EFOM) is presented, which employs frustrated total internal reflection on a highly localized scale by means of a sharp dielectric tip. The coupling of the evanescent field to the sub-micrometer probe as a function of probe-sample distance, angle of incidence

  20. Atomic Interference in Standing Wave Fields

    National Research Council Canada - National Science Library

    Berman, Paul

    2001-01-01

    ... on (i) a conical lens that can he used to focus atoms to a single spot, (ii) a multi-color field geometry that can be used to produce high-harmonic, sinusoidal, spatial matter gratings in a single atomic-field interaction zone, (iii...

  1. Steering neutral atoms in strong laser fields

    International Nuclear Information System (INIS)

    Eilzer, S; Eichmann, U

    2014-01-01

    The seminal strong-field tunnelling theory introduced by L V Keldysh plays a pivotal role. It has shaped our understanding of atomic strong-field processes, where it represents the first step in complex ionisation dynamics and provides reliable tunnelling rates. Tunnelling rates, however, cannot be necessarily equated with ionisation rates. Taking into account the electron dynamics in the Coulomb potential following the tunnelling process, the process of frustrated tunnelling ionisation has been found to lead to excited Rydberg atoms. Here, we excite He atoms in the strong-field tunnelling regime into Rydberg states. A high percentage of these Rydberg atoms survive in high intensity laser fields. We exploit this fact together with their high polarisability to kinematically manipulate the Rydberg atoms with a second elliptically polarised focused strong laser field. By varying the spatial overlap of the two laser foci, we are able to selectively control the deflection of the Rydberg atoms. The results of semi-classical calculations, which are based on the frustrated tunnelling model and on the ponderomotive acceleration, are in accord with our experimental data. (paper)

  2. Automated voxelization of 3D atom probe data through kernel density estimation

    International Nuclear Information System (INIS)

    Srinivasan, Srikant; Kaluskar, Kaustubh; Dumpala, Santoshrupa; Broderick, Scott; Rajan, Krishna

    2015-01-01

    Identifying nanoscale chemical features from atom probe tomography (APT) data routinely involves adjustment of voxel size as an input parameter, through visual supervision, making the final outcome user dependent, reliant on heuristic knowledge and potentially prone to error. This work utilizes Kernel density estimators to select an optimal voxel size in an unsupervised manner to perform feature selection, in particular targeting resolution of interfacial features and chemistries. The capability of this approach is demonstrated through analysis of the γ / γ’ interface in a Ni–Al–Cr superalloy. - Highlights: • Develop approach for standardizing aspects of atom probe reconstruction. • Use Kernel density estimators to select optimal voxel sizes in an unsupervised manner. • Perform interfacial analysis of Ni–Al–Cr superalloy, using new automated approach. • Optimize voxel size to preserve the feature of interest and minimizing loss / noise.

  3. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Zhan Zhiming; Liu Jibing

    2011-01-01

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  4. Dicke superradiance as nondestructive probe for the state of atoms in optical lattices

    Science.gov (United States)

    ten Brinke, Nicolai; Schützhold, Ralf

    2016-04-01

    We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.

  5. An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials.

    Science.gov (United States)

    Rolland, N; Larson, D J; Geiser, B P; Duguay, S; Vurpillot, F; Blavette, D

    2015-12-01

    An analytical model describing the field evaporation dynamics of a tip made of a thin layer deposited on a substrate is presented in this paper. The difference in evaporation field between the materials is taken into account in this approach in which the tip shape is modeled at a mesoscopic scale. It was found that the non-existence of sharp edge on the surface is a sufficient condition to derive the morphological evolution during successive evaporation of the layers. This modeling gives an instantaneous and smooth analytical representation of the surface that shows good agreement with finite difference simulations results, and a specific regime of evaporation was highlighted when the substrate is a low evaporation field phase. In addition, the model makes it possible to calculate theoretically the tip analyzed volume, potentially opening up new horizons for atom probe tomographic reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Influence of laser power on atom probe tomographic analysis of boron distribution in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Y., E-mail: ytu@imr.tohoku.ac.jp [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Takamizawa, H.; Han, B.; Shimizu, Y.; Inoue, K.; Toyama, T. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yano, F. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Tokyo City University, Setagaya, Tokyo 158-8557 (Japan); Nishida, A. [Renesas Electronics Corporation, Hitachinaka, Ibaraki 312-8504 (Japan); Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2017-02-15

    The relationship between the laser power and the three-dimensional distribution of boron (B) in silicon (Si) measured by laser-assisted atom probe tomography (APT) is investigated. The ultraviolet laser employed in this study has a fixed wavelength of 355 nm. The measured distributions are almost uniform and homogeneous when using low laser power, while clear B accumulation at the low-index pole of single-crystalline Si and segregation along the grain boundaries in polycrystalline Si are observed when using high laser power (100 pJ). These effects are thought to be caused by the surface migration of atoms, which is promoted by high laser power. Therefore, for ensuring a high-fidelity APT measurement of the B distribution in Si, high laser power is not recommended. - Highlights: • Influence of laser power on atom probe tomographic analysis of B distribution in Si is investigated. • When using high laser power, inhomogeneous distributions of B in single-crystalline and polycrystalline Si are observed. • Laser promoted migration of B atoms over the specimen is proposed to explain these effects.

  7. Absorption spectrum of a V-type three-level atom driven by a coherent field

    International Nuclear Information System (INIS)

    Dong Po; Tang, S.H.

    2002-01-01

    We examine the absorption of a weak probe beam by a laser driven V-type atom with a pair of closely lying excited levels, where both the driving and probe lasers interact simultaneously with the two transitions. The effects of quantum interference among decay channels on the absorption spectra are also investigated. We introduce dipole moments in the dressed-state representation and the Hamiltonian in terms of the dressed states describing the interaction between the probe and the atom. In the degenerate case, features similar to that of a driven two-level atomic system are found due to some dark transitions in the spontaneous emission and the fact that the probe beam only detects certain transitions. In the nondegenerate case, the absorption spectrum is strongly influenced by the degree of quantum interference, resulting in different line shapes for emission peaks, absorption peaks, and dispersionlike profiles. The effect of probe polarization on the absorption spectrum is also investigated

  8. Atomic force microscopy. A new method for atom identification and manipulation

    International Nuclear Information System (INIS)

    Abe, Masayuki; Sugimoto, Yoshiaki; Morita, Seizo

    2007-01-01

    Frequency modulation atomic force microscopy (FM-AFM) is a scanning probe technique that detects the interaction forces between the outermost atom of a sharp tip and the atoms at a surface to image the sample surface. It is expected that the FM-AFM can cover the research field which scanning tunneling microscopy does not provide. In this article, we would introduce FM-AFM experiments applied to site-specific force measurements and atom manipulation, including how to solve the problems to achieve precise FM-AFM measurements. (author)

  9. Development of Tuning Fork Based Probes for Atomic Force Microscopy

    Science.gov (United States)

    Jalilian, Romaneh; Yazdanpanah, Mehdi M.; Torrez, Neil; Alizadeh, Amirali; Askari, Davood

    2014-03-01

    This article reports on the development of tuning fork-based AFM/STM probes in NaugaNeedles LLC for use in atomic force microscopy. These probes can be mounted on different carriers per customers' request. (e.g., RHK carrier, Omicron carrier, and tuning fork on a Sapphire disk). We are able to design and engineer tuning forks on any type of carrier used in the market. We can attach three types of tips on the edge of a tuning fork prong (i.e., growing Ag2Ga nanoneedles at any arbitrary angle, cantilever of AFM tip, and tungsten wire) with lengths from 100-500 μm. The nanoneedle is located vertical to the fork. Using a suitable insulation and metallic coating, we can make QPlus sensors that can detect tunneling current during the AFM scan. To make Qplus sensors, the entire quartz fork will be coated with an insulating material, before attaching the nanoneedle. Then, the top edge of one prong is coated with a thin layer of conductive metal and the nanoneedle is attached to the fork end of the metal coated prong. The metal coating provides electrical connection to the tip for tunneling current readout and to the electrodes and used to read the QPlus current. Since the amount of mass added to the fork is minimal, the resonance frequency spectrum does not change and still remains around 32.6 KHz and the Q factor is around 1,200 in ambient condition. These probes can enhance the performance of tuning fork based atomic microscopy.

  10. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Ding Chunling; Li Jiahua; Yang Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhan Zhiming [School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Liu Jibing, E-mail: clding2006@126.com, E-mail: huajia_li@163.com [Department of Physics, Hubei Normal University, Huangshi 435002 (China)

    2011-07-28

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  11. Atom probe tomography of Ni-base superalloys Allvac 718Plus and Alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Viskari, L., E-mail: viskari@chalmers.se [Chalmers University of Technology, Gothenburg (Sweden); Stiller, K. [Chalmers University of Technology, Gothenburg (Sweden)

    2011-05-15

    Atom probe tomography (APT) allows near atomic scale compositional- and morphological studies of, e.g. matrix, precipitates and interfaces in a wide range of materials. In this work two Ni-base superalloys with similar compositions, Alloy 718 and its derivative Allvac 718Plus, are subject for investigation with special emphasis on the latter alloy. The structural and chemical nuances of these alloys are important for their properties. Of special interest are grain boundaries as their structure and chemistry are important for the materials' ability to resist rapid environmentally induced crack propagation. APT has proved to be suitable for analyses of these types of alloys using voltage pulsed APT. However, for investigations of specimens containing grain boundaries and other interfaces the risk for early specimen fracture is high. Analyses using laser pulsing impose lower electrical field on the specimen thereby significantly increasing the success rate of investigations. Here, the effect of laser pulsing was studied and the derived appropriate acquisition parameters were then applied for microstructural studies, from which initial results are shown. Furthermore, the influence of the higher evaporation field experienced by the hardening {gamma}' Ni{sub 3}(Al,Nb) precipitates on the obtained results is discussed. -- Research highlights: {yields} Laser pulsed APT is shown to be a good method for analysis of Ni-based superalloys. {yields} The evaporation field is shown to be different for different phases which affects reconstructions. {yields} B and P are shown to segregate to grain boundaries. {yields} Initial results of {delta}-phase analysed by APT are shown.

  12. Probe branes thermalization in external electric and magnetic fields

    International Nuclear Information System (INIS)

    Ali-Akbari, M.; Ebrahim, H.; Rezaei, Z.

    2014-01-01

    We study thermalization on rotating probe branes in AdS 5 ×S 5 background in the presence of constant external electric and magnetic fields. In the AdS/CFT framework this corresponds to thermalization in the flavour sector in field theory. The horizon appears on the worldvolume of the probe brane due to its rotation in one of the sphere directions. For both electric and magnetic fields the behaviour of the temperature is independent of the probe brane dimension. We also study the open string metric and the fluctuations of the probe brane in such a set-up. We show that the temperatures obtained from open string metric and observed by the fluctuations are larger than the one calculated from the induced metric

  13. Robust operation and performance of integrated carbon nanotubes atomic force microscopy probes

    International Nuclear Information System (INIS)

    Rius, G; Clark, I T; Yoshimura, M

    2013-01-01

    We present a complete characterization of carbon nanotubes-atomic force microscopy (CNT-AFM) probes to evaluate the cantilever operation and advanced properties originating from the CNTs. The fabrication consists of silicon probes tip-functionalized with multiwalled CNTs by microwave plasma enhanced chemical vapor deposition. A dedicated methodology has been defined to evaluate the effect of CNT integration into the Si cantilevers. The presence of the CNTs provides enhanced capability for sensing and durability, as demonstrated using dynamic and static modes, e.g. imaging, indentation and force/current characterization.

  14. Light-induced gauge fields for ultracold atoms

    Science.gov (United States)

    Goldman, N.; Juzeliūnas, G.; Öhberg, P.; Spielman, I. B.

    2014-12-01

    Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.

  15. Light-induced gauge fields for ultracold atoms

    International Nuclear Information System (INIS)

    Goldman, N; Juzeliūnas, G; Öhberg, P; Spielman, I B

    2014-01-01

    Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms. (review article)

  16. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms

    Science.gov (United States)

    Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong

    2018-04-01

    We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.

  17. Fabrication of tungsten probe for hard tapping operation in atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guebum, E-mail: hanguebum@live.co.kr [Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, Indiana 47803 (United States); Department of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of); Ahn, Hyo-Sok, E-mail: hsahn@seoultech.ac.kr [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-02-15

    We propose a method of producing a tungsten probe with high stiffness for atomic force microscopy (AFM) in order to acquire enhanced phase contrast images and efficiently perform lithography. A tungsten probe with a tip radius between 20 nm and 50 nm was fabricated using electrochemical etching optimized by applying pulse waves at different voltages. The spring constant of the tungsten probe was determined by finite element analysis (FEA), and its applicability as an AFM probe was evaluated by obtaining topography and phase contrast images of a Si wafer sample partly coated with Au. Enhanced hard tapping performance of the tungsten probe compared with a commercial Si probe was confirmed by conducting hard tapping tests at five different oscillation amplitudes on single layer graphene grown by chemical vapor deposition (CVD). To analyze the damaged graphene sample, the test areas were investigated using tip-enhanced Raman spectroscopy (TERS). The test results demonstrate that the tungsten probe with high stiffness was capable of inducing sufficient elastic and plastic deformation to enable obtaining enhanced phase contrast images and performing lithography, respectively. - Highlights: • We propose a method of producing highly stiff tungsten probes for hard tapping AFM. • Spring constant of tungsten probe is determined by finite element method. • Enhanced hard tapping performance is confirmed. • Tip-enhanced Raman spectroscopy is used to identify damage to graphene.

  18. Fabrication of tungsten probe for hard tapping operation in atomic force microscopy

    International Nuclear Information System (INIS)

    Han, Guebum; Ahn, Hyo-Sok

    2016-01-01

    We propose a method of producing a tungsten probe with high stiffness for atomic force microscopy (AFM) in order to acquire enhanced phase contrast images and efficiently perform lithography. A tungsten probe with a tip radius between 20 nm and 50 nm was fabricated using electrochemical etching optimized by applying pulse waves at different voltages. The spring constant of the tungsten probe was determined by finite element analysis (FEA), and its applicability as an AFM probe was evaluated by obtaining topography and phase contrast images of a Si wafer sample partly coated with Au. Enhanced hard tapping performance of the tungsten probe compared with a commercial Si probe was confirmed by conducting hard tapping tests at five different oscillation amplitudes on single layer graphene grown by chemical vapor deposition (CVD). To analyze the damaged graphene sample, the test areas were investigated using tip-enhanced Raman spectroscopy (TERS). The test results demonstrate that the tungsten probe with high stiffness was capable of inducing sufficient elastic and plastic deformation to enable obtaining enhanced phase contrast images and performing lithography, respectively. - Highlights: • We propose a method of producing highly stiff tungsten probes for hard tapping AFM. • Spring constant of tungsten probe is determined by finite element method. • Enhanced hard tapping performance is confirmed. • Tip-enhanced Raman spectroscopy is used to identify damage to graphene.

  19. Anisotropic quantum quench in the presence of frustration or background gauge fields: A probe of bulk currents and topological chiral edge modes

    Science.gov (United States)

    Killi, Matthew; Trotzky, Stefan; Paramekanti, Arun

    2012-12-01

    Bosons and fermions, in the presence of frustration or background gauge fields, can form many-body ground states that support equilibrium charge or spin currents. Motivated by the experimental creation of frustration or synthetic gauge fields in ultracold atomic systems, we propose a general scheme by which making a sudden anisotropic quench of the atom tunneling across the lattice and tracking the ensuing density modulations provides a powerful and gauge-invariant route to probing diverse equilibrium current patterns. Using illustrative examples of trapped superfluid Bose and normal Fermi systems in the presence of artificial magnetic fluxes on square lattices, and frustrated bosons in a triangular lattice, we show that this scheme to probe equilibrium bulk current order works independent of particle statistics. We also show that such quenches can detect chiral edge modes in gapped topological states, such as quantum Hall or quantum spin Hall insulators.

  20. Understanding arsenic incorporation in CdTe with atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Burton, G. L.; Diercks, D. R.; Ogedengbe, O. S.; Jayathilaka, P. A. R. D.; Edirisooriya, M.; Myers, T. H.; Zaunbrecher, K. N.; Moseley, J.; Barnes, T. M.; Gorman, B. P.

    2018-08-01

    Overcoming the open circuit voltage deficiency in Cadmium Telluride (CdTe) photovoltaics may be achieved by increasing p-type doping while maintaining or increasing minority carrier lifetimes. Here, routes to higher doping efficiency using arsenic are explored through an atomic scale understanding of dopant incorporation limits and activation in molecular beam epitaxy grown CdTe layers. Atom probe tomography reveals spatial segregation into nanometer scale clusters containing > 60 at% As for samples with arsenic incorporation levels greater than 7-8 x 10^17 cm-3. The presence of arsenic clusters was accompanied by crystal quality degradation, particularly the introduction of arsenic-enriched extended defects. Post-growth annealing treatments are shown to increase the size of the As precipitates and the amount of As within the precipitates.

  1. A Survey of the Rapidly Emerging Field of Nanotechnology: Potential Applications for Scientific Instruments and Technologies for Atmospheric Entry Probes

    Science.gov (United States)

    Meyyappan, M.; Arnold, J. O.

    2005-01-01

    The field of Nanotechnology is well funded worldwide and innovations applicable to Solar System Exploration are emerging much more rapidly than thought possible just a few years ago. This presentation will survey recent innovations from nanotechnololgy with a focus on novel applications to atmospheric entry science and probe technology, in a fashion similar to that presented by Arnold and Venkatapathy at the previous workshop forum at Lisbon Portugal, October 6-9, 2003. Nanotechnology is a rapidly emerging field that builds systems, devices and materials from the bottom up, atom by atom, and in so doing provides them with novel and remarkable macro-scale performance. This technology has the potential to revolutionize space exploration by reducing mass and simultaneously increasing capability. Thermal, Radiation, Impact Protective Shields: Atmospheric probes and humans on long duration deep space missions involved in Solar System Exploration must safely endure 3 significant hazards: (i) atmospheric entry; (ii) radiation; and (iii) micrometeorite or debris impact. Nanostructured materials could be developed to address all three hazards with a single protective shield, which would involve much less mass than a traditional approach. The concept can be ready in time for incorporation into NASA s Crew Exploration Vehicle, and possible entry probes to fly on the Jupiter Icy Moons

  2. Specialized probes based on hydroxyapatite calcium for heart tissues research by atomic force microscopy

    International Nuclear Information System (INIS)

    Zhukov, Mikhail; Golubok, Alexander; Gulyaev, Nikolai

    2016-01-01

    The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of created specialized probes at study a calcinations process of the aortic heart tissues.

  3. Determination of the radial distribution function with the tomographic atom probe

    International Nuclear Information System (INIS)

    Heinrich, A.; Al-Kassab, T.

    2004-01-01

    Full text: An algorithm for the determination of the radial distribution function (RDF) and the partial radial distribution function from tomographic atom probe data is introduced and some examples for its application are discussed. Homogeneous distribution of atoms can easily be determined from measured data. Using our algorithm, the lattice of simple cubic structures may be estimated solely from TAP data. The results for bcc and fcc alloys and metals will be presented. By evaluating the vicinity of each atom, information about order phenomena in multi component alloy can be retrieved including short range order. The advantage of determining the (partial) radial distribution functions for any sample with our algorithm is that all data can be derived by one single experiment whereas all other methods of determining a pRDF require one experiment for each pRDF. (author)

  4. Reduction of multiple hits in atom probe tomography

    International Nuclear Information System (INIS)

    Thuvander, Mattias; Kvist, Anders; Johnson, Lars J.S.; Weidow, Jonathan; Andrén, Hans-Olof

    2013-01-01

    The accuracy of compositional measurements using atom probe tomography is often reduced because some ions are not recorded when several ions hit the detector in close proximity to each other and within a very short time span. In some cases, for example in analysis of carbides, the multiple hits result in a preferential loss of certain elements, namely those elements that frequently field evaporate in bursts or as dissociating molecules. In this paper a method of reducing the effect of multiple hits is explored. A fine metal grid was mounted a few millimeters behind the local electrode, effectively functioning as a filter. This resulted in a decrease in the overall detection efficiency, from 37% to about 5%, but also in a decrease in the fraction of multiple hits. In an analysis of tungsten carbide the fraction of ions originating from multiple hits decreased from 46% to 10%. As a result, the measured carbon concentration increased from 48.2 at%to 49.8 at%, very close to the expected 50.0 at%. The characteristics of the multiple hits were compared for analyses with and without the grid filter. - Highlights: ► APT experiments have been performed with a reduced amount of multiple hits. ► The multiple hits were reduced by placing a grid behind the electrode. ► This resulted in improved carbon measurement of WC

  5. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    Science.gov (United States)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  6. Magnetic field measurements using the transient internal probe (TIP)

    International Nuclear Information System (INIS)

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1995-01-01

    Knowledge of the internal magnetic field profile in hot plasmas is fundamental to understanding the structure and behavior of the current profile. The transient internal probe (TIP) is a novel diagnostic designed to measure internal magnetic fields in hot plasmas. The diagnostic involves shooting a magneto-optic probe through the plasma at high velocities (greater than 2 km/s) using a two stage light gas gun. Local fields are obtained by illuminating the probe with an argon ion laser and measuring the amount of Faraday rotation in the reflected beam. Initial development of the diagnostic is complete. Results of magnetic field measurements conducted at 2 km/s will be presented. Helium muzzle gas introduction to the plasma chamber has been limited to less than 0.4 Torr-ell. Magnetic field resolution of 40 Gauss and spatial resolution of 5 mm have been achieved. System frequency response is 10 MHz

  7. Single molecule mapping of the optical field distribution of probes for near-field microscopy

    NARCIS (Netherlands)

    Veerman, J.A.; Garcia Parajo, M.F.; Kuipers, L.; van Hulst, N.F.

    1999-01-01

    The most difficult task in near-field scanning optical microscopy (NSOM) is to make a high quality subwavelength aperture probe, Recently we have developed high definition NSOM probes by focused ion beam (FIB) milling. These probes have a higher brightness, better polarization characteristics,

  8. Reversible electrochemical modification of the surface of a semiconductor by an atomic-force microscope probe

    Energy Technology Data Exchange (ETDEWEB)

    Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2017-04-15

    A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.

  9. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates

    International Nuclear Information System (INIS)

    Vandamme, N; Janssens, E; Vanhoutte, F; Lievens, P; Haesendonck, C van

    2003-01-01

    We systematically studied the influence of the substrate on the shape, mobility, and stability of deposited gold clusters. The Au n clusters were produced in a laser vaporization source and deposited with low kinetic energy (∼0.4 eV/atom) on atomically flat substrates (graphite, mica, and gold and silver films on mica) under UHV conditions. Their size distribution is probed with time-of-flight mass spectrometry and ranges from dimers to several hundreds of atoms. Scanning probe microscopy is used to characterize the deposited clusters and the formation of islands by cluster aggregation. On all substrates, Au n islands can be clearly distinguished and the islands are flattened despite the small impact energy. The shape and size of the island configurations are strongly system dependent. Gold clusters deposited on Au(111) and Ag(111) films grown on mica do not aggregate, but deform due to strong cluster-substrate interactions. The clusters tend to grow epitaxially on these surfaces. On graphite and on mica, deposited clusters do diffuse and aggregate. On the graphite surface, large ramified islands are formed by juxtaposition of small islands and trapping of the clusters at the step edges. On the other hand, the diffusion of the clusters on mica results in a total coalescence of the Au n clusters into compact islands

  10. Probing Surface Electric Field Noise with a Single Ion

    Science.gov (United States)

    2013-07-30

    potentials is housed inside a Faraday cage providing more than 40 dB of attenuation for electromagnetic fields in the range of frequencies between 200...and measuring the ion quantum state [16]. Thus, by measuring the effect of electric field noise on the motional quantum state of the ion, one can probe...understand these effects . In summary, we have probed the electric field noise near an aluminum-copper surface at room temperature using a single trapped ion

  11. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-11-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  12. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-01-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  13. Application of Delaunay tessellation for the characterization of solute-rich clusters in atom probe tomography

    International Nuclear Information System (INIS)

    Lefebvre, W.; Philippe, T.; Vurpillot, F.

    2011-01-01

    This work presents an original method for cluster selection in Atom Probe Tomography designed to be applied to large datasets. It is based on the calculation of the Delaunay tessellation generated by the distribution of atoms of a selected element. It requires a single input parameter from the user. Furthermore, no prior knowledge of the material is needed. The sensitivity of the proposed Delaunay cluster selection is demonstrated by its application on simulated APT datasets. A strong advantage of the proposed methodology is that it is reinforced by the availability of an analytical model for the distribution of Delaunay cells circumspheres, which is used to control the accuracy of the cluster selection procedure. Another advantage of the Delaunay cluster selection is the direct calculation of a sharp envelope for each identified cluster or precipitate, which leads to the more appropriate morphology of the objects as they are reconstructed in the APT dataset. -- Research Highligthts: →Original method for cluster selection in Atom Probe Tomography. →Delaunay tessellation generated by the distribution of solute atoms. →Direct calculation of a sharp envelope for each identified cluster or precipitate. →Delaunay cluster selection demonstrated by its application on simulated APT datasets.

  14. Hierarchical atom type definitions and extensible all-atom force fields.

    Science.gov (United States)

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Fabrication of a novel nano-probe slide for near-field optical microscopy

    International Nuclear Information System (INIS)

    Yim, Sang-Youp; Jeang, Eun-Hee; Lee, Jae-Hoon; Park, Seung-Han; Cho, Kyu-Man

    2004-01-01

    A novel probe structure, which can act as a planar nano-probe slide for near-field microscopy, was proposed and fabricated. Sub-wavelength apertures on a Si substrate are successfully produced by means of standard photolithography techniques with properly selected masks. In particular, the anisotropic etching characteristics of Si substrate and the hardness of the Si 3 N 4 film are utilized. Probe-to-probe scanning of the fabricated near-field nano-probe slide shows sub-wavelength confinement of light and comparable throughput to the conventional optical fiber probe. We also show that the nano-probe slide can serve as a supporting base and a sub-wavelength aperture to obtain the near-field photoluminescence spectra of a limited number of CdSe nanocrystals.

  16. Probing the interactions between lignin and inorganic oxides using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingyu; Qian, Yong, E-mail: qianyong86@163.com; Deng, Yonghong; Liu, Di; Li, Hao; Qiu, Xueqing, E-mail: xueqingqiu66@163.com

    2016-12-30

    Graphical abstract: The interactions between lignin and inorganic oxides are quantitatively probed by atomic force microscopy, which is fundamental but beneficial for understanding and optimizing the absorption-dispersion and catalytic degradation processes of lignin. - Highlights: • The interactions between lignin and inorganic oxides are measured using AFM. • The adhesion forces between lignin and metal oxides are larger than that in nonmetal systems. • Hydrogen bond plays an important role in lignin-inorganic oxides system. - Abstract: Understanding the interactions between lignin and inorganic oxides has both fundamental and practical importance in industrial and energy fields. In this work, the specific interactions between alkali lignin (AL) and three inorganic oxide substrates in aqueous environment are quantitatively measured using atomic force microscopy (AFM). The results show that the average adhesion force between AL and metal oxide such as Al{sub 2}O{sub 3} or MgO is nearly two times bigger than that between AL and nonmetal oxide such as SiO{sub 2} due to the electrostatic difference and cation-π interaction. When 83% hydroxyl groups of AL is blocked by acetylation, the adhesion forces between AL and Al{sub 2}O{sub 3}, MgO and SiO{sub 2} decrease 43, 35 and 75% respectively, which indicate hydrogen bonds play an important role between AL and inorganic oxides, especially in AL-silica system.

  17. Atom ionization in a nonclassical intense electromagnetic field

    International Nuclear Information System (INIS)

    Popov, A.M.; Tikhonova, O.V.

    2002-01-01

    The atoms ionization process in the intense nonclassical electromagnetic field is considered. It is shown that depending on the field quantum state the probability of ionization may essentially change even by one and the same average quantum number in the radiation mode, whereby the difference in the ionization rates is especially significant in the case, when the ionization process is of a multiphoton character. It is demonstrates in particular, that the nonclassical field may be considerably more intensive from the viewpoint of the atoms ionization, than the classical field with the same intensity. The peculiarities of the decay, related to the atomic system state in the strong nonclassical field beyond the perturbation theory frames are studied [ru

  18. Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys.

    Science.gov (United States)

    Knipling, Keith E; Dunand, David C; Seidman, David N

    2007-12-01

    Atom probe tomography was utilized to measure directly the chemical compositions of Al(3)(Zr(1)-(x)Ti(x)) precipitates with a metastable L1(2) structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375 degrees C or 425 degrees C. The alloys exhibit an inhomogeneous distribution of Al(3)(Zr(1)-(x)Ti(x)) precipitates, as a result of a nonuniform dendritic distribution of solute atoms after casting. At these aging temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that Ti remains mainly in solid solution rather than partitioning to the Al(3)(Zr(1)-(x)Ti(x)) precipitates. This is interpreted as being due to the very small diffusivity of Ti in alpha-Al, consistent with prior studies on Al-Sc-Ti and Al-Sc-Zr alloys, where the slower diffusing Zr and Ti atoms make up a small fraction of the Al(3)(Zr(1)-(x)Ti(x)) precipitates. Unlike those alloys, however, the present Al-Zr-Ti alloys exhibit no interfacial segregation of Ti at the matrix/precipitate heterophase interface, a result that may be affected by a significant disparity in the evaporation fields of the alpha-Al matrix and Al(3)(Zr(1)-(x)Ti(x)) precipitates and/or a lack of local thermodynamic equilibrium at the interface.

  19. Dressed-state analysis of efficient two-dimensional atom localization in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate two-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detection probability and precision of two-dimensional atom localization can be significantly improved due to the interference effect between the spontaneous decay channels and the dynamically induced quantum interference generated by the probe and composite fields. More importantly, a 100% probability of finding an atom within the sub-half-wavelength domain of the standing waves can be reached when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or atom nano-lithography via atom localization. (paper)

  20. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...

  1. Laser terahertz emission microscopy with near-field probes

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Mittleman, Daniel M.

    2016-01-01

    Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm.......Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm....

  2. Gold nanocone probes for near-field scanning optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, Bastian; Schaefer, Christian; Nill, Peter; Fleischer, Monika; Kern, Dieter P. [Institute of Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, 72076 Tuebingen (Germany)

    2010-07-01

    Apertureless near-field scanning optical microscopy (ANSOM) provides the possibility to collect simultaneously high-resolution topographical and sub-diffraction limited optical information from a surface. When optically excited, the scanning probes act as optical antennae with a strong near-field enhancement near the tip apex. Spatial resolution and optical near-field enhancement depend strongly on the properties and geometry of the scanning probe - in particular on very sharp tip radii. Various possibilities for fabricating good antennae have been pursued. Most commonly, scanning probes consist of electrochemically etched gold wires which are sharp but not well-defined in geometry. We present two different approaches for ultra sharp and well-defined antennae based upon fabricating gold nanocones with a tip radius smaller than 10 nm which can be used in ANSOM. A transfer process is presented that can be used to attach single gold nanocones to non-metallic probes such as sharp glass fiber tips. Alternatively, new processes are presented to fabricate cones directly on pillars of different materials such as silicon or bismuth, which can be applied to cantilever tips for ANSOM scanning applications.

  3. Impact of dynamic specimen shape evolution on the atom probe tomography results of doped epitaxial oxide multilayers: Comparison of experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Nandasiri, Manjula; Devaraj, Arun, E-mail: arun.devaraj@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354 (United States); Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354 (United States); Xu, Zhijie [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354 (United States); Thevuthasan, Suntharampillai [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354 (United States); Qatar Environment and Energy Research Institute, Qatar Foundation, PO Box 5825, Doha (Qatar)

    2015-08-31

    The experimental atom probe tomography (APT) results from two different specimen orientations (top-down and sideways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was compared with level-set method based field evaporation simulations for the same specimen orientations. This experiment-simulation comparison explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction, leading to inaccurate estimation of interfacial intermixing. This study highlights the importance of comparing experimental results with field evaporation simulations when using APT to study oxide heterostructure interfaces.

  4. Dynamic polarizability of a complex atom in strong laser fields

    International Nuclear Information System (INIS)

    Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V.

    1997-01-01

    An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field

  5. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio

    2016-08-01

    In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.

  6. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  7. Internal field probing of translating FRCs

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Chrien, R.E.; Milroy, R.D.

    1984-11-01

    Magnetic field probes have been employed to study the internal field structure of Field-Reversed Configurations (FRCs) translating past the probes in the FRX-C/T device. Internal closed flux surfaces can be studied in this manner with minimal perturbation because of the rapid transit of the plasma (translation velocity v/sub z/ approx. 10 cm/μs). Data have been taken using a 5-mtorr-D 2 gas-puff mode of operation in the FRC source coil which yields an initial plasma density of approx. 1 x 10 15 cm -3 and x/sub s/ approx. 0.40. FRCs translate from the approx. 25 cm radius source coil into a 20 cm radius metal translation vessel. Of many translation conditions studied, the condition considered here is translation into a weak guide field resulting in expansion of the FRC to conditions of density approx. 3 x 10 14 and x/sub s/ approx. 0.7. The expected reversed B/sub z/ structure is observed. Evidence of island structure is also observed. Fluctuating levels of B/sub THETA/ are observed with amplitudes less than or equal to B 0 /3 and values of flux approx. 4 x the poloidal flux. Values of β on the separatrix of β/sub s/ approx. = 0.3 (indexed to the external field) are implied from the field measurements. This decrease of β/sub s/ with increased x/sub s/ is expected, and desirable for improved plasma confinement

  8. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  9. Atomic-level studies of superconducting YBa2Cu3O/sub 7-x/

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Brenner, S.S.

    1987-01-01

    The transmission electron microscope, field ion microscope, and imaging atom-probe mass spectrometer have been used to examine the structure and composition of field-emitter ''tips'' prepared from hot-pressed samples of YBa 2 Cu 3 O/sub 7-x/. Transmission electron microscope images of the tip apex clearly show periodic defect structures which are interpreted as twins boundaries. Field ion microscope images reveal the structure of the samples in atomic resolution and indicate that the material can be field evaporated in a uniform, layer-by-layer fashion. Imaging atom-probe mass spectra contain signals corresponding to all of the constituent elements with intensities fairly consistent with the 1-2-3 ratio of the metals, but highly deficient in oxygen

  10. Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms

    International Nuclear Information System (INIS)

    Liu Tang-Kun; Zhang Kang-Long; Tao Yu; Shan Chuan-Jia; Liu Ji-Bing

    2016-01-01

    The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1. (paper)

  11. Characterization of Radiation-Induced Clustering using Atom Probe Tomography in Nuclear Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeong Geun; Lim, Sang Yeob; Chang, Kun Ok; Ha, Jin Hyung; Kwon, Jun Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The degradations include the change in mechanical properties, which are related to the microstructure evolution caused by irradiation. The most widely used tool for the imaging irradiated microstructure is transmission electron microscopy (TEM). The composition of irradiation defects can be analyzed using X-ray spectroscopy (EDS) equipped in the TEM. However, composition characterization of the nano-sized irradiation defects in the matrix is limited due to the beam broadening of TEM and the overlapping of the probed volume during EDS analysis. Recently, Atom probe tomography (APT) has been introduced to the characterization of irradiation defects. APT provides sub-nano scale position of atoms and the chemical composition of a selected volume. SS316 irradiated with Fe ions at above 300 .deg. C caused significant clustering and segregation of Si and Ni at defect sinks. The neutron irradiated low alloy steel showed similar clustering of Ni and Si. The approach of using APT was demonstrated to be well suited for discovering the structure of irradiation defects and performing quantitative analysis in nuclear materials irradiated at high temperature.

  12. Design and Application of Hybrid Magnetic Field-Eddy Current Probe

    Science.gov (United States)

    Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John

    2013-01-01

    The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.

  13. Magnetic nanostructures: radioactive probes and recent developments

    International Nuclear Information System (INIS)

    Prandolini, M J

    2006-01-01

    The miniaturization of magnetic sensors and storage devices down to the nano-scale leads to drastic changes in magnetic phenomena compared with the same devices with a larger size. Excited-nuclear-probe (radioactive probe) techniques are ideal for investigating these new magnetic nanostructures. By observing the magnetic hyperfine fields (and in some cases the electric-field-gradients (EFGs)) at the nuclei of radioactive probes, microscopic information about the magnetic environment of the probes is acquired. The magnetic hyperfine field is particularly sensitive to the s-spin polarization of the conduction electrons and to the orbital magnetic moment of the probe atom. Three methods of inserting radioactive probes into magnetic nanostructures are presented; neutron activation, recoil implantation and 'soft-landing', followed by descriptions of their application to selected examples. In some cases, these methods offer the simultaneous creation and observation of new magnetic materials at the atomic scale. This review focuses firstly on the induced magnetism in noble-metal spacer layers between either ferromagnetic (FM) or FM/antiferromagnetic (AFM) layers in a trilayer structure. Using the method of low-temperature nuclear orientation, the s-spin polarization of noble-metal probes was measured and was found to be very sensitive to the magnetic properties at both the FM and AFM interfaces. Secondly, the recoil implantation of radioactive Fe probes into rare-earth hosts and d-band alloys and subsequent measurement using time-differential perturbed angular distribution offer the possibility of controlling the chemical composition and number of nearest-neighbours. This method was used to prepare local 3d-magnetic clusters in a non-magnetic matrix and to observe their magnetic behaviour. Finally, non-magnetic radioactive probes were 'soft-landed' onto Ni surfaces and extremely lattice-expanded ultrathin Ni films. By measuring the magnetic hyperfine fields and EFGs at

  14. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    Science.gov (United States)

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  15. An integrated high temperature environmental cell for atom probe tomography studies of gas-surface reactions: Instrumentation and results

    International Nuclear Information System (INIS)

    Dumpala, S.; Broderick, S.R.; Bagot, P.A.J.; Rajan, K.

    2014-01-01

    An integrated environmental cell has been designed and developed for the latest generation of Atom Probe Tomography LEAP™ instruments, allowing controlled exposure of samples to gases at high temperatures. Following treatment, samples can be transferred through the LEAP vacuum system for subsequent APT analysis, which provides detailed information on changes to chemical microstructures following the reactions with near-atomic resolution. A full description of the cell is presented, along with some sample results on the oxidation of aluminum and two platinum-group alloys, demonstrating the capability of combining exposure/characterization functionality in a single instrument. - Highlights: • Designed and built atom probe environmental cell for in situ reactions. • Investigated Al oxidation, and demonstrated improvement with new cell. • in situ APT analysis of Pt-alloys showed surface segregation of Rh and Ir

  16. Absorptive reduction and width narrowing in λ-type atoms confined between two dielectric walls

    International Nuclear Information System (INIS)

    Li Yuanyuan; Hou Xun; Bai Jintao; Yan Junfeng; Gan Chenli; Zhang Yanpeng

    2008-01-01

    This paper investigates the absorptive reduction and the width narrowing of electromagnetically induced transparency (EIT) in a thin vapour film of λ-type atoms confined between two dielectric walls whose thickness is comparable with the wavelength of the probe field. The absorptive lines of the weak probe field exhibit strong reductions and very narrow EIT dips, which mainly results from the velocity slow-down effects and transient behaviour of atoms in a confined system. It is also shown that the lines are modified by the strength of the coupling field and the ratio of L/λ, with L the film thickness and λ the wavelength of the probe field. A simple robust recipe for EIT in a thin medium is achievable in experiment. (general)

  17. Atomic hydrogen storage. [cryotrapping and magnetic field strength

    Science.gov (United States)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  18. Multivariate statistical analysis of atom probe tomography data

    International Nuclear Information System (INIS)

    Parish, Chad M.; Miller, Michael K.

    2010-01-01

    The application of spectrum imaging multivariate statistical analysis methods, specifically principal component analysis (PCA), to atom probe tomography (APT) data has been investigated. The mathematical method of analysis is described and the results for two example datasets are analyzed and presented. The first dataset is from the analysis of a PM 2000 Fe-Cr-Al-Ti steel containing two different ultrafine precipitate populations. PCA properly describes the matrix and precipitate phases in a simple and intuitive manner. A second APT example is from the analysis of an irradiated reactor pressure vessel steel. Fine, nm-scale Cu-enriched precipitates having a core-shell structure were identified and qualitatively described by PCA. Advantages, disadvantages, and future prospects for implementing these data analysis methodologies for APT datasets, particularly with regard to quantitative analysis, are also discussed.

  19. Two-photon decay in heavy atoms and ions

    International Nuclear Information System (INIS)

    Mokler, P.H.; Dunford, R.W

    2003-08-01

    We review the status of and comment on current developments in the field of two-photon decay in atomic physics research. Recent work has focused on two-photon decays in highly-charged ions and two-photon decay of inner-shell vacancies in heavy neutral atoms. We emphasize the importance of measuring the shape of the continuum emission in two-photon decay as a probe of relativistic effects in the strong central fields found in heavy atomic systems. New experimental approaches and their consequences will be discussed. (orig.)

  20. Interaction of strong electromagnetic fields with atoms

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-06-01

    Several non-linear processes involvoing the interaction of atoms with strong laser fields are discussed, with particular emphasis on the ionization problem. Non-perturbative methods which have been proposed to tackle this problem are analysed, and shown to correspond to an expansion in the intra-atomic potential. The relation between tunneling and multiphoton absorption as ionization mechanisms, and the generalization of Einstein's photoelectric equation to the strong-field case are discussed. (Author) [pt

  1. Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms

    DEFF Research Database (Denmark)

    Christensen, Thomas; Yan, Wei; Raza, Søren

    2014-01-01

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss...... blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii...

  2. Development and field practical performance of smart array probe

    International Nuclear Information System (INIS)

    Maeda, Kotaro; Shimone, Junri; Akagawa, Junichi; Nagata, Yasuyuki; Harada, Yutaka; Sera, Takehiko; Hirano, Shinro

    2011-01-01

    In 1999, NEL developed the transmit-receive type ECT array probe for steam generator (SG) tubing, called 'X-probe', in cooperation with foreign firms. Recently NEL has developed the advanced ECT array probe, 'Smart Array Probe', characterized with a significantly improved resolution for circumferential cracks. The doubled channels in the circumferential mode have greatly improved the circumferential resolution of Smart Array Probe. With all the circumferential mode channels on the same circle, there is no need for axial position correction of inspection data. This report describes both the field practical performance and the compliance assessment to a Japanese SG-ECT guideline 'JEAG4208' of Smart Array ECT System, composed of Smart Array Probe, pusher-in-tester 'OMNI-200', and NEL's ECT Analysis System. (author)

  3. The Model Analysis of a Complex Tuning Fork Probe and Its Application in Bimodal Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Zhichao Wu

    2017-01-01

    Full Text Available A new electromechanical coupling model was built to quantitatively analyze the tuning fork probes, especially the complex ones. A special feature of a novel, soft tuning fork probe, that the second eigenfrequency of the probe was insensitive to the effective force gradient, was found and used in a homemade bimodal atomic force microscopy to measure power dissipation quantitatively. By transforming the mechanical parameters to the electrical parameters, a monotonous and concise method without using phase to calculate the power dissipation was proposed.

  4. Magnetic-field-driven localization of light in a cold-atom gas.

    Science.gov (United States)

    Skipetrov, S E; Sokolov, I M

    2015-02-06

    We discover a transition from extended to localized quasimodes for light in a gas of immobile two-level atoms in a magnetic field. The transition takes place either upon increasing the number density of atoms in a strong field or upon increasing the field at a high enough density. It has many characteristic features of a disorder-driven (Anderson) transition but is strongly influenced by near-field interactions between atoms and the anisotropy of the atomic medium induced by the magnetic field.

  5. Dynamics of an atomic wave packet in a standing-wave cavity field: A cavity-assisted single-atom detection

    International Nuclear Information System (INIS)

    Chough, Young-Tak; Nha, Hyunchul; Kim, Sang Wook; An, Kyungwon; Youn, Sun-Hyun

    2002-01-01

    We investigate the single-atom detection system using an optical standing-wave cavity, from the viewpoint of the quantized center-of-mass motion of the atomic wave packet. We show that since the atom-field coupling strength depends upon the overlap integral of the atomic wave packet and the field mode function, the effect of the wave-packet spreading via the momentum exchange process brings about a significant effect in the detection efficiency. We find that, as a result, the detection efficiency is not sensitive to the individual atomic trajectory for reasonably slow atoms. We also address an interesting phenomenon of the atomic wave-packet splitting occurring when an atom passes through a node of the cavity field

  6. Light distribution analysis of optical fibre probe-based near-field optical tweezers using FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B H; Yang, L J; Wang, Y [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150001 (China)], E-mail: richelaw@163.com

    2009-09-01

    Optical fibre probe-based near-field optical tweezers overcomes the diffraction limit of conventional optical tweezers, utilizing strong mechanical forces and torque associated with highly enhanced electric fields to trap and manipulate nano-scale particles. Near-field evanescent wave generated at optical fibre probe decays rapidly with the distance that results a significant reduced trapping volume, thus it is necessary to analyze the near-field distribution of optical fibre probe. The finite difference time domain (FDTD) method is applied to characterize the near-field distribution of optical fibre probe. In terms of the distribution patterns, depolarization and polarization, the near-field distributions in longitudinal sections and cross-sections of tapered metal-coated optical fibre probe are calculated. The calculation results reveal that the incident polarized wave becomes depolarized after exiting from the nano-scale aperture of probe. The near-field distribution of the probe is unsymmetrical, and the near-field distribution in the cross-section vertical to the incident polarized wave is different from that in the cross-section parallel to the incident polarized wave. Moreover, the polarization of incident wave has a great impact on the light intensity distribution.

  7. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography

    KAUST Repository

    Rademacher, Thomas W.

    2011-05-01

    Addition of ternary elements to the D03 ordered Fe3Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. © 2010 Elsevier B.V.

  8. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography

    KAUST Repository

    Rademacher, Thomas W.; Al-Kassab, Talaat; Deges, Johannes; Kirchheim, Reiner

    2011-01-01

    Addition of ternary elements to the D03 ordered Fe3Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. © 2010 Elsevier B.V.

  9. Near-field scanning optical microscopy using polymethylmethacrylate optical fiber probes

    International Nuclear Information System (INIS)

    Chibani, H.; Dukenbayev, K.; Mensi, M.; Sekatskii, S.K.; Dietler, G.

    2010-01-01

    We report the first use of polymethylmethacrylate (PMMA) optical fiber-made probes for scanning near-field optical microscopy (SNOM). The sharp tips were prepared by chemical etching of the fibers in ethyl acetate, and the probes were prepared by proper gluing of sharpened fibers onto the tuning fork in the conditions of the double resonance (working frequency of a tuning fork coincides with the resonance frequency of dithering of the free-standing part of the fiber) reported earlier for the case of glass fibers. Quality factors of the probes in the range 2000-6000 were obtained, which enables the realization of an excellent topographical resolution including state-of-art imaging of single DNA molecules. Near-field optical performance of the microscope is illustrated by the Photon Scanning Tunneling Microscope images of fluorescent beads with a diameter of 100 nm. The preparation of these plastic fiber probes proved to be easy, needs no hazardous material and/or procedures, and typical lifetime of a probe essentially exceeds that characteristic for the glass fiber probe.

  10. Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution

    Directory of Open Access Journals (Sweden)

    Luis Amilca Andrade-Morales

    2016-09-01

    Full Text Available We study the entropy of a quantized field in interaction with a two-level atom (in a pure state when the field is initially in a mixture of two number states. We then generalise the result for a thermal state; i.e., an (infinite statistical mixture of number states. We show that for some specific interaction times, the atom passes its purity to the field and therefore the field entropy decreases from its initial value.

  11. Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe

    DEFF Research Database (Denmark)

    Kageshima, M.; Jensenius, Henriette; Dienwiebel, M.

    2002-01-01

    A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane surface were detected both in the frequency shift and dissipation. Due to t...

  12. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    KAUST Repository

    Al-Kassab, Talaat

    2014-09-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ\\' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ\\' state. © 2014 Elsevier Ltd.

  13. Trends in exotic-atom research

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Horvath, D.

    1983-01-01

    An attempt was made to analyze the trends in the development of exotic-atom research on the basis of a recently compiled bibliography. The analysis of nearly 4000 publications demonstrated that: (1) exotic atoms are nuclear probes used in every field of physics, from the test of quantum electrodynamics (QED) to chemical physics, to materials sciences; (2) the role of nuclear and atomic physics in exotic atom research is decreasing (although it is still significant), while that of materials sciences and chemial physics is exponentially increasing; and (3) prior to 1980 most investigators were mainly interested in atoms with negative muons, while during the last few years the positive muon (μSR) studies have dominated exotic atom research

  14. NATO Advanced Study Institute on Atoms in Strong Fields

    CERN Document Server

    Clark, Charles; Nayfeh, Munir

    1990-01-01

    This book collects the lectures given at the NATO Advanced Study Institute on "Atoms in Strong Fields", which took place on the island of Kos, Greece, during the two weeks of October 9-21,1988. The designation "strong field" applies here to an external electromagnetic field that is sufficiently strong to cause highly nonlinear alterations in atomic or molecular struc­ ture and dynamics. The specific topics treated in this volume fall into two general cater­ gories, which are those for which strong field effects can be studied in detail in terrestrial laboratories: the dynamics of excited states in static or quasi-static electric and magnetic fields; and the interaction of atoms and molecules with intense laser radiation. In both areas there exist promising opportunities for research of a fundamental nature. An electric field of even a few volts per centimeter can be very strong on the atom­ ic scale, if it acts upon a weakly bound state. The study of Rydberg states with high reso­ lution laser spectroscop...

  15. Application of the iterative probe correction technique for a high-order probe in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Breinbjerg, Olav

    2006-01-01

    An iterative probe-correction technique for spherical near-field antenna measurements is examined. This technique has previously been shown to be well-suited for non-ideal first-order probes. In this paper, its performance in the case of a high-order probe (a dual-ridged horn) is examined....

  16. Two-dimensional atom localization via two standing-wave fields in a four-level atomic system

    International Nuclear Information System (INIS)

    Zhang Hongtao; Wang Hui; Wang Zhiping

    2011-01-01

    We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.

  17. Atomic excitation and acceleration in strong laser fields

    International Nuclear Information System (INIS)

    Zimmermann, H; Eichmann, U

    2016-01-01

    Atomic excitation in the tunneling regime of a strong-field laser–matter interaction has been recently observed. It is conveniently explained by the concept of frustrated tunneling ionization (FTI), which naturally evolves from the well-established tunneling picture followed by classical dynamics of the electron in the combined laser field and Coulomb field of the ionic core. Important predictions of the FTI model such as the n distribution of Rydberg states after strong-field excitation and the dependence on the laser polarization have been confirmed in experiments. The model also establishes a sound basis to understand strong-field acceleration of neutral atoms in strong laser fields. The experimental observation has become possible recently and initiated a variety of experiments such as atomic acceleration in an intense standing wave and the survival of Rydberg states in strong laser fields. Furthermore, the experimental investigations on strong-field dissociation of molecules, where neutral excited fragments after the Coulomb explosion of simple molecules have been observed, can be explained. In this review, we introduce the subject and give an overview over relevant experiments supplemented by new results. (paper)

  18. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu [Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, California 94305 (United States)

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  19. Noise squeezing of fields that bichromatically excite atoms in a cavity.

    Science.gov (United States)

    Li, Lingchao; Hu, Xiangming; Rao, Shi; Xu, Jun

    2016-11-14

    It is well known that bichromatic excitation on one common transition can tune the emission or absorption spectra of atoms due to the modulation frequency dependent non-linearities. However little attention has been focused on the quantum dynamics of fields under bichromatic excitation. Here we present dissipative effects on noise correlations of fields in bichromatic interactions with atoms in cavities. We first consider an ensemble of two-level atoms that interacts with the two cavity fields of different frequencies and considerable amplitudes. By transferring the atom-field nonlinearities to the dressed atoms we separate out the dissipative interactions of Bogoliubov modes with the dressed atoms. The Bogoliubov mode dissipation establishes stable two-photon processes of two involved fields and therefore leads to two-mode squeezing. As a generalization, we then consider an ensemble of three-level Λ atoms for cascade bichromatic interactions. We extract the Bogoliubov-like four-mode interactions, which establish a quadrilateral of the two-photon processes of four involved fields and thus result in four-mode squeezing.

  20. Piezoresistor-equipped fluorescence-based cantilever probe for near-field scanning.

    Science.gov (United States)

    Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2007-08-01

    Scanning near-field optical microscopes (SNOMs) with fluorescence-based probes are promising tools for evaluating the optical characteristics of nanoaperture devices used for biological investigations, and this article reports on the development of a microfabricated fluorescence-based SNOM probe with a piezoresistor. The piezoresistor was built into a two-legged root of a 160-microm-long cantilever. To improve the displacement sensitivity of the cantilever, the piezoresistor's doped area was shallowly formed on the cantilever surface. A fluorescent bead, 500 nm in diameter, was attached to the bottom of the cantilever end as a light-intensity-sensitive material in the visible-light range. The surface of the scanned sample was simply detected by the probe's end being displaced by contact with the sample. Measuring displacements piezoresistively is advantageous because it eliminates the noise arising from the use of the optical-lever method and is free of any disturbance in the absorption or the emission spectrum of the fluorescent material at the probe tip. The displacement sensitivity was estimated to be 6.1 x 10(-6) nm(-1), and the minimum measurable displacement was small enough for near-field measurement. This probe enabled clear scanning images of the light field near a 300 x 300 nm(2) aperture to be obtained in the near-field region where the tip-sample distance is much shorter than the light wavelength. This scanning result indicates that the piezoresistive way of tip-sample distance regulation is effective for characterizing nanoaperture optical devices.

  1. Performance of field measuring probes for SSC magnets

    International Nuclear Information System (INIS)

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1993-01-01

    Several years of experience have been acquired on the operation of probes (''moles'') constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device-the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. We describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the hewn tube of the magnet is also described

  2. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Van Aert, S.; Verbeeck, J.; Erni, R.; Bals, S.; Luysberg, M.; Dyck, D. Van; Tendeloo, G. Van

    2009-01-01

    A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.

  3. Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys

    International Nuclear Information System (INIS)

    Hudson, D.; Smith, G.D.W.; Gault, B.

    2011-01-01

    Atom probe tomography uses time-of-flight mass spectrometry to identify the chemical nature of atoms from their mass-to-charge-state ratios. Within a mass spectrum, ranges are defined so as to attribute a chemical identity to each peak. The accuracy of atom probe microanalysis relies on the definition of these ranges. Here we propose and compare several automated ranging techniques, tested against simulated mass spectra. The performance of these metrics compare favourably with a trial of users asked to manually range a simplified simulated dataset. The optimised automated ranging procedure was then used to precisely evaluate the very low iron concentration (0.003-0.018 at%) in a zirconium alloy to reveal its behaviour in the matrix during corrosion; oxygen is injected into solution and has the effect of increasing the local iron concentration near the oxide-metal interface, which in turn affects the corrosion properties of the metal substrate. -- Research Highlights: → Realistic simulated mass spectra were generated so as to reproduce experimental data with a perfectly determined composition. → Several metrics were tested against these simulated mass spectra to determine an optimal methodology for ranging mass peaks in atom probe tomography. Systematic automated ranging provides a significant reduction in the deviation between true and measured concentrations compared to manual ranging by multiple users on the same data. → Experimental datasets were subsequently investigated, and Fe has been shown to be distributed as a random solid solution within the matrix of 'as-received' recrystallised ZIRLO, a zirconium alloy.

  4. Magnetic-field gradiometer based on ultracold collisions

    Science.gov (United States)

    Wasak, Tomasz; Jachymski, Krzysztof; Calarco, Tommaso; Negretti, Antonio

    2018-05-01

    We present a detailed analysis of the usefulness of ultracold atomic collisions for sensing the strength of an external magnetic field as well as its spatial gradient. The core idea of the sensor, which we recently proposed in Jachymski et al. [Phys. Rev. Lett. 120, 013401 (2018), 10.1103/PhysRevLett.120.013401], is to probe the transmission of the atoms through a set of quasi-one-dimensional waveguides that contain an impurity. Magnetic-field-dependent interactions between the incoming atoms and the impurity naturally lead to narrow resonances that can act as sensitive field probes since they strongly affect the transmission. We illustrate our findings with concrete examples of experimental relevance, demonstrating that for large atom fluences N a sensitivity of the order of 1 nT/√{N } for the field strength and 100 nT/(mm √{N }) for the gradient can be reached with our scheme.

  5. Atomic precision tests and light scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geneve Univ. (Switzerland). Dept. de Physique Theorique

    2010-10-15

    We calculate the shift in the atomic energy levels induced by the presence of a scalar field which couples to matter and photons. We find that a combination of atomic measurements can be used to probe both these couplings independently. A new and stringent bound on the matter coupling springs from the precise measurement of the 1s to 2s energy level difference in the hydrogen atom, while the coupling to photons is essentially constrained by the Lamb shift. Combining these constraints with current particle physics bounds we find that the contribution of a scalar field to the recently claimed discrepancy in the proton radius measured using electronic and muonic atoms is negligible. (orig.)

  6. Pulsed beams as field probes for precision measurement

    International Nuclear Information System (INIS)

    Hudson, J. J.; Ashworth, H. T.; Kara, D. M.; Tarbutt, M. R.; Sauer, B. E.; Hinds, E. A.

    2007-01-01

    We describe a technique for mapping the spatial variation of static electric, static magnetic, and rf magnetic fields using a pulsed atomic or molecular beam. The method is demonstrated using a beam designed to measure the electric dipole moment of the electron. We present maps of the interaction region, showing sensitivity to (i) electric field variation of 1.5 V/cm at 3.3 kV/cm with a spatial resolution of 15 mm; (ii) magnetic field variation of 5 nT with 25 mm resolution; (iii) radio-frequency magnetic field amplitude with 15 mm resolution. This diagnostic technique is very powerful in the context of high-precision atomic and molecular physics experiments, where pulsed beams have not hitherto found widespread application

  7. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben; Zhu, Zhiyong; Al-Kassab, Talaat; Schwingenschlö gl, Udo

    2012-01-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations

  8. Atomic species recognition on oxide surfaces using low temperature scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zong Min, E-mail: mzmncit@163.com [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Shi, Yun Bo; Mu, Ji Liang; Qu, Zhang; Zhang, Xiao Ming; Qin, Li [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Liu, Jun, E-mail: liuj@nuc.edu.cn [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China)

    2017-02-01

    Highlights: • The coexisted phase of p(2 × 1)and c(6 × 2) on Cu(110)-O surface using AFM under UHV at low temperature. • Two different c(6 × 2) phase depending on the status of the tip apex. • Electronic state of tip seriously effect the resolution and stability of the sample surface. - Abstract: In scanning probe microscopy (SPM), the chemical properties and sharpness of the tips of the cantilever greatly influence the scanning of a sample surface. Variation in the chemical properties of the sharp tip apex can induce transformation of the SPM images. In this research, we explore the relationship between the tip and the structure of a sample surface using dynamic atomic force microscopy (AFM) on a Cu(110)-O surface under ultra-high vacuum (UHV) at low temperature (78 K). We observed two different c(6 × 2) phase types in which super-Cu atoms show as a bright spot when the tip apex is of O atoms and O atoms show as a bright spot when the tip apex is of Cu atoms. We also found that the electronic state of the tip has a serious effect on the resolution and stability of the sample surface, and provide an explanation for these phenomena. This technique can be used to identify atom species on sample surfaces, and represents an important development in the SPM technique.

  9. Dynamic of cold-atom tips in anharmonic potentials

    Science.gov (United States)

    Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József

    2016-01-01

    Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505

  10. Coherent control and storage of a microwave pulse in a one-dimensional array of artificial atoms using the Autler-Townes effect and electromagnetically induced transparency

    Science.gov (United States)

    Ayaz, M. Q.; Waqas, Mohsin; Qamar, Sajid; Qamar, Shahid

    2018-02-01

    In this paper we propose a scheme for coherent control and storage of a microwave pulse in superconducting circuits exploiting the idea of electromagnetically induced transparency (EIT) and the Aulter-Townes (AT) effect. We show that superconducting artificial atoms in a four-level tripod configuration act as EIT based coherent microwave (μ w ) memories with gain features, when they are attached to a one-dimensional transmission line. These atoms are allowed to interact with three microwave fields, such that there are two control fields and one probe field. Our proposed system works in such a way that one control field with large Rabi frequency when interacting with atoms, produces the AT effect. While the second control field with relatively small Rabi frequency produces EIT in one of the absorption windows produced due to the AT splitting for the weak probe field. The group velocity of the probe pulse reduces significantly through this EIT window. Interestingly, the output intensity of the probe pulse increases as we increase the number of artificial atoms. Our results show that the probe microwave pulse can be stored and retrieved with high fidelity.

  11. Electron-atom collisions in a laser field

    International Nuclear Information System (INIS)

    Ehlotzky, F.

    1998-01-01

    The present work is a report on recent progress made in our understanding of electron-atom collisions in a laser field. To some extent it is a continuation of a previous review covering a somewhat larger subject (Can. J. Phys. 63 (1985)). We shall discuss the present status of investigations in this field from the theoretical as well as experimental point of view but most of the report will be devoted to an analysis of the various approximation schemes used at present in this field to describe the different aspects of laser-assisted electron-atom interactions. As the table of contents shows, most of the work done so far is treating the atom as a spectator, described by a potential and only very little has been achieved over the years to include the atomic structure into consideration since the inclusion of these structure effects poses considerable computational problems. Since, for example, multiphoton ionization and its inverse process laser-assisted recombination may be considered as one half of a scattering process, it is quite natural that some of the theoretical techniques described here are also of interest for the treatment of other multiphoton processes not considered here since there are several other recent reviews available on these topics. (orig.)

  12. On the truncation of the azimuthal mode spectrum of high-order probes in probe-corrected spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Laitinen, Tommi

    2011-01-01

    Azimuthal mode (m mode) truncation of a high-order probe pattern in probe-corrected spherical near-field antenna measurements is studied in this paper. The results of this paper provide rules for appropriate and sufficient m-mode truncation for non-ideal first-order probes and odd-order probes wi...

  13. Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.

    Science.gov (United States)

    Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U

    2018-03-23

    Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.

  14. Selective Deflection of Polarized Light Via Coherently Driven Four-Level Atoms in a Double-Λ Configuration

    International Nuclear Information System (INIS)

    Guo Yu

    2010-01-01

    We study the interaction of a weak probe field, having two circular polarized components, i.e., σ - and σ + polarization, with an optically dense medium of four-level atoms in a double-Λ configuration, which is mediated by the electromagnetically induced transparency with a polarized control light with spatially inhomogeneous profile. We analyse the deflection of the polarized probe light and we find that we can selectively determine which circular component will be deflected after the polarized probe light enters the atom medium via adjusting the polarization and detuning of the control field. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Performance of field measuring probes for SSC magnets

    International Nuclear Information System (INIS)

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1994-01-01

    Several years of experience have been acquired on the operation of probes (open-quotes molesclose quotes) constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device - the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. The authors describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the beam tube of the magnet is also described

  16. Control of the inversionless gain and refractive index in a V-type atom via squeezed vacuum and quantum interference

    International Nuclear Information System (INIS)

    Anton, M.A.; Calderon, Oscar G.; Carreno, F.

    2004-01-01

    In this paper we analyze the steady-state populations and gain lineshape of a V-type three-level atom with a closely spaced excited doublet. The atom is driven by a strong coherent field, a weak probe, and a single broadband squeezed vacuum. We focus our attention in the interplay between the quantum interference and the squeezed field on the probe gain. It is shown that the relative phases between the two coherent fields and the squeezed field play an important role in the optical properties of the atom. Specifically, we find that the probe can experience gain without population inversion for proper values of the parameters characterizing the squeezed field and in the absence of incoherent pumping. The system can be tailored to exhibit multiple dispersion regimes accompanied by negligible gain or absorption over a large bandwidth, a desirable feature for obtaining propagation of pulses with negligible distortion

  17. Controlling the optical bistability and multistability in a two-level pumped-probe system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Sahrai, Mostafa; Masoumeh Mousavi, Seyede

    2010-01-01

    We study the behavior of the optical bistability (OB) and multistability (OM) in a two-level pumped-probe atomic system by means of a unidirectional ring cavity. We show that the optical bistability in a two-level atomic system can be controlled by adjusting the intensity of the pump field and the detuning between two fields. We find that applying the pumping field decreases the threshold of the optical bistability.

  18. On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space.

    Science.gov (United States)

    Wallace, Nathan D; Ceguerra, Anna V; Breen, Andrew J; Ringer, Simon P

    2018-06-01

    Atom probe tomography is a powerful microscopy technique capable of reconstructing the 3D position and chemical identity of millions of atoms within engineering materials, at the atomic level. Crystallographic information contained within the data is particularly valuable for the purposes of reconstruction calibration and grain boundary analysis. Typically, analysing this data is a manual, time-consuming and error prone process. In many cases, the crystallographic signal is so weak that it is difficult to detect at all. In this study, a new automated signal processing methodology is demonstrated. We use the affine properties of the detector coordinate space, or the 'detector stack', as the basis for our calculations. The methodological framework and the visualisation tools are shown to be superior to the standard method of crystallographic pole visualisation directly from field evaporation images and there is no requirement for iterations between a full real-space initial tomographic reconstruction and the detector stack. The mapping approaches are demonstrated for aluminium, tungsten, magnesium and molybdenum. Implications for reconstruction calibration, accuracy of crystallographic measurements, reliability and repeatability are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Lev, Benjamin

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (2 um), or 6 nT / Hz1 / 2 per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly one-hundred points with an effective field sensitivity of 600 pT / Hz1 / 2 each point during the same time as a point-by-point scanner would measure these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly two orders of magnitude improvement in magnetic flux sensitivity (down to 10- 6 Phi0 / Hz1 / 2) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are for the first time carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns and done so using samples that may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge transport images at temperatures from room to \\x9D4K in unconventional superconductors and topologically nontrivial materials.

  20. Analytical relativistic self-consistent-field calculations for atoms

    International Nuclear Information System (INIS)

    Barthelat, J.C.; Pelissier, M.; Durand, P.

    1980-01-01

    A new second-order representation of the Dirac equation is presented. This representation which is exact for a hydrogen atom is applied to approximate analytical self-consistent-field calculations for atoms. Results are given for the rare-gas atoms from helium to radon and for lead. The results compare favorably with numerical Dirac-Hartree-Fock solutions

  1. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    Science.gov (United States)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  2. Low magnification differential phase contrast imaging of electric fields in crystals with fine electron probes

    Energy Technology Data Exchange (ETDEWEB)

    Taplin, D.J. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Weyland, M. [Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800 (Australia); Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2016-10-15

    To correlate atomistic structure with longer range electric field distribution within materials, it is necessary to use atomically fine electron probes and specimens in on-axis orientation. However, electric field mapping via low magnification differential phase contrast imaging under these conditions raises challenges: electron scattering tends to reduce the beam deflection due to the electric field strength from what simple models predict, and other effects, most notably crystal mistilt, can lead to asymmetric intensity redistribution in the diffraction pattern which is difficult to distinguish from that produced by long range electric fields. Using electron scattering simulations, we explore the effects of such factors on the reliable interpretation and measurement of electric field distributions. In addition to these limitations of principle, some limitations of practice when seeking to perform such measurements using segmented detector systems are also discussed. - Highlights: • Measuring electric fields by on-axis electron diffraction is explored by simulation. • Electron channelling reduces deflection predicted by the phase object approximation. • First moment measurements cannot distinguish electric fields from specimen mistilt. • Segmented detector estimates are fairly insensitive to camera length and orientation.

  3. Hydrogen atom in intense magnetic field.

    Science.gov (United States)

    Canuto, V.; Kelly, D. C.

    1972-01-01

    The structure of a hydrogen atom situated in an intense magnetic field is investigaged. Three approaches are employed. An elementary Bohr picture establishes a crucial magnetic field strength, H sub a approximately equal to 5 x 10 to the 9th G. Fields in excess of H sub a are intense in that they are able to modify the characteristic atomic scales of length and binding energy. A second approach solves the Schrodinger equation by a combination of variational methods and perturbation theory. It yields analytic expressions for the wave functions and energy eigenvalues. A third approach determines the energy eigenvalues by reducing the Schrodinger equation to a one-dimensional wave equation, which is then solved numerically. Energy eigenvalues are tabulated for field strengths of 2 x 10 to the 10th G and 2 x 10 to the 12th G. It is found that at 2 x 10 to the 12th G the lowest energy eigenvalue is changed from -13.6 to about -180 eV in agreement with previous variational computations.

  4. Sub-half-wavelength localization of an atom via trichromatic phase control

    International Nuclear Information System (INIS)

    Xu Jun; Hu Xiangming

    2007-01-01

    We show that the trichromatic manipulation of the absorption spectrum leads to sub-half-wavelength atom localization. In particular, a three-level atom in the Λ configuration is considered, in which one transition is coupled by a trichromatic field with one sideband component being a standing-wave field while the other transition is probed by a weak monochromatic field. By varying the sum of relative phases of the sideband components of the trichromatic field to the central component, the atom is localized in either of the two half-wavelength regions with 50% detecting probability when the absorption spectrum is measured

  5. Resonance properties of a three-level atom with quantized field modes

    International Nuclear Information System (INIS)

    Yoo, H.I.

    1984-01-01

    A system of one three-level atom and one or two quantized electro-magnetic field modes coupled to each other by the dipole interaction, with the rotating wave approximation is studied. All three atomic configurations, i.e., cascade Lambda- and V-types, are treated simultaneously. The system is treated as closed, i.e., no interaction with the external radiation field modes, to reveal the internal structures and symmetries in the system. The general dynamics of the system are investigated under several distinct initial conditions and their similarities and differences with the dynamics of the Jaynes-Cummings model are revealed. Also investigated is the possibility of so-called coherent trapping of the atom in the quantized field modes in a resonator. An atomic state of coherent trapping exists only for limited cases, and it generally requires the field to be in some special states, depending on the system. The discussion of coherent trapping is extended into a system of M identical three-level atoms. The stability of a coherent-trapping state when fluorescence can take place is discussed. The distinction between a system with resonator field modes and one with ideal laser modes is made clear, and the atomic relaxation to the coherent-trapping atomic state when a Lambda-type atom is irradiated by two ideal laser beams is studied. The experimental prospects to observe the collapse-revival phenomena in the atomic occupation probabilities, which is characteristic of a system with quantized resonator field modes is discussed

  6. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Berman, Paul R; Arimondo, Ennio

    2006-01-01

    Volume 54 of the Advances Series contains ten contributions, covering a diversity of subject areas in atomic, molecular and optical physics. The article by Regal and Jin reviews the properties of a Fermi degenerate gas of cold potassium atoms in the crossover regime between the Bose-Einstein condensation of molecules and the condensation of fermionic atom pairs. The transition between the two regions can be probed by varying an external magnetic field. Sherson, Julsgaard and Polzik explore the manner in which light and atoms can be entangled, with applications to quantum information processing

  7. [Transmission efficiency analysis of near-field fiber probe using FDTD simulation].

    Science.gov (United States)

    Huang, Wei; Dai, Song-Tao; Wang, Huai-Yu; Zhou, Yun-Song

    2011-10-01

    A fiber probe is the key component of near-field optical technology which is widely used in high resolution imaging, spectroscopy detection and nano processing. How to improve the transmission efficiency of the fiber probe is a very important problem in the application of near-field optical technology. Based on the results of 3D-FDTD computation, the dependence of the transmission efficiency on the cone angle, the aperture diameter, the wavelength and the thickness of metal cladding is revealed. The authors have also made a comparison between naked probe and the probe with metal cladding in terms of transmission efficiency and spatial resolution. In addition, the authors have discovered the fluctuation phenomena of transmission efficiency as the wavelength of incident laser increases.

  8. Irradiation-induced precipitates in a neutron irradiated 304 stainless steel studied by three-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, T., E-mail: ttoyama@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Nozawa, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Van Renterghem, W. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Matsukawa, Y.; Hatakeyama, M.; Nagai, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Al Mazouzi, A. [EDF R and D, Avenue des Renardieres Ecuelles, 77818 Moret sur Loing Cedex (France); Van Dyck, S. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium)

    2011-11-15

    Highlights: > Irradiation-induced precipitates in a 304 stainless steel were investigated by three-dimensional atom probe. > The precipitates were found to be {gamma}' precipitates (Ni{sub 3}Si). > Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening. - Abstract: Irradiation-induced precipitates in a 304 stainless steel, neutron-irradiated to a dose of 24 dpa at 300 deg. C in the fuel wrapper plates of a commercial pressurized water reactor, were investigated by laser-assisted three-dimensional atom probe. A high number density of 4 x 10{sup 23} m{sup -3} of Ni-Si rich precipitates was observed, which is one order of magnitude higher than that of Frank loops. The average diameter was {approx}10 nm and the average chemical composition was 40% Ni, 14% Si, 11% Cr and 32% Fe in atomic percent. Over a range of Si concentrations, the ratio of Ni to Si was {approx}3, close to that of {gamma}' precipitate (Ni{sub 3}Si). In some precipitates, Mn enrichment inside the precipitate and P segregation at the interface were observed. Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening.

  9. Stable magnetization of iron filled carbon nanotube MFM probes in external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, Franziska; Weissker, Uhland; Muehl, Thomas; Lutz, Matthias U; Mueller, Christian; Leonhardt, Albrecht; Buechner, Bernd, E-mail: f.wolny@ifw-dresden.d [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2010-01-01

    We present results on the application of an iron filled carbon nanotube (Fe-CNT) as a probe for magnetic force microscopy (MFM) in an external magnetic field. If an external field is applied parallel to the sample surface, conventional ferromagnetically coated MFM probes often have the disadvantage that the magnetization of the coating turns towards the direction of the applied field. Then it is difficult to distinguish the effect of the external field on the sample from those on the MFM probe. The Fe-CNT MFM probe has a large shape anisotropy due to the high aspect ratio of the enclosed iron nanowire. Thanks to this the direction of the magnetization stays mainly oriented along the long nanotube axis in in-plane fields up to our experimental limit of 250 mT. Thus, the quality of the MFM images remains unchanged. Apart from this, it is shown that Fe-CNT MFM probe yields a very good magnetic resolution of about 25 nm due to the small diameter of the iron filling.

  10. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Christopher L., E-mail: holloway@boulder.nist.gov; Gordon, Joshua A. [National Institute of Standards and Technology (NIST), Electromagnetics Division, U.S. Department of Commerce, Boulder Laboratories, Boulder, Colorado 80305 (United States); Schwarzkopf, Andrew; Anderson, David A.; Miller, Stephanie A.; Thaicharoen, Nithiwadee; Raithel, Georg [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-06-16

    We present a technique for measuring radio-frequency (RF) electric field strengths with sub-wavelength resolution. We use Rydberg states of rubidium atoms to probe the RF field. The RF field causes an energy splitting of the Rydberg states via the Autler-Townes effect, and we detect the splitting via electromagnetically induced transparency (EIT). We use this technique to measure the electric field distribution inside a glass cylinder with applied RF fields at 17.04 GHz and 104.77 GHz. We achieve a spatial resolution of ≈100 μm, limited by the widths of the laser beams utilized for the EIT spectroscopy. We numerically simulate the fields in the glass cylinder and find good agreement with the measured fields. Our results suggest that this technique could be applied to image fields on a small spatial scale over a large range of frequencies, up into the sub-terahertz regime.

  11. Dependence on relative magnitude of probe and coherent field

    Indian Academy of Sciences (India)

    the condition Ω ≫ G. Here, by using the exact analytical expressions of ... The presence of rotational and vibrational states makes the study of LWI/AWI ... Doppler free condition, keeping the absorption on the coherent field minimum. Here ... where Ec and Ep are the electric field for the coupling and probe fields respectively.

  12. Hydrogen atoms in a strong magnetic field

    International Nuclear Information System (INIS)

    Santos, R.R. dos.

    1975-07-01

    The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 10 9 G; in the second the magnetic field ranges between 10 9 and 10 11 G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author) [pt

  13. The numerical multiconfiguration self-consistent field approach for atoms; Der numerische Multiconfiguration Self-Consistent Field-Ansatz fuer Atome

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, Johannes

    1995-12-15

    The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)

  14. Near-field optical microscope using a silicon-nitride probe

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Tack, R.G.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.

    1993-01-01

    Operation of an alternative near-field optical microscope is presented. The microscope uses a microfabricated silicon- nitride probe with integrated cantilever, as originally developed for force microscopy. The cantilever allows routine close contact near-field imaging o­n arbitrary surfaces without

  15. Probe-based recording technology

    International Nuclear Information System (INIS)

    Naberhuis, Steve

    2002-01-01

    The invention of the scanning tunneling microscope (STM) prompted researchers to contemplate whether such technology could be used as the basis for the storage and retrieval of information. With magnetic data storage technology facing limits in storage density due to the thermal instability of magnetic bits, the super-paramagnetic limit, the heir-apparent for information storage at higher densities appeared to be variants of the STM or similar probe-based storage techniques such as atomic force microscopy (AFM). Among these other techniques that could provide replacement technology for magnetic storage, near-field optical scanning optical microscopy (NSOM or SNOM) has also been investigated. Another alternative probe-based storage technology called atomic resolution storage (ARS) is also currently under development. An overview of these various technologies is herein presented, with an analysis of the advantages and disadvantages inherent in each particularly with respect to reduced device dimensions. The role of micro electro mechanical systems (MEMS) is emphasized

  16. Dynamics of atom-field entanglement for Tavis-Cummings models

    Science.gov (United States)

    Bashkirov, Eugene K.

    2018-04-01

    An exact solution of the problem of two-atom one- and two-mode Jaynes-Cummings model with intensity- dependent coupling is presented. Asymptotic solutions for system state vectors are obtained in the approximation of large initial coherent fields. The atom-field entanglement is investigated on the basis of the reduced atomic entropy dynamics. The possibility of the system being initially in a pure disentangled state to revive into this state during the evolution process for both models is shown. Conditions and times of disentanglement are derived.

  17. Analysis of atomic distribution in as-fabricated Zircaloy-2 claddings by atom probe tomography under high-energy pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Sawabe, T., E-mail: sawabe@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Sonoda, T.; Kitajima, S. [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Kameyama, T. [Tokai University, Department of Nuclear Engineering, Kitakaname 4-1-1, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-11-15

    The properties of second-phase particles (SPPs) in Zircaloy-2 claddings are key factors influencing the corrosion resistance of the alloy. The chemical compositions of Zr (Fe, Cr){sub 2} and Zr{sub 2}(Fe, Ni) SPPs were investigated by means of pulsed laser atom probe tomography. In order to prevent specimen fracture and to analyse wide regions of the specimen, the pulsed laser energy was increased to 2.0 nJ. This gave a high yield of average of 3 × 10{sup 7} ions per specimen. The Zr (Fe, Cr){sub 2} SPPs contained small amounts of Ni and Si atoms, while in Zr{sub 2}(Fe, Ni) SPPs almost all the Si was concentrated and the ratio of Zr: (Fe + Ni + Si) was 2:1. Atomic concentrations of the Zr-matrix and the SPPs were identified by two approaches: the first by using all the visible peaks of the mass spectrum and the second using the representative peaks with the natural abundance of the corresponding atoms. It was found that the change in the concentration between the Zr-matrix and the SPPs can be estimated more accurately by the second method, although Sn concentration in the Zr{sub 2}(Fe, Ni) SPPs is slightly overestimated.

  18. Influence of the virtual photon field on the squeezing properties of an atom laser

    International Nuclear Information System (INIS)

    Jian-Gang, Zhao; Chang-Yong, Sun; Ling-Hua, Wen; Bao-Long, Liang

    2009-01-01

    This paper investigates the squeezing properties of an atom laser without rotating-wave approximation in the system of a binomial states field interacting with a two-level atomic Bose–Einstein condensate. It discusses the influences of atomic eigenfrequency, the interaction intensity between the optical field and atoms, parameter of the binomial states field and virtual photon field on the squeezing properties. The results show that two quadrature components of an atom laser can be squeezed periodically. The duration and the degree of squeezing an atom laser have something to do with the atomic eigenfrequency and the parameter of the binomial states field, respectively. The collapse and revival frequency of atom laser fluctuation depends on the interaction intensity between the optical field and atoms. The effect of the virtual photon field deepens the depth of squeezing an atom laser

  19. Thermal diffusivity of diamond nanowires studied by laser assisted atom probe tomography

    Science.gov (United States)

    Arnoldi, L.; Spies, M.; Houard, J.; Blum, I.; Etienne, A.; Ismagilov, R.; Obraztsov, A.; Vella, A.

    2018-04-01

    The thermal properties of single-crystal diamond nanowires (NWs) have been calculated from first principles but have never been measured experimentally. Taking advantage of the sharp geometry of samples analyzed in a laser assisted atom probe, this technique is used to measure the thermal diffusivity of a single NW at low temperature (ab-initio calculations and confirms that thermal diffusivity in nanoscale samples is lower than in bulk samples. The results impact the design and integration of diamond NWs and nanoneedles in nanoscale devices for heat dissipation.

  20. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    be considered. We have therefore developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion with atomic force microscopy (AFM).[1] A single-cell probe was readily made by picking up a bacterial cell from a glass surface using a tipless AFM cantilever coated...... random immobilization is obtained by submerging the cantilever in a bacterial suspension. The reported method provides a general platform for investigating single cell interactions of bacteria with different surfaces and other cells by AFM force spectroscopy, thus improving our understanding....... The strain-dependent susceptibility to bacterial colonization on conventional PLL-g-PEG illustrates how bacterial diversity challenges development of “universal” antifouling coatings, and AFM single-cell force spectroscopy was proven to be a powerful tool to provide insights into the molecular mechanisms...

  1. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  2. Laser sub-Doppler cooling of atoms in an arbitrarily directed magnetic field

    International Nuclear Information System (INIS)

    Chang, Soo; Kwon, Taeg Yong; Lee, Ho Seong; Minogin, V.G.

    2002-01-01

    We analyze the influence of an arbitrarily directed uniform magnetic field on the laser sub-Doppler cooling of atoms. The analysis is done for a (3+5)-level atom excited by a σ + -σ - laser field configuration. Our analysis shows that the effects of the magnetic field depend strongly on the direction of the magnetic field. In an arbitrarily directed magnetic field the laser cooling configuration produces both the main resonance existing already at zero magnetic field and additional sub-Doppler resonances caused by two-photon and higher-order multiphoton processes. These sub-Doppler resonances are, however, well separated on the velocity scale if the Zeeman shift exceeds the widths of the resonances. This allows one to use the main sub-Doppler resonance for an effective laser cooling of atoms even in the presence of the magnetic field. The effective temperature of the atomic ensemble at the velocity of the main resonance is found to be almost the same as in the absence of the magnetic field. The defined structure of the multiphoton resonances may be of importance for the sub-Doppler laser cooling of atoms, atomic extraction from magneto-optical traps, and applications related to the control of atomic motion

  3. A hybrid polarization-selective atomic sensor for radio-frequency field detection with a passive resonant-cavity field amplifier

    OpenAIRE

    Anderson, David A.; Paradis, Eric G.; Raithel, Georg

    2018-01-01

    We present a hybrid atomic sensor that realizes radio-frequency electric field detection with intrinsic field amplification and polarization selectivity for robust high-sensitivity field measurement. The hybrid sensor incorporates a passive resonator element integrated with an atomic vapor cell that provides amplification and polarization selectivity for detection of incident radio-frequency fields. The amplified intra-cavity radio-frequency field is measured by atoms using a quantum-optical ...

  4. Direct comparison of Fe-Cr unmixing characterization by atom probe tomography and small angle scattering

    Energy Technology Data Exchange (ETDEWEB)

    Couturier, Laurent, E-mail: laurent.couturier55@hotmail.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); De Geuser, Frédéric; Deschamps, Alexis [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France)

    2016-11-15

    The fine microstructure obtained by unmixing of a solid solution either by classical precipitation or spinodal decomposition is often characterized either by small angle scattering or atom probe tomography. This article shows that a common data analysis framework can be used to analyze data obtained from these two techniques. An example of the application of this common analysis is given for characterization of the unmixing of the Fe-Cr matrix of a 15-5 PH stainless steel during long-term ageing at 350 °C and 400 °C. A direct comparison of the Cr composition fluctuations amplitudes and characteristic lengths obtained with both techniques is made showing a quantitative agreement for the fluctuation amplitudes. The origin of the discrepancy remaining for the characteristic lengths is discussed. - Highlights: •Common analysis framework for atom probe tomography and small angle scattering •Comparison of same microstructural characteristics obtained using both techniques •Good correlation of Cr composition fluctuations amplitudes from both techniques •Good correlation of Cr composition fluctuations amplitudes with classic V parameter.

  5. Artificial electromagnetism for neutral atoms: Escher staircase and Laughlin liquids

    International Nuclear Information System (INIS)

    Mueller, Erich J.

    2004-01-01

    We present a method for creating fields that couple to neutral atoms in the same way that electromagnetic fields couple to charged particles. We show that this technique opens the door for a range of neutral atom experiments, including probing the interplay between periodic potentials and quantum Hall effects. Furthermore, we propose, and analyze, seemingly paradoxical geometries which can be engineered through these techniques. For example, we show how to create a ring of sites where an atom continuously reduces its potential energy by moving in a clockwise direction

  6. Influence of multi-hit capability on quantitative measurement of NiPtSi thin film with laser-assisted atom probe tomography

    International Nuclear Information System (INIS)

    Kinno, T.; Akutsu, H.; Tomita, M.; Kawanaka, S.; Sonehara, T.; Hokazono, A.; Renaud, L.; Martin, I.; Benbalagh, R.; Sallé, B.; Takeno, S.

    2012-01-01

    Highlights: ► Laser-assisted atom probe tomography was applied to NiPtSi films on Si substrates. ► Comparison of depth profiles of single-hit events and those of multi-hit events. ► ∼80% of Pt atoms were detected in multi-hit events. ► Multiple-ion detection is important for Laser-assisted atom probe tomography. - Abstract: Laser-assisted atom probe tomography (LA-APT) was applied to NiPtSi (0, 30, and 50% Pt contents) thin films on Si substrates. Consistent results with those of high-resolution Rutherford backscattering spectrometry (HR-RBS) were obtained. Based on the obtained data sets, the composition profiles from only the signals of single-hit events, meaning detection of one ion by one laser pulse, were compiled. The profiles from only the signals of multi-hit events, meaning detection of multiple ions by one laser pulse, were also compiled. There were large discrepancies with respect to Ni and Pt concentrations among the compiled profiles and the original profiles including the signals of both types of detection events. Additionally, the profiles compiled from single-hit events showed that Si concentration in NiPtSi layer became smaller toward the surface, differing from the original profiles and the multi-hit profiles. These results suggest that capability of simultaneous multiple-ion detection is important for appropriate LA-APT analyses.

  7. Characterization of local hydrophobicity on sapphire (0001) surfaces in aqueous environment by colloidal probe atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Tomoya; Yamazaki, Kenji; Isono, Toshinari; Ogino, Toshio, E-mail: ogino-toshio-rx@ynu.ac.jp

    2017-02-28

    Highlights: • Local hydrophobicity of phase-separated sapphire (0001) surfaces was investigated. • These surfaces are featured by coexistence of hydrophilic and hydrophobic domains. • Each domain was characterized by colloidal probe atomic force microscopy in water. • Both domains can be distinguished by adhesive forces of the probe to the surfaces. • Characterization in aqueous environment is important in bio-applications of sapphire. - Abstract: Sapphire (0001) surfaces exhibit a phase-separation into hydrophobic and hydrophilic domains upon high-temperature annealing, which were previously distinguished by the thickness of adsorbed water layers in air using atomic force microscopy (AFM). To characterize their local surface hydrophobicity in aqueous environment, we used AFM equipped with a colloidal probe and measured the local adhesive force between each sapphire domain and a hydrophilic SiO{sub 2} probe surface, or a hydrophobic polystyrene one. Two data acquisition modes for statistical analyses were used: one is force measurements at different positions of the surface and the other repeated measurement at a fixed position. We found that adhesive force measurements using the polystyrene probe allow us to distinctly separate the hydrophilic and hydrophobic domains. The dispersion in the force measurement data at different positions of the surface is larger than that in the repeated measurements at a fixed position. It indicates that the adhesive force measurement is repeatable although their data dispersion for the measurement positions is relatively large. From these results, we can conclude that the hydrophilic and hydrophobic domains on the sapphire (0001) surfaces are distinguished by a difference in their hydration degrees.

  8. Charged ion source with a polarizable probe and with a cyclotron electronic resonance

    International Nuclear Information System (INIS)

    Briand, P.

    1992-01-01

    This invention is about ion sources with a polarizable probe able to produce, from neutral atoms, highly charged ions. This source is composed of an hyperfrequency cavity, production means of an axial magnetic field in the cavity, production means of a multipolar radial magnetic field in this cavity, a high frequency inlet, gas input in the cavity, ion extraction means and a polarizable probe in tension to improve gas ionization

  9. Measurements of plasma density fluctuations and electric wave fields using spherical electrostatic probes

    International Nuclear Information System (INIS)

    Eriksson, A.I.; Bostroem, R.

    1995-04-01

    Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs

  10. Near resonant absorption by atoms in intense fluctuating laser fields

    International Nuclear Information System (INIS)

    Smith, S.J.

    1994-01-01

    The objective of this program was to make quantitative measurements of the effects of higher-order phase/frequency correlations in a laser beam on nonlinear optical absorption processes in atoms. The success of this program was due in large part to a unique experimental capability for modulating the extracavity beam of a stabilized (approx-lt 200 kHz) continuous-wave laser with statistically-well-characterized stochastic phase (or frequency) fluctuations, in order to synthesize laser bandwidths to ∼20 MHz (depending on noise amplitude), with profiles variable between Gaussian and Lorentzian (depending on noise bandwidth). Laser driven processes investigated included the following: (1) the optical Autler-Towns effect in the 3S 1/2 (F = 2, M F = 2) → 3P 3/2 (F = 3, M F = 3) two- level Na resonance, using a weak probe to the 4D 5/2 level; (2) the variance and spectra of fluorescence intensity fluctuations in the two-level Na resonance; (3) the Hanle effect in the 1 S 0 - 3 P 1 , transition at λ = 555.6 nm in 174 Yb; (4) absorption (and gain) of a weak probe, when the probe is a time-delayed replica of the resonant (with the two-level Na transition) pump laser; and (5) four-wave-mixing in a phase-conjugate geometry, in a sodium cell, and, finally, in a diffuse atomic sodium beam. The experimental results from these several studies have provided important confirmation of advanced theoretical methods

  11. Chameleon induced atomic afterglow

    International Nuclear Information System (INIS)

    Brax, Philippe; Burrage, Clare

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  12. Chameleon Induced Atomic Afterglow

    CERN Document Server

    Brax, Philippe

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  13. Chameleon induced atomic afterglow

    International Nuclear Information System (INIS)

    Brax, Philippe

    2010-09-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter. (orig.)

  14. Chameleon induced atomic afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-09-15

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter. (orig.)

  15. Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters

    International Nuclear Information System (INIS)

    Dryakhlushin, V F; Veiko, V P; Voznesenskii, N B

    2007-01-01

    A brief review of modern applications of scanning near-field optical (SNO) devices in microscopy, spectroscopy, and lithography is presented in the introduction. The problem of the development of SNO probes, as the most important elements of SNO devices determining their resolution and efficiency, is discussed. Based on the works of the authors, two different methods for fabricating SNO probes by using the adiabatic tapering of an optical fibre are considered: the laser-heated mechanical drawing and chemical etching. A nondestructive optical method for controlling the nanometre aperture of SNO probes is proposed, substantiated, and tested experimentally. The method is based on the reconstruction of a near-field source with the help of a theoretical algorithm of the inverse problem from the experimental far-filed intensity distribution. Some prospects for a further refinement of the construction and technology of SNO probes are discussed. (optical microscopy)

  16. Two-dimensional atom localization based on coherent field controlling in a five-level M-type atomic system.

    Science.gov (United States)

    Jiang, Xiangqian; Li, Jinjiang; Sun, Xiudong

    2017-12-11

    We study two-dimensional sub-wavelength atom localization based on the microwave coupling field controlling and spontaneously generated coherence (SGC) effect. For a five-level M-type atom, introducing a microwave coupling field between two upper levels and considering the quantum interference between two transitions from two upper levels to lower levels, the analytical expression of conditional position probability (CPP) distribution is obtained using the iterative method. The influence of the detuning of a spontaneously emitted photon, Rabi frequency of the microwave field, and the SGC effect on the CPP are discussed. The two-dimensional sub-half-wavelength atom localization with high-precision and high spatial resolution is achieved by adjusting the detuning and the Rabi frequency, where the atom can be localized in a region smaller thanλ/10×λ/10. The spatial resolution is improved significantly compared with the case without the microwave field.

  17. Irradiation-induced precipitation in a SUS316 stainless steel using three-dimensional atom probe

    International Nuclear Information System (INIS)

    Hatakeyama, M.; Yamagata, I.

    2013-01-01

    Precipitation and segregation were investigated in a compositionally modified 316 austenitic stainless steel, neutron-irradiated at 862 K using a three-dimensional atom probe. In the solution-annealed specimen, Mo, Ti, Nb, C and P enrichment were observed in a silicide, with nominal composition Fe 3 Cr 2 Ni 2 Mo 2 Si 2 . In a Ti-rich carbide, nominaling Fe 5 Cr 8 Ni 10 Mo 2 Ti 11 Si 2 C 6 , enrichment of Mo, Si, O, and Nb was observed. Radiation-induced segregation (RIS) at the precipitate–matrix interface was also investigated at an atomic scale. RIS of Ni and P atoms, which are undersized in Fe, was also analyzed around the interface of the Ti-rich carbide and matrix. Results suggest that the carbide–matrix interface is a sink with an interstitial bias. In the cold-worked specimen, complex-precipitates consisting of silicide and carbide were formed

  18. Grain boundary segregation in neutron-irradiated 304 stainless steel studied by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, T., E-mail: ttoyama@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nozawa, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Van Renterghem, W. [SCK Bullet CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Matsukawa, Y.; Hatakeyama, M.; Nagai, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Al Mazouzi, A. [EDF R and D, Avenue des Renardieres Ecuelles, 77818 Moret sur Loing Cedex (France); Van Dyck, S. [SCK Bullet CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium)

    2012-06-15

    Radiation-induced segregation (RIS) of solute atoms at a grain boundary (GB) in 304 stainless steel (SS), neutron-irradiated to a dose of 24 dpa at 300 Degree-Sign C in the fuel wrapper plates of a commercial pressurized water reactor, was investigated using laser-assisted atom probe tomography (APT). Ni, Si, and P enrichment and Cr and Fe depletion at the GB were evident. The full-width at half-maximum of the RIS region was {approx}3 nm for the concentration profile peaks of Ni and Si. The atomic percentages of Ni, Si, and Cr at the GB were {approx}19%, {approx}7%, and {approx}14%, respectively, in agreement with previously-reported values for neutron-irradiated SS. A high number density of intra-granular Ni-Si rich precipitates formed in the matrix. A precipitate-denuded zone with a width of {approx}10 nm appeared on both sides of the GB.

  19. Production and detection of atomic hexadecapole at Earth's magnetic field.

    Science.gov (United States)

    Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D

    2008-07-21

    Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.

  20. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    Science.gov (United States)

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  1. Nonequilibrium forces between atoms and dielectrics mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2011-01-01

    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables--the medium, the quantum field, and the atom's internal degrees of freedom, in that order--to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom's internal degrees of freedom results in an equation of motion for the atom's center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom's motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.

  2. Chaotic scattering from hydrogen atoms in a circularly polarized laser field

    International Nuclear Information System (INIS)

    Okon, Elias; Parker, William; Chism, Will; Reichl, Linda E.

    2002-01-01

    We investigate the classical dynamics of a hydrogen atom in a circularly polarized laser beam with finite radius. The spatial cutoff for the laser field allows us to use scattering processes to examine the laser-atom dynamics. We find that for certain field parameters, the delay times, the angular momentum, and the distance of closest approach of the scattered electron exhibit fractal behavior. This fractal behavior is a signature of chaos in the dynamics of the atom-field system

  3. Coherence and fluctuations in the interaction between moving atoms and a quantum field

    International Nuclear Information System (INIS)

    Hu, B.L.; Raval, A.

    1998-01-01

    Mesoscopic physics deals with three fundamental issues: quantum coherence, fluctuations and correlations. Here we analyze these issues for atom optics, using a simplified model of an assembly of atoms (or detectors, which are particles with some internal degree of freedom) moving in arbitrary trajectories in a quantum field. Employing the influence functional formalism, we study the self-consistent effect of the field on the atoms, and their mutual interactions via coupling to the field. We derive the coupled Langevin equations for the atom assemblage and analyze the relation of dissipative dynamics of the atoms (detectors) with the correlation and fluctuations of the quantum field. This provides a useful theoretical framework for analysing the coherent properties of atom-field systems. (author)

  4. Fabrication of all diamond scanning probes for nanoscale magnetometry

    OpenAIRE

    Appel Patrick; Neu Elke; Ganzhorn Marc; Barfuss Arne; Batzer Marietta; Gratz Micha; Tschoepe Andreas; Maletinsky Patrick

    2016-01-01

    The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes s...

  5. Resolving Iron(II) Sorption and Oxidative Growth on Hematite (001) Using Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Sandra D. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Liu, Jia [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Arey, Bruce W. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Schreiber, Daniel K. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Perea, Daniel E. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Rosso, Kevin M. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States

    2018-02-13

    The distribution of iron resulting from the autocatalytic interaction of aqueous Fe(II) with the hematite (001) surface was directly mapped in three dimensions (3D) for the first time, using iron isotopic labelling and atom probe tomography (APT). Analyses of the mass spectrum showed that natural abundance ratios in 56Fe-dominant hematite are recovered at depth with good accuracy, whereas at the relict interface with 57Fe(II) solution evidence for hematite growth by oxidative adsorption of Fe(II) was found. 3D reconstructions of the isotope positions along the surface normal direction showed a zone enriched in 57Fe, which was consistent with an average net adsorption of 3.2 – 4.3 57Fe atoms nm–2. Statistical analyses utilizing grid-based frequency distribution analyses show a heterogeneous, non-random distribution of oxidized Fe on the (001) surface, consistent with Volmer-Weber-like island growth. The unique 3D nature of the APT data provides an unprecedented means to quantify the atomic-scale distribution of sorbed 57Fe atoms and the extent of segregation on the hematite surface. This new ability to spatially map growth on single crystal faces at the atomic scale will enable resolution to long-standing unanswered questions about the underlying mechanisms for electron and atom exchange involved in a wide variety of redox-catalyzed processes at this archetypal and broadly relevant interface.

  6. Atomic-scale investigation of ε and θ precipitates in bainite in 100Cr6 bearing steel by atom probe tomography and ab initio calculations

    International Nuclear Information System (INIS)

    Song, W.; Appen, J. von; Choi, P.; Dronskowski, R.; Raabe, D.; Bleck, W.

    2013-01-01

    Carbide precipitation during upper and lower bainite formation in high-carbon bearing steel 100Cr6 is characterized using transmission electron microscopy and atom probe tomography. The results reveal that both ε and θ carbides precipitate in lower bainite isothermally held at 260 °C and only θ precipitates form in upper bainite isothermally held at 500 °C. ε and θ precipitate under paraequilibrium condition at 260 °C in lower bainite and θ precipitates under negligible partitioning local equilibrium condition in upper bainite at 500 °C. In order to theoretically study ε and θ precipitation and the ε → θ transition in bainite, thermodynamic calculations have been carried out using ab initio techniques. We find that ε and θ carbides in ferrite have almost identical thermodynamic stability, and hence have similar formation probability. In austenite, however, cementite formation is clearly preferred: it is favored by 5 kJ mol −1 at room temperature and still by 4 kJ mol −1 at 500 °C. Hence, the thermodynamic predictions agree well with the atom probe tomography results

  7. The Closed-Orbit Theory for General Rydberg Atoms in External Fields

    International Nuclear Information System (INIS)

    Carboni, R.

    1997-01-01

    The photoabsorption spectra of hydrogen Rydberg atoms, as well of model Rydberg atoms in pure magnetic or electric fields have been successfully calculated using the semiclassical closed-orbit theory. The theory relates the resonances of the spectra to closed classical orbits of the excited electron. The dynamics of multielectron atoms is more complicated than the hydrogenic one; additionally, when the atoms are in the presence of perpendicular magnetic and electric fields becomes more complex than when they are in pure fields, due to the fact that the Hamiltonian is non-separable in three degrees of freedom, instead of two non-separable degrees of freedom. In this work, I present an extension of the closed-orbit theory to three degrees of freedom, considering arbitrary quantum defects, i.e., general atoms. (Author) [es

  8. Probing Black Hole Magnetic Fields with QED

    Directory of Open Access Journals (Sweden)

    Ilaria Caiazzo

    2018-05-01

    Full Text Available The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED: the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly magnetized astrophysical objects, such as accreting black holes. In the X-ray regime, the polarization of photons traveling in the magnetosphere of a black hole is not frozen at emission but is changed by the local magnetic field. We show that, for photons traveling along the plane of the disk, where the field is expected to be partially organized, this results in a depolarization of the X-ray radiation. Because the amount of depolarization depends on the strength of the magnetic field, this effect can provide a way to probe the magnetic field in black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  9. Irradiation-induced precipitation in a SUS316 stainless steel using three-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, M., E-mail: hatake@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, IMR/Tohoku University, Narita, Oarai, Ibaraki 311-1313 (Japan); Yamagata, I. [Japan Atom Energy Agency, Narita, Oarai, Ibaraki 311-1393 (Japan)

    2013-11-15

    Precipitation and segregation were investigated in a compositionally modified 316 austenitic stainless steel, neutron-irradiated at 862 K using a three-dimensional atom probe. In the solution-annealed specimen, Mo, Ti, Nb, C and P enrichment were observed in a silicide, with nominal composition Fe{sub 3}Cr{sub 2}Ni{sub 2}Mo{sub 2}Si{sub 2}. In a Ti-rich carbide, nominaling Fe{sub 5}Cr{sub 8}Ni{sub 10}Mo{sub 2}Ti{sub 11}Si{sub 2}C{sub 6}, enrichment of Mo, Si, O, and Nb was observed. Radiation-induced segregation (RIS) at the precipitate–matrix interface was also investigated at an atomic scale. RIS of Ni and P atoms, which are undersized in Fe, was also analyzed around the interface of the Ti-rich carbide and matrix. Results suggest that the carbide–matrix interface is a sink with an interstitial bias. In the cold-worked specimen, complex-precipitates consisting of silicide and carbide were formed.

  10. Nonequilibrium forces between neutral atoms mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2010-01-01

    We study forces between two neutral atoms, modeled as three-dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center-of-mass motion of the atom, its internal degrees of freedom, and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first-principles, systematic, and unified description including the intrinsic and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces--London, van der Waals, and Casimir-Polder--between neutral atoms in the long-time limit. We also reproduce a recently reported force between atoms when the system is out of thermal equilibrium at late times. More noteworthy is the discovery of the existence of a type of (or identification of the source of some known) interatomic force which we call the ''entanglement force,'' originating from the quantum correlations of the internal degrees of freedom of entangled atoms.

  11. Atom collisions in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Smirnov, V.S.; Chaplik, A.V.

    1976-01-01

    It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed

  12. Atomic motion in a high-intensity standing wave laser field

    International Nuclear Information System (INIS)

    Saez Ramdohr, L.F.

    1987-01-01

    This work discusses the effect of a high-intensity standing wave laser field on the motion of neutral atoms moving with a relatively high velocity. The analysis involves a detailed calculation of the force acting on the atoms and the calculation of the diffusion tensor associated with the fluctuations of the quantum force operator. The high-intensity laser field limit corresponds to a Rabi frequency much greater than the natural rate of the atom. The general results are valid for any atomic velocity. Results are then specialized to the case of slow and fast atoms where the Doppler shift of the laser frequency due to the atomic motion is either smaller or larger than the natural decay rate of the atom. The results obtained for the force and diffusion tensor are applied to a particular ideal experiment that studies the evolution of a fast atomic beam crossing a high-intensity laser beam. The theories developed previously, for a similar laser configuration, discuss only the low atomic velocities case and not the more realistic case of fast atoms. Here, an approximate solution of the equation for the distribution is obtained. Starting from the approximate distribution function, the deflection angle and dispersion angle for the atomic beam with respect to the free motion are calculated

  13. Manipulating beams of ultra-cold atoms with a static magnetic field

    International Nuclear Information System (INIS)

    Rowlands, W.J.; Lau, D.C.; Opat, G.I.; Sidorov, A.I.; McLean, R.J.; Hannaford, P.

    1996-01-01

    The preliminary results on the deflection of a beam of ultra-cold atoms by a static magnetic field are presented. Caesium atoms trapped in a magneto-optical trap (MOT) are cooled using optical molasses, and then fall freely under gravity to form a beam of ultra-cold atoms. The atoms pass through a static inhomogeneous magnetic field produced by a single current-carrying wire, and are deflected by a force dependent on the magnetic substate of the atom. A schematical diagram of the experimental layout for laser trapping and cooling of cesium atom is given. The population of atoms in various magnetic substates can be altered by using resonant laser radiation to optically pump the atoms. The single-wire deflection experiment described can be considered as atomic reflexion from a cylindrical magnetic mirror; the underlying principles and techniques being relevant to the production of atomic mirrors and diffraction gratings. 16 refs., 10 figs

  14. Semiclassical calculation of ionisation rate for Rydberg helium atoms in an electric field

    International Nuclear Information System (INIS)

    Wang De-Hua

    2011-01-01

    The ionisation of Rydberg helium atoms in an electric field above the classical ionisation threshold has been examined using the semiclassical method, with particular emphasis on discussing the influence of the core scattering on the escape dynamics of electrons. The results show that the Rydberg helium atoms ionise by emitting a train of electron pulses. Unlike the case of the ionisation of Rydberg hydrogen atom in parallel electric and magnetic fields, where the pulses of the electron are caused by the external magnetic field, the pulse trains for Rydberg helium atoms are created through core scattering. Each peak in the ionisation rate corresponds to the contribution of one core-scattered combination trajectory. This fact further illustrates that the ionic core scattering leads to the chaotic property of the Rydberg helium atom in external fields. Our studies provide a simple explanation for the escape dynamics in the ionisation of nonhydrogenic atoms in external fields. (atomic and molecular physics)

  15. Probing and Manipulating the Interfacial Defects of InGaAs Dual-Layer Metal Oxides at the Atomic Scale.

    Science.gov (United States)

    Wu, Xing; Luo, Chen; Hao, Peng; Sun, Tao; Wang, Runsheng; Wang, Chaolun; Hu, Zhigao; Li, Yawei; Zhang, Jian; Bersuker, Gennadi; Sun, Litao; Pey, Kinleong

    2018-01-01

    The interface between III-V and metal-oxide-semiconductor materials plays a central role in the operation of high-speed electronic devices, such as transistors and light-emitting diodes. The high-speed property gives the light-emitting diodes a high response speed and low dark current, and they are widely used in communications, infrared remote sensing, optical detection, and other fields. The rational design of high-performance devices requires a detailed understanding of the electronic structure at this interface; however, this understanding remains a challenge, given the complex nature of surface interactions and the dynamic relationship between the morphology evolution and electronic structures. Herein, in situ transmission electron microscopy is used to probe and manipulate the structural and electrical properties of ZrO 2 films on Al 2 O 3 and InGaAs substrate at the atomic scale. Interfacial defects resulting from the spillover of the oxygen-atom conduction-band wavefunctions are resolved. This study unearths the fundamental defect-driven interfacial electric structure of III-V semiconductor materials and paves the way to future high-speed and high-reliability devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Classical trajectory perspective of atomic ionization in strong laser fields. Semiclassical modeling

    International Nuclear Information System (INIS)

    Liu, Jie

    2014-01-01

    Dealing with timely and interesting issues in strong laser physics. Illustrates complex strong field atomic ionization with the simple semiclassical model of classical trajectory perspective for the first time. Provides a theoretical model that can be used to account for recent experiments. The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.

  17. Observation of oscillatory radiation induced segregation profiles at grain boundaries in neutron irradiated 316 stainless steel using atom probe tomography

    Science.gov (United States)

    Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.

    2018-06-01

    Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.

  18. Ultrafast terahertz scanning tunneling microscopy with atomic resolution

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2016-01-01

    We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...

  19. Photoelectron spectra as a probe of double-core resonsance in two-electron atoms

    International Nuclear Information System (INIS)

    Grobe, R.; Haan, S.L.; Eberly, J.H.

    1996-01-01

    The authors calculate photoelectron spectra for a two-electron atom under the influence of two external driving fields, using an essential states formalism. They focus on the regime of so-called coherence transfer, in which electron-electron correlation transfers field-induced photo-coherence from one electron to the other. In the case studied here, two laser fields are resonant with coupled atomic transitions, in the manner familiar from three-level dark-state spectroscopy. Dynamical two electron effects are monitored via the photoelectron energy spectrum. The authors show that the distribution of the photoelectron energies can be singly, doubly or triply peaked depending on the relative laser intensities. The electron spectra are independent of the turn-on sequence of the fields

  20. Phase time delay and Hartman effect in a one-dimensional photonic crystal with four-level atomic defect layer

    Science.gov (United States)

    Jamil, Rabia; Ali, Abu Bakar; Abbas, Muqaddar; Badshah, Fazal; Qamar, Sajid

    2017-08-01

    The Hartman effect is revisited using a Gaussian beam incident on a one-dimensional photonic crystal (1DPC) having a defect layer doped with four-level atoms. It is considered that each atom of the defect layer interacts with three driving fields, whereas a Gaussian beam of width w is used as a probe light to study Hartman effect. The atom-field interaction inside the defect layer exhibits electromagnetically induced transparency (EIT). The 1DPC acts as positive index material (PIM) and negative index material (NIM) corresponding to the normal and anomalous dispersion of the defect layer, respectively, via control of the phase associated with the driving fields and probe detuning. The positive and negative Hartman effects are noticed for PIM and NIM, respectively, via control of the relative phase corresponding to the driving fields and probe detuning. The advantage of using four-level EIT system is that a much smaller absorption of the transmitted beam occurs as compared to three-level EIT system corresponding to the anomalous dispersion, leading to negative Hartman effect.

  1. Probing individual redox PEGylated gold nanoparticles by electrochemical--atomic force microscopy.

    Science.gov (United States)

    Huang, Kai; Anne, Agnès; Bahri, Mohamed Ali; Demaille, Christophe

    2013-05-28

    Electrochemical-atomic force microscopy (AFM-SECM) was used to simultaneously probe the physical and electrochemical properties of individual ~20 nm sized gold nanoparticles functionalized by redox-labeled PEG chains. The redox PEGylated nanoparticles were assembled onto a gold electrode surface, forming a random nanoarray, and interrogated in situ by a combined AFM-SECM nanoelectrode probe. We show that, in this so-called mediator-tethered (Mt) mode, AFM-SECM affords the nanometer resolution required for resolving the position of individual nanoparticles and measuring their size, while simultaneously electrochemically directly contacting the redox-PEG chains they bear. The dual measurement of the size and current response of single nanoparticles uniquely allows the statistical distribution in grafting density of PEG on the nanoparticles to be determined and correlated to the nanoparticle diameter. Moreover, because of its high spatial resolution, Mt/AFM-SECM allows "visualizing" simultaneously but independently the PEG corona and the gold core of individual nanoparticles. Beyond demonstrating the achievement of single-nanoparticle resolution using an electrochemical microscopy technique, the results reported here also pave the way toward using Mt/AFM-SECM for imaging nano-objects bearing any kind of suitably redox-labeled (bio)macromolecules.

  2. Practical aspects of spherical near-field antenna measurements using a high-order probe

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2006-01-01

    Two practical aspects related to accurate antenna pattern characterization by probe-corrected spherical near-field antenna measurements with a high-order probe are examined. First, the requirements set by an arbitrary high-order probe on the scanning technique are pointed out. Secondly, a channel...... balance calibration procedure for a high-order dual-port probe with non-identical ports is presented, and the requirements set by this procedure for the probe are discussed....

  3. Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions

    Science.gov (United States)

    Tao, Yinglei; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.

  4. Atom localization via phase and amplitude control of the driving field

    International Nuclear Information System (INIS)

    Ghafoor, Fazal; Qamar, Sajid; Zubairy, M. Suhail

    2002-01-01

    Control of amplitude and phase of the driving field in an atom-field interaction leads towards the strong line narrowing and quenching in the spontaneous emission spectrum. We exploit this fact for the atom localization scheme and achieve a much better spatial resolution in the conditional position probability distribution of the atom. Most importantly the quenching in the spontaneous emission manifests itself in reducing the periodicity in the conditional position probability distribution and hence the uncertainty in a particular position measurement of the single atom by a factor of 2

  5. Pump-probe study of atoms and small molecules with laser driven high order harmonics

    Science.gov (United States)

    Cao, Wei

    A commercially available modern laser can emit over 1015 photons within a time window of a few tens of femtoseconds (10-15second), which can be focused into a spot size of about 10 mum, resulting in a peak intensity above 1014W/cm2. This paves the way for table-top strong field physics studies such as above threshold ionization (ATI), non-sequential double ionization (NSDI), high order harmonic generation (HHG), etc.. Among these strong laser-matter interactions, high order harmonic generation, which combines many photons of the fundamental laser field into a single photon, offers a unique way to generate light sources in the vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) region. High order harmonic photons are emitted within a short time window from a few tens of femtoseconds down to a few hundreds of attoseconds (10 -18second). This highly coherent nature of HHG allows it to be synchronized with an infrared (IR) laser pulse, and the pump-probe technique can be adopted to study ultrafast dynamic processes in a quantum system. The major work of this thesis is to develop a table-top VUV(EUV) light source based on HHG, and use it to study dynamic processes in atoms and small molecules with the VUV(EUV)-pump IR-probe method. A Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) apparatus is used for momentum imaging of the interaction products. Two types of high harmonic pump pulses are generated and applied for pump-probe studies. The first one consists of several harmonics forming a short attosecond pulse train (APT) in the EUV regime (around 40 eV). We demonstrate that, (1) the auto-ionization process triggered by the EUV in cation carbon-monoxide and oxygen molecules can be modified by scanning the EUV-IR delay, (2) the phase information of quantum trajectories in bifurcated high harmonics can be extracted by performing an EUV-IR cross-correlation experiment, thus disclosing the macroscopic quantum control in HHG. The second type of high harmonic source

  6. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    International Nuclear Information System (INIS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators

  7. Near-field circular polarization probed by chiral polyfluorene

    NARCIS (Netherlands)

    Savoini, M.; Biagioni, P.; Lakhwani, G.; Meskers, S.C.J.; Duò, L.; Finazzi, M.

    2009-01-01

    We demonstrate that a high degree of circular polarization can be delivered to the near field (NF) of an aperture at the apex of hollow-pyramid probes for scanning optical microscopy. This result is achieved by analyzing the dichroic properties of an annealed thin polymer film containing a chiral

  8. Teleportation of atomic states with a weak coherent cavity field

    Institute of Scientific and Technical Information of China (English)

    Zheng Shi-Biao

    2005-01-01

    A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another adwntage of the scheme is that only one cavity is required.

  9. Sub-half-wavelength atom localization via two standing-wave fields

    International Nuclear Information System (INIS)

    Jin Luling; Sun Hui; Niu Yueping; Gong Shangqing

    2008-01-01

    We propose a scheme for sub-half-wavelength atom localization in a four-level ladder-type atomic system, which is coupled by two classical standing-wave fields. We find that one of the standing-wave fields can help in enhancing the localization precision, and the other is of crucial importance in increasing the detecting probability and leading sub-half-wavelength localization

  10. Analysis of medical device materials with the local electrode atom probe

    International Nuclear Information System (INIS)

    Goodman, S.L.; Mengelt, T.J.; Ali, M.; Ulfig, R.M.; Martens, R.M.; Kelly, T.F.; Kostrna, S.L.P.; Kostrna, M.S.; Carmichael, W.J.

    2004-01-01

    Full text: As medical technology advances towards microsurgical and minimally invasive techniques, there is a drive to produce ever-smaller devices that demand higher material performance and hence enhanced nano and micro-scale control of material structure. These devices are made from stainless steel alloys, Nitinol, titanium, CoCrMo, and non-metals such as pyrolytic carbon and silicon. These applications are made possible due to suitable physical and mechanical properties, good corrosion resistance in biological environments, reasonable biocompatibility, and good manufacturability. With respect to the metals, the nano-structure and composition of the material surface, typically an oxide, is especially critical since biological responses and corrosion occur at the material-environment interface. Thus, there is an increasing need to understand the 3-D structure and composition of metallic biomaterials at the atomic scale. Three-dimensional atom probe microscopy can uniquely provide such atomic-level structural information. In the present study several of these medical device materials were examined. These include a 316L stainless steel alloy which is widely used in implanted spinal fixation devices, bone screws, cardiovascular and neurological stents, a cast CoCrMo acetabular hip cup of a Cormet metal-on-metal Hip Resurfacing System (Corin Group, Cirencester, England) that was rejected for clinical use, Nitinol wires specimens such as are used for stents and guide wires, and low temperature pyrolytic carbon as used in clinical heart valve prosthetics. (author)

  11. Rydberg atoms ionization by microwave field and electromagnetic pulses

    International Nuclear Information System (INIS)

    Kaulakys, B.; Vilutis, G.

    1995-01-01

    A simple theory of the Rydberg atoms ionization by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionization of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionization theory

  12. Photoelectron imaging, probe of the dynamics: from atoms... to clusters

    International Nuclear Information System (INIS)

    Lepine, F.

    2003-06-01

    This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (W n - , C n - , C 60 ). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)

  13. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  14. Atomic and free electrons in a strong light field

    CERN Document Server

    Fedorov, Mikhail V

    1997-01-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated bremsstrahlung, free-electron lasers, wave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described too, and their results are compared with those of the existing theoretical models.An extensive ge

  15. Coherent population dynamics of a three-level atom in spacetime

    International Nuclear Information System (INIS)

    Netz, R.; Sauerbrey, R.; Feurer, T.; Roberts, G.

    2002-01-01

    This work explores temporal and spatial aspects of coherent population transfer in a three-level atom through a synergic combination of experimental measurements and theoretical calculations. Experimental measurements exploit the broad bandwidth of a femtosecond laser pulse to initiate simultaneous excitation of the 5p 2 P 1/2 2 S 1/2 and 5p 2 P 3/2 2 S 1/2 components of the doublet line of atomic rubidium. By adjusting positive or negative frequency sweeps the pump pulse favors either one of the two transitions and eventually even decouples the two excited states. The population of the excited spin-orbit levels is monitored in real time by stimulated emission probing under conditions of different intensity, chirp, and pulse width of the driving field, giving detailed information on the coupling between the three levels and their interactions with the driving and probe fields at different points in spacetime. Both pump and probe pulses are carefully characterized after the interaction region by frequency-resolved optical gating. In order to interpret and understand the experimental results it is essential to consider the close relationship between pulse propagation and time evolution of the atomic system via the coupled Maxwell-Bloch equations. This analysis highlights the importance of spatial propagation of the light fields, as well as their temporal dependence, in understanding the dynamical population evolution, and quantitatively reproduces all aspects of the experimental measurements

  16. Shot noise as a probe of spin-correlated transport through single atoms

    Science.gov (United States)

    Pradhan, S.; Fransson, J.

    2018-03-01

    We address the shot noise in the tunneling current through a local spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Büttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights into noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.

  17. The design method for the electric field probe based on PSpice

    International Nuclear Information System (INIS)

    Wu Wei; Cheng Yinhui; Ma Liang; Zhou Hui

    2006-01-01

    The equivalent circuit for E-filed probe with or without cable, which connected the antenna to the load, was simulated by PSpice. The AC and transient analyses were performed on the equivalent circuit. As a result of AC sweep analysis, (a) the sensitivity and practice bandwidth of the probe without the cable are increased along with the capacitance of antenna as long as the capacitance under a certain value, (b) in the case of the probe with cable the sensitivity and practice bandwidth can't be improved by adjusting the capacitance of antenna simultaneously. A novel approach was proposed for increasing the practice bandwidth of the probe with short cable and was simulated. The PPD (Parallel Plate Dipole) E-Filed probe was designed. It is proved that the design method for the E-Field probe based on PSpice can be used in the measurement of EMP (Electromagnetic Pulse). (authors)

  18. Controlling the optical bistability beyond the multi-photon resonance condition in a three-level closed-loop atomic system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Nozari, Narges; Vafafard, Azar; Sahrai, Mostafa

    2012-01-01

    We investigate the optical bistability behavior of a three-level closed-loop atomic system beyond the multi-photon resonance condition. Using the Floquet decomposition, we solve the time-dependent equations of motion, beyond the multi-photon resonance condition. By identifying the different scattering processes contributing to the medium response, it is shown that in general the optical bistability behavior of the system is not phase-dependent. The phase dependence is due to the scattering of the driving and coupling fields into the probe field at a frequency, which, in general, differs from the probe field frequency. - Highlights: → We investigate optical bistability of a three-level closed-loop atomic system, beyond the multi-photon resonance condition. → By applying Floquet decomposition to the equation of motion, the different scattering processes contributing to the medium response are determined. → It is shown that the phase dependence of optical bistability arises from the scattering of the driving and coupling fields into the probe field frequency.

  19. Nanoprecipitates in single-crystal molybdenum-alloy nanopillars detected by TEM and atom probe tomography

    International Nuclear Information System (INIS)

    Oveisi, Emad; Bártová, Barbora; Gerstl, Stephan; Zimmermann, Julien; Marichal, Cécile; Van Swygenhoven, Helena; Hébert, Cécile

    2013-01-01

    Transmission electron microscopy (TEM) supported by various chemical analyses techniques as well as atom probe tomography is applied to characterize newly identified nanosized precipitates in Mo-alloy nanopillars that were prepared by directional solidification. It is shown that the α-Mo matrix contains Al-enriched face-centred cubic precipitates which have a 4.12 Å lattice parameter, and exhibit a Kurdjumov–Sachs crystallographic orientation relationship with the matrix. Such precipitates could be responsible for the unusual behaviour of the pillars during compression tests

  20. Hybrid photonic-plasmonic near-field probe for efficient light conversion into the nanoscale hot spot.

    Science.gov (United States)

    Koshelev, Alexander; Munechika, Keiko; Cabrini, Stefano

    2017-11-01

    In this Letter, we present a design and simulations of the novel hybrid photonic-plasmonic near-field probe. Near-field optics is a unique imaging tool that provides optical images with resolution down to tens of nanometers. One of the main limitations of this technology is its low light sensitivity. The presented hybrid probe solves this problem by combining a campanile plasmonic probe with the photonic layer, consisting of the diffractive optic element (DOE). The DOE is designed to match the plasmonic field at the broad side of the campanile probe with the fiber mode. This makes it possible to optimize the size of the campanile tip to convert light efficiently into the hot spot. The simulations show that the hybrid probe is ∼540 times more efficient compared with the conventional campanile on average in the 600-900 nm spectral range.

  1. Versatile variable temperature and magnetic field scanning probe microscope for advanced material research

    Science.gov (United States)

    Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan

    2017-10-01

    We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.

  2. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2018-01-01

    This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated. Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schrödinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possi...

  3. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography

    International Nuclear Information System (INIS)

    Rademacher, Thomas; Al-Kassab, Talaat; Deges, Johannes; Kirchheim, Reiner

    2011-01-01

    Addition of ternary elements to the D0 3 ordered Fe 3 Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. -- Research highlights: → APT measurements of Fe 3 Al-Cr are systematically analysed to study ordering. → APT measurements are simulated using EAM to calculate binding energies. → Cr occupies next nearest neighbour sites of aluminium with at least 83% ordering. → Aluminium ordering is at least 92%

  4. Simulating evaporation of surface atoms of thorium-alloyed tungsten in strong electronic fields

    International Nuclear Information System (INIS)

    Bochkanov, P.V.; Mordyuk, V.S.; Ivanov, Yu.I.

    1984-01-01

    By the Monte Carlo method simulating evaporation of surface atoms of thorium - alloyed tungsten in strong electric fields is realized. The strongest evaporation of surface atoms of pure tungsten as compared with thorium-alloyed tungsten in the contentration range of thorium atoms in tungsten matrix (1.5-15%) is shown. The evaporation rate increases with thorium atoms concentration. Determined is in relative units the surface atoms evaporation rate depending on surface temperature and electric field stront

  5. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    International Nuclear Information System (INIS)

    Julia-Diaz, B.; Dagnino, D.; Barberan, N.; Guenter, K. J.; Dalibard, J.; Grass, T.; Lewenstein, M.

    2011-01-01

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  6. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Julia-Diaz, B. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Dagnino, D.; Barberan, N. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); Guenter, K. J.; Dalibard, J. [Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Superieure, 24 rue Lhomond, F-75005 Paris (France); Grass, T. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona (Spain)

    2011-11-15

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  7. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ...

  8. On the atomic displacement fields of small interstitial dislocation loops

    International Nuclear Information System (INIS)

    Zhou, Z.; Dudarev, S.L.; Jenkins, M.L.; Sutton, A.P.; Kirk, M.A.

    2005-01-01

    The atomic displacement fields of dislocation loops of size 1-5 nm formed by self-interstitial atoms in α-Fe have been calculated using isotropic elasticity theory and anisotropic elasticity theory, and compared with atomic simulations for loops formed by 43-275 self-interstitial atoms. The atomic displacements predicted by anisotropic elasticity theory were in good agreement with those given by the atomistic simulations at distances greater than 3 nm from the loop plane, but the displacements predicted by isotropic elasticity theory showed significant discrepancies at distances up to 15 nm

  9. Initial Results of the SSPX Transient Internal Probe System for Measuring Toroidal Field Profiles

    Science.gov (United States)

    Holcomb, C. T.; Jarboe, T. R.; Mattick, A. T.; Hill, D. N.; McLean, H. S.; Wood, R. D.; Cellamare, V.

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. The Sustained Spheromak Physics Experiment (SSPX) is using a field profile diagnostic called the Transient Internal Probe (TIP). TIP consists of a verdet-glass bullet that is used to measure the magnetic field by Faraday rotation. This probe is shot through the spheromak by a light gas gun at speeds near 2 km/s. An argon laser is aligned along the path of the probe. The light passes through the probe and is retro-reflected to an ellipsometer that measures the change in polarization angle. The measurement is spatially resolved down to the probes’ 1 cm length to within 15 Gauss. Initial testing results are given. This and future data will be used to determine the field profile for equilibrium reconstruction. TIP can also be used in conjunction with wall probes to map out toroidal mode amplitudes and phases internally. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  10. D. C. electric field behavior of high lying states in atomic uranium

    International Nuclear Information System (INIS)

    Paisner, J.A.; Carlson, L.R.; Worden, E.F.; Johnson, S.A.; May, C.A.; Solarz, R.W.

    1976-01-01

    The effects of D. C. electric fields on high lying Rydberg and valence states in atomic uranium have been studied. Results of measurements of Stark shifts, lifetime lengthening via l-mixing, critical fields for ionization, barrier tunneling, and the appearance of zero-field parity forbidden transitions are presented for atomic uranium along with the observation of field induced autoionization of valence states. 3 figs

  11. Superconducting microtraps for ultracold atoms

    International Nuclear Information System (INIS)

    Hufnagel, C.

    2011-01-01

    Atom chips are integrated devices in which atoms and atomic clouds are stored and manipulated in miniaturized magnetic traps. State of the art fabrication technologies allow for a flexible design of the trapping potentials and consequently provide extraordinary control over atomic samples, which leads to a promising role of atom chips in the engineering and investigation of quantum mechanical systems. Naturally, for quantum mechanical applications, the atomic coherence has to be preserved. Using room temperature circuits, the coherence time of atoms close to the surface was found to be drastically limited by thermal current fluctuations in the conductors. Superconductors offer an elegant way to circumvent thermal noise and therefore present a promising option for the coherent manipulation of atomic quantum states. In this thesis trapping and manipulation of ultracold Rubidium atoms in superconducting microtraps is demonstrated. In this connection the unique properties of superconductors are used to build traps based on persistent currents, the Meissner effect and remanent magnetization. In experiment it is shown, that in superconducting atom chips, thermal magnetic field noise is significantly reduced. Furthermore it is demonstrated, that atomic samples can be employed to probe the properties of superconducting materials. (author) [de

  12. Dual-MWCNT Probe Thermal Sensor Assembly and Evaluation Based on Nanorobotic Manipulation inside a Field-Emission-Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Zhan Yang

    2015-03-01

    Full Text Available We report a thermal sensor composed of two multiwalled carbon nano-tubes (MWCNTs inside a field-emission-scanning electron microscope. The sensor was assembled using a nanorobotic manipulation system, which was used to construct a probe tip in order to detect the local environment of a single cell. An atomic force microscopy (AFM cantilever was used as a substrate; the cantilever was composed of Si3N4 and both sides were covered with a gold layer. MWCNTs were individually assembled on both sides of the AFM cantilever by employing nanorobotic manipulation. Another AFM cantilever was subsequently used as an end effector to manipulate the MWCNTs to touch each other. Electron-beam-induced deposition (EBID was then used to bond the two MWCNTs. The MWCNT probe thermal sensor was evaluated inside a thermostated container in the temperature range from 25°C to 60°C. The experimental results show the positive characteristics of the temperature coefficient of resistance (TCR.

  13. Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy

    International Nuclear Information System (INIS)

    Lin, Ming-Fu; Neumark, Daniel M.; Gessner, Oliver; Leone, Stephen R.

    2014-01-01

    Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH 2 =CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. Spectral signatures are observed for the depletion of neutral C 2 H 3 Br, the formation of C 2 H 3 Br + ions in their ground (X ~ ) and first excited (A ~ ) states, the production of C 2 H 3 Br ++ ions, and the appearance of neutral Br ( 2 P 3/2 ) atoms by dissociative ionization. The formation of free Br ( 2 P 3/2 ) atoms occurs on a timescale of 330 ± 150 fs. The ionic A ~ state exhibits a time-dependent XUV absorption energy shift of ∼0.4 eV within the time window of the atomic Br formation. The yield of Br atoms correlates with the yield of parent ions in the A ~ state as a function of NIR peak intensity. The observations suggest that a fraction of vibrationally excited C 2 H 3 Br + (A ~ ) ions undergoes intramolecular vibrational energy redistribution followed by the C–Br bond dissociation. The C 2 H 3 Br + (X ~ ) products and the majority of the C 2 H 3 Br ++ ions are relatively stable due to a deeper potential well and a high dissociation barrier, respectively. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy

  14. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    Science.gov (United States)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  15. Highly versatile atomic micro traps generated by multifrequency magnetic field modulation

    International Nuclear Information System (INIS)

    Courteille, Ph W; Deh, B; Fortagh, J; Guenther, A; Kraft, S; Marzok, C; Slama, S; Zimmermann, C

    2006-01-01

    We propose the realization of custom-designed adiabatic potentials for cold atoms based on multimode radio frequency radiation in combination with static inhomogeneous magnetic fields. For example, the use of radio frequency combs gives rise to periodic potentials acting as gratings for cold atoms. In strong magnetic field gradients, the lattice constant can be well below 1 μm. By changing the frequencies of the comb in time the gratings can easily be propagated in space, which may prove useful for Bragg scattering atomic matter waves. Furthermore, almost arbitrarily shaped potentials are possible such as disordered potentials on a scale of several 100 nm or lattices with a spatially varying lattice constant. The potentials can be made state selective and, in the case of atomic mixtures, also species selective. This opens new perspectives for generating tailored quantum systems based on ultracold single atoms or degenerate atomic and molecular quantum gases

  16. Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes.

    Science.gov (United States)

    Esslinger, Moritz; Vogelgesang, Ralf

    2012-09-25

    Near-field microscopy offers the opportunity to reveal optical contrast at deep subwavelength scales. In scanning near-field optical microscopy (SNOM), the diffraction limit is overcome by a nanoscopic probe in close proximity to the sample. The interaction of the probe with the sample fields necessarily perturbs the bare sample response, and a critical issue is the interpretation of recorded signals. For a few specific SNOM configurations, individual descriptions have been modeled, but a general and intuitive framework is still lacking. Here, we give an exact formulation of the measurable signals in SNOM which is easily applicable to experimental configurations. Our results are in close analogy with the description Tersoff and Hamann have derived for the tunneling currents in scanning tunneling microscopy. For point-like scattering probe tips, such as used in apertureless SNOM, the theory simplifies dramatically to a single scalar relation. We find that the measured signal is directly proportional to the field of the coupled tip-sample system at the position of the tip. For weakly interacting probes, the model thus verifies the empirical findings that the recorded signal is proportional to the unperturbed field of the bare sample. In the more general case, it provides guidance to an intuitive and faithful interpretation of recorded images, facilitating the characterization of tip-related distortions and the evaluation of novel SNOM configurations, both for aperture-based and apertureless SNOM.

  17. Photoionization of Rydberg hydrogen atom in a magnetic field

    International Nuclear Information System (INIS)

    Wang, Dehua; Cheng, Shaohao; Chen, Zhaohang

    2015-01-01

    Highlights: • The ionization of Rydberg hydrogen atom in a magnetic field has been studied. • Oscillatory structures appear in the electron probability density distributions. • This study can guide the experimental research on the photoionization microscopy. - Abstract: The ionization of Rydberg hydrogen atom in a magnetic field has been studied on the basis of a semiclassical analysis of photoionization microscopy. The photoionization microscopy interference patterns of the photoelectron probability density distribution on a given detector plane are calculated at different scaled energies. We find that due to the interference effect of different types of electron trajectories arrived at a given point on the detector plane, oscillatory structures appear in the electron probability density distributions. The oscillatory structure of the interference pattern, which contains the spatial component of the electronic wave function, evolves sensitively on the scaled energy, through which we gain a deep understanding on the probability density distribution of the electron wave function. This study provides some reference values for the future experiment research on the photoionization microscopy of the Rydberg atom in the presence of magnetic field

  18. A (201)Hg+ Comagnetometer for (199)Hg+ Trapped Ion Space Atomic Clocks

    Science.gov (United States)

    Burt, Eric A.; Taghavi, Shervin; Tjoelker, Robert L.

    2011-01-01

    A method has been developed for unambiguously measuring the exact magnetic field experienced by trapped mercury ions contained within an atomic clock intended for space applications. In general, atomic clocks are insensitive to external perturbations that would change the frequency at which the clocks operate. On a space platform, these perturbative effects can be much larger than they would be on the ground, especially in dealing with the magnetic field environment. The solution is to use a different isotope of mercury held within the same trap as the clock isotope. The magnetic field can be very accurately measured with a magnetic-field-sensitive atomic transition in the added isotope. Further, this measurement can be made simultaneously with normal clock operation, thereby not degrading clock performance. Instead of using a conventional magnetometer to measure ambient fields, which would necessarily be placed some distance away from the clock atoms, first order field-sensitive atomic transition frequency changes in the atoms themselves determine the variations in the magnetic field. As a result, all ambiguity over the exact field value experienced by the atoms is removed. Atoms used in atomic clocks always have an atomic transition (often referred to as the clock transition) that is sensitive to magnetic fields only in second order, and usually have one or more transitions that are first-order field sensitive. For operating parameters used in the (199)Hg(+) clock, the latter can be five orders of magnitude or more sensitive to field fluctuations than the clock transition, thereby providing an unambiguous probe of the magnetic field strength.

  19. Electromagnetically induced transparency in thermal Rydberg atoms: superatom model with finite Doppler broadening

    Science.gov (United States)

    Bai, Si-Yin; Bao, Qian-Qian; Tian, Xue-Dong; Liu, Yi-Mou; Wu, Jin-Hui

    2018-04-01

    We study the steady optical responses of a cold atomic ensemble driven into the three-level ladder configuration involving a Rydberg state at finite temperatures. By improving the superatom model with thermal movement included, we calculate relevant atomic coherence effects and find that the residual Doppler broadening at the mK-K temperatures will weaken the nonclassical properties of transmitted probe photons. Furthermore, propagation directions of the probe and coupling fields have a great influence on various properties related to electromagnetically induced transparency. That is, the residual Doppler effect is more destructive to relevant atomic coherence effects in the co-propagation case but can be partially eliminated in the counter-propagation case.

  20. Study of multi-level atomic systems with the application of magnetic field

    Science.gov (United States)

    Hu, Jianping; Roy, Subhankar; Ummal Momeen, M.

    2018-04-01

    The complexity of multiple energy levels associated with each atomic system determines the various processes related to light- matter interactions. It is necessary to understand the influence of different levels in a given atomic system. In this work we focus on multi- level atomic schemes with the application of magnetic field. We analyze the different EIT windows which appears in the presence of moderately high magnetic field (∼ 10 G) strength.

  1. Laser-Assisted Field Evaporation and Three-Dimensional Atom-by-Atom Mapping of Diamond Isotopic Homojunctions.

    Science.gov (United States)

    Mukherjee, Samik; Watanabe, Hideyuki; Isheim, Dieter; Seidman, David N; Moutanabbir, Oussama

    2016-02-10

    It addition to its high evaporation field, diamond is also known for its limited photoabsorption, strong covalent bonding, and wide bandgap. These characteristics have been thought for long to also complicate the field evaporation of diamond and make its control hardly achievable on the atomistic-level. Herein, we demonstrate that the unique behavior of nanoscale diamond and its interaction with pulsed laser lead to a controlled field evaporation thus enabling three-dimensional atom-by-atom mapping of diamond (12)C/(13)C homojunctions. We also show that one key element in this process is to operate the pulsed laser at high energy without letting the dc bias increase out of bounds for diamond nanotip to withstand. Herein, the role of the dc bias in evaporation of diamond is essentially to generate free charge carriers within the nanotip via impact ionization. The mobile free charges screen the internal electric field, eventually creating a hole rich surface where the pulsed laser is effectively absorbed leading to an increase in the nanotip surface temperature. The effect of this temperature on the uncertainty in the time-of-flight of an ion, the diffusion of atoms on the surface of the nanotip, is also discussed. In addition to paving the way toward a precise manipulation of isotopes in diamond-based nanoscale and quantum structures, this result also elucidates some of the basic properties of dielectric nanostructures under high electric field.

  2. Coherent control of the group velocity in a dielectric slab doped with duplicated two-level atoms

    Science.gov (United States)

    Ziauddin; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2016-01-01

    Coherent control of reflected and transmitted pulses is investigated theoretically through a slab doped with atoms in a duplicated two-level configuration. When a strong control field and a relatively weak probe field are employed, coherent control of the group velocity is achieved via changing the phase shift ϕ between control and probe fields. Furthermore, the peak values in the delay time of the reflected and transmitted pulses are also studied by varying the phase shift ϕ.

  3. Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, S M; Safari, L; Mahmoudi, M [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Sahrai, M, E-mail: sahrai@tabrizu.ac.i [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2010-08-28

    The effect of quantum interference on the optical properties of a pumped-probe three-level V-type atomic system is investigated. The probe absorption, dispersion, group index and optical bistability beyond the two-photon resonance condition are discussed. It is found that the optical properties of a medium in the frequency of the probe field, in general, are phase independent. The phase dependence arises from a scattering of the coupling field into the probe field at a frequency which in general differs from the probe field frequency. It is demonstrated that beyond the two-photon resonance condition the phase sensitivity of the medium will disappear.

  4. Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach

    International Nuclear Information System (INIS)

    Sindelka, Milan; Moiseyev, Nimrod; Cederbaum, Lorenz S.

    2006-01-01

    Manipulation of cold atoms by lasers has so far been studied solely within the framework of the conventional dipole approximation, and the atom-light interaction has been treated using low order perturbation theory. Laser control of atomic motions has been ascribed exclusively to the corresponding light-induced dipole forces. In this work, we present a general theory to derive the potential experienced by an atom in a monochromatic laser field in a context analogous to the Born-Oppenheimer approximation for molecules in the field-free case. The formulation goes beyond the dipole approximation and gives rise to the field-atom coupling potential terms which so far have not been taken into consideration in theoretical or experimental studies. Contrary to conventional approaches, our method is based upon the many electron Floquet theory and remains valid also for high intensity laser fields (i.e., for a strongly nonperturbative atom-light interaction). As an illustration of the developed theory, we investigate the trapping of cold atoms in optical lattices. We find that for some atoms for specific laser parameters, despite the absence of the dipole force, the laser trapping is still possible due to the electric quadrupole forces. Namely, we show that by using realistic laser parameters one can form a quadrupole optical lattice which is sufficiently strong to trap Ca and Na atoms

  5. Recent developments in trapping and manipulation of atoms with adiabatic potentials

    Science.gov (United States)

    Garraway, Barry M.; Perrin, Hélène

    2016-09-01

    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

  6. Entropy squeezing of the field interacting with a nearly degenerate V-type three-level atom

    Institute of Scientific and Technical Information of China (English)

    Zhou Qing-Chun; Zhu Shi-Ning

    2005-01-01

    The position- and momentum-entopic squeezing properties of the optical field in the system of a nearly degenerate three-level atom interacting with a single-mode field are investigated. Calculation results indicate that when the field is initially in the vacuum state, it may lead to squeezing of the position entropy or the momentum entropy of the field if the atom is prepared properly. The effects of initial atomic state and the splitting of the excited levels of the atom on field entropies are discussed in this case. When the initial field is in a coherent state, we find that position-entropy squeezing of the field is present even if the atom is prepared in the ground state. By comparing the variance squeezing and entropy squeezing of the field we confirm that entropy is more sensitive than variance in measuring quantum fluctuations.

  7. Inhomogeneous distribution of manganese atoms in ferromagnetic ZnSnAs{sub 2}:Mn thin films on InP revealed by three-dimensional atom probe investigation

    Energy Technology Data Exchange (ETDEWEB)

    Uchitomi, Naotaka, E-mail: uchitomi@nagaokaut.ac.jp; Inoue, Hiroaki; Kato, Takahiro; Toyota, Hideyuki [Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Uchida, Hiroshi [Toshiba Nanoanalysis Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan)

    2015-05-07

    Atomic-scale Mn distributions in ferromagnetic ZnSnAs{sub 2}:Mn thin films grown on InP substrates have been studied by applying three-dimensional atom probe (3DAP) microscopy. It is found that Mn atoms in cross-sectional 3DAP maps show the presence of inhomogeneities in Mn distribution, which is characteristic patterns of a spinoidal decomposition phase with slightly high and low concentration regions. The high Mn concentration regions are expected to be coherently clustered MnAs in the zinc-blende structure, resulting in the formation of Mn-As random connecting patterns. The origin of room-temperature ferromagnetism in ZnSnAs{sub 2}:Mn on InP can be well explained by the formation of atomic-scale magnetic clustering by spinoidal decomposition without breaking the continuity of the zinc-blende structure, which has been suggested by previous theoretical works. The lattice-matching between magnetic epi-layers and substrates should be one of the most important factors to avoid the formation of secondary hexagonal MnAs phase precipitates in preparing ferromagnetic semiconductor thin films.

  8. New stable multiply charged negative atomic ions in linearly polarized superintense laser fields

    International Nuclear Information System (INIS)

    Wei Qi; Kais, Sabre; Moiseyev, Nimrod

    2006-01-01

    Singly charged negative atomic ions exist in the gas phase and are of fundamental importance in atomic and molecular physics. However, theoretical calculations and experimental results clearly exclude the existence of any stable doubly-negatively-charged atomic ion in the gas phase, only one electron can be added to a free atom in the gas phase. In this report, using the high-frequency Floquet theory, we predict that in a linear superintense laser field one can stabilize multiply charged negative atomic ions in the gas phase. We present self-consistent field calculations for the linear superintense laser fields needed to bind extra one and two electrons to form He - , He 2- , and Li 2- , with detachment energies dependent on the laser intensity and maximal values of 1.2, 0.12, and 0.13 eV, respectively. The fields and frequencies needed for binding extra electrons are within experimental reach. This method of stabilization is general and can be used to predict stability of larger multiply charged negative atomic ions

  9. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    Science.gov (United States)

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  10. Field evaporation of ZnO: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yu, E-mail: yuxia@dal.ca; Karahka, Markus; Kreuzer, H. J. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2015-07-14

    With recent advances in atom probe tomography of insulators and semiconductors, there is a need to understand high electrostatic field effects in these materials as well as the details of field evaporation. We use density functional theory to study field effects in ZnO clusters calculating the potential energy curves, the local field distribution, the polarizability, and the dielectric constant as a function of field strength. We confirm that, as in MgO, the HOMO-LUMO gap of a ZnO cluster closes at the evaporation field strength signaling field-induced metallization of the insulator. Following the structural changes in the cluster at the evaporation field strength, we can identify the field evaporated species, in particular, we show that the most abundant ion, Zn{sup 2+}, is NOT post-ionized but leaves the surface as 2+ largely confirming the experimental observations. Our results also help to explain problems related to stoichiometry in the mass spectra measured in atom probe tomography.

  11. High quality-factor quartz tuning fork glass probe used in tapping mode atomic force microscopy for surface profile measurement

    Science.gov (United States)

    Chen, Yuan-Liu; Xu, Yanhao; Shimizu, Yuki; Matsukuma, Hiraku; Gao, Wei

    2018-06-01

    This paper presents a high quality-factor (Q-factor) quartz tuning fork (QTF) with a glass probe attached, used in frequency modulation tapping mode atomic force microscopy (AFM) for the surface profile metrology of micro and nanostructures. Unlike conventionally used QTFs, which have tungsten or platinum probes for tapping mode AFM, and suffer from a low Q-factor influenced by the relatively large mass of the probe, the glass probe, which has a lower density, increases the Q-factor of the QTF probe unit allowing it to obtain better measurement sensitivity. In addition, the process of attaching the probe to the QTF with epoxy resin, which is necessary for tapping mode AFM, is also optimized to further improve the Q-factor of the QTF glass probe. The Q-factor of the optimized QTF glass probe unit is demonstrated to be very close to that of a bare QTF without a probe attached. To verify the effectiveness and the advantages of the optimized QTF glass probe unit, the probe unit is integrated into a home-built tapping mode AFM for conducting surface profile measurements of micro and nanostructures. A blazed grating with fine tool marks of 100 nm, a microprism sheet with a vertical amplitude of 25 µm and a Fresnel lens with a steep slope of 90 degrees are used as measurement specimens. From the measurement results, it is demonstrated that the optimized QTF glass probe unit can achieve higher sensitivity as well as better stability than conventional probes in the measurement of micro and nanostructures.

  12. Measuring Motion-Induced B0-Fluctuations in the Brain Using Field Probes

    DEFF Research Database (Denmark)

    Andersen, Mads; Hanson, Lars G.; Madsen, Kristoffer Hougaard

    2016-01-01

    Purpose: Fluctuations of the background magnetic field (B0) due to body and breathing motion can lead to significant artifacts in brain imaging at ultrahigh field. Corrections based on real-time sensing using external field probes show great potential. This study evaluates different aspects of fi...

  13. Influence of instrument conditions on the evaporation behavior of uranium dioxide with UV laser-assisted atom probe tomography

    International Nuclear Information System (INIS)

    2015-01-01

    Atom probe tomography (APT) provides the ability to detect subnanometer chemical variations spatially with high accuracy. Due to its ability to spatially characterize chemistry in non-conducting materials, such as oxides, provides the opportunity to characterize stoichiometry, which strongly is tied to material performance. However, accuracy has been correlated with instrument run parameters. A systematic study of the effect of laser energy, temperature, and detection rate is performed on the evaporation behavior of a model oxide, uranium dioxide (UO 2 ). Modifying the detection rate and temperature did not affect its evaporation behavior as laser energy. It was discovered that three laser evaporation regimes are present in UO 2 . Very low laser energy produces a behavior similar to DC-field evaporation, moderate laser energy produces the desired laser assisted field evaporation and high laser energy produces thermal effects in the evaporation behavior. Laser energy had the greatest impact on evaporation and the optimal instrument condition for UO 2 was determined to be 50K, 10 pJ laser energy, 0.3% detection rate, and a 100 kHz repetition rate. These conditions provide the best combination of mass resolution, accurate stoichiometry, and evaporation behavior.

  14. Optical-response properties in an atom-assisted optomechanical system with a mechanical pump

    Science.gov (United States)

    Sun, Xue-Jian; Chen, Hao; Liu, Wen-Xiao; Li, Hong-Rong

    2017-05-01

    We investigate the optical-response properties of a coherent-mechanical pumped optomechanical system (OMS) coupled to a Λ-type three-level atomic ensemble. Due to the optomechanical and the cavity-atom couplings, the optomechanically induced transparency (OMIT) and electromagnetically induced transparency (EIT) phenomena could both be observed from our proposal. In the presence of a coherent mechanical pump, we show that the OMIT behavior of the probe field exhibits a phase-dependent effect, leading to the switch from OMIT to optomechanically induced absorption or amplification, while the feature of EIT remains unchanged. The distinctly different effects of the mechanical pump on OMIT and EIT behavior assure us that the absorption (amplification) and transparency of the output probe field can be simultaneously observed. Moreover, a tunable switch from slow to fast light can also be realized by tuning the phase and amplitude of the mechanical pump. In particular, the presence of the atomic ensemble can further adjust the group delay, providing additional flexibility for achieving the tunable switch.

  15. Feshbach and Efimov Resonances in A 6Li- 133Cs Atomic Mixture

    Science.gov (United States)

    Johansen, Jacob

    This thesis reports measurements of interactions in Fermi-Bose 6Li-133Cs mixtures. Precise control of this Bose-Fermi mixture allowed us to probe few-body physics in regimes which were previously inaccessible. In particular, we performed the first model-independent test of geometric scaling of Efimov physics and probed Efimov resonances farther in the weakly coupled, narrow resonance regime than previously possible. For this work, we built a new apparatus which overcomes the many challenges faced by Li-Cs mixtures. We developed several novel dipole trapping schemes which overcome the difficulties of mixing Li and Cs, including the large differences in initial trapping and cooling between these atomic species and a large differential gravitational sag. We also achieved part per million level magnetic field control near 900 G, necessary for the precise measurements near narrow Feshbach resonances undertaken in this thesis, by pioneering a tomographic magnetic field calibration technique. With this apparatus, we first probed the Feshbach resonances of the Li-Cs mixture. This is an essential first step, allowing us to understand and control the two-body interactions between our atoms. Next we began to probe Efimov physics, an important three-body phenomenon wherein an infinite series of three-body bound states arise near two-body scattering resonances, such as Feshbach resonances. We demonstrated the universal scaling expected theoretically for Efimov states near a Feshbach resonance. This task was made feasible in our system by a reduced Efimov scaling constant, yet still required precise magnetic field control. Finally, additional universal behavior of the first Efimov resonance has been observed empirically in a variety of atomic systems. While theory has explained this observed universality, predictions also indicate departures for narrow Feshbach resonances, contrary to previous experimental results. By further improving our magnetic field control to probe a very

  16. Muonic atoms in super-intense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahbaz, Atif

    2009-01-28

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent {gamma}-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  17. Muonic atoms in super-intense laser fields

    International Nuclear Information System (INIS)

    Shahbaz, Atif

    2009-01-01

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent γ-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  18. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    The following were studied: New semiclassical method for scattering calculations, He atom scattering from defective Pt surfaces, He atom scattering from Xe overlayers, thermal dissociation of H 2 on Cu(110), spin flip scattering of atoms from surfaces, and Car-Parrinello simulations of surface processes

  19. A fast response miniature probe for wet steam flow field measurements

    International Nuclear Information System (INIS)

    Bosdas, Ilias; Mansour, Michel; Abhari, Reza S; Kalfas, Anestis I

    2016-01-01

    Modern steam turbines require operational flexibility due to renewable energies’ increasing share of the electrical grid. Additionally, the continuous increase in energy demand necessitates efficient design of the steam turbines as well as power output augmentation. The long turbine rotor blades at the machines’ last stages are prone to mechanical vibrations and as a consequence time-resolved experimental data under wet steam conditions are essential for the development of large-scale low-pressure steam turbines. This paper presents a novel fast response miniature heated probe for unsteady wet steam flow field measurements. The probe has a tip diameter of 2.5 mm, and a miniature heater cartridge ensures uncontaminated pressure taps from condensed water. The probe is capable of providing the unsteady flow angles, total and static pressure as well as the flow Mach number. The operating principle and calibration procedure are described in the current work and a detailed uncertainty analysis demonstrates the capability of the new probe to perform accurate flow field measurements under wet steam conditions. In order to exclude any data possibly corrupted by droplets’ impact or evaporation from the heating process, a filtering algorithm was developed and implemented in the post-processing phase of the measured data. In the last part of this paper the probe is used in an experimental steam turbine test facility and measurements are conducted at the inlet and exit of the last stage with an average wetness mass fraction of 8.0%. (paper)

  20. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    Science.gov (United States)

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  1. Atomic and Free Electrons in a Strong Light Field

    International Nuclear Information System (INIS)

    Fedorov, Mikhail V.

    1998-02-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated Bremsstrahlung, free-electron lasers, ave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described oo, and their results are compared with those of the existing theoretical models. An extensive general theoretical introduction gives a good basis for subsequent parts of the book and is an independent and self-sufficient description of the most efficient theoretical methods of the strong-field and multiphoton physics. This book can serve as a textbook for graduate students

  2. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Bao Qianqian; Zhang Xiaohang; Gao Junyan; Zhang Yan; Cui Cuili; Wu Jinhui [College of Physics, Jilin University, Changchun 130012 (China)

    2011-12-15

    We study a five-level double-tripod system of cold atoms for efficiently manipulating the dynamic propagation and evolution of a quantum probe field by modulating four classical control fields. Our numerical results show that it is viable to transform the quantum probe field into a pair of two-color stationary light pulses mutually coupled through two wave packets of atomic spin coherence. The pair of stationary light pulses can be released either from the sample entrance and exit synchronously or just from the sample exit with a controlled time delay. In addition, the two-color stationary light pulses are immune to the fast decay originating from the higher-order Fourier components of atomic spin and optical coherence, and may exhibit the quantum limited beating signals with their characteristic frequency determined by detunings of the four classical control fields. These results could be explored to design novel photonic devices, such as optical routing, beam splitter, and beat generator, for manipulating a quantum light field.

  3. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms

    International Nuclear Information System (INIS)

    Bao Qianqian; Zhang Xiaohang; Gao Junyan; Zhang Yan; Cui Cuili; Wu Jinhui

    2011-01-01

    We study a five-level double-tripod system of cold atoms for efficiently manipulating the dynamic propagation and evolution of a quantum probe field by modulating four classical control fields. Our numerical results show that it is viable to transform the quantum probe field into a pair of two-color stationary light pulses mutually coupled through two wave packets of atomic spin coherence. The pair of stationary light pulses can be released either from the sample entrance and exit synchronously or just from the sample exit with a controlled time delay. In addition, the two-color stationary light pulses are immune to the fast decay originating from the higher-order Fourier components of atomic spin and optical coherence, and may exhibit the quantum limited beating signals with their characteristic frequency determined by detunings of the four classical control fields. These results could be explored to design novel photonic devices, such as optical routing, beam splitter, and beat generator, for manipulating a quantum light field.

  4. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    Science.gov (United States)

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.

  5. Effects of a static electric field on two-color photoassociation between different atoms

    International Nuclear Information System (INIS)

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-01

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime

  6. Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Juan; FANG Mao-Fa

    2004-01-01

    From a quantum information point of view we investigate the entropy squeezing properties for a two-level atom interacting with the two-mode coherent fields via the two-photon transition. We discuss the influences of the initial state of the system on the atomic information entropy squeezing. Our results show that the squeezed component number,squeezed direction, and time of the information entropy squeezing can be controlled by choosing atomic distribution angle,the relative phase between the atom and the two-mode field, and the difference of the average photon number of the two field modes, respectively. Quantum information entropy is a remarkable precision measure for the atomic squeezing.

  7. Models of the Dynamics of Spatially Separated Broadband Electromagnetic Fields Interacting with Resonant Atoms

    Science.gov (United States)

    Basharov, A. M.

    2018-03-01

    The Markov model of spontaneous emission of an atom localized in a spatial region with a broadband electromagnetic field with zero photon density is considered in the conditions of coupling of the electromagnetic field with the broadband field of a neighboring space. The evolution operator of the system and the kinetic equation for the atom are obtained. It is shown that the field coupling constant affects the rate of spontaneous emission of the atom, but is not manifested in the atomic frequency shift. The analytic expression for the radiative decay constant for the atom is found to be analogous in a certain sense to the expression for the decay constant for a singly excited localized ensemble of identical atoms in the conditions when the effect of stabilization of its excited state by the Stark interaction with the vacuum broadband electromagnetic field is manifested. The model is formulated based on quantum stochastic differential equations of the non- Wiener type and the generalized algebra of the Ito differential of quantum random processes.

  8. Hybrid optical pumping of K and Rb atoms in a paraffin coated vapor cell

    Science.gov (United States)

    Li, Wenhao; Peng, Xiang; Budker, Dmitry; Wickenbrock, Arne; Pang, Bo; Zhang, Rui; Guo, Hong

    2017-10-01

    Dynamic hybrid optical pumping effects with a radio-frequency-field-driven nonlinear magneto-optical rotation (RF NMOR) scheme are studied in a dual-species paraffin coated vapor cell. By pumping K atoms and probing $^{87}$Rb atoms, we achieve an intrinsic magnetic resonance linewidth of 3 Hz and the observed resonance is immune to power broadening and light-shift effects. Such operation scheme shows favorable prospects for atomic magnetometry applications.

  9. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Science.gov (United States)

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  10. Motion of guiding center drift atoms in the electric and magnetic field of a Penning trap

    International Nuclear Information System (INIS)

    Kuzmin, S.G.; O'Neil, T.M.

    2005-01-01

    The ApparaTus for High precision Experiment on Neutral Antimatter and antihydrogen TRAP collaborations have produced antihydrogen atoms by recombination in a cryogenic antiproton-positron plasma. This paper discusses the motion of the weakly bound atoms in the electric and magnetic field of the plasma and trap. The effective electric field in the moving frame of the atom polarizes the atom, and then gradients in the field exert a force on the atom. An approximate equation of motion for the atom center of mass is obtained by averaging over the rapid internal dynamics of the atom. The only remnant of the atom internal dynamics that enters this equation is the polarizability for the atom. This coefficient is evaluated for the weakly bound and strongly magnetized (guiding center drift) atoms understood to be produced in the antihydrogen experiments. Application of the approximate equation of motion shows that the atoms can be trapped radially in the large space charge field near the edge of the positron column. Also, an example is presented for which there is full three-dimensional trapping, not just radial trapping. Even untrapped atoms follow curved trajectories, and such trajectories are discussed for the important class of atoms that reach a field ionization diagnostic. Finally, the critical field for ionization is determined as an upper bound on the range of applicability of the theory

  11. The numerical multiconfiguration self-consistent field approach for atoms

    International Nuclear Information System (INIS)

    Stiehler, Johannes

    1995-12-01

    The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)

  12. Helium atoms and molecules in strong magnetic fields

    Science.gov (United States)

    Mori, K.

    Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features

  13. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  14. Guided mass spectrum labelling in atom probe tomography

    International Nuclear Information System (INIS)

    Haley, D.; Choi, P.; Raabe, D.

    2015-01-01

    Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 “significant figures” (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. - Highlights: • Demonstration of a complete, but simple, automation chain for APT spectra analysis. • Algorithm for

  15. Guided mass spectrum labelling in atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D., E-mail: daniel.haley@materials.ox.ac.uk [Max-Planck-Institut für Eisenforschung, Max-Plack Straße 1, Düsseldorf (Germany); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Choi, P.; Raabe, D. [Max-Planck-Institut für Eisenforschung, Max-Plack Straße 1, Düsseldorf (Germany)

    2015-12-15

    Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 “significant figures” (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. - Highlights: • Demonstration of a complete, but simple, automation chain for APT spectra analysis. • Algorithm for

  16. Local crystallography analysis for atomically resolved scanning tunneling microscopy images

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Li, Qing; Belianinov, Alexei; Gai, Zheng; Baddorf, Arthur P; Pan, Minghu; Jesse, Stephen; Kalinin, Sergei V; Sales, Brian C; Sefat, Athena

    2013-01-01

    Scanning probe microscopy has emerged as a powerful and flexible tool for atomically resolved imaging of surface structures. However, due to the amount of information extracted, in many cases the interpretation of such data is limited to being qualitative and semi-quantitative in nature. At the same time, much can be learned from local atom parameters, such as distances and angles, that can be analyzed and interpreted as variations of local chemical bonding, or order parameter fields. Here, we demonstrate an iterative algorithm for indexing and determining atomic positions that allows the analysis of inhomogeneous surfaces. This approach is further illustrated by local crystallographic analysis of several real surfaces, including highly ordered pyrolytic graphite and an Fe-based superconductor FeTe 0.55 Se 0.45 . This study provides a new pathway to extract and quantify local properties for scanning probe microscopy images. (paper)

  17. Kelvin probe force microscopy from single charge detection to device characterization

    CERN Document Server

    Glatzel, Thilo

    2018-01-01

    This book provides a comprehensive introduction to the methods and variety of Kelvin probe force microscopy, including technical details. It also offers an overview of the recent developments and numerous applications, ranging from semiconductor materials, nanostructures and devices to sub-molecular and atomic scale electrostatics. In the last 25 years, Kelvin probe force microscopy has developed from a specialized technique applied by a few scanning probe microscopy experts into a tool used by numerous research and development groups around the globe. This sequel to the editors’ previous volume “Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces,” presents new and complementary topics. It is intended for a broad readership, from undergraduate students to lab technicians and scanning probe microscopy experts who are new to the field.

  18. Connection of off-diagonal radiative-decay coupling to electromagnetically induced transparency and amplification without inversion in a three-level atomic system

    International Nuclear Information System (INIS)

    Cardimona, D.A.; Huang Danhong

    2002-01-01

    The equivalence between the off-diagonal radiative-decay coupling (ODRDC) effect in the bare-atom picture of a three-level atomic system [see Cardimona et al., J. Phys. B 15, 55 (1982)] and the electromagnetically induced transparency (EIT) effect in the dressed-atom picture [see Imamoglu et al., Opt. Lett. 14, 1344 (1989)] is uncovered and a full comparison of their physical origins is given. The mechanism for both ODRDC and Harris' EIT is found to be a consequence of the quantum interference between a direct absorption path and an indirect absorption path mediated by either a self absorption of spontaneous photons or a Fano-type coupling. A connection is then pointed out between the effects of probe-field gain (PFG) based on an ODRDC process [see Huang et al., Phys. Rev. A 64, 013822 (2001)] and amplification without inversion (AWI) [see Fearn et al., Opt. Commun. 87, 323 (1992)] in the bare-atom picture of a three-level atomic system. The PFG effect is found as a result of transferring electrons between the two upper levels due to the phase-sensitive coherence provided by a laser-induced ODRDC process, while the AWI effect to one of the two probe fields is attributed to its coupling to a strong laser field generating an off-resonant gain through an induced nonlinearity in the other probe field. Both the advantages and disadvantages as well as the limitations of the ODRDC, EIT, PFG, and AWI effects are discussed and compared

  19. Heat pulse probe measurements of soil water evaporation in a corn field

    Science.gov (United States)

    Latent heat fluxes from cropped fields consist of soil water evaporation and plant transpiration. It is difficult to accurately separate evapotranspiration into evaporation and transpiration. Heat pulse probes have been used to measure bare field subsurface soil water evaporation, however, the appl...

  20. Probe-Hole Field Emission Microscope System Controlled by Computer

    Science.gov (United States)

    Gong, Yunming; Zeng, Haishan

    1991-09-01

    A probe-hole field emission microscope system, controlled by an Apple II computer, has been developed and operated successfully for measuring the work function of a single crystal plane. The work functions on the clean W(100) and W(111) planes are measured to be 4.67 eV and 4.45 eV, respectively.

  1. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    Progress for the period Sept. 15, 1992 to Sept. 14, 1993 is discussed. Semiclassical methods that will allow much faster and more accurate three-dimensional atom--surface scattering calculations, both elastic and inelastic, are being developed. The scattering of He atoms from buckyballs is being investigated as a test problem. Somewhat more detail is given on studies of He atom scattering from defective Pt surfaces. Molecular dynamics simulations of He + and Ar + ion sputtering of Pt surfaces are also being done. He atom scattering from Xe overlayers on metal surfaces and the thermalized dissociation of H 2 on Cu(110) are being studied. (R.W.R.) 64 refs

  2. Thermoelectric transport and Peltier cooling of cold atomic gases

    Science.gov (United States)

    Grenier, Charles; Kollath, Corinna; Georges, Antoine

    2016-12-01

    This brief review presents the emerging field of mesoscopic physics with cold atoms, with an emphasis on thermal and 'thermoelectric' transport, i.e. coupled transport of particles and entropy. We review in particular the comparison between theoretically predicted and experimentally observed thermoelectric effects in such systems. We also show how combining well-designed transport properties and evaporative cooling leads to an equivalent of the Peltier effect with cold atoms, which can be used as a new cooling procedure with improved cooling power and efficiency compared to the evaporative cooling currently used in atomic gases. This could lead to a new generation of experiments probing strong correlation effects of ultracold fermionic atoms at low temperatures.

  3. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.

    Science.gov (United States)

    Vanommeslaeghe, K; MacKerell, A D

    2012-12-21

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .

  4. Shear force distance control in a scanning near-field optical microscope: in resonance excitation of the fiber probe versus out of resonance excitation

    International Nuclear Information System (INIS)

    Lapshin, D.A.; Letokhov, V.S.; Shubeita, G.T.; Sekatskii, S.K.; Dietler, G.

    2004-01-01

    The experimental results of the direct measurement of the absolute value of interaction force between the fiber probe of a scanning near-field optical microscope (SNOM) operated in shear force mode and a sample, which were performed using combined SNOM-atomic force microscope setup, are discussed for the out-of-resonance fiber probe excitation mode. We demonstrate that the value of the tapping component of the total force for this mode at typical dither amplitudes is of the order of 10 nN and thus is quite comparable with the value of this force for in resonance fiber probe excitation mode. It is also shown that for all modes this force component is essentially smaller than the usually neglected static attraction force, which is of the order of 200 nN. The true contact nature of the tip-sample interaction during the out of resonance mode is proven. From this, we conclude that such a detection mode is very promising for operation in liquids, where other modes encounter great difficulties

  5. Waveguide analysis of heat-drawn and chemically etched probe tips for scanning near-field optical microscopy.

    Science.gov (United States)

    Moar, Peter N; Love, John D; Ladouceur, François; Cahill, Laurence W

    2006-09-01

    We analyze two basic aspects of a scanning near-field optical microscope (SNOM) probe's operation: (i) spot-size evolution of the electric field along the probe with and without a metal layer, and (ii) a modal analysis of the SNOM probe, particularly in close proximity to the aperture. A slab waveguide model is utilized to minimize the analytical complexity, yet provides useful quantitative results--including losses associated with the metal coating--which can then be used as design rules.

  6. Macroscopic electrical field distribution and field-induced surface stresses of needle-shaped field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Charles K.S., E-mail: charles.moy@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Ranzi, Gianluca [ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Petersen, Timothy C. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia)

    2011-05-15

    One major concern since the development of the field ion microscope is the mechanical strength of the specimens. The macroscopic shape of the imaging tip greatly influences field-induced stresses and there is merit in further study of this phenomenon from a classical perspective. Understanding the geometrical, as opposed to localized electronic, factors that affect the stress might improve the quality and success rate of atom probe experiments. This study uses macroscopic electrostatic principles and finite element modelling to investigate field-induced stresses in relation to the shape of the tip. Three two-dimensional idealized models are considered, namely hyperbolic, parabolic and sphere-on-orthogonal-cone; the shapes of which are compared to experimental tips prepared by electro-polishing. Three dimensional morphologies of both a nano-porous and single-crystal aluminium tip are measured using electron tomography to quantitatively test the assumption of cylindrical symmetry for electro-polished tips. The porous tip was prepared and studied to demonstrate a fragile specimen for which such finite element studies could determine potential mechanical failure, prior to any exhaustive atom probe investigation. -- Research highlights: {yields} We use electrostatic principles and finite element to model field-induced stresses. {yields} We study two-dimensional idealized needle-shaped field emitters. {yields} Stress distribution of hyperbolic, parabolic and sphere-on-orthogonal-cone tips mapped. {yields} Electron tomography to obtain the morphology of three-dimensional aluminium tips. {yields} Studies of the morphology of the porous tip demonstrate a fragile specimen.

  7. Refinement of atomic position in purely ionic materials using PAC spectroscopy

    International Nuclear Information System (INIS)

    Eslami, E.; Saramad, S.; Moussavi-Zarandi, A.

    2000-01-01

    In pure ionic solids by means of electric field gradients at substitutional radioactive probe the positions of all atoms in the unit cell can be determined by PAC method with an accuracy of 0.3 Pm which is typically 5 times better than the data available from X ray and neutron diffraction experiments. In the case of oxides where to our knowledge no diffraction analysis exists, the PAC analysis predicts the atomic parameters

  8. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.

    Science.gov (United States)

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; Shi, Wu; Lee, Kyunghoon; Wu, Shuang; Yong Choi, Byung; Braganza, Rohit; Lear, Jordan; Kau, Nicholas; Choi, Wonwoo; Chen, Chen; Pedramrazi, Zahra; Dumslaff, Tim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Fischer, Felix; Zettl, Alex; Ruffieux, Pascal; Yablonovitch, Eli; Crommie, Michael; Fasel, Roman; Bokor, Jeffrey

    2017-09-21

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch  ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on  > 1 μA at V d  = -1 V) and high I on /I off  ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.Graphene nanoribbons show promise for high-performance field-effect transistors, however they often suffer from short lengths and wide band gaps. Here, the authors use a bottom-up synthesis approach to fabricate 9- and 13-atom wide ribbons, enabling short-channel transistors with 10 5 on-off current ratio.

  9. Dual-probe near-field fiber head with gap servo control for data storage applications.

    Science.gov (United States)

    Fang, Jen-Yu; Tien, Chung-Hao; Shieh, Han-Ping D

    2007-10-29

    We present a novel fiber-based near-field optical head consisting of a straw-shaped writing probe and a flat gap sensing probe. The straw-shaped probe with a C-aperture on the end face exhibits enhanced transmission by a factor of 3 orders of magnitude over a conventional fiber probe due to a hybrid effect that excites both propagation modes and surface plasmon waves. In the gap sensing probe, the spacing between the probe and the disk surface functions as an external cavity. The high sensitivity of the output power to the change in the gap width is used as a feedback control signal. We characterize and design the straw-shaped writing probe and the flat gap sensing probe. The dual-probe system is installed on a conventional biaxial actuator to demonstrate the capability of flying over a disk surface with nanometer position precision.

  10. Characterization of grain boundaries in Cu(In,Ga)Se{sub 2} by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Torsten; Cojocaru-Miredin, Oana; Choi, Pyuck-Pa; Raabe, Dierk [Max-Planck Institute for Iron Research GmbH, Duesseldorf (Germany); Wuerz, Roland [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2012-07-01

    Solar cells based on the compound semiconductor Cu(In,Ga)Se{sub 2} (CIGS) as absorber material exhibit the highest efficiency among all thin-film solar cells. This is surprising high in view of the polycrystalline defect-rich structure of the CIGS absorber films. The high efficiency has been commonly ascribed to the diffusion of alkali metal atoms from the soda-lime glass substrate into the CIGS layer, which can render the grain boundaries (GB) electrically inactive. However, the exact mechanisms of how these impurities enhance the cell efficiency are yet to be clarified. As a step towards a better understanding of CIGS solar cells, we have analyzed the composition of solar-grade CIGS layers at the atomic-scale by using pulsed laser Atom Probe Tomography (APT). To perform APT analyses on selected GBs site-specific sample preparation was carried out using the Focused Ion Beam lift-out technique. In addition, Electron Back Scattered Diffraction was performed to characterize the structure and misorientation of selected GBs. Using APT, segregation of impurities at the GBs was directly observed. APT data of various types of GBs are presented and discussed with respect to the possible effects on the cell efficiency.

  11. Electromagnetically induced photonic bandgap in hot Cs atoms

    International Nuclear Information System (INIS)

    Li, D. W.; Zhang, L.; Su, X. M.; Zhuo, Z. C.; Kim, J. B

    2010-01-01

    Three-level Λ-type thermal Cs atoms are used to demonstrate the phenomenon of a photonic bandgap induced by quantum coherence with a standing wave (SW). We observed the transmitted signals of probe field driven by several kinds of SW, which are formed by a strong forward-traveling field and a backward-traveling field when a mirror reflects the forward-traveling beam. Considering Doppler inhomogeneous broadenings with a SW drive, we employ Fourier transformation to solve density-matrix equations for simulation results. The simulation results are found to be consistent with the experimental results.

  12. Hydrogen atoms in the presence of a homogeneous magnetic field

    International Nuclear Information System (INIS)

    Brandi, H.S.; Koiller, B.

    1978-01-01

    A variational scheme to obtain the spectrum of the hydrogen atom in the presence of an external homogeneous magnetic field is proposed. Two different sets of basis function to diagonalize the Hamiltonian describing the system are used, namely the eigenfunctions of the free hydrogen atom and of the three-dimensional harmonic oscillator; both having their radial coordinates properly scaled by a variational parammeter. Because of its characteristics, the present approach is suitable to describe the ground state as well as an infinite number of excited states also for a wide range of magnetic field strengths [pt

  13. Probe Knots and Hopf Insulators with Ultracold Atoms

    Science.gov (United States)

    Deng, Dong-Ling; Wang, Sheng-Tao; Sun, Kai; Duan, L.-M.

    2018-01-01

    Knots and links are fascinating and intricate topological objects. Their influence spans from DNA and molecular chemistry to vortices in superfluid helium, defects in liquid crystals and cosmic strings in the early universe. Here we find that knotted structures also exist in a peculiar class of three-dimensional topological insulators—the Hopf insulators. In particular, we demonstrate that the momentum-space spin textures of Hopf insulators are twisted in a nontrivial way, which implies the presence of various knot and link structures. We further illustrate that the knots and nontrivial spin textures can be probed via standard time-of-flight images in cold atoms as preimage contours of spin orientations in stereographic coordinates. The extracted Hopf invariants, knots, and links are validated to be robust to typical experimental imperfections. Our work establishes the existence of knotted structures in Hopf insulators, which may have potential applications in spintronics and quantum information processing. D.L.D., S.T.W. and L.M.D. are supported by the ARL, the IARPA LogiQ program, and the AFOSR MURI program, and supported by Tsinghua University for their visits. K.S. acknowledges the support from NSF under Grant No. PHY1402971. D.L.D. is also supported by JQI-NSF-PFC and LPS-MPO-CMTC at the final stage of this paper.

  14. Graphene Coatings: Probing the Limits of the One Atom Thick Protection Layer

    DEFF Research Database (Denmark)

    Nilsson, Louis; Andersen, Mie; Balog, Richard

    2012-01-01

    The limitations of graphene as an effective corrosion-inhibiting coating on metal surfaces, here exemplified by the hex-reconstructed Pt(100) surface, are probed by scanning tunneling microscopy measurements and density functional theory calculations. While exposure of small molecules directly onto...... against CO is observed at CO pressures below 106 mbar. However, at higher pressures CO is observed to intercalate under the graphene coating layer, thus lifting the reconstruction. The limitations of the coating effect are further tested by exposure to hot atomic hydrogen. While the coating can withstand...... these extreme conditions for a limited amount of time, after substantial exposure, the Pt(100) reconstruction is lifted. Annealing experiments and density functional theory calculations demonstrate that the basal plane of the graphene stays intact and point to a graphene-mediated mechanism for the H...

  15. Dynamics of ionisation and entanglement in the 'atom + quantum electromagnetic field' system

    Energy Technology Data Exchange (ETDEWEB)

    Sharapova, P R; Tikhonova, O V [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation)

    2012-03-31

    The dynamics of a model Rydberg atom in a strong nonclassical electromagnetic field is investigated. The field-induced transitions to the continuum involving different numbers of photons (with intermediate states in the discrete spectrum) are taken into account and the specific features of ionisation in 'squeezed' field states are considered in comparison with the case of classical light. A significant decrease in the ionisation rate is found, which is caused by the interference stabilisation of the atomic system. The entanglement of the atomic and field subsystems, the temporal dynamics of the correlations found, and the possibility of measuring them are analysed.

  16. Zeeman effect in sulfur monoxide. A tool to probe magnetic fields in star forming regions

    Science.gov (United States)

    Cazzoli, Gabriele; Lattanzi, Valerio; Coriani, Sonia; Gauss, Jürgen; Codella, Claudio; Ramos, Andrés Asensio; Cernicharo, José; Puzzarini, Cristina

    2017-09-01

    Context. Magnetic fields play a fundamental role in star formation processes and the best method to evaluate their intensity is to measure the Zeeman effect of atomic and molecular lines. However, a direct measurement of the Zeeman spectral pattern from interstellar molecular species is challenging due to the high sensitivity and high spectral resolution required. So far, the Zeeman effect has been detected unambiguously in star forming regions for very few non-masing species, such as OH and CN. Aims: We decided to investigate the suitability of sulfur monoxide (SO), which is one of the most abundant species in star forming regions, for probing the intensity of magnetic fields via the Zeeman effect. Methods: We investigated the Zeeman effect for several rotational transitions of SO in the (sub-)mm spectral regions by using a frequency-modulated, computer-controlled spectrometer, and by applying a magnetic field parallel to the radiation propagation (I.e., perpendicular to the oscillating magnetic field of the radiation). To support the experimental determination of the g factors of SO, a systematic quantum-chemical investigation of these parameters for both SO and O2 has been carried out. Results: An effective experimental-computational strategy for providing accurate g factors as well as for identifying the rotational transitions showing the strongest Zeeman effect has been presented. Revised g factors have been obtained from a large number of SO rotational transitions between 86 and 389 GHz. In particular, the rotational transitions showing the largest Zeeman shifts are: N,J = 2, 2 ← 1, 1 (86.1 GHz), N,J = 4, 3 ← 3, 2 (159.0 GHz), N,J = 1, 1 ← 0, 1 (286.3 GHz), N,J = 2, 2 ← 1, 2 (309.5 GHz), and N,J = 2, 1 ← 1, 0 (329.4 GHz). Our investigation supports SO as a good candidate for probing magnetic fields in high-density star forming regions. The complete list of measured Zeeman components is only available at the CDS via anonymous ftp to http

  17. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  18. On-tip sub-micrometer Hall probes for magnetic microscopy prepared by AFM lithography

    International Nuclear Information System (INIS)

    Gregusova, D.; Martaus, J.; Fedor, J.; Kudela, R.; Kostic, I.; Cambel, V.

    2009-01-01

    We developed a technology of sub-micrometer Hall probes for future application in scanning hall probe microscopy (SHPM) and magnetic force microscopy (MFM). First, the Hall probes of ∼9-μm dimensions are prepared on the top of high-aspect-ratio GaAs pyramids with an InGaP/AlGaAs/GaAs active layer using wet-chemical etching and non-planar lithography. Then we show that the active area of planar Hall probes can be downsized to sub-micrometer dimensions by local anodic oxidation technique using an atomic force microscope. Such planar probes are tested and their noise and magnetic field sensitivity are evaluated. Finally, the two technologies are combined to fabricate sub-micrometer Hall probes on the top of high-aspect ratio mesa for future SHPM and MFM techniques.

  19. Correlated motion of two atoms trapped in a single-mode cavity field

    International Nuclear Information System (INIS)

    Asboth, Janos K.; Domokos, Peter; Ritsch, Helmut

    2004-01-01

    We study the motion of two atoms trapped at distant positions in the field of a driven standing-wave high-Q optical resonator. Even without any direct atom-atom interaction the atoms are coupled through their position dependent influence on the intracavity field. For sufficiently good trapping and low cavity losses the atomic motion becomes significantly correlated and the two particles oscillate in their wells preferentially with a 90 deg. relative phase shift. The onset of correlations seriously limits cavity cooling efficiency, raising the achievable temperature to the Doppler limit. The physical origin of the correlation can be traced back to a cavity mediated crossfriction, i.e., a friction force on one particle depending on the velocity of the second particle. Choosing appropriate operating conditions allows for engineering these long range correlations. In addition this cross-friction effect can provide a basis for sympathetic cooling of distant trapped clouds

  20. Association of atoms into universal dimers using an oscillating magnetic field.

    Science.gov (United States)

    Langmack, Christian; Smith, D Hudson; Braaten, Eric

    2015-03-13

    In a system of ultracold atoms near a Feshbach resonance, pairs of atoms can be associated into universal dimers by an oscillating magnetic field with a frequency near that determined by the dimer binding energy. We present a simple expression for the transition rate that takes into account many-body effects through a transition matrix element of the contact. In a thermal gas, the width of the peak in the transition rate as a function of the frequency is determined by the temperature. In a dilute Bose-Einstein condensate of atoms, the width is determined by the inelastic scattering rates of a dimer with zero-energy atoms. Near an atom-dimer resonance, there is a dramatic increase in the width from inelastic atom-dimer scattering and from atom-atom-dimer recombination. The recombination contribution provides a signature for universal tetramers that are Efimov states consisting of two atoms and a dimer.

  1. CFHT's SkyProbe: True Atmospheric Attenuation Measurement in the Telescope Field

    Science.gov (United States)

    Cuillandre, J.-C.; Magnier, E. A.; Isani, S.; Sabin, D.; Knight, W.; Kras, S.; Lai, K.

    Developed at the Canada France Hawaii Telescope (CFHT), SkyProbe is a system that allows the direct measurement of the true attenuation by clouds. This measurement is performed approximately once per min, directly on the field viewed by the telescope. It has been possible to make this system relatively inexpensively due to low cost CCD cameras available on the amateur market. A crucial addition to this hardware is the recent availability of a full-sky photometry catalog at the appropriate depth: the Tycho catalog from the Hipparcos mission. A very important element in the SkyProbe data set creation is the automatic data analysis pipeline, Elixir, developed at CFHT for the improved operation of the CFHT wide-field imagers CFH12K and MegaCam. SkyProbe's FITS images are processed in real time, and the pipeline output (a zero point attenuation) provides the current sky transmission to the observers and aids immediate decision making. These measurements are also attached to the archived data, adding a key tool for future use by other astronomers. Specific features of the detector, such as intra pixel quantum efficiency variations, must be taken into consideration since the data are strongly undersampled.

  2. Sensitivity of self-powered detector probes to electron and gamma-ray fields

    International Nuclear Information System (INIS)

    Lone, M.A.; Wong, P.Y.

    1995-01-01

    A self-powered detector (SPD) is a simple, passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPD's are used in nuclear reactors to monitor neutron and gamma fields. Responses of SPD's to electrons and γ-rays of various energies were investigated with Monte Carlo simulations. Transmission filters were studied for the design of threshold SPD probes used for online monitoring of the energy spectrum of high-power industrial electron accelerator beams. Filters were also investigated for the enhancement of γ-ray sensitivity of an SPD placed in a mixed electron and γ-ray field. (author). 30 refs., 1 tab., 8 figs

  3. Sensitivity of self-powered detector probes to electron and gamma-ray fields

    Energy Technology Data Exchange (ETDEWEB)

    Lone, M A; Wong, P Y [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    A self-powered detector (SPD) is a simple, passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPD`s are used in nuclear reactors to monitor neutron and gamma fields. Responses of SPD`s to electrons and {gamma}-rays of various energies were investigated with Monte Carlo simulations. Transmission filters were studied for the design of threshold SPD probes used for online monitoring of the energy spectrum of high-power industrial electron accelerator beams. Filters were also investigated for the enhancement of {gamma}-ray sensitivity of an SPD placed in a mixed electron and {gamma}-ray field. (author). 30 refs., 1 tab., 8 figs.

  4. Dynamics of moving interacting atoms in a laser radiation field and optical size resonances

    International Nuclear Information System (INIS)

    Gadomskii, O.N.; Glukhov, A.G.

    2005-01-01

    The forces acting on interacting moving atoms exposed to resonant laser radiation are calculated. It is shown that the forces acting on the atoms include the radiation pressure forces as well as the external and internal bias forces. The dependences of the forces on the atomic spacing, polarization, and laser radiation frequency are given. It is found that the internal bias force associated with the interaction of atomic dipoles via the reemitted field may play an important role in the dynamics of dense atomic ensembles in a light field. It is shown that optical size resonances appear in the system of interacting atoms at frequencies differing substantially from transition frequencies in the spectrum of atoms. It is noted that optical size resonances as well as the Doppler frequency shift in the spectrum of interacting atoms play a significant role in the processes of laser-radiation-controlled motion of the atoms

  5. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-08-08

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  6. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  7. Radioactive Probes on Ferromagnetic Surfaces

    CERN Multimedia

    2002-01-01

    On the (broad) basis of our studies of nonmagnetic radioactive probe atoms on magnetic surfaces and at interfaces, we propose to investigate the magnetic interaction of magnetic probe atoms with their immediate environment, in particular of rare earth (RE) elements positioned on and in ferromagnetic surfaces. The preparation and analysis of the structural properties of such samples will be performed in the UHV chamber HYDRA at the HMI/Berlin. For the investigations of the magnetic properties of RE atoms on surfaces Perturbed Angular Correlation (PAC) measurements and Mössbauer Spectroscopy (MS) in the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) are proposed.

  8. Field trial of a fast single-pass transmit-receive probe during Gentilly II steam generator tube inspection

    International Nuclear Information System (INIS)

    Obrutsky, L.; Cantin, M.; Renaud, J.; Cecco, V.; Lakhan, R.; Sullivan, S.

    2000-01-01

    A new generation of transmit-receive single-pass probes, denoted as C6 or X probe, was field tested during the Gentilly II, 2000 steam generator tube inspection. This probe has a performance equivalent to rotating probes and can be used for tubesheet and full-length inspection at an inspection speed equivalent to that of bobbin probes. Existing C3 transmit-receive probes have been demonstrated to be effective in detecting circumferential cracks. The C5 probe can detect both circumferential and axial cracks and volumetric defects but cannot discriminate between them. The C6 probe expands on the capabilities of both probes in a single probe head. It can simultaneously detect and discriminate between circumferential and axial cracks to satisfy different plugging criteria. It has excellent coverage, good defect detectability, and improved sizing and characterization. Probe data is displayed in C-scan format so that the amount of data to be analyzed is similar to rotating probes. The C6 probe will significantly decrease inspection time and the need for re-inspection and tube pulling. This paper describes the advantages of the probe and demonstrates its capabilities employing signals from tube samples with calibration flaws and laboratory induced cracks. It shows the results from the field trial of the probe at Gentilly II and describes the instrumentation, hardware and software used for the inspection. (author)

  9. Field trial of a fast single-pass transmit-receive probe during Gentilly II steam generator tube inspection

    International Nuclear Information System (INIS)

    Obrutsky, L.; Cantin, M.; Renaud, J.; Cecco, V.; Lakhan, R.; Sullivan, S.

    2000-01-01

    A new generation of transmit-receive single-pass probes, denoted as C6 or X probe, was field-tested during the Gentilly II, 2000 steam generator tube inspection. This probe has a performance equivalent to rotating probes and can be used for tubesheet and full-length inspection at an inspection speed equivalent to that of bobbin probes. Existing C3 transmit-receive probes have been demonstrated to be effective in detecting circumferential cracks. The C5 probe can detect both circumferential and axial cracks and volumetric defects but cannot discriminate between them. The C6 probe expands on the capabilities of both probes in a single probe head. It can simultaneously detect and discriminate between circumferential and axial cracks to satisfy different plugging criteria. It has excellent coverage, good defect detectability, and improved sizing and characterization. Probe data is displayed in C-scan format so that the amount of data to be analyzed is similar to rotating probes. The C6 probe will significantly decrease inspection time and the need for re-inspection and tube pulling. This paper describes the advantages of the probe and demonstrates its capabilities employing signals from tube samples with calibration flaws and laboratory induced cracks. It shows the results from the field trial of the probe at Gentilly II and describes the instrumentation, hardware and software used for the inspection. (author)

  10. Initial study on Z-phase strengthened 9-12% Cr steels by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; Andren, Hans-Olof [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Physics

    2010-07-01

    The microstructure of two different types of Z-phase strengthened experimental steels, CrNbN-based or CrTaN-based, was investigated. Both steels underwent aging at 650 C for relatively short period of time, 24 hours or 1005 hours. Atom probe tomography was used to study the chemical composition of the matrix and precipitates, and the size and number density of the small precipitates. Both steels contain Laves phase at prior austenite grain boundaries and martensitic lath boundaries. The CrTaN-based steel was found more promising due to its finer and more densely distributed precipitates after 1005 hour aging. (orig.)

  11. General Atomic's superconducting toroidal field coil concept

    International Nuclear Information System (INIS)

    Alcorn, J.; Purcell, J.

    1978-01-01

    General Atomic's concept for a superconducting toroidal field coil is presented. The concept is generic for large tokamak devices, while a specific design is indicated for a 3.8 meter (major radius) ignition/burn machine. The concept utilizes bath cooled NbTi conductor to generate a peak field of 10 tesla at 4.2 K. The design is simple and straightforward, requires a minimum of developmental effort, and draws extensively upon the perspective of past experience in the design and construction of large superconducting magnets for high energy physics. Thus, the primary emphasis is upon economy, reliability, and expeditious construction scheduling. (author)

  12. Properties of the localized field emitted from degenerate Λ-type atoms in photonic crystals

    International Nuclear Information System (INIS)

    Foroozani, N.; Golshan, M. M.; Mahjoei, M.

    2007-01-01

    The spontaneous emission from a degenerate Λ-type three-level atom, embedded in a photonic crystal, is studied. The emitted field, as a function of time and position, is calculated by solving the three coupled differential equations governing the amplitudes. We show that the spontaneously emitted field is characterized by three components (as in the case of two-level and V-type atoms): a localized part, a traveling part, and a t -3/2 decaying part. Our calculations indicate that under specific conditions the atoms do not emit propagating fields, while the localized field, having shorter localization length and time, is intensified. As a consequence, the population of the upper level, after a short period of oscillations, approaches a constant value. It is also shown that this steady value, under the same conditions, is much larger than its counterpart in V-type atoms

  13. Control of one- and two-photon absorption in a four-level atomic system by changing the amplitude and phase of a driving microwave field

    International Nuclear Information System (INIS)

    Hou, B P; Wang, S J; Yu, W L; Sun, W L

    2005-01-01

    We consider the one- and two-photon absorption spectra of a four-level Y-type atom with the two highest lying levels driven by a microwave field. We found that in the one-photon absorption case, the microwave field can lead to the probe gain, and the absorption and gain spectral structures depend strongly on the microwave field amplitude. For the two-photon absorption case, the strong microwave field can enhance the absorption. When the microwave field amplitude is reduced to a certain value, the single absorption peak in the two-photon spectrum changes into a structure of two-peak structure with different magnitudes. Moreover, the one- and two-photon absorption spectra can be modulated by the phase of the microwave field which produces a closed-loop configuration. Finally, we use the analytic solutions in terms of dressed-state basis to explain the results from our numerical calculation

  14. Modulation of periodic field on the atomic current in optical lattices with Landau–Zener tunneling considered

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jie-Yun, E-mail: jyyan@bupt.edu.cn; Wang, Lan-Yu, E-mail: lan_yu_wang@163.com

    2016-09-01

    We investigate the atomic current in optical lattices under the presence of both constant and periodic external field with Landau–Zener tunneling considered. By simplifying the system to a two-band model, the atomic current is obtained based on the Boltzmann equations. We focus on three situations to discuss the influence of the Landau–Zener tunneling and periodic field on the atomic current. Numerical calculations show the atomic transient current would finally become the stable oscillation, whose amplitude and average value can be further adjusted by the periodic external field. It is concluded that the periodic external field could provide an effective modulation on the atomic current even when the Landau–Zener tunneling probability has almostly become a constant.

  15. Observation of electromagnetically induced Talbot effect in an atomic system

    Science.gov (United States)

    Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2018-01-01

    The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.

  16. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    Science.gov (United States)

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  17. Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits

    Science.gov (United States)

    2017-03-01

    Despite all actions and concerns, this problem continues to escalate due to offshore fabrication of the integrated circuits ICs [1]. In order to...diagnosis and fault isolation in ICs, as well as the characterization of the functionality of ICs including malicious circuitry. Integrated circuits ...Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits   contains the RF-switch matrix and broad-band (BB) low noise amplifiers (LNAs

  18. Quantum-orbit theory of high-order atomic processes in strong fields

    International Nuclear Information System (INIS)

    Milosevic, D.B.

    2005-01-01

    Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)

  19. Characteristics of single-atom trapping in a magneto-optical trap with a high magnetic-field gradient

    International Nuclear Information System (INIS)

    Yoon, Seokchan; Choi, Youngwoon; Park, Sangbum; Ji, Wangxi; Lee, Jai-Hyung; An, Kyungwon

    2007-01-01

    A quantitative study on characteristics of a magneto-optical trap with a single or a few atoms is presented. A very small number of 85 Rb atoms were trapped in a micron-size magneto-optical trap with a high magnetic-field gradient. In order to find the optimum condition for a single-atom trap, we have investigated how the number of atoms and the size of atomic cloud change as various experimental parameters, such as a magnetic-field gradient and the trapping laser intensity and detuning. The averaged number of atoms was measured very accurately with a calibration procedure based on the single-atom saturation curve of resonance fluorescence. In addition, the number of atoms in a trap could be controlled by suppressing stochastic loading events by means of a real-time active feedback on the magnetic-field gradient

  20. Scanning probe microscopy in material science and biology

    International Nuclear Information System (INIS)

    Cricenti, A; Colonna, S; Girasole, M; Gori, P; Ronci, F; Longo, G; Dinarelli, S; Luce, M; Rinaldi, M; Ortenzi, M

    2011-01-01

    A review of the activity of scanning probe microscopy at our Institute is presented, going from instrumentation to software development of scanning tunnelling microscopy, atomic force microscopy and scanning near-field optical microscopy (SNOM). Some of the most important experiments in material science and biology performed by our group through the years with these SPM techniques will be presented. Finally, infrared applications by coupling a SNOM with a free electron laser will also be presented.

  1. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2013-01-01

    Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...

  2. Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy

    International Nuclear Information System (INIS)

    Park, J-W; Lee, E-C; Ju, H; Yoo, I S; Chang, W-S; Chung, B H; Kim, B S

    2008-01-01

    Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)

  3. 3D site specific sample preparation and analysis of 3D devices (FinFETs) by atom probe tomography.

    Science.gov (United States)

    Kambham, Ajay Kumar; Kumar, Arul; Gilbert, Matthieu; Vandervorst, Wilfried

    2013-09-01

    With the transition from planar to three-dimensional device architectures such as Fin field-effect-transistors (FinFETs), new metrology approaches are required to meet the needs of semiconductor technology. It is important to characterize the 3D-dopant distributions precisely as their extent, positioning relative to gate edges and absolute concentration determine the device performance in great detail. At present the atom probe has shown its ability to analyze dopant distributions in semiconductor and thin insulating materials with sub-nm 3D-resolution and good dopant sensitivity. However, so far most reports have dealt with planar devices or restricted the measurements to 2D test structures which represent only limited challenges in terms of localization and site specific sample preparation. In this paper we will discuss the methodology to extract the dopant distribution from real 3D-devices such as a 3D-FinFET device, requiring the sample preparation to be carried out at a site specific location with a positioning accuracy ∼50 nm. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Innovation and optimization of a method of pump-probe polarimetry with pulsed laser beams in view of a precise measurement of parity violation in atomic cesium

    International Nuclear Information System (INIS)

    Chauvat, D.

    1997-10-01

    While Parity Violation (PV) experiments on highly forbidden transitions have been using detection of fluorescence signals; our experiment uses a pump-probe scheme to detect the PV signal directly on a transmitted probe beam. A pulsed laser beam of linear polarisation ε 1 excites the atoms on the 6S-7S cesium transition in a colinear electric field E || k(ex). The probe beam (k(pr) || k(ex)) of linear polarisation ε 2 tuned to the transition 7S-6P(3/2) is amplified. The small asymmetry (∼ 10 -6 ) in the gain that depends on the handedness of the tri-hedron (E, ε 1 , ε 2 ) is the manifestation of the PV effect. This is measured as an E-odd apparent rotation of the plane of polarization of the probe beam; using balanced mode polarimetry. New criteria of selection have been devised, that allow us to distinguish the true PV-signal against fake rotations due to electromagnetic interferences, geometrical effects, polarization imperfections, or stray transverse electric and magnetic fields. These selection criteria exploit the symmetry of the PV-rotation - linear dichroism - and the revolution symmetry of the experiment. Using these criteria it is not only possible to reject fake signals, but also to elucidate the underlying physical mechanisms and to measure the relevant defects of the apparatus. The present signal-to-noise ratio allows embarking in PV measurements to reach the 10% statistical accuracy. A 1% measurement still requires improvements. Two methods have been demonstrated. The first one exploits the amplification of the asymmetry at high gain - one major advantage provided by our detection method based on stimulated emission. The second method uses both a much higher incident intensity and a special dichroic component which magnifies tiny polarization rotations. (author)

  5. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1983-01-01

    The role of lasers in nuclear physics research is discussed including nuclear structure experiments involving the measurement of isotope shifts and hyperfine splitting in atomic energy levels in unstable nuclei by resonance fluorescence spectroscopy and the ultra sensitive detection of isotopic element abundances. (U.K.)

  6. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.

    Science.gov (United States)

    Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  7. The photonics collapse-revival's of intensity-dependent coupling of lambda atoms and fields

    International Nuclear Information System (INIS)

    Hajivandi, J.; Golshan, M. M.

    2007-01-01

    In this paper, we extend the intensity-dependent coupling of the interaction of two-level atoms and an electromagnetic field, originated by Sivakumar, to that of Λ-type atoms. In addition, we assume that the interaction occurs in a Kerr medium. In the present model we allow the Λ-type atom to interact with two quantized electromagnetic fields, one of which is initially coherent while the other one is not. We thus report the effect of such coupling and the medium on the collapse-revival's of the photonic mean numbers.

  8. Examination of employment in the atomic energy field

    International Nuclear Information System (INIS)

    Baker, J.G.

    1978-02-01

    This study, which focuses on the years 1968--1975, singles out important employment trends in the atomic energy field and develops causal explanations for these trends. The study also provides a descriptive profile of employment in the field. Employment in the atomic energy field has grown from 138,519 in 1963 to 197,466 in 1975, an annual rate of 3.0 percent. The deployment of scientists, engineers, and technicians in the government-owned, contractor-operated (GOCO) sector changed little from 1968 to 1975. Private sector deployment altered considerably, with a large increase. Within the scientist group, the GOCO sector employment by field has changed little from 1968 to 1975. Private sector scientists have seen considerable alteration of their employment. There has been little change in the employment shares of engineering fields in the GOCO sector for the 1968 to 1975 period. Private sector engineers have seen much greater change, with civil engineers increasing their share 6% to 11%. Of all GOCO technicians, physical science technicians have increased their employment share from 12% to 17%. Of all private sector technicians, draftsmen have increased their share from 29% to 37% and reactor operators from 4% to 7%. Total employment in the field is shifting toward smaller firms. Employment by region has changed considerably in the private sector from 1968 to 1975. GOCO regional employment has also changed. The percentage of scientists and engineers involved in research and development has declined from 68% in 1968 to 39% in 1975. Three private sector industrial segments--reactor design and manufacturing, nuclear facilities design and engineering, and operation and maintenance of reactors--have experienced tremendous growth from 1968 to 1975. 8 figures, 32 tables

  9. Nitrile Probes of Electric Field Agree with Independently Measured Fields in Green Fluorescent Protein Even in the Presence of Hydrogen Bonding.

    Science.gov (United States)

    Slocum, Joshua D; Webb, Lauren J

    2016-05-25

    There is growing interest in using the nitrile vibrational oscillation as a site-specific probe of local environment to study dynamics, folding, and electrostatics in biological molecules such as proteins. Nitrile probes have been used extensively as reporters of electric field using vibrational Stark effect spectroscopy. However, the analysis of frequencies in terms of electric fields is potentially complicated by the large ground state dipole moment of the nitrile, which may irrevocably perturb the protein under investigation, and the ability of nitriles to accept hydrogen bonds, which causes frequency shifts that are not described by the Stark effect. The consequence of this is that vibrational spectroscopy of nitriles in biomolecules could be predominately sensitive to their local hydration status, not electrostatic environment, and have the potential to be particularly destabilizing to the protein. Here, we introduce green fluorescent protein (GFP) as a model system for addressing these concerns using biosynthetically incorporated p-cyanophenylalanine (pCNF) residues in the interior of GFP and measuring absorption energies of both the intrinsic GFP fluorophore and pCNF residues in response to a series of amino acid mutations. We show that observed changes in emission energy of GFP due to the mutations strongly correlate with changes in electric field experienced by both the nitrile probes and the intrinsic fluorophore. Additionally, we show that changes in electric field measured from the intrinsic fluorophore due to amino acid mutations are unperturbed by the addition of pCNF residues inserted nearby. Finally, we show that changes in electric field experienced by the vibrational probes trend monotonically with changes in field experienced by the native fluorophore even though the nitrile probe is engaged in moderate hydrogen bonding to nearby water molecules, indicated by the temperature dependence of the nitrile's absorption energy. Together these results

  10. Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops

    Science.gov (United States)

    Peterman, Emily M.; Reddy, Steven M.; Saxey, David W.; Snoeyenbos, David R.; Rickard, William D. A.; Fougerouse, Denis; Kylander-Clark, Andrew R. C.

    2016-01-01

    Isotopic discordance is a common feature in zircon that can lead to an erroneous age determination, and it is attributed to the mobilization and escape of radiogenic Pb during its post-crystallization geological evolution. The degree of isotopic discordance measured at analytical scales of ~10 μm often differs among adjacent analysis locations, indicating heterogeneous distributions of Pb at shorter length scales. We use atom probe microscopy to establish the nature of these sites and the mechanisms by which they form. We show that the nanoscale distribution of Pb in a ~2.1 billion year old discordant zircon that was metamorphosed c. 150 million years ago is defined by two distinct Pb reservoirs. Despite overall Pb loss during peak metamorphic conditions, the atom probe data indicate that a component of radiogenic Pb was trapped in 10-nm dislocation loops that formed during the annealing of radiation damage associated with the metamorphic event. A second Pb component, found outside the dislocation loops, represents homogeneous accumulation of radiogenic Pb in the zircon matrix after metamorphism. The 207Pb/206Pb ratios measured from eight dislocation loops are equivalent within uncertainty and yield an age consistent with the original crystallization age of the zircon, as determined by laser ablation spot analysis. Our results provide a specific mechanism for the trapping and retention of radiogenic Pb during metamorphism and confirm that isotopic discordance in this zircon is characterized by discrete nanoscale reservoirs of Pb that record different isotopic compositions and yield age data consistent with distinct geological events. These data may provide a framework for interpreting discordance in zircon as the heterogeneous distribution of discrete radiogenic Pb populations, each yielding geologically meaningful ages. PMID:27617295

  11. Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales

    International Nuclear Information System (INIS)

    Marceau, R.K.W.; Stephenson, L.T.; Hutchinson, C.R.; Ringer, S.P.

    2011-01-01

    A model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered in this study. It has recently been shown that the addition of the GP zones to such microstructures can lead to significant increases in strength without a decrease in the uniform elongation. In this study, atom probe tomography (APT) has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. Recent nuclear magnetic resonance (NMR) analysis has clearly shown strain-induced dissolution of the GP zones, which is supported by the current APT data with additional spatial information. There is significant repartitioning of Cu from the GP zones into the solid solution during deformation. A new approach for cluster finding in APT data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features in the solid solution solute as a function of applied strain. -- Research highlights: → A new approach for cluster finding in atom probe tomography (APT) data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features with multiple length scales. → In this study, a model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered. → APT has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. → It is clearly shown that there is strain-induced dissolution of the GP zones with significant repartitioning of Cu from the GP zones into the solid solution during deformation.

  12. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.; Li, Yujiao; Boll, Torben; Borchers, Christine; Choi, Pyuckpa; Al-Kassab, Talaat; Raabe, Dierk; Kirchheim, Reiner

    2013-01-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.

    2013-09-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Atomic quasi-Bragg-diffraction in a magnetic field

    NARCIS (Netherlands)

    Domen, K.F.E.M.; Jansen, M.A.H.M.; Dijk, van W.; Leeuwen, van K.A.H.

    2009-01-01

    We report on a technique to split an at. beam coherently with an easily adjustable splitting angle. In our expt. metastable helium atoms in the |{1s2s}3S1 M=1 state diffract from a polarization gradient light field formed by counterpropagating .sigma.+ and .sigma.- polarized laser beams in the

  15. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    Science.gov (United States)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  16. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    Science.gov (United States)

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B

  17. Resonances of the helium atom in a strong magnetic field

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Al-Hujaj, Omar-Alexander; Schmelcher, Peter

    2007-01-01

    We present an investigation of the resonances of a doubly excited helium atom in a strong magnetic field covering the regime B=0–100  a.u. A full-interaction approach which is based on an anisotropic Gaussian basis set of one-particle functions being nonlinearly optimized for each field strength...

  18. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe

    DEFF Research Database (Denmark)

    Hatakeyama, Masahiko; Toyama, Takeshi; Nagai, Yasuyoshi

    2008-01-01

    Nanostructural evolution of Cr (Cr-rich) precipitates in a Cu-0.78%Cr-0.13%Zr alloy has been studied after aging and overaging (reaging) by laser assisted local electrode 3 dimensional atom probe (Laser-LEAP). This material is a candidate for the first wall and divertor components of future fusion...

  19. Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations

    Science.gov (United States)

    Beloy, K.

    2018-03-01

    We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.

  20. Slow collisions between identical atoms in a laser field: Application of the Born and Markov approximations to the system of moving atoms

    International Nuclear Information System (INIS)

    Trippenbach, M.; Gao, B.; Cooper, J.; Burnett, K.

    1992-01-01

    We have derived reduced-density-matrix equations of motion for a pair of two identical atoms moving in the radiation field as the first step in establishing a theory of collisional redistribution of light from neutral-atom traps. We use the Zwanzig projection-operator technique to average over spontaneous field modes and establish the conditions under which Born and Markov approximations can be applied to the system of moving atoms. It follows from these considerations that when these conditions hold, the reduced-density-matrix equation for moving atoms has the same form as that for the stationary case: time dependence is introduced into the decay rates and interaction potentials by making the substitution R=R(t)

  1. Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields

    OpenAIRE

    Lee, Jaehak; Park, Jiyong; Lee, Sang Min; Lee, Hai-Woong; Khosa, Ashfaq H.

    2008-01-01

    We propose a cavity-QED-based scheme of generating entanglement between atoms. The scheme is scalable to an arbitrary number of atoms, and can be used to generate a variety of multipartite entangled states such as the Greenberger-Horne-Zeilinger, W, and cluster states. Furthermore, with a role switching of atoms with photons, the scheme can be used to generate entanglement between cavity fields. We also introduce a scheme that can generate an arbitrary multipartite field graph state.

  2. Creation and recovery of a W(111) single atom gas field ion source

    International Nuclear Information System (INIS)

    Pitters, Jason L.; Urban, Radovan; Wolkow, Robert A.

    2012-01-01

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  3. Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field

    International Nuclear Information System (INIS)

    Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang

    2016-01-01

    In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transversely polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction. -- Highlights: •We study the dynamics of a two-level atom interacting with a bath of fluctuating vacuum electromagnetic field. •For both a single and two-qubit systems, the quantum coherence cannot be protected from noise without a boundary. •The insusceptible of the quantum coherence can be fulfilled only when the atom is close to the boundary and is transversely polarizable. •Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.

  4. Production of antihydrogen at reduced magnetic field for anti-atom trapping

    CERN Document Server

    Andresen, G.B.; Boston, A.; Bowe, P.D.; Cesar, C.L.; Chapman, S.; Charlton, M.; Chartier, M.; Deutsch, A.; Fajans, J.; Fujiwara, M.C.; Funakoshi, R.; Gill, D.R.; Gomberoff, K.; Hangst, J.S.; Hayano, R.S.; Hydomako, R.; Jenkins, M.J.; Jorgensen, L.V.; Kurchaninov, L.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R.D.; Povilus, A.; Robicheaux, F.; Sarid, E.; Silveira, D.M.; Storey, J.W.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.; Yamazaki, Y.

    2008-01-01

    We have demonstrated production of antihydrogen in a 1$,$T solenoidal magnetic field. This field strength is significantly smaller than that used in the first generation experiments ATHENA (3$,$T) and ATRAP (5$,$T). The motivation for using a smaller magnetic field is to facilitate trapping of antihydrogen atoms in a neutral atom trap surrounding the production region. We report the results of measurements with the ALPHA (Antihydrogen Laser PHysics Apparatus) device, which can capture and cool antiprotons at 3$,$T, and then mix the antiprotons with positrons at 1$,$T. We infer antihydrogen production from the time structure of antiproton annihilations during mixing, using mixing with heated positrons as the null experiment, as demonstrated in ATHENA. Implications for antihydrogen trapping are discussed.

  5. Atomically resolved tissue integration.

    Science.gov (United States)

    Karlsson, Johan; Sundell, Gustav; Thuvander, Mattias; Andersson, Martin

    2014-08-13

    In the field of biomedical technology, a critical aspect is the ability to control and understand the integration of an implantable device in living tissue. Despite the technical advances in the development of biomaterials, the elaborate interplay encompassing materials science and biology on the atomic level is not very well understood. Within implantology, anchoring a biomaterial device into bone tissue is termed osseointegration. In the most accepted theory, osseointegration is defined as an interfacial bonding between implant and bone; however, there is lack of experimental evidence to confirm this. Here we show that atom probe tomography can be used to study the implant-tissue interaction, allowing for three-dimensional atomic mapping of the interface region. Interestingly, our analyses demonstrated that direct contact between Ca atoms and the implanted titanium oxide surface is formed without the presence of a protein interlayer, which means that a pure inorganic interface is created, hence giving experimental support to the current theory of osseointegration. We foresee that this result will be of importance in the development of future biomaterials as well as in the design of in vitro evaluation techniques.

  6. Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations

    NARCIS (Netherlands)

    Koutsos, V.; Manias, E.; Brinke, G. ten; Hadziioannou, G.

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its

  7. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes

    Directory of Open Access Journals (Sweden)

    A. Smirnov

    2018-01-01

    Full Text Available In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm and the probe’s tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000 of the TF + probe system (Cherkun et al., 2006. We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  8. Resonant atom-field interaction in large-size coupled-cavity arrays

    International Nuclear Information System (INIS)

    Ciccarello, Francesco

    2011-01-01

    We consider an array of coupled cavities with staggered intercavity couplings, where each cavity mode interacts with an atom. In contrast to large-size arrays with uniform hopping rates where the atomic dynamics is known to be frozen in the strong-hopping regime, we show that resonant atom-field dynamics with significant energy exchange can occur in the case of staggered hopping rates even in the thermodynamic limit. This effect arises from the joint emergence of an energy gap in the free photonic dispersion relation and a discrete frequency at the gap's center. The latter corresponds to a bound normal mode stemming solely from the finiteness of the array length. Depending on which cavity is excited, either the atomic dynamics is frozen or a Jaynes-Cummings-like energy exchange is triggered between the bound photonic mode and its atomic analog. As these phenomena are effective with any number of cavities, they are prone to be experimentally observed even in small-size arrays.

  9. Translational motion of an atom in a weakly driven fiber-Bragg-grating cavity

    International Nuclear Information System (INIS)

    Kien, Fam Le; Hakuta, K

    2012-01-01

    We study the translational motion of an atom in the vicinity of a weakly driven nanofiber with two fiber-Bragg-grating mirrors. We find that the spatial dependences of the force, the friction coefficients and the momentum diffusion are very complicated due to the evanescent-wave nature of the atom–field coupling as well as the effect of the van der Waals potential. We show that the time development of the mean number of photons in the cavity closely follows the translational motion of the atom through the nodes and antinodes of the fiber-guided cavity standing-wave field even though the cavity finesse is moderate, the cavity is long and the probe field is weak

  10. Atomic structures and compositions of internal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, D.N. (Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering); Merkle, K.L. (Argonne National Lab., IL (United States))

    1992-03-01

    This research program addresses fundamental questions concerning the relationships between atomic structures and chemical compositions of metal/ceramic heterophase interfaces. The chemical composition profile across a Cu/MgO {l brace}111{r brace}-type heterophase interface, produced by the internal oxidation of a Cu(Mg) single phase alloy, is measured via atom-probe field-ion microscopy with a spatial resolution of 0.121 nm; this resolution is equal to the interplanar space of the {l brace}222{r brace} MgO planes. In particular, we demonstrate for the first time that the bonding across a Cu/MgO {l brace}111{r brace}-type heterophase interface, along a <111> direction common to both the Cu matrix and an MgO precipitate, has the sequence Cu{vert bar}O{vert bar}Mg{hor ellipsis} and not Cu{vert bar}Mg{vert bar}O{hor ellipsis}; this result is achieved without any deconvolution of the experimental data. Before determining this chemical sequence it was established, via high resolution electron microscopy, that the morphology of an MgO precipitate in a Cu matrix is an octahedron faceted on {l brace}111{r brace} planes with a cube-on-cube relationship between a precipitate and the matrix. First results are also presented for the Ni/Cr{sub 2}O{sub 4} interface; for this system selected area atom probe microscopy was used to analyze this interface; Cr{sub 2}O{sub 4} precipitates are located in a field-ion microscope tip and a precipitate is brought into the tip region via a highly controlled electropolishing technique.

  11. Magnetic-field-dependent slow light in strontium atom-cavity system

    Science.gov (United States)

    Liu, Zeng-Xing; Wang, Bao; Kong, Cui; Xiong, Hao; Wu, Ying

    2018-03-01

    Realizing and controlling a long-lived slow light is of fundamental importance in physics and may find applications in quantum router and quantum information processing. In this work, we propose a feasible scheme to realize the slow light in a strontium atom-cavity system, in which the value of group delay can be continuously adjusted within a range of different Zeeman splittings and vacuum Rabi frequencies by varying the applied static magnetic field and the atom number instead of a strong coherent field. In our scheme, the major limitations of the slow-light structure, namely, dispersion and loss, can be effectively resolved, and so our scheme may help to achieve the practical application of slow light relevant to the optical communication network.

  12. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  13. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study

    Science.gov (United States)

    Zilnyk, K. D.; Pradeep, K. G.; Choi, P.; Sandim, H. R. Z.; Raabe, D.

    2017-08-01

    Oxide-dispersion strengthened materials are important candidates for several high-temperature structural applications in advanced nuclear power plants. Most of the desirable mechanical properties presented by these materials are due to the dispersion of stable nanoparticles in the matrix. Samples of ODS-Eurofer steel were annealed for 4320 h (6 months) at 800 °C. The material was characterized using atom probe tomography in both conditions (prior and after heat treatment). The particles number density, size distribution, and chemical compositions were determined. No significant changes were observed between the two conditions indicating a high thermal stability of the Y-rich nanoparticles at 800 °C.

  14. Entanglement for a Bimodal Cavity Field Interacting with a Two-Level Atom

    International Nuclear Information System (INIS)

    Liu Jia; Chen Ziyu; Bu Shenping; Zhang Guofeng

    2009-01-01

    Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom and a two-mode cavity field. Effects of Kerr-like medium and the number of photon inside the cavity on the entanglement are studied. Our results show that atomic initial state must be superposed, so that the two cavity field modes can be entangled. Moreover, we also conclude that the number of photon in the two cavity mode should be equal. The interaction between modes, namely, the Kerr effect, has a significant negative contribution. Note that the atom frequency and the cavity frequency have an indistinguishable effect, so a corresponding approximation has been made in this article. These results may be useful for quantum information in optics systems.

  15. Maxwell fields in the vicinity of an atom: are they essentially classical

    International Nuclear Information System (INIS)

    Power, E.A.; Thirunamachandran, T.

    1984-01-01

    Multipolar formalism is commonly used as the starting point in quantum optics, and the coupling between the radiation field and atoms is taken to be in the lowest order, namely the electric dipole interaction. In the present work, the authors use the Heisenberg picture to describe the Maxwell fields and the charge fields evolving together as a coupled system. The basic electromagnetic fields are calculated as power series in the transition moments of the atom. At t = 0, the time when the different pictures are chosen to agree, the Maxwell operators act in the photon occupation space only and the electron field operators act solely in the fermion space. However, for t > O, the Heisenberg operators act in the composite space so that the electromagnetic fields are complicated functions of the annihilation and creation operators for both electrons and photons. The explicit forms of the first few terms of the series for the displacement vector and magnetic fields are presented

  16. Quantum-mechanical theory including angular momenta analysis of atom-atom collisions in a laser field

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1978-01-01

    The problem of two atoms colliding in the presence of an intense radiation field, such as that of a laser, is investigated. The radiation field, which couples states of different electronic symmetry, is described by the number state representation while the electronic degrees of freedom (plus spin-orbit interaction) are discussed in terms of a diabatic representation. The total angular momentum of the field-free system and the angular momentum transferred by absorption (or emission) of a photon are explicitly considered in the derivation of the coupled scattering equations. A model calculation is discussed for the Xe + F collision system.

  17. Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons

    International Nuclear Information System (INIS)

    Sokell, E.; Zamith, S.; Bouchene, M.A.; Girard, B.

    2000-01-01

    The precession of orbital and spin angular momentum vectors has been observed in a pump-probe study of the 4P fine-structure states of atomic potassium. A femtosecond pump pulse prepared a coherent superposition of the two fine-structure components. A time-delayed probe pulse then ionized the system after it had been allowed to evolve freely. Oscillations recorded in the ion signal reflect the evolution of the orientation of the orbital and spin angular momentum due to spin-orbit coupling. This interpretation gives physical insight into the cause of the half-period phase shift observed when the relative polarizations of the laser pulses were changed from parallel to perpendicular. Finally, it is shown that these changes in the orientation of the spin momentum vector of the system can be utilized to produce highly spin-polarized free electrons on the femtosecond scale. (author)

  18. A scheme for teleporting Schrdinger-cat states via the dispersive atom-cavity-field interaction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A proposal is presented for teleporting Schrding-cat states. The process of the teleportation is achieved through the dispersive atom-cavity-field interaction. In this proposal, only measurement on the cavity field and on the singlet atomic states are used.

  19. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    International Nuclear Information System (INIS)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A.; Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P.

    2015-01-01

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering

  20. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A., E-mail: rao28@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P., E-mail: michael.moody@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-02-16

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering.